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In a companion paper [Pitrou, Phys. Rev. E 97, 043115 (2018)], a formalism allowing to describe
viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous
fluid torus. This allows to highlight the differences with the basic viscous string model and with
its viscous rod model extension. In particular, an elliptic deformation of the torus section appears
because of surface tension effects, and this cannot be described by viscous string nor viscous rod
models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around
the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup
in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is
dynamically attracted toward a stationary solution, around which the instability can develop freely
and split the torus in multiple droplets.

I. INTRODUCTION

In our companion article [1], we developed a formalism
to describe a viscous fiber as a one-dimensional object
with an internal structure. Given the numerical com-
plexity for solving the full set of fluid dynamics equations,
taking into account junction conditions at the fiber side
for the stress tensor, this description allows for a sim-
pler route for the numerical resolution of viscous fiber
dynamics. It is based on an expansion in the slenderness
parameter εR ≡ R/L, where R is the radius of the fiber
and L is the scale associated with typical velocity gradi-
ents. At lowest order in this expansion, the description
is exactly the same as a viscous string, with no internal
resistance to bending nor twisting, and the fiber is only
subject to tangential forces from stretching. However,
at the next to leading order, which is O(ε2R) smaller,
this description departs from the rod model developed
in Refs. [2–4], which is another theoretical refinement of
the viscous string model. The goal of this article is to
emphasize the differences between these two formalisms,
considering a torus of viscous fluid that shrinks due to
the effect of surface tension. After summarizing the for-
malism in § II, we show in § III that the shrinking paces
between our model and the rod model are slightly dif-
ferent, and we also emphasize the importance of the el-
liptic deformation of the torus section to obtain a co-
herent description. In § IV we exhibit the differences
in the Rayleigh-Plateau instability, when considering the
dispersion relation of periodic and linear deformations.
We also solve numerically for the dynamical evolution of
these linear perturbations. Finally, we revisit in § V the
torus dynamics and the Rayleigh-Plateau instability for
an initially rotating torus.

∗Electronic address: pitrou@iap.fr

II. ONE-DIMENSIONAL DESCRIPTION

In the next section, we briefly review the main features
of our one-dimensional model for viscous fibers which is
built in Ref. [1]. We then emphasize the differences with
the rod model in § II B.

A. Summary of our formalism

At each time t, a viscous fiber is described as a one-
dimensional object through the trajectory R(s, t) of its
central line, where s is a length parameter along this
central line (see Fig. 1 of Ref. [1] for an illustration).
The unit tangent vector to this central line is

T ≡ ∂sR (2.1)

and the velocity of the central line is

U ≡ ∂tR . (2.2)

Curvature of the central line at a given time is defined as

κ ≡ T × ∂sT . (2.3)

A fiber section labeled by a given s is made of points in
the viscous fluid which lie in a plane containing R(s) and
normal to T (s). For each section we form an orthonormal
basis di ≡ (d1,d2,d3 = T ), and by construction the
da, a = 1, 2, are tangent to the section. Any vector X
(e.g. the fluid velocity) can be split into longitudinal
components (along T ) and sectional components (along
the da) as

X = P⊥(X) +XT , P⊥(X) ≡ Xada . (2.4)

We also introduce the general notation

X̃ ≡ T ×X , (2.5)

and in particular κ̃ is a vector which points toward the
exterior of the central line curvature.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.043115
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The rotation rate of the frame is defined as

∂tdi = ω × di . (2.6)

From these definitions, one infers the constraints

(∂sU) · T = 0 , (2.7a)

P⊥(ω) = T × ∂sU = ∂s‹U + κU . (2.7b)

The velocity of the fluid V on the central line is de-
composed into the velocity of the central line U and the
velocity with respect to the central line V , that is as

V = U + V . (2.8)

In order to obtain a one-dimensional description for the
viscous fiber, we expand in multipoles the variation in
each section of the fluid velocity outside the central line.
Several constraints from the boundary junction condition
(which take into account surface tension effects) and from
the Navier-Stokes equation, allow to express all of these
multipoles in functions of v and φ̇, which are, respec-
tively, the longitudinal part of V [that is, v ≡ V using
notation (2.4)] and the solid rotation rate of the fluid
around the central line axis T . Eventually, the descrip-
tion is reduced to the dynamics of these two quantities in
addition to the central line motion found from the evo-
lution of U , combined with the evolution of the section
shape which is allowed to depart from strict circularity.

In this procedure, there is a natural expansion in εR.
For instance, terms of the type κaκaR

2, where R is the
fiber radius, are of order O(ε2R). Keeping only the lowest
order terms amounts to considering the viscous string
model. However, our model for curved fibers in Ref. [1]
consists in including the first corrections that are O(ε2R).
In particular, when including these higher order effects,
the shape of the sections cannot simply be described by
the radius R as it deforms. One must also account for an
elliptic deformation, whose dynamics is found from the
boundary condition.

B. The rod model

The rod model was used in steady or stationary situa-
tions in Refs. [2–7], but its formulation is general and can
account for time dependence. It is based on three balance
equations, namely, the matter balance equation, the mo-
mentum balance equation, and the angular momentum
balance equation. We gathered the rod model equations
and a discussion on their shortcomings in § VII.G.4 of
Ref. [1]. To summarize, for the rod model one assumes
that fiber sections remain i) circular, ii) orthogonal to the
fiber central line, and iii) that the fluid velocity on the
central line is such that the fluid particle on the central
line stays on the central line [P⊥(V ) = 0].

• i) Assuming circular shapes is necessary to ob-
tain meaningful momentum and angular momen-
tum balance equations in the rod model. However

we find that the an elliptic deformation is neces-
sarily generated from fiber curvature as an O(ε2R)
effect. Note that a first attempt of describing el-
liptic sections, but restricted to straight fibers, was
performed independently in Ref. [8].

• ii) For the fiber section to remain orthogonal to the
central line, it requires that the solid rotation rate
of the section is equal to the rotation rate of the
fluid on central line at lowest order (see § VII.B.4
of Ref. [1]). Hence, the angular momentum balance
cannot be an equation which determines the solid
rotation of sections since it is determined already
by the momentum balance equation. Instead, the
sectional viscous forces P⊥(F ) which lead to a net
torque T×F per unit of fiber length are constrained
in the rod model by the angular momentum balance
so as to enforce this property. Since the momen-
tum of inertia of a fiber section scales as R4 and
sectional forces scale as R2, we deduce that adding
sectional forces to the momentum balance equation
amounts to including order ε2R terms, which are
otherwise absent in the lowest order string model.

• iii) We showed in § IV.I of Ref. [1] that to ensure
that the central line remains on the section center,
defined as the position for which there is no dipole
in the shape deformation, the fluid velocity on the
central line (P⊥(V)) must be slightly different from
the velocity of the central line (P⊥(U)), that is the
difference which is P⊥(V ) does not vanish but is in-
stead of order ε2R. This was clearly identified in [4]
but ignored precisely on the grounds that it was
expected to be an order ε2R corrections. However,
since the inclusion of sectional forces, which is the
main difference between a rod model and a string
model, is also a correction of order ε2R, we found
that it is formally inconsistent to choose one cor-
rection and discard another one, if they are formally
of the same order.

III. DYNAMICS OF A SHRINKING TORUS

A. Adapted coordinates and variables

In order to highlight some differences between our for-
malism and the rod model, we study the special case of a
viscous torus surrounded by vacuum. The case of a torus
surrounded by a highly viscous fluid has been studied
analytically in Ref. [9] by considering the approximate
Stokes flow equation.

There are natural cylindric coordinates (r, θ, z) associ-
ated with the torus with a basis of unit vectors er, eθ, ez
(see Fig. 1 for an illustration of the notation). Due to
its high degree of symmetries, no quantity can depend
on θ, and if the fiber central line is in the plane z = 0
it remains so. At any time, the fiber central line is en-
tirely characterized by the radial distance r(t), hence all
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FIG. 1: Notation in the plane of constant θ.

quantities can only depend on t. In particular, torus sec-
tions cannot mix and there can be no sectional viscous
forces. This implies that the viscous rod model matches
exactly the viscous string model. Hence this system is of
particular academic interest because on the contrary our
model differs from the string model.

The orthonormal basis associated with the fiber coor-
dinates is given by

d1 ≡ ez , d2 ≡ er , T ≡ eθ . (3.1)

Starting from a reference angle, the relation between the
polar angle θ and the affine parameter s is simply

s = rθ . (3.2)

The fiber curvature has only one component κ which is

κ = κez , κ̃ = κer , κ ≡ 1

r
. (3.3)

From the symmetries, the section ellipticity (see § IV.D
of Ref. [1] for definitions) is necessarily fully specified by
one polarization E , and it is of the form

Rab ≡ E(e az e
b
z − e ar e br ) . (3.4)

The central line sectional velocity is necessarily ori-
ented radially. Hence we define

Ua ≡ Ure ar . (3.5)

As for the fiber longitudinal velocity Ū , it is not vanish-
ing because the geometric point of constant affine coor-
dinate s has a longitudinal motion due to the shrinking
of the torus. Its value is determined by the structure
relation (2.7a) which implies

∂sŪ = −U · κ̃ = −Uaκ̃a = −U
r

r
. (3.6)

Since Ur does not depend on s, we find

Ū = −sU
r

r
. (3.7)

However, the total fluid tangential velocity on the central
line is

V = Ū + v , (3.8)

and from the symmetries of the problem this quantity
does not depend on s. If furthermore there is no initial
rotation around the z axis and the fluid falls radially,
then V = 0. We assume in this section that this is the
case and we postpone the case V 6= 0 to § V.

One would naively expect that rotation of the fiber
central line ω should vanish due to the symmetries of
the problem. However, it is defined as the rotation of
the orthonormal basis for a geometric point of constant
affine coordinate s, and it is instead obtained from the
structure relation (2.7b) which implies

ω = κŪ . (3.9)

Finally, the evolution of the radius R satisfies

∂tR

R
= −1

2
∂sv = −U

r

2r
= − ṙ

2r
. (3.10)

This is valid even when including corrections of order ε2R,
and it is an obvious consequence of volume conservation,
which for a torus is (2πr)×(πR2). Hence, one can directly
use its first integral which reads as

R = Ri

…
ri
r
. (3.11)

Finally, let us define an aspect ratio parameter by

εi =
Ri
ri
, (3.12)

which characterizes the initial shape of the torus.

B. Governing equations

From the dynamical equations gathered in § VII.B.9 of
Ref. [1] for the lowest order string model and § VII.C.7
for the O(ε2R) corrections, we finally find

r̈ = ∂tU
r = −νκ

R

ï
1 +

7

8
(κR)2

ò
(3.13a)

−3µκ2Ur
ï
1 +

11

16
(κR)2

ò
−21

16
κ3R2(Ur)2 + V2

κ
[
1 + 1

2 (κR)2
]
,

d(ER2)

dt
= − ν

Rµ

ï
ER2 +

(κR)2

6

ò
− 7

16
κ(κR)2Ur − 1

12µ
(VκR)2 . (3.13b)

Since we assumed that the fluid is incompressible, we
chose a unit mass density ρ so that the viscosity µ and
surface tension ν stand in fact for µ/ρ and ν/ρ. The first
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line of Eq. (3.13a) is the radial force from surface tension
which tends to shrink the torus,1 with its lowest order
form and its first correction ∝ (κR)2. The second line
corresponds to viscous friction, similarly given with the
lowest order and its correction ∝ (κR)2. The first term
in the last line is a convective effect and the last term
vanishes if the torus is not rotating initially (see § V) as
it corresponds to inertial forces. Eq. (3.13b) rules the
dynamical evolution of the elliptic deformation. Its last
term vanishes if the fluid is not rotating as it corresponds
to tidal inertial forces. In particular, when considered in
the limit of vanishing viscosity, Eq. (3.13b) amounts to
the constraint

ER2 ' − (κR)2

6
. (3.14)

It corresponds to the condition for which the quadrupole
of extrinsic curvature [Eq. (7.34c) of Ref. [1]] vanishes,
inducing no quadrupole in the pressure distribution in-
side sections.

Finally, note that in the inviscid case and still for no
rotation (V = 0), Eq. (3.13a) reduces to

r̈ = −νκ
R

ï
1 +

7

8
(κR)2

ò
− 21

16
κ3R2(ṙ)2 . (3.15)

C. Analytic approximation

In this section, we look for approximate analytic solu-
tions using the simpler viscous string model, which con-
sists in keeping only the dominant term in the first two
lines of Eq. (3.13a), that is,

r̈ = ∂tU
r = −νκ

R
− 3µκ2Ur . (3.16)

Let us first consider the inviscid case. The dynamics
is simply governed by

r̈ = − ν
√
rirRi

⇒ ṙ = −2

 
ν(
√
ri −

√
r)

√
riRi

. (3.17)

It is very similar to a two-body problem in Newtonian
gravity with no initial angular momentum, but with an
attractive potential scaling as ∝

√
r instead of ∝ −1/r.

It is further integrated as

1− 3
4x−

1
4x

3/2 =
ν

Rir2i

Å
3t

4

ã2
, x ≡ r

ri
, (3.18)

which needs to be solved algebraically to obtain r(t). In
particular when r remains close to ri, that is, for the

1 Intuitively the extrinsic curvature in the exterior of the torus is
larger than in the interior, inducing a pressure gradient toward
the exterior, hence creating an inward radial force.

beginning of the torus shrinking, we obtain the parabolic
motion

r ' ri −
ν

2riRi
t2 , (3.19)

which matches the approximate solution (3.6) of Ref. [10]
in the limit Ri � ri. However, since this is only an ap-
proximation implicit solution to Eq. (3.18), it also tends
to overestimates r at late times, and this can be checked
visually on Fig. 4 of Ref. [10]. Indeed, since Eq. (3.19)
is the solution of r̈ = −ν/(riRi), it underestimates the
inward acceleration when compared to Eq. (3.17). We
use Eq. (3.19) to define the collapse time scale for the
inviscid case (the capillary time scale) as

tcap ≡
ri
√
Ri√
ν

. (3.20)

For high-viscosity cases, we need to solve instead the
quasistatic approximation (r̈ ' 0), equivalent to the
Stokes flow equation, which leads to

3µṙ

r2
= − ν

rR
= − ν

Ri
√
rir

. (3.21)

Its solution is

t =
6µRi
ν

Å…
ri
r
− 1

ã
, r =

riÄ
1 + νt

6µRi

ä2 . (3.22)

Hence, for high-viscosity, the collapse time scale is

tvisc ≡
6µRi
ν

. (3.23)

Viscosity can be neglected when tvisc � tcap, that is, if

µ� µ0 ≡
ri
6

…
ν

Ri
=

1

6

…
νri
εi

. (3.24)

D. Numerical resolution

The numerical resolution of the full system of
Eqs. (3.13a) and (3.13b) is illustrated in Fig. 2 for typ-
ical high and low viscosities. In the low-viscosity case,
we also plot the solution to the inviscid equation (3.15).
Given the elliptical deformation of the torus sections, the
far and near sides of the section are located respectively
at

rfar = r +R(1− ER2) (3.25)

rnear = r −R(1− ER2) . (3.26)

We observe that in all cases, the rod model underes-
timates the shrinking of the central line. The numerical
results are in agreement with our expectation that the
difference between the two descriptions should be of or-
der of the initial ε2R = (κR)2 = (R/r)2 which we have
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FIG. 2: The initial torus shape is εi = 1/3 in both cases. Fig.
(a) is a low viscosity case (µ = 0.01µ0) and Fig. (b) is a high
viscosity case (µ = 100µ0). The continuous lines correspond
to our model, the dashed lines to the basic rod model which
is equivalent to the viscous string model in this case. The
central curves correspond to the central line, the top curves
to the outer intersection of the section with the torus plane
(z = 0), and the lower curves to the inner intersection. In Fig.
(a), the inviscid solution [Eq. (3.15)] is depicted in a thin and
continuous gray line.

taken to be (1/3)2 in initial conditions. Furthermore, the
elliptic deformation reduces even further the distance of
the inner intersection of the section with the torus plane
(z = 0) since numerically we get rnear < r−R. The torus
is deformed as if it was squeezed in the azimuthal direc-
tion, or as if it was stretched by radial tidal forces. When
the inner point reaches a null radius, that is approxi-
mately when r = R, the expansion is expected to break
down since the ratio κR = R/r reaches unity. Physically
it also corresponds to the point where the torus becomes
topologically a sphere and an accurate description of the
final ringdown toward a sphere must be performed from a
multipolar expansion around such a geometry, as e.g. in
Ref. [11] for linear dynamics or in Ref. [12] for non-linear
dynamics.

IV. RAYLEIGH-PLATEAU INSTABILITY

A. Straight fibers

It is well known that periodic radius perturbations
around an infinite straight fiber are unstable for kR < 1,
where k = 2π/λ is the mode of the perturbation. This is
the celebrated Rayleigh-Plateau (RP) instability [13–16]
(see also Refs. [17, 18] for reviews). In the case of an
elongated but finite fiber, the RP has been studied nu-
merically in Ref. [19]. The RP instability is understood
analytically by considering periodic radius perturbations
around an infinite cylinder of viscous fluid with radius
R0 of the form

R = R0 + δR , δR = δReαt cos(ks), (4.1)

and then linearizing the Navier-Stokes equation and the
boundary constraint. Using units for which R0 = 1 and
ν = 1 for convenience, this leads to the implicit dispersion
relation [16, 20]

α2 kI0(k)

2I1(k)
= 1

2 (k2 − k4) (4.2)

−µαk2
ï

2kI0(k)

I1(k)
− 1 +

2µk2

α

Å
kI0(k)

I1(k)
− k1I0(k1)

I1(k1)

ãò
where the In are the Bessel’s functions and with

k21 ≡ k2 +
α

µ
. (4.3)

It is then found that in the inviscid case, the mode which
grows the most rapidly corresponds to kmaxR0 ' 0.69702,
that is

λmax =
2π

kmax
' 9.0144R0 . (4.4)

Since Eq. (4.2) is implicit, it is convenient to expand it
in powers of k (still in units where R0 = ν = 1), and we
get [see Eq. (96) of Ref. [20]]

α ' k√
2
− 3µ

2
k2 +

36µ2 − 9

16
√

2
k3 +

3µ

16
k4 (4.5)

+
−49 + 360µ2 − 1296µ4

512
√

2
k5 +

Å
1

3072µ
− µ

96

ã
k6 .

Note that this series is not valid in the limit µ→ 0. How-
ever, it allows to compare the exact result (4.2) with the
one obtained from the straight fiber results found with
our method in § VI of Ref. [1]. Eqs. (6.10a) for ∂tv [with
its O(ε2R) and O(ε4R) corrections given in Eqs. (6.23a) and
(E1)], together with Eq. (6.3) for ∂tR [with its O(ε2R) and
O(ε4R) corrections given in Eqs. (6.23c) and (E2)], once
linearized lead to (still in units where ν = R0 = 1)

∂tv = −∂sδK + 3µ∂2sv + 3
8µ∂

4
sv + 1

48µ∂
6
sv

− 1
48µ∂t∂

3
sδK + 3

64∂
5
sδK , (4.6a)

∂tδR = − 1
2∂sv −

1
16∂

3
sv + 1

128∂
5
sv

− 1
96µ∂

4
sδK , (4.6b)

δK = −δR− ∂2sδR . (4.6c)
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From these we can also determine a dispersion relation.
It is achieved by expanding δR and ∂sv as in Eq. (4.1).
Developing the dispersion relation obtained in powers of
k, we get

α ' k√
2
− 3µ

2
k2 +

36µ2 − 9

16
√

2
k3 +

3µ

16
k4 (4.7)

+
−49 + 360µ2 − 1296µ4

512
√

2
k5 +

Å
1

1536µ
− µ

96

ã
k6 .

One notices that it differs from Eq. (4.5) only in the terms
which are ∝ 1/µ. This is because our formalism is based
on the fact that the fluid has non-vanishing viscosity and
is ill defined in the inviscid case. However, we note that
cancellations occur for the lowest order and the O(ε2R)
corrections, and these divergent terms occur only when
including O(ε4R) corrections, which contribute only to the
k5 and k6 terms of the expansion and beyond.

B. Instability around torus

We now study how this instability is modified when
considering small linear fluctuations around the shrink-
ing torus described previously in § III. In the case where
the torus is surrounded by a more viscous fluid than the
one in the torus, this was already studied experimen-
tally in Ref. [21] by forming a torus thanks to extrusion
through a needle, or in Ref. [22] using a glassy transi-
tion from solid phase to viscous phase in a polystyrene
torus. In both cases, it is found when Ri � ri that
the final state is a breakup of the initial torus into sev-
eral droplets. This is confirmed by the numerical study
of Ref. [23], which considers quadrupolar perturbations.
However, in our case, the torus is not surrounded by a
highly viscous fluid which retards its shrinking, hence the
dynamics of the RP instability is bound to be different.
Our system is in fact very similar to the experiment de-
scribed in Ref. [10] where liquid oxygen is sculpted into a
torus thanks to its paramagnetic property, and it differs
essentially only in that we have not included gravity. As
it levitates one its own vapor, this torus is not subject
to external viscous forces. It is found experimentally in
Ref. [10] that the RP instability is never strong enough to
breakup the torus in multiple droplets before its shrink-
ing reduces it topologically to a sphere, a result that we
confirm with our model in this section.

When restricting to linear fluctuations around the
shrinking torus (that we consider as a background), great
simplifications arise because the background quantities,
that we note in this section, R0, κ0, r0, E0 and Ur0 , do not
depend2 on θ. Hence, we can ignore small angular dis-
placements of the fiber sections due to the fluctuations.

2 Ū0 is given by Eq. (3.7), and depends on s, but the relevant
quantity for the fluid tangential velocity is V0 = Ū0 + v0 which
does not depend on s.

In practice, everything happens as if a section which is
initially at a given θ = s/r remains at the same angular
position even though s and r vary because of shrinking,
indicating that the variables (t, θ) are more adapted for
the problem than (t, s). Note that small angular displace-
ments would only be relevant if we were to consider the
non-linear dynamics.

We split variables into their background and their per-
turbed quantity as

κ = κ0 + δκ , (4.8)

r = r0 + δr , (4.9)

E = E0 + δE , (4.10)

Ur = Ur0 + δUr , (4.11)

R = R0 + δR , (4.12)

V = V0 + δV . (4.13)

The dynamics of the background has already been dis-
cussed in § III and, considering no torus rotation (V0 =
0), it is governed by the differential system (3.13) in the
variables (r0, E0).

For small linear perturbations, we can use the relations

δκ ' −δr
r2
− ∂2sδr , (4.14)

δUr ' ∂tδr|θ = ∂tδr|s − Ū0∂sδr , (4.15)

so that eventually the perturbed set of variables is

(δr, δR, δV, δE). (4.16)

The linearized equations of our model are reported in
the Appendix and one needs only to replace the relations
(4.14) to get a closed system of differential equations in
these variables.

We first study the growing modes of the Rayleigh-
Plateau instability by considering these equations at ini-
tial time, that is, ignoring the effects of the secular back-
ground shrinking. When considering periodic perturba-
tion, the variables (4.16) are expanded as

x = xeαt cos(nθ) = xeαt cos

ï
ns

r(t)

ò
. (4.17)

Solving for α, we obtain the dispersion relation as a func-
tion of the mode n. The algebraic expressions for α are
far too complex to be reported explicitly. Their numeri-
cal values are, however, depicted in the left plot of Fig. 3
where we superimposed the Rayleigh-Plateau dispersion
relation (4.2) obtained in the straight fiber case. The
relative differences for our model and for the improved
rod model [see Eq. (7.74) of Ref. [1]] are presented in the
right plot of Fig. 3, and these differences come from the
fact that the models differ in their O(ε2R) corrections.

We then consider the full system of differential equa-
tions in the Appendix and solve for it numerically for
different viscosities. We assume that initially the pertur-
bation is only a perturbation in the section radius δRi,
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FIG. 3: The initial aspect ratio is εi = 0.1. Fig. (a) : The dots are the adimensionalized growth rate αR
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i ν−1/2 as a function

of the mode integer n, for an initial shape characterized by εi = 0.1. The continuous line corresponds to the result obtained for
the Rayleigh-Plateau instability on an infinite straight line. From top to bottom we show the cases µ = 0.1

√
νRi, µ =

√
νRi,

and µ = 10
√
νRi.

Fig. (b) : Growth rate relative difference with respect to the one obtained for the Rayleigh-Plateau instability of an infinite
straight line. Our model (circles) and the improved rod model (crosses) is evaluated for large symbols with µ = 0.1

√
νRi (low

viscosity) and for small symbols with µ = 103
√
νRi (high viscosity). In all cases, the dipolar mode (n = 1) growth rate is

identically vanishing as required by center of mass conservation.

with all other perturbations vanishing. The growth of
the linear perturbations is then characterized by δR/δRi,
which characterizes the RP instability, and which is plot-
ted in Figs. 4(a) and 4(b). Additionally, departure from
the toroidal geometry of the central line is character-
ized by the evolution of δr. Since we consider linear
perturbations, its evolution is commensurate with δRi,
hence we plot in Figs. 4(c) and 4(d) δr/δRi that indi-
cates how efficiently a deformation of the sections results
in a deformation of the central line. The integration for
a given mode n is stopped at tend defined by the con-
dition kR = nR/r = 1, since it corresponds to εR = 1,
that is, to a breaking of the perturbative expansion in the
fiber radius, which is central to the construction of our
model. This happens unavoidably because r decreases
as the torus shrinks, but also R increases from volume
conservation.

• For low viscosities, slightly before tend, we see an
inflexion point in the perturbation growth. In
the light of the RP instability for straight fibers,
and considering that modifications brought by the
toroidal shape are small, this corresponds to the
fact that when k = n/r > kmax, the value of α
in the dispersion relation decreases to reach α = 0
when kR = 1. For each mode, everything happens
as if the mode was climbing the dispersion relation
curve α(k) of the usual straight fiber RP instability
from low values of k, to high values of k, hence pass-
ing through the maximum value α(kmax). And in
that process, long modes which correspond to low
values of n (but not the dipolar perturbation cor-
responding to n = 1 which is otherwise constrained
by center of mass conservation) have had more time
to grow so as to reach the highest growth. However,

we notice that even for the long modes, the typical
growth never reaches huge values. This is because
the time scale of the RP instability is tRP ≡

√
R3
i /ν

and it is related to the collapse time scale (3.20) by
tRP = εitcap. The RP instability requires a very
thin torus (εi � 1) to be able to break it before it
has collapsed. Hence, for reasonable values of εi,
the RP instability cannot destabilize the toroidal
shape and split in several droplets, in agreement
with the findings of Ref. [10]. Hence, for the low vis-
cosity case, the main features of the dynamics can
be understood from the perspective of the RP insta-
bility around straight fibers. Note that if shrinking
is slowed by an external viscous fluid, it is found
experimentally [21, 22] that these conclusions are
reversed.

• For larger viscosities, kmax corresponding to the
fastest growing mode of RP instability around a
straight fiber is much smaller. Indeed, it scales

approximately as [19] kmax ∝ 1/
»

2 + 3
√

2µ (still
in units where R0 = ν = 1). Furthermore, the
corresponding value α(kmax) is much smaller as il-
lustrated in Fig. 3 (left plot). Hence, if we were
to guess the behaviour from the analogous RP in-
stability around straight lines, one would conclude
that perturbations do not grow significantly. In
fact, we find numerically that perturbations grow
indeed mildly, but only up to around tcap, as they
are damped afterwards. In that case, there is no
RP instability and the final state is a single drop.
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FIG. 4: (a), (b) : δR/δRi. (c), (d) : δr/δRi. The initial shape is characterized by εi = 0.1. The viscosity is low (µ = 0.1µ0)
for (a) and (c) and high (µ = 10µ0) for (b) and (d). The instability modes are plotted from n = 1 to 10 for (a) and (c), or
from n = 2 to 10 for (b) and (d), starting from the thinnest line to the thickest line.

V. ROTATING TORUS

It is possible to prevent the torus from shrinking by
considering a torus rotating around the z axis. From
angular momentum conservation, this brings a potential
barrier and if initial rotation is strong enough, it prevents
the collapse of the torus. Indeed, the last term of Eq.
(3.13a) acts as a repulsive force. The dynamics of V,
which is not identically vanishing anymore, is ruled by

dV
dt

= −VUrκ
[
1− 9

4 (κR)2
]
. (5.1)

When considering only the leading term in this equation,
it can be put in the form d(rV)/dt = 0 which is obviously
angular momentum conservation,3 that is,

rV = riVi . (5.2)

When the torus shrinks (Ur < 0), V must increase. As in
the two-body problem of Newtonian gravity, this leads to

3 Angular momentum per unit of mass is rV[1 + 3R2
i ri/(4r

3)] and
Eq. (5.1) implies its conservation up to O(ε4R) corrections.

a repulsive potential ∝ 1/r2, that is a radial force ∝ 1/r3

given by the last term of Eq. (3.13).
If rotation is strong enough, the radius r undergoes

damped oscillations (except in the pure inviscid case) to
reach an equilibrium value. If we ignore theO(ε2R) correc-
tions, that is, considering only the viscous string model,
this is the position for which surface tension attractive
force is balanced by the repulsive inertial force, and we
find

rstable ' ri

(
RiV

2

i

ν

)2/5

. (5.3)

Hence, by choosing Vi =
√
ν/Ri the torus is directly [up

to the O(ε2R) corrections] in its stable position.
Furthermore, now the last term of Eq. (3.13b) con-

tributes and it corresponds to the deformation induced
by tidal forces. In the inviscid limit, the constraint (3.14)
becomes

ER2 ' − (κR)2

6

(
1 +
V2
R

2ν

)
. (5.4)

Once the radius has reached its equilibrium value (5.3),
the elliptic deformation tends to ER2 ' −R2/(4r2) as
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FIG. 5: For both figures Vi = 0.8
√
ν/Ri, µ = µ0. Fig. (a) : εi = 1/3. The continuous lines correspond to our model and the

dashed lines correspond to the viscous string model with circular sections. The thick dotted-dashed line is −ER2 whereas the
thin dotted-dashed line is R2/(4r2). Fig. (b) : εi = 0.1 and the lines (from thin to thick) correspond to the modes from n = 1
to 8 of |δR|/δRi. The dipolar mode (n = 1) does not grow because of center of mass conservation.

illustrated in the left plot of Fig. 5. We then repeat the
linear perturbation analysis of § IV B, but including all
the terms involving V0 (which we do not report in the Ap-
pendix), whose dynamics is given by Eq. (5.1). Instead
of expanding the linear perturbations with cos(ns/r) as
in Eq. (4.17), we expand them with exp(ins/r). Indeed,
the amplitude x becomes complex when including torus
rotation. Its norm still characterizes the instability, that
is the size of the perturbation, and its phase corresponds
to the angular rotation induced by advection. In the
right plot of Fig. 5, we illustrate how the RP instability
can develop freely once the torus has reached a stable
rotating solution. Hence it is expected that the initially
rotating viscous torus will break up in several droplets
that will be ejected outward.

VI. CONCLUSION

The viscous torus allows to clearly emphasize the dif-
ference between our model and the viscous string or its
refined rod model, since for the main shrinking behaviour

these have no corrections of order O(ε2R) whereas our
model does. Our corrections affect the central line dy-
namics, and we find it necessary to also describe the ellip-
tic deformations. When studying the Rayleigh-Plateau
instability, our model and the (improved) rod model also
differ slightly as shown by considering the dispersion re-
lation. When the torus is not surrounded by a viscous
fluid, our linear analysis indicates that the torus does not
break up into small droplets for all possible viscosities,
since either the instability does not develop in very vis-
cous fluids or does not have sufficient time to develop
in low-viscosity fluids. However, if the torus is rotat-
ing around its geometric center fast enough, it can reach
an equilibrium configuration around which the RP insta-
bility should lead to its unavoidable breakup in several
droplets.
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Appendix A: Linearized viscous torus perturbations

Dynamical equations for the variables (4.16) are ob-
tained from Eqs. (7.18a), (7.18b), (7.20), and (7.42) and
their O(ε2R) corrections [Eqs. (7.41), (G3), and (G4)] of
Ref. [1]. After linearizing them, one uses the linearized
constraints (2.7a) and (2.7b) to get

∂tδV = −v0∂sδV + Ur0∂sδU
r − Ur0κ0δV + 3µ∂2sδV + 3µκ0∂sδU

r + 3µUr0∂sδκ+ 6µUr0κ0
∂sδR

R0
+
ν∂sδR

R2
0

(A1)

+νR0

Å
3
4κ

2
0

∂sδR

R0
+ 1

4κ0∂sδκ+
∂3sδR

R0
+
∂3sδR

R0

ã
+R2

0

(
9
4U

r
0κ

3
0δV + 3

4 (Ur0 )2κ20
∂sδR

R0
− 9

2µU
r
0κ

3
0

∂sδR

R0
− 15

8 U
r
0κ

2
0∂sδU

r − 63
16µκ

3
0∂sδU

r + 3
8 (Ur0 )2κ0∂sδκ

− 75
16µU

r
0κ

2
0∂sδκ+ 3

8U
r
0κ0∂

2
sδV − 57

16µκ
2
0∂

2
sδV + 3µUr0κ0

∂3sδR

R0
+ 3

8µU
r
0∂

3
sδκ+ 3

8µ∂
4
sδV

)

∂tδU
r = −v0∂sδUr − ν

δκ

R0
+ νκ0

δR

R2
0

− 6µUr0κ0δκ− 3µκ20δU
r − 3µκ0∂sδV

+νR0

Å
− 21

8 κ
2
0δκ− 7

8κ
3
0

δR

R0
− 13

8 κ0
∂2sδR

R0
− 3

4∂
2
sδκ

ã
+R2

0

(
− 63

16 (Ur0 )2κ20δκ− 21
8 (Ur0 )2κ30

δR

R0
− 21

8 U
r
0κ

3
0δU

r − 33
4 µU

r
0κ

3
0δκ− 33

8 µU
r
0κ

4
0

δR

R0
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16µδU
rκ40

− 3
8U

r
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2
0∂sδV − 27
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3
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r
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3
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4µ∂
4
sδU

r
)

(A2)

∂tδE = −v0∂sδE + E0∂sδV +
ν

µR0

Å
δE +

E0δR
R0

− 1
3κ0δκ+ 1

6

κ20δR

R0

ã
+ E0Ur0 δκ+ Ur0κ0δE + κ0E0δUr

− 21
16U

r
0κ

2
0δκ− 7

16κ
3
0δU

r − 5
16κ

2
0∂sδV − 1

8κ0∂
2
sδU

r (A3)
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