yorick banner

Home

Manual

Packages

Global Index

Keywords

Quick Reference

functions in fermi.i - f

 
 
 
fd12


             fd12(x)  
 
    return Fermi-Dirac integral of order 1/2,  
       fd12(x) = integral[0 to inf]{ dt * t^0.5 / (exp(t-x)+1) }  
    accurate to about 1e-12  
interpreted function, defined at i/fermi.i   line 56  
SEE ALSO: fdm12,   fd32,   fd52,   ifdm12,   ifd12,   ifd32,  
ifd52  
 
 
 
fd32


             fd32(x)  
 
    return Fermi-Dirac integral of order 3/2,  
       fd32(x) = integral[0 to inf]{ dt * t^1.5 / (exp(t-x)+1) }  
    accurate to about 1e-12  
interpreted function, defined at i/fermi.i   line 96  
SEE ALSO: fdm12,   fd12,   fd52,   ifdm12,   ifd12,   ifd32,  
ifd52  
 
 
 
fd52


             fd52(x)  
 
    return Fermi-Dirac integral of order 5/2,  
       fd52(x) = integral[0 to inf]{ dt * t^2.5 / (exp(t-x)+1) }  
    accurate to about 1e-12  
interpreted function, defined at i/fermi.i   line 135  
SEE ALSO: fdm12,   fd12,   fd32,   ifdm12,   ifd12,   ifd32,  
ifd52  
 
 
 
fdm12


             fdm12(x)  
 
    return Fermi-Dirac integral of order -1/2,  
       fdm12(x) = integral[0 to inf]{ dt * t^-0.5 / (exp(t-x)+1) }  
    accurate to about 1e-12  
interpreted function, defined at i/fermi.i   line 15  
SEE ALSO: fd12,   fd32,   fd52,   ifdm12,   ifd12,   ifd32,  
ifd52  
 
 
 
fermi


             #include "fermi.i"  
 
    Fermi-Dirac integrals and inverses of orders -1/2, 1/2, 3/2, 5/2  
    
    Antia, H. M., Aph.J. 84, p.101-108 (1993)  
    
keyword,  defined at i/fermi.i   line 6  
SEE ALSO: fdm12,   fd12,   fd32,   fd52,   ifdm12,   ifd12,  
ifd32,   ifd52