Back to Cyril Pitrou's homepageBack to xAct

- xPand -


(Perturbations Are Not Difficult)

  • General description

    xPand (2012-2018) is a package for Mathematica in which tools are provided to compute formally the cosmological perturbations around a homogeneous spacetime. It is developed by Cyril Pitrou, Xavier Roy and Obinna Umeh. It is based on the xAct distribution for efficient tensor manipulations.

  • Downloading and installing

    You first need to download and install xAct.
    Then you can download the tarball of xPand's last released version (currently 0.4.3).
    See the installation notes in order to install it correctly in your local Mathematica distribution.

  • Documentation

    Once installed, the documentation is available in your Documentation Center of Mathematica (Help->Documentation Center->Add-Ons->xAct Packages->xPand). Again see the installation notes to make sure you have the appropriate documentation. If you wish to have a glance at the package, you can download the pdf dump of the documentation.

    The details of the algorithm are available in an associated publication.
    Please cite it along with the page http://www.xact.es/xPand/ if you use it.

  • Articles acknowledging the use of xPand

    • 109. From formation to evaporation: Induced gravitational wave probes of the primordial black hole reheating scenario
      Domènech, Guillem, Tränkle, Jan
      2409.12125
    • 108. Induced gravitational waves for arbitrary higher orders: vertex rules and loop diagrams in cosmological perturbation theory
      Zhou, Jing-Zhi, Kuang, Yu-Ting, Wu, Di, Lü, H., Chang, Zhe
      2408.14052
    • 107. Cosmological perturbations with ultralight vector dark matter fields: numerical implementation in CLASS
      Chase, Tomás Ferreira, Leizerovich, Matías, López Nacir, Diana, Landau, Susana
      2408.12052
    • 106. Inflationary initial conditions for the cosmological gravitational wave background
      Valbusa Dall'Armi, Lorenzo, Mierna, Alina, Matarrese, Sabino, Ricciardone, Angelo
      JCAP, 07 (2024), 043
      2407.09405
    • 105. Stability of Axion-Saxion wormholes
      Hertog, T., Maenaut, S., Missoni, B., Tielemans, R., Van Riet, T.
      2405.02072
    • 104. Cosmic Birefringence as a Probe of Fundamental Parity-Violation
      Greco, Alessandro
      Link: View Paper
      PDF: Download PDF
    • 103. Gravitational Wave Background Anisotropies: Probing Early and Late Universe Cosmology with Interferometers
      Valbusa Dall’Armi, Lorenzo
      Link: View Paper
    • 102. Induced gravitational waves: the effect of first order tensor perturbations
      Picard, Raphael, Malik, Karim A.
      2311.14513
    • 101. Ultralight vector dark matter, anisotropies, and cosmological adiabatic modes
      Chase, Tomás Ferreira, López Nacir, Diana
      Phys.Rev.D, 109 (2024), 083521
      2311.09373
    • 100. New constraints on primordial non-Gaussianity from missing two-loop contributions of scalar induced gravitational waves
      Chang, Zhe, Kuang, Yu-Ting, Wu, Di, Zhou, Jing-Zhi, Zhu, Qing-Hua
      Phys.Rev.D, 109 (2024), L041303
      2311.05102
    • 99. Unraveling the early universe's equation of state and primordial black hole production with PTA, BBN, and CMB observations
      Zhu, Qing-Hua, Zhao, Zhi-Chao, Wang, Sai, Zhang, Xin
      2307.13574
    • 98. Primordial black holes from second order density perturbations as probes of the small-scale primordial power spectrum
      Kuang, Yu-Ting, Zhou, Jing-Zhi, Chang, Zhe, Zhang, Xukun, Zhu, Qing-Hua
      2307.02067
    • 97. Axion-de Sitter wormholes
      Aguilar-Gutierrez, Sergio E., Hertog, Thomas, Tielemans, Rob, van der Schaar, Jan Pieter, Van Riet, Thomas
      JHEP, 11 (2023), 225
      2306.13951
    • 96. Primordial non-Gaussianity f $_{NL}$ and anisotropies in scalar-induced gravitational waves
      Li, Jun-Peng, Wang, Sai, Zhao, Zhi-Chao, Kohri, Kazunori
      JCAP, 10 (2023), 056
      2305.19950
    • 95. Second-order Teukolsky formalism in Kerr spacetime: Formulation and nonlinear source
      Spiers, Andrew, Pound, Adam, Moxon, Jordan
      Phys.Rev.D, 108 (2023), 064002
      2305.19332
    • 94. Synchronizing the consistency relation
      Inomata, Keisuke, Lee, Hayden, Hu, Wayne
      JCAP, 08 (2023), 021
      2304.10559
    • 93. Vorticity generation in cosmology and the role of shell crossing
      Umeh, Obinna
      JCAP, 12 (2023), 043
      2303.08782
    • 92. Primordial gravitational waves assisted by cosmological scalar perturbations
      Yu, Yan-Heng, Wang, Sai
      Eur.Phys.J.C, 84 (2024), 555
      2303.03897
    • 91. FeynGrav 2.0
      Latosh, Boris
      Comput.Phys.Commun., 292 (2023), 108871
      2302.14310
    • 90. Scalar induced gravitational waves from Chern-Simons gravity during inflation era
      Feng, Jia-Xi, Zhang, Fengge, Gao, Xian
      JCAP, 07 (2023), 047
      2302.00950
    • 89. Viable massive gravity without nonlinear screening
      Manita, Yusuke, Panpanich, Sirachak, Kimura, Rampei
      2301.09797
    • 88. Primordial Gravitational Wave- and Curvature Perturbation-Induced Energy Density Perturbations
      Chang, Zhe, Kuang, Yu-Ting, Zhang, Xukun, Zhou, Jing-Zhi
      Universe, 10 (2024), 39
      2211.11948
    • 87. Mapping the weak field limit of scalar-Gauss-Bonnet gravity
      Elder, Benjamin, Sakstein, Jeremy
      Phys.Rev.D, 107 (2023), 044006
      2210.10955
    • 86. Wave-optics limit of the stochastic gravitational wave background
      Garoffolo, Alice
      Phys.Dark Univ., 44 (2024), 101475
      2210.05718
    • 85. Primordial black holes and third order scalar induced gravitational waves*
      Chang, Zhe, Kuang, Yu-Ting, Zhang, Xukun, Zhou, Jing-Zhi
      Chin.Phys.C, 47 (2023), 055104
      2209.12404
    • 84. Propagation of scalar and tensor gravitational waves in Horndeski theory
      Kubota, Kei-ichiro, Arai, Shun, Mukohyama, Shinji
      Phys.Rev.D, 107 (2023), 064002
      2209.00795
    • 83. Impact of the free-streaming neutrinos to the second order induced gravitational waves
      Zhang, Xukun, Zhou, Jing-Zhi, Chang, Zhe
      Eur.Phys.J.C, 82 (2022), 781
      2208.12948
    • 82. The cosmological vector modes from a monochromatic primordial power spectrum
      Chang, Zhe, Zhang, Xukun, Zhou, Jing-Zhi
      JCAP, 10 (2022), 084
      2207.01231
    • 81. Supercomputers against strong coupling in gravity with curvature and torsion
      Barker, W.E. V.
      Eur.Phys.J.C, 83 (2023), 228
      2206.00658
    • 80. Circularly polarized scalar induced gravitational waves from the Chern-Simons modified gravity
      Zhang, Fengge, Feng, Jia-Xi, Gao, Xian
      JCAP, 10 (2022), 054
      2205.12045
    • 79. Consequences of using a smooth cosmic distance in a lumpy universe. I.
      Umeh, Obinna
      Phys.Rev.D, 106 (2022), 023514
      2202.08230
    • 78. Emergence of smooth distance and apparent magnitude in a lumpy Universe
      Umeh, Obinna
      Class.Quant.Grav., 39 (2022), 235006
      2202.08237
    • 77. The art of building a smooth cosmic distance ladder in a perturbed universe
      Umeh, Obinna
      JCAP, 08 (2022), 023
      2201.11089
    • 76. FeynGrav: FeynCalc extension for gravity amplitudes
      Latosh, Boris
      Class.Quant.Grav., 39 (2022), 165006
      2201.06812
    • 75. Linear growth of structure in projected massive gravity
      Manita, Yusuke, Kimura, Rampei
      Phys.Rev.D, 105 (2022), 084038
      2112.13855
    • 74. The momentum constraint equation in parameterised post-Newtonian cosmology
      Anton, Theodore, Clifton, Timothy
      Class.Quant.Grav., 39 (2022), 095005
      2111.10860
    • 73. Non-Gaussianity in DHOST inflation
      Brax, Philippe, Lazanu, Andrei
      JCAP, 01 (2022), 026
      2110.05913
    • 72. Theoretical and Numerical Methods for Modified Gravity
      Casalino, Alessandro
    • 71. Applications of Cosmological Perturbation Theory in the Late Universe
      Fuentes, Jorge L.
      2106.10181
    • 70. Scale-dependence in DHOST inflation
      Brax, Philippe, Lazanu, Andrei
      JCAP, 08 (2021), 061
      2106.09319
    • 69. The third order scalar induced gravitational waves
      Zhou, Jing-Zhi, Zhang, Xukun, Zhu, Qing-Hua, Chang, Zhe
      JCAP, 05 (2022), 013
      2106.01641
    • 68. A topic review on probing primordial black hole dark matter with scalar induced gravitational waves
      Yuan, Chen, Huang, Qing-Guo
      iScience, 24 (2021), 102860
      2103.04739
    • 67. The effect of finite halo size on the clustering of neutral hydrogen
      Umeh, Obinna, Maartens, Roy, Padmanabhan, Hamsa, Camera, Stefano
      JCAP, 06 (2021), 027
      2102.06116
    • 66. Cosmological implications of extended massive gravity theories
      Kenna-Allison, Michael Patrick Roland
      Link: View Paper
    • 65. Galaxy number counts at second order in perturbation theory: a leading-order term comparison
      Fuentes, Jorge L., Hidalgo, Juan Carlos, Malik, Karim A.
      Class.Quant.Grav., 38 (2021), 215008
      2012.15326
    • 64. xPPN: an implementation of the parametrized post-Newtonian formalism using xAct for Mathematica
      Hohmann, Manuel
      Eur.Phys.J.C, 81 (2021), 504
      2012.14984
    • 63. Approximate gauge independence of the induced gravitational wave spectrum
      Domènech, Guillem, Sasaki, Misao
      Phys.Rev.D, 103 (2021), 063531
      2012.14016
    • 62. Generalised Proca theories in teleparallel gravity
      Nicosia, Gianbattista-Piero, Levi Said, Jackson, Gakis, Viktor
      Eur.Phys.J.Plus, 136 (2021), 191
      2012.11959
    • 61. Testing the equivalence principle on cosmological scales using the odd multipoles of galaxy cross-power spectrum and bispectrum
      Umeh, Obinna, Koyama, Kazuya, Crittenden, Robert
      JCAP, 08 (2021), 049
      2011.05876
    • 60. Quasi-normal mode of a regular Schwarzschild black hole
      Villani, Mattia
      Class.Quant.Grav., 37 (2020), 215019
    • 59. On the Gauge Invariance of Scalar Induced Gravitational Waves: Gauge Fixings Considered
      Chang, Zhe, Wang, Sai, Zhu, Qing-Hua
      2010.01487
    • 58. Gauge Invariant Second Order Gravitational Waves
      Chang, Zhe, Wang, Sai, Zhu, Qing-Hua
      2009.11994
    • 57. Note on gauge invariance of second order cosmological perturbations
      Chang, Zhe, Wang, Sai, Zhu, Qing-Hua
      Chin.Phys.C, 45 (2021), 095101
      2009.11025
    • 56. Cosmic acceleration and growth of structure in massive gravity
      Kenna-Allison, Michael, Gumrukcuoglu, A. Emir, Koyama, Kazuya
      Phys.Rev.D, 102 (2020), 103524
      2009.05405
    • 55. Cosmological perturbations in modified teleparallel gravity models: Boundary term extension
      Bahamonde, Sebastian, Gakis, Viktor, Kiorpelidi, Stella, Koivisto, Tomi, Levi Said, Jackson, Saridakis, Emmanuel N.
      Eur.Phys.J.C, 81 (2021), 53
      2009.02168
    • 54. Analytic solutions of scalar perturbations induced by scalar perturbations
      Inomata, Keisuke
      JCAP, 03 (2021), 013
      2008.12300
    • 53. FieldsX -- An extension package for the xAct tensor computer algebra suite to include fermions, gauge fields and BRST cohomology
      Fröb, Markus B.
      2008.12422
    • 52. Gravitational waves induced by the local-type non-Gaussian curvature perturbations
      Yuan, Chen, Huang, Qing-Guo
      Phys.Lett.B, 821 (2021), 136606
      2007.10686
    • 51. Gauge transformation of scalar induced gravitational waves
      Lu, Yizhou, Ali, Arshad, Gong, Yungui, Lin, Jiong, Zhang, Fengge
      Phys.Rev.D, 102 (2020), 083503
      2006.03450
    • 50. Stable, nonsingular bouncing universe with only a scalar mode
      Kumar, K. Sravan, Maheshwari, Shubham, Mazumdar, Anupam, Peng, Jun
      Phys.Rev.D, 102 (2020), 024080
      2005.01762
    • 49. Perturbations in Regularized Lovelock Gravity
      Casalino, Alessandro, Sebastiani, Lorenzo
      Phys.Dark Univ., 31 (2021), 100771
      2004.10229
    • 48. Massive gravity with nonminimal coupling
      Gumrukcuoglu, A. Emir, Kimura, Rampei, Koyama, Kazuya
      Phys.Rev.D, 101 (2020), 124021
      2003.11831
    • 47. Note on nonsingular Einstein-Aether cosmologies
      Casalino, Alessandro, Sebastiani, Lorenzo, Zerbini, Sergio
      Phys.Rev.D, 101 (2020), 104059
      2003.08204
    • 46. Gravitational Waves from Inflation
      Maria, Mylova
      Link: View Paper
    • 45. Stable cosmology in generalized massive gravity
      Kenna-Allison, Michael, Gümrükçüoglu, A. Emir, Koyama, Kazuya
      Phys.Rev.D, 101 (2020), 084014
      1912.08560
    • 44. Scalar induced gravitational waves in different gauges
      Yuan, Chen, Chen, Zu-Cheng, Huang, Qing-Guo
      Phys.Rev.D, 101 (2020), 063018
      1912.00885
    • 43. Gauge Independence of Induced Gravitational Waves
      Inomata, Keisuke, Terada, Takahiro
      Phys.Rev.D, 101 (2020), 023523
      1912.00785
    • 42. Chiral primordial gravitational waves in extended theories of Scalar-Tensor gravity
      Mylova, Maria
      1912.00800
    • 41. Non-linear effects in early Universe cosmology
      Carrilho, Pedro
      1911.08313
      Link: View Paper
    • 40. Multi-scale perturbation theory. Part I. Methodology and leading-order bispectrum corrections in the matter-dominated era
      Gallagher, Christopher, Clifton, Timothy, Clarkson, Chris
      JCAP, 03 (2020), 011
      1910.04894
    • 39. Bianchi spacetimes as supercurvature modes around isotropic cosmologies
      Pereira, Thiago S., Pitrou, Cyril
      Phys.Rev.D, 100 (2019), 123534
      1909.13688
    • 38. Galaxy number counts at second order: an independent approach
      Fuentes, Jorge L., Hidalgo, Juan Carlos, Malik, Karim A.
      Class.Quant.Grav., 38 (2021), 065014
      1908.08400
    • 37. The galaxy bias at second order in general relativity with Non-Gaussian initial conditions
      Umeh, Obinna, Koyama, Kazuya
      JCAP, 12 (2019), 048
      1907.08094
    • 36. Probing primordial–black-hole dark matter with scalar induced gravitational waves
      Yuan, Chen, Chen, Zu-Cheng, Huang, Qing-Guo
      Phys.Rev.D, 100 (2019), 081301
      1906.11549
    • 35. Gravitational alternatives to dark matter with tensor mode speed equaling the speed of light
      Skordis, Constantinos, Złośnik, Tom
      Phys.Rev.D, 100 (2019), 104013
      1905.09465
    • 34. Slow-Roll Inflation in Scalar-Tensor Models
      Granda, L.N., Jimenez, D.F.
      JCAP, 09 (2019), 007
      1905.08349
    • 33. Observational Constraints on Two-field Warm Inflation
      Wang, Yang-yang, Zhu, Jian-Yang, Zhang, Xiao-Min
      Phys.Rev.D, 99 (2019), 103529
      1905.02414
    • 32. Magnetogenesis from isocurvature initial conditions
      Carrilho, Pedro, Malik, Karim A.
      JCAP, 04 (2019), 028
      1902.00459
    • 31. General relativistic effects in the galaxy bias at second order
      Umeh, Obinna, Koyama, Kazuya, Maartens, Roy, Schmidt, Fabian, Clarkson, Chris
      JCAP, 05 (2019), 020
      1901.07460
    • 30. Linear cosmological perturbations in almost scale-invariant fourth-order gravity
      Fuentes, Jorge L., Gillani, Usman A., Malik, Karim A.
      1812.00938
      Link: View Paper
    • 29. Gravity in mimetic scalar-tensor theories after GW170817
      Ganz, Alexander, Bartolo, Nicola, Karmakar, Purnendu, Matarrese, Sabino
      JCAP, 01 (2019), 056
      1809.03496
    • 28. Computer algebra in gravity research
      MacCallum, Malcolm A.H.
      Living Rev.Rel., 21 (2018), 6
    • 27. Equivalence between Scalar-Tensor theories and $f(R)$-gravity: from the action to cosmological perturbations
      Velásquez, Joel, Castañeda, Leonardo
      J.Phys.Comm., 4 (2020), 055007
      1808.05615
    • 26. Relativistic Euler equations in cosmologies with nonlinear structures
      Gallagher, Christopher S., Clifton, Timothy
      Phys.Rev.D, 98 (2018), 103516
      1807.01655
    • 25. The observed galaxy bispectrum from single-field inflation in the squeezed limit
      Koyama, Kazuya, Umeh, Obinna, Maartens, Roy, Bertacca, Daniele
      JCAP, 07 (2018), 050
      1805.09189
    • 24. Isocurvature initial conditions for second order Boltzmann solvers
      Carrilho, Pedro, Malik, Karim A.
      JCAP, 08 (2018), 020
      1803.08939
    • 23. Two-field warm inflation and its scalar perturbations on large scales
      Wang, Yang-Yang, Zhu, Jian-Yang, Zhang, Xiao-Min
      Phys.Rev.D, 97 (2018), 063510
      1803.10066
    • 22. Two-parameter Perturbation Theory for Cosmologies with Non-linear Structure
      Goldberg, Sophia Rachel
      Link: View Paper
    • 21. Cosmic structures and gravitational waves in ghost-free scalar-tensor theories of gravity
      Bartolo, Nicola, Karmakar, Purnendu, Matarrese, Sabino, Scomparin, Mattia
      JCAP, 05 (2018), 048
      1712.04002
    • 20. General relativistic weak-field limit and Newtonian N-body simulations
      Fidler, Christian, Tram, Thomas, Rampf, Cornelius, Crittenden, Robert, Koyama, Kazuya, Wands, David
      JCAP, 12 (2017), 022
      1708.07769
    • 19. Perturbation theory for cosmologies with nonlinear structure
      Goldberg, Sophia R., Gallagher, Christopher, Clifton, Timothy
      Phys.Rev.D, 96 (2017), 103508
      1707.01042
    • 18. Tackling non-linearities with the effective field theory of dark energy and modified gravity
      Frusciante, Noemi, Papadomanolakis, Georgios
      JCAP, 12 (2017), 014
      1706.02719
    • 17. Failures of homogeneous and isotropic cosmologies in extended quasidilaton massive gravity
      Anselmi, Stefano, Kumar, Saurabh, López Nacir, Diana, Starkman, Glenn D.
      Phys.Rev.D, 96 (2017), 084001
      1706.01872
    • 16. How Gaussian can our Universe be?
      Cabass, Giovanni, Pajer, Enrico, Schmidt, Fabian
      JCAP, 01 (2017), 003
      1612.00033
    • 15. Imprint of non-linear effects on HI intensity mapping on large scales
      Umeh, Obinna
      JCAP, 06 (2017), 005
      1611.04963
    • 14. Primordial gravitational waves in supersolid inflation
      Ricciardone, Angelo, Tasinato, Gianmassimo
      Phys.Rev.D, 96 (2017), 023508
      1611.04516
    • 13. Cosmology on all scales: a two-parameter perturbation expansion
      Goldberg, Sophia R., Clifton, Timothy, Malik, Karim A.
      Phys.Rev.D, 95 (2017), 043503
      1610.08882
    • 12. Primordial black holes as a novel probe of primordial gravitational waves. II: Detailed analysis
      Nakama, Tomohiro, Suyama, Teruaki
      Phys.Rev.D, 94 (2016), 043507
      1605.04482
    • 11. Cosmological perturbations in mimetic Horndeski gravity
      Arroja, Frederico, Bartolo, Nicola, Karmakar, Purnendu, Matarrese, Sabino
      JCAP, 04 (2016), 042
      1512.09374
    • 10. Vector and tensor contributions to the curvature perturbation at second order
      Carrilho, Pedro, Malik, Karim A.
      JCAP, 02 (2016), 021
      1507.06922
    • 9. Extreme parameter sensitivity in quasidilaton massive gravity
      Anselmi, Stefano, López Nacir, Diana, Starkman, Glenn D.
      Phys.Rev.D, 92 (2015), 084033
      1506.01000
    • 8. On Separate Universes
      Dai, Liang, Pajer, Enrico, Schmidt, Fabian
      JCAP, 10 (2015), 059
      1504.00351
    • 7. Weak-lensing by the large scale structure in a spatially anisotropic universe: theory and predictions
      Pitrou, Cyril, Pereira, Thiago S., Uzan, Jean-Philippe
      Phys.Rev.D, 92 (2015), 023501
      1503.01125
    • 6. Conformal Fermi Coordinates
      Dai, Liang, Pajer, Enrico, Schmidt, Fabian
      JCAP, 11 (2015), 043
      1502.02011
    • 5. The effective theory of fluids at NLO and implications for dark energy
      Ballesteros, Guillermo
      JCAP, 03 (2015), 001
      1410.2793
    • 4. Nonlinear relativistic corrections to cosmological distances, redshift and gravitational lensing magnification. II - Derivation
      Umeh, Obinna, Clarkson, Chris, Maartens, Roy
      Class.Quant.Grav., 31 (2014), 205001
      1402.1933
    • 3. xTras : A field-theory inspired xAct package for mathematica
      Nutma, Teake
      Comput.Phys.Commun., 185 (2014)
      1308.3493
    • 2. A Simplified Approach to General Scalar-Tensor Theories
      Bloomfield, Jolyon
      JCAP, 12 (2013), 044
      1304.6712
    • 1. Nonlinear relativistic corrections to cosmological distances, redshift and gravitational lensing magnification: I. Key results
      Umeh, Obinna, Clarkson, Chris, Maartens, Roy
      Class.Quant.Grav., 31 (2014), 202001
      1207.2109


  • CopyLeft

    The programs in this page are distributed as free software under the GNU General Public License. They are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.