Home

Manual

Packages

Global Index

Keywords

Quick Reference

# functions in fermi.i - f

 fd12 fd12(x) return Fermi-Dirac integral of order 1/2, fd12(x) = integral[0 to inf]{ dt * t^0.5 / (exp(t-x)+1) } accurate to about 1e-12 interpreted function, defined at i/fermi.i line 56 SEE ALSO: fdm12,   fd32,   fd52,   ifdm12,   ifd12,   ifd32,   ifd52

 fd32 fd32(x) return Fermi-Dirac integral of order 3/2, fd32(x) = integral[0 to inf]{ dt * t^1.5 / (exp(t-x)+1) } accurate to about 1e-12 interpreted function, defined at i/fermi.i line 96 SEE ALSO: fdm12,   fd12,   fd52,   ifdm12,   ifd12,   ifd32,   ifd52

 fd52 fd52(x) return Fermi-Dirac integral of order 5/2, fd52(x) = integral[0 to inf]{ dt * t^2.5 / (exp(t-x)+1) } accurate to about 1e-12 interpreted function, defined at i/fermi.i line 135 SEE ALSO: fdm12,   fd12,   fd32,   ifdm12,   ifd12,   ifd32,   ifd52

 fdm12 fdm12(x) return Fermi-Dirac integral of order -1/2, fdm12(x) = integral[0 to inf]{ dt * t^-0.5 / (exp(t-x)+1) } accurate to about 1e-12 interpreted function, defined at i/fermi.i line 15 SEE ALSO: fd12,   fd32,   fd52,   ifdm12,   ifd12,   ifd32,   ifd52

 fermi #include "fermi.i" Fermi-Dirac integrals and inverses of orders -1/2, 1/2, 3/2, 5/2 Antia, H. M., Aph.J. 84, p.101-108 (1993) keyword, defined at i/fermi.i line 6 SEE ALSO: fdm12,   fd12,   fd32,   fd52,   ifdm12,   ifd12,   ifd32,   ifd52