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Primordial nucleosynthesis is one of the three historical evidences for the big bang model, together
with the expansion of the universe and the cosmic microwave background. There is a good global
agreement between the computed primordial abundances of helium-4, deuterium, helium-3 and
their values deduced from observations. Now that the number of neutrino families and the bary-
onic densities have been fixed by laboratory measurements or CMB observations, the model has
no free parameter and its predictions are rigid. Since this is the earliest cosmic process for which
we a priori know all the physics involved, departure from its predictions could provide hints or
constraints on new physics or astrophysics in the early universe. Precision on primordial abun-
dances deduced from observations has recently been drastically improved and reach the percent
level for both deuterium and helium-4. Accordingly, the BBN predictions should reach the same
level of precision. For most isotopes, the dominant sources of uncertainty come from those on the
laboratory thermonuclear reactions. This article focuses on helium-4 whose predicted primordial
abundance depends essentially on weak interactions which control the neutron-proton ratio. The
rates of the various weak interaction processes depend on the experimentally measured neutron
lifetime, but also includes numerous corrections that we thoroughly investigate here. They are
the radiative, zero–temperature, corrections, finite nucleon mass corrections, finite temperature
radiative corrections, weak-magnetism, and QED plasma effects, which are for the first time all
included and calculated in a self consistent way, allowing to take into account the correlations
between them, and verifying that all satisfy detailed balance. Finally, we include the incomplete
neutrino decoupling and claim to reach a 10

�4 accuracy on the helium-4 predicted mass fraction
of 0.24709 ± 0.00017 (when including the uncertainty on the neutron lifetime). In addition, we
provide a Mathematica primordial nucleosynthesis code that incorporates, not only these correc-
tions but also a full network of reactions, using the best available thermonuclear reaction rates,
allowing the predictions of primordial abundances of helium-4, deuterium, helium-3 and lithium-7
but also of heavier isotopes up to the CNO region.

Contents

I. Introduction 2
A. Observed abundances 3
B. Outlook on weak-rates corrections 5
C. Main eras of BBN 6
D. Resolution strategy and outline 6

II. Background thermodynamics 7
A. Thermodynamics in a FL spacetime 7
B. Plasma temperature 9
C. Baryon density 10
D. Cosmology and scale factor 10
E. QED corrections for the plasma thermodynamics 11
F. Incomplete neutrino decoupling 12
G. Effective description of neutrinos 13

III. Weak Interactions 14
A. General formulation 15
B. Infinite nucleon mass approximation 15
C. Calibration from free neutron decay rate 16
D. Neutron abundance and freeze-out 17
E. Radiative corrections at T = 0 17
F. Finite temperature radiative corrections 20

⇤Electronic address: pitrou@iap.fr
†Electronic address: coc@csnsm.in2p3.fr
‡Electronic address: uzan@iap.fr
§Electronic address: vangioni@iap.fr

G. Finite nucleon mass corrections 21
H. Weak magnetism 23
I. Effect of incomplete neutrino decoupling 23
J. Total correction to the weak rates 23

IV. Nucleosynthesis 23
A. Thermonuclear reaction rates 24
B. General form 24
C. Nuclear network and reaction rates uncertainties 25

V. Numerical results 28
A. Overview of PRIMAT 28
B. Temperature of nucleosynthesis 29
C. Effect of corrections on abundances 29
D. Dependence on main parameters 32
E. Distribution of abundance predictions 33
F. Comparison with observations 33

VI. Cosmology with BBN 36
A. Cosmological perturbations 36
B. Measurement of baryon abundance from BBN 37
C. Neutrino chemical potential from BBN 38
D. Number of neutrinos 39

Conclusion 40

Acknowledgments 41

A. Thermodynamics 41
1. Thermodynamical quantities 41
2. Chemical potential of electrons 42
3. Nucleons at thermodynamical equilibrium 42



2

4. Abundances at nuclear statistical equilibrium 43

B. Weak reactions rates 43
1. General expressions 43
2. Fokker-Planck expansion 44
3. Finite nucleon mass corrections 46
4. Weak-magnetism corrections 47
5. Mandelstam variables 48
6. Radiative corrections and Sirlin’s universal function 48
7. Bremsstrahlung 48
8. Finite temperature radiative corrections 50

C. Nuclear reactions 51
1. Conventions for nuclear reaction rates 51
2. Baryonic density and nucleonic density 52

D. Numerical values 52

References 52

I. INTRODUCTION

Besides the universal spatial expansion and the cosmic
microwave background (CMB) radiation, the third his-
torical evidence for the hot big bang model comes from
primordial, or big bang nucleosynthesis (BBN). During
the first ⇡20 minutes of the Universe, when it was dense
and hot enough for nuclear reactions to take place, BBN
describes the production of the so called “light elements”,
4He, D, 3He and 7Li, together with only minute traces
of heavier nuclei (see e.g. Coc and Vangioni (2017); Cy-
burt et al. (2016); Olive (2010); Patrignani and Particle
Data Group (2016 and 2017 update); Steigman (2007) for
recent reviews). The number of free parameters that en-
tered in standard BBN has now been reduced to zero. In-
deed, the number of light neutrino families is now known
from the measurement of the Z0 width by LEP experi-
ments at CERN: N

⌫

= 2.984±0.008 (Patrignani and Par-
ticle Data Group, 2016 and 2017 update). The lifetime
of the neutron entering in weak reaction rate calculations
and many nuclear reaction rates have been measured in
nuclear physics laboratories (Coc et al., 2015; Cyburt
et al., 2016; Descouvemont et al., 2004; Serpico et al.,
2004). The last parameter to have been independently
determined is the baryonic density of the Universe which
is now deduced from the analysis of the anisotropies of
the CMB radiation from the Planck satellite data (Ade
et al., 2016). Hence, there is no more free parameter
in standard BBN and the calculated primordial abun-
dances are in principle only affected by the moderate un-
certainties in nuclear cross sections. Keeping in mind
that abundances span a range of nine orders of mag-
nitude, the agreement between primordial abundances,
either deduced from observations, or from primordial nu-
cleosynthesis calculations, is an outstanding support to
the hot big bang model (Cyburt et al., 2016). Hence,
BBN is an invaluable tool for probing the physics of the
early Universe, and it has been very efficient to constrain
physics beyond the standard model. When we look back
in time, it is the ultimate process for which we a priori

know all the physics involved, given that it is very well

tested in laboratories, so that departures from its predic-
tions provide hints for new physics or astrophysics (Iocco
et al., 2009; Mathews et al., 2017; Nakamura et al., 2017;
Pospelov and Pradler, 2010).

Great progresses have been made in the precision of
both observations and laboratory measurements. The
precision on deuterium observations have now reached
the percent level (Cooke et al., 2018), a precision hardly
reached in nuclear physics measurements. The determi-
nation of the primordial abundance of 4He has been re-
duced to less than 2% by the inclusion of an additional
atomic infrared line (Aver et al., 2015). However, there is
still a significant discrepancy on lithium, for which pre-
dictions are a factor of ⇡3 higher than observations. The
previous paper Coc et al. (2015) investigated the uncer-
tainties on D/H predictions which directly reflects the ex-
perimental uncertainties on few reaction rates that have
all been re-evaluated (Gómez Iñesta et al., 2017; Iliadis
et al., 2016), leading to a small but significant decrease
of the predicted deuterium abundance with reduced un-
certainty. This review aims at reducing the uncertain-
ties, this time on the 4He abundance prediction which
are dominated by theoretical uncertainties on the weak
reactions that interconvert neutrons and protons.

To that goal, we implemented the BBN equations into
a Mathematica code1, in addition to the Fortran code,
that has been used recently, e.g. in Coc et al. (2009);
Coc et al. (2015); Coc and Vangioni (2010). This For-
tran code originates from the model created at IAP by
Elisabeth Vangioni (Vangioni-Flam et al., 2000) and fur-
ther developed by Alain Coc (Coc et al., 2002). Hence,
it was possible to cross–check the implementations and
after tuning the parameters to reach similar precisions,
verify that the results were virtually identical, and next
to focus on nuclear reaction rate uncertainties. Leaving
aside, the “lithium problem” that has not yet found a
fully satisfactory solution (Fields, 2011), it has become
essential to improve the precision on deuterium and 4He
primordial abundances (3He is not pertinent here). As
nuclear uncertainties affecting deuterium BBN have al-
ready been investigated recently (Coc et al., 2015; Gómez
Iñesta et al., 2017; Iliadis et al., 2016), we will just sum-
marize the situation. On the contrary the uncertainties
impacting the 4He abundance predictions are limited by
the experimental value of the neutron lifetime (Patrig-
nani and Particle Data Group, 2016 and 2017 update;
Wietfeldt and Greene, 2011) but also by the numerous
corrections that have to be introduced in the theoretical
weak–interaction reaction rates. The main aim of this
article is to calculate in details all these corrections. In
our previous works, either only a fraction of them was
taken into account (Coc et al., 2009; Coc and Vangioni,
2010) or were also supplemented by a final correction to

1
PRIMAT : PRImordial MATter, freely available at http://www2.

iap.fr/users/pitrou/primat.htm
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the 4He abundance (Coc et al., 2014), based on other
works (Dicus et al., 1982; Lopez and Turner, 1999).

With the now precise theoretical and observational de-
terminations of both the deuterium and 4He primordial
abundances, it is now possible to better constrain the
standard models of particle physics and cosmology and
eventually provide hints of physics beyond the standard
model.

We define n
i

as volume density of isotope i, and nb, the
baryon or nucleon volume density. The (pseudo-)mass
fraction of isotope i is defined as

X
i

⌘ A
i

n
i

nb
, (1)

where A
i

is the dimensionless mass integer number of
nuclear physics, or baryon number of particle physics,
(i.e. not the atomic mass). Baryon number conservation
requires that

P
i

A
i

n
i

= nb or
P

i

X
i

= 1. For 4He it is
customary to define

YP ⌘ X4He , (2)

and to introduce for convenience

Y
(4)
P ⌘ 104YP . (3)

For other elements, it is customary to use the density
ratio with 1H, that is n

i

/n1H, abbreviated as i/H.

A. Observed abundances

During the galactic evolution, massive stars are the
main source of enrichment of the interstellar medium,
when they explode as supernovae, out of which next
generations of stars are born. In this process, they re-
lease matter, enriched in heavy elements that they have
synthesized during the various phases of their evolution.
Accordingly, the abundance of metals (elements heavier
than helium) in star forming gas increases with time. The
observed metallicity is therefore an indication of age: the
older, the lower the metallicity. Hence, primordial abun-
dances are extracted from observations of objects with
low metallicity, but depending on their galactic chemical
evolution, pristine abundances have to be derived from
different classes of objects as detailed below.

1. 4He observations

After BBN, stars produce also 4He and its primor-
dial abundance can be measured thanks to observations
in Hii (ionized hydrogen) regions inside compact blue
galaxies. It is thought that galaxies are formed by the
merging of such dwarf galaxies, in a hierarchical struc-
ture formation paradigm, hence these are considered to
be more primitive. First, for each Hii region, the 4He
abundance has to be determined within a model aim-
ing at reproducing the observed 4He emission lines, that

also depends on parameters like e.g. the electron density.
Then, to account for stellar production, the 4He deduced
abundances should be extrapolated to zero metallicity.
Recently, the observation (Izotov et al., 2014) of an addi-
tional atomic infrared line (�10830) in 45 low–metallicity
Hii regions have allowed to better constrain the thermo-
dynamic conditions that prevail in the emission regions.
After selecting 28 object, Izotov et al. (2014) obtained
YP = 0.2551 ± 0.0022 for the 4He mass fraction. How-
ever, Aver et al. (2015) (see also Cyburt et al. (2016)),
starting from the same observational data made a stricter
selection, based, in particular on goodness of fit for the
emission model of each object. For the selected 16 ob-
jects, the uncertainties were so reduced that a slope in
the Y

p

versus metallicity data could be considered. Af-
ter extrapolation to zero metallicity, Aver et al. (2015)
obtained,

YP = 0.2449± 0.0040 , (4)

that we use here.

2. Deuterium observations

Deuterium is a very fragile isotope. It can only be
destroyed after BBN thanks to stellar evolution. The
deuterium abundance closest to primordial abundance is
determined from the observation of a few cosmological
clouds (absorbers) at high redshift on the line of sight
of distant quasars (emitters). Figure 1 shows the ob-
served D/H values as a function of the redshift of the
absorber. Until recently, the distribution of D/H obser-
vations showed a significant scatter (see e.g. Pettini and
Cooke (2012)). It allowed Olive et al. (2012) to adopt a
weighted mean of D/H = (3.02 ± 0.23) ⇥ 10�5 without
excluding an upper limit of D/H = 4 ⇥ 10�5. This is
not possible anymore thanks to the recent new observa-
tions or reanalyses of existing data (Balashev et al., 2016;
Cooke et al., 2014, 2016, 2018; Riemer-Sørensen et al.,
2017) that now display a plateau as a function of red-
shift (and metallicity) with a very small scatter (Fig. 1).
Moreover, in Dvorkin et al. (2016), the comparison with
the available measurements is consistent with the cosmic
merger tree model of structure formation. It is shown
that at redshift higher than 2 (see their Fig. 2), the dis-
persion in the cosmic deuterium abundance is very tiny
leading to think that at these redshifts the observation
of the D abundance is probably primordial. Hence, we
adopt the new recommended value provided by Cooke
et al. (2018):

D/H = (2.527± 0.030)⇥ 10�5 , (5)

lower and with smaller uncertainties than in previous de-
terminations 2. If such a precision of ⇠1% in observations

2 A recent reanalysis and new D/H observations towards the
Q1009+2956 quasar (Zavarygin et al., 2017, 2018) provided a
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is confirmed, great care should be paid to nuclear cross
sections affecting deuterium nucleosynthesis.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

BBN + CMB

Cooke et al. 2014

Balashev et al. 2016

Cooke et al. 2016

Cooke et al. 2018

2
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0
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3
 1

0
-5

z

D
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FIG. 1 D/H observations, as a function of the redshift of
the absorber. These most recent observations (Cooke et al.,
2014, 2016, 2018) have very small error bars and show very
few dispersion compared to previous determinations (except
Balashev et al. (2016)), and are in fair agreement with our
BBN calculations when using Planck (Ade et al., 2016) bary-
onic density.

3. 3He observations

Contrary to the case of 4He, stars can both produce
and destroy 3He, so that the evolution of its abundance in
time is not known precisely (Vangioni-Flam et al., 2003).
Since observing helium is difficult, and given the small
3He/4He ratio, 3He was only observed in our Galaxy and
the bounds obtained are 3He/H = (0.9 � 1.3) ⇥ 10�5,
keeping in mind that this is an upper limit extracted
from a single object (Bania et al., 2002). However, the
next generation of 30+ m telescope facilities may allow
to extract the 3He/4He ratio from observations of extra-
galactic metal poor HII regions (Cooke, 2015).

4. 7Li observations

7Li is peculiar because it has three distinct sources:
BBN but also spallative nuclear reactions between galac-
tic cosmic rays and the interstellar medium, and a stel-
lar source (Asymptotic giant branch stars and novae)
(Fu et al., 2018). For instance, recent observations (Izzo

new value of D/H = (2.48+0.41
�0.35)⇥ 10

�5 with a limited precision
(17%). If included, it shifts the abundance downward to D/H=
(2.545± 0.025)⇥ 10

�5

et al., 2015; Tajitsu et al., 2016) have confirmed Li pro-
duction by novae, at a level even higher than model pre-
dictions (Hernanz et al., 1996). Hence, after BBN, 7Li
can be produced but can also easily be destroyed in the
interior of stars by proton capture at temperatures as low
as 2.5 MK.

10
-10

10
-9

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8

BBN+CMB

T
eff

>5900 K

[Fe/H]
L

i/
H

10
-10

10
-9

5800 5900 6000 6100 6200 6300 6400 6500 6600

BBN+CMB

-2.8<[Li/H]<-2.0

T
eff

 (K)

L
i/

H

FIG. 2 Li/H observations, as a function of metallicity3 and
effective temperature. Data (Aoki et al., 2009; Asplund et al.,
2006; Bonifacio et al., 2007; Charbonnel and Primas, 2005;
Hosford et al., 2009; Meléndez et al., 2010; Sbordone et al.,
2010; Schaeuble and King, 2012; Scholz et al., 2015) come
from a compilation by Spite et al. (2012, 2015).

The life expectancy of stars with masses lower than our
Sun is larger than the age of the Universe so that very old
such stars can still be observed in the halo of our Galaxy.
In this context, lithium can be observed at the surface
of these stars and its abundance was found to be inde-
pendent of metallicity and effective temperature in the
ranges -2.4[Fe/H]-1.43 (i.e. between ⇡ 4 ⇥ 10�3 and
4⇥10�1 of the solar metallicity) and 5700  Te↵ 6800 K
(Fu et al., 2018). This plateau was discovered by François

3 Logarithm of the ratio, relative to its solar value: [X/Y ] ⌘
log ((X/Y )/(X

�

/Y
�

)).
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and Monique Spite (Spite and Spite, 1982) and this con-
stant Li abundance is interpreted as corresponding to the
BBN 7Li production. The thinness of the “Spite plateau”
has generally been considered as an indication that sur-
face Li depletion may not have been very effective so that
it should reflect the primordial value. However, as shown
in Fig. 2, there is a discrepancy of a factor ⇡3 between
the BBN predicted value and the lithium abundance de-
rived in metal-poor main-sequence (MS) stars. This dis-
crepancy could be alleviated if the stars observed today
had undergone photospheric depletion of lithium. Differ-
ent observations in globular clusters (see Gruyters et al.

(2016)) and stellar scenarios concerning the formation
of the early metal poor stars have been developed, (Fu
et al., 2015) trying to follow lithium evolution in metal-
poor stars, from pre-main sequence to the Spite plateau.
Li evolution could affect its abundance by introducing
the effects of convective overshooting, atomic diffusion
and mixing (Richard et al., 2005). In this context, 7Li
could be depleted and it could be possible to move closer
to the observed Li Spite plateau. Indeed, several globu-
lar clusters (NGC 6397, 6752, M30) show that the dis-
crepancy could be reduced by atomic diffusion leading to
a factor of 1.6 instead 3 (Michaud et al., 1984). Finally
the pre-MS depletion can be efficient and this is presently
an open question. Note that recent lithium observations
(Howk et al., 2012) have been done in the Small Magel-
lanic Cloud which has a quarter of the sun’s metallicity
and a Li abundance nearly equal to the BBN predictions.

Recently, Reggiani et al. (2017) have constrained cos-
mic scatter in the galactic halo using a differential analy-
sis of metal poor for several elements. Regarding lithium,
they find a very low scatter (0.04 dex) and a mean value
1.86 ⇥ 10�10 which is compatible with other studies.
We adopt here the analysis of Sbordone et al. (2010),
namely 4

7Li/H = (1.58± 0.3)⇥ 10�10 . (6)

B. Outlook on weak-rates corrections

Given the observational precision on 4He, we aim at
predictions with a precision better than 0.1%. This
amounts to considering all effects which affect Y

(4)
P by

units, and to treat carefully all effects which modify the
abundance by an order 10�4. YP is almost exclusively
controlled by weak reactions, because nearly all neutrons
end up in 4He. By varying artificially the weak rates (�)
we find the relation5

�YP

YP
' �0.73

��

�
. (7)

4 All uncertainties are given with one standard deviation.
5 Using Eq. (146a) and � / ⌧�1

n from Eq. (91).

Hence we need to focus on all corrections which affect the
weak rates by 10�4 or more, on top of the experimental
uncertainty on the neutron lifetime.

As for 2H and 3He, we aim at predictions of order
10�3 if we leave aside the uncertainty in nuclear rates,
and of order of a few 10�2 when including uncertainties
in nuclear rates. In all our computations, we must also
make sure to maintain numerical errors much below 10�3.

There are many effects to take into account for the
weak rates and we must also consider their possible
couplings since they cannot always be summed linearly.
These effects have several origins, namely

1. radiative corrections,

2. finite nucleon mass corrections,

3. finite temperature radiative corrections,

4. weak-magnetism,

5. QED plasma effects,

6. incomplete neutrino decoupling.

Radiative corrections correspond to the contribution
of virtual photons in weak reactions, together with the
emission of photons in the final state (bremsstrahlung)
from the electron line. They are typically order 10�2 ef-
fects (see § V.C) because of the value of the fine-structure
constant ↵FS ' 1/137. They are well established in
the context of neutron beta decay (Czarnecki et al.,
2004), and even with some resummed effects which are
higher orders in ↵FS for increased precision (Ivanov
et al., 2013). In the context of BBN, these effects were
originally estimated by Dicus et al. (1982).

Finite nucleon mass correction correspond to the effect
of nucleon recoil and nucleon thermal distribution of
velocity in the theoretical computation of the weak rates.
These corrections are also of order 10�2 (see § V.C) even
if smaller than radiative corrections. Wilkinson (1982)
provided a comprehensive list of these effects in the con-
text of neutron beta decay, and Seckel (1993) reviewed
these corrections in the context of BBN. These were
later estimated numerically by Lopez et al. (1997) using
a Monte-Carlo estimation of multidimensional integrals.
We introduce a new efficient method which relies on
a Fokker-Planck expansion in the energy transfer, and
which relies only on one-dimensional integrals.

Finite temperature radiative corrections correspond to
the interactions with the bath of electrons and positrons
during weak reactions. They lead to a long subject
of controversy in the literature. They were initially
computed in Dicus et al. (1982) and Cambier et al.

(1982). Discrepancies between these approaches were
analyzed by Kernan (1993) and a numerical estimation
was provided by Lopez and Turner (1999). However,
Brown and Sawyer (2001) pointed incoherences and the
lack of detailed balance, and they proposed to set the
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finite temperature radiative correction on firm ground
by providing a comprehensive theoretical computation
from finite-temperature quantum field theory. We
find, and this is new, that to be complete and satisfy
detailed balance, one must also consider corrections to
the bremsstrahlung effects and add them to finite tem-
perature corrections. Overall, when finite-temperature
corrections and bremsstrahlung corrections are added,
they almost perfectly cancel, leaving Y

(4)
P nearly un-

changed (see § V.C).

Weak-magnetism which arises from the internal struc-
ture of nucleons is part of finite mass corrections and is
order 10�3 (see § V.C).

Quantum Electrodynamics (QED) is responsible for
two effects. First the interaction with the plasma
modifies the electron mass. However this effect is strictly
speaking part of finite temperature radiative corrections
in our computations. Second, QED effects modify the
thermodynamics of the plasma, that is it modifies the
pressure and energy density. We find that this effect,
taken alone, results in a negligible modification of Y (4)

P
which is of order 10�5 (see § V.C). However it affects the
number of effective neutrinos for subsequent cosmology
such as the physics of cosmic microwave background
(CMB).

Incomplete neutrino decoupling corrections occur when
electrons and positrons annihilate, because neutrinos
are not fully decoupled from the plasma and some
annihilations end up heating the neutrino bath. This
effect increases the neutrino temperature and produces
distortions in their spectrum. In order to track the
neutrinos spectral distortions, it is necessary to use
the full machinery of coupled Boltzmann equations,
especially when considering neutrino oscillations. Since
this effect also modifies the effective number of neutrinos
for the subsequent cosmology, several authors among
which Dolgov et al. (1997); Grohs et al. (2016); Mangano
et al. (2005); de Salas and Pastor (2016) focused on it.
We shall use a fit taken from Pisanti et al. (2008) for the
heating rate of neutrinos. Eventually we find that this
correction is of order 10�3 (see § V.C).

All these effects are detailed in § III.

C. Main eras of BBN

During BBN, one can distinguish different eras depend-
ing on the dominant physical processes.

1. For plasma temperatures T in the range 2MeV .
T . GeV, nucleons are formed and their density
is only affected by expansion. Neutrinos are still
in thermal equilibrium with the plasma (electron-
positrons and protons), that is T

�

= T
⌫

and the

neutron to proton ratio X
n

/X
p

is enforced to be
the thermodynamical equilibrium value since weak
interactions interconvert efficiently neutrons in pro-
tons and vice-versa, through the reactions (68).

2. In the range, 0.8MeV . T . 2MeV neutrinos have
essentially decoupled but weak interactions main-
tain neutrons and proton in thermodynamical equi-
librium. However at weak-interactions freeze-out
temperature T

F

' 0.8MeV, defined by the equality
between weak interaction rates and the cosmologi-
cal expansion rate, the abundance of neutrons are
mostly affected by neutron beta decay. In prac-
tice, freeze-out is not instantaneous and the neu-
tron abundance is subject only to neutron beta de-
cay around T

F

' 0.28MeV. The abundance of
neutrons is then about X

n

' 0.17 and it is eventu-
ally reduced to XNuc

n

' 0.125 by beta decay when
nucleosynthesis starts (see Fig. 3).

3. Around 0.5MeV, electrons and positrons annihilate
and heat up the photon bath, resulting in a dif-
ferent temperature between photons and neutrinos
(T

�

> T
⌫

). This affects directly the expansion his-
tory of the Universe since the energy content of
massive particles (electrons and positrons) is re-
placed by massless particles (photons), but it also
affects weak-interaction rates since this is concomi-
tant with the freeze-out period.

4. As long as T & 0.078MeV, deuterium dissociation
is too efficient to allow for deuterium synthesis.
Even though the binding energy of deuterium is
about 2.2MeV, deuterium is efficiently destroyed by
the high-energy tail of the Bose-Einstein distribu-
tion of photons, because the ratio between baryon
number density and photon number density ⌘ is
smaller than 10�9.

5. Below T . TNuc = 0.078MeV, deuterium can be
formed. Then since the binding energy per nu-
cleon of 4He is much larger than for deuterium, a
network of reactions ends up in producing nearly
only 4He and very tiny amounts of other light el-
ements. Since 4He is made of two neutrons and
two protons, the (pseudo-)mass abundance satis-
fies YP ' 2XNuc

n

, hence leading to a final value
YP ' 0.25. Nucleosynthesis is completely over for
all elements when T . 0.01MeV or T . 108K but
for prediction with 10�3 precision on deuterium, we
found that we must wait until T . 6⇥ 107K.

D. Resolution strategy and outline

This outline of nucleosynthesis implies that we do not
need to solve jointly the abundance of all species at all
times. Indeed, given that the matter-radiation equiva-
lence occurs around T ' 3000K, this means that bary-
onic matter accounts for less than 10�4 of the total energy
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FIG. 3 Evolution of Xn (red continuous line with nuclear
reactions and red dotted line without nuclear reactions) and
YP/2 (blue dashed line).

density at the end of BBN and even less during freeze-
out. In principle, one should account for the fact that
neutron abundance evolves even though the nucleonic
density (protons and baryons) is only affected by cosmic
expansion. Since the mass difference between neutrons
and protons is of order 10�3 of their rest mass energy,
we can ignore this effect when evaluating the total en-
ergy density of the Universe. Similarly, given that the
binding energy in nuclei is around or less than 10�2 of
the rest mass energy, we can also consider to a very good
approximation that nuclear reactions do not affect the
baryon energy density. Hence it is possible to compute
the evolution of the cosmological background, without
having to compute in details the abundance of neutrons
nor the details of nuclear reactions. In § II we study the
thermodynamics of all species and the dynamics of the
cosmic expansion. Then in § III we focus on weak inter-
actions and detail all corrections. Since the weak inter-
action rates depend on the plasma of electrons, positrons
and neutrinos only, they can be studied ignoring nuclear
reactions. Finally in § IV we focus on nuclear reactions
and we present the results obtained when coupling the
background dynamics, the weak interactions and the nu-
clear reactions. Most technical details can be found in
the appendices for ease of reading. We use natural units
in all expressions, that is we work in units in which

k
B

= ~ = c = 1 , (8)

except when we judge instructive to write them explicitly.

II. BACKGROUND THERMODYNAMICS

We consider a homogeneous and isotropic cosmology,
more precisely a flat Friedmann-Lemaître (FL) spacetime
characterized by the scale factor a(t) where t is the cos-
mic time. The Hubble expansion rate is H = ȧ/a, where
a dot indicates a derivative with respect to t. Since cos-

mological perturbations are of order 10�5, it is fully jus-
tified to ignore their effect and consider an homogeneous
cosmology given our precision goal.

A. Thermodynamics in a FL spacetime

1. Distribution function and Boltzmann equation

Relativistic species, which encompass neutrinos, pho-
tons and electrons with positrons during the relevant
BBN era, are best described with a distribution function
f(t, p) for each species, and where the dependence is only
on the magnitude of momenta p =

p
E2 �m2 given the

symmetries of the FL spacetime. This description is valid
even out of thermodynamical equilibrium. The distribu-
tion function satisfies the general Boltzmann equation in
a FL spacetime

L[f ] ⌘ @f

@t
+ ṗ

@f

@p
= C[f ] , ṗ = �Hp . (9)

We have used that p / 1/a because of cosmic expan-
sion and C[f ] is the collision term of the species under
scrutiny. In order to relate this description to the fluid
description, thermodynamical quantities such as number
density n, energy density ⇢ and pressure P , can be formed
from the distribution function as summarized in App. A.

2. Number density evolution

From the definition of thermodynamic quantities
(Eqs. A1), considering

R
L[f ]4⇡p2dp/(2⇡)3 with the

Boltzmann equation (9) leads after integration by parts
to the number conservation equation

ṅ+ 3Hn = J , J ⌘
Z

C[f ]
4⇡p2dp

(2⇡)3
. (10)

J is the net creation rate of particles per unit of physical
volume. When the collision term vanishes or when it
conserves the number of particles because it describes
elastic scattering,

ṅ+ 3Hn = 0 ) d(na3)

dt
= 0 . (11)

In that case, for a comoving volume a3, the total number
of particles N ⌘ na3 remains constant.

3. Energy density evolution

Similarly, starting from the definition of ther-
modynamic quantities (Eqs. A1), and consideringR
L[f ]E4⇡p2dp/(2⇡)3 with the Boltzmann equation (9),

leads after integration by parts (and using EdE = pdp)
to the energy conservation equation

⇢̇+ 3H(⇢+ P ) = q̇ , q̇ ⌘
Z

C[f ]
4⇡Ep2dp

(2⇡)3
. (12)
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q̇ is the volume heating rate. For massless particles, such
as photons or neutrinos (which can be considered mass-
less during the BBN), E = p and P = ⇢/3, implying that
when the collision term is vanishing

⇢̇+ 4H⇢ = 0 ) d(⇢a4)

dt
= 0 . (13)

Eqs. (12) and (13) are general and do not rely on a spe-
cific distribution function.

4. Entropy evolution

Volume entropy is defined (see e.g. Grohs et al. (2016))
from the distribution function by

s = �
Z

SB(f)
4⇡p2dp

(2⇡)3
, (14)

where the Boltzmann entropy is defined as

SB(f) ⌘ [f ln f ± (1⌥ f) ln(1⌥ f)] (15)

with upper (lower) sign for fermions (bosons). Using the
identity

@
p

[SB(f)] = ln

✓
f

1⌥ f

◆
@
p

f (16)

and multiplying Eq. (9) by SB(f) we get after integration
by parts

ṡ+ 3Hs = �
Z

C[f ] ln

✓
f

1⌥ f

◆
4⇡p2dp

(2⇡)3
, (17)

which dictates the evolution of volume entropy. If there
are no collisions, it is only affected by dilution as s / 1/a3

such that the total entropy in a given comoving volume,
S ⌘ sa3, is conserved (Ṡ = 0).

5. Local thermodynamical equilibrium

In case of local thermodynamical equilibrium (LTE),
fermions (bosons) follow a Fermi-Dirac (Bose-Einstein)
distribution (A3) and

ln

✓
f

1⌥ f

◆
=

µ� E

T
, (18)

where µ is the chemical potential. Hence the evolution
of volume entropy for a given species satisfies, using Eqs.
(10) and (17),

ṡ+ 3Hs =
q̇

T
� µ

T
(ṅ+ 3Hn) , (19)

with q̇ defined in Eq. (12). From Eq. (19) multiplied by
a3, we recover the usual thermodynamical identity

T Ṡ = Q̇� µṄ (20)

with Q̇ ⌘ q̇a3. Hence, the entropy for a given species
is conserved if there is no heat exchange, that is no in-
teractions, and either a vanishing chemical potential (in
practice µ ⌧ T ) or conservation of the number of par-
ticles (i.e. Ṅ = 0). From the conservation of the total
stress-energy tensor, we must have

P
i

q̇
i

= 0, that is
there can be no global production of heat. Hence, in case
of local thermodynamical equilibrium, the total entropy
is conserved whenever for all species either the chemical
potential is negligible µ

i

⌧ T or the number of particles
is conserved.

If there is LTE, entropy for a given species i can then
be linked to other thermodynamical quantities thanks to

s
i

=
P
i

+ ⇢
i

� µ
i

n
i

T
i

. (21)

The total entropy is obtained from the extensivity of ⇢
and n, given that pressure and temperature of all species
are equal at equilibrium

s =
X

i

P
i

+ ⇢
i

T
+
X

i

µ
i

n
i

T
=

⇢+ P

T
+
X

i

µ
i

n
i

T
. (22)

During nucleosynthesis, given the very low value of the
baryon-to-photon ratio ⌘ (see § II.C below), we can to-
tally ignore the entropy of protons and neutrons. This
amounts to neglecting the electrons, positrons and neu-
trinos created and destroyed in weak interactions, and
any energy exchange with these particles and the pho-
tons. Hence we can focus only on the thermodynamics of
electrons, positrons, photons and neutrinos. During nu-
cleosynthesis, neutrinos are nearly fully decoupled from
other species and their entropy is separately conserved if
we can assume that they are totally decoupled. See §II.F
for the small modifications induced by incomplete decou-
pling (ID).

Conversely, electrons, positrons and photons are
tightly coupled by electromagnetic interactions and they
behave collectively as a plasma whose common temper-
ature is defined as T . Photons decouple from electrons
only around recombination much later when the CMB is
formed and T . eV. Due to electron-positron annihila-
tions, the number of particles in the plasma is not con-
served, and it is crucial that we can neglect the chemical
potential of plasma particles to claim that the plasma en-
tropy is conserved. The chemical potential of photons is
always vanishing due to processes which do not conserve
the number of photons so we need only to make sure that
the chemical potential of electrons and positrons can be
neglected. In App. A.2, we evaluate these chemical po-
tentials and show they are completely negligible, imply-
ing that we can use entropy conservation.

For convenience we define dimensionless reduced en-
ergy density, pressure, number density and entropy as

n̄
i

⌘ n
i

T 3
i

P̄
i

⌘ P
i

T 4
i

⇢̄
i

⌘ ⇢
i

T 4
i

s̄
i

⌘ s
i

T 3
i

(23)
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such that the relation (21) reads simply in case of van-
ishing chemical potential

s̄
i

= ⇢̄
i

+ P̄
i

. (24)

For photons the reduced thermodynamic variables do not
depend on temperature and are constants when there is
LTE. We find

n̄
�

=
2

2⇡2
I
(1,1)
�

=
2⇣(3)

⇡2
(25a)

⇢̄
�

=
2

2⇡2
I
(2,1)
�

=
⇡2

15
(25b)

P̄
�

=
2

6⇡2
I
(0,3)
�

=
⇡2

45
(25c)

s̄
�

= ⇢̄
�

+ P̄
�

=
4⇡2

45
. (25d)

where the definitions for the I
(p,q)
±

are given in App. A.1.
Similarly for neutrinos, and assuming that they have a
negligible chemical potential, the reduced variables de-
fined in case of LTE, take the constant values

n̄
⌫

=
2

2⇡2
I
(1,1)
+ =

3

4
n̄
�

(26a)

⇢̄
⌫

=
2

2⇡2
I
(2,1)
+ =

7

8
⇢̄
�

(26b)

P̄
⌫

=
2

6⇡2
I
(0,3)
+ =

7

8
P̄
�

(26c)

s̄
⌫

= ⇢̄
⌫

+ P̄
⌫

=
7

8
s̄
�

, (26d)

where we used g
⌫

= 1 since only left-handed neutrinos
contribute to the relativistic species, but we have multi-
plied by a factor 2 since conventionally we add together
the contributions of neutrinos and antineutrinos6. In
particular we deduce from Eq. (13) that for photons or
(massless) neutrinos in thermodynamical equilibrium

d(aT )

dt
=

d(aT
⌫

)

dt
= 0 , (27)

if they are completely decoupled from other species. Dur-
ing BBN, aT varies because of electron-positron annihi-
lations. It is customary to define (Mangano et al., 2005;
de Salas and Pastor, 2016)

z ⌘ a(T )T z
⌫

⌘ a(T
⌫

)T
⌫

(28)

to characterize this total variation of aT and aT
⌫

, with
the convention that long before decoupling when all
species were coupled together and at the same temper-
ature, that is when T = T

⌫

� m
e

, we had a(T )T =
a(T

⌫

)T
⌫

= 1, that is z = z
⌫

= 1 at early times.

6 If neutrinos were Majorana particles, neutrinos would be their
own antiparticle but they would possess both helicities and one
would take g = 2, resulting in the same final result

Additionally, in a first approximation, one can also as-
sume that during BBN neutrinos are fully decoupled, im-
plying that aT

⌫

is constant and z
⌫

= 1 remains always
true. The tiny effect of incomplete decoupling induces
in fact a small variation of z

⌫

that we shall take into
account in § II.F. Ignoring it, the neutrino temperature
scales simply as

T
⌫

=
a0T0

a z0
z0 ⌘ z(T ⌧ m

e

) , (29)

where T0 is the photons temperature today and z0 is the
value of z long after BBN is finished.

B. Plasma temperature

Since for the plasma S = sa3 is conserved, we can
obtain the relation between temperature and scale factor.
From Eq. (24) and expressions in App. A, we find that
the ratio between plasma entropy at a given time of BBN
and photons entropy today is given by

s

s0
=

T 3

T 3
0

S(T ) (30a)

S(T ) ⌘ s̄pl
s̄
�

=
s̄
�

+ s̄
e

+(T ) + s̄
e

�(T )

s̄
�

(30b)

= 1 +
2

⇡2s̄
�


1

3
I
(0,3)
+ (x) + I

(2,1)
+ (x)

�

where x ⌘ m
e

/T . The function S is plotted in Fig. 4.
For T � m

e

, S ! 11/4 whereas for T ⌧ m
e

, S ! 1.
Entropy conservation (sa3 = s0a

3
0) allows then to relate

the scale factor to the plasma temperature as

zstand0

zstand
=

a0T0

aT
= S1/3 ) a(T ) =

a0T0

TS(T )1/3 . (31)

Here zstand denotes z in the case where we can ignored
incomplete neutrino decoupling and QED plasma effects
which we analyze in § II.E and II.F respectively. The
inverse relation T (a) is obtained by numerical inversion.
zstand0 takes the value

zstand0 = S1/3(T � m
e

) =

✓
11

4

◆1/3

' 1.40102 . (32)

From Eqs. (31) and (29) the ratio between neutrino and
plasma temperatures is given by

T
⌫

T
=

S1/3(T )

zstand0

, (33)

and tends to 1/zstand0 = (4/11)1/3 at low temperatures,
which is the celebrated result of instantaneous decou-
pling.
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1.5

T(K)

�-
1

ℰ-
1

FIG. 4 Red continuous line : S(T ) � 1. Blue dashed line
: E(T ) � 1. The vertical bar corresponds to T = me '
0.511MeV.

C. Baryon density

In order to obtain the energy density of baryons, it is
sufficient to use that for non-relativistic and cold species
⇢ / 1/a3. Hence

⇢b =
⇣a0
a

⌘3

⇢crit0 ⌦b =
⇣a0
a

⌘3

⇢crit100 ⇥
�
⌦bh

2
�

(34)

where we defined the critical densities ⇢crit0 ⌘ 3H2
0/(8⇡G)

and ⇢crit100 ⌘ 3H2
100/(8⇡G), with the reduced Hubble rate

h ⌘ H0/H100 (with the standard definition H100 ⌘
100 km/s/Mpc). The numerical value of ⇢crit100 can be
found in appendix D. The baryon energy density can be
converted into a number density by estimating the aver-
age mass of nucleons

nb =
⇢b
mb

. (35)

More details about the definition of mb are given in App.
C. We define the ratio between baryons and photons by

⌘ ⌘ nb

n
�

. (36)

Since nb / 1/a3 and n
�

/ T 3 it can be rewritten in the
form

⌘ = ⌘0

⇣z0
z

⌘3

. (37)

Using Eq. (C6), the value today is approximately found
to be

⌘0 ' 6.0913⇥ 10�10

✓
⌦bh

2

0.02225

◆✓
2.7255

T0

◆3

⇥
 

1� 1.759⇥ 10�3

1� 1.759⇥ 10�3 Y

P

0.24709

!
. (38)

Finally, note that we can safely ignore the thermal en-
ergy of baryons since its ratio with the energy density of

photons is of order

nbT

⇢
�

=
n̄b

⇢̄
�

/ ⌘ ⌧ 1 , (39)

thus justifying the use of the scaling (34) which is the
one of cold particles.

D. Cosmology and scale factor

The evolution of the scale factor is dictated by the
Friedmann equation

H2 =
8⇡G

3
⇢ . (40)

It determines the evolution of the scale factor a(t), and to
solve it we need the expressions of the total energy den-
sity as a function of a. Since we already have found the
relations a(T ), it is sufficient to express the energy den-
sity in terms of temperature. This is fortunate, because
the energy density of the plasma depends only on tem-
perature as it is always in local thermodynamical equi-
librium. From App. A, we find that for the plasma

⇢pl = E(T )⇢̄
�

T 4 , (41a)

E(T ) ⌘ ⇢̄
�

+ ⇢̄
e

+ + ⇢̄
e

�

⇢̄
�

= 1 +
30

⇡4
I
(2,1)
+ (x) , (41b)

where we use the definitions (A5)-(A7). The function E
is plotted in Fig. 4 and in the limit T � m

e

it also tends
to 11/4. The energy density of the N

⌫

generations of
(massless) neutrinos is

⇢
⌫

= N
⌫

⇢̄
⌫

T 4
⌫

. (42)

As for the energy density of baryons, we use the simple
dilution relation (34) which amounts to neglecting their
thermal energy. Hence a similar scaling can be used for
cold dark matter.

Using that7

⇢ = ⇢
⌫

+ ⇢pl + ⇢b + ⇢cdm, (43)

we obtain ⇢(T ) that we combine with the relation T (a)
obtained in section II.B to get ⇢(a), such that the Fried-
mann equation (40) is in the form of an ordinary differ-
ential equation for the function a(t) that we can solve
numerically. The relation t(a) is then deduced by nu-
merical inversion.

7 The effect of the cosmological constant is also totally negligible
as it accounts for less than 10

�30 of the energy content during
BBN even if it dominates today.
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E. QED corrections for the plasma thermodynamics

The thermal bath of electrons and positrons has elec-
tromagnetic interactions with the bath of photons. Using
QED, this leads to a modification of the plasma thermo-
dynamics which depend on its temperature. First this
leads to an effective modification of the electron and pho-
ton masses, which come from the diagrams 5 and 6.

e± e±(a) Vacuum

e± e±(b) Interaction with
photons

e± e±(c) Interaction with
antiparticles

FIG. 5 Top : electron/positron self-energy. Bottom : elec-
tron/positron mass shift from interaction with plasma.

� �

(a) Vacuum
� �

(b) Interaction with
electrons or positrons

FIG. 6 Left : photon self-energy. Right : photon mass shift
from interaction with electron/positron plasma.

The electron mass is shifted by (see Mangano et al.

(2002, Eq. 12), Lopez and Turner (1999, Eq. 35) or
Fornengo et al. (1997); Heckler (1994) for further details
on its derivation)

�m2
e

(p, T )

T 2
=

4↵

⇡

h
I
(0,1)
�

+ I
(0,1)
+ (x)

i
(44)

� 2m̄2
e

↵

⇡p̄

Z
1

0

dq̄
q̄

E
q̄

ln

����
p̄+ q̄

p̄� q̄

���� g
+ (E

q̄

)

where we used the definitions (A5)-(A7). In this expres-
sion, E

q̄

⌘
p
q̄2 + x2, m̄

e

= x = m
e

/T p̄ ⌘ p/T and
g±(E

q̄

) ⌘ 1/(eEq̄ ± 1). The second contribution, which
depends explicitly on the e± momentum, accounts for
less than 10% to the total mass shift (see Lopez and
Turner (1999); Mangano et al. (2002)). The mass shift
(44) can be further simplified using

I
(0,1)
�

⌘
Z

1

0

g�
�
k̄
�
k̄dk̄ =

⇡2

6
. (45)

The photon mass shift is instead given by

�m2
�

T 2
=

8↵

⇡
I
(0,1)
+ (x) . (46)

These mass shifts induce a change in the pressure of the
plasma whose expression is given by Heckler (1994, Eq.

13) or Mangano et al. (2002, Eq. 16). The pressure shift
reads

�P ⌘ �P

T 4
= �

Z
1

0

dp̄

2⇡2

p̄2

E
p̄

�m2
e

(p, T )

T 2
g+ (E

p̄

)

�
Z

1

0

dk̄

2⇡2

k̄

2

�m2
�

(T )

T 2
g�

�
k̄
�
. (47)

Hence from the expressions of the mass shifts we get

�P = �P d + �P s , (48)

where the dominant and subdominant terms are respec-
tively

�P d ⌘ ↵FS

⇡


�2

3
I
(0,1)
+ (x)� 2

⇡2

⇣
I
(0,1)
+ (x)

⌘2
�

(49)

�P s ⌘ ↵FS

⇡3

m̄2
e

p̄q̄

Z
p̄2dp̄

E
p̄

q̄2dq̄

E
q̄

ln

����
p̄+ q̄

p̄� q̄

���� g
+ (E

p̄

) g+ (E
q̄

) .

These pressure modifications are plotted in Fig. 7. We
can check that the subdominant contribution is indeed
negligible since QED plasma corrections are already very
small (see § V.C), but we include it anyway for complete-
ness.

108.5 109 109.5 1010 1010.5 1011

10-9

10-7

10-5

10-3

T (K)

δP
/(k

B
T)
4

FIG. 7 Red continuous line : �P d. Blue dashed line : �P s.
Definitions are given in Eq. (49).

The modification of the plasma energy density is then
obtained from the thermodynamic identity8

⇢ = �P + T
dP

dT
, (50)

so that we get immediately

�⇢ ⌘ �⇢

T 4
= 3�P +

@�P

@ lnT
. (51)

8 Choosing T and V to describe the state of a system, then P and
⇢ are functions of T only since they are intensive quantities. It
follows from TdS = d(⇢V ) + PdV that dS = (P + ⇢)/TdV +

V/T (d⇢/dT )dT . From the integrability conditions we then get
@T [(⇢+ P )/T ] = @V (V/Td⇢/dT ) and the identity (50) follows.
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Lopez and Turner (1999) defined corrected relativistic
degrees of freedom by

�g
⇢

⌘ 2
�⇢

⇢̄
�

=
30

⇡2
�⇢ , �g

P

⌘ 2
�P

P̄
�

=
90

⇡2
�P . (52)

At high temperatures, that is for T � m
e

, we obtain us-
ing I

(0,1)
+ (x = 0) = ⇡2/12 (see table IX in appendix A.1)

the limits

�⇢ ' � 5

96
(4⇡↵) , �P ' 1

3
�⇢ , (53)

which expressed in terms of corrected relativistic degrees
of freedom read

�g
⇢

' �g
P

' �25↵

4⇡
' 0.01452 . (54)

These corrections are plotted in Fig. 8 together with the
high temperature limit.

The QED plasma corrections enter in four places.

• First they imply that the entropy of the plasma as
given in Eq. (30b) must be modified and we must
use

SQED = S +
⇢̄
�

s̄
�

�g
⇢

2
+

P̄
�

s̄
�

�g
P

2
= S +

�g
P

+ 3�g
⇢

8
(55)

where the last equality follows from Eqs. (25).
SQED must be used instead of S in Eq. (31) in
order to obtain a(T ).

• Second, this entropy modification also affects the
evolution of z and we find

(zQED
0 )3 = SQED(T � m

e

) =
11

4

✓
1� 4

11

25↵

8⇡

◆
, (56)

that is zQED
0 ' 1.39979. This affects the neutrino

temperature scaling which then becomes

TQED
⌫

=
a0T0

a zQED
0

. (57)

This neutrino temperature must be used in Eq. (42)
when computing the energy density of neutrinos for
the Friedmann equation (40).

• Third, the plasma QED correction must also be
incorporated in the energy density of the plasma
when solving the Friedmann equation (40), mean-
ing that we must modify Eqs. (41) and use instead

EQED = E +
�g

⇢

2
, (58)

when computing ⇢pl for the Friedmann equa-
tion (40).

• Finally, the electron mass shifts modifies the
statistics of electrons and positrons in the weak-
interactions.

An important comment is in order here on the last ef-
fect. Since the mass shift (44) is exactly Eq. (5.12) of
(Brown and Sawyer, 2001) (that is 2E�E = �m2

e

), the
effect of the electron mass shift is one of the several ef-
fects involved in finite-temperature radiative corrections
for the weak rates. Hence, following Brown and Sawyer
(2001), we consider that the modification of the statistics
through the mass shift is part of the finite-temperature
corrections and we do not consider that it is part of the
QED plasma corrections. This point of view is similar to
Esposito et al. (2000a); Serpico et al. (2004) but different
from Lopez and Turner (1999). Hence comparisons on
the magnitude of the correction must take into account
the point of view on the effect of mass shifts, since either
they are reported as QED effects or finite-temperature
radiative corrections.

It turns out that the QED plasma corrections
(that is without the effect of the mass shift on the
weak-interaction rates), coming from the modifications
(55),(57) and (58), are very small since they modify the
Helium production by approximately �Y

(4)
P = �0.1 (see

§ V.C).

108.5 109 109.5 1010 1010.5 1011
0.000

0.005

0.010

0.015

T (K)

-2
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FIG. 8 Effective degrees of freedom in the plasma from QED
corrections. Red continuous line : ��gP = �2�P/P . Blue
dashed line : ��g⇢ = �2�⇢/⇢. Black thin line : High temper-
ature asymptotic value 25↵/(4⇡).

F. Incomplete neutrino decoupling

The effect of incomplete neutrino decoupling has been
studied in details in Birrell et al. (2014); Dodelson
and Turner (1992); Dolgov et al. (1997, 1999); Esposito
et al. (2000b); Fields et al. (1993); Gnedin and Gnedin
(1998); Grohs et al. (2016); Hannestad (2002); Hannestad
and Madsen (1995); Mangano et al. (2002, 2005, 2006);
de Salas and Pastor (2016). Electron-positron annihila-
tions lead to a small reheating of the neutrino bath which
must be studied in the context of coupled Boltzmann
equations since it also leads to spectral distortions in
the neutrino spectrum. Furthermore the complete study,
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that we do not reproduce here, requires to consider neu-
trino flavor oscillations.

Let us first study the effect of incomplete neutrino de-
coupling (ID) on the plasma. If there is heat exchange,
that is energy exchange between the plasma and the neu-
trinos, then the evolution of the plasma entropy is dic-
tated by Eq. (20) with the chemical potential neglected,
that is

Ṡpl =
Q̇pl

T
. (59)

This is always true for the plasma because it is always
at local thermodynamic equilibrium, but not necessar-
ily true for the neutrinos for which we should rely on
Eq. (17) if we were to compute the evolution of their en-
tropy. The numerical studies of the effect of incomplete
neutrino decoupling gives a fit to the heating rate of the
plasma in Pisanti et al. (2008). More precisely, we define
the dimensionless function N (T ) related to the heating
rate as

q̇pl
HT

= �T 3N (T ) , (60)

where we remind Q̇ = a3q̇. The function T 4N can be
viewed as the volume heating rate in units of the Hubble
rate H. The fit given in Pisanti et al. (2008, Eqs. A24-
A25) is a 13-order polynomial in x = m

e

/T valid for
x < 4, and we plot it in Fig. 9.
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FIG. 9 N (T ) as defined in Eq. (60).

From Eqs. (59) and (60), the evolution of the plasma
reduced entropy is dictated by

1

(aT )3
d[s̄pl(aT )

3]

d ln a
= �N . (61)

From the definition (30b) we obtain

d ln(aT )

d lnT
=

N � dS
d lnT

N + 3S (62)

where S must be replaced by SQED when including
plasma QED effects. We recover when N = 0, that is

for complete neutrino decoupling, that z = aT / S�1/3.
This equation can be integrated numerically to obtain
a(T ) in the case of incomplete neutrino decoupling, and
a numerical inversion allows to obtain subsequently T (a).
z is modified because of the non-conservation of plasma
entropy, and we get zID0 ' 1.39911 if QED plasma effects
are not included and zID,QED

0 ' 1.39788 if they are also
included, in agreement (except for the last digit) with
table 1 of de Salas and Pastor (2016). Our results are
summarized in table I.

Let us now focus on the effect of incomplete neutrino
decoupling on neutrinos. Since the energy taken from the
plasma is gained by the neutrinos, we have necessarily
qpl = �q

⌫

. Hence we can solve for the evolution of the
neutrino energy density from Eq. (12) which is

1

a4
d(a4⇢

⌫

)

d ln a
= � q̇pl

H
= T 4N . (63)

Since T 4N is a function of T it can be considered as a
function of a using the T (a) previously obtained. Solv-
ing numerically this differential equation gives ⇢

⌫

(a). To-
gether with the previously solved T (a) [which allows to
get ⇢pl(a) from Eq. (41)] and the QED correction (58), we
obtain ⇢(a) and thus the relation a(t) and its inverse t(a)
from numerically solving the Friedmann equation (40).

This approach to compute the variation of the neutrino
energy density from Eq. (63) is correct even if incomplete
neutrino decoupling and neutrino reheating by electron-
positron annihilations create spectral distortions in the
neutrino spectra. That is, the gravitational effect of in-
complete neutrino decoupling is taken into account cor-
rectly with our approach. However it cannot fully take
into account the effect on the weak rates which we discuss
further in § III.I and V.C.5.

G. Effective description of neutrinos

Neutrinos are not in local thermodynamical equilib-
rium and their temperature is not well defined. Indeed,
the full characterization of the neutrinos requires to solve
the coupled Boltzmann equations dictating the evolution
of neutrino distribution functions, and we must in princi-
ple build a temperature definition from the energy spec-
trum (see e.g. Pitrou and Stebbins (2014)). In the BBN
context it is convenient to define a brightness tempera-
ture, being the temperature of the Fermi-Dirac distribu-
tion with no chemical potential that would have the same
energy density. Hence we define T

⌫

as in Eq. (42) by

⇢
⌫

= N
⌫

⇢̄
⌫

T 4
⌫

) ⇢
⌫

a4 = N
⌫

⇢̄
⌫

z4
⌫

, (64)

where ⇢
⌫

results from the integration of Eq. (63). z
⌫

9

is deduced from the value of ⇢
⌫

a4 obtained numerically,

9 Note that we still define z⌫ as in the LTE case [Eq. (28)].
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and we find z
⌫,0 = 1.00144. It corresponds to a neu-

trino energy density increase of a factor z4
⌫,0 = 1.00576

compared to the complete decoupling scenario.
The ratio between neutrino and photon temperature is

simply

T
⌫

T
=

z
⌫

z
. (65)

Using this ratio, Eq. (64) can be rewritten to define an
effective number of neutrinos as

⇢
⌫

= Ne↵ ⇢̄⌫

✓
T

zstand

◆4

Ne↵ ⌘ N
⌫

✓
z
⌫

zstand

z

◆4

. (66)

This is the number of neutrinos that would be required
to have the same energy density if the ratio T

⌫

/T was
taken from the complete decoupling result without QED
correction, that is 1/zstand. Ne↵ today is completely de-
termined by the values of z0 and z

⌫,0. Its evolution is
plotted in Fig. 10.

We find N ID
e↵ = 3.0337 today if QED plasma effects are

ignored [z obtained from Eq. (62) and z
⌫

from Eqs. (63)
and (65)] but non-instantaneous decoupling is taken into
account. We find NQED

e↵ = 3.0106 for the reverse situa-
tion (z

⌫

= 1 but z = zQED). If both effects are taken
into account [z obtained from Eq. (62) with SQED in-
stead of S, and z

⌫

from Eqs. (63) and (65)], we find
N ID,QED

e↵ = 3.0444, in very close agreement with the last
results of de Salas and Pastor (2016).
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FIG. 10 Ne↵(T ). Black continuous line : both QED plasma
effects and incomplete neutrino decoupling. Red long dashes:
Incomplete decoupling but no QED corrections. Blue small
dashes: QED correction with complete decoupling

After BBN, e.g. for the evolution of initial perturba-
tions through baryon acoustic oscillations, only the en-
ergy density of neutrinos is important through its grav-
itational effect. Distortions in the neutrino spectra can
have in principle an effect on CMB and structure for-
mation when considering its joint effect with neutrino
masses at late times. However this effect is expected to
be extremely small and it is enough to assume that after

TABLE I z0, z⌫,0 and Ne↵ depending on the effects.

QED Decoupling z0 = aT z⌫,0 = aT⌫ Ne↵

No Yes 1.40102 1.00000 3.0000

Yes Yes 1.39979 1.00000 3.0106

No No 1.39911 1.00144 3.0338

Yes No 1.39788 1.00144 3.0445

BBN neutrinos follow a Fermi-Dirac distribution. Hence
Ne↵ is used in CMB codes such as CAMB (Lewis and
Challinor, 1999; Lewis et al., 2000) and CLASS (Blas
et al., 2011; Lesgourgues, 2011) to take into account the
effect of incomplete decoupling during BBN. From the
definition (66) the total energy density of radiation after
BBN is

⇢R = ⇢
⌫

+ ⇢
�

= ⇢
�

 
1 +

7

8
Ne↵

✓
4

11

◆4/3
!

(67)

meaning that we can forget about the QED plasma cor-
rections and the incomplete neutrino decoupling during
BBN if we use Ne↵ instead of N

⌫

= 3.
The values of z0, z

⌫,0 and Ne↵ for the various cases
are reported in table I. Let us comment on the value
Ne↵ ' 3.02 found in Grohs et al. (2016) for the effect
of QED alone. It is important to realize that we must
be careful not to replace the mass shifts (44) and (46)
directly in the distribution function inside the general
expression (A2c) for pressure to obtain the pressure shift
(47), since this would overestimate it by a factor 2. This
subtlety is detailed in Heckler (1994) and is correctly
taken into account in Mangano et al. (2002). Since this
is what has been done in Grohs et al. (2016), it explains
why the effect of QED on the plasma as measured by Ne↵

found in this reference is around 3.02 instead of 3.01.

III. WEAK INTERACTIONS

Once the dynamics of the background has been solved,
it is possible to study the evolution of the abundance of
neutrons. This determines the final amount of chemi-
cal species since atomic nuclei form from the fusion of
neutrons and protons. Throughout we assume that all
particles are in local thermodynamical equilibrium. If
this is certainly true for the plasma of photons strongly
coupled with electrons and positrons, this is not exactly
true for neutrinos. Indeed, as we have seen in § II.F,
neutrinos are not fully decoupled when BBN takes place
and there is a residual heating of neutrinos which cannot
be fully described as an increased neutrino temperature,
since it also leads to a distorted neutrino spectrum.
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A. General formulation

The weak interaction reactions correspond to a set of
reactions which are all related by crossing symmetry.
These are the six reactions

n+ ⌫ $ p+ e� (68a)
n $ p+ e� + ⌫̄ (68b)

n+ e+ $ p+ ⌫̄ (68c)

where n (p) stands for neutrons (protons). The two reac-
tions n+ e+ + ⌫ $ p are not possible energetically since
m

n

> m
p

, as can be seen considering the reaction in the
proton rest mass frame. However it can exist if there is
a photon in the final state of the forward reaction, see
appendix § B.7.

It follows that the number density of neutrons and pro-
tons is not just diluted by expansion, but varies according

to the reaction rates. The general form for the neutron-
proton density evolution is

ṅ
n

+ 3Hn
n

= �n
n

�
n!p

+ n
p

�
p!n

(69a)
ṅ
p

+ 3Hn
p

= �n
p

�
p!n

+ n
n

�
n!p

(69b)

where the reaction rates � are associated to the cor-
responding collision terms in the Boltzmann equation.
Here we have gathered the rates according to

�
n!p

= �
n+⌫!p+e

+ �
n!p+e+⌫̄

+ �
n+e!p+⌫̄

(70a)
�
p!n

= �
p+e!n+⌫

+ �
p+e+⌫̄!n

+ �
p+⌫̄!n+e

.(70b)

The general expression for these reaction rates is de-
tailed in App. B. For all rates with the nucleon a in the
initial state and nucleon b in the final state, they take
the form

n
a

�
a!b

=

Z
d3p

a

d3p
e

d3p
⌫

24(2⇡)8
� (E

a

� E
b

+ ↵
e

E
e

+ ↵
⌫

E
⌫

)
|M |2

a!b

E
n

E
p

E
e

E
⌫

f
a

(E
a

)f
⌫

(↵
⌫

E
⌫

)f
e

(↵
e

E
e

) (71)

where ↵
⌫

= 1 if the neutrino is in the initial state and
↵
⌫

= �1 if it is in the final state, and a similar def-
inition for ↵

e

according to the e± position. These co-
efficients appear obviously in the Dirac delta function
ensuring energy conservation in reactions, and they are
also used to express the final nucleon momentum as
p
b

= p
a

+ ↵
⌫

p
⌫

+ ↵
e

p
e

. They also appear in the distri-
bution functions of the electrons and neutrinos, because
either the particle is in the initial state and the corre-
sponding distribution function appears in the expression,
or it is in the final state and it becomes a Pauli-blocking
factor thanks to the relation

f(�E) = 1� f(E) , (72)

valid for a Fermi-Dirac distribution with vanishing chem-
ical potential. For a given reaction, |M |2

a!b

is the corre-
sponding matrix-element of the weak interaction summed
over all initial and final states. For weak interactions in
the Fermi theory, it is of the form (Fidler and Pitrou,
2017)

|M |2
27G2

F

= c
LL

M
LL

+ c
RR

M
RR

+ c
LR

M
LR

, (73)

with the coupling factors c
..

given in Eqs. (B11).
The expressions for M

LL

,M
RR

,M
LR

are reported in
Eqs. (B12). The LL term (resp. RR) corresponds to
purely left-chiral (resp. right-chiral) couplings, and the
LR term is an interference term.

B. Infinite nucleon mass approximation

Let us define the energy gap

� ⌘ m
n

�m
p

' 1.29333 MeV . (74)

Throughout we use g(E) for the Fermi-Dirac distribution
at temperature of electrons T and g

⌫

(E) for the Fermi-
Dirac distribution at the neutrino temperature T

⌫

.

g(E) ⌘ 1⇣
e

E
T + 1

⌘ g
⌫

(E) ⌘ 1⇣
e

E
T⌫ + 1

⌘ . (75)

In § II, details are given on how these temperatures can
be computed in function of the scale factor a and the
time t.

In the infinite nucleon mass limit (but keeping � con-
stant), also called the Born approximation, the reaction
rates take simple forms (see App. B). First, the factors
entering the matrix element (73) are in that limit simply

M
LL

E
n

E
p

E
⌫

E
e

=
M

RR

E
n

E
p

E
⌫

E
e

=
M

LR

E
n

E
p

E
⌫

E
e

= 1 . (76)

The last equality is correct only if it is understood that
an angular average either on electrons momentum or neu-
trino momentum is performed10 (see the detailed expla-
nation at the end of § B.2). Hence from Eq. (71), we

10 The LR coupling is at the origin of the asymmetry (B22b) in the
decay product of neutron beta decay (Ivanov et al., 2013) from
which the value of gA is inferred.
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find the Born rates (Bernstein et al., 1989; Brown and
Sawyer, 2001; Lopez and Turner, 1999; Weinberg, 1972)

�
n!p

= �
n!p+e

+ �
n+e!p

(77)

= K

Z
1

0

p2dp[�+(E) + �+(�E)] , (78)

with E =
p

p2 +m2
e

and

�
±

(E) ⌘ (E⌥

⌫

)2g
⌫

(E⌥

⌫

)g(�E) , (79)
E⌥

⌫

⌘ E ⌥� , (80)

K ⌘ 4G2
W

(1 + 3g2
A

)

(2⇡)3
. (81)

The first contribution in Eq. (77) corresponds to the
n ! p processes (68a) and (68b) added, that is for all
processes where the electron is in the final state. It can
be checked indeed that the electron distribution is eval-
uated as g(�E) = 1 � g(E). Furthermore, if the neu-
trino is in the initial state (when E > �) its energy is
E

⌫

= E � � and its distribution function appears as
g
⌫

(E
⌫

), but if it is in the final state (when E < �) its
energy is E

⌫

= ��E and the neutrino distribution func-
tion is evaluated as g

⌫

(E ��) = 1� g
⌫

(�� E).
The second term of Eq. (77) corresponds to the re-

action (68c), that is to the process where the positron
is in the initial state. The energy of the positron is E
and its distribution function appears as an initial state
[g(E)], whereas the neutrinos in the final state have en-
ergy E

⌫

= �+E and their distribution function appear
thus as Pauli-blocking factor g

⌫

(�E��) = 1�g
⌫

(E+�).
The reaction rate for protons, that is �

p!n

, is obtained
by the simple replacement � ! ��, which amounts to
�+ ! �

�

. We give it for completeness

�
p!n

= �
p!n+e

+ �
p+e!n

(82)

= K

Z
1

0

p2dp[�
�

(E) + �
�

(�E)] . (83)

Similarly the second term corresponds to the reverse pro-
cesses (68a) and (68b) added since the electron distribu-
tion function is always in an initial state [g(E)], and the
neutrino is in the initial or final state depending on the
sign of E

⌫

= �E +�. The first term corresponds to the
reverse process (68c) with the positron always in the final
state [g(�E) = 1� g(E)] and the neutrino always in the
initial state [g

⌫

(E +�)].
Finally, note that using

g(�E) = 1� g(E) = eE/T g(E) , (84)

we get in the case of thermal equilibrium between neu-
trinos and the plasma (that is when T

⌫

= T )

�+(E) = e�/T�
�

(�E) . (85)

This implies that if neutrinos have the same tempera-
ture as the plasma, the reaction rates satisfy the Born
approximation detailed balance relation

�
p!n

= e��/T�
n!p

. (86)

It is important that detailed balance be satisfied in
our estimation of the weak rates since it is at the origin
of the enforcement of the thermodynamical equilibrium
between neutrons and protons. When adding corrections
to the Born approximation weak rates in the form � ⌘
�� + �, then the relative corrections of the forward and
reverse rates must be equal, that is

��
p!n

�
p!n

=
��

n!p

�
n!p

, (87)

in order that the corrected rates also satisfy the detailed
balance property (86). When estimating the corrections
to the Born rates, we systematically discuss how this de-
tailed balance is kept valid with the corrections and we
highlight our differences on that crucial property with
previous literature.

C. Calibration from free neutron decay rate

The interaction rates are proportional to the factor K
defined in Eq. (81). It is proportional to

G2
W

⌘ G2
F

cos2(✓C) (88)

where G
F

is the Fermi constant and ✓C is a CKM angle,
and also to 1+3g2

A

where g
A

is the axial current constant
for the nucleons (see App. D for numerical values). Given
the uncertainty in these parameters, it is more precise to
obtain K from the free neutron decay11. Indeed, at low
temperatures, �

n!p

should be equal to the free neutron
decay rate 1/⌧

n

. The low temperature corresponds to
(77) restricted to E

⌫

< 0, that is

1

⌧
n

= �
n!p

(T = 0) = K

Z p
�2

�m

2

e

0

p2E2
⌫

dp , (89)

with E
⌫

=
p
p2 +m2

e

��. We define

�0 ⌘ m�5
e

K�1�
n!p

(T = 0) (90)

so K is obtained from the free neutron decay rate as

K = 1/(⌧
n

�0m
5
e

) (91)

instead of Eq. (81). At the Born approximation level,
that is using �

n!p

in Eq. (90), �0 takes the value (Bern-

11 The relative precision on cos(✓C) and gA are respectively 2.0 ⇥
10

�4 and 1.8 ⇥ 10

�3. If ⌧n was to be obtained theoret-
ically from these constants, then its uncertainty �⌧n/⌧n '
2� cos(✓C)/ cos(✓C) + 1.66�gA/gA would be of order 3 ⇥ 10

�3

which is larger than the experimental uncertainty which is of or-
der 1.0 ⇥ 10

�3. However improvements in the measurements of
gA by a factor 3 would make this direct estimation of ⌧n com-
petitive.



17

stein et al., 1989)

�̄0 ⌘ m�5
e

Z p
�2

�m

2

e

0

p2E2
⌫

dp

=
p
�̄2 � 1

✓�8� 9�̄2 + 2�̄4

60

◆
+
�̄

4
arccosh �̄

' 1.63609, (92)

where �̄ ⌘ �/m
e

.

D. Neutron abundance and freeze-out

It is enough to consider the weak rates in the Born ap-
proximation to estimate the freeze-out temperature. The
Born rates are plotted in Fig. 11 together with the Hub-
ble rate. A first estimation of the freeze-out temperature
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FIG. 11 �. Continuous line : Upper red curve is n ! p rate
and lower blue curve is p ! n rate . Dashed line : Hubble
rate.

consists in noting that expansion overcomes both rates
for T

F

' 8 ⇥ 109K which we can take as the freeze-out
temperature.
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FIG. 12 Black continuous line : numerical solution. red
dashed lines : solutions (95) for p = 0, 1, 2. The vertical
bar corresponds to TF = 0.8MeV

We can justify this estimation by finding an approxi-
mate solution for the neutron abundance. Its evolution,

in absence of nuclear reactions, is dictated by

Ẋ
n

= X
p

�
p!n

�X
n

�
n!p

. (93)

Using X
p

= 1�X
n

, we get

X
n

=
�
p!n

⇤
� 1

⇤
Ẋ

n

, ⇤ ⌘ �
p!n

+ �
n!p

. (94)

We obtain tight-coupling solutions to order m by recur-
sive replacement of X

n

and we get

X(m)
n

=

mX

k=0

✓�1

⇤

d

dt

◆
k

�
p!n

⇤
. (95)

m = 0 corresponds to the pure thermodynamical equi-
librium and higher order corrections are due to the fact
that the neutron abundance has less and less time to ap-
proach this equilibrium value. This expansion is equiva-
lent to Bernstein et al. (1989, Eq. 2.8). We can estimate
the freeze-out temperature, that is the temperature at
which weak interactions fail to maintain the thermody-
namical equilibrium value, by computing the tempera-
ture for which the first correction is of order of the equi-
librium value, that is when |X(1)

n

�X
(0)
n

| = X
(0)
n

. Assum-
ing that the neutrino temperature does not differ signifi-
cantly from the plasma temperature before freeze-out, we
can use Eq. (86) to estimate this condition which reads

H
Q

T

eQ/T

1 + eQ/T

= ⇤ . (96)

We find T
F

' 8.9 ⇥ 109K ' 0.77MeV and replacing in
the thermodynamical equilibrium abundance we get

XF

n

⌘ X(0)
n

(T
F

) ' 0.156 . (97)

Finally, another estimation consists in determining vi-
sually when the neutron abundance is only affected by
beta decay. In Fig. 3, this leads to T

F

' 3.3 ⇥ 109 K '
0.28MeV and XF

n

' 0.17.
After the freeze-out, the neutron abundance is only

affected by the neutron beta decay. The nucleosynthe-
sis starts approximately when T < TNuc = 0.078MeV,
or 0.9 GK (see § V.B) corresponding to roughly tNuc =
200 s. The neutron abundance when the nucleosynthesis
starts is thus approximately given by

X
n

(TNuc) = XF

n

exp

✓
� tnuc � t

F

⌧
n

◆
⇡ 0.13 . (98)

E. Radiative corrections at T = 0

1. Standard computation

Radiative corrections at T = 0 correspond to two types
of corrections (Abers et al., 1968; Dicus et al., 1982; Ker-
nan, 1993; Sirlin, 1967). First the radiative corrections
per se, that is for which a virtual photon is emitted and
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absorbed inside the interaction and which interfere with
the lowest order or Born diagram. Hereafter we call these
pure radiative corrections and the relevant diagrams in
the infinite nucleon mass limit are depicted in Fig. 13 (see
also Ivanov et al. (2013, App. C)). As shown in the sem-
inal article by Sirlin (1967), the other diagrams involving
virtual photons12 can be reabsorbed in the redefinitions
of G

F

and g
A

.
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FIG. 13 Born diagram and virtual photon radiative correc-
tions.

Second it also contains the corrections due to the emis-
sion of real photon (Abers et al., 1968, Fig 2e,2f). These
processes are generically called bremsstrahlung (BS), and
in the infinite nucleon mass approximation only the emis-
sion from the electron line (Fig. 14a) contributes.

W

n

⌫

p+

e�

(a)

W

n

⌫

p+

e�

(b)

FIG. 14 Bremsstrahlung (left) and absorption (right).

It is necessary to handle these two types of corrections
simultaneously, because each of these contributions con-
tains an infrared divergence in the photon momentum.
But as is well known, when both are considered, these
divergences exactly cancel provided they are correctly
regularized. The usual procedure consists in letting the
photon have a mass for the computation of each type
of correction, and then noticing that the log-divergences

12 These extra diagrams correspond first to a virtual photon ex-
change between the electron and the gauge boson, and between
the electron and the neutron (Sirlin, 1967, Fig. 1), and second
to a virtual photon exchange between the proton and the gauge
boson and between the proton and the neutron (Sirlin, 1967, Fig.
3).

which appear are exactly opposite, leading to a finite re-
sult in the limit m

�

! 0 (Abers et al., 1968); (Ivanov
et al., 2013, App. B). These radiative corrections are
very well understood for the neutron beta decay (Abers
et al., 1968; Czarnecki et al., 2004; Marciano and Sirlin,
2006; Sirlin, 1967). The main result is that radiative cor-
rections can be taken into account by a multiplicative
factor whose expression involves Sirlin’s universal func-
tion (Sirlin, 1967, Eq. 20b). This was subsequently re-
fined mainly to improve the expression of the high energy
cut-off which was related to the mass of the vector boson
once weak interactions were properly understood, and we
use Czarnecki et al. (2004) as the most accurate account
on this issue.

A careful analysis however indicates that only pure ra-
diative corrections take a universal form which can be
used for all the reactions (68). They are given by Abers
et al. (1968, Eq. 6.2) and depend only on the electron
velocity � = p/E 13. The total corrections for the neu-
tron beta decay include also the bremsstrahlung (Abers
et al., 1968, Eq. 6.6) and these are computed specifically
for the neutron beta decay, with a maximum photon en-
ergy being �� E.

Hence, the radiative corrections for the reactions (68)
should in principle be recomputed to take into account
the correct bremsstrahlung corrections for each reaction.
However it proves much more convenient to temporar-
ily forget about this issue and assume that the radiative
corrections computed for the neutron beta decay can be
used without modification for all weak reactions. We
postpone the correct treatment of bremsstrahlung to the
next section.

Note that even for the neutron beta decay this approx-
imation amounts to ignoring the Pauli-blocking effects of
the neutrinos which is modified by the energy subtracted
from the photon. In this approximation, the maximum
energy of emitted photons is chosen to be the maximum
energy of the neutrino when in the final state. For the
neutron beta decay this is �� E, but for reaction (68c)
this is �+ E.

Under this assumption, our method to compute the
radiative correction at T = 0 follows exactly the ap-
proach by Dicus et al. (1982) and subsequent literature
based on it, for which the same assumption was implic-
itly made. The radiative corrections can be separated
between a Coulomb correction, which accounts for the
motion of the electron in the Coulomb field of the pro-
ton, and the other corrections. It is customary to fac-
torize the Coulomb corrections as they can be taken into
account multiplicatively by the Fermi function14. The
diagram 13c corresponds to the interaction between the

13 Even though they have been derived for neutron beta decay,
they remain formally identical for other reactions because they
are related by crossing symmetry under which � is left invariant.

14 This amounts to including some radiative corrections which are
higher order in ↵FS.
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proton and the electron, and since this is accounted for
by the Fermi function, its Coulomb part is subtracted so
as to avoid double counting.

The non-relativistic Fermi function is

F (E) ⌘ y

1� e�y

, y ⌘ 2⇡↵FS

�
� =

p

E
. (99)

The relativistic Fermi function is given by (Ivanov et al.,
2013, Eq. 5)

F (E) ⌘ 4
�
1 + �

2

�
(2r

p

m
e

�)2�

�2(3 + 2�)

e⇡↵FS

/�

(1� �2)�

⇥
�����
✓
1 + � + i

↵FS

�

◆����
2

(100)

where � ⌘ p
1� ↵2

FS � 1 and r
p

is the proton radius. In
practice the non-relativistic function is enough as long as
we do not focus on a precision on Y

(4)
P better than unity.

The modification on light elements yields is evaluated in
§ V.C and we find�Y

(4)
P ' 0.3 when using the relativistic

Fermi function (see also Smith and Fuller (2010) which
reports �Y

(4)
P ' 0.4). In this work we use the relativistic

Fermi function whenever it is not specified differently.
The relative difference between the two Fermi functions
is plotted in Fig. 15 and it remains smaller than 0.06%.
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FIG. 15 Relative difference between the relativistic and the
non-relativistic Fermi function.

Considering the contributions of Coulomb and other
radiative corrections, the Born rates are modified as

�RC0
n!p

= K

Z
1

0

p2dp[F+(E)R(E, |�� E|)�+(E)

+F+(�E)R(E,�+ E)�+(�E)] .(101)

The Coulomb corrections occur only if both the electron
and the proton are either in the initial or the final state.
We have thus defined the compact notation

F
±

(x) =

(
F (|x|) if ± x > 0

1 if ± x  0 ,
(102)

which ensures that this is the case.
The factor R(., .) takes into account pure radiative cor-

rections and bremsstrahlung (but only in the form of neu-
tron beta decay in vacuum as evoked above) and is of the
form

R(E, kmax) ⌘ 1 +
↵FS

2⇡
C (E, kmax) . (103)

The function C is given in Eq. (B30). However we find
it better to use the most recent form (B35) for the ra-
diative correction R(E, kkmax) which amounts to resum-
ming higher order corrections, since it is more accu-
rate (Czarnecki et al., 2004; Esposito et al., 1999). We
show in § V.C that it modifies the 4He production by
�Y

(4)
P ' 0.2.

The rate for protons is obtained by the replacement
� ! �� in (101), that is from �+ ! �

�

, together
with the replacement F+ ! F

�

to ensure that the Fermi
function appears when the proton and the electron are
on the same side. Hence it is given by

�RC0
p!n

= K

Z
1

0

p2dp[F
�

(E)R(E,E +�)�
�

(E)

+F
�

(�E)R(E, |E ��|)�
�

(�E)] . (104)

Given our choice to take into account the bremsstrahlung
corrections of neutron beta decay for all processes and our
choice for the maximum energy of emitted photons kmax,
then by construction the detailed balance property (86)
is preserved using again the property (85), that is we get
by construction

�RC0
p!n

= e��/T�RC0
n!p

. (105)

The relative variations of the weak rates from radiative
corrections are plotted in Fig. 16.

The radiative corrections also affect the free decay rate
of neutrons and thus the value of �0 which is increased
to

�RC0
0 ⌘ m�5

e

Z p
�2

�m

2

e

0

F (E)R(E,E
⌫

)p2E2
⌫

dp

' 1.75767 , (106)

with E
⌫

= �� E.

2. Bremsstrahlung corrections

It was argued in Brown and Sawyer (2001) that the de-
tailed balance relation (86) should hold even including ra-
diative corrections at order ↵FS, as long as we work in the
infinite nucleon mass approximation. Hence the deriva-
tion of radiative corrections due to interactions with the
surrounding bath of particles, which are usually called
finite-temperature corrections, must satisfy this detailed
balance relation. These corrections correspond to real
photon processes which are the absorption diagram 14b
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FIG. 16 ��/� due to Coulomb and null-temperature radiative
corrections.Red continuous line : n ! p. Blue dashed line :
p ! n. The relative variations are equal at high temperature,
when T⌫ ' T , and the detailed balance is still satisfied when
including these corrections. This plot reproduces Lopez and
Turner (1999, Fig. 8).

together with the stimulated emission part of 14a, and
to mass shift effects illustrated by the diagrams 17.

The full computation of the finite temperature radia-
tive corrections was carefully carried out in Brown and
Sawyer (2001), following the guideline of detailed balance
and with a detailed discussion on misconceptions in ear-
lier efforts (Cambier et al., 1982; Chapman, 1997; Dicus
et al., 1982; Esposito et al., 2000a; Sawyer, 1996) concern-
ing the so called wave-function renormalization. However
the authors of Brown and Sawyer (2001) reported that
when combining their results with the null-temperature
radiative corrections discussed in the previous section,
the rates failed to satisfy the detailed balance relation.
We argue that this is because bremsstrahlung was in-
consistently taken into account. As long as we take into
account only null-temperature radiative corrections, it is
reasonable to consider that the bremsstrahlung effects
are those of the neutron beta decay for all reactions, so
as to maintain the detailed balance relation (86). This is
what has been done in the previous section.

Strictly speaking it is a mistake because part of the
null-temperature corrections are left out. However it is
the most reasonable procedure if one ignores the full de-
tails of the finite-temperature radiative corrections. Here
since we take into account the interactions with the bath
of photons and electrons in the finite temperature ra-
diative corrections, we must also correct for this ad-hoc
and incorrect treatment of bremsstrahlung in the previ-
ous section. The details are reported in appendix B.7

and the result is that we need to add the corrections

��BS
n!p

=
↵FSK

2⇡

Z
1

me

dE
⇥
g(�E)F+(E)�BS

n!p+e

+g(E)F+(�E)�BS
n+e!p

⇤
(107a)

��BS
p!n

=
↵FSK

2⇡

Z
1

me

dE
⇥
g(�E)F

�

(E)�BS
p!n+e

+g(E)F
�

(�E)�BS
p+e!n

⇤
, (107b)

with the definitions (B48-B49). Note that we have added
the Fermi factor contribution for consistency with the
rest of the radiative corrections. Their temperature de-
pendence is plotted in Fig. 18. Even though these BS
corrections correspond to null temperature radiative cor-
rections, unless specified we include them as part of the
finite temperature radiative corrections discussed in the
next section, since they must be added only to main-
tain consistently the detailed balance relation when fi-
nite temperature radiative corrections are included. We
report in § V.C that these BS corrections are responsi-
ble for a non-negligible modification of 4He production
which is �Y

(4)
P ' �3.1.

F. Finite temperature radiative corrections

The finite-temperature corrections can be separated
in three parts. Using a notation similar to Brown and
Sawyer (2001), these three contributions are noted

�T
n!p

⌘ ��,T
n!p

+ ��E,T

n!p

+ �ep+ee,T

n!p

, (108)

and similar notation for the p ! n processes.
The first part is the stimulated emission and absorp-

tion of real photons (Brown and Sawyer, 2001, Eq. 5.9),
see Fig. 14. When combined with a contribution coming
from the diagram 17a it gives

��,T
n!p

=
↵FSK

2⇡

Z
1

0

dk

k

Z
1

me

dE ⇥ (109a)
�
A(E, k)

⇥
g(�E)e�A

+(E, k) + g(E)e�A

+(�E, k)
⇤

� kB(E, k)
⇥
g(�E)e�B

+(E, k) + g(E)e�B

+(�E, k)
⇤ 

��,T
p!n

= ��,T
n!p

��
e�A/B
+

!e�A/B
�

(109b)

with

e�A

±

(E, k) ⌘ e�
±

(E � k) + e�
±

(E + k)� 2e�
±

(E)(110)
e�B

±

(E, k) ⌘ ± [e�
±

(E � k)� e�
±

(E + k)] . (111)

It does not satisfy the detailed balance relation. However
when the bremsstrahlung corrections (107) are added the
sum does satisfy it. This crucial point is detailed in App.
B.7.c.

The second part of finite temperature radiative cor-
rections is made of the electron energy shift (Brown and
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FIG. 17 Feynman diagram interpretation of finite tempera-
ture radiative corrections, that is of the effect of the interac-
tions with the surrounding plasma.

Sawyer, 2001, Eq. 5.13), and it originates partly from
the diagrams 17. It reads

��E,T

n!p

= �2↵FSK

⇡

Z
dp [�+(E) + �+(�E)] (112a)
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= ��E,T
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�
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, (112b)

where E0 ⌘
q
p02 +m2

e

.
The third and last part is made of proton-electron in-

teractions, which is a finite temperature correction to the
diagram 13c, and electron self-energy and wave-function
renormalization (Brown and Sawyer, 2001, Eq. 5.10),
which come partly from the diagram 17b. It reads

�ep+ee,T

n!p

=
↵FSK

2⇡

Z
1

me

dE [�+(E) + �+(�E)]

⇥
Z

1

me
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E
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2 � E2
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2
+ E2) ln
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(113a)

� E0

E
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e

(EE0 � pp0)2 �m4
e

��

�ep+ee,T

p!n

= �ep+ee,T

n!p

��
�

+

!��
. (113b)

The second and third contributions [Eqs. (112) and (113)]
satisfy manifestly the detailed balance relation thanks to
the property (85). Furthermore, they can be recast in
a form which does not involve principal parts of inte-
grals and are thus better suited for numerical integration
(Brown and Sawyer, 2001, Eq 5.15)]. We report it in
App. B.8.

The modification of the rates from these finite temper-
ature corrections is plotted in Fig. 18. We also show the
BS corrections and the sum of the two. By construction
for the sum, it can be checked that whenever the neutri-
nos have the same temperature, that is for T > 1010 K,
the relative variation of the rates are equal and the de-
tailed balance property (86) is preserved.
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FIG. 18 ��/� from finite-temperature radiative corrections.
Continuous line : n ! p. Dashed line : p ! n. The red
lines are the corrections of Brown and Sawyer (2001) in very
good agreement with their Fig. 2. In the thin continuous red
line, the n + ⌫̄ + e+ ! p + � has been added to the n ! p
corrections, as advocated in Brown and Sawyer (2001) and
we check that it results in a very small modification, as also
found in their Fig. 3, and most notably it is insufficient to sat-
isfy detailed balance. The blue lines are the Bremsstrahlung
corrections (107). Finally the green lines are the total cor-
rections, that is the corrections of (Brown and Sawyer, 2001)
with all bremsstrahlung corrections added. We check that
above T > 1010K, that is when T⌫ = T , the relative vari-
ations of the total corrections are equal, implying that the
detailed balance is satisfied.

G. Finite nucleon mass corrections

It is not fully correct to consider that nucleons have
an infinite mass. Indeed, the typical energy transfer in
weak-interactions to electrons and neutrinos is of the or-
der of the mass gap � ' 1.29MeV, which is 1.4 ⇥ 10�3

smaller than the nucleon mass. It corresponds to a tem-
perature of 1.5⇥1010K which is not much larger than the
freeze-out temperature. In the infinite nucleon mass ap-
proximation, we have thus neglected factors of the type
E

⌫

/m
N

, E
e

/m
N

or �/m
N

(where m
N

is the average nu-
cleon mass m

N

⌘ (m
p

+ m
n

)/2) which represent order
10�3 corrections with respect to the leading one around
1010K and even larger corrections at higher temperature.
Our method consists in expanding the full reaction rate
in power of a small parameter ✏ ⌘ T/m

N

. Terms of
the type E

⌫

/m
N

or E
e

/m
N

are obviously of order ✏ and
terms of the type �/m

N

are also treated as being of or-
der ✏. Our implementation of the finite mass corrections
consists in including all the terms up to order ✏, but ne-
glecting terms of order ✏2. This means that we neglect
terms whose importance is of order 10�6 which is justified
given our goal in precision.

If we ignore radiative corrections at null temperature,
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these corrections take the form

��FM
n!p

= K

Z
1

0

p2dp (114a)
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+ (�E, g
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)]
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Z
1
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p2dp (114b)

⇥ [�FM
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(E,�g
A

) + �FM
�

(�E,�g
A

)] ,

and the functions �FM
±

are reported in App. B.3. How-
ever since finite mass effects and radiative corrections can
be rather important, they cannot be added linearly and
one should also include radiative corrections inside finite
nucleon mass corrections15. Hence the corrections to the
rates are

��RC+FM
n!p

= K

Z
1

0

p2dp (115a)

⇥ [F+(E)R(E, |E ��|)�FM
+ (E, g
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+F
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(�E)R(E, |E ��|)�FM
�

(�E,�g
A

)] .

The expression for �FM
±

(E, g
A

) is given in App. B.3. The
relative modifications to the rates are depicted in Fig. 19.
It is not obvious that the finite nucleon mass corrections
preserve the detailed balance relation. In fact when in-
cluding these corrections the detailed balance ratio be-
tween neutrons and protons is given by Eq. (A15). Since
this must also be the ratio �

p!n

/�
n!p

we define ↵ fol-
lowing Lopez et al. (1997) as

�
p!n

+ ��FM
p!n

�
n!p

+ ��FM
n!p

⌘ e�
�

T


1 + (1 + ↵)

3�

2m
N

�
. (116)

↵ characterizes the deviation from the detailed balance
equality and must vanish if detailed balance with finite
mass corrections is satisfied. It is plotted in Fig. 20. We
observe that for T < m

e

deviations from detailed balance
occur because the neutrino temperature is not equal to
the plasma temperature. Hence we have also plotted ↵
with T

⌫

= T artificially enforced. At low temperature,
that is below T = m

e

, detailed balance is very well satis-
fied because the parameter ✏ = T/m

N

is small. At higher
temperatures we see deviations, and this comes from the

15 In principle one should rederive all radiative corrections including
consistently all finite nucleon mass effects. This is absent from
the literature, and is certainly a daunting task. Our procedure
consists in postulating that the multiplicative factor introduced
by radiative corrections also multiplies the finite nucleon mass
correction as in Cooper et al. (2010); Czarnecki et al. (2004)
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FIG. 19 |��/�̄| from finite nucleon mass effects. Red contin-
uous line : n ! p. Blue dashed line : p ! n. This plot is to
be compared with Lopez and Turner (1999, Fig. 9).
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FIG. 20 ↵ defined in Eq. (116). Red continuous line : With T⌫

differing from T when electron-positron annihilations occur.
Blue dashed line : With T⌫ = T artificially enforced. This
plot is to be compared with Lopez et al. (1997, Fig. 4).

fact that we considered only corrections which are first
order in ✏.

Finally, the total neutron rate at null temperature is

�
n!p

(T = 0) = �RC0
n!p

(T = 0) + ��FM
n!p

(T = 0) , (117)

that is there is a correction to �0 due to finite nucleon
mass effects. If Eq. (114) is used, this is

��FM
0 = m�5

e

Z p
�2

�m

2

e

0

p2dp �FM
+ (E, g

A

)
��
T=0

(118)

combined with Eq. (B26), and we obtain ��FM
0 '

�3.3828 ⇥ 10�3, that is ��FM
0 /�̄0 ' �0.002068. This is

in agreement with the result ��FM
0 /�̄0 ' �0.00206 found

in Lopez et al. (1997) with an exact method to compute
the finite nucleon mass effects. We recomputed this ra-
tio with the method of Lopez et al. (1997, Eq. 20) and
found it is more precisely given by �0.0020637. The tiny
difference with our value ��FM

0 /�̄0 is only due to the fact
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that we kept only first order finite nucleon mass correc-
tions, that is we kept terms of order ✏, and ignored terms
of higher order ✏2. Furthermore, if we also include ra-
diative corrections, that is if we use ��RC+FM

n!p

instead of
��FM

n!p

in Eq. (117), hence corresponding to an extra fac-
tor F (E)R(E,� � E) in the integrand of Eq. (118), we
get ��FM

0 ' �3.6201 ⇥ 10�3. These values are summa-
rized in table II.

H. Weak magnetism

We show in B.4 that the effect of weak magnetism is
exactly similar to the finite mass correction which arises
from the coupling between the axial current and the vec-
tor current. This has been noticed earlier by Seckel
(1993). That is, it brings corrections which are exactly
of the same type as those proportional to g

A

in Eq. (73).
The weak magnetism corrections amount to a simple re-
definition of the constant factors (B11) as

c
LL

⌘ (1 + g
A

)2

4
+ fwmgA (119a)

c
RR

⌘ (1� g
A

)2

4
� fwmgA (119b)

c
LR

⌘ g2
A

� 1

4
(119c)

when computing the finite nucleon mass corrections. The
associated couplings (B24) must be replaced accordingly.

The weak magnetism, if considered independently of
radiative corrections, induces no modification of �0, at
least up to the order ✏ of our finite nucleon mass expan-
sion, as explained in appendix § B.4. However when this
is combined with the radiative corrections, this brings a
residual increase to ��FM

0 ' �3.6333 ⇥ 10�3. Summing
this value of the finite nucleon mass corrections (which
includes weak-magnetism and which is coupled to radia-
tive corrections), to the radiative corrections themselves
(106) leads to

�RC+FM
0 = �RC

0 + ��FM
0 ' 1.75474 . (120)

This is to be compared with Cooper et al. (2010) where
it is reported �0 ' 1.03887 ⇥ 1.6887 ' 1.75434, a
modest 0.023% smaller than the value (120). This
close agreement can also be seen by noting that
(~2⇡3)/(m5

e

c10G2
F

�RC+FM
0 ) ' 4907.4 s, which is very

close to the value 4908 s given by Czarnecki et al. (2004,
Eq. 17) or the refined value 4908.7s of Marciano and
Sirlin (2006, Eq. 18).

I. Effect of incomplete neutrino decoupling

Neutrino heating also induces modification of the weak
rates. In our thermal approximation of the incomplete
neutrino decoupling (see § II.F), this is taken into ac-
count by putting the effective neutrino temperature de-
fined in Eq. (64) in all expressions for the weak rates.

TABLE II Value of ��FM
0 depending on the effects considered.

RC FM WM FM+WM

No �3.3828⇥ 10�3 0 �3.3828⇥ 10�3

Yes �3.6201⇥ 10�3 �0.0132⇥ 10�3 �3.6333⇥ 10�3

This amounts to assuming that all neutrinos receive the
same share of the heating and ignoring the spectral dis-
tortions. We postpone a more detailed discussion on
the effect of incomplete neutrino decoupling on the weak
rates and thus the 4He production in § V.C.5. Briefly, the
most notable effect of incomplete neutrino decoupling is
to affect the time-temperature relation, and this is also
the case from QED corrections in the plasma but the ef-
fect is much smaller. Indeed, since for a given plasma
temperature, neutrino heating induces an increase of the
total energy density, the Hubble rate is increased and so
is the rate of variation dT/dt. In practice this means
that the Universe is younger when nucleosynthesis starts
around TNuc = 0.078MeV and the neutron beta decay
results in a lower loss of neutrons, and thus a higher pro-
duction of 4He at the end of the BBN. This is the clock

effect explained in Dodelson and Turner (1992); Fields
et al. (1993).

J. Total correction to the weak rates

The total weak reaction rates are given by summing
the various effects [Eqs. (101), (108), (107) and (115)],
that is

�
n!p

= �RC0
n!p

+ �T
n!p

+ ��BS
n!p

+ ��FM
n!p

, (121)

and a similar sum for p ! n processes. The constant K
involved in all contributions is then calibrated on neu-
tron beta decay from �0 given by Eq. (120) replaced in
Eq. (91). We recall that when including weak-magnetism
in finite nucleon mass effects, that is in Eqs. (115), one
must use the constants (119) in (B24), so as to evaluate
the �FM

±

given by Eqs. (B23).
The size of all corrections relative to the Born approx-

imation is plotted in Fig. 21. Around T ' 3.3⇥ 109K for
which the neutron are only subject to beta decay, we find
��

n!p

/�̄
n!p

' �0.023. From the rule (7) this should
lead to �Y

(4)
P ' 42, quite in nice agreement with the

total correction �Y
(4)
P ' 44.7 that we report in § V.C.

IV. NUCLEOSYNTHESIS

Once the weak interaction rates are determined and
computed with great precision, it is possible to solve for
the nucleosynthesis by adding the effect of nuclear re-
actions which form nuclei. Hence we need to build the
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FIG. 21 Total relative rate corrections, including all the ef-
fects discussed, ���/�. n ! p in red continuous line and
p ! n in blue dashed line. The vertical line corresponds to
TF = 0.8MeV.

differential system which rules the evolution of all (neu-
trons, protons and main isotopes) abundances. We de-
scribe how this is performed in this section and turn to
report and discuss the numerical results obtained for final
abundances in § V.

We remind that, for a general reaction of the type

A+ b ! C + d (122)

the conventional notation in experimental nuclear physics
is A(b, d)C to keep in mind that A is the target nucleus
at rest, b is the projectile from the beam, d is the outgo-
ing, detected, particle and C is left generally undetected,
possibly not escaping the target. Hence, usually, but not
always, A and C are the heaviest nuclei. The same nota-
tion is used in theoretical nuclear physics, regardless of
the experimental details.

A. Thermonuclear reaction rates

We summarize here a few results, to be used in this
review, and refer to (Angulo et al., 1999; Clayton, 1983;
Iliadis, 2007; Longland et al., 2010) for a detailed treat-
ment. It is assumed that the medium is in local ther-
modynamical equilibrium so that the distribution of ion
velocities/energies follows a Maxwell–Boltzmann distri-
bution (see § A.3),

�MB(v)vdv =

r
8

⇡m

1

(k
B

T )3/2
e
�

E

kBT EdE. (123)

It is understood that for the distribution of relative ve-
locities between two reacting nuclei, m is their reduced
mass. In such conditions, one defines the thermonuclear
reaction rate by

N
A

h�vi = N
A

Z
1

0

�(v)�MB(v)vdv (124)

in cm3s�1mole�1 units where N
A

is Avogadro’s number
(mole�1). For reactions involving charged particles, since

the kinetic energies are below the Coulomb barrier, the
energy dependence of the cross section is dominated by
the tuneling effect through the barrier. The Coulomb
plus centrifugal barrier penetration probability is given
by

P
`

(E) =
kR

F 2
`

(⌘, kR) +G2
`

(⌘, kR)
(125)

where F
`

and G
`

are the Coulomb functions (Fröberg,
1955), k =

p
2mE/~ is the wave number, ` the orbital

angular momentum and

⌘ ⌘ Z1Z2e
2

~v (126)

the Sommerfeld parameter. To account for this strong
energy dependency of the cross section, it is convenient
to introduce the astrophysical S–factor:

�(E) ⌘ S(E)

E
exp (�2⇡⌘) (127)

which, in the absence of resonances removes most of the
energy dependence. A resonance, associated to a nuclear
level in the compound nucleus formed by the fusion of
the projectile and target nuclei, induces a strong but lo-
calized variation of the S–factor. Hence, the presence of
a resonance can increase by several orders of magnitude
a reaction rate.

B. General form

The evolution of abundances, defined in Eq. (1), is
deduced from the evolution of number densities found
from Eq. (10). Since both nuclear and weak reactions
preserve the number of baryons, we obtain

dnb

dt
+ 3Hnb = 0, (128)

that is baryon volume density is only affected by dilution
and nb / 1/a3.

For a given isotope i, the evolution of the volume den-
sity depends on the reaction rates in which it is involved.
It is of the form

dn
i

dt
+ 3Hn

i

= J
i

, (129)

where J
i

is the net rate of evolution of number density
due to all nuclear reactions. A decay of species i (i ! . . . )
and a decay reaction in which species i is the end product
(j ! i+ . . . ) contribute as

J
i

� �n
i

�
i !...

+ n
j

�
j!i+...

(130)

where the � are the decay rates (usually given in s�1). A
two-body reaction of the type i + j $ k + l contributes
instead as

J
i

� n
k

n
l

�
kl!ij

� n
i

n
j

�
ij!kl

. (131)
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with

�
ij!kl

⌘ h�vi
ij!kl

. (132)

Since both the individual n
i

and the total nb are af-
fected similarly by expansion, it proves much simpler to
study directly the evolution of abundances defined as 16

Y
i

⌘ n
i

nb
, (133)

since one finds

Ẏ
i

= C[Y
i

] , C[Y
i

] ⌘ J
i

nb
. (134)

Obviously the decay reactions considered in Eq. (130)
contribute as

C[Y
i

] � �Y
i

�
i !...

+ Y
j

�
j!i+...

. (135)

However two-body reactions contribute as

C[Y
i

] � Y
k

Y
l

�
kl!ij

� Y
i

Y
j

�
ij!kl

, (136)

where we related the rates for abundances to those of
number densities through

�
ij!kl

⌘ nb�ij!kl

. (137)

Eq. (131) is straightforwardly generalized to reactions
with more bodies. In full generality, and without re-
stricting to decay reactions or two-body reactions, the
evolution of abundances takes the form (Fowler et al.,
1967; Wagoner, 1969)

Ẏ
i

1

=
X
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...ip,j1...jq

N
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0
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A , (138)

where N
i

is the stoichiometric coefficient of species i in
the reaction and with the relation between abundance
rates and number density rates given by

�
i

1

...ip!j

1

...jq = n
(Ni

1

+···+Nip )�1

b �
i

1

...ip!j

1

...jq . (139)

Note that for a decay reaction �
i!...

= �
i!...

.
In practice the reaction rates for many-body

reactions are given as tables for the quantities
N

(Ni
1

+···+Nip )�1

A

�
i

1

...ip!j

1

...jq , as detailed in App. C on
the steps required to deduce them from the nuclear
physics tables. Furthermore the rates are only given for
forward reactions. Indeed, since when there is nuclear
statistical equilibrium (NSE) reverse reactions should
balance with forward reactions, we can always relate the
reverse reactions to the forward reactions from the de-
tailed balance relation
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3

5
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(140)
where the NSE densities are given in Eq. (A22). Since
nuclear reactions in many-body reactions do not change
the nature of nucleons17, that is they conserve the num-
ber of protons and neutrons, then using the relation (139)

17 This is not the case for decay reactions but for these we neglect
the reverse reactions.

the reverse reactions are related to the forward reactions
by
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We check easily that we recover the particular cases
of Fowler et al. (1967, Eqs. 15, 18, 25). Hence the rela-
tion between forward and reverse reactions is of the form

�
j

1

...jq!i

1

...ip

�
i

1

...ip!j

1

...jq

= ↵

✓
T

109K

◆
�

exp

✓
� ⇥ 109K

T

◆
, (142)

which depends only on 3 constants. In practice, for a
given reaction, the forward reaction rate is tabulated for
various values of T or is approximated by an analytic
fit, and the constants (↵,�, �) needed to obtain the re-
verse reaction rate are also computed once for all from
Eq. (141) using the tabulated masses and spins of iso-
topes [we use the table nubase2016.asc described in
Audi et al. (2017)].

C. Nuclear network and reaction rates uncertainties

The nuclear reaction network used here has been fully
described in Coc et al. (2012): it includes 59 nuclides
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from neutron to 23Na (see table III), linked by 391 re-
actions involving neutrons, protons, deuterium, tritium
(3H), 3He and ↵–particles induced reactions, and 33 �-
decay processes. The complete list of reactions can be
found in Table 4 of Coc et al. (2012), together with the
references for the values of the reaction rates. Each of
these reactions is systematically supplemented (ij!kl)
by its reverse (kl!ij) whose rate is obtained as described
above, except for decay reactions whose rates are from
Audi et al. (2017).

This network is adapted to the prediction of the pri-
mordial abundances of the light elements, but also to the
calculation of the abundances of the 6Li, 9Be, 10B, 11B
and CNO isotopes. As listed in Table 4 of Coc et al.

(2012), reaction rates and their associated uncertainties
were taken primarily from Angulo et al. (1999); Descou-
vemont et al. (2004); Iliadis et al. (2010); Xu et al. (2013)
evaluations when available. For many reactions, in the
absence of sufficient experimental data, the rates come
from theory (TALYS code) (Goriely et al., 2008). An ex-
tensive sensitivity study, performed by Coc et al. (2012),
identified ten reactions that needed further analyses, and
it was followed by their re–evaluations (shown in bold-
face in Table 4 of Coc et al. (2012)). Finally, out of
these hundreds of reactions, the most important ones are
displayed in Fig. 22. They were identified in sensitiv-
ity studies, i.e. (Coc and Vangioni, 2010; Cyburt, 2004;
Nollett and Burles, 2000) for the light elements (4He, D,
3He and 7Li) and Coc et al. (2012); Coc et al. (2014) for
others and correspond to the main nuclear flow.

TABLE III Nuclides considered in the nuclear network.

HHHHHZ
N 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 n
1 H 2H 3H
2 3He 4He 5He 6He
3 6Li 7Li 8Li 9Li
4 7Be 8Be 9Be 10Be 11Be 12Be
5 8B 9B 10B 11B 12B 13B 14B 15B
6 9C 10C 11C 12C 13C 14C 15C 16C
7 12N 13N 14N 15N 16N 17N
8 13O 14O 15O 16O 17O 18O 19O 20O
9 17F 18F 19F 20F
10 18Ne 19Ne 20Ne 21Ne 22Ne 23Ne
11 20Na 21Na 22Na 23Na

Experimental uncertainties on YP are due to the
1H(n,�)2H, D(d,n)3He and D(d,p)3H reaction rates and
to the neutron lifetime. For these three reactions, one
finds (e.g. Coc et al., 2015; Cyburt, 2004)

�YP ⇡ (1.5⇥ 10�3)
�h�vi
h�vi , (143)

and �YP ⇡ 0.18�⌧
n

/⌧
n

from Eq. (7). Since the experi-
mental uncertainties are of the order of 10�2 for the rates
and 10�3 for the lifetime, they may all contribute to the
error budget.

12
C

13
C

11
C

12
B

11
B

10
B

9
Be

7
Be

8
Li

7
Li

6
Li

4
He

3
He

1
H

2
H

3
H

n

X

(p,γ)

(α,γ)

(β+)

(β-)

(n,γ)

(t,γ)

(α,n)

X

(n,p)

(d,n)

(d,p)

(d,γ)

(p,α)

(n,α)

(t,p)

(t,n)

(d,nα)

FIG. 22 Nuclear network of the most important reactions in
BBN (out of the 424) up to7Li (blue), including 6Li (green),
10,11B (light blue), 9Be (pink) and up to CNO (black). The
yellow arrows indicate the reactions that are now considered
as unimportant.

There are basically two methods for the experimental
determination of the neutron lifetime: detecting dying
neutrons i.e. their decay rate (“beam experiments") or
surviving neutrons after being left in a magnetic “bot-
tle" for a certain time. Both methods produce slightly
different results (see e.g. Fig. 8 in Young et al., 2014).
This is most probably due to different systematic uncer-
tainties but it might also be real and be explained by
an undetected decay into a dark sector (see e.g. Fornal
and Grinstein, 2018). Note that in that case it would
be the “bottle" results, corresponding to the surviving
neutrons counting, that would be important for BBN.
Hence, the value of the neutron lifetime has been revised
several times by the Particle Data Group (PDG) from
885.7±0.8 s (Amsler et al., 2008), used, e.g. in Coc and
Vangioni (2010), to 879.4±0.6 s resulting from an av-
erage of “bottle" experiments (Czarnecki et al., 2018),
slightly below the current PDG average (Patrignani and
Particle Data Group, 2016 and 2017 update) which is
880.2± 1.0 s. We use the average over post-2000 experi-
ments, 879.5 ± 0.8 s (Serebrov et al., 2017), which is ex-
tremely close to the average on bottle experiments, but
with more conservative errors.

The cross section of the 1H(n,�)2H reaction is obtained
from calculations in the framework of Effective Field The-
ory whose results are estimated to be reliable to within
1% error (Ando et al., 2006). Indeed, the few experimen-
tal information available for this cross section at BBN en-
ergies are in very good agreement with theory (see Fig. 1
in Coc (2013)).
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The D(p,�)3He, D(d,n)3He and D(d,p)3H reactions are
the main source of nuclear uncertainty for deuterium nu-
cleosynthesis while the two last one may affect the error
budget of YP. The relative variations of D/H are related
to the variation of these rates (see e.g. Coc and Vangioni,
2010) by

�(D/H)

D/H
= �0.32

�h�vid(p,�)3He

h�vid(p,�)3He

�(D/H)

D/H
= �0.54

�h�vid(d,n)3He

h�vid(d,n)3He

� 0.46
�h�vid(d,p)3H
h�vid(d,p)3H

so that to achieve the ⇠1% precision required by obser-
vations, one needs a similar precision on reaction rates.
None of them are affected by resonances, so that the
only questions are to model the slowly varying energy de-
pendence of the S–factors and precisely determine their
absolute scale. There are basically two options: either
empirically fit both the energy dependence and scale so
as to follow closely the data, or use theoretical energy
dependences from nuclear physics models and only de-
termine the absolute normalization. We adopted the
rates from the new evaluations of Iliadis et al. (2016) and
Gómez Iñesta et al. (2017) that use both the second op-
tion, together with Bayesian methods. The theoretical,
ab initio energy dependences were taken from Marcucci
et al. (2005) for D(p,�)3He and from Arai et al. (2011)
for D(d,n)3He and D(d,p)3H. The main difficulty to de-
termine the absolute scale of the S–factors is that one
needs to combine results from different experiments.

Coc et al. (2015), using traditional statistics found a
normalization factor of 0.9900±0.0368 for the D(p,�)3He
theoretical S–factor of Marcucci et al. (2005), while the
Bayesian analysis gives 1.000+0.038

�0.036 (Iliadis et al., 2016).
This shows that, starting from the same experimental
data and theoretical model, different statistical analyses
can lead to a, significant, 1% difference. Figure 23 dis-
plays the D(p,�)3He experimental S–factor normalised to
the theoretical model of Marcucci et al. (2005). The solid
horizontal line corresponds to the scaling of the theoret-
ical S–factor adopted by Coc et al. (2015). It is obvious
that experimental data are scarce at BBN energies and
slightly below the scaled S–factor (an overall 9% system-
atic uncertainty is not shown however), while the em-
pirical fit by Adelberger et al. (2011) or (Descouvemont
et al., 2004) follows closely, by construction, the experi-
mental data. Note also that Marcucci et al. (2016) have
included higher order terms in their ab initio model re-
sulting in a ⇡10% increase with respect with their previ-
ous result (Marcucci et al., 2005), this time well above the
experimental data (see Fig. 23). Using this new theoreti-
cal S–factor, one would obtain an additional reduction of
�(D/H) = -0.072⇥10�5 that nevertheless would vanish
if we rescale it (by 0.915) to fit experimental data. This
rate is thus a major source of uncertainty for D/H predic-
tion that should be resolved when the new experimental
data (Gustavino, 2017) from LUNA at the Gran Sasso
underground facility will be released, supplementing the

low energy ones (Casella et al., 2002).
In a similar way, the D(d,n)3He and D(d,p)3H rates

have been evaluated by (Coc et al., 2015) and later by
(Gómez Iñesta et al., 2017), using the ab initio S–factor
from Arai et al. (2011) scaled according to experimental
data. They found negligible differences in scaling factors:
0.959±0.010 and 0.955±0.010 for the traditional analysis
to be compared with 0.961±0.010 and 0.956±0.010 for
the Bayesian one. However, the theoretical work of Arai
et al. (2011) was focused on low energies and does not
correctly reproduce the D(d,n)3He and D(d,p)3H exper-
imental data above ⇡600 keV. It is highly desirable that
these calculations be extended up to ⇡2 MeV, to cover
the range of experimental data that encompass BBN en-
ergies.
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FIG. 23 Ratio of experimental (Bystritsky et al., 2008;
Casella et al., 2002; Ma et al., 1997; Schmid et al., 1997),
fitted (Adelberger et al., 2011; Coc et al., 2015; Cyburt, 2004;
Descouvemont et al., 2004) and new theoretical (Marcucci
et al., 2016) S–factors to the theoretical one (Marcucci et al.,
2005); the horizontal lines correspond to the theoretical S–
factor scaled according to Coc et al. (2015). (Systematic
uncertainties, i.e. global normalization errors, in the range
4.5–9% are shown in keys).

At the CMB deduced density, 7Li is produced through
the formation of 7Be via the 3He(↵, �)7Be reaction as 7Be
will decay much later to 7Li. The destruction of 7Be oc-
curs through the 7Be(n,p)7Li(p,↵)4He channel which is
limited by the scarcity of late time neutron abundance.
The most influential reaction rates on 7Li nucleosyn-
thesis are (e.g. Table 1 in Coc and Vangioni, 2010)
1H(n,�)2H (indirectly by affecting the neutron abun-
dance) and 3He(↵, �)7Be, but large deviations from their
nominal cross sections are strongly constrained by experi-
ments. Even though, there has not been new experimen-
tal data, since it is the major source of uncertainty on
the 7Li production, the 3He(↵, �)7Be reaction rate has
also been recently re-evaluated using Bayesian methods
(Gómez Iñesta et al., 2017) to scale the theoretical S–
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factor of Neff (2011). It was known that the 7Be(n,↵)4He
reaction could not help solve the lithium problem, but its
rate was highly uncertain and affected the 7Li production
at the few percent level. Until recently, the only pub-
lished rate came from an evaluation by Wagoner (1969)
based on very scarce data. We used either this rate or the
one obtained by TALYS (Goriely et al., 2008) in previous
publications (Coc et al., 2012; Coc et al., 2014). A new
re-evaluation (Hou et al., 2015) and experiments (Barba-
gallo et al., 2016; Kawabata et al., 2017) confirmed that
the 7Be(n,↵)4He rate is approximately, one order of mag-
nitude below the Wagoner one, rendering negligible the
effect this reaction. Hence, we now use the rate provided
by the n_TOF collaboration (Barbagallo et al., 2016)
that now has no impact on 7Be.

Lithium–6 nucleosynthesis is quite simple given that
it is only produced by the D(↵, �)6Li reaction and de-
stroyed by 6Li(p,↵)4He. While the rate of the latter has
been precisely known for a long time, the rate of the
former suffered from large uncertainties (Angulo et al.,
1999). This has now been solved, thanks to experiments
(Anders et al., 2014; Hammache et al., 2010), and theory
(Mukhamedzhanov et al., 2016).

Elements with atomic number above 7 are not expected
to be significantly produced in BBN, unless some of the
reaction rates involved in their production differ strongly
from their current estimates (Coc et al., 2014; Iocco et al.,
2007). Indeed, some of them rely on theoretical models
not well adapted to low mass nuclei. Figure 22 displays
the main reactions producing or destructing the beryl-
lium, boron and C, N and O stable isotopes.

Table IV displays the few reaction rates that have been
updated in Coc et al. (2015, 2014), and now in this work,
with respect to the Table 4 of Coc et al. (2012).

TABLE IV Updated reaction rates with respect to Coc et al.
(2012)

Reaction Previous Present

D(p,�)3He Descouvemont et al. (2004)a,b Iliadis et al. (2016)
Coc et al. (2015)c

D(d,p)3H and Descouvemont et al. (2004)a,b Gómez Iñesta et al. (2017)
D(d,n)3He Coc et al. (2015)c

3He(↵, �)7Be Cyburt and Davids (2008)a,b Iliadis et al. (2016)
deBoer et al. (2014)c

8Li(p,n)2↵ Becchetti et al. (1992)a Mendes et al. (2012)c

7Be(n,↵)4He Goriely et al. (2008)a Barbagallo et al. (2016)
Wagoner (1969)b

Hou et al. (2015)c

14C(↵, �)18O and Error in tabulated ratesa,b,c Goriely et al. (2008)
14C(p,�)15N

Used in: aCoc et al. (2012), bCoc et al. (2014), or cCoc et al.
(2015)

V. NUMERICAL RESULTS

A. Overview of PRIMAT

To our knowledge, apart from the Kawano code
(Kawano, 1992) which is based on the historical code of
Wagoner (Wagoner, 1969, 1973; Wagoner et al., 1967),
there exist only two public BBN codes, which are
PArthENoPE (Consiglio et al., 2017; Pisanti et al., 2008)
and AlterBBN (Arbey, 2012). The method followed in
PRIMAT differs slightly from these two recent implementa-
tions, in that we integrate directly differential equations
in time, instead of integrating differential equations in
the plasma temperature which are obtained by the re-
placement of dT/dt derived from the Friedmann equa-
tion. The code is abundantly commented and refers to
equations of the previous sections of this article. Let us
summarize the main steps of the code.

• First we solve for the thermodynamics of the
plasma following the details provided in § II. This
allows to obtain a(T ) either using entropy conser-
vation (31) if the effect of incomplete neutrino de-
coupling is neglected, or using the variation of en-
tropy from the heat transfer between the plasma
and the neutrinos (62). When QED plasma ef-
fects are included we use the corresponding (55).
The relation T (a) is obtained by a numerical in-
version. The temperature of neutrinos is either de-
duced from (29), or (57) when QED plasma effects
are included, if we assume they are fully decou-
pled. If we take into account the incomplete neu-
trino decoupling, then their effective temperature
is obtained from Eqs. (63) and (64). The evolution
of baryon energy density follows the simple scal-
ing (34), and similarly for cold dark matter. Then
the cosmological expansion is solved using the total
energy density (43) [with QED effects included for
the plasma energy density (Eq. 58) if the choice
is made], inside the Friedmann equation (40), so
to obtain a(t) by numerical resolution of the dif-
ferential equation. The relation t(a) is obtained by
numerical inversion. Eventually we obtain T (t) as
T (a(t)) that we can use later in the reaction rates
since they depend on temperature.

• Once the thermodynamics and the cosmological ex-
pansion are known, we compute the weak rates for
a grid of plasma temperatures so as to interpolate
them. The total rates are obtained by considering
all relevant corrections discussed in § III, which are
added as in Eq. (121). The constant K involved
in all rates is obtained from Eq. (91) with �0 given
by the value (120). Since the weak rates compu-
tation can be very long, especially when including
finite temperature radiative corrections which in-
volve two-dimensional integrals, we store them on
hard disk for later use. An option allows to recom-
pute them when desired and various options allow
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to switch on or off the various corrections.

• Finally we build the system of equations for the nu-
clear network, that is the system of Eqs. (138) in-
cluding the weak rates. The nuclear reaction rates
are read from tabulated values in function of tem-
perature, or from analytical fits and the reverse
rates are obtained from (141). The evolution of the
nuclides abundances is numerically solved in three
periods.

1. For 1011K � T � 1010K we solve only for the
abundance of neutrons and protons and to-
tally ignore the nuclear reactions. Photodis-
sociation reactions are too strong for this pe-
riod and only the abundance of neutrons and
protons is relevant at this stage. Nuclear reac-
tions are anyway not tabulated above 1010K.

2. Then for 1010 K � T � 1.25⇥ 109 K we solve
for a small nuclear network, made of light ele-
ments only (protons, neutron, 2H, 3H, 3He,
4He, 6Li, 7Li and 7Be) and starting from
the NSE abundance, apart for neutrons and
protons which are taken from the previously
solved period. For this period the system is
very stiff and we use a first order BDF scheme
(backward differentiation formula), which is
equivalent to a backward Euler method.

3. Finally for 1.25 ⇥ 109K � T � 6 ⇥ 107K we
solve numerically for all nuclides, using the full
network of reactions. The system is less stiff
and it is possible to fasten the numerical inte-
gration by using a second order BDF scheme.

B. Temperature of nucleosynthesis

One can estimate the temperature of nucleosynthesis
as the temperature for which the NSE value of deuterium
is equal to the abundance of neutrons found from the
simple freeze-out plus beta decay model (98). At this
temperature deuterium would have gobbled up all free
neutrons and this definition corresponds essentially to
the end of nucleosynthesis. Hence TNuc is defined by

Y
n

(TNuc) ⌘ Y NSE
d

(TNuc) . (144)

These two abundances are plotted in Fig. 24 and we find
numerically TNuc ' 7.7⇥108K ' 0.066MeV and a corre-
sponding tNuc ' 300 s. On Fig. 3, we see that nearly all
neutrons are hidden in 4He which is energetically more
favored than deuterium. Overall the deuterium is only
a catalytic agent, necessary to convert free neutrons in
4He, and we find only traces of it at the end of BBN. The
nucleosynthesis of all rare light elements is over when
the temperature is around 6 ⇥ 107K, corresponding to
tend ' 5⇥ 104 s. In our code, the decay reactions of ele-
ments whose half-life is much longer than tend are not in-
cluded. However when reporting the final abundances of

elements, it is customary to consider that these elements
have been fully converted into stable elements. For in-
stance the half-life of 7Be is 53.22 days, as it decays into
7Li. Hence when reporting the latter abundances, we add
the former ones. Similarly, tritium (3H) decays in 3He in
12.32 years and the former is added to the latter in the
final abundances reported. The evolution of the isotopes
as a function of time is depicted in Fig. 2518.
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FIG. 24 Evolution of NSE deuterium abundance (continuous
line) and Y F

n found from a simple freeze-out and beta decay
model (dashed line).

C. Effect of corrections on abundances

The effects of the various corrections in the weak rates
have been estimated numerically and are reported in ta-
ble V. We have assessed the importance of individual cor-
rections as well as the interplay of some corrections when
they do not add simply linearly. Let us now comment in
details the effect of these corrections.

1. Radiative corrections

Using the non-relativistic Fermi function and Sirlin’s
function (B30) without resummation of higher order cor-
rections, we find �Y

(4)
P = 31.0, exactly as in Lopez and

Turner (1999, Table V, line 2). With the resummed ra-
diative corrections (B35) and using the relativistic Fermi
function brings an extra �Y

(4)
P = 0.5, worth being con-

sidered for precise predictions.

18 The time evolution of 14C in Fig. 25, left panel, strongly differs
from the one in Fig. 13 of Coc et al. (2012). This was due to an
error in the 14C(↵, �)18O and 14C(p,�)15N reaction rates that
are now fixed. It has, however no consequences on the total CNO
production.
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FIG. 25 Left : Evolution of light elements abundances. Right : Evolution of heavier elements abundances18.

2. Finite nucleon mass corrections

We find that the cumulated effect of finite nucleon mass
corrections and weak-magnetism brings �Y

(4)
P = 12.8

corresponding to +0.53% This is slightly more than found
by Lopez and Turner (1999, Table V, line 3) which is
�Y

(4)
P = 12 corresponding to +0.50%, also evoked in

Lopez et al. (1997). Given the smallness of the differ-
ence we consider that our results are in agreement with
these references. Note that weak-magnetism accounts for
around 12% of the finite nucleon mass corrections.

It is worth commenting that when finite nucleon mass
effects are considered together with incomplete neutrino
decoupling, the total effect is less than the sum of the ef-
fects taken individually and there is a reduction �Y

(4)
P '

�0.6. We found that this is because finite nucleon mass
corrections are very sensitive to the neutrino temperature
(see Fig. 20). Hence we advocate that a correct treat-
ment of neutrino decoupling needs not only to be per-
formed with the full machinery of the Boltzmann equa-
tion, with the inclusion of neutrino oscillations, but it
should also be performed jointly with the inclusion of fi-
nite nucleon mass corrections. So far this joint treatment
is lacking in the literature.

3. Finite temperature radiative corrections

In table V, we report that the finite radiative correc-
tions bring �Y

(4)
P ' 3.1, reduced to �Y

(4)
P ' 0 when

bremsstrahlung corrections are added to obtain a consis-
tent detailed balance of weak rates. Indeed in Fig. (18)
we check that around freeze-out, finite radiative cor-
rections and bremsstrahlung corrections are almost op-
posite. In both cases this is very different from the
modification computed in Esposito et al. (2000a) where
�Y

(4)
P ' �4 is reported.

It is important to realize that the electron mass
shift (44) is part of the finite-temperature corrections
when it comes to considering the corrections to the weak
rates. Hence we adopt the point of view of Brown and
Sawyer (2001) which is different from Lopez and Turner
(1999). In order to allow a comparison with that refer-
ence, we evaluated independently the effect of the elec-
tron mass shift following their method, that is replacing
the electron mass shift directly in the distribution func-
tions, and we found a modification �Y

(4)
P ' +1.4. Hence

from the estimation of Lopez and Turner (1999) for finite-
temperature radiative corrections �Y

(4)
P ' 3 one should

instead use �Y
(4)
P ' 4.4 to compare with our results.

This is slightly larger than our value �Y
(4)
P ' 3.1 with-

out BS corrections but certainly larger than our value
�Y

(4)
P ' 0 with BS corrections.

In general, an enhancement of the rates induces a de-
crease of YP thanks to Eq. (7). In Lopez and Turner
(1999) the rates are increased by the finite temperature
radiative corrections, and one would expect a decrease
YP. However since the corrected rates no longer satisfy
the detailed balance relation (86) as they should, Eq. (7)



31

TABLE V Final abundances depending on the corrections included. ID is incomplete decoupling of neutrinos. FM is finite
nucleon mass effect without weak-magnetism, WM is weak-magnetism, and FM+WM are both effects. RC are radiative
corrections. ThRC are finite temperature radiative corrections without bremsstrahlung corrections, and BS are bremsstrahlung
corrections. QED-MS is the QED electron mass shift effect considered alone when replaced directly in distribution functions
(see discussion in §V.C.3), and QED-Pl are the QED effects on the plasma thermodynamics (§II.E).

Corrections YP �YP ⇥ 104 �YP/YP(%) D/H⇥ 105 � (D/H) (%) 3He/H⇥ 105 7Li/H⇥ 1010

Born 0.24262 0 0 2.423 0 1.069 5.635

Born+ID 0.24274 1.2 0.05 2.432 0.37 1.070 5.613

Born+FM 0.24374 11.2 0.46 2.430 0.25 1.070 5.651

Born+FM+WM 0.24390 12.8 0.53 2.430 0.29 1.070 5.654

RCa [Eq. (B30), Non. Rel. Fermi] 0.24572 31.0 1.27 2.440 0.70 1.071 5.681

RCb [Eq. (B35), Non. Rel. Fermi] 0.24575 31.3 1.29 2.440 0.70 1.071 5.682

RC [Eq. (B35), Rel. Fermi] 0.24577 31.5 1.30 2.440 0.70 1.071 5.682

RC+QED-MS 0.24591 32.9 1.36 2.441 0.74 1.071 5.684

RC+QED-Pl 0.24577 31.5 1.30 2.443 0.82 1.072 5.674

RC+ID 0.24588 32.6 1.34 2.449 1.07 1.073 5.660

RC+ID+QED-Pl 0.24588 32.6 1.34 2.452 1.19 1.073 5.652

RC+FM+WM 0.24705 44.3 1.82 2.447 0.99 1.072 5.701

RC+FM+WM+QED-MS 0.24718 45.6 1.87 2.448 1.03 1.073 5.701

RC+FM+WM+QED-Pl 0.24704 44.2 1.81 2.450 1.11 1.073 5.693

RC+FM+WM+ID 0.24720 44.8 1.84 2.456 1.36 1.074 5.678

RC+FM+WM+ThRC (No BS) 0.24736 47.4 1.95 2.449 1.07 1.073 5.706

RC+FM+WM+ThRC+BS 0.24705 44.3 1.82 2.447 0.99 1.072 5.701

RC+FM+WM+ThRC+BS+ID+QED-Pl 0.24709 44.7 1.84 2.459 1.49 1.074 5.670

cannot be used and the effect is not opposite. In our case
this can be seen when using the radiative corrections,
without the BS corrections added. The weak rates are
increased (see Fig. 18) and still it leads to �Y

(4)
P ' 3.1.

This highlights the extreme importance of constructing
corrections which respect the detailed balance, in or-
der to obtain meaningful results. Any corrections added
which does not satisfy the correct detailed balance rela-
tion Eq. (7) is somehow equivalent to a modification of
the value of the mass gap �, modifying artificially the
thermal equilibrium value. Stated more directly, it is ob-
vious that an overestimated enhancement of �

p!n

as in
Lopez and Turner (1999) leads to an artificial increase
of Y

n

and thus of YP. When a correction does not sat-
isfy the detailed balance relation, the primary effect is
no more a delayed or advanced freeze-out, that is a lower
or larger freeze-out temperature, but an artificially dif-
ferent freeze-out abundance for the same freeze-out tem-
perature since one rate is overestimated and the thermal
equilibrium is artificially displaced.

4. QED effects on plasma thermodynamics

The effect of QED corrections on YP is negligible. In
Lopez and Turner (1999), it is estimated to be around
�Y

(4)
P ' 1 only because it is also cumulated with the

electron mass shift effects which are part of finite tem-
perature corrections of the weak rates in our terminology.
We find �Y

(4)
P ' 1.4 when computing it with the same

method.

5. Incomplete neutrino decoupling

The pure clock effect evoked at the end of § III.I is not
the only effect, because one must also consider the effect
of incomplete neutrino decoupling on the weak rates. In
our approximate description, we have implicitly assumed
in § II.G that all neutrino flavors share the same ratio of
heating, that is we assume that �⇢

⌫e/⇢⌫e = �⇢
⌫µ/⇢⌫µ =

�⇢
⌫⌧ /⇢⌫⌧ so that it is meaningful to define a common ef-

fective temperature. It is certainly not correct since there
is more energy gained by electronic neutrino than other
types of neutrino. Indeed electronic neutrinos couple
to electrons and positron with charged and neutral cur-
rents whereas the other flavors of neutrinos couple only
through neutral currents. However, first this is less the
case when considering neutrino flavor mixing (Mangano
et al., 2005), and second in the early stage of neutrino
heating by electron-positron annihilations, the heating is
more efficiently redistributed among the three species.
Hence it is not a too bad approximation to assume that
the heating is distributed in the same ratio among flavors
when considering the effect on weak rates. This means
that we assume that all neutrino flavors share always
1/N

⌫

of the total energy density. Even though we know
that they have distorted spectra, we still defined an ef-
fective neutrino temperature from their energy density.
That is we still use Eq. (42) to define the neutrino tem-
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perature T
⌫

, and by construction it is the temperature
for thermalized neutrino distributions that would have
the same energy density.

Apart from the clock effect mentioned earlier, there
are two competing effects in the weak rates which nearly
fully cancel (Dodelson and Turner, 1992; Fields et al.,
1993; Mangano et al., 2005). First the higher energy den-
sity in neutrinos results in an increase of the weak rates,
inducing a freeze-out which happens later, with less neu-
trons and thus producing less 4He. However the energy
gained by neutrinos is lost from the plasma, and the re-
duction in electrons-positrons energy density results in
lower weak rates, inducing an earlier freeze-out which re-
sults in more neutrons and then more 4He production. It
has been shown in Fields et al. (1993) that both effects
level off when the freeze out is complete, that is around
T = 3.3⇥ 109K. Indeed we find that in our simple ther-
mal approximation, the relative variation in the neutron
fraction at that temperature is a modest relative increase
of 2⇥10�5. Without the clock effect this would result in
a negligible �Y

(4)
P ' 0.05. It is only the clock effect (see

§ V.C), that is the fact that neutrons have slightly less
time to beta decay, which results in �Y

(4)
P ' 1.2. When

taking more carefully into account the fact that neutrinos
do not get the same share of the heating, and that fur-
thermore there are spectral distortions which affect the
neutrino distribution functions entering the weak-rates,
it is found a slightly larger increase in Y

(4)
P (Mangano

et al., 2005).

However note that our variations for YP, D/H, 3He/H
and 7Li/H are in very close agreement with those found
in Grohs et al. (2016) (Table IV, second line), where
these spectral distortions effects (but not the flavor oscil-
lations) have been fully taken into account. It is puzzling
that with our thermal approximation based on a heating
rate found from Pisanti et al. (2008), that is from the
result of Mangano et al. (2005), we do not recover the
results of table 3 in Mangano et al. (2005) but we re-
cover with very good agreement the results of Grohs et al.

(2016). We found that the argument presented in Grohs
et al. (2016) for the variations of D/H, 3He/H and 7Li/H
are very convincing and we recover them in our numer-
ics. Indeed the clock effect results in less time to destroy
deuterium through D(d,n)3He, D(p,�)3He and D(d,p)3H,
ending up in more deuterium being left out at the end of
BBN. Since two of these deuterium destroying reactions
are producing 3He [namely D(d,n)3He and D(p,�)3He],
this results in more 3He. As for 7Li it is reduced only
because the production of 7Be has less time to proceed,
but we found that the 7Li (without 7Be added) is in-
creased since it has also less time to be destroyed down
from its peak value during BBN. Hence the signs of vari-
ations for D/H, 3He/H and 7Li/H have a clear physical
origin, when incomplete neutrino decoupling is taken into
account, and these signs are opposite to those reported
in table 3 of Mangano et al. (2005).

TABLE VI First coefficients of Eq. (145). These provide
abundances with precision better than 0.01% for YP and
0.03% for other abundances, in the range of 10% variations
in ⌦bh

2, 2% variation in ⌧⌫ and 2  N⌫  4. However these
are still subject to reaction rates uncertainties which are es-
timated below in table VII.

YP D/H 3He/H 7Li/H

C100 0.039 039 �1.645 50 �0.566 99 2.076 05

C010 0.163 552 0.409 01 0.135 87 �0.276 75

C110 �0.000 044 �0.612 29 �0.121 57 �0.292 77

C200 �0.029 351 2.041 37 0.533 03 0.586 39

C020 �0.036 124 �0.005 99 �0.012 65 0.038 88

C300 0.017 891 �2.408 17 �0.518 55 �0.882 43

C210 �0.001 037 0.801 50 0.120 83 0.510 82

C120 �0.000 354 �0.004 77 0.009 28 �0.103 35

C030 0.009 938 0.002 24 0.002 70 0.008 84

C001 0.731 614 0.422 20 0.140 52 0.438 29

C101 �0.009 741 �0.660 30 �0.123 90 1.226 19

C011 0.018 321 0.193 66 0.040 40 �0.330 69

C111 �0.003 423 �0.331 58 �0.038 79 �0.709 23

C201 0.004 189 0.906 17 0.121 21 0.924 63

C021 �0.011 981 0.004 98 �0.003 28 0.135 30

D. Dependence on main parameters

The variations of the yields for small variations of the
main parameters can be given with expansions of the
type

�YP

YP

=
X

pqr

C
pqr

✓
�⌦bh

2

⌦bh2

◆
p

✓
�N

⌫

N
⌫

◆
q

✓
�⌧

n

⌧
n

◆
r

(145)

with similar expansions for the other abundances
(D/H,3He/H,7Li/H). The reference abundances are given
by the last line of table V and the reference parameters
are ⌦bh2 = 0.02225, ⌧

n

= 879.5 s and N
⌫

= 3. The
meaning of varying the number of neutrinos is further
discussed in § VI.D. The first coefficients of these expan-
sions are given in table VI.

Leaving aside the non-standard BBN physics which
corresponds to a variation of the number of neutrinos,
we can restrict this expansion to the linear behaviour to
estimate rapidly the variations of the abundances in func-
tion of changes in the baryon abundance or the neutron
lifetime. Hence if these parameters are slightly modified
in the future, our results can be transposed easily. We
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find

�YP

YP

= 0.0390
�⌦bh

2

⌦bh2
+ 0.732

�⌧
n

⌧
n

(146a)

�D/H

D/H
= �1.65

�⌦bh
2

⌦bh2
+ 0.422

�⌧
n

⌧
n

(146b)

�3He/H
3He/H

= �0.567
�⌦bh

2

⌦bh2
+ 0.141

�⌧
n

⌧
n

(146c)

�7Li/H
7Li/H

= 2.08
�⌦bh

2

⌦bh2
+ 0.438

�⌧
n

⌧
n

. (146d)

As expected, YP is very sensitive to the weak rates and
thus to ⌧

n

but not to the baryon abundance. Hence
even though uncertainty is larger in baryon abundance,
the theoretical uncertainty of YP is dominated by the
uncertainty in the determination of the neutron life-
time. From the measured value of ⌧

n

reported in ap-
pendix D, this corresponds to a 0.068% uncertainty in
YP or �(YP) ' 0.00017 which is lower than the value
�(YP) ' 0.0003 used in Ade et al. (2016, p47), imply-
ing that we find errors approximately 40% smaller in YP.
The predicted and observed abundances as functions of
⌘ are plotted in Fig. 26.

E. Distribution of abundance predictions

We use the method described in Coc et al. (2014) to es-
timate the uncertainty in light elements productions dur-
ing BBN due to uncertainty in nuclear rates and weak-
rates (that is the uncertainty on ⌧

n

that we assume to
follow a normal distribution). It has been found (Long-
land et al., 2010), that probability density functions of
reaction rates can be well approximated by lognormal
distributions

f(x) =
1

�
p
2⇡

1

x
e�(ln x�µ)2/(2�2) (147)

(with x ⌘ N
A

h�vi for short is the rate). This is equiva-
lent to the assumption that ln(x) is Gaussian distributed
with expectation value µ and variance �2 (both functions
of temperature). The lognormal distribution allows to
cope with large uncertainty factors (⌘e�) together with
ensuring that the rates remain positive. If these parame-
ters are tabulated as a function of the temperature, they
can be used to perform subsequent Monte-Carlo nucle-
osynthesis calculations. The quantile of the distributions
of the abundances obtained by such a method are re-
ported in table VII for which we used 20 000 Monte-Carlo
points.

The variations of YP are nearly entirely due to the
uncertainty on ⌧

n

because it is almost completely con-
trolled by weak rates which set the abundance of free
neutrons before nucleosynthesis starts. This Monte-Carlo
method allows to construct the probability P (Y

i

|!b) for
each species, where !b ⌘ ⌦bh

2. This probability reflects
the uncertainty in all parameters affecting the reaction

TABLE VII Monte-Carlo estimation of light elements uncer-
tainties due to nuclear rates, and ⌧n (aka weak rates) uncer-
tainties.
Quantile 2.275% 15.865% 50% 84.135% 97.725% mean �

mean

YP 0.24676 0.24693 0.24709 0.24726 0.24742 0.24709 0.068%

D/H⇥ 105 2.386 2.423 2.460 2.496 2.532 2.459 1.49%
3He/H⇥ 105 1.023 1.048 1.074 1.100 1.127 1.074 2.43%
7Li/H⇥ 105 5.123 5.392 5.627 5.858 6.105 5.623 4.39%
6Li/H⇥ 1014 0.61 0.85 1.20 1.68 2.35 1.27 35%

CNO/H⇥ 1015 0.14 0.52 1.02 3.07 65.6 15.3 13.4

rates, independently of cosmology and it is used to plot
the ±� width of curved in Fig. 26 by computing the quan-
tiles {0.15865, 0.84135}.

For elements for which the uncertainty is small, it
proves useful to approximate these probabilities by a nor-
mal distribution as

P (Y
i

|!b) ' N ⇥
Ȳ
i

(!b) ,�
th
i

(!b)
⇤
(Y

i

) (148)

where the normal distribution is noted

N [µ,�](x) ⌘ 1p
2⇡�

exp


� (x� µ)2

2�2

�
. (149)

If we use the CMB to obtain a prior distribution on !b

that we assume to follow a normal distribution (the mean
and standard deviation are reported in appendix D), then
we can build the joint probability

P (Y
i

,!b|CMB) = P (Y
i

|!b)P (!b|CMB) , (150)

and marginalizing over !b we get probabilities in pre-
dicted abundances

P (Y
i

|CMB) =

Z
P (Y

i

,!b|CMB)d!b . (151)

In practice we use also a Monte-Carlo method to obtain
directly P (Y

i

|CMB). We only need to vary !b, accord-
ing to its normal distribution, in addition to varying the
reaction rates. With this method we can predict the un-
derlying abundances that are reported in table VIII. The
predicted abundance for deuterium is noticeably lower
than the one in Ade et al. (2016, Eq. 74) which uses
PArthENoPE (Pisanti et al., 2008), and this has conse-
quences when inferring the chemical potential of neutri-
nos (see § VI.C).

F. Comparison with observations

Except for 4He, and the weak rates, the predicted
abundances, displayed in Table VIII, do not differ sig-
nificantly from those of Coc et al. (2015). As can be seen
in Table IV, very few reaction rates have been updated,
and if so, either the rate changes are tiny or the reac-
tions have, in any case, a negligible effect. On the con-
trary, there are significative differences with the results
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TABLE VIII Primordial abundances compared to observations.

Observations (a)
⌧n = 880.3(1.1) s

This work (h)

⌧n = 879.5(8) s
(f)

⌧n = 880.3(1.1) s
Planck 2015 (g)
⌧n = 880.3(1.1) s

YP 0.2449±0.0040(b) 0.2484±0.0002 0.24709±0.00017 0.24709±0.00025 0.24667±0.00062
D/H (⇥10�5) 2.527±0.030 (c) 2.45±0.05 2.459±0.036 2.58±0.13 2.614±0.13

3He/H (⇥10�5) <1.1±0.2 (d) 1.07±0.03 1.074±0.026 1.0039±0.0090
7Li/H (⇥10�10) 1.58+0.35

�0.28 (e) 5.61±0.26 5.623±0.247 4.68±0.67
(a) Coc et al. (2015), (b) Aver et al. (2015), (c) Cooke et al. (2018), (d)Bania et al. (2002), (e) Sbordone et al. (2010), (f)
Cyburt et al. (2016), (g)Ade et al. (2016, TT+TE+EE+LowP, 95%CL), (h) we get YP = 0.24726 when using ⌧n = 880.3 s

of Cyburt et al. (2016) which are mostly, and probably
entirely, due to the different choice of reaction rates. Ap-
parently, Cyburt et al. (2016) use for some of the most
important reactions, D(p,�)3He, D(d,n)3He, D(d,p)3H,
and 3He(↵, �)7Be, the rates from NACRE ii (Xu et al.,
2013), now superseded for these reactions by Coc et al.

(2015); Gómez Iñesta et al. (2017); Iliadis et al. (2016).
This is clearly the origin of the differences concerning D
and 7Li. There is an even greater difference with the D/H
value reported by Planck (Ade et al., 2016; Di Valentino
et al., 2014) using the PArthENoPE code (Pisanti et al.,
2008). This is again, probably due to a different choice
of reaction rates for deuterium destruction.

Since the results for deuterium and lithium are not
significantly different from our earlier works (Coc et al.,
2015, 2014) the comparison with observations is very sim-
ilar. As explained in § I.A.3 we do not consider 3He as a
constraint.

1. Helium

Thanks to the re–evaluation of the corrections to the
weak rates, we claim a precision of a few 10�4 on YP

i.e. smaller than one unit on Y
(4)
P before taking into ac-

count the experimental uncertainty on the neutron life-
time and a few reaction rates (§ IV.C). We finally ob-
tained YP = 0.24705±0.00019, fully consistent with the
value YP = 0.2449 ± 0.0040 deduced from Izotov et al.

(2014) observations by Aver et al. (2015) (see Fig. 26),
without the need for extra relativistic degrees of freedom
as in (Izotov et al., 2014).

Since this work is focused on 4He and is an improved
continuation of previous works it is worthwhile track-
ing the evolution of our calculation of YP. In our ear-
liest works (e.g. Coc et al. (2004)), since the obser-
vational uncertainties on YP were large, we neglected
some of the corrections discussed here because we were
unable to calculate them (e.g. including six–fold inte-
grals). The corrections that we took into account cor-
responds to line RCa line in Table V and our (Fortran)
calculated corrections did amount to �Y

(4)
P = 31.6 (Coc

et al., 2014). When the observational uncertainties were
reduced, it become important to include the neglected

corrections, by artificially increasing Y
(4)
P by 18 at the

the very end of the calculation. It corresponded to the
finite-nucleon mass correction (�Y (4)

P = 12 (Lopez and
Turner, 1999)), finite-temperature radiative correction
(�Y (4)

P = 3) (Lopez and Turner, 1999)), QED plasma
(�Y (4)

P = 1 (Lopez and Turner, 1999)) and neutrino de-
coupling (�Y (4)

P = 2 (Mangano et al., 2005)), for a total of
�Y

(4)
P = 18, that we could not easily directly re-calculate.

Hence, before this final correction, the YP value from Coc
et al. (2015) was 0.2466 (i.e. 0.2484 minus 0.0018) to be
compared to 0.24572 (RCa in Table V). This difference of
�Y

(4)
P = 9, which is in fact only �Y

(4)
P = 7 if we account

for the different ⌧
n

used, was reduced to �Y
(4)
P ' 0.5

by improving the Fortran code (time steps, temperature
grid,...) at the expense of execution time19.

2. Deuterium

Our present result differs by less than 3%, and agrees
within error bars with the latest value inferred from
Cooke et al. (2018) observations. Since the theoretical
value lies on the lower bound of the observational one,
this leaves only little room for models of lithium (i.e. 7Be)
destruction that byproduct extra deuterium (see below).
Tiny differences with previous results (Coc et al., 2015)
come in part from the corrections to the weak rates (see
Table V), to the re-evaluation of the three nuclear reac-
tion rates (Gómez Iñesta et al., 2017; Iliadis et al., 2016)
that govern deuterium destruction and improvements in
the numerical method. With the high precision reached
by D/H observations, these reaction rates [D(p,�)3He,
D(d,n)3He and D(d,p)3H] need to be known at the per-
cent level! This demands accurate measurement at BBN
energies where data are scarce and theoretical improve-
ment to better constrain the energy dependence of the
S–factors.

19 Details to appear elsewhere.
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FIG. 26 Top : Dependence of YP = 4Y
4He in ⌘ and obser-

vational constraints. Middle : Dependence of deuterium (to
curve) and 3He (bottom curve) in ⌘ with observational con-
straints. The 3H has been added since it decays radioactively
in 3He. Bottom : Dependence of 7Li in ⌘ with observational
constraints. The 7Be has been added since it decays radioac-
tively in 7Li. In all these plots, the width of the curves rep-
resents the ±� uncertainty from nuclear rates and neutron
lifetime.

3. Lithium

There remains a factor of 3.6 between the predicted
and observed Li/H values. This discrepancy has not
yet found a fully satisfactory solution. On the contrary,
the problem had worsened because of an updated reac-
tion rate (Cyburt and Davids, 2008; Cyburt et al., 2008)
and because many solutions have been ruled out by the
improved precision on D/H observations (Cooke et al.,
2018). We present below the kinds of solutions that have
been considered so far.

• There is no nuclear solution to the lithium prob-

lem. Extensive sensitivity studies (Coc et al., 2012,
2004) have not identified reactions, beyond those
already known, that could have a strong impact on
lithium nucleosynthesis. The most promising was
7Be(d,p)2↵ (Coc et al., 2004; Cyburt and Pospelov,
2012): an increase of its rate by a factor of ⇡100
would have solved the problem. However, measure-
ments of its average cross section (Angulo et al.,
2005) or properties of candidate resonances (Kirse-
bom and Davids, 2011; O’Malley et al., 2011; Scholl
et al., 2011) ruled out this possibility. More gener-
ally, other destruction channels have recently been
proposed (Chakraborty et al., 2011) : 7Be+n, p, d,
t, 3He and 4He. In particular, the existence of a
relatively narrow state around 15 MeV in the com-
pound nucleus 10C formed by 7Be+3He or the exis-
tence of a state close to 8 MeV in the compound nu-
cleus 11C formed by 7Be+4He could help reduce the
7Be production. However, a recent search (Ham-
mache et al., 2013) for missing levels in the rele-
vant excitation energy regions of 10C and 11C, via
the reactions 10B(3He,t)10C and 11B(3He,t)11C, re-
spectively, did not find any new level, whose corre-
sponding resonances, in any case, would have too
low strengths (Broggini et al., 2012) because of
the Coulomb barrier. It seems now that all ex-
tra 7Be destructing reactions have been considered
and found inefficient.

• The effect of electron screening or modification of

decay lifetime is negligible. For reactions of in-
terest to BBN, screening affects the laboratory
cross sections at too low energies [e.g. . 20 keV
for D(d,p)3H (Greife et al., 1995) or 3He(d,p)4He
(Aliotta et al., 2001)] to affect measurement at
BBN energies [⇡100 keV], on the one hand. On the
other hand, the effect of screening during BBN is
completely negligible (Famiano et al., 2016; Wang
et al., 2011). It is well known that the lifetime
of 7Be that decays by electron capture depends on
the probability of presence of an electron (from an
atomic s orbital or from a plasma) inside the nu-
cleus; for instance it is increased to ⇠ 100 days at
the center of the Sun (Adelberger et al., 2011). To
have an impact on lithium prediction, the 7Be life-
time must be reduced to a value of ⇠ 103 s. How-
ever, because of the Boltzmann suppression factor,
at T <0.5 GK, when 7Be is present, the electron
density becomes smaller than in the Sun so that
one can expect an even longer lifetime. This can
be confirmed if one extrapolates the results of Si-
monucci et al. (2013, Fig. 1), to T . 500 ⇥ 106K
and ⇢ . 10�5 g/cm3.

• Many exotic solutions to the lithium problem have
been investigated (e.g. Yamazaki et al. (2014)),
but most rely on extra neutron sources to boost
7Be destruction through the 7Be(n,p)7Li(p,↵)4He
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channel. However, these extra neutrons, inevitably,
also boost the D and 3H production through the
1H(n,�)2H and 3He(n,p)3H channels, respectively
(Coc et al., 2015; Kusakabe et al., 2014). This is
shown in Figs. 1 in Olive et al. (2012), 4 in Kusak-
abe et al. (2014), and 14 in Coc et al. (2015) that
display results of various types of models that suc-
ceed in solving the lithium problem, but at the ex-
pense of deuterium overproduction to levels now
excluded by observations (Cooke et al., 2014, 2016,
2018). Very few solutions, even beyond the Stan-
dard Model, that do not suffer from this drawback
are left, e.g. Goudelis et al. (2016).

• Stellar physics solutions require a uniform reduc-

tion of surface lithium over a wide range of effec-

tive temperature and metallicity. Some amount of
surface lithium destruction is unavoidable, because
of atomic diffusion that transport lithium down
to deeper and hotter layers where it is destroyed
by a factor of 1.5 to 2 (Michaud et al., 1984).
The difficulty comes from the small thickness of
the lithium plateau over a wide range of metallic-
ity and temperature and the absence of stars be-
tween the plateau and the BBN prediction (Fig. 2).
This could possibly be circumvented if an addi-
tional mixing process is included in the outer layers
of these stars (Richard et al., 2005). This is sup-
ported by the comparison between lithium observa-
tions in the metal–poor globular cluster NGC 6397
with stellar depletion models (Korn et al., 2006).
Another recent proposition relies on full lithium
destruction but followed by a self–regulated re-
enrichment of lithium by late time accretion from
the interstellar gas (Fu et al., 2015). In addition,
the Spite plateau does not exist anymore at the
metallicity below [Fe/H]=-3, and is replaced by an
increased spread of abundances, below the plateau
value (Sbordone et al., 2010). This “meltdown” of
the Spite plateau is not understood yet. All this
suggests that lithium observations cannot be used
anymore to constrain BBN models.

• There is no

6Li problem anymore. A few years
ago, observations (Asplund et al., 2006) of 6Li in
a few metal poor stars had suggested the presence
of a plateau, at typically 6Li/H ⇡ 10�11, orders
of magnitude higher than the BBN predictions of
6Li/H ⇡ 1.3⇥10�14 (Hammache et al., 2010). How-
ever, later, the observational 6Li plateau has been
questioned due to line asymmetries which were ne-
glected in previous abundance analyses. Hence,
there is no remaining evidence for a plateau at very
low metallicity (Lind et al., 2013) that can be used
to derive a primordial 6Li abundance.

4. Other elements

Leaving aside the 9Be, 10B and 11B isotopes for which
no primordial abundance can be inferred from observa-
tions (Coc et al., 2014), it is worth mentioning the CNO
abundance. Here, we call CNO all isotopes with masses
larger than 12 (11C mostly decays to 11B). Even though,
there are no primordial CNO abundance either, it is of
peculiar interest since it may affect the evolution of the
first stars (Population III) within the first structures of
the Universe. Hydrogen burning in the first generation of
stars proceeds through the slow pp–chains until enough
carbon is produced (through the triple-alpha reaction) to
activate the CNO cycle. The minimum value of the initial
CNO mass fraction that would affect Population III stel-
lar evolution is estimated to be 10�11 (Cassisi and Castel-
lani, 1993) or even as low as 10�13 (in number of atoms
relative to hydrogen, CNO/H) for the less massive stars
(Ekström et al., 2008). Table VII shows that the median
abundance (0.5 quantile) is in agreement with previous
works (Coc et al., 2012; Iocco et al., 2007), if taking into
account that the distribution is not Gaussian (Coc et al.,
2014; Coc and Vangioni, 2014). As a result, the 0.97725
quantile corresponds to CNO/H⇡ 0.7 ⇥ 10�13, close to
the limit to have an impact on some first stars. As this
is explained in Coc et al. (2014), this value, much larger
than the median comes from the simultaneous variations,
during the Monte Carlo, of a few reaction rates around
10Be. Since very few or no experimental data are avail-
able for these reactions, the actual rates may differ by
a few orders of magnitudes, from the TALYS (Goriely
et al., 2008) theoretical predictions. Experimental efforts
are needed to confirm or infirm this possibility.

VI. COSMOLOGY WITH BBN

A. Cosmological perturbations

Cosmological fluctuations are of order 10�5, and what-
ever their effect, we have neglected them given our pre-
cision goal. However it is easy to estimate the effect of
adiabatic perturbations seeded by inflation. Indeed, since
the Hubble radius is extremely small during BBN, most
modes can be considered as super-Hubble modes, that is
longer than the Hubble radius. In that case their effect
can be described by a simple coordinate transformation
applied on a homogeneous cosmology (Creminelli et al.,
2011; Mirbabayi and Zaldarriaga, 2015; Weinberg, 2003).

Let us consider a perturbed metric (expressed in con-
formal time defined by dt = ad⌘)

ds2 = a2(⌘)
��(1 + 2�)d⌘2 + (1� 2 )�

ij

dxidxj

�
.

(152)
It can be put in the homogeneous form using a coordinate
transformation. Or conversely the dynamics of a space-
time perturbed by long modes can be deduced from the
homogeneous dynamics thanks to a coordinate transfor-
mation. Not all such transformations lead to a physical
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long mode dynamics, and one must ensure some condi-
tions. In the case where the Universe dynamics is domi-
nated by radiation, as is the case for BBN, the relevant
coordinate transformation is (Creminelli et al., 2011)

⌘̃ = ⌘

✓
1� ⇣

3

◆
, x̃i = xi(1 + ⇣) (153)

where ⇣ is the comoving curvature perturbation.
It follows using Eq. (10) that the number density in

the perturbed universe ñ
i

is related to the one of a ho-
mogeneous cosmology n

i

thanks to

ñ
i

= n
i

� ⌘⇣

3
@
⌘

n
i

= (1 + ⇣)n
i

� ⌘⇣

3
aJ

i

, (154)

where we used that for radiation domination a / ⌘ and
@
⌘

a/a = 1/⌘. At the end of BBN, when all reactions are
inefficient, all net creation rates J

i

vanish and we find
that all number densities are simply rescaled by 1 + ⇣.
Note that this could have been anticipated because for
super-Hubble modes, ⇣ is equal to density perturbations
on isocurvature surfaces (Vernizzi, 2005). Since abun-
dances are ratios of number densities, they remain un-
changed by the long mode perturbation. Hence, pro-
vided we can neglect the effect of modes which are smaller
than the Hubble radius during BBN, standard adiabatic
cosmological perturbations have no effect on BBN pre-
dictions. Intuitively, an adiabatic perturbation enhances
baryon and photons number densities in the same pro-
portions, leaving ⌘ constant. Since this analysis is based
on long modes only, one cannot infer the consequences of
fluctuations on scales smaller than the Hubble radius dur-
ing BBN from the homogeneous cosmology results. For
these small scales, only a complete treatment of all per-
turbed equations dictating the evolution of species can
lead to a meaningful result.

Finally, it is worth noting that long modes of entropy
perturbation, that is perturbations which do not modify
the total energy density (and for which ⇣ = 0) but which
modify the ratios ⇢b/⇢� have an effect on abundances.
Since during BBN the total energy density is dominated
by radiation, and long mode entropy perturbation can
be rephrased as a perturbation in ⇢b alone, that is a
perturbation of ⌘. As a consequence, its effect is directly
evaluated by the sensitivity of BBN final abundances on
⌘.

B. Measurement of baryon abundance from BBN

The observed abundances are related to the underlying
one by an assumed normal distribution, that is for each
isotope observed, the likelihood is

P (Y obs
i

|Y
i

) = N ⇥
Y
i

,�obs
i

⇤
(Y obs

i

) . (155)

The observed values and their standard deviations are
reported in § I.A. Then we can consider

P (Y obs
i

|!b) ⌘
Z

dY
i

P (Y obs
i

|Y
i

)P (Y
i

|!b) ,

and we deduce using Eqs. (148) and (155) that it follows
approximately a normal distribution

P (Y obs
i

|!b) ' N ⇥
Ȳ
i

(!b) ,⌃i

(!b)
⇤
(Y obs

i

) (156)

with ⌃2
i

(!b) ⌘ (�obs
i

)2 +
⇥
�th
i

(!b)
⇤2. In practice we do

not use the approximation (148) and use instead the full
result of our Monte-Carlo method to estimate the distri-
bution of abundances due to reaction rates uncertainties.
However, the results obtained are extremely similar given
that (148) is a very good approximation.

If we then use an uniform prior on !b, that is if we
do not use our knowledge from CMB observations, the
posterior distribution for !b is immediately given from
P (!b|Y obs

i

) / P (Y obs
i

|!b). Otherwise we use the CMB
prior to build the posterior distribution for !b as

P (!b|Y obs
i

,CMB) / P (Y obs
i

,!b|CMB)

= P (Y obs
i

|!b)P (!b|CMB).(157)

When including all observed abundances, we use that the
total probability is the product of individual ones. In
practice, only 4He and 2H are determined with enough
precise experimental precision to be taken into account.

The CMB prior distribution and the posterior dis-
tribution from the observations of BBN are plotted in
Fig. 27. The posterior bounds from BBN and CMB are
⌦bh

2 = 0.02215 ± 0.00014, whereas from BBN alone on
gets ⌦bh

2 = 0.02190 ± 0.00025. Note that if we had
used a code which predicts D/H ' 2.61⇥10�5 instead of
D/H ' 2.46⇥ 10�5 for the Planck parameters, we would
have obtained the constraint ⌦bh

2 = 0.02271 ± 0.00025
from BBN alone, having exactly the same central value
than found in Consiglio et al. (2017), using PArthENoPE.
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FIG. 27 P (⌦bh
2) normalized to a unit maximum. Green

continuous line : CMB prior distribution. Black dashed line
BBN posterior distribution (BBN+CMB). Red dotted line :
baryon abundance distribution determined only from BBN.
The vertical gray lines are the ±� CMB (continuous) and
CMB+BBN (dashed) bounds.
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C. Neutrino chemical potential from BBN

If there is a neutrino asymmetry, that is a non-
vanishing neutrino chemical potential, then for each fla-
vor we have necessarily

µ
⌫

+ µ
⌫̄

= 0 (158)

because of processes like ⌫+ ⌫̄ $ e�+e+ $ 2� and pho-
tons have a vanishing chemical potential. Furthermore
cosmological expansion affects only the particle momenta
and ⇠

⌫

⌘ µ
⌫

/T
⌫

is frozen at its initial value, whose conse-
quences on BBN can be investigated (Iocco et al., 2009;
Serpico and Raffelt, 2005; Simha and Steigman, 2008).

The neutrino asymmetry (defined for each neutrino fla-
vor) is defined by the excess of neutrinos over antineutri-
nos as

⌘
⌫

⌘ n
⌫

� n
⌫̄

n
�

=
I
(1,1)
+ (0, ⇠
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)� I
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)
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(1,1)
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' 1

12⇣(3)

✓
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⌫

T

◆3 �
⇡2⇠

⌫

+ ⇠3
⌫

�
.(159)

The neutrino oscillations imply that the various flavors
must reach an equilibrium for which the chemical poten-
tials are equal (Dolgov et al., 2002; Wong, 2002). As-
suming accordingly that the asymmetry is the same for
all flavors, the first modification of the neutrino asym-
metry is an excess of energy densities stored in neutrinos
which can be absorbed by a redefinition of the number
of neutrino generations N

⌫

as

Ñ
⌫

= N
⌫

 
1 +

I
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◆
. (160)

This effect is very small for small values of ⇠
⌫

since it is
at least quadratic in ⇠

⌫

.
There is a second modification for the weak-interaction

rates in which one must use instead of Eq. (75)

g
⌫

(E) ⌘
(
g+
⌫

(E) ⌘ 1
e(E/T⌫�⇠⌫ )+1

n ! p rates

g�
⌫

(E) ⌘ 1
e(E/T⌫+⇠⌫ )+1

p ! n rates .
(161)

For instance in the definition (79) of �
±

, one must use
g±
⌫

instead of g
⌫

. To show this we used that the Pauli-
blocking factor of the antineutrino (resp. neutrino) is
still related to the distribution of the neutrino (resp.
antineutrino) according to (72) thanks to the property
(158). This modification is the most important one and
modifies the thermodynamical equilibrium ratio between
neutrons and protons (A15) because from Eq. (A14) we
get µ

n

� µ
p

= �µ
⌫

. We get that at thermodynamical
equilibrium

n
n

n
p

=
n
n

n
p

����
⇠⌫=0

⇥ e�⇠⌫ , (162)

and one expects a modification of the freeze-out abun-
dance (for small ⇠

⌫

) of order

�Y F

n

Y F

n

' �YP

YP
' �(1� Y F

n

)⇠
⌫

. (163)

Finally there is a third modification when one considers
the effect of incomplete neutrino decoupling (Grohs et al.,
2017) but this is negligible since the effect without the
asymmetry is already very small. For small ⇠

⌫

we find
the abundance modifications

�YP

YP
' �0.96 ⇠

⌫

(164a)

�D/H

D/H
' �0.53 ⇠

⌫

(164b)

�3He/H
3He/H

' �0.18 ⇠
⌫

(164c)

�7Li/H
7Li/H

' �0.62 ⇠
⌫

. (164d)

The modification of YP is in very good agreement with
the estimation (163) since (1 � Y F

n

) ' 0.92. Since BBN
has no free parameter when assuming non-degenerate
neutrinos (⇠

⌫

= 0), the observational constraints on YP

and D/H can be used to obtain bounds on the degeneracy
parameter ⇠

⌫

if we consider instead that it is unknown.
We repeat the analysis of § VI.B, using the pair of cos-

mological parameters (!b, ⇠⌫) instead of !b alone. How-
ever, we still assume that the CMB prior determines only
!b. Again, for each species the uncertainty from nuclear
rates �th

i

(!b, ⇠⌫) is obtained from a Monte-Carlo method.
The posterior distribution for (!b, ⇠⌫) from BBN com-
bined with CMB is plotted in Fig. 28. Once marginalized
over baryon abundance we get

⇠
⌫

= 0.001± 0.016 , (165)

which is a much tighter constraint than the con-
straints from CMB alone (Oldengott and Schwarz, 2017,
⇠
⌫

= �0.002+0.053
�0.060) or than earlier BBN constraints such

as Simha and Steigman (2008, ⇠
⌫

= 0.037±0.026), thanks
to the recent improvement on both deuterium and 4He
abundance measurements.

Even though the bounds (165) are tighter, they are
also surprisingly still highly compatible with a vanish-
ing neutrino chemical potential. Since we find |⇠

⌫

| <

0.016 (68%CL), it corresponds to (Ñ
⌫

� N
⌫

)/N
⌫

<
0.011% and ⌘

⌫

< 4.0⇥ 10�3.
Note that if we had used Parthenope (Pisanti et al.,

2008), as is the case in Ade et al. (2016), which predicts
D/H ' 2.61 ⇥ 10�5 rather than D/H ' 2.46 ⇥ 10�5 for
Planck parameters, we would have found rather ⇠

⌫

=
0.021 ± 0.016 less compatible with a vanishing neutrino
chemical potential. Indeed, in our case the observed value
for YP (resp. D/H) is lower (resp. higher) than the av-
eraged value inferred from the CMB measured baryon
abundance, and given the linearized dependences (164)
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which have the same sign, this results in a compensation
and a central value very close to zero. However if the
prediction for deuterium from a BBN code is also above
its observed value, then both YP and D/H tend to favor
a positive ⇠

⌫

.
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FIG. 28 Top : P (⌦bh
2, ⇠⌫) with 68.27%, 95.45% and 99.73%

contours. Blue : using the 4He bounds (4). Red : using the
bounds YP = 0.2551 ± 0.0022 of Izotov et al. (2014). The
gray horizontal bars are the ±� CMB constraints on baryon
abundance. Bottom : marginalized distribution for ⇠⌫ . Con-
tinuous line uses (4) whereas the dashed line uses the bounds
YP = 0.2551± 0.0022 of Izotov et al. (2014).

D. Number of neutrinos

We repeat the analysis of § VI.B but for the
pairs of cosmological parameters (⌦bh

2, N
⌫

) instead
of the baryon abundance alone. We use the CMB
prior P (⌦bh

2, N
⌫

|CMB) obtained from the Monte-
Carlo Markov chains base_nnu_plikHM_TTTEEE_lowTEB
of Ade et al. (2016) (TT+TE+EE+lowP analysis). The
constraints from CMB are given directly in terms of
Ne↵ (see § II.G) since they are obtained as the model-
independent gravitational contribution of relativistic de-

grees of freedom. However, during BBN the effective
number of neutrinos evolves as can be seen in Fig. 10,
and this evolution is model-dependent. We assume that
if there are extra relativistic degrees of freedom, they do
not share any of the energy which is brought to neutrinos
by incomplete decoupling. Hence for these extra neutri-
nos, or what is described phenomenologically as extra
neutrinos, z

⌫

= 1 throughout BBN. Given these assump-
tions Eq. (66) which was derived for N

⌫

= 3 becomes

Ne↵ = 3

✓
z
⌫

zstand

z

◆4

+ (N
⌫

� 3)

✓
zstand

z

◆4

, (166)

from which we deduce in particular that dNe↵/dN⌫

=�
zstand/z

�4 ' 1.0090. In fact, this relation is unchanged
as long as the energy exchange between the plasma and
the neutrino sector remains identical to Eq. (60), that is
if the function N (T ) is unchanged. More generally the
effective number of neutrinos is insensitive to any type of
neutrino spectral distortions which leaves the total neu-
trino energy density unchanged. Hence, as long as the
energy transfer with the plasma is the same, we can also
assume that the new neutrino degrees of freedom share
a part of the energy transfer during the incomplete de-
coupling phase, and still use Eq. (166). This relation al-
lows to convert the distribution P (⌦bh

2, Ne↵ |CMB) into
P (⌦bh

2, N
⌫

|CMB). This approach is different from the
one chosen by Cyburt et al. (2016) where Eq. (66) is
assumed to hold even for N

⌫

6= 3. However, given the
rather large observational bounds on N

⌫

obtained, and
the smallness of z4

⌫

, this difference in the conversion of
neutrino numbers is not crucial.

The posteriors obtained are depicted in Fig. 29. They
are to be compared with the plots of Cyburt et al. (2016,
Fig. 10). Furthermore, it presents a significant improve-
ment compared to Cooke et al. (2018, Fig. 7) thanks to
the inclusion of the measured YP in the BBN constraint.
We used the full results of the chains for the CMB prior,
but it can be very well represented by a two-dimensional
Gaussian distribution with ⌦bh

2 = 0.022197± 0.000245,
N

⌫

= 2.945± 0.203 and a rather strong correlation coef-
ficient r = 0.7699, since this approximation affects only
marginally the posteriors obtained. Once marginalized
over baryon abundance, the constraints on the numbers
of neutrinos are

N
⌫

=

8
><

>:

2.95± 0.20 CMB

2.88± 0.27 BBN

3.01± 0.15 BBN+ CMB.

(167)

As for the marginalized baryon abundances we get

100⇥ ⌦bh
2 =

8
><

>:

2.220± 0.025 CMB

2.168± 0.055 BBN

2.216± 0.022 BBN+ CMB.

(168)

Note that if we had used a code which predicts D/H '
2.61⇥ 10�5 instead of D/H ' 2.46⇥ 10�5 for the Planck
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FIG. 29 Top : P (⌦bh
2, N⌫). with 68.27% and 95.45% con-

tours for different combinations of data. Bottom : P (N⌫)
from marginalization. Continuous green is from CMB only,
dotted red from BBN only, and dashed black is the combina-
tion of BBN and CMB. Note that the average value of N⌫ for
the combination of BBN and CMB is not between the corre-
sponding averages obtained from CMB and BBN considered
separately. There is no contradiction since the nearly elliptic
preferred regions in the (⌦bh

2, N⌫) space for BBN and CMB
taken separately overlap away from the line defined by their
respective average points.

parameters, we would have obtained N
⌫

= 2.84 ± 0.27
from BBN alone, corresponding to Ne↵ = 2.88 ± 0.27,
whose central value is similar to the one obtained in Con-
siglio et al. (2017, Eq. 26). Since we use consistently
the CMB prior P (⌦bh

2, N
⌫

|CMB) when obtaining con-
straints from BBN and CMB, we cannot compare our
results with those of Consiglio et al. (2017) in that case,
since they use only a CMB prior on ⌦bh

2.

Conclusion

It is widely acknowledged that Cosmology has entered
in the "precision era"; this should also apply to big bang

nucleosynthesis. For both D and 4He isotopes the preci-
sion on the abundances deduced from observations have
reached the percent level. The precision on primordial
D abundance prediction by BBN codes is now limited
to a few percents because of the uncertainties on the
D(p,�)3He, D(d,n)3He and D(d,p)3H thermonuclear re-
action rates (Coc et al., 2015; Di Valentino et al., 2014).
Ongoing experiments (Gustavino, 2017) from LUNA at
the Gran Sasso underground facility, supplemented by
theoretical works (Marcucci et al., 2016) are expected
to improve the situation. Here, we concentrated on the
prediction of 4He primordial abundance. Uncertainties
on YP related to experimental data come from the neu-
tron lifetime 879.5 (±0.8) s (but that may be affected by
systematic uncertainties (Patrignani and Particle Data
Group, 2016 and 2017 update)), leading to a �Y

(4)
P = 1.7

(Eq. 7) uncertainties and from the 1H(n,�)2H, D(d,n)3He
and D(d,p)3H reaction rates (⇠1% factor uncertainty
(Ando et al., 2006; Gómez Iñesta et al., 2017)) leading
to �Y

(4)
P .0.5 in total (Eq. 143). These uncertainties

are small, compared with the observational uncertainty
of �Y

(4)
P = 40 (Eq. 4). However, the predicted 4He

primordial abundance includes corrections to the "bare"
weak rates: zero–temperature radiative corrections, fi-
nite nucleon mass corrections, finite temperature radia-
tive corrections, weak-magnetism, QED plasma effects
and incomplete neutrino decoupling that, in total, shift
the abundance by �Y

(4)
P = 44.7 (Table V), i.e. larger

than the uncertainties.
It is thus of the utmost importance to precisely cal-

culate all these corrections, in order to limit theoretical
uncertainties. Here, they are for the first time all in-
cluded and calculated in a self consistent way allowing to
take into account the correlations between them. In ad-
dition, it was verified that all satisfy detailed balance, a
crucial point since it directly affects the neutron/proton
number ratio, and hence the 4He abundance. Table V
details the contributions of these corrections to the 4He,
D, 3He and 7Li primordial abundance. We did not cal-
culate the effect of incomplete neutrino decoupling, but
use the results of Pisanti et al. (2008). This amounts
to ignoring the spectral distortions, but this affects Y

(4)
P

by approximately less than one unit. However we find re-
sults for incomplete neutrino decoupling effects which are
very similar to Grohs et al. (2016), and most notably we
find a coherence on the sign of light element abundances
variations which is different from Mangano et al. (2005).
Given the coupling we find with finite nucleon mass ef-
fect, this is the very last correction which requires careful
evaluation to fully settle the weak rates corrections.

In this work, we have been using a network of ⇡400
nuclear reactions (and their reverse), from neutron to
sodium to encompass the light element big bang nucle-
osynthesis up to the CNO isotopes (Coc et al., 2012). We
used the most up to date reaction rates, and in particular
those involved in deuterium production (Gómez Iñesta
et al., 2017; Iliadis et al., 2016), but even more impor-



41

tant, the weak rates with their carefully calculated cor-
rections. Hence, we claim that our predicted abundances
(Table VII) are the most accurate to date, not only for
D, 3He, 7Li and CNO isotopes but also for 4He. Our pre-
dicted deuterium and 4He primordial abundances are in
agreement with observations, within error bars (Fig. 26
and Table VIII), and in particular, there is no need for ex-
tra relativistic degrees of freedom (i.e. N

⌫

> 3). Our pre-
dicted lithium abundance remains a factor of ⇡3 above
the Spite plateau. The solution of this problem probably
involves several mechanisms including stellar depletion
and possibly some physics beyond the standard model.
Finally, our prediction of CNO abundance (Table VII)
does not completely rule out the possibility that they
may influence the evolution of some of the first, Popula-
tion III, stars (Ekström et al., 2008).

Last, but not least, we provide at http://www2.iap.
fr/users/pitrou/primat.htm, a freely available Math-

ematica code that includes all the physics discussed in
this work. We expect that it will be used and hopefully
modified in order to include new physics (see e.g. Iocco
et al. (2009); Mathews and Kusakabe (2017)), or just to
update some reaction rates 20.
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Appendix A: Thermodynamics

1. Thermodynamical quantities

From the distribution function of a given species, it is
possible to define macroscopic quantities such as number
density n, energy density ⇢, and pressure P . Due to the
isotropy of the FL spacetime, the distribution function
depends only on the magnitude of spatial momenta, that
is it is of the form f(t, p). Furthermore isotropy implies
that there is no anisotropic stress. Omitting the time

20 They can be provided in tabular form, in a format similar to the
Starlib one (Sallaska et al., 2013) at https://starlib.github.

io/Rate-Library/, or as (possibly parameter dependent) ana-
lytical formulae.

dependence to alleviate the notation, we define

n = g

Z
f(p)

4⇡p2dp

(2⇡)3
(A1a)

⇢ = g

Z
f(p)E

4⇡p2dp

(2⇡)3
(A1b)

P = g

Z
f(p)

p2

3E

4⇡p2dp

(2⇡)3
(A1c)

with E =
p
p2 +m2 and g the number of spin degrees of

freedom of the species considered (g = 1 for neutrinos and
g = 2 for all other species). Using EdE = pdp, and given
that both Fermi-Dirac and Bose-Einstein distributions
are given as functions of E and not p, it is often more
convenient to rewrite these expressions as

n =
g

2⇡2

Z
f(E)pEdE (A2a)

⇢ =
g

2⇡2

Z
f(E)pE2dE (A2b)

P =
g

6⇡2

Z
f(E)p3dE (A2c)

with p =
p
E2 �m2.

Bose-Einstein and Fermi-Dirac with statistical physics
convention for chemical potential are defined as

g±
T,µ

(E) ⌘ 1

e
E�µ
T ± 1

(A3)

with upper (lower) sign for fermions (bosons). For these
distributions we find from Eqs. (A2)

n(t) =
gT 3

2⇡2
I
(1,1)
±

(x, ⇠) (A4a)

⇢(t) =
gT 4

2⇡2
I
(2,1)
±

(x, ⇠) (A4b)

P (t) =
gT 4

6⇡2
I
(0,3)
±

(x, ⇠) (A4c)

with x ⌘ m/T and ⇠ ⌘ µ/T and the integrals

I
(m,n)
±

(x, y) =

Z
1

x

um(u2 � x2)n/2

eu�y ± 1
du , (A5a)

=

Z
1

0

(v2 + x2)(m�1)/2vn+1

e
p

v

2+x

2

�y ± 1
dv.(A5b)

When the chemical potential can be neglected (⇠ ⌧ 1)
we also use the notation

I
(m,n)
±

(x) ⌘ I
(m,n)
±

(x, 0) . (A6)

Finally when the mass can also be neglected (x ⌧ 1) we
define

I
(m,n)
±

⌘ I
(m,n)
±

(0, 0) , (A7)

whose most useful values are reported in table IX. When
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TABLE IX Integrals involved in the expressions of thermo-
dynamical quantities when x ⌧ 1 and ⇠ ⌧ 1.

Bosons (�) Fermions (+)

I
(0,1)
±

⇡2/6 ⇡2/12

I
(1,1)
±

2⇣(3) 3⇣(3)/2

I
(2,1)
±

⇡4/15 7⇡4/120

I
(0,3)
±

⇡4/15 7⇡4/120

the temperature is much smaller than the mass of the
particles, that is for x = m/T � 1, we find the approxi-
mate relations

n ' gT 3
⇣ x

2⇡

⌘3/2

e⇠�x (A8a)

⇢ '
✓
m+

3

2
T

◆
n . (A8b)

2. Chemical potential of electrons

In chemical equilibrium µ
e

� = �µ
e

+ ⌘ µ
e

because of
reactions 2� $ e+ + e�. Hence the net negative charge
density in electrons and positrons is

n
e

� � n
e

+ =
2T 3

2⇡2

h
I
(1,1)
+ (x, ⇠)� I

(1,1)
+ (x,�⇠)

i
(A9)

with x ⌘ m
e

/T and ⇠ ⌘ µ
e

/T . The chemical potential of
electrons and positrons must adapt to ensure the electric
neutrality of the Universe, hence it is constrained by

n
e

� � n
e

+ = n
p

. (A10)

Let us estimate the chemical potential at the end of BBN
for simplicity. Indeed, since ⇠ increases with time, it is
enough to check that its final value at the end of BBN
is small. We use therefore the final value of baryon-to-
photon ratio ⌘ [defined in Eq. (36)] and use that the
baryonic matter is essentially in protons and 4He nuclei.
We find

n
e

� � n
e

+ = (1� YP/2)⌘0 n̄�

T 3 . (A11)

In that limit, the electric charge density of electrons and
positrons is given by

n
e

� � n
e

+ ' 4T 3
⇣ x

2⇡

⌘3/2

e�x sinh ⇠ . (A12)

Combining these two equations we obtain

⇠ ' Arcinsh

 
⌘(1� YP/2)e

x

p
2⇣(3)p

⇡x3/2

!
. (A13)

The evolution of the electrons chemical potential is de-
picted in Fig. 30. ⇠ = µ

e

/T stays much below 10�5 when-
ever T > 5⇥108K. For lower temperatures, ⇠ rises but it

is only because electron-positron annihilations are nearly
complete and the chemical potential adapts so that the
relic density of electrons is equal to the number of pro-
tons. That is, whenever the chemical potential of elec-
trons rises at low temperature, the amount of electrons is
insignificant due to the low value of the baryon to photon
ratio. Hence for all practical purposes, from Eq. (20) we
deduce that whenever there is no heat exchange with the
neutrinos, the total entropy of the plasma is conserved,
that is Ṡpl = d(spla

3)/dt = 0.
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FIG. 30 Continuous red lines : Thick line is µe/T com-
puted exactly from Eq. (A10), thin line is the approxima-
tion (A13). Dashed blue line : 2⇡2/[3⇣(3)]ne/(kBT )

3 with
the chemical potential taken into account. Dotted blue line :
2⇡2/[3⇣(3)]ne/(kBT )

3 with vanishing chemical potential.

3. Nucleons at thermodynamical equilibrium

The chemical potential of neutrons and protons are not
negligible individually, and they are constrained to give
the number density in the low temperature limit (A8a).
However the difference µ

n

� µ
p

is negligible with respect
to T . Indeed we can neglect ⇠

e

⌘ µ
e

/T (see § A.2) and
assuming it is also the case for neutrinos (see §VI.C for
degenerate neutrinos), and given that at equilibrium we
have necessarily

µ
n

+ µ
⌫

= µ
p

+ µ
e

) µ
n

� µ
p

= µ
e

� µ
⌫

, (A14)

then we deduce µ
n

� µ
p

⌧ 1.
Hence from (A8a) we obtain that the neutron to proton

ratio is

n
n

n
p

=

✓
m

n

m
p

◆3/2

e�
�

T ' e�
�

T

✓
1 +

3�

2m
N

◆
. (A15)

It is possible to determine the chemical potential of
neutrons and protons from the expression (A8a) and the
baryon-to-photon number ratio ⌘. For instance for pro-
tons, we must have

n̄
p

⌘ n
p

T 3
= 2

⇣x
p

2⇡

⌘3/2

e⇠p�xp = ⌘
n
p

nb
n̄
�

= Y
p

⌘n̄
�

(A16)
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with x
p

⌘ m
p

/T and ⇠
p

= µ
p

/T , which can be used to
solve for ⇠

p

. In particular the distribution function of
protons is approximately given by

f
p

(p) ' e
µp�E

T ' exp

✓
⇠
p

� x
p

� p2

2m
p

T

◆
(A17)

and thus it is approximated by the Maxwellian distribu-
tion

f
p

(p) ' n
p

2

✓
2⇡

m
p

T

◆3/2

exp

✓
� p2

2m
p

T

◆
(A18)

' Y
p

⌘⇣(3)
p
8p

⇡

✓
T

m
p

◆3/2

exp

✓
� p2

2m
p

T

◆
.

From this last equation we deduce that f
p

(p) ⌧ 1, justi-
fying that we neglect Pauli-blocking effects in reactions
rates for protons (and similarly for neutrons).

The distribution function for an isotope i is exactly
similar with the obvious replacement Y

p

! Y
i

, n
p

! n
i

and m
p

! m
i

. The distribution of velocities is defined
as (omitting the i index of the isotope considered)

�MB(v)dv ⌘ 1

n

dn

dp
dp =

2

n
f(p)

4⇡p2dp

(2⇡)3
, (A19)

where mv = p, and using the kinetic energy E ⌘
1
2mv2 ) dE = mvdv, it takes the form given in Eq.
(123).

4. Abundances at nuclear statistical equilibrium

At nuclear statistical equilibrium (NSE), a given iso-
tope i is at chemical equilibrium with its nucleons, hence
the relation between chemical potentials

µ
i

= Z
i

µ
p

+ (A
i

� Z
i

)µ
n

. (A20)

From Eq. (A8a)

n
i

= g
i

✓
m

i

T

2⇡

◆3/2

e⇠i�xi , g
i

⌘ 2s
i

+ 1 , (A21)

where s
i

is the spin of species i. Using Eq. (A20) and
(A21), we get

nNSE
i

=
g
i

m
3/2
i

2Ai

 
n
p

m
3/2
p

!
Zi ✓

n
n

m
3/2
n

◆
Ai�Zi

⇥
✓
2⇡

T

◆ 3(Ai�1)

2

eBi/T (A22)

where we defined the binding energy

B
i

⌘ Z
i

m
p

+ (A
i

� Z
i

)m
n

�m
i

. (A23)

Using (36), the abundances are then given at NSE by

Y NSE
i

= g
i

⇣(3)Ai�12
3Ai�5

2 ⇡
1�Ai

2

✓
m

i

TAi�1

mZi
p

mAi�Zi
n

◆3/2

⇥⌘Ai�1Y Zi
p

Y Ai�Zi
n

eBi/T . (A24)

We check in particular that for neutrons and protons
B

n

= B
p

= 0 and A
n

= A
p

= 1, so we get the tau-
tological relation Y NSE

n

= Y
n

and Y NSE
p

= Y
p

. In order
to obtain the NSE values from (A24), we use Audi et al.

(2017) for the masses and spins of nuclear elements. In
Fig. 31, we plot jointly the abundances of the main iso-
topes together with their NSE values to check that they
are equal at high temperatures.
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FIG. 31 Evolution of the first elements abundances in solid
lines, together with the nuclear statistical equilibrium values
in dashed lines. The deuterium abundance stays very close
to its NSE value until the time it is more efficiently destroyed
than formed around t ' 200 s.

Appendix B: Weak reactions rates

In this section, we gather all the technicalities required
to obtain the theoretical forms of the weak-rates includ-
ing the most relevant corrections.

1. General expressions

Let us consider first the reactions with neutrons in the
initial state. Throughout this section we use the mostly
minus metric signature since it is the most common in
particle physics. The general expression for each of the
three reactions involved is of the form (Fidler and Pitrou,
2017; Lopez et al., 1997)

n
n

� =

Z
⇧

i

[d3p
i

](2⇡)4�4
⇣
p
n

� p
p

+ ↵
⌫

p
⌫

+ ↵
e

p
e

⌘

⇥ |M |2 f
n

(E
n

)[1� f
p

(E
p

)]f
⌫

(↵
⌫

E
⌫

)f
e

(↵
e

E
e

) (B1)

where the p
i

with i = n, p, e, ⌫ are the four-momenta
of particles, and we used the compact notation for the
relativistic volume element

[d3p] ⌘ d3p

2E(2⇡)3
=

4⇡p2dp

2E(2⇡3)
. (B2)
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The factor ↵
⌫

is +1 if the neutrino is in the initial state
and �1 otherwise with a similar definition for ↵

e

and
the electron or positron. In (B1), it is apparent that the
Dirac function ensures energy and momentum conserva-
tion. For a Fermi-Dirac distribution

g(�E) = 1� g(E) , (B3)

implying that the coefficients ↵
e

,↵
⌫

also ensure that ei-
ther it is the distribution function which appears if the
lepton is in the initial state, or the Pauli-blocking factor
if it is in the final state.

A first simplification consists in neglecting the Pauli-
blocking factor of the final state proton due to the very
low value of the baryon-to-photon ratio [see Eq. (A18)].
Having no dependence on the distribution function of
the final protons, we can simplify Eq. (B1) further by
performing the integral on spatial momenta of protons,
using the spatial part of the Dirac function. The reaction
rates reduces to

n
n

� =

Z
d3p

n

d3p
e

d3p
⌫

24(2⇡)8
� (E

n

� E
p

+ ↵
e

E
e

+ ↵
⌫

E
⌫

)

⇥ |M |2
E

n

E
p

E
e

E
⌫

f
n

(E
n

)f
⌫

(↵
⌫

E
⌫

)f
e

(↵
e

E
e

) (B4)

where the proton momentum and energies are related by

p
p

= p
n

+ ↵
⌫

p
⌫

+ ↵
e

p
e

, E
p

=
q

p
p

· p
p

+m2
p

. (B5)

For a given reaction, |M |2 is the corresponding matrix-
element of the weak interaction summed over all initial
and final states, computed from the interaction Hamil-
tonian. For the reactions (68), the relevant part of the
interaction Hamiltonian is a coupling of weak currents in
the form

H
I

=
G

Fp
2
Jµ

e⌫

J
pn, µ

(B6)

where G
F

is the Fermi constant. The electron-neutron
weak current is purely left chiral, and of the form

Jµ

e⌫

= ⌫̄�µ(1� �5)e . (B7)

e and ⌫ are the fermionic quantum fields of electrons and
neutrinos, and the �µ are the matrices of the Clifford
algebra [we use the conventions of (Fidler and Pitrou,
2017)]. The proton-neutron current is of the form (Ivanov
et al., 2013, Eqs. 1 and A2)

Jµ

pn

= cos ✓Cp̄

✓
�µ(1� g

A

�5) + i
fwm

m
N

2⌃µ⌫q
⌫

◆
n (B8)

where p and n are the Fermionic quantum fields of pro-
tons and neutrons and 2⌃µ⌫ ⌘ i/2(�µ�⌫ � �⌫�µ). g

A

is
the axial current constant for nucleons (also sometimes
written C

A

/C
V

or � in the literature), and fwm is the
weak magnetism constant whose numerical value is given

by (Horowitz, 2002; Horowitz and Li, 2000; Ivanov et al.,
2013)

fwm =
µ
p

� µ
n

2
' 1.793� (�1.913)

2
' 1.853 . (B9)

✓C is the Cabbibo-Kobayashi-Maskawa (CKM) angle
(cos ✓C also noted V

ud

in the literature), qµ is the nu-
cleon four-momentum transfer, that is the difference be-
tween the final nucleon four-momentum and the initial
one. The most recent numerical values for the constants
in weak interactions are gathered in appendix D.

It is possible to show that from Eqs. (B6)-(B8) the
matrix element is of the form [see e.g. (Fidler and Pitrou,
2017)]

|M |2
27G2

F

= c
LL

M
LL

+ c
RR

M
RR

+ c
LR

M
LR

(B10)

with the coupling factors

c
LL

⌘ (1 + g
A

)2

4
(B11a)

c
RR

⌘ (1� g
A

)2

4
(B11b)

c
LR

⌘ g2
A

� 1

4
. (B11c)

If weak interactions for nucleons were purely left-chiral,
that is with g

A

= 1, only the M
LL

would contribute.
M

RR

contains the contribution of the right-chiral part
of the interaction, and M

LR

is an interference between
left and right chiral contributions.

Let us ignore first the contribution from weak-
magnetism that are investigated further in § B.4. We
then find

M
LL

= (p
n

· p
⌫

)(p
p

· p
e

) (B12a)

M
RR

= (p
n

· p
e

)(p
p

· p
⌫

) (B12b)

M
LR

= m
p

m
n

(p
⌫

· p
e

) . (B12c)

It is worth noting that all weak reactions (68) have in fact
the same matrix element. First the three reactions with
a neutron in the initial state are obtained by crossing
symmetry. Crossing symmetry for the electron amounts
for instance to the formal replacement p

e

! �p
e

with
an overall minus sign (Fidler and Pitrou, 2017) and it
is straightforward to check that this leaves the matrix
element invariant. The same property arises obviously for
neutrinos. Second, the three reverse reactions (with an
initial proton and a final neutron) are obtained by time
reversal, and since there is no CP violation at this level,
there is also a time-reversal symmetry so as to ensure the
CPT symmetry. Hence all reverse rates have exactly the
same matrix element.

2. Fokker-Planck expansion

The integral in (B4) is 8-dimensional when one removes
the Dirac function. Due to the isotropy of all distribu-
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tions, this can be reduced to a 5-dimensional integral.
This is the method followed by Lopez et al. (1997). Here
we follow a much simpler route by performing a Fokker-
planck expansion in the energy transferred in reactions.
Even though our method is different from Seckel (1993),
it follows a method which is similar in spirit. As we shall
see, this results in one-dimensional integrals which are
much faster to evaluate.

At low temperature, it is enough to assume that nu-
cleons follow an isotropic Maxwellian distribution of ve-
locities at the plasma temperature T given by Eq. (A18).
Hence the following integrals are obtained

2

Z
f
N

(p)
d3p

(2⇡)3
= n

N

, (B13a)

2

Z
f
N

(p)
pi

m
N

d3p

(2⇡)3
= 0 , (B13b)

2

Z
f
N

(p)
pipj

m2
N

d3p

(2⇡)3
=

T

m
N

�ijn
N

. (B13c)

In particular contracting with �
ij

we recover the expres-
sion for the pressure of nucleons in the low temperature
limit

P
N

= 2

Z
f
N

(p)
p2

3m
N

d3p

(2⇡)3
= Tn

N

. (B14)

For electron or neutrino distributions, since we have as-
sumed isotropy, we deduce the property

Z
g(E)p↵E�pipj

d3p

(2⇡)3
=

�ij

3

Z
g(E)p↵+2E�

d3p

(2⇡)3

(B15)
where ↵ and � are some numbers. From isotropy we also
find that

Z
g(E)p↵E�pi

d3p

(2⇡)3
= 0 . (B16)

Hence for all practical purposes, we can perform the re-
placements

pipj ! p2�ij/3 , pi ! 0 . (B17)

on all species, resulting in great simplifications.
We assess the importance of corrections to the Born

approximations as explained in § III.G, that is in powers
of ✏ ⌘ T/m

N

. To evaluate the order of each term, we
consider that the momentum or energies of neutrinos are
of order T ⇠ �, that is factors of the type E

e

/m
N

or
E

⌫

/m
N

are of order ✏. Furthermore, from (B13) a fac-
tor p

n

/m
n

is of order
p

T/M ⇠ p
�/M and thus

p
✏.

However since only even powers of the spatial momen-
tum of nucleons must appear [see Eqs. (B13)], we shall
encounter terms of the type |p

p

/m2
n

| which are of order
✏.

The Fokker-Planck expansion consists in expanding
the energy difference between the nucleons, E

n

� E
p

around the lowest order value � = m
n

� m
p

. Keeping
only the lowest corrections this expansion reads

E
n

� E
p

= �+ �Q1 + �Q2 + �Q3 (B18)

�Q1 ⌘ �p
n

· q
m

N

(B19a)

�Q2 ⌘ � |q|2
2m

N

(B19b)

�Q3 ⌘ |p
n

|2
2

✓
1

m
n

� 1

m
p

◆
' � |p

n

|2�
2m2

N

. (B19c)

where q ⌘ p
p

�p
n

= ↵
⌫

p
⌫

+↵
e

p
e

is the spatial momen-
tum transferred. The first term in (B18) is the lowest
order, or Born approximation, that is the only appearing
when considering the infinite nucleon mass approxima-
tion. The second term is an order

p
✏ correction, and

the third term is an order ✏ correction. Finally the last
term is of order T�/m

N

so it is an order ✏ correction as
well. It is the only corrective term for which it is cru-
cial to take into account the difference of mass between
neutrons and protons. Using Eq. (B18), we expand the
Dirac delta function on energies as

� (E
n

� E
p

+ ↵
e

E
e

+ ↵
⌫

E
⌫

) ' (B20)

�(⌃) + �0(⌃)

 
3X

i=1

�Q
i

!
+

1

2
�00(⌃)(�Q1)

2 ,

where ⌃ ⌘ �+ ↵
e

E
e

+ ↵
⌫

E
⌫

.
We must then expand the matrix element and the en-

ergies appearing in Eq. (B4). It proves much easier to
expand all these contributions together. Furthermore,
whenever a term is already of order ✏, we know that it
should multiply only the Born term of the expansion
(B20), so we can apply the simplification rule (B17).
With this method we find

M
LL

⇧
i

E
i

! 1� p
n

m
N

·
✓
p
e

E
e

+
p
⌫

E
⌫

◆
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⌫
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|2
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N

E
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(B21a)

M
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⇧
i
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(B21b)

M
LR

⇧
i

E
i

!
✓
1� |p

n

|2
m2

N

◆✓
1� p

e

· p
⌫

E
e

E
⌫

◆
. (B21c)

The second term in Eqs. (B21a) and (B21b) is of orderp
✏ and the last term in these equations is of order ✏.

Hence the second term needs to be coupled with the or-
der

p
✏ term in the Dirac delta expansion (B20) which is

�0(⌃)�Q1, and simplified with the rules (B17).
There are four steps to complete this Fokker-Planck

expansion.

1. First, using Eqs. (B21) and (B20) in the reaction
rates (B4) we perform the integral on the initial
neutron momentum with the rules (B13).
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2. Second, we can replace the differential elements for
the integral on electron and neutrino momenta with
d3p ! 4⇡p2dp because we have already performed
all angular averages.

3. We are left with a two dimensional integral on
the electron and neutrino momentum magnitudes
p
e

= |p
e

| and p
⌫

= |p
⌫

|. Let us note E
⌫

= p
⌫

in order to write the result in a easily readable
form. Third, we perform the integral on E

⌫

us-
ing the Dirac delta and their derivatives. When-
ever a Dirac delta derivative appears, it means that
we have to perform integration by parts to con-
vert it into a normal Dirac delta. This will intro-
duce derivatives with respect to the E

⌫

applied on
the neutrino distribution function or Pauli-blocking
factor. Also for a given reaction it might appear
that the value of E

⌫

constrained by the Dirac delta
is not physical for that reaction if ↵

⌫

= 1 and phys-
ical if ↵

⌫

= �1, or vice-versa. This is the reason
why we consider the total reaction rate of the reac-
tions (68a) and (68b). Once their rates are added,
the Dirac delta automatically selects either the neu-
trino in the initial state, with the corresponding dis-
tribution function, or the neutrino in the final state,
with the associated Pauli-blocking factor. Eventu-
ally once the rates (68a) and (68b) are added, we
might forget about ↵

⌫

, that is about the position of
the neutrino. We need only to compute two rates,
one where the electrons is in the initial state [re-
action (68c)], and one where it is a positron which
is in the final state [the sum of reactions (68a) and
(68b)].

4. Finally, we need to determine the procedure to con-
vert the rate with a neutron in the initial state into
the reverse rate with a proton in the initial state.
Even if the matrix element is the same for all reac-
tions, as explained in § B.1, the method to perform
a finite mass expansion is not symmetric under the
interchange p $ n. Indeed we chose to expand the
momentum of the final nucleon around the initial
one, and we remove the integral on the final nu-
cleon momenta. It is apparent on Eqs. (B12) that

the electron (resp. neutrino) momentum is con-
tracted with the neutron (resp. proton) in the LL
term but this is the opposite in the RR term. Since
the coupling factors of these terms are interchanged
by the replacement g

A

! �g
A

, we can deduce the
rates with an initial proton from those with an
initial neutron using the rule g

A

! �g
A

. Obvi-
ously the argument of the Dirac delta contains now
E

p

�E
n

= ��+ . . . instead of E
n

�E
p

= �+ . . .
so we must also apply the rule � ! ��. Finally
when considering a reverse reaction, the electron in
the initial state turns into a positron in the final
state so we must also apply the rule E

e

! �E
e

,
that is change the electron distribution function to
a Pauli-blocking factor or vice-versa. These are the
rules used extensively in § III to deduce the reverse
rates.

Having sketched the details of the procedure, we are in
position to give the results. The Born approximation re-
sults are obvious under this expansion. From Eqs. (B21)
we obtain in the limit

M
LL

⇧
i

E
i

' M
RR

⇧
i

E
i

' 1 , (B22a)

M
LR

⇧
i

E
i

'
✓
1� p

e

· p
⌫

E
e

E
⌫

◆
. (B22b)

Furthermore in the Dirac expansion (B20) we keep only
�(⌃), and the average over electrons and neutrino spa-
tial momenta removes the momentum dependent part of
Eq. (B22b). The Born rates are gathered and commented
in § III.B.

The first corrections in this Fokker-Planck expansion,
and which are due to finite nucleon mass, are reported in
the next section.

3. Finite nucleon mass corrections

The finite nucleon mass corrections take the form (114)
[or (115) if radiative corrections are added]. The function
�FM
±

is
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�FM
±

(E, g
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where p =
p

E2 �m2
e

, E⌥

⌫

= E ⌥ �. We defined the
reduced couplings
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c̃
RR

⌘ 4

1 + 3g2
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⌘ 4

1 + 3g2
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c
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, (B24c)

and the functions [with the notation (75)]

g(n,p)
⌫

(E
⌫

) ⌘ @p[(E
⌫

)ng
⌫

(E
⌫
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⌫

. (B25)

For the neutron beta decay, the expression (B23) for T =
0 gives (with E

⌫

⌘ �� E here)
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4. Weak-magnetism corrections

Because the weak-magnetic term enters in the current
(B8) with a factor q

⌫

/m
N

, with the momentum transfer
to nucleon being of the order of T , it is an order ✏ correc-
tion and thus vanishes at the Born approximation level.
The matrix element is corrected by the addition of
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where we used the expressions (B12). It is possible to
show, although rather tedious, that the contributions of
the second line vanish at first order in ✏. This remarkable
simplification has been noticed earlier by Seckel (1993).
Hence the weak-magnetism contributes exactly as the ax-
ial vector current coupled to the vector current. It is

taken into account by changing the coupling constants
(B11) to the values (119), modifying accordingly the con-
stants (B24) appearing in the finite nucleon mass correc-
tions.

Only the first two terms of Eq. (B23) can in principle
contribute to �0 since weak-magnetism does no affect the
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sum c
LL

+ c
RR

nor c
LR

. However, it is straightforward
to show that they result in a vanishing contribution since

�wm
0 /

Z p

�2

�1

0

dpp2(E ��)2
✓
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E
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◆

= 1
3

Z �
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dE@
E
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(E ��)3(E2 �m2)3/2

i

= 0 . (B28)

Note that when the weak-magnetism contribution is cou-
pled with radiative corrections, this result is no longer
valid and there is a small change in �0 that we give in
§ III.H.

5. Mandelstam variables

Let us define the Mandelstam variables for ⌫ + n !
e+ p.

s ⌘ (p
⌫

+ p
n

)2 = (p
e

+ p
p

)2 (B29a)

t ⌘ (p
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� p
e

)2 = (p
n

� p
p

)2 (B29b)

u ⌘ (p
⌫

� p
p

)2 = (p
n

� p
e

)2 . (B29c)

The total matrix element |M |2 deduced from Eqs. (B6)-
(B8), is the sum of Eqs. (B10) and (B27), where we use
the definitions (B12). Once expressed with the Mandel-
stam variables, we checked that it takes the form given in
Lopez et al. (1997, App. A) (published version and with
m1 = m

⌫

, m2 = m
n

, m3 = m
e

and m4 = m
p

), except
for a few differences. First, we do not include their term
t3 because this is second order in finite nucleon mass ef-
fects. Hence, we kept only contributions which are linear
in fwm. Second, we find that there is a typo in t5 of Lopez
et al. (1997), since there should be a factor g

A

instead of
g2
A

.
We also performed a comparison with Seckel (1993)

and found that it matches our result and the one of Lopez
et al. (1997) if we replace its f2 by 2fwm (again ignoring
terms which are quadratic in f2 and the parameter f

ps

in Seckel (1993)).

6. Radiative corrections and Sirlin’s universal function

When considering the effect of radiative corrections,
the function C defined in Eq. (103) is given by

C(E, kmax) = 4 ln
m
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m
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+ ln
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+ 2C +A
g

+ g(E, kmax)

(B30)
with

C ' 0.891 , A
g

' �0.34 , m
A

' 1.2GeV .
(B31)

g(E, kmax) is Sirlin’s universal function
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and where the Spence function is defined as

L[x] =
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ln(1� t)

t
dt . (B33)

It is possible to use an expansion of the Spence function.
We report it here to correct typos in Dicus et al. (1982)
and subsequently in Lopez and Turner (1999); Smith and
Fuller (2010)
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2 + 11� + 224

9 �2 + 89
3 �3 + 1496

75 �4 + 596
75 �5 + 128

49 �6
�
.

Finally in order to obtain even more accurate results,
it is also possible to refine the expression for the radia-
tive corrections by using Czarnecki et al. (2004, Eq. 15)
which is a resummation of higher order corrections. Un-
less specified, this is the radiative correction that we use
so we report it here.
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7. Bremsstrahlung

We review in the next section the bremsstrahlung cor-
rection to the neutron decay, also called radiative neu-
tron decay when the photon is detected (Cooper et al.,
2010). We then extend it to the other weak processes dur-
ing BBN. This allows to find the difference between the
correct treatment of bremsstrahlung and how it was par-
tially included in the radiative correction factor detailed
above in § B.6. We report subsequently the detailed ex-
pression of this bremsstrahlung correction.
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a. Neutron decay

Let us consider first the bremsstrahlung for the decay
of neutron. We note the emitted photon momentum k.
Its spatial part is k, that we decompose into energy k

and direction k̂ as k = kk̂. We note the electron energy
E and its spatial momentum p for simplicity. In the
infinite nucleon mass approximation, the bremsstrahlung
differential decay rate is of the form [see e.g. Ivanov et al.

(2013, Eq. B12), Cooper et al. (2010, Eq. 4), Abers et al.

(1968, Eq. 6.6) or Ivanov et al. (2017, Eq. A40)]
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is the (cosinus) of the angle between the photon momen-
tum and the electron momentum. The neutrino energy
is constrained from energy conservation to be

E
⌫

= �� E � k . (B39)

Performing the integral on µ leads to
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with
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The total decay rate cannot be obtained from a simple
integration of the form
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since there is an infrared divergence. However this di-
vergence cancels a corresponding divergence in the pure
radiative corrections. The usual procedure consists in
letting the photon having a mass and taking the limit
m

�

! 0 [see e.g. Ivanov et al. (2013) or Abers et al.

(1968)].

b. Bremsstrahlung for other reactions

The other rates of bremsstrahlung can be deduced from
crossing symmetry. Indeed, if one considers the process

n + e+ ! p + ⌫̄ it is obtained from crossing symme-
try of beta decay. A crossing symmetry is performed by
inverting the four-momentum of the corresponding par-
ticle. Hence changing the position of the final electron
to an initial positron amounts to E ! �E and p ! �p.
This leads to F+ ! F

�

in (B40). In fact it is simple to
check that if the electron (or positron) and the photon
are on the same side, one should use F+ and if they are on
opposite sides, we should use F

�

. The contributions of
bremsstrahlung to the reaction rates is then straightfor-
ward, provided it is clear that we should take the infrared
regularized contribution, and they read

�
n!p�

=
↵FSK

2⇡

Z
1

me

dE (B43a)
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with the definitions

e�s
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(E) ⌘
Z
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0

dk

k
F
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(E, k)e�
±

(k + E) (B44)

e�
±

(E) ⌘ (E⌥
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)2g⌥
⌫

(E
⌫

) , E⌥

⌫

= E ⌥� . (B45)

c. Correction for bremsstrahlung

However, the bremsstrahlung radiative corrections in-
cluded in § III.E, that is in the factor (103), are those
of neutron beta decay. Indeed the radiative correction
function R in Eqs. (101) and (104) is the sum of a pure
radiative correction and a bremsstrahlung correction. It
is decomposed as

R(E, kmax) = Rpure(E) +RBS(E, kmax) (B46)

with the BS part being

RBS(E, kmax) ⌘ ↵FS

2⇡

Z
k

max

0

dk

k

(kmax � k)2

k2max

F+(E, k)

Ep
.

(B47)
In Eqs. (101) and (104) the choice was made to take
kmax as being the energy of the neutrino because this
is the case for neutron beta decay. However the maxi-
mum energy of the photon emitted is not the neutrino
energy in the other reactions. Furthermore, the distribu-
tion function for the neutrino appearing in Eqs. (101) and
(104) is incorrectly taken in the limit in which the pho-
ton energy is so soft that it does not affect the neutrino
energy. These are the two shortcomings that we need to
correct for by adding the difference between the correct
correction [Eqs. (B43)] and the approximate contribution
[it is formally Eqs. (101) and (104) with R ! RBS]. We
write this bremsstrahlung correction in a form which con-
tains explicitly no infrared divergence and this is given
by Eqs. (107) with the definitions
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With these corrections added to Eqs. (101) and (104),
the total effect of bremsstrahlung is taken into account.
However, with this new contribution the rates no longer
satisfy the detailed balance relation (86). Indeed the
emission of a final photon needs to be compensated by
the absorption of photons from the thermal bath to lead
to a thermodynamical equilibrium. It is only when the
finite temperature radiative corrections are taken into ac-
count, with stimulated emission and absorption, that the
total rates can satisfy detailed balance. This is shown
explicitly in Fig. 18.

Note that by construction the bremsstrahlung correc-
tions do not modify the radiative corrections for �RC0

0

because the neutron beta decay in vacuum, is the only
reaction for which bremsstrahlung is fully taken into ac-
count already.

Finally note that there was some intuition in Brown
and Sawyer (2001) about the incorrect treatment of real-
photon processes. Indeed in this reference, the authors

advocate that one should add the process n+ ⌫̄ + e+ !
p+ �, that they call the five-body process, since it cannot
be a correction to n + ⌫̄ + e+ ! p which is forbidden
energetically. This is indeed correct and it corresponds
to the last term in ��BS

n+e!p

, where the photon emitted
must have an energy larger than �+E. What we find is
that not only this process needs to be added, but all other

processes need to be corrected except for the neutron beta
decay.

8. Finite temperature radiative corrections

The finite temperature radiative corrections are made
of Eqs. (109), (112) and (113). These last two contribu-
tions involve implicitly principal parts in the apparently
divergent part of the integrals. After rearrangement, they
can be put in the form (Brown and Sawyer, 2001, Eq.
(5.15))

��E,T
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n!p

=
↵FSK

2⇡

Z
1

me

dE[�+(E) + �+(�E)]


�2⇡2T 2E

3p
+

Z
1

me

dE0FT (E,E0)

�
(B50a)

��E,T

p!n

+ �ep+ee,T

p!n

=
�
��E,T

n!p

+ �ep+ee,T

n!p

���
�

+

!��
(B50b)
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where g0(E) ⌘ @
E

g(E).
This form is simpler numerically if the double in-

tegration on E and E0 is performed on the variables
E⌃ ⌘ E + E0 and E� ⌘ E � E0 using 2

R R
dEdE0 =R R

dE⌃dE�.
The first contribution (109) is made of real photon pro-

cesses, such as absorption and stimulated emission, see
Fig. 14, but not simple emission which has been already
accounted for as bremsstrahlung (see appendix B.7). To
obtain it we start from the real photons processes (Brown
and Sawyer, 2001, Eq. B28)

��
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1

me
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where we defined
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(E, k)e�
±
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and f(k) ⌘ g�(k/T ) = 1/[exp(k/T )�1]. Note that from
the property

1 + f(k) = �f(�k) = e
k
T f(k) (B54)

combined with the property (84), the detailed balance
relation (86) for the real photon processes (B52) is auto-
matically satisfied21.

Then we replace the factor [1 + f(k)] by f(k) so as
to keep only stimulated emission, since bremsstrahlung
processes (B43) which are taken into account separately
are obtained by f(k) ! 0. A consequence is that the real
photon processes without bremsstrahlung do no satisfy
formally the detailed balance relation. It is only when all
real photon processes are added that it is recovered, as
illustrated in Fig. (18).

Finally, in order to obtain the form (109) for which it
is apparent that there is no infrared divergence, it is nec-
essary to add an infrared diverging contribution (Brown
and Sawyer, 2001, Eq. (B53)) that can be considered
as part of the wave-function radiative correction (it is
partially coming from the diagram 17a) and which is

��,Z
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dE (B55a)

⇥
h
g(�E)e��,Z

+ (E) + g(E)e��,Z

+ (�E)
i

��,Z
p!n

= ��,Z
n!p

��
e��,Z
+

!e��,Z
�

(B55b)

21 At this stage this is only formal since this presents infrared di-
vergences.
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±
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Again on Eqs. (B55) it is apparent using the property
(84) that these extra terms formally satisfy the detailed
balance relation (86).

Appendix C: Nuclear reactions

1. Conventions for nuclear reaction rates

Let us consider for simplicity a two-body reaction of
the type k + l ! i + j and its reverse reaction i + j !
k + l. From Eqs. (136) and (137) their contributions to
the evolution of the abundance Y

i

take the form

Ẏ
i

� Y
k

Y
l

⇢
n

N
A

h�vi
kl!ij

� Y
i

Y
j

⇢
n

N
A

h�vi
ij!kl

, (C1)

with

⇢n ⌘ nb

N
A

⌘ nb·u (g/cm3). (C2)

We see that ⇢n has the dimension of a mass density since
u is the atomic mass unit, that, by definition is related
to Avogadro’s number by N

A

.u=1g. By convention, N
A

has been introduced in the definition of the reaction rate,
hence what is tabulated for a given reaction is N

A

h�vi
and one must multiply by ⇢n in order to build the rates
(e.g. �

kl!ij

) which appear in the general form Eq. (138).
More generally for a reaction of the type i1 + · · ·+ i

p

!
j1+ . . . j

q

, the contribution to the evolution of the species
i1 is

Ẏ
i

1

� �Y
i

1

. . . Y
ip⇢

p�1
n Np�1

A

�
i

1

...ip!j

1
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Conventionally what is tabulated is Np�1
A

�
i

1

...ip!j

1

...jq
22

and one must multiply by ⇢p�1
n to build the reaction rate

�
i

1

...ip!j

1

...jq appearing in Eq. (138). The method is sim-
ilar for a reaction of the type j1 + . . . j

q

! i1 + · · · + i
p

which creates species i1. See also appendix E of Serpico
et al. (2004) on this topic.

To summarize, in nucleosynthesis calculations (as in
chemistry) we are concerned with number densities.
However, it is convenient to normalize them to Avo-
gadro’s number whose dimension can be considered23 to
be the inverse of a mass. The form (C1) is purely conven-
tional and ⇢n is just another manner to define a number
density even though it has the dimension of a mass den-
sity.

22 More precisely, from (139) the factor is N
(Ni

1

+···+Nip )�1

A if the
stoichiometric coefficients are not unity.

23 A subject of controversy, but irrelevant as soon as it is consistent
with the definition of the reaction rate units.



52

2. Baryonic density and nucleonic density

In practice, except for BBN, the nucleonic density of
Eq. (C2) is usually identified with the atomic matter den-
sity, and the nuclear energy source is calculated inde-
pendently as nuclear flow ⇥ Q This corresponds to the
approximation

A·u ⇡ Zm
p

+ (A� Z)m
n

�B(A,Z) + Zm
e

, (C4)

i.e. an error of ⇡1%, completely negligible in stellar mod-
eling. For BBN where D/H observations reach the per-
cent level of uncertainty, it is worth considering the dif-
ference between nucleonic density and baryonic density.

The baryonic density ⌦b·h2 deduced from CMB ob-
servations is the atomic density i.e. taking into account
the 4He binding energy and the mass of the electrons.
Given that the fraction of baryons in the form of helium
is YP ⌘ 4Y4He and the rest is in the form of hydrogen,
the average mass of baryons is (Steigman, 2006)

mb ⌘ ⇠u (C5)

⇠ ⌘ YP

4

m4He

u
+ (1� YP)

m1H

u
(C6)

=
m1H

u

✓
1� 1.75891⇥ 10�3 YP

0.24709

◆

where m4He and m1H are the atomic masses (see ap-
pendix D). Using YP ' 0.24709 for the final BBN Helium
abundance (it is the most relevant abundance for CMB
since stellar formation has not started during CMB for-
mation) we get

⇠ ' 1.006052 , ⇠�1 ' 0.993984 . (C7)

Hence, from Eqs. (35) and (C2), one should use in
Eq. (C1)

⇢n = ⇠�1⇢b , (C8)

where ⇢b is obtained from Eq. (34). One can estimate
the error introduced if we ignore this subtlety and use
⇠ = 1 in nuclear reaction. Numerically we found

�YP = 5.6⇥ 10�4 (C9a)

�

✓
D

H

◆
= �2.4⇥ 10�7 (C9b)

�

✓
3He

H

◆
= 3.7⇥ 10�8 (C9c)

�

✓
7Li

H

◆
= 7.1⇥ 10�12 . (C9d)

Finally, since the abundances deduced from observa-
tions, other than 4He, are expressed as number ratios,
hence, e.g. the observed D/H can be directly compared
to the BBN YD/Y1H calculated ratio. The 4He (pseudo-
)mass fraction, YP deduced from spectroscopic observa-
tions is defined as (Izotov et al., 1994; Pagel et al., 1992)

YP ⌘ 4y

4y + 1
(C10)

with y⌘n4He/n1H⌘Y4He/Y1H being the number ratio, re-
sulting in a definition of YP identical to the BBN one.

Appendix D: Numerical values

The values of cos ✓
C

= Vud and g
A

= C
A

/C
V

are taken
from the Particle Data Group (PDG) (Patrignani and
Particle Data Group, 2016 and 2017 update). The neu-
tron decay rate ⌧

n

= 879.5(±0.8) s is from Serebrov et al.

(2017, Fig. 22) and includes only experiments after 2000.
This value is slightly lower and with less experimental er-
ror than the previously admitted value ⌧

n

= 880.2(1.1) s
of the PDG. We report errors on numerical parameters
only if they are meaningful for BBN. Cosmological pa-
rameters are taken from Ade et al. (2016).

TABLE X Numerical values used for the BBN code.

u 931.494061MeV

mn 939.565360MeV

mp 938.272029MeV

mZ 91.1876GeV

mW 80.385GeV

m
4He (atomic) 4.00260325413u

m
1H (atomic) 1.00782503223u

gA 1.2723(23)

cos ✓C 0.97420(20)

fWM 1.853

GF 1.1663787⇥ 10�5 GeV�2

⌧n 879.5(8) s

rp 0.841⇥ 10�15 m

↵FS 1/137.03599911

T0 2.7255 (±0.0006)K

h = H/H100 0.6727 (±0.0066)

h2⌦b 0.022250 (±0.00016)

h2⌦c 0.1198 (±0.0015)

⇢crit100 ⌘ 3H2
100/(8⇡G) 1.87847⇥ 10�29 g/cm3
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