.. _mamposst_params:
.. |br| raw:: html
MAMPOSSt arguments
==================
* Data
:``rr(ndata)``:
projected radius vector (*R*) in kpc [size ``ndata``]
:``avz(ndata)``:
absolute line-of-sight velocity vector (\| *v*:sub:`LOS` \|) in km/s (assuming mean near 0) [size ndata]
:``evz(ndata)``:
error on line-of-sight velocity in km/s [size ``ndata``]
:``comp(ndata)``:
observed component of tracer (1_all for single component, else 1_str1, 2_str2 ...)
:``mu(ndata)``:
distance modulus (:math:`<=` ``0`` for none)
:``emu(ndata)``:
error on distance modulus (``-1`` for none)
:``ndata``:
number of data points
* Data parameters (vectors of ``ncomp`` length)
:``rrmindata(ncomp)``:
minimum projected radius (already computed from data to save time)
:``rrmaxdata(ncomp)``:
maximum projected radius (already computed from data to save time)
:``rrminallow(ncomp)``:
minimum allowed projected radius (:math:`<` ``0`` for innermost data point)
:``rrmaxallow(ncomp)``:
maximum allowed projected radius (:math:`<=` ``0`` for outermost data point)
:``avzmaxdata(ncomp)``:
maximum absolute LOS velocity (already computed from data to save time)
:``avzmaxallow(ncomp)``:
maximum allowed absolute LOS velocity (:math:`<=` ``0`` for largest data point)
:``mu0``:
distance modulus of full system if known (ignored if no mu provided
in data file or if all mu :math:`<` ``0``)
* Tracer structure (vectors of ncomp length)
:``tracermodel(ncomp)``: model of visible tracer; available models are: |br|
``Hernquist``: :math:`\rho \propto r^{-1}(r+a)^{-3}` (`Hernquist 1990
`_ model,
:math:`r_{-2}/a=1/2`) |br|
``mHubble``: :math:`\rho \propto (r^2+a^2)^{-3/2}` (modified Hubble
or non-truncated analytical `King 1962
`_ model,
:math:`r_{-2}/a=\sqrt{2}`) |br|
``isothermal``: :math:`\rho \propto (r^2+a^2)^{-1}`
(pseudo-isothermal) |br|
``Jaffe``: :math:`\rho \propto r^{-2}(r+a)^{-2}` (`Jaffe 1983
`_) |br|
``NFW``: :math:`\rho \propto r^{-1}(r+a)^{-2}` (`Navarro, Frenk &
White 1996 `_
model, :math:`r_{-2}/a=1`) |br|
``Plummer``: :math:`\rho \propto (r^2+a^2)^{-5/2}` (`Plummer 1911
`_ model,
:math:`r_{-2}/a=\sqrt{2/3}`) |br|
``gPlummer``: :math:`\rho \propto r^\gamma (r^2+a^2)^{-5/2-\gamma/2}`
(generalized Plummer with free inner slope :math:`\gamma`,
:math:`r_{-2}/a=\sqrt{(2+\gamma)/3}`) |br|
``PrugnielSimien``: :math:`\displaystyle \rho \propto x^{-p(n)}\,\exp
\left[-b(n)\,\left({r\over R_{\rm eff}}\right)^{1/n}\right]`
(`Prugniel & Simien 1997
`_ approximation
to deprojected Sersic, where :math:`b(n)` is from analytical
approximation of `Ciotti & Bertin 1999
`_, while
:math:`p(n)` is given by `Lima Neto, Gerbal & Marquez 1999
`_)
:``ltracerradius(ncomp)``: :math:`\log_{10}` scale radius of visible tracer (kpc)
:``meanltracerradius(ncomp)``: mean (best) externally derived log(tracer
radius), :math:`<` ``0`` for internally derived
:``sigltracerradius(ncomp)``: error in externally derived log(tracer radius),
:math:`<` ``0`` for internally derived
:``tracerpar2(ncomp)``: additional tracer parameter
:``ltracermass(ncomp)``: :math:`\log_{10}` tracer mass in M_solar at rfid
:``ltracermasstot``: :math:`\log_{10}` total tracer mass in M_solar at rfid
:``fractracer(ncomp)``: fraction of total tracer mass in tracer
:``rfidtracer(ncomp)``: fiducial radius for tracer mass or ``0`` for infinity, or :math:`<` ``0`` for 10^ltracerradius (kpc)
* Tracer velocity anisotropy (vectors of ncomp length)
:``anismodel(ncomp)``: velocity anisotropy model(s) *model1* etc. of visible
tracer(s); available models are: |br|
``iso``: :math:`\beta = 0` (isotropic) |br|
``cst``: :math:`\beta` = constant |br|
``ML``: :math:`\displaystyle \beta = {1\over 2} {r\over r+r_\beta}`
(`Mamon & Łokas 2005b `_) |br|
``OM``: :math:`\displaystyle \beta = {r^2\over r^2+r_\beta^2}`
(`Osipkov 1979 `_;
`Merritt 1985 `_)
|br|
``gOM``: :math:`\displaystyle \beta = \beta_0 +
(\beta_\infty-\beta_0)\,{r^2\
r^2+r_\beta^2}` (generalized Osipkov-Merritt) |br|
``Tiret``: :math:`\displaystyle \beta = \beta_0 +
(\beta_\infty-\beta_0)\,{r\over r+r_\beta}` (`Tiret et al. 2007
`_)
:``anisflag``: ``0`` :math:`\displaystyle \to \log_{10} \left({\sigma_r\over \sigma_\theta}\right)\qquad`
``1`` :math:`\to \beta\qquad`
``2`` :math:`\displaystyle \to \beta_{\rm sym} =
{\sigma_r^2-\sigma_\theta^2 \over \sigma_r^2+\sigma_\theta^2}`
:``lanis0(ncomp)``: central velocity anisotropy (see ``anisflag``)
:``lanisinf(ncomp)``: outer velocity anisotropy (see ``anisflag``)
:``lanisradius(ncomp)``: :math:`\log_{10}` anisotropy radius (kpc) (irrelevant for 'isotropic')
:``ncomp``: number of components
* Dark Matter
:``darkmodel``: model of dark matter; available models are: |br|
``Burkert``: :math:`\rho \propto (r+a)^{-1}(r^2+a^2)^{-1}` (`Burkert
1995 `_
model, :math:`r_{-2}/a=(1-\sqrt{26/27})^{1/3}+(1+\sqrt{26/27})^{1/3})` |br|
``Einasto``: :math:`\rho \propto \exp[-b(n)\, r^{1/n}]`
(`Einasto 1965
`_ model,
:math:`r_{-2}/a = (2n)^n`) |br|
``Hernquist``: :math:`\rho \propto r^{-1}(r+a)^{-3}`
(`Hernquist 1990
`_ model, :math:`r_{-2}/a=1/2`) |br|
``gHernquist``: :math:`\rho \propto r^\gamma
(r+a)^{-4-\gamma}` (generalized Hernquist model with free
inner slope :math:`\gamma`, :math:`r_{-2}/a=1+\gamma/2`) |br|
``mHubble``: :math:`\rho \propto (r^2+a^2)^{-3/2}` (modified
Hubble or non-truncated analytical `King 1962
`_ model, :math:`r_{-2}/a=\sqrt{2}`) |br|
``isothermal``: :math:`\rho \propto (r^2+a^2)^{-1}`
(pseudo-isothermal) |br|
``Jaffe``: :math:`\rho \propto r^{-2}(r+a)^{-2}` (`Jaffe 1983
`_) |br|
``Kazantzidis``: :math:`\rho \propto r^\gamma \exp(-r/a)`
(`Kazantzidis et al. 2004
`_ model, :math:`r_{-2}/a=2+\gamma`) |br|
``NFW``: :math:`\rho \propto r^{-1}(r+a)^{-2}` (`Navarro,
Frenk & White 1996
`_ model, :math:`r_{-2}/a=1`) |br|
``cNFW``: :math:`\rho \propto (r+a)^{-3}` (cored NFW model, :math:`r_{-2}/a=2`)
|br|
``gNFW``: :math:`\rho \propto r^\gamma (r+a)^{-3-\gamma}`
(generalized NFW model with free inner slope, :math:`r_{-2}/a=2+\gamma`) |br|
``Plummer``: :math:`\rho \propto (r^2+a^2)^{-5/2}` (`Plummer
1911
`_ model,
:math:`r_{-2}/a=\sqrt{2/3}`) |br|
``gPlummer``: :math:`\rho \propto r^\gamma
(r^2+a^2)^{-5/2-\gamma/2}` (generalized Plummer with free
inner slope :math:`\gamma`, :math:`r_{-2}/a=\sqrt{(2+\gamma)/3}`) |br|
:``norm``: normalization of dark matter (mass or radius, see darknormflag)
:``darknormflag``: flag for dark matter or total normalization ``norm``: |br|
``-1``: :math:`\log_{10} r_{\rm vir}` (kpc) |br|
``0``: :math:`\log_{10} M_{\rm vir}` (:math:`\rm M_\odot`) |br|
:math:`>` ``0``: :math:`\log_{10} M(r_{\rm fid}^{\rm dark}` =
``darknormflag``) in :math:`\rm M_\odot`
:``darkscale``: :math:`\log_{10}` scale of dark matter (scale radius [generally
:math:`r_{-2}`] or concentration :math:`r_{\rm vir}/r_{\rm scale}`)
:``darkscaleflag``: flag for ``darkscale`` -> ``1``: scale radius, ``2``:
concentration (:math:`r_{\rm vir}/r_{\rm scale}`)
:``darktotflag``:
``1``: dark
``2``: total (``norm`` then concerns total normalization)
:``darkpar2``: additional dark matter parameter
* Central Black Hole
:``lbhmass``: :math:`\log_{10}` black hole mass (:math:`\rm M_\odot`)
* 3D velocity model
:``v3dmodel``: model of 3D velocities (Gauss for now)
* Cosmology
:``Delta``: mean overdensity at virial radius relative to critical density of Universe
:``h``: dimensionless Hubble constant :math:`H_0` / (100 km/s/Mpc)
:``Omegam``: density parameter at :math:`z=0`
:``z``: redshift of object
* Other parameters
:``rmax``: maximum LOS integration radius (kpc)
:``MfLflag``: [Mass-follows-Light] ``1`` -> force a_dark=a_tracer, tracermodel=darkmodel
:``TLMflag``: [Tied-Light-Mass] ``1`` -> force a_tracer=a_dark, tracermodel=darkmodel
:``TALflag``: [Tied-Anisotropy-radius-Light] ``1`` -> force a_anis=a_tracer
:``a0lclM``: normalization of log(concentration) vs log(halo-mass) relation
:``a1lclM``: slope of log(concentration) vs log(halo-mass) relation
:``splitpflag``: ``1`` -> determine a_tracer separately to gain time (less accurate)
if ltracerradius :math:`>=` ``9``, solve for tracerradius and exit
:``wt``: weights [array of size ndata]
:``distflag``: for data with distance modulus (mu):
``0``: ignore mu, ``1``: Gaussian(mu) weight, ``2``: Gaussian(mu) * density weight
:``lBilop``: :math:`\log_{10} B` for interlopers (virial units)
:``ilopflag``: ``0`` -> halo only, ``1`` -> standard to infinity (with interlopers), ``2`` ->
halo + interlopers jointly
:``debug``: ``0``: no debug output, ``1``: lnL, ``2``: verbose, ``3``:
more, ``4``: verbose