.. _mamposst_params: .. |br| raw:: html
MAMPOSSt arguments ================== * Data :``rr(ndata)``: projected radius vector (*R*) in kpc [size ``ndata``] :``avz(ndata)``: absolute line-of-sight velocity vector (\| *v*:sub:`LOS` \|) in km/s (assuming mean near 0) [size ndata] :``evz(ndata)``: error on line-of-sight velocity in km/s [size ``ndata``] :``comp(ndata)``: observed component of tracer (1_all for single component, else 1_str1, 2_str2 ...) :``mu(ndata)``: distance modulus (:math:`<=` ``0`` for none) :``emu(ndata)``: error on distance modulus (``-1`` for none) :``ndata``: number of data points * Data parameters (vectors of ``ncomp`` length) :``rrmindata(ncomp)``: minimum projected radius (already computed from data to save time) :``rrmaxdata(ncomp)``: maximum projected radius (already computed from data to save time) :``rrminallow(ncomp)``: minimum allowed projected radius (:math:`<` ``0`` for innermost data point) :``rrmaxallow(ncomp)``: maximum allowed projected radius (:math:`<=` ``0`` for outermost data point) :``avzmaxdata(ncomp)``: maximum absolute LOS velocity (already computed from data to save time) :``avzmaxallow(ncomp)``: maximum allowed absolute LOS velocity (:math:`<=` ``0`` for largest data point) :``mu0``: distance modulus of full system if known (ignored if no mu provided in data file or if all mu :math:`<` ``0``) * Tracer structure (vectors of ncomp length) :``tracermodel(ncomp)``: model of visible tracer; available models are: |br| ``Hernquist``: :math:`\rho \propto r^{-1}(r+a)^{-3}` (`Hernquist 1990 `_ model, :math:`r_{-2}/a=1/2`) |br| ``mHubble``: :math:`\rho \propto (r^2+a^2)^{-3/2}` (modified Hubble or non-truncated analytical `King 1962 `_ model, :math:`r_{-2}/a=\sqrt{2}`) |br| ``isothermal``: :math:`\rho \propto (r^2+a^2)^{-1}` (pseudo-isothermal) |br| ``Jaffe``: :math:`\rho \propto r^{-2}(r+a)^{-2}` (`Jaffe 1983 `_) |br| ``NFW``: :math:`\rho \propto r^{-1}(r+a)^{-2}` (`Navarro, Frenk & White 1996 `_ model, :math:`r_{-2}/a=1`) |br| ``Plummer``: :math:`\rho \propto (r^2+a^2)^{-5/2}` (`Plummer 1911 `_ model, :math:`r_{-2}/a=\sqrt{2/3}`) |br| ``gPlummer``: :math:`\rho \propto r^\gamma (r^2+a^2)^{-5/2-\gamma/2}` (generalized Plummer with free inner slope :math:`\gamma`, :math:`r_{-2}/a=\sqrt{(2+\gamma)/3}`) |br| ``PrugnielSimien``: :math:`\displaystyle \rho \propto x^{-p(n)}\,\exp \left[-b(n)\,\left({r\over R_{\rm eff}}\right)^{1/n}\right]` (`Prugniel & Simien 1997 `_ approximation to deprojected Sersic, where :math:`b(n)` is from analytical approximation of `Ciotti & Bertin 1999 `_, while :math:`p(n)` is given by `Lima Neto, Gerbal & Marquez 1999 `_) :``ltracerradius(ncomp)``: :math:`\log_{10}` scale radius of visible tracer (kpc) :``meanltracerradius(ncomp)``: mean (best) externally derived log(tracer radius), :math:`<` ``0`` for internally derived :``sigltracerradius(ncomp)``: error in externally derived log(tracer radius), :math:`<` ``0`` for internally derived :``tracerpar2(ncomp)``: additional tracer parameter :``ltracermass(ncomp)``: :math:`\log_{10}` tracer mass in M_solar at rfid :``ltracermasstot``: :math:`\log_{10}` total tracer mass in M_solar at rfid :``fractracer(ncomp)``: fraction of total tracer mass in tracer :``rfidtracer(ncomp)``: fiducial radius for tracer mass or ``0`` for infinity, or :math:`<` ``0`` for 10^ltracerradius (kpc) * Tracer velocity anisotropy (vectors of ncomp length) :``anismodel(ncomp)``: velocity anisotropy model(s) *model1* etc. of visible tracer(s); available models are: |br| ``iso``: :math:`\beta = 0` (isotropic) |br| ``cst``: :math:`\beta` = constant |br| ``ML``: :math:`\displaystyle \beta = {1\over 2} {r\over r+r_\beta}` (`Mamon & Łokas 2005b `_) |br| ``OM``: :math:`\displaystyle \beta = {r^2\over r^2+r_\beta^2}` (`Osipkov 1979 `_; `Merritt 1985 `_) |br| ``gOM``: :math:`\displaystyle \beta = \beta_0 + (\beta_\infty-\beta_0)\,{r^2\ r^2+r_\beta^2}` (generalized Osipkov-Merritt) |br| ``Tiret``: :math:`\displaystyle \beta = \beta_0 + (\beta_\infty-\beta_0)\,{r\over r+r_\beta}` (`Tiret et al. 2007 `_) :``anisflag``: ``0`` :math:`\displaystyle \to \log_{10} \left({\sigma_r\over \sigma_\theta}\right)\qquad` ``1`` :math:`\to \beta\qquad` ``2`` :math:`\displaystyle \to \beta_{\rm sym} = {\sigma_r^2-\sigma_\theta^2 \over \sigma_r^2+\sigma_\theta^2}` :``lanis0(ncomp)``: central velocity anisotropy (see ``anisflag``) :``lanisinf(ncomp)``: outer velocity anisotropy (see ``anisflag``) :``lanisradius(ncomp)``: :math:`\log_{10}` anisotropy radius (kpc) (irrelevant for 'isotropic') :``ncomp``: number of components * Dark Matter :``darkmodel``: model of dark matter; available models are: |br| ``Burkert``: :math:`\rho \propto (r+a)^{-1}(r^2+a^2)^{-1}` (`Burkert 1995 `_ model, :math:`r_{-2}/a=(1-\sqrt{26/27})^{1/3}+(1+\sqrt{26/27})^{1/3})` |br| ``Einasto``: :math:`\rho \propto \exp[-b(n)\, r^{1/n}]` (`Einasto 1965 `_ model, :math:`r_{-2}/a = (2n)^n`) |br| ``Hernquist``: :math:`\rho \propto r^{-1}(r+a)^{-3}` (`Hernquist 1990 `_ model, :math:`r_{-2}/a=1/2`) |br| ``gHernquist``: :math:`\rho \propto r^\gamma (r+a)^{-4-\gamma}` (generalized Hernquist model with free inner slope :math:`\gamma`, :math:`r_{-2}/a=1+\gamma/2`) |br| ``mHubble``: :math:`\rho \propto (r^2+a^2)^{-3/2}` (modified Hubble or non-truncated analytical `King 1962 `_ model, :math:`r_{-2}/a=\sqrt{2}`) |br| ``isothermal``: :math:`\rho \propto (r^2+a^2)^{-1}` (pseudo-isothermal) |br| ``Jaffe``: :math:`\rho \propto r^{-2}(r+a)^{-2}` (`Jaffe 1983 `_) |br| ``Kazantzidis``: :math:`\rho \propto r^\gamma \exp(-r/a)` (`Kazantzidis et al. 2004 `_ model, :math:`r_{-2}/a=2+\gamma`) |br| ``NFW``: :math:`\rho \propto r^{-1}(r+a)^{-2}` (`Navarro, Frenk & White 1996 `_ model, :math:`r_{-2}/a=1`) |br| ``cNFW``: :math:`\rho \propto (r+a)^{-3}` (cored NFW model, :math:`r_{-2}/a=2`) |br| ``gNFW``: :math:`\rho \propto r^\gamma (r+a)^{-3-\gamma}` (generalized NFW model with free inner slope, :math:`r_{-2}/a=2+\gamma`) |br| ``Plummer``: :math:`\rho \propto (r^2+a^2)^{-5/2}` (`Plummer 1911 `_ model, :math:`r_{-2}/a=\sqrt{2/3}`) |br| ``gPlummer``: :math:`\rho \propto r^\gamma (r^2+a^2)^{-5/2-\gamma/2}` (generalized Plummer with free inner slope :math:`\gamma`, :math:`r_{-2}/a=\sqrt{(2+\gamma)/3}`) |br| :``norm``: normalization of dark matter (mass or radius, see darknormflag) :``darknormflag``: flag for dark matter or total normalization ``norm``: |br| ``-1``: :math:`\log_{10} r_{\rm vir}` (kpc) |br| ``0``: :math:`\log_{10} M_{\rm vir}` (:math:`\rm M_\odot`) |br| :math:`>` ``0``: :math:`\log_{10} M(r_{\rm fid}^{\rm dark}` = ``darknormflag``) in :math:`\rm M_\odot` :``darkscale``: :math:`\log_{10}` scale of dark matter (scale radius [generally :math:`r_{-2}`] or concentration :math:`r_{\rm vir}/r_{\rm scale}`) :``darkscaleflag``: flag for ``darkscale`` -> ``1``: scale radius, ``2``: concentration (:math:`r_{\rm vir}/r_{\rm scale}`) :``darktotflag``: ``1``: dark ``2``: total (``norm`` then concerns total normalization) :``darkpar2``: additional dark matter parameter * Central Black Hole :``lbhmass``: :math:`\log_{10}` black hole mass (:math:`\rm M_\odot`) * 3D velocity model :``v3dmodel``: model of 3D velocities (Gauss for now) * Cosmology :``Delta``: mean overdensity at virial radius relative to critical density of Universe :``h``: dimensionless Hubble constant :math:`H_0` / (100 km/s/Mpc) :``Omegam``: density parameter at :math:`z=0` :``z``: redshift of object * Other parameters :``rmax``: maximum LOS integration radius (kpc) :``MfLflag``: [Mass-follows-Light] ``1`` -> force a_dark=a_tracer, tracermodel=darkmodel :``TLMflag``: [Tied-Light-Mass] ``1`` -> force a_tracer=a_dark, tracermodel=darkmodel :``TALflag``: [Tied-Anisotropy-radius-Light] ``1`` -> force a_anis=a_tracer :``a0lclM``: normalization of log(concentration) vs log(halo-mass) relation :``a1lclM``: slope of log(concentration) vs log(halo-mass) relation :``splitpflag``: ``1`` -> determine a_tracer separately to gain time (less accurate) if ltracerradius :math:`>=` ``9``, solve for tracerradius and exit :``wt``: weights [array of size ndata] :``distflag``: for data with distance modulus (mu): ``0``: ignore mu, ``1``: Gaussian(mu) weight, ``2``: Gaussian(mu) * density weight :``lBilop``: :math:`\log_{10} B` for interlopers (virial units) :``ilopflag``: ``0`` -> halo only, ``1`` -> standard to infinity (with interlopers), ``2`` -> halo + interlopers jointly :``debug``: ``0``: no debug output, ``1``: lnL, ``2``: verbose, ``3``: more, ``4``: verbose