Columns in catalogues SE, SC, LE, LC, LEm, SEm:

- 1. realization ID
- 2. source ID
- 3. source redshift
- 4. M1 (restframe) in solar masses
- 5. mass ratio q
- 6. ecliptic longitude, ϕ _S (random in the interval [0, 2 π])
- 7. ecliptic latitude, θ_S (in the interval $[-\pi/2,\pi/2]$, sampled with probability $\cos(\theta_S + \pi/2)$)
- 8. azimuthal direction of the binary orbital angular momentum L in ecliptic frame (solar system barycentric), ϕ_L (random in the interval [0, 2π])
- 9. polar direction of the binary orbital angular momentum L in ecliptic frame (solar system barycentric), θ_L (in the interval $[0, \pi]$, sampled with probability $\cos\theta L$)
- 10. initial phase, ϕ_0 (random in the interval $[0, 2\pi]$)
- 11. coalescence time tc in seconds (random in the interval [0, 3yr])
- 12. magnitude of spin 1
- 13. magnitude of spin 2
- 14. polar direction of spin 1, θ_{a1} (in the interval $[0,\pi]$, sampled with probability $\cos\theta_{a1}$ for chaotic models; = 0 for coherent models)
- 15. polar direction of spin 2, θ_a2 (in the interval $[0,\pi]$, sampled with probability $\cos\theta a2$ for chaotic models (SC,LC); = 0 for coherent models (SE,LE))
- 16. azimuthal direction of of spin 1, ϕ_a1 (random in the interval [0, 2π] for chaotic models (SC,LC); = 0 for coherent models (SE,LE))
- 17. azimuthal direction of of spin 2, $\phi_a 2$ (random in the interval [0, 2π] for chaotic models (SC,LC); = 0 for coherent models (SE,LE))
- 18. azimuthal direction of the binary pericenter, γ (random in the interval [0, 2π])
- 19. residual eccentricity at an observed gravitational wave frequency of 10^A–4 Hz. Where the gravitational wave frequency is intended to be the frequency of the second harmonic (i.e. twice the orbital redshifted frequency)
- 20. Luminosity distance (in Mpc)
- 21. Chirp mass (intrinsic)
- 22. Eta : symmetric mass ratio
- 23. polar direction of spin 1 in ecliptic frame (solar system barycentric)
- 24. polar direction of spin 2 in ecliptic frame (solar system barycentric), θ_a2 (in the interval $[0,\pi]$, sampled with probability $\cos\theta a2$ for chaotic models (SC,LC); = 0 for coherent models (SE,LE))
- 25. azimuthal direction of of spin 1 in ecliptic frame (solar system barycentric), $\phi_a 1$ (random in the interval [0, 2π] for chaotic models (SC,LC); = 0 for coherent models (SE,LE))
- 26. azimuthal direction of of spin 2 in ecliptic frame (solar system barycentric), $\phi_a 2$ (random in the interval [0, 2π] for chaotic models (SC,LC); = 0 for coherent models (SE,LE))

Columns in catalogues HOR:

- 1. realization ID
- 2. source ID

- 3. source redshift
- 4. M1 (restframe) in solar masses
- 5. mass ratio q
- 6. ecliptic longitude, ϕ_S (random in the interval [0, 2π])
- 7. ecliptic latitude, θ_S (in the interval $[-\pi/2,\pi/2]$, sampled with probability $\cos(\theta_S + \pi/2)$)
- 8. azimuthal direction of the binary orbital angular momentum L in ecliptic frame (solar system barycentric), ϕ_L (random in the interval [0, 2π])
- 9. polar direction of the binary orbital angular momentum L in ecliptic frame (solar system barycentric), θ_L (in the interval $[0, \pi]$, sampled with probability $\cos\theta L$)
- 10. initial phase, ϕ_0 (random in the interval $[0, 2\pi]$)
- 11. coalescence time tc in seconds (random in the interval [0, 3yr])
- 12. Luminosity distance (in Mpc)
- 13. Chirp mass (intrinsic)
- 14. Eta : symmetric mass ratio