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In this paper, we develop in detail a fully geometrical method for deriving perturbation equa-
tions about a spatially homogeneous background. This method relies on the 3 + 1 splitting of the
background space–time and does not use any particular set of coordinates: it is implemented in
terms of geometrical quantities only, using the tensor algebra package xTensor in the xAct distri-
bution along with the extension for perturbations xPert. Our algorithm allows one to obtain the
perturbation equations for all types of homogeneous cosmologies, up to any order and in all possible
gauges. As applications, we recover the well-known perturbed Einstein equations for Friedmann–
Lemâıtre–Robertson–Walker cosmologies up to second order and for Bianchi I cosmologies at first
order. This work paves the way to the study of these models at higher order and to that of any
other perturbed Bianchi cosmologies, by circumventing the usually too cumbersome derivation of
the perturbed equations.

PACS numbers: 02.70.Wz, 98.80.Jk, 98.80.-k

INTRODUCTION

Cosmological perturbation theory constitutes the cornerstone of our current understanding of the origin, evolution
and formation of large-scale structures. The evolution history of perturbations is written about a fixed homogeneous
and isotropic Friedmann–Lemâıtre–Robertson–Walker (FLRW) background space–time, and the interpretation of cos-
mological observations (such as WMAP, QUIET and ACT [1–3]), within this model, converge toward a coherent and
unified picture of the Universe. This picture is likely to get even clearer when the next generation of large-array cosmo-
logical observations (such as EUCLID and SKA) becomes operational. It is widely expected that these observations
will generate large amount of data that will provide a percent level accuracy for the cosmological parameters.

Cosmological perturbation equations are simple and straightforward to derive at linear order, but they are inad-
equate for understanding the late-time evolution of the Universe, precisely when the nonlinear gravitational e↵ects,
carrying the information of the physics of current interest, come into play. Going beyond first order is a di�cult task,
and in some cases it becomes extremely arduous to even perform a coordinate or gauge transformation at nonlinear
order by hand. To the best of our knowledge, there is no available easy-to-use software designed for cosmology and
capable of deriving all equations of motion for perturbed variables. The closely related available option is the GRTen-
sor package [4], which runs on Maple or Mathematica. However, the outputs generated at linear order are already a
bit complicated to understand, let alone its outputs at nonlinear orders, as it relies exclusively on a properly defined
set of background coordinates each time it acts on a perturbed variable.

To fill up this gap, we have developed an algebra package for cosmological perturbation theory, called xPand [5],
which uses the tools of the tensor algebra package xTensor and an extension for perturbation, xPert [6, 7]. The
xTensor and xPert packages are part of the xAct distribution [6] that run on Mathematica and they are available
under the General Public License. xPert is specifically designed to perform perturbations on arbitrary background
space–times [7, 8], but it lacks the features for specializing to a specific background space–time and a specific form
for the metric perturbations, as is needed in the case of cosmology. In [9, 10] these packages were used to study per-
turbations about a spherically symmetric space–time, more precisely around a Schwarzschild solution of the Einstein
field equations. The xPand package now allows one to derive, in a simple and user-friendly manner, all the necessary
equations for cosmological perturbation variables, around any homogeneous background space–times, at any order
and in any gauge. Specifically, the available type of cosmologies cover the Minkowski, FLRW (flat and curved), and
Bianchi space–times, and the available predefined gauge are: general gauge (no gauge choice), comoving gauge, flat
gauge, isodensity gauge, Newtonian gauge and synchronous gauge.

The paper is organized as follows. In section I, we provide a general overview of the mathematical framework on
which xPert is built. In section II, we detail the 3+1 splitting of the background manifold into a family of homogeneous
hypersurfaces orthogonal to a fundamental observer’s velocity. In section III, we decompose the perturbed metric with
respect to this foliation and define the scalar, vector and tensor perturbations. Each of these sections is supplemented
by a presentation of the associated implementation in xPand, by means of several detailed examples. Finally, we
summarize and discuss in section IV the features and performances of the package.
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I. PERTURBATIONS AROUND A GENERAL SPACE–TIME

In this section we briefly review the algorithm of xPert [7], which constitutes the basis of our method. For more
details about perturbation theory in the context of cosmology, we refer the reader to, e.g., [14, 15].

A. General framework

Let us consider in what follows a background manifold M along with its perturbed manifold M. Both are related
by means of a di↵eomorphism � : M ! M. Tensorial quantities are thus transported from one manifold to the other
with the help of the pull-back �?, the push-forward �?, and their respective inverses. The metric of the perturbed
manifold relates to that of the background as

�?(g) = ḡ +�[ḡ] = ḡ +
1X

n=1

�n[ḡ]

n!
. (1)

Here and in the sequel, we use boldface symbols for tensorial quantities, an over-bar for background quantities1, and
the notation �[T̄ ] (resp. �n[T̄ ]) for the total (resp. nth order) perturbation of a tensor T . One may prefer to write
�� instead of �, as the definition of the perturbations depends on the di↵eomorphism �, that is on the choice of
the gauge. We however choose to omit this reference for the sake of clarity, and in order not to burden the notation
unnecessarily, we shall moreover use the short-hand: T = �?(T ), for any perturbed quantity.

Unless otherwise specified, when we write down the components of a tensor, these should be understood as expressed
in a general basis2 (this holds equally for the background and perturbed tensors, and for the perturbations). Since
all perturbation orders live on the background manifold, as they are the result of the pull-back of a tensorial quantity
living on the perturbed manifold, we shall raise and lower indices using the background metric. We have for instance

{n}hµ⌫ = ḡµ⇢ ḡ⌫� {n}h⇢� , (2)

for the nth order metric perturbations {n}h ⌘ �n[ḡ].

B. Expansion of the curvature tensors

1. Mathematical framework

The inverse of the metric tensor is given by the relation

g�1 = (ḡ +�[ḡ])�1
. (3)

Expanding it into

g�1 = ḡ�1
1X

m=0

(�1)m
�
ḡ�1� [ḡ]

�m
, (4)

and making use of the definition {n}h = �n[ḡ], we obtain the nth order perturbation of g�1:

�n
h�
ḡ�1

�µ⌫i
=

X

(ki)

(�1)m
n!

k1! . . . km!
{km}hµ⇣m {km�1}h

⇣m�1

⇣m
. . . {k2}h ⇣2

⇣3
{k1}h ⌫

⇣2
, (5)

where the sum
P

(ki)
runs over the 2n�1 sorted partitions of n for m  n positive integers, such that k1 + . . . km = n.

Note that �n
⇥
(ḡ�1)

µ⌫⇤ 6= {n}hµ⌫ = ḡµ⇢ ḡ⌫� {n}h⇢� (e.g., we have at first order: �1[(ḡ�1)
µ⌫
] = � {1}hµ⌫).

1 This convention di↵ers from the one adopted in [7]. We however opt for this choice as it reflects the standard usage in cosmological
perturbation theory.

2 We use Greek letters (↵, �, µ, ⌫, ⇢, ...) for space–time indices.
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By means of relation (5), we can express the perturbation of the connection components as [7]

�n
⇥
�̄⇢

µ⌫

⇤
=

X

(ki)

(�1)m+1 n!

k1! . . . km!
{km}h⇢⇣m {km�1}h

⇣m�1

⇣m
. . . {k2}h ⇣2

⇣3
{k1}h⇣2µ⌫ , (6)

where the last term of the right-hand side is defined by

{n}h⇢µ⌫ =
1

2

�r̄⌫
{n}h⇢µ + r̄µ

{n}h⇢⌫ � r̄⇢
{n}hµ⌫

�
. (7)

The perturbation of the Riemann tensor is given in all generality by

�n
⇥
R̄ �

µ⌫⇢

⇤
= r̄⌫

�
�n

⇥
�̄�

µ⇢

⇤��
n�1X

k=1

✓
n

k

◆
�k

h
�̄⇣

⌫⇢

i
�n�k

⇥
�̄�

⇣µ

⇤ � (µ $ ⌫) , (8)

and for a connection compatible with the metric, we have, from equation (6),

�n
⇥
R̄ �

µ⌫⇢

⇤
=
X

(ki)

(�1)m
n!

k1! . . . km!

✓
{km}h�⇣m . . . {k2}h ⇣2

⇣3
r̄µ

{k1}h⇣2⇢⌫ (9)

+
mX

s=2

{km}h�⇣m . . . {ks+1}h
⇣s+1

⇣s+2

{ks}h⇣s⇣s+1µ
{ks�1}h⇣s⇣s�1 . . . {k2}h ⇣2

⇣3
{k1}h⇣2⌫⇢

◆
� (µ $ ⌫) .

The symbol (µ $ ⌫) denotes the repetition of the preceding expression with indices µ and ⌫ exchanged. The
perturbation of the Ricci tensor is simply obtained by contracting the second and fourth indices of �n

⇥
R̄ �

µ⌫⇢

⇤
in the

previous expression, and the perturbation of the Ricci scalar, R̄ = ḡ⇢�R̄⇢�, is written:

�n
⇥
R̄
⇤
=

nX

k=0

✓
n

k

◆
�k [ ḡ⇢� ] �n�k

⇥
R̄⇢�

⇤
. (10)

At last, the perturbation of the Einstein tensor is expressed according to

�n
⇥
Ḡµ⌫

⇤
= �n

⇥
R̄µ⌫

⇤� 1

2

nX

k=0

kX

j=0

n!

k! j! (n� j � k)!
{j}hµ⌫ �

k [ḡ⇢�] �n�j�k
⇥
R̄⇢�

⇤
. (11)

2. Implementation in xPert

All the perturbative expansions expounded above are implemented in the package xPert [7]. For completeness, we
here briefly review its main commands. The package can be loaded by evaluating

In[1] := <<xAct‘xPert‘

(Version and copyright messages)

We first define the four-dimensional manifold M with abstract indices {↵, �, µ, ⌫, �, �}:
In[2] := DefManifold[ M, 4, {↵, �, µ, ⌫, �, �} ];

and then we define the ambient metric g of negative signature, along with its associated covariant derivative CD:

In[3] := DefMetric[ -1, g[-↵,-�], CD, {";","r̄"}, PrintAs->"ḡ" ];

where M and g respectively correspond to M and ḡ. Several tensors related to this metric are automatically defined at
the same time (e.g., all the curvature tensors). Note that in xTensor, the covariant indices of a tensor are represented
with a minus sign (g[-↵, -�] means ḡ↵�), while the latter is omitted for contravariant indices (g[↵, �] means ḡ↵�).

Upon defining the perturbations dg of the metric g with the command:

In[4] := DefMetricPerturbation[ g, dg, " ];
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where " is the perturbative parameter to be used in the expansions, it becomes feasible to evaluate the perturbation
of any tensor associated with the metric. For instance, the perturbation at first order of the Ricci scalar is simply
obtained by evaluating

In[5] := ExpandPerturbation@Perturbed[ RicciScalarCD[], 1 ] // ContractMetric // ToCanonical

Out[5] := R[r̄]� " dg1↵�R[r̄]↵� + " r̄�r̄↵dg
1↵� � " r̄�r̄�dg1↵↵

The functions ExpandPerturbation and Perturbed are used to evaluate the perturbation of any expression up to any
order (here at first order), the function ContractMetric removes the background metric tensor through contraction
on dummy indices (i.e. repeated indices), and the function ToCanonical simplifies the result, gathering together the
terms which are equal up to symmetries. Further details can be found in [7].

C. Conformal transformation

In xTensor, the first metric defined on the manifold is the one that is used to raise and lower any tensor indices. For
our purpose, we have chosen it to be the conformal metric ḡ (cf input In[3]), which is di↵erent from, but conformally
related to, the background metric of the physical space–time. This choice ensures that the conventional way of moving
the indices of perturbed fields (equation (2)) is well satisfied within our algorithm. We however need, now, to relate
the tensorial quantities one considers in perturbation theory, namely those living on the background manifold of the
physical space–time, to those we have defined or shall define on the conformal background manifold M.

We detail this important point in the rest of this section.

1. Mathematical framework

Let us denote by eg the metric of the physical space–time, and by eg its background value. The metrics eg and g are
related by the conformal transformation

egµ⌫ = a2gµ⌫ , (eg�1)µ⌫ = a�2(g�1)µ⌫ , (eg�1)µ⇢ eg⇢⌫ = �µ⌫ , (12)

with a being the scale factor of the background space–time3. Substituting into the first expression of (12) the
perturbative expansion (1) for g and its counterpart for eg, we extend the conformal transformation to the background:

egµ⌫ = a2 ḡµ⌫ , (eg�1)µ⌫ = a�2 ḡµ⌫ , (13)

and to the perturbed level:

{n}ehµ⌫ = a2 {n}hµ⌫ , with {n}ehµ⌫ = ḡµ⇢ḡ⌫� {n}eh⇢� . (14)

The associated Levi-Civita connections er and r, on the one hand, and ēr and r̄, on the other, are related by4

erµ!⌫ = rµ!⌫ � C⇢
µ⌫!⇢ , ērµ!⌫ = r̄µ!⌫ � C̄⇢

µ⌫!⇢ , (15)

for any 1-form !. Using equations (12) and (13), we can write the quantities C⇢
µ⌫ and C̄⇢

µ⌫ as

C⇢
µ⌫ = 2�⇢(µr⌫) ln a� gµ⌫r⇢ ln a , C̄⇢

µ⌫ = 2�⇢(µr̄⌫) ln a� ḡµ⌫r̄⇢ ln a , (16)

3 We stress again that the first metric defined on M is the one that is used to raise and lower any tensor indices. Defining another metric,
say f , on the same manifold from the function DefMetric actually creates two objects: (i) the tensor f , with internal notation f, and
(ii) the tensor f�1, with internal notation Inv[f]. These have the following properties:

fµ⌫ = ḡµ⇢ḡ⌫�f⇢� , (f�1)µ⌫ = ḡµ⇢ḡ⌫�(f�1)⇢� , (f�1)µ⇢ f⇢⌫ = �µ⌫ ,

which explains the notation we use in equation (12).
4 By definition the scale factor used in the transformation (12) is not to be perturbed. Hence we have: eg = eg, and thus: ēr = ēr.
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with r⇢ = g⇢�r� and r̄⇢ = ḡ⇢�r̄�, and where the parentheses indicate symmetrization over the indices enclosed.
We can then formulate the nth order perturbation of C⇢

µ⌫ as5

�n
⇥
C̄⇢

µ⌫

⇤
=

nX

k=0

n!

k! (n� k)!
{k}hµ⌫

{n � k}h⇢� r̄� ln a . (17)

With the help of the two previous relations, we are now able to provide the correspondence we seek.
For instance, the Riemann tensor associated with the metric eg is given by (see appendix D of [16])

ēR �
µ⌫⇢ = R̄ �

µ⌫⇢ � 2 r̄[µC̄
�
⌫]⇢ + 2 C̄⇣

⇢[µ C̄
�
⌫]⇣

= R̄ �
µ⌫⇢ + 2 ��[µr̄⌫]r̄⇢ ln a� 2 ḡ⇢[µr̄⌫]r̄� ln a

� 2 ��[µr̄⌫] ln a r̄⇢ ln a+ 2 ḡ⇢[µr̄⌫] ln a r̄� ln a� 2 ḡ⇢[µ�
�
⌫]r̄⇣ ln a r̄⇣ ln a , (18)

where the brackets indicate anti-symmetrization over the indices enclosed. Perturbing this expression and using

equation (17), we can finally relate �n
⇥ ēR �

µ⌫⇢

⇤
to �n

⇥
R̄ �

µ⌫⇢

⇤
and recover the usual quantities studied in perturbation

theory.

2. Implementation in xPand

The xTensor package provides the tools to define a metric conformally related to another, thanks to the option
ConformalTo of the function DefMetric. We have encapsulated this in xPand within the function DefConformal-
Metric, which furthermore ensures the transitivity of several conformal transformations.

Let us load the package xPand :

In[6] := <<xAct‘xPand‘

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Package xAct‘xPand‘ version 0.4.0, {2013,02,08}
CopyRight (C) 2012-2013, Cyril Pitrou, Xavier Roy and Obinna Umeh under the GPL.

By evaluating the command

In[7] := DefConformalMetric[ g, a ];

we define the scalar factor a[] and the metric ga2 conformally related to g through a (ga2 thus corresponds to the
background metric eg of the physical space–time). To obtain the expression of any tensorial quantities living on the
manifold described by ga2 in terms of those defined on M, one then simply has to use the xPand function Conformal.

For instance, we obtain for the Riemann tensor associated with ga2 the expression

In[8] := Conformal[ g, ga2 ][ RiemannCD[-↵,-�,-µ, ⌫] ]

Out[8] := R
⇥r̄⇤ ⌫

↵�µ � � ⌫
� ḡ↵µ

r̄� a r̄� a

a2
+ � ⌫

↵ ḡ�µ
r̄� a r̄� a

a2
+ 2 � ⌫

�

r̄↵ a r̄µ a

a2
� 2 � ⌫

↵
r̄� a r̄µ a

a2

�� ⌫
�

r̄µr̄↵ a

a
+� ⌫

↵
r̄µr̄� a

a
�2 ḡ�µ

r̄↵ a r̄⌫a

a2
+2 ḡ↵µ

r̄� a r̄⌫ a

a2
+ḡ�µ

r̄⌫r̄↵ a

a
�ḡ↵µ

r̄⌫r̄� a

a

5 The background and perturbed connections, on the one hand, and the background and conformal connections, on the other hand, are
respectively related by

rµ!⌫ = r̄µ!⌫ ��[�̄⇢
µ⌫ ]!⇢ , ērµe!⌫ = r̄µe!⌫ � C̄⇢

µ⌫e!⇢ ,

for any 1-form !. Performing a conformal transformation on the former expression and perturbing the latter respectively yields

erµe!⌫ = ērµe!⌫ � �̂[�̄⇢
µ⌫ ] e!⇢ = r̄µe!⌫ � C̄⇢

µ⌫e!⇢ � �̂[�̄⇢
µ⌫ ] e!⇢ ,

erµe!⌫ = rµe!⌫ � C⇢
µ⌫e!⇢ = r̄µe!⌫ ��[�̄⇢

µ⌫ ] e!⇢ � C⇢
µ⌫e!⇢ .

These relations can only be compatible if

�̂[�̄⇢
µ⌫ ]��[�̄⇢

µ⌫ ] = �[C̄⇢
µ⌫ ] ,

It can be checked directly from equations (6), (14) and (17) that this is indeed the case. This shows the equivalence between the

transformations r̄ ! r ! er and r̄ ! ēr = ēr ! er. The latter approach actually proves itself to be faster within xPand. It is
therefore the one that we have coded in the function ToxPand (see section IVB).
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which coincides with equation (18).
The conformal transformation may as well be performed on quantities that are not related to a metric. For a

general tensor, it is defined as

eTµ1...µp
⌫1...⌫q

= aq�p+W (T ) Tµ1...µp
⌫1...⌫q

, (19)

where W (T ) is the conformal weight of the tensor T . The default value of W is chosen to be zero in order to leave
the norm invariant under a conformal transformation:

In[9] := DefTensor[ W[-↵], M ];

In[10] := Conformal[ g, ga2 ][ W[-↵] ]

Out[10] := aW↵

In[11] := Conformal[ g, ga2 ][ W[↵] ]

Out[11] :=
W↵

a

The conformal weight can however be modified for each tensor with the xPand function ConformalWeight. This can
be of use for instance to preserve the geodesic character of light-like vectors6:

In[12] := DefTensor[ k[-↵], M ];

In[13] := ConformalWeight[ k ] ^ = -1;

In[14] := ConformalWeight[ k[-↵] ]

Out[14] := 0

In[15] := ConformalWeight[ k[↵] ]

Out[15] := �2

In[16] := Conformal[ g, ga2 ][ k[↵] CD[-↵]@k[-�] ]

Out[16] :=
k↵ r̄↵ k�

a2
� k↵ k↵

r̄� a

a3

So far, by applying Conformal then ExpandPerturbation@Perturbed on a given expression defined on M, one
obtains the perturbation of its conformal transformation in terms of the tensors defined on M, the metric g, its
perturbations dg, the connection r̄, and the scale factor a. To end up with the usual expressions of perturbation
theory, one needs to perform a 3+1 splitting of the background manifold (section II), then decompose each perturbed
fields into its spatial and temporal parts and finally parameterize the perturbations of the metric (section III).

II. 3 + 1 SPLITTING OF THE BACKGROUND MANIFOLD

A. Induced metric

The assumption that the background space–time possesses a set of (three-dimensional) homogeneous surfaces pro-
vides a natural choice for the 3+1 slicing. We foliate the background manifold by means of this family, and we denote
by n̄ the unit time-like vector (n̄µn̄µ = �1) normal to it. The metric of M is decomposed as

ḡµ⌫ = h̄µ⌫ � n̄µn̄⌫ , with h̄µ⌫ n̄
µ = 0 and h̄µ

⇢h̄
⇢
⌫ = h̄µ

⌫ , (20)

where h̄ represents the induced metric of the spatial hypersufaces7.

6 We will make use of this prescription in a future version of xPand to implement the derivation of the (perturbed) null geodesic equation.
7 For the sake of clarity, let us note that {n}h are not the perturbations of h̄. From the definition of {n}h together with relation (20), we
can actually relate them as �n[h̄] ={n}h��n[n̄⌦ n̄].
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The acceleration of the so-called Eulerian observers satisfies in all generality [12]

āµ = n̄⇢ r̄⇢n̄µ =
D̄µ↵̄

↵̄
, (21)

with ↵̄ being the lapse function. D̄ stands for the connection of the three-surfaces associated with h̄ (D̄⇢h̄µ⌫ = 0),
and it is related to the four-covariant derivative as

D̄⇢Tµ1...µp = h̄�
⇢h̄

⌫1
µ1

. . . h̄⌫p
µp
r̄�T⌫1...⌫p , (22)

for any spatial tensor field8. Since the lapse is homogeneous in the configuration at stake, the acceleration vanishes
and the observers are in geodesic motion. We can therefore label each hypersurface by their proper time ⌘ and write:
n̄µ = �r̄µ⌘. In addition, n̄ being hypersurface-forming by construction, its vorticity vanishes; this property yields

!̄µ⌫ = h̄⇢
µh̄

�
⌫r̄[⇢n̄�] = 0 , r̄[µn̄⌫] = 0 , (23)

where the equivalence stems from the null acceleration. For comprehensive reviews on the 3 + 1 formalism, we refer
the reader to, e.g., [12, 13].

B. Extrinsic curvature

Another tensor we shall make use of is the symmetric extrinsic curvature tensor, which characterizes the way the
three-surfaces are embedded into the background manifold. It satisfies the relation

K̄µ⌫ = h̄⇢
µh̄

�
⌫r̄⇢n̄� , (24)

where we have chosen a positive sign for the right-hand side9. From the decomposition (20) along with the vanishing
of the acceleration ā and the unitary of n̄, we can reformulate expression (24) as

K̄µ⌫ = r̄µn̄⌫ . (25)

Since the volume expansion of the background space–time is entirely contained in the scale factor a, and owing to the
conformal transformation (13), the trace of the extrinsic curvature vanishes: K̄µ

µ = 0. As a result, we have for general
Bianchi cosmologies: K̄µ⌫ = �̄µ⌫ , with �̄µ⌫ being the shear of the Eulerian observers; and for FLRW cosmologies:
K̄µ⌫ = 0.

C. Curvature tensors

The splitting of the four-Riemann tensor can be constructed from its di↵erent projections onto the spatial slices
and the congruence of the observers. It is written as

R̄µ⌫⇢� = 3R̄µ⌫⇢� + 2K̄µ[⇢K̄�]⌫ � 4
�
D̄[µK̄⌫][⇢

�
n̄�] � 4

�
D̄[⇢K̄�][µ

�
n̄⌫] + 4 n̄[µ K̄

⇣
⌫] K̄⇣[⇢ n̄�] + 4 n̄[µ

˙̄K⌫][⇢n̄�] , (26)

where 3R̄µ⌫⇢� stands for the three-Riemann curvature of the hypersurfaces. The over-dot indicates the covariant
derivative along the world-lines of the observers (for any tensor field T , we have: Ṫµ1...µp = n̄⇢r̄⇢Tµ1...µp). The purely
spatial projection of (26) only calls upon the first two terms, and it drives the Gauss relation

h̄'
µh̄

�
⌫ h̄

⇠
⇢h̄

⇣
� R̄'�⇠⇣ = 3R̄µ⌫⇢� + 2K̄µ[⇢K̄�]⌫ . (27)

The three-space and one-time projection gives, from the next two terms, the Codazzi relation

h̄'
µh̄

�
⌫ h̄

⇠
⇢n̄

⇣ R̄'�⇠⇣ = D̄µK̄⌫⇢ � D̄⌫K̄µ⇢ , (28)

8 We recall that the operator D̄ loses its character of derivative when it is applied to non-spatial tensors. More precisely, we are not
allowed to use the Leibniz rule anymore, as one can realize upon writing for instance

D̄⇢( T̄µ1...µp ) =  D̄⇢T̄µ1...µp + h̄⌫1
µ1

. . . h̄
⌫p

µp T̄⌫1...⌫pD̄⇢ 

6=  D̄⇢T̄µ1...µp + T̄µ1...µp D̄⇢ ,

for any scalar field  .
9 This convention does not a↵ect the 3 + 1 Einstein equations as written in terms of the kinematical quantities of the Eulerian observers.
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and the last non-null projection (two-space and two-time) provides, from the last two terms, an evolution equation
for the extrinsic curvature. These decompositions can be performed in xAct with the function GaussCodazzi.

For FLRW space–times, the curvature tensors of the hypersurfaces cast the form

3R̄µ⌫⇢� = 2k h̄⇢[µ h̄⌫]� ,
3R̄µ⌫ = 2k h̄µ⌫ ,

3R̄ = 6k , (29)

with k being the curvature parameter (equal to zero for flat FLRW cosmologies). The corresponding expressions for
general Bianchi space–times are more involved, as they require the introduction of the constants of structures. We
detail their derivation in appendix B.

D. Derivatives

In order to achieve the 3 + 1 splitting, we are left with the decomposition of the covariant derivative r̄ in terms of
the induced derivative D̄. For general spatial tensors (namely, for spatial tensors defined within M or defined within
M then mapped onto M), the relation between the two derivatives reads

r̄⇢Tµ1...µp = �n̄⇢Ṫµ1...µp + D̄⇢Tµ1...µp +
pX

i=1

n̄µi K̄
�
⇢ Tµ1...µi�1�µi+1...µp . (30)

Even though our formalism is purely geometrical, we aim at eventually providing, for the perturbations, partial
di↵erential equations with respect to the proper time ⌘ of the Eulerian observers. When considering the four-
dimensional basis built to address the Bianchi classification (refer to appendix B), the Lie derivative along the
direction of n̄ precisely comes down to @⌘. It is accordingly more appropriate for our purpose to use the Lie derivative
rather than the dot derivative.

The relation between Ln̄ and n̄⇢r̄⇢ is written as10

Ln̄Tµ1...µp = Ṫµ1...µp +
pX

i=1

K̄�
µi

Tµ1...µi�1�µi+1...µp , (31)

and provides us with the following reformulation of (30):

r̄⇢Tµ1...µp = �n̄⇢ Ln̄Tµ1...µp + D̄⇢Tµ1...µp + 2
pX

i=1

n̄(µi
K̄�

⇢) Tµ1...µi�1�µi+1...µp . (32)

Finally, the last expression we shall need is the commutation rule between the derivatives Ln̄ and D̄. For general
spatial tensors, it is given by

Ln̄

�
D̄⇢Tµ1...µp

�
= D̄⇢

�Ln̄Tµ1...µp

�
+

pX

i=1

�
h̄�⇣D̄⇣K̄⇢µi � D̄⇢K̄

�
µi

� D̄µiK̄
�

⇢

�
Tµ1...µi�1�µi+1...µp , (33)

where we have made use of relations (22) and (28) for its derivation.

E. Implementation in xPand

The 3+ 1 splitting of the background manifold is performed by the xPand function SetSlicing. It can be applied
to the following spatially homogeneous cosmologies: "Minkowski", "FLFlat", "FLCurved", "BianchiI", "BianchiA",
"BianchiB" and "Anisotropic".

10 Note that for a spatial tensor T , the quantity Ln̄Tµ1...µp is also spatial.
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1. Construction of the spatial hypersurfaces

From the ambient metric g, SetSlicing first defines the unit normal vector n, the induced metric h of the hy-
persurfaces, the associated covariant derivative cd, the associated scale factor a[h] and the conformal metric gah2.
It then specifies the expressions of the intrinsic and extrinsic curvature tensors according to the type of cosmologies
chosen by the user (hence, the geometry of the model is fully described).

Let us illustrate with the cosmologies "FLCurved" and "BianchiA" (for the latter most sophisticated case, refer to
appendix B). With the evaluation

In[17] := SetSlicing[ g, n, h, cd, {"|","D̄"}, "FLCurved" ];

the extrinsic curvature K[h][-↵,-�] is set to zero, and the expressions of the three-curvature tensors are implemented
following relations (29). For instance, we have for the three-Ricci tensor

In[18] := Riccicd[-↵,-�]

Out[18] := 2 h̄↵� k

For "BianchiA" cosmologies,

In[19] := SetSlicing[ g, nA, hA, cdA, {"|","D̄"}, "BianchiA" ];

SetSlicing defines the spatial constants of structure Ck
ij (see appendix B) and then constructs a function allowing

one to express the intrinsic curvature tensors in terms of them. For the three-Ricci tensor, we then have

In[20] := RiccicdA[-b,-c] // ToConstantsOfStructure[hA]

Out[20] :=
1

4
C �µ
↵ C��µ � 1

2
C��µ C� µ

↵ � 1

2
C� µ

↵ Cµ�� +
1

2
C �
↵� Cµ

�µ +
1

2
C �
�↵ Cµ

�µ +
1

2
C�

↵� Cµ
�µ

which is equivalent to equation (B21) 11. The constants of structure can be further expanded, following the usual
Schücking, Kundt and Behr (SKB) decomposition [17], by means of the xPand function ToBianchiType[hA].

We summarize in table I the di↵erent evaluations performed by SetSlicing with respect to the type of cosmologies.

Space–time Extrinsic curvature Three-curvature tensors Constants of structure

Minkowski Null Null Null

FLFlat Null Null Null

FLCurved Null Eqs. (29) Ck
ij = 2

p
k h̄mk ✏mij

BianchiI K̄µ⌫ Null Null

BianchiA K̄µ⌫ Eqs. (B20), (B21), (B22) Ck
ij = ✏ijmNmk

BianchiB K̄µ⌫ Eqs. (B20), (B21), (B22) Ck
ij = ✏ijmNmk + 2A[i�

k
j]

Anisotropic K̄µ⌫ Eqs. (B20), (B21), (B22) Ck
ij

TABLE I. Evaluations performed by SetSlicing for the extrinsic curvature, the three-curvature tensors and the constants of
structure, according to the type of homogeneous cosmologies. In terms of g (or, equivalently, ḡ), the dynamics of "Minkowski"
and "FLFlat" space–times are identical. The di↵erence lies in the conformal transformation (13): for the former models, the
scale factor is set to 1. For "BianchiA", "BianchiB" and "Anisotropic" space–times, the three-curvature tensors can be
formulated in terms of the constants of structure by means of the function ToConstantsOfStructure[] and, for the two first
models, can be further expanded with the help of ToBianchiType[]. The "Anisotropic" space–time is used for hypersurfaces
whose dimension di↵ers from three (for these models the SKB decomposition does not apply).

11 Equation (B21) is recovered by making use of the Jacobi identity (B5) on Out[20]. This latter relation is not implemented, as it implies
a symmetry among several terms that xTensor does not yet handle. However, once the constants of structure are expanded according
to the parameterization (B8), the Jacobi identity reduces to the constraint (B9), which is automatically applied in xPand.
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2. Derivatives

For anisotropic cosmologies, SetSlicing creates a set of automatic rules to handle the action of the derivatives
on the three-curvature tensors. The aim is to obtain a formulation in terms of the extrinsic curvature tensor and/or
the constants of structure, which fully identify the geometry of the model. Note that such rules are not necessary
for isotropic models: the expressions of the intrinsic curvature tensors are simple enough to let xTensor perform the
evaluation.

The action of the derivative r̄ is implemented following equation (32), that of D̄ following equation (B14)
together with (B16), and the application of Ln̄ on a three-curvature tensor automatically calls the function
ToConstantsOfStructure[] so as to use the property (B19). Regarding the three-covariant derivative, we have
for instance

In[21] := cdA[-↵]@RiccicdA[-µ,-⌫]

Out[21] :=
1

2
C �
↵⌫ R[D̄]µ� � 1

2
C�

↵⌫ R[D̄]µ� +
1

2
C �
⌫↵ R[D̄]µ� +

1

2
C �
↵µ R[D̄]⌫� � 1

2
C�

↵µ R[D̄]⌫�

+
1

2
C �
µ↵ R[D̄]⌫�

Lastly, SetSlicing constructs an automatic rule to perform the commutation (33) for any expression. This serves
to make sure that the Lie derivative will first act on a given tensor, so as to recover the usual formulation of the
perturbed equations12. For "FLCurved" cosmologies, we have

In[22] := DefTensor[ V[-↵], M, OrthogonalTo->{n[↵]}, ProjectedWith->{h[↵,-�]} ];

In[23] := LieD[n[µ]]@cd[-⌫]@V[-↵]

Out[23] := D̄⌫ Ln̄ V↵

and for "BianchiA",

In[24] := DefTensor[TA[-↵],M,OrthogonalTo->{nA[↵]},ProjectedWith->{hA[↵,-�]},PrintAs->"T"];

In[25] := LieD[nA[µ]]@cdA[-⌫]@TA[-↵]

Out[25] := C� �
⌫ K↵� T� � C �

↵⌫ K�
� T� � C �

⌫↵ K�
� T� + C� �

↵ K⌫� T� + D̄⌫ Ln̄A T↵

where to obtain Out[25], expression (B14) has been automatically applied to the extrinsic curvature tensor.

III. PERTURBED FIELDS

We now present the splitting of the perturbed fields into their spatial and temporal parts, the scalar–vector–tensor
(SVT) decomposition of their projected components and finally the parameterization of the metric perturbations.

A. Projected components and scalar-vector-tensor decomposition

Any perturbed quantity lying within M and mapped onto the background manifold can be decomposed by means
of the normal vector n̄ and the induced metric h̄. For a rank-2 covariant tensor T , we have for instance,

Tµ⌫ = n̄µn̄⌫ ( n̄
⇢n̄�T⇢�) + 2 n̄(µ

�
n̄⇢ h̄�

⌫)T⇢�

�
+
�
h̄⇢

µh̄
�
⌫T⇢�

�
. (34)

The terms inside parentheses hence constructed respectively define a scalar, a spatial vector and a spatial tensor. As
is customary in perturbation theory, we shall then employ the SVT decomposition to further expand the two last

12 In line of this comment, let us note that SetSlicing also creates internal rules for the commutation of several D̄. These will enforce
the appearance of Laplacians, and move a covariant derivative closer to a tensor when a divergence is present.
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projected quantities [18]. Let us briefly recall the form of this decomposition for later needs: a spatial vector Uµ is
split into a scalar part S and a vector part Vµ as

Uµ = D̄µS + Vµ , with D̄µVµ = 0 , (35)

and a symmetric spatial tensor Hµ⌫ is decomposed into two scalar parts S1 and S2, a vector part Vµ and a tensor
part Tµ⌫ as

Hµ⌫ = D̄µD̄⌫S1 + S2h̄µ⌫ + D̄(µV⌫) + Tµ⌫ , with

(
D̄µVµ = 0 ,

D̄µTµ⌫ = 0 and Tµ
µ = 0 .

(36)

B. Perturbations of the metric

The SVT decomposition of the metric perturbations yields the general expressions13

n̄⇢n̄� {n}h⇢� = �2 {n}� , (37)

n̄⇢h̄�
⌫
{n}h⇢� = �D̄⌫

{n}B � {n}B⌫ , (38)

h̄⇢
µh̄

�
⌫

{n}h⇢� = 2
�
D̄µD̄⌫

{n}E + D̄(µ
{n}E⌫) +

{n}Eµ⌫ � {n} h̄µ⌫

�
. (39)

Four of the ten degrees of freedom of {n}h are carried by the scalars {n}�, {n} , {n}E and {n}B, four are encoded in the
vectors {n}Eµ and {n}B⌫ , and two are contained in the tensor {n}Eµ⌫ . Note that some of these fields are required to
vanish for specific gauge choices (see, e.g., [19] for a comprehensive review).

C. Implementation in xPand

1. Construction of SVT quantities

The construction of spatial tensors satisfying the SVT properties is performed by the xPand function DefProjected-
Tensor. By default, these tensors are defined on both the background and perturbed manifolds. For instance, we
have

In[26] := DefProjectedTensor[ U[-↵,-�], h ];

In[27] := n[-↵] U[↵, �]

Out[27] := 0

In[28] := U[↵, -↵]

Out[28] := 0

In[29] := Perturbation[ U[-↵,-�], 1 ]

Out[29] := �
⇥
U↵�

⇤

To relax one or several default properties, the user has to modify the optional arguments TensorProperties, set by
default to {"SymmetricTensor","Traceless","Transverse"}, and SpaceTimesOfDefinition, evaluated by default
as {"Background","Perturbed"}:

In[30] := UndefTensor[ U ];

In[31] := DefProjectedTensor[ U[-↵,-�], h, TensorProperties->{"SymmetricTensor","Transverse"},
SpaceTimesOfDefinition->{"Background"}];

In[32] := U[↵,-↵]

Out[32] := U↵
↵

In[33] := Perturbation[U[-↵, -�], 1]

Out[33] := 0

13 Note that for Bianchi space–times it is more convenient to modify this decomposition by replacing the last term of equation (39) with
{n} 3K̄µ⌫/K̄↵

↵ [25]. This boils down to a redefinition of {n}E, {n}Eµ, {n}Eµ⌫ and {n} , and it is this parameterization that we have
chosen in xPand.
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2. Comments on the label-indices

In the internal notation, xPert attaches a label-index to the metric perturbations in order to denote their order.
The first order perturbation dg1↵� (cf output Out[5]) is hence stored as dg[LI[1],-↵,-�]. In xPand, we employ the
same notation for spatial tensors defined with DefProjectedTensor, and we moreover attach a second label-index to
indicate the number of Lie derivatives along n̄ acting on them. Thus, we have for instance

In[34] := DefProjectedTensor[V[-↵], h]

In[35] := LieD[n[µ]]@V[LI[1], LI[0], -↵]

Out[35] := (1)V↵
0

In[36] := V[LI[1], LI[1], -↵]

Out[36] := (1)V↵
0

DefProjectedTensor constructs a set of rules to automatically allocate label-indices to a tensor written without.
Hence, V[-↵] is converted to V[LI[0],LI[0],-↵], while V[LI[p],-↵] is converted into V[LI[p],LI[0],-↵], for
any perturbation order p.

Note that xTensor interprets a tensor with label-indices as a tensor by itself, whatever the meaning of the
label-indices. Its indices are therefore raised and lowered by the ambient metric in the usual way: g[↵,�]
V[LI[1],LI[1],-↵] yields V[LI[1],LI[1],�]. While this is obviously mathematically correct for conformal isotropic
manifolds14, it is no longer true for anisotropic ones. For these latter models, the second label-index can be interpreted
as Lie derivatives only when the tensor is with indices down. To avoid confusion, we modify the output when the
tensor indices are up. For instance, we have for "BianchiA" cosmologies

In[37] := DefProjectedTensor[VA[-↵], hA]

In[38] := VA[LI[1], LI[1], -↵]

Out[38] := (1)V↵
0

In[39] := VA[LI[1], LI[1], ↵]

Out[39] := (1)
1
V ↵

3. Construction of the perturbations of the metric

The perturbed fields introduced in subsection III B are constructed with the xPand function DefMetricFields.
The evaluation of the command

In[40] := DefMetricFields[ g, dg, h ];

calls the function DefProjectedTensor in order to define the projected components of the metric perturbations and
allocate them all the SVT properties. The set of rules (37)–(39) are then automatically defined using the xPand
function SplitMetric:

In[41] := GaugeRules = SplitMetric[ g, dg, h, "AnyGauge" ]

In[42] := dg[LI[1], -↵, -�] /. GaugeRules

Out[42] := 2 (1)E↵�+ (1)B� n̄↵� (1)B↵ n̄��2 n̄↵ n̄�
(1)��2 h̄↵�

(1) � n̄� D̄↵
(1)B+D̄↵

(1)E�� n̄↵ D̄�
(1)B

+D̄�
(1)E↵ + 2 D̄� D̄↵

(1)E

The particular gauges we have implemented are: "ComovingGauge", "FlatGauge", "IsoDensityGauge", "Newton-
Gauge" and "SynchronousGauge". Should the user wish to consider other gauges, own rules can be created as follows:
MyGauge = {dg[LI[ord ], µ ,⌫ ] :> ...}.

14 In such cases, g[↵,�] V[LI[1],LI[1],-↵] corresponds to g↵�Ln̄V↵ which is equal to Ln̄V � , as the extrinsic curvature vanishes. This
last expression indeed corresponds to V[LI[1],LI[1],�].
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4. Splitting of the background covariant derivative

We now have nearly all the necessary tools to obtain the final expression of any perturbed field. Let us quickly
review the previous steps and then introduce the last function we need.

To derive the perturbation of, e.g., the four-dimensional Ricci scalar, we first perform a conformal transformation
from g to gah2 (and express it in terms of the metric g), then we perturb the resulting expression, and finally we
substitute the metric perturbations by their SVT components using the set of rules GaugeRules:

In[43] := Conformal[g, gah2][ RicciScalarCD[] ]

In[44] := MyR = ExpandPerturbation@Perturbed[ %, 1 ]

In[45] := (MyR /.GaugeRules) // ProjectorToMetric // GradNormalToExtrinsicK
// ContractMetric // ToCanonical

The final result has been expanded using the xTensor functions ProjectorToMetric, which replaces h̄µ⌫ by ḡµ⌫�n̄µn̄⌫ ,
and GradNormalToExtrinsicK, which replaces r̄µn̄⌫ by K̄µ⌫ , and it has been simplified with ContractMetric and
ToCanonical.

Since the relation (32) is not automatically evaluated so far for quantities other than the three-curvature tensors, the
result of In[45] still involves the covariant derivative r̄. In order to split the latter in terms of the induced derivative
and Lie derivative along n̄, one finally needs to use the xPand function SplitPerturbations, which applies as well
the Gauss–Codazzi decompositions. In the above example, we obtain

In[46] := SplitPerturbations[% ah[]^2 , h]

Out[46] := 6H2 + 6H0 + 6K + "
��12H2 (1)�� 12H0 (1)�� 6H (1)�0 + 12 (1) K � 18H (1) 0 � 6 (1) 00

+6HD↵D
↵ (1)B � 2D↵D

↵ (1)B0 + 6HD↵D
↵(1)E0 + 2D↵D

↵ (1)E00 � 2D↵D
↵ (1)�+ 4D↵D

↵(1) )

This way of proceeding is, however, rather ine�cient for general gauges at higher order. Instead, the set of rules
GaugeRules can be used in an optimized manner by the function SplitPerturbations itself:

In[47] := SplitPerturbations[ah[]2 MyR, GaugeRules, h]

In such a way, the rule following relation (32) is evaluated on the projected components of the metric before specifying
their SVT decomposition, which takes much less time at higher orders.

IV. FEATURES OF THE ALGORITHM

A. Summary

Let us review the main steps that need to be followed in order to derive the perturbation of any fields.

(i) We define the background manifold M (with DefManifold) and the ambient metric g (with DefMetric). The
splitting of M is realized with SetSlicing, according to the type of cosmology chosen by the user.

(ii) We apply to the quantity to be perturbed a conformal transformation from ḡ to ēg and express the result with
respect to the quantities defined on M. This is done with the function Conformal.

(iii) We use the xPert tools Perturbed and ExpandPerturbation to perturb the previous expression at any order,
in terms of the metric perturbations dg and other tensors.

(iv) We use the functions DefMetricFields and SplitMetric to define and construct the SVT parameterization of
the metric perturbations (thanks to the function DefTensorProjected), according to the gauge chosen by the
user. The perturbations of the fluid quantities are defined and decomposed with the functions DefMatterFields
and SplitMatter (see further below).

(v) We finally use the function SplitPerturbations to decompose the covariant derivative r̄ in terms of the
induced derivative and the Lie derivative along n̄. The Gauss–Codazzi relations are also applied, and the
constructed rules are used to transform the resulting expression.

These four last steps have been coded all at once in a single function called ToxPand. We present it further below,
after introducing a minimal example.
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B. A minimal example

We now propose a brief and self-contained example to illustrate our package. The parameterization of the metric
perturbations is here constructed by hand, and we only consider the Bardeen potentials.

<<xAct/xPand.m;
DefManifold[ M, 4, {↵, �, µ, ⌫} ];
DefMetric[ -1, g[-↵,-�], CD, {";", "r̄"} ];
DefMetricPerturbation[ g, dg, ✏ ];
SetSlicing[ g, n, h, cd, {"|", "D"}, "FLCurved" ];
order = 1;
DefProjectedTensor[ �[], h ];
DefProjectedTensor[  [], h ];
MyRicciScalar = ExpandPerturbation@Perturbed[ Conformal[g, gah2][RicciScalarCD[]], order ];
MyGauge = dg[LI[ord ], ↵ , � ] :> - 2 n[↵]n[�] �[LI[ord]] - 2 h[↵, �]  [LI[ord]];
SplitPerturbations[ ah[]^2 MyRicciScalar, MyGauge, h ]

The output generated by the last line is (compare with Out[46])

Out[47] := 6H2 + 6H0 + 6K + "
��12H2 (1)�� 12H0 (1)�� 6H (1)�0 + 12 (1) K � 18H (1) 0 � 6 (1) 00

�2D↵D
↵ (1)�+ 4D↵D

↵ (1) )

C. Secondary functions

Even though the user is free to parameterize tensor perturbations by creating its own rules with projected tensors
defined from DefProjectedTensor, we have seen in paragraph III C 3 that the functions DefMetricFields and
SplitMetric can take care of this procedure for the metric perturbations. Similarly, we have implemented in xPand
the functions DefMatterFields and SplitMatter for the definition and parameterization of the fluid perturbations,
and more precisely for those of the energy density, pressure and fluid 4-velocity.

We also wish to mention that we have extended in xPand the xPert function GaugeChange which performs gauge
transformations at any order for a given expression. Our extension SplitGaugeChange executes a 3 + 1 splitting of
these transformation rules. For a glance at the gauge transformations for metric perturbations and the construction
of gauge-invariant variables, see [15, 18, 20, 21]. For examples of use of the secondary functions SplitMatter and
SplitGaugeChange, we invite the reader to go through the example notebooks which are distributed along with the
package xPand.

Furthermore, for the cases where one wants to consider the predefined gauges, it is enough, simple and straightfor-
ward to use the xPand function ToxPand to obtain the perturbation of any expression. For instance, the following
five lines su�ce to derive that of the four-Ricci scalar in any gauge and up to order 2

<<xAct/xPand.m;
DefManifold[ M, 4, {↵, �, µ, ⌫} ];
DefMetric[ -1, g[-↵, -�], CD, {";", "r̄"} ];
SetSlicing[ g, n, h, cd, {"|", "D"}, "FLCurved" ];
ToxPand[ RicciScalarCD[], dg, u, du, h, "AnyGauge", 2 ]

where u and du are the fluid four-velocity and its perturbation, respectively. The function ToxPand combines several
functions so that the user can easily obtain the desired perturbations in a given gauge without having to deal with
any detail of the algorithm.

Finally, the xPand function ExtractComponents allows to extract the projected components of any tensor. For a
given background slicing, the user only needs to specify the type of projection (see appendix A for an example). Note
also that for a rank-1 (resp. rank-2) tensor, the xPand function VisualizeTensor allows us to display all projected
components in a vector (resp. matrix) form. Again, we refer to the example notebooks which are distributed along
with xPand [5], for more details about the syntax of these functions.
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D. Recovering standard results

We have checked that with our implementation we recover the standard results of cosmological perturbation theory.
More precisely, our algorithm is in accordance with

• all first-order results of Einstein equation and stress–energy tensor conservation equation, for flat and curved
FLRW space–times in any gauge (see for instance [19]);

• all first-order results for Bianchi type I background, in the gauge chosen in [22, 23];

• all second-order results of Einstein equation and stress-energy tensor conservation equation, for flat and curved
FLRW space–times in the Newtonian gauge (see for instance [15] for the complete set of equations).

Our package now enables to extend these results to higher order and in any gauge. It also allows for the study of any
type of perturbed Bianchi cosmologies.

It is worth mentioning that in order to obtain useful standard di↵erential equations with respect to the conformal
time ⌘, it is necessary to perform a mode expansion on the hypersurfaces, that is one needs to find the eigenmodes
of the spatial Laplacian D̄µD̄

µ. This is simple for flat FLRW cosmologies, where one just has to employ a Fourier
transformation, and it is also well-known for curved FLRW models, where hyper-spherical Bessel functions need to
be used [24]. However, the procedure is still unknown for general Bianchi cosmologies. Apart from the special case
of Bianchi type I, where the modes can also be found from a Fourier transformation (and thus lead to a simple set of
equations [25]), there is no general technique to obtain the eigenmodes of the Laplacian for all other types. Only in
special cases (see for instance [26]) this has been done explicitly.

E. Timings

In practice, the timing for the computation grows like (slightly faster than) a power law of the perturbation order,
whatever the gauge (see figure 1). It takes xPand less than 2 minutes (see figure 2) to decompose completely the
perturbation of a rank-2 curvature tensor, such as the Ricci or Einstein tensor, up to second order in any gauge. The
decomposition for the perturbations of the Riemann or Weyl tensor, up to second order and in any gauge, takes a
little more than 2 and 13 minutes, respectively.

CONCLUSION

xPand is the first comprehensive package that allows to perform algebraic calculations in cosmological perturbation
theory for homogeneous background space–times, up to any order and in any gauge. It is worth stressing again the
several features and advantages of this package.

• The expression of any perturbed field can be obtained for all Bianchi cosmologies, up to any order of interest
and in any gauge, in a very simple and straightforward way.

• The package avoids the complexities of a component-by-component computation of the perturbed fields, thanks
to the use of the 3 + 1 formalism.

• The package is relatively fast: at first order, all the perturbed equations can be derived in approximately two
seconds, and as the order of the perturbation increases, the timing grows roughly as a power law.

• The computations can be applied to space–times of arbitrary dimension, and for any extension of general
relativity (the current exception being any gravitational theory with torsion).

• Taking advantage of the package xTensor, xPand handles tensor indices just the same way a user would do when
calculating by hand. In particular, it does not break the summation over repeated indices (as e.g. in Out[46]).

• It totally eliminates the laborious summation over repeated indices, an element that has inhibited the use of
other packages developed to solve similar models.

• The user who has little knowledge of the Mathematica or xTensor syntax can obtain from the package almost
the same utility as an expert would do.

Finally, we plan to extend the scope of xPand beyond the derivation of perturbed equations in general relativity,
so as to provide the entire Einstein–Boltzmann system for radiation transfer and the Einstein–Jacobi map system
needed for understanding the e↵ect of weak gravitational lensing.
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FIG. 1. Timings for the perturbation of the four-dimensional Ricci scalar in di↵erent gauges. From top to bottom and left to
right: synchronous gauge, spatially flat gauge, comoving gauge and Newtonian gauge. On each plot, the curves from bottom to
top refer to: (i) formal perturbations with xPert using a conformal transformation (red line); (ii) perturbations for a Minkowski
background (yellow); (iii) perturbations for a curved FLRW background (green); (iv) perturbations for a Bianchi I background
(blue); and (v) perturbations for a general Bianchi background ("BianchiB") (purple). All timings were performed on a single
4GHz core, with a 8GB RAM.
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[6] J. M. Mart́ın-Garćıa, “xAct, E�cient tensor computer algebra for mathematica”, http://www.xact.es (2004)
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For simplicity, we customize the use of the command ToxPand as

In[7] := MyToxPand[ expr , gauge , order ] := ToxPand[ expr, dg, u, du, h, gauge, order ];

We define the constants  = 8⇡G and ⇤ with

In[8] := DefConstantSymbol[  ];
DefConstantSymbol[ ⇤ ];

and then the energy–momentum tensor of the fluid:

In[10] := DefTensor[ T[-µ, -⌫], M ]

We introduce a boolean variable to switch on or o↵ the pressure of the fluid filling the space–time. This allows us to
consider either dust- or radiation-dominated era in a simple way.

In[11] := $Dust = True;

In[12] := IndexSet[ T[↵ ,� ], (⇢u[] + If[$Dust, 0, Pu[]]) u[↵]u[�] + If[$Dust, 0, Pu[]] g[↵,�]];

The fields ⇢u (energy density), Pu (pressure) and u (fluid 4-velocity) will be automatically created later, when calling
the function (My)ToxPand. The user is encouraged to set the boolean variable to False in order to include the e↵ects
of pressure.

We now derive the perturbations of Einstein equations for the model at stake. We define the Einstein equations as

In[13] := MyGR[µ , ⌫ ] := EinsteinCD[µ, ⌫] + g[µ,⌫] ⇤/ -  T[µ,⌫];

and we evaluate their perturbations simply using

In[14] := MyGRresult = MyToxPand[ MyGR[µ,�⌫], "NewtonGauge", order ];

Since the computation of this expression is the time-consuming part, we have stored its value in the variable
MyGRresult.

The background components of the resulting expression are extracted using the xPand function ExtractOrder[expr,
0] (where 0 indicates the background value), and the projected components with the xPand function Extract-
Components:

In[15] := ExtractComponents[ ExtractOrder[ ah[]^2 MyGRresult, 0 ], h, {"Time","Time"} ]

Out[15] :=
⇤a2


� 3H2 +  a2⇢

In[16] := ExtractComponents[ ExtractOrder[ah[]^2 MyGRresult, 0], h, {"Space","Space"} ]

Out[16] :=
⇤a2hµ

⌫


� hµ

⌫ H2 � 2hµ
⌫ H0

Similarly, the first-order equations are obtained by evaluating

In[17] := ExtractComponents[ ExtractOrder[ ah[]^2 MyGRresult, 1 ], h, {"Time","Time"} ]
Out[17] :=  a2 (1)⇢+ 6H2 (1)�+ 6H (1) 0 � 2D↵D

↵ (1)�

In[18] := ExtractComponents[ ExtractOrder[ ah[]^2 MyGRresult, 1 ], h, {"Time","Space"} ]
Out[18] := � a2 (1)B⌫ ⇢�  a2 (1)V⌫ ⇢+

1
2 D↵D

↵ (1)B⌫ �  a2⇢D⌫
(1)V � 2HD⌫

(1)�� 2D⌫
(1) 0

In[19] := ExtractComponents[ ExtractOrder[ ah[]^2 MyGRresult, 1 ], h, {"Space","Time"} ]
Out[19] := 2 (1)BµH2 � 2 (1)BµH0 +  a2 (1)V µ ⇢+D↵

(1)E0µ↵ � 1
2 D↵D

↵ (1)Bµ +  a2 ⇢Dµ (1)V
+2HDµ (1)�+ 2Dµ (1) 0

In[20] := ExtractComponents[ ExtractOrder[ ah[]^2 MyGRresult, 1 ], h, {"Space","Space"} ]
Out[20] := (1)E

00µ
⌫ +

(1)E
0µ

⌫ H+2hµ
⌫ H2 (1)�+4hµ

⌫ H0 (1)�0+2hµ
⌫ H (1)�0+4hµ

⌫ H (1) 0+2hµ
⌫

(1) 
00

�D↵D
↵ (1)Eµ

⌫ + hµ
⌫ D↵D

↵ (1)�� hµ
⌫ D↵D

↵ (1) �HDµ (1)B⌫ � 1
2 D

µ (1)B0
⌫ �HD⌫

(1)Bµ

� 1
2 D⌫

(1)B0µ +D⌫D
µ (1)�+D⌫D

µ (1) 
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Appendix B: Bianchi cosmologies

1. Constructing a four-dimensional basis

We here review the general properties of Bianchi space–times. The reader can find a detailed presentation of their
classification in [17], and summaries in, e.g., [27, 28].

Bianchi space–times posses by definition a set of (three-dimensional) homogeneous hypersurfaces. One can therefore
introduce three linearly independent spatial Killing vector fields (KVF) ⇠i, with i 2 {1, 2, 3}, satisfying

L⇠i ḡµ⌫ = 0 , r̄(µ ⇠i ⌫) = 0 , n̄µ ⇠
µ
i = 0 . (B1)

From these properties together with equation (23), we obtain

Ln̄ ⇠i = [n̄, ⇠i] = 0 . (B2)

The nature of the Bianchi model is determined by the spatial structure coe�cients Ck
ij , defined from the commutators

of the KVF:

[⇠i, ⇠j ] ⌘ �Ck
ij⇠k , with Ck

ij = �Ck
ji . (B3)

The Jacobi identity
⇥
⇠i, [⇠j , ⇠k]

⇤
+
⇥
⇠j , [⇠k, ⇠i]

⇤
+
⇥
⇠k, [⇠i, ⇠j ]

⇤
= 0 , (B4)

contrains these constants to verify

Cm
[ijC

l
k]m = 0 ) Cm

ijC
l
lm = 0 , (B5)

where we have used the fact that the Ck
ij are constant on spatial slices.

We now construct, on a given hypersurface, a vector basis {ei} and its dual {ei} invariant under the action of the
KVF, namely satisfying:

L⇠iej = [⇠i, ej ] = 0 , L⇠ie
j = 0 . (B6)

From these properties along with relation (B3), we infer that the ei can be chosen such that

[ei, ej ] = Ck
ijek , 2ei

µej
⌫r[µe

k
⌫] = �Ck

ij . (B7)

The constants of structure can be further developed in terms of a symmetric ‘tensor’ N ij and a ‘vector’ Ai as

Ck
ij = ✏ijmNmk + 2A[i�

k
j] (B8)

where ✏ijm denotes the totally anti-symmetric Levi-Civita symbol. Note that the Jacobi identity (B5) translates in
that case to the simple relation

NijA
j = 0 . (B9)

We then extend the bases {ei} and {ei} to the whole space–time by Lie dragging them with n̄, which implies the
properties

Ln̄ei = [n̄, ei] = 0 , Ln̄e
i = 0 . (B10)

With the above procedure, we are able to construct a four-dimensional basis {ea} ⌘ {n̄, ei} along with its dual
{ea} ⌘ {n̄, ei} (where n̄ is the dual form of n̄ and a 2 {0, 1, 2, 3}), that are invariant under the action of the
KVF. The commutation relations of these new bases simply follow from expressions (B7) and (B10): the structure
coe�cients Cc

ab vanish when any of the indices is zero and take the values Ck
ij otherwise. This method to build a

four-dimensional basis out of a three-dimensional one defined on a given spatial hypersurface is the simplest one15.

15 Note that in this framework, only n̄ is a unit vector. An alternative approach consists in building a basis of vectors that all are unitary,
by renormalizing the ei. However, by doing so, the spatial vectors hence constructed do not commute with n̄ anymore, and their
associated structure coe�cients become time dependent. We shall not consider such possibility in the present paper, but details can be
found in, e.g., [17, 27, 28].
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2. Expression of the geometrical tensors

The components of the induced metric are written with respect to the Bianchi basis {ei} and its dual as

h̄µ⌫ = h̄ij e
i
µe

j
⌫ . (B11)

From relations (B1) and (B2), we deduce

L⇠i h̄µ⌫ = 0 , (B12)

and using equation (B11) together with (B6), we obtain: ek(h̄ij) = 0. The components h̄ij are thus only time-
dependent, namely h̄ij = h̄ij(⌘). Any tensor field T lying on the background space–time possesses the same symme-
tries, and so we can expand it with respect to the Bianchi bases as

T̄µ1...µp = T̄i1...ip(⌘) e
i1

µ1 . . . e
ip

µp . (B13)

Denoting by 3�̄ijk the coe�cients of the connection D̄ in the Bianchi bases, we then deduce that

D̄kT̄i1...ip ⌘ ek
↵ei1

µ1 . . . eip
µpD̄↵T̄µ1...µp = �

pX

j=1

3�̄q
k ij T̄i1...ij�1 q ij+1...ip . (B14)

This relation is used in xPand to compute the induced covariant derivative of any background tensor, such as the
extrinsic curvature. The connection coe�cients associated with the background connection r̄ are given in the bases
{ea} and {ea} by

�̄abc =
1

2

�� ea (ḡbc) + eb (ḡca) + ec (ḡab) + Cabc � Cbca + Ccab

�
. (B15)

Given that the components h̄ij only depend on ⌘, we deduce that the spatial-connection coe�cients 3�̄ijk are expressed
only in terms of the constants of structure. We have indeed

3�̄ijk = �̄ijk =
1

2

�
Cijk � Cjki + Ckij

�
, Cijk = �̄ijk � �̄ikj . (B16)

Note that the tensor indices in the bases {ei} and {ei} are lowered with h̄ij and raised with its inverse h̄ij , so that
for instance Ckij ⌘ h̄kmCm

ij . Note also that the constants of structure of the basis {ei}, that we here note C[e]kij
for the sake of clarity, are the components, in this specific basis, of a tensor. The associated components in a general
basis can be recovered from16

C[e]↵µ⌫ ⌘ C[e]kij ek
↵eiµe

j
⌫ . (B17)

Similarly, the components of Nij and Ai in a general basis are found from

N [e]µ⌫ ⌘ N [e]ij e
i
µe

j
⌫ , A[e]µ ⌘ A[e]i e

i
µ . (B18)

Relation (B14) is also used to compute the induced covariant derivative of these three tensors, since they also live
on the background space–time. Note, finally, that from equation (B10) and the fact that the Ci

jk are constant, we
obtain the useful relation

Ln̄(C
↵
µ⌫) = 0 . (B19)

The three-Riemann tensor of the hypersurfaces can be expressed only in terms of the constants of structure. In the
bases {ei} and {ei}, its components are given by

3R̄ kl
ij =� 1

2
Cp

ijCp
kl +

1

2
C l

p iC
pk

j + C l
p jCi

kp + C l
p jC

k p
i + CijpC

pkl +
1

2
C l

i pCj
kp +

1

2
Cl

ipC
k p
j + Ck

jpCi
lp , (B20)

16 Note that we are not considering the constants of structure of another basis with this construction. We rather build a tensor C[e] ⌘
C[e]kijek ⌦ ei ⌦ ej . It is obvious that the components of this tensor in the basis {ei} and {ei} are the C[e]kij , but its components
can also be taken in a general basis even though we only refer to the commutation structure of the ei. Since xTensor manipulates only
abstract indices (that is indices in a general basis), this covariant point of view is necessary to implement the structure of the Bianchi
space–times in our package.
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where a double anti-symmetrization [ij] and [kl] is implied on the indices in the right-hand side. The three-Ricci
tensor and three-Ricci scalar can then be deduced, and we obtain

3R̄ij =� 1

2
CkilC

k l
j � 1

2
CkilC

l k
j +

1

4
Ci

klCjkl + C(ij)
pCk

pk , (B21)

3R̄ =� 1

4
CijkC

ijk � 1

2
CijkC

jik + Ckj
kC

p
pj . (B22)

Note that owing to the Jacobi identity (B5), the three-curvature tensors can take several equivalent forms. Finally,
due to the homogeneity of the hypersurfaces, any induced derivative acting on the three-curvature tensors can be
computed using equation (B14). All the rules of this appendix, namely equations (B14), (B16), (B20), (B21) and
(B22), are automatically created in xPand when calling the function SetSlicing, in case the specified space type is
a Bianchi space–time. The boolean variable $OpenConstantsOfStructure controls whether or not the constants of
structure should be opened in the final expressions using the parameterization (B8).

Appendix C: Principal commands of xPand

Conformal ConformalWeight DefMatterFields

DefMetricFields DefProjectedTensor ExtractComponents

SetSlicing SplitGaugeChange SplitMatter

SplitMetric SplitPerturbations ToBianchiType

ToConstantsOfStructure ToxPand VisualizeTensor

TABLE II. Information about these commands can be obtained within Mathematica by evaluating ?NameOfCommand.
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