Home
Manual
Packages
Global Index
Keywords
Quick Reference
|
/*
* bessel.i -- $Id$
* A few Bessel functions.
*/
/* Copyright (c) 2002. The Regents of the University of California.
* All rights reserved. */
/* Taken from Numerical Recipes, repaired bessj, bessi for x<<1. */
/* ------------------------------------------------------------------------ */
func bessj0 (x)
/* DOCUMENT bessj0(x)
returns Bessel function J0 at points X.
SEE ALSO: bessj
*/
{
return mergef(x, _bessj0_1, abs(x)<8.0, _bessj0_2);
}
func _bessj0_1 (x)
{
y = x*x;
return poly(y, 57568490574.0, -13362590354.0, 651619640.7, -11214424.18,
77392.33017, -184.9052456) /
poly(y, 57568490411.0, 1029532985.0, 9494680.718, 59272.64853,
267.8532712, 1.0);
}
func _bessj0_2 (x)
{
ax = abs(x);
z = 8.0/ax;
y = z*z;
x = ax-0.785398164; /* pi/4, rounded incorrectly */
return sqrt(0.636619772/ax) *
(cos(x)*poly(y, 1.0, -0.1098628627e-2,
0.2734510407e-4, -0.2073370639e-5, 0.2093887211e-6) -
sin(x)*z*poly(y, -0.1562499995e-1, 0.1430488765e-3,
-0.6911147651e-5, 0.7621095161e-6, -0.934935152e-7));
}
func bessj1 (x)
/* DOCUMENT bessj1(x)
returns Bessel function J1 at points X.
SEE ALSO: bessj
*/
{
return mergef(x, _bessj1_1, abs(x)<8.0, _bessj1_2);
}
func _bessj1_1 (x)
{
y = x*x;
return x * poly(y, 72362614232.0, -7895059235.0, 242396853.1, -2972611.439,
15704.48260, -30.16036606) /
poly(y, 144725228442.0, 2300535178.0, 18583304.74, 99447.43394,
376.9991397, 1.0);
}
func _bessj1_2 (x)
{
ax = abs(x);
z = 8.0/ax;
y = z*z;
xx = ax-2.356194491; /* 3*pi/4 */
return sign(x) * sqrt(0.636619772/ax) *
(cos(xx)*poly(y, 1.0, 0.183105e-2, -0.3516396496e-4,
0.2457520174e-5, -0.240337019e-6) -
sin(xx)*z*poly(y, 0.04687499995, -0.2002690873e-3, 0.8449199096e-5,
-0.88228987e-6, 0.105787412e-6));
}
func bessj (n, x)
/* DOCUMENT bessj(n, x)
returns Bessel function Jn of order N at points X. N must be scalar.
SEE ALSO: bessy, bessi, bessk, bessj0, bessj1
*/
{
if (n>1) {
ax = abs(x);
bj = mergef(ax, _bessj_0, ax<0.02*sqrt(n), _bessj_1, ax>n, _bessj_2);
if (n%2) bj *= sign(x);
return bj;
} else if (n==1) {
return bessj1(x);
} else if (!n) {
return bessj0(x);
}
}
func _bessj_0 (x)
{
x *= 0.5;
nn = double(n);
rn1 = 1./(nn+1.); rn2 = rn1/(nn+2.);
return (x^n/nn) * poly(x, 1., -rn1, rn2, -rn2/(nn+3.));
}
func _bessj_1 (x)
{
/* upward recurrence abs(x)>n */
ax = abs(x);
tox = 2.0/ax;
bjm = bessj0(ax);
bj = bessj1(ax);
for (i=1 ; i<n ; i++) {
bjp = i*tox*bj-bjm;
bjm = bj;
bj = bjp;
}
return bj;
}
func _bessj_2 (x)
{
/* downward recurrence abs(x)<=n */
ax = abs(x);
tox = 2.0/ax; /* < 100/sqrt(n) */
m = 2*((n+long(sqrt(bess_acc*n)))/2);
jsum = 0;
bjp = ans = add = array(0.0, numberof(ax));
bj = array(1.0, numberof(ax));
for (i=m ; i>0 ; i--) {
bjm = i*tox*bj-bjp;
bjp = bj;
bj = bjm;
list = where(abs(bj) > bess_big);
if (numberof(list)) {
bess_nrm = 1./bess_big;
bj(list) *= bess_nrm;
bjp(list) *= bess_nrm;
ans(list) *= bess_nrm;
add(list) *= bess_nrm;
}
if (jsum) add += bj;
jsum = !jsum;
if (i==n) ans = bjp;
}
bj = ans/(2.0*add-bj);
return bj;
}
/* ------------------------------------------------------------------------ */
func bessy0 (x)
/* DOCUMENT bessy0(x)
returns Bessel function Y0 at points X.
SEE ALSO: bessy
*/
{
return mergef(x, _bessy0_1, abs(x)<8.0, _bessy0_2);
}
func _bessy0_1 (x)
{
y= x*x;
return poly(y, -2957821389.0, 7062834065.0, -512359803.6, 10879881.29,
-86327.92757, 228.4622733) /
poly(y, 40076544269.0, 745249964.8, 7189466.438, 47447.26470,
226.1030244, 1.0) + 0.636619772*bessj0(x)*log(x);
}
func _bessy0_2 (x)
{
ax = abs(x);
z = 8.0/ax;
y = z*z;
xx = ax-0.785398164; /* pi/4, rounded incorrectly */
return sqrt(0.636619772/ax) *
(sin(xx)*poly(y, 1.0, -0.1098628627e-2, 0.2734510407e-4,
-0.2073370639e-5, 0.2093887211e-6) +
cos(xx)*z*poly(y, -0.1562499995e-1, 0.1430488765e-3,
-0.6911147651e-5, 0.7621095161e-6, -0.934935152e-7));
}
func bessy1 (x)
/* DOCUMENT bessy1(x)
returns Bessel function Y1 at points X.
SEE ALSO: bessy
*/
{
return mergef(x, _bessy1_1, abs(x)<8.0, _bessy1_2);
}
func _bessy1_1 (x)
{
y = x*x;
return x * poly(y, -0.4900604943e13, 0.1275274390e13, -0.5153438139e11,
0.7349264551e9, -0.4237922726e7, 0.8511937935e4) /
poly(y, 0.2499580570e14, 0.4244419664e12, 0.3733650367e10,
0.2245904002e8, 0.1020426050e6, 0.3549632885e3, 1.0) +
0.636619772*(bessj1(x)*log(x)-1.0/x);
}
func _bessy1_2 (x)
{
ax = abs(x);
z = 8.0/ax;
y = z*z;
xx = ax-2.356194491; /* 3*pi/4 */
return sqrt(0.636619772/x) *
(sin(xx)*poly(y, 1.0, 0.183105e-2, -0.3516396496e-4,
0.2457520174e-5, -0.240337019e-6) +
cos(xx)*z*poly(y, 0.04687499995, -0.2002690873e-3, 0.8449199096e-5,
-0.88228987e-6, 0.105787412e-6));
}
func bessy (n, x)
/* DOCUMENT bessy(n, x)
returns Bessel function Yn of order N at points X. N must be scalar.
SEE ALSO: bessj, bessi, bessk, bessy0, bessy1
*/
{
if (n>1) {
/* upward recurrence */
tox = 2.0/x;
bym = bessy0(x);
by = bessy1(x);
for (i=1 ; i<n ; i++) {
byp = i*tox*by-bym;
bym = by;
by = byp;
}
return by;
} else if (n==1) {
return bessy1(x);
} else if (!n) {
return bessy0(x);
}
}
/* ------------------------------------------------------------------------ */
func bessi0 (x)
/* DOCUMENT bessi0(x)
returns Bessel function I0 at points X.
SEE ALSO: bessi
*/
{
x = abs(x);
return mergef(x, _bessi0_1, x<3.75, _bessi0_2);
}
func _bessi0_1 (x)
{
x = x/3.75;
return poly(x*x, 1.0, 3.5156229, 3.0899424, 1.2067492, 0.2659732,
0.360768e-1, 0.45813e-2);
}
func _bessi0_2 (x)
{
y = 3.75/x;
return (exp(x)/sqrt(x)) * poly(y, 0.39894228, 0.1328592e-1, 0.225319e-2,
-0.157565e-2, 0.916281e-2, -0.2057706e-1,
0.2635537e-1, -0.1647633e-1, 0.392377e-2);
}
func bessi1 (x)
/* DOCUMENT bessi1(x)
returns Bessel function I1 at points X.
SEE ALSO: bessi
*/
{
return mergef(x, _bessi1_1, abs(x)<3.75, _bessi1_2);
}
func _bessi1_1 (x)
{
y = x/3.75;
y *= y;
return x * poly(y, 0.5, 0.87890594, 0.51498869, 0.15084934,
0.2658733e-1, 0.301532e-2, 0.32411e-3);
}
func _bessi1_2 (x)
{
ax = abs(x);
y = 3.75/ax;
return sign(x) * (exp(ax)/sqrt(ax)) *
poly(y, 0.39894228, -0.3988024e-1, -0.362018e-2, 0.163801e-2,
-0.1031555e-1, 0.2282967e-1, -0.2895312e-1, 0.1787654e-1,
-0.420059e-2);
}
func bessi (n, x)
/* DOCUMENT bessi(n, x)
returns Bessel function In of order N at points X. N must be scalar.
SEE ALSO: bessk, bessj, bessy, bessi0, bessi1
*/
{
if (n>1) {
ax = abs(x);
bi = mergef(ax, _bessi_0, ax<0.02*sqrt(n), _bessi_1);
if (n%2) bi *= sign(x);
return bi;
} else if (n==1) {
return bessi1(x);
} else if (!n) {
return bessi0(x);
}
}
func _bessi_0 (x)
{
x *= 0.5;
nn = double(n);
rn1 = 1./(nn+1.); rn2 = rn1/(nn+2.);
return (x^n/nn) * poly(x, 1., rn1, rn2, rn2/(nn+3.));
}
func _bessi_1 (x)
{
/* downward recurrence abs(x)<=n */
tox = 2.0/x;
m = 2*(n+long(sqrt(bess_acc*n)));
bip = ans = array(0.0, numberof(x));
bi = array(1.0, numberof(x));
for (i=m ; i>0 ; i--) {
bim = i*tox*bi+bip;
bip = bi;
bi = bim;
list = where(abs(bi) > bess_big);
if (numberof(list)) {
bess_nrm = 1./bess_big;
ans(list) *= bess_nrm;
bi(list) *= bess_nrm;
bip(list) *= bess_nrm;
}
if (i==n) ans = bip;
}
bi = ans*bessi0(x)/bi;
return bi;
}
/* ------------------------------------------------------------------------ */
func bessk0 (x)
/* DOCUMENT bessk0(x)
returns Bessel function K0 at points X.
SEE ALSO: bessk
*/
{
return mergef(x, _bessk0_1, x<=2.0, _bessk0_2);
}
func _bessk0_1 (x)
{
y= x*x/4.0;
return (-log(x/2.0)*bessi0(x)) +
poly(y, -0.57721566, 0.42278420, 0.23069756, 0.3488590e-1, 0.262698e-2,
0.10750e-3, 0.74e-5);
}
func _bessk0_2 (x)
{
y = 2.0/x;
return (exp(-x)/sqrt(x)) *
poly(y, 1.25331414, -0.7832358e-1, 0.2189568e-1, -0.1062446e-1,
0.587872e-2, -0.251540e-2, 0.53208e-3);
}
func bessk1 (x)
/* DOCUMENT bessk1(x)
returns Bessel function K1 at points X.
SEE ALSO: bessk
*/
{
return mergef(x, _bessk1_1, x<=2.0, _bessk1_2);
}
func _bessk1_1 (x)
{
y = x*x/4.0;
return (log(x/2.0)*bessi1(x)) +
(1.0/x) * poly(y, 1.0, 0.15443144, -0.67278579, -0.18156897,
-0.1919402e-1, -0.110404e-2, -0.4686e-4);
}
func _bessk1_2 (x)
{
y = 2.0/x;
return (exp(-x)/sqrt(x)) *
poly(y, 1.25331414, 0.23498619, -0.3655620e-1, 0.1504268e-1,
-0.780353e-2, 0.325614e-2, -0.68245e-3);
}
func bessk (n, x)
/* DOCUMENT bessk(n, x)
returns Bessel function Kn of order N at points X. N must be scalar.
SEE ALSO: bessi, bessj, bessy, bessi0, bessi1
*/
{
if (n>1) {
/* upward recurrence */
tox = 2.0/x;
bkm = bessk0(x);
bk = bessk1(x);
for (i=1 ; i<n ; i++) {
bkp = i*tox*bk+bkm;
bkm = bk;
bk = bkp;
}
return bk;
} else if (n==1) {
return bessk1(x);
} else if (!n) {
return bessk0(x);
}
}
/* ------------------------------------------------------------------------ */
bess_acc= 40.0;
bess_big= 1.e10;
/* ------------------------------------------------------------------------ */
#if 0
func bess_check (void)
{
/* values copied from Abramowitz and Stegun tables */
eg = 0.5772156649;
eps = 0.5e-30;
x = [2.*eps, 0.6, 3.0, 17.0];
j0 = [1., 0.912004863497211, -0.260051954901933, -0.169854252151184];
j1 = [eps, 0.2867009881, 0.3390589585, -0.0976684928];
j5 = [eps^5/5, 1.9948e-5, 4.3028e-2, -0.18704];
j6 = [eps^6/6, 9.9956e-7, 1.1394e-2, 0.00071533];
y0 = [2./pi*(log(eps)+eg), -0.3085098701, 0.3768500100, -0.0926371984];
y1 = [-1./(pi*eps), -1.2603913472, 0.3246744248, 0.1672050361];
y5 = [-24./(pi*eps^5), -3.2156e3, -1.9059, 0.06455];
y6 = [-120./(pi*eps^6), -5.3351e4, -5.4365, 0.19996];
i0 = [1., 0.5993272031, 0.2430003542, 0.0974943005]*exp(x);
i1 = [eps, 0.1721644195, 0.1968267133, 0.0945819107]*exp(x);
i5 = [eps^5/5, 1.1281e-5, 4.5409e-3, 4.5951e-2]*exp(x);
i6 = [eps^6/6, 5.6286e-7, 1.0796e-3, 3.3128e-2]*exp(x);
k0 = [-(log(eps)+eg), 1.4167376214, 0.6977615980, 0.3018080193]*exp(-x);
k1 = [0.5/eps, 2.3739200376, 0.8065634800, 0.3105612340]*exp(-x);
k5 = [12./eps^5, 8.7987e3, 1.8836e1, 6.1420e-1]*exp(-x);
k6 = [60./eps^6, 1.4730e5, 6.8929e1, 8.3734e-1]*exp(-x);
y = x;
for (i=1 ; i<=numberof(x) ; i++) y(i) = bessj(5,x(i));
if (anyof(y != bessj(5,x))) write, "ERROR - problem with scalar args";
write, "j0:", max(abs(bessj(0,x)/j0-1.)), max(abs(bessj(0,-x)/j0-1.));
write, "j1:", max(abs(bessj(1,x)/j1-1.)), max(abs(bessj(1,-x)/j1+1.));
write, "j5:", max(abs(bessj(5,x)/j5-1.)), max(abs(bessj(5,-x)/j5+1.));
write, "j6:", max(abs(bessj(6,x)/j6-1.)), max(abs(bessj(6,-x)/j6-1.));
write, "y0:", max(abs(bessy(0,x)/y0-1.));
write, "y1:", max(abs(bessy(1,x)/y1-1.));
write, "y5:", max(abs(bessy(5,x)/y5-1.));
write, "y6:", max(abs(bessy(6,x)/y6-1.));
write, "i0:", max(abs(bessi(0,x)/i0-1.)), max(abs(bessi(0,-x)/i0-1.));
write, "i1:", max(abs(bessi(1,x)/i1-1.)), max(abs(bessi(1,-x)/i1+1.));
write, "i5:", max(abs(bessi(5,x)/i5-1.)), max(abs(bessi(5,-x)/i5+1.));
write, "i6:", max(abs(bessi(6,x)/i6-1.)), max(abs(bessi(6,-x)/i6-1.));
write, "k0:", max(abs(bessk(0,x)/k0-1.));
write, "k1:", max(abs(bessk(1,x)/k1-1.));
write, "k5:", max(abs(bessk(5,x)/k5-1.));
write, "k6:", max(abs(bessk(6,x)/k6-1.));
}
#endif
|