yorick banner

Home

Manual

Packages

Global Index

Keywords

Quick Reference

all functions - c

 
 
 
checksim


               
 
     checks the length of files  
interpreted function, defined at ./gadget.i   line 880  
SEE ALSO:
 
 
 
computeH


 computeH  
 
  
interpreted function, defined at ./cosmo.i   line 97  
 
 
 
corr_func


 corr_func  
 
  
interpreted function, defined at ./randfield.i   line 455  
 
 
 
cosmo_param


             cosmo_param(Omega_m,Omega_lambda,Omega_k,q0)  
 
   Same as IDL routine:  
   Given any two of the four input parameters  
      (1) the normalized matter density Omega_m  
      (2) the normalized cosmolgical constant, Omega_lambda  
      (3) the normalized curvature term, Omega_k  
      (4) the deceleration parameter q0  
   this program will derive the remaining two.  
   Here "normalized" means divided by the closure density  
   so that Omega_m + Omega_lambda + Omega_k = 1. For a more  
   precise definition see Caroll, Press, & Turner (1992, ArAA, 30, 499).  
     
   If less than two parameters are defined, this procedure sets default   
   values of Omega_k=0 (flat space), Omega_lambda = 0.7, Omega_m = 0.3  
   and q0 = -0.5 in these order (by avoiding parameter defined) until  
   two parameters are defined.  
   If more than two parameters are defined upon input (overspecification),   
   then the first two defined parameters in the ordered list Omega_m,   
   Omega_lambda, Omega_k, q0 are used to define the cosmology.  
   INPUTS-OUTPUTS:  
      Omega_m     : Normalized matter energy density  
                    non-negative numeric scalar  
      Omega_lambda: Normalized cosmological constant  
                    numeric scalar  
      Omega_k     : Normalized curvature parmeter  
                    numeric scalar. This is  zero  
                    for a flat universe  
      q0          : Deceleration parameter  
                    numeric scalar  
                       = 0.5*Omega_m - Omega_lambda  
interpreted function, defined at ./cosmo.i   line 4  
 
 
 
count2moment


              
 
   returns the normalized factorial moments  
   F_k= < N(N-1)..(N-k+1) >/< N(N-1)..(N-k+1) >_binomial  
   note that the first element corresponds to the void   
   EXAMPLE  
   uu=[];for(i=1;i<=1000;i++){xx=random(30);u=countincell1d(xx,L=1,nn=30,nl=25); grow,uu,[u];}  
   tt=count2moment(uu,er,k=4,error=1);  
   plb,tt(2:20,2:4)-1,marker=1,width=4;  
   plb,(tt+er/sqrt(1000))(2:20,2:4)-1,type=2  
   plb,(tt-er/sqrt(1000))(2:20,2:4)-1,type=3  
interpreted function, defined at ./countincell.i   line 119  
SEE ALSO:
 
 
 
countincell1d


             2D countincell1d(xx,L)  
 
 EXAMPLE  
   uu=[];for(i=1;i<=35;i++){xx=random(80);u=countincell1d(xx,L=1,nn=30,nl=50); grow,uu,[u];}  
   plb,uu(,::5,avg),indgen(0:29),(1./indgen(50))(::5),width=4  
interpreted function, defined at ./countincell.i   line 1  
 
 
 
countincell2d


             2D countincell2d(xx,L)  
 
   EXAMPLE  
   uu=[];for(i=1;i<=15;i++){xx=random(8000,2);u=countincell2d(xx,L=1,nn=30,nl=50); grow,uu,[u];} pli,uu(,,avg)  
interpreted function, defined at ./countincell.i   line 25  
 
 
 
countincell3d


             3D countincell  
 
   EXAMPLE   uu=[];for(i=1;i<=15;i++){xx=random(8000,3);u=countincell3d(xx,L=1,nn=30,nl=50); grow,uu,[u];} pli,uu(,,avg)  
interpreted function, defined at ./countincell.i   line 48  
 
 
 
cov


              
 
   returns covariance matrix of field u  
   (averaged over the second dim of u)  
   note that  
   res(indgen(n1)+n1*indgen(0:n1-1))-res(,rms)^2==0;  
     
interpreted function, defined at ./correl.i   line 50  
SEE ALSO: