MAMPOSSt arguments¶
- Data
rr(ndata) : | projected radius vector (R) in kpc [size ndata ] |
---|---|
avz(ndata) : | absolute line-of-sight velocity vector (| vLOS |) in km/s (assuming mean near 0) [size ndata] |
evz(ndata) : | error on line-of-sight velocity in km/s [size ndata ] |
comp(ndata) : | observed component of tracer (1_all for single component, else 1_str1, 2_str2 …) |
mu(ndata) : | distance modulus (\(<=\) 0 for none) |
emu(ndata) : | error on distance modulus (-1 for none) |
ndata : | number of data points |
- Data parameters (vectors of
ncomp
length)
rrmindata(ncomp) : | |
---|---|
minimum projected radius (already computed from data to save time) | |
rrmaxdata(ncomp) : | |
maximum projected radius (already computed from data to save time) | |
rrminallow(ncomp) : | |
minimum allowed projected radius (\(<\) 0 for innermost data point) |
|
rrmaxallow(ncomp) : | |
maximum allowed projected radius (\(<=\) 0 for outermost data point) |
|
avzmaxdata(ncomp) : | |
maximum absolute LOS velocity (already computed from data to save time) | |
avzmaxallow(ncomp) : | |
maximum allowed absolute LOS velocity (\(<=\) 0 for largest data point) |
|
mu0 : | distance modulus of full system if known (ignored if no mu provided
in data file or if all mu \(<\) 0 ) |
- Tracer structure (vectors of ncomp length)
tracermodel(ncomp) : | |
---|---|
model of visible tracer; available models are: Hernquist : \(\rho \propto r^{-1}(r+a)^{-3}\) (Hernquist 1990 model,
\(r_{-2}/a=1/2\)) mHubble : \(\rho \propto (r^2+a^2)^{-3/2}\) (modified Hubble
or non-truncated analytical King 1962 model,
\(r_{-2}/a=\sqrt{2}\)) isothermal : \(\rho \propto (r^2+a^2)^{-1}\)
(pseudo-isothermal) Jaffe : \(\rho \propto r^{-2}(r+a)^{-2}\) (Jaffe 1983) NFW : \(\rho \propto r^{-1}(r+a)^{-2}\) (Navarro, Frenk &
White 1996
model, \(r_{-2}/a=1\)) Plummer : \(\rho \propto (r^2+a^2)^{-5/2}\) (Plummer 1911 model,
\(r_{-2}/a=\sqrt{2/3}\)) gPlummer : \(\rho \propto r^\gamma (r^2+a^2)^{-5/2-\gamma/2}\)
(generalized Plummer with free inner slope \(\gamma\),
\(r_{-2}/a=\sqrt{(2+\gamma)/3}\)) PrugnielSimien : \(\displaystyle \rho \propto x^{-p(n)}\,\exp
\left[-b(n)\,\left({r\over R_{\rm eff}}\right)^{1/n}\right]\)
(Prugniel & Simien 1997 approximation
to deprojected Sersic, where \(b(n)\) is from analytical
approximation of Ciotti & Bertin 1999, while
\(p(n)\) is given by Lima Neto, Gerbal & Marquez 1999) |
|
ltracerradius(ncomp) : | |
\(\log_{10}\) scale radius of visible tracer (kpc) | |
meanltracerradius(ncomp) : | |
mean (best) externally derived log(tracer
radius), \(<\) 0 for internally derived |
|
sigltracerradius(ncomp) : | |
error in externally derived log(tracer radius),
\(<\) 0 for internally derived |
|
tracerpar2(ncomp) : | |
additional tracer parameter | |
ltracermass(ncomp) : | |
\(\log_{10}\) tracer mass in M_solar at rfid | |
ltracermasstot : | \(\log_{10}\) total tracer mass in M_solar at rfid |
fractracer(ncomp) : | |
fraction of total tracer mass in tracer | |
rfidtracer(ncomp) : | |
fiducial radius for tracer mass or 0 for infinity, or \(<\) 0 for 10^ltracerradius (kpc) |
- Tracer velocity anisotropy (vectors of ncomp length)
anismodel(ncomp) : | |
---|---|
|
|
anisflag : |
|
lanis0(ncomp) : | central velocity anisotropy (see |
lanisinf(ncomp) : | |
outer velocity anisotropy (see |
|
lanisradius(ncomp) : | |
\(\log_{10}\) anisotropy radius (kpc) (irrelevant for ‘isotropic’) |
|
ncomp : | number of components |
- Dark Matter
darkmodel : | model of dark matter; available models are: Burkert : \(\rho \propto (r+a)^{-1}(r^2+a^2)^{-1}\) (Burkert
1995
model, \(r_{-2}/a=(1-\sqrt{26/27})^{1/3}+(1+\sqrt{26/27})^{1/3})\) Einasto : \(\rho \propto \exp[-b(n)\, r^{1/n}]\)
(Einasto 1965 model,
\(r_{-2}/a = (2n)^n\)) Hernquist : \(\rho \propto r^{-1}(r+a)^{-3}\)
(Hernquist 1990 model, \(r_{-2}/a=1/2\)) gHernquist : \(\rho \propto r^\gamma
(r+a)^{-4-\gamma}\) (generalized Hernquist model with free
inner slope \(\gamma\), \(r_{-2}/a=1+\gamma/2\)) mHubble : \(\rho \propto (r^2+a^2)^{-3/2}\) (modified
Hubble or non-truncated analytical King 1962 model, \(r_{-2}/a=\sqrt{2}\)) isothermal : \(\rho \propto (r^2+a^2)^{-1}\)
(pseudo-isothermal) Jaffe : \(\rho \propto r^{-2}(r+a)^{-2}\) (Jaffe 1983) Kazantzidis : \(\rho \propto r^\gamma \exp(-r/a)\)
(Kazantzidis et al. 2004 model, \(r_{-2}/a=2+\gamma\)) NFW : \(\rho \propto r^{-1}(r+a)^{-2}\) (Navarro,
Frenk & White 1996 model, \(r_{-2}/a=1\)) cNFW : \(\rho \propto (r+a)^{-3}\) (cored NFW model, \(r_{-2}/a=2\))
gNFW : \(\rho \propto r^\gamma (r+a)^{-3-\gamma}\)
(generalized NFW model with free inner slope, \(r_{-2}/a=2+\gamma\)) Plummer : \(\rho \propto (r^2+a^2)^{-5/2}\) (Plummer
1911 model,
\(r_{-2}/a=\sqrt{2/3}\)) gPlummer : \(\rho \propto r^\gamma
(r^2+a^2)^{-5/2-\gamma/2}\) (generalized Plummer with free
inner slope \(\gamma\), \(r_{-2}/a=\sqrt{(2+\gamma)/3}\)) |
---|---|
norm : | normalization of dark matter (mass or radius, see darknormflag) |
darknormflag : | flag for dark matter or total normalization norm : -1 : \(\log_{10} r_{\rm vir}\) (kpc) 0 : \(\log_{10} M_{\rm vir}\) (\(\rm M_\odot\)) \(>\) 0 : \(\log_{10} M(r_{\rm fid}^{\rm dark}\) =
darknormflag ) in \(\rm M_\odot\) |
darkscale : | \(\log_{10}\) scale of dark matter (scale radius [generally \(r_{-2}\)] or concentration \(r_{\rm vir}/r_{\rm scale}\)) |
darkscaleflag : | flag for darkscale -> 1 : scale radius, 2 :
concentration (\(r_{\rm vir}/r_{\rm scale}\)) |
darktotflag : | 1 : dark
2 : total (norm then concerns total normalization) |
darkpar2 : | additional dark matter parameter |
- Central Black Hole
lbhmass : | \(\log_{10}\) black hole mass (\(\rm M_\odot\)) |
---|
- 3D velocity model
v3dmodel : | model of 3D velocities (Gauss for now) |
---|
- Cosmology
Delta : | mean overdensity at virial radius relative to critical density of Universe |
---|---|
h : | dimensionless Hubble constant \(H_0\) / (100 km/s/Mpc) |
Omegam : | density parameter at \(z=0\) |
z : | redshift of object |
- Other parameters
rmax : | maximum LOS integration radius (kpc) |
---|---|
MfLflag : | [Mass-follows-Light] 1 -> force a_dark=a_tracer, tracermodel=darkmodel |
TLMflag : | [Tied-Light-Mass] 1 -> force a_tracer=a_dark, tracermodel=darkmodel |
TALflag : | [Tied-Anisotropy-radius-Light] 1 -> force a_anis=a_tracer |
a0lclM : | normalization of log(concentration) vs log(halo-mass) relation |
a1lclM : | slope of log(concentration) vs log(halo-mass) relation |
splitpflag : | 1 -> determine a_tracer separately to gain time (less accurate)
if ltracerradius \(>=\) 9 , solve for tracerradius and exit |
wt : | weights [array of size ndata] |
distflag : | for data with distance modulus (mu):
0 : ignore mu, 1 : Gaussian(mu) weight, 2 : Gaussian(mu) * density weight |
lBilop : | \(\log_{10} B\) for interlopers (virial units) |
ilopflag : | 0 -> halo only, 1 -> standard to infinity (with interlopers), 2 ->
halo + interlopers jointly |
debug : | 0 : no debug output, 1 : lnL, 2 : verbose, 3 :
more, 4 : verbose |