Home
Manual
Packages
Global Index
Keywords
Quick Reference
|
/*
* gammp.i - $Id$
* Incomplete gamma (chi-square distribution) and beta functions.
*/
/* Copyright (c) 2002. The Regents of the University of California.
All rights reserved. */
/* Algorithms from Numerical Recipes, Press, et. al., section 6.2,
* Cambridge University Press (1988).
*/
require, "gamma.i";
func gammp (a, x, &q, &lg)
/* DOCUMENT gammp(a, x)
* or gammp(a, x, q, lg)
* return P(a,x) = int[0 to x]{ du * u^(a-1)*exp(-u) } / gamma(a)
* optionally return Q(a,x) = 1-P(a,x) and ln(gamma(a))
*
* Note that erf(x)=gammp(0.5,x^2) and erfc(x)=gammq(0.5,x^2)
* Also P(chi2|nu)=gammp(0.5*nu,0.5*chi2)
* and Q(chi2|nu)=gammq(0.5*nu,0.5*chi2)
* are the probabilities that an observed chi-square be less than
* or greater than (P or Q) chi2 when there are nu degrees of freedom
* (terms in the chi-square sum).
*
* SEE ALSO: gammq, betai, ln_gamma (gamma.i), (dawson.i)
*/
{
lg = ln_gamma(a);
fact = double(!x);
fact = (1.-fact)*exp(-x+a*log(x+fact)-lg);
x += 0.*a;
a += 0.*x;
mask = x < a+1.;
list = where(mask);
if (numberof(list)) {
p1 = fact(list)*_gammp(a(list), x(list));
q1 = 1. - p1;
}
list = where(!mask);
if (numberof(list)) {
q = fact(list)*_gammq(a(list), x(list));
p = 1. - q;
}
q = merge(q1, q, mask);
return merge(p1, p, mask);
}
func gammq (a, x, &p, &lg)
/* DOCUMENT gammq(a, x)
* or gammq(a, x, p, lg)
* return Q(a,x) = 1 - int[0 to x]{ du * u^(a-1)*exp(-u) } / gamma(a)
* optionally return P(a,x) = 1-Q(a,x) and ln(gamma(a))
*
* Note that erf(x)=gammp(0.5,x^2) and erfc(x)=gammq(0.5,x^2)
* Also P(chi2|nu)=gammp(0.5*nu,0.5*chi2)
* and Q(chi2|nu)=gammq(0.5*nu,0.5*chi2)
* are the probabilities that an observed chi-square be less than
* or greater than (P or Q) chi2 when there are nu degrees of freedom
* (terms in the chi-square sum).
*
* SEE ALSO: gammp, betai, ln_gamma (gamma.i), (dawson.i)
*/
{
{ local q; }
p = gammp(a, x, q, lg);
return q;
}
func _gammp (a, x)
{
term = tot = total = 1./a;
ndx = indgen(numberof(total));
if (numberof(total) == 1) total = [total(1)];
for (i=0 ; i<_gamm_max ; ++i) {
a += 1.0;
term *= x/a;
tot += term;
mask = abs(term) < abs(tot)*_gamm_err;
list = where(mask);
if (numberof(list)) total(ndx(list)) = tot(list);
list = where(!mask);
if (!numberof(list)) break;
ndx = ndx(list);
a = a(list);
x = x(list);
term = term(list);
tot = tot(list);
}
if (numberof(list))
error, "global variable _gamm_err or _gamm_max too small";
if (numberof(total) == 1) total = total(1);
return total;
}
func _gammq (a, x)
{
r = rold = b0 = 0.*x;
if (numberof(r) == 1) r = [r(1)];
a0 = b1 = ren = 1. + b0;
a1 = x;
ndx = indgen(numberof(r));
for (i=1 ; i<=_gamm_max ; ++i) {
tmp = i - a;
a0 = (a1+a0*tmp)*ren;
b0 = (b1+b0*tmp)*ren;
tmp = i*ren;
a1 = x*a0+tmp*a1;
b1 = x*b0+tmp*b1;
mask = abs(b1-a1*rold) < abs(b1)*_gamm_err;
list = where(mask);
if (numberof(list)) r(ndx(list)) = b1(list)/a1(list);
list = where(!mask);
if (!numberof(list)) break;
ndx = ndx(list);
a = a(list);
x = x(list);
a0 = a0(list);
a1 = a1(list);
b0 = b0(list);
b1 = b1(list);
ren = 1./(a1+!a1);
rold = b1*ren;
}
if (numberof(list))
error, "global variable _gamm_err or _gamm_max too small";
if (numberof(r) == 1) r = r(1);
return r;
}
_gamm_err = 1.e-13;
_gamm_max = 200;
func betai (a, b, x)
/* DOCUMENT betai(a, b, x)
* return I_x(a,x) = int[0 to x]{ du * u^(a-1)*(1-u)^(b-1) } / beta(a,b)
* the incomplete beta function
*
* betai(a,b,x) = 1 - betai(b,a,1-x)
*
* Note that Student's t-distribution is
* A(t|nu) = 1 - betai(0.5*nu,0.5, nu/(nu+t^2))
* The F-distribution is
* Q(F|nu1,nu2) = betai(0.5*nu2,0.5*nu1, nu2/(nu2+F*nu1))
*
* SEE ALSO: gammp, gammq, ln_gamma (gamma.i), (dawson.i)
*/
{
mask = x < (a+1.)/(a+b+2.);
fact = 0.*mask;
x += fact;
a += fact;
b += fact;
xc = 1.-x;
fact = double((!x) | (!xc));
fact = (1.-fact)*exp(ln_gamma(a+b)-ln_gamma(a)-ln_gamma(b)+
a*log(x+fact)+b*log(xc+fact));
list = where(mask);
if (numberof(list)) {
r1 = a(list);
r1 = fact(list)*_betai(r1, b(list), x(list))/r1;
}
list = where(!mask);
if (numberof(list)) {
r = b(list);
r = 1. - fact(list)*_betai(r, a(list), xc(list))/r;
}
return merge(r1, r, mask);
}
func _betai (a, b, x)
{
r = 0.*x;
a0 = b0 = b1 = rold = 1. + r;
a1 = 1. - (a+b)*x/(a+1.);
if (numberof(r) == 1) r = [r(1)];
ndx = indgen(numberof(r));
for (i=1 ; i<=_gamm_max ; ++i) {
ii = double(i);
ii2a = ii+ii+a;
tmp = ii*(b-ii)*x/((ii2a-1)*ii2a);
a0 = (a1+a0*tmp);
b0 = (b1+b0*tmp);
ii += a;
tmp = -ii*(ii+b)*x/((ii2a+1.)*ii2a);
a1 = a0+tmp*a1;
b1 = b0+tmp*b1;
mask = abs(b1-a1*rold) < abs(b1)*_gamm_err;
list = where(mask);
if (numberof(list)) r(ndx(list)) = b1(list)/a1(list);
list = where(!mask);
if (!numberof(list)) break;
ndx = ndx(list);
a = a(list);
b = b(list);
x = x(list);
ren = 1./a1(list);
a0 = a0(list)*ren;
b0 = b0(list)*ren;
b1 = rold = b1(list)*ren;
a1 = 1.;
}
if (numberof(list))
error, "global variable _gamm_err or _gamm_max too small";
if (numberof(r) == 1) r = r(1);
return r;
}
|