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Abstract. We revisit the decoupling of neutrinos in the early universe with flavour oscilla-
tions. We rederive the quantum kinetic equations which determine the neutrino evolution
based on a BBGKY-like hierarchy, and include for the first time the full collision term, with
both on- and off-diagonal terms for all relevant reactions. We focus on the case of zero chem-
ical potential and solve these equations numerically. We also develop an approximate scheme
based on the adiabatic evolution in the matter basis. In fact, the large difference between
the oscillations and cosmological time scales allows to consider averaged flavour oscillations
which can speed up the numerical integration by two orders of magnitude, when combined
with a direct computation of the differential system Jacobian. The approximate numerical
scheme is also useful to gain more insight into the physics of neutrino decoupling. Including
the most recent results on plasma thermodynamics QED corrections, we update the effective
number of neutrinos to Neff = 3.0440. Finally we study the impact of flavour oscillations
during neutrino decoupling on the subsequent primordial nucleosynthesis.ar
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1 Introduction

The hot Big Bang model predicts that several physical phenomena take place when the
Universe temperature reaches the MeV scale. Long before the temperature reaches this
threshold, the Universe consists in a plasma of coupled photons, electrons, positrons, neu-
trinos and antineutrinos at equilibrium. But when the temperature drops below ∼ 2 MeV,
weak interactions become too weak to keep (anti)neutrinos in thermal contact with the elec-
tromagnetic plasma: neutrinos decouple and form the cosmic neutrino background, a key
prediction of the standard cosmological model. Soon after, the temperature decreases below
the electron mass and e± pairs annihilate into photons, reheating the electromagnetic plasma
compared to the bath of neutrinos. If one considers those two events to be well-separated in
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time, entropy conservation leads to the standard ratio for the temperatures of neutrino and
photon backgrounds, Tγ/Tν = (11/4)1/3.

However, the overlap between neutrino decoupling and e± annihilations, known as in-
complete neutrino decoupling, leads to slightly non thermal neutrino spectra, and to an
increased neutrino energy density (both typically of order 1%), which is usually described
by an effective number of thermalised neutrinos Neff departing from 3 [1–7]. An accurate
prediction of the neutrino spectra requires to take into account multiple physical effects,
including QED radiative corrections to the plasma equation of state [5, 8, 9]. Furthermore,
the small but non-vanishing masses of neutrinos and their mixings are the cause of the fa-
mous neutrino oscillations, given that mass eigenstates differ from flavour eigenstates [10].
Neutrino mixings can thus influence the process of neutrino decoupling, in particular the
flavour dependence of spectral distortions. Flavour oscillations have already been included in
calculations of neutrino decoupling [11–14], yet approximating some collision terms for com-
putational purposes, either neglecting off-diagonal components or replacing them by damping
approximations. An alternative using effective equilibrium spectra for all the species involved
[15, 16] allowed to obtain accurate results while reducing drastically the computation time.
Although useful, this method cannot fully capture the effect induced by flavour oscillations
on neutrino spectra.

A robust and precise prediction of the consequences of incomplete neutrino decoupling
is crucial since neutrinos impact many cosmological stages:

1. During Big-Bang Nucleosynthesis (BBN), neutrinos control neutron/proton conver-
sions as they participate to weak interactions, and the frozen neutron abundance sub-
sequently affects nuclear reactions and light element relics [7, 17].

2. During the Cosmic Microwave Background (CMB) formation, the free streaming of
neutrinos is crucial to predict the CMB angular spectrum. Also, the value of Neff

affects the cosmological expansion, and thus also the radiative transfer of CMB. From
these effects, CMB alone can be used to place constraints on Neff (Neff = 2.99 ± 0.17
at 68% confidence [18]) or in combination with BBN constraints on primordial light
elements [17].

3. In the late universe, neutrino free streaming also affects structure formation, via its
effect on the growth of perturbations. This is used to place the constraint

∑
νmν <

0.12 eV (see e.g. [18]) on the sum of neutrino masses.

It is striking that neutrino masses play a key role in both the earliest stage 1 and the
latest stage 3 for very different reasons. In stage 1, neutrino oscillations, which are due to
small neutrino mass-squared differences and mixing angles, affect the non-thermal part of the
spectra, as they lead to less distortion in electron-type neutrinos and more distortion in other
types than if there were no oscillations at all. Also oscillations lead to a mild modification of
Neff . In stage 3, and due to cosmological redshifting, all neutrinos undergo at some point a
transition from being very relativistic (they behave gravitationally like decoupled photons)
to being non-relativistic (they then behave like cold dark matter). This transition depends
only on neutrino masses and not on mixing angles, since frozen neutrino spectra inherited
from stage 1 are generated incoherently in the mass basis. Finally, stage 2 would also be
affected beyond the standard cosmological model, if we were to consider exotic physics with
increased neutrino self-interactions, so that they would still behave effectively as a perfect
fluid around CMB formation [19, 20].
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This interplay between the various cosmological eras implies that it is crucial to un-
derstand neutrino decoupling as precisely as possible, in order to use these predictions as
initial conditions for the subsequent eras. For instance, current constraints from CMB on
cosmological parameters [18] were placed using Neff = 3.046 when solving numerically for
the linear evolution of cosmological perturbations.

For stage 1, the inclusion of neutrino masses and mixings requires the numerical solu-
tion of the full neutrino quantum kinetic equations (QKEs). Various approaches were used
to derive them, e.g., a perturbative expansion of the density matrix [21], or the Closed-
Time-Path (CTP) formalism for the two-point function [22, 23]. A hierarchy can be built for
the neutrino density matrix, corresponding to a relativistic generalization of the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) equations. This formalism has been applied to derive
the most general mean-field equations for astrophysical neutrinos [24, 25], introducing no-
tably neutrino-antineutrino pairing correlations and wrong helicity contributions due to the
neutrino mass.

The main goal of this work is to reevaluate the standard value of Neff and the distorted
neutrino spectra, including all relevant effects to reach a 10−4 precision, also including the
effect of neutrino masses. To this aim we first derive the neutrino QKEs, extending the work
of [24] for astrophysical environments, and implement two-body collisions in an isotropic
and homogeneous environment, including neutrino self-interactions with their full matrix
structure.1 Then we numerically solve these QKEs, but also present an approximate solution
where an adiabatic evolution is considered, exploiting the different timescales of collisions,
mean-field and mixing terms, nearby neutrino decoupling. This procedure allows to maintain
the required precision while decreasing substantially the computation time, gaining some
physical insight on the role of flavour oscillations in neutrino decoupling. The numerical
results we present correspond to the case of zero chemical potential. Finally we investigate the
impact of neutrino masses and mixings on BBN predictions, implementing the contribution
of the numerical solution of the full QKEs, going beyond works available in the literature [11,
27, 28].

The manuscript is structured as follows. The formalism used to determine the neutrino
evolution in the early universe is described in section 2, several technical details being gath-
ered in appendices. In section 3, the approximate scheme used in computations is presented;
whereas results for the key observables (neutrino spectra and Neff) are given in section 4.
Finally section 5 is devoted to the effect that incomplete neutrino decoupling has on the nu-
cleosynthesis, and to the comparison with previous results [7] obtained without taking into
account neutrino masses and mixings. Natural units (~ = c = kB = 1) are used throughout
the manuscript.

2 Derivation of quantum kinetic equations

In this section, we present a derivation from first principles of the neutrino quantum ki-
netic equations, which generalize the Boltzmann kinetic equation for distribution functions
to account for neutrino masses and mixings. We present the BBGKY hierarchy that was
historically derived for a non-relativistic N−body system and heavily used in nuclear physics
[29–33], but that can also be applied to a relativistic system such as neutrinos and antineutri-
nos in the early universe. We extend the work done in [24], where the BBGKY formalism was

1Note that helicity, or spin coherence [22, 26], that requires anisotropy, is not considered in the present
work.
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applied to derive extended mean-field equations for astrophysical applications, and include
the collision term. Neutrino QKEs were previously derived using different approaches (see
e.g. [21, 23]).

2.1 BBGKY formalism

The exact evolution of a N−body system under the Hamiltonian Ĥ is given by the Liouville-
von Neumann equation for the many-body density matrix

i
dD̂

dt
= [Ĥ, D̂] , (2.1)

where D̂ = |Ψ〉〈Ψ|, with |Ψ〉 the quantum state, from which we define the s-body reduced
density matrices,

%̂(1···s) ≡ N !

(N − s)!Trs+1...ND̂ , (2.2)

with components (we drop the superscript (1···s), redundant with the number of indices):

%i1···isj1···js ≡ 〈â
†
js
· · · â†j1 âi1 · · · âis〉 , (2.3)

where the indices i, j label a set of quantum numbers (species φi, momentum ~pi, helicity hi)
which describe a one-particle quantum state. For instance,

∑
i

â†i =
∑
φi

∑
hi

∫
[d3~pi] â

†
φi

(~pi, hi) with [d3~pi] ≡
d3~pi

(2π)32Ei
. (2.4)

The central object is the one-body reduced density matrix [21],

%ij ≡ 〈â†j âi〉 , (2.5)

whose diagonal entries correspond to the standard occupation numbers.

The Hamiltonian for this system is given by the sum of the kinetic and the two-body
interaction terms,

Ĥ = Ĥ0 + Ĥint =
∑
i,j

tij â
†
i âj +

1

4

∑
i,j,k,l

ṽikjl â
†
i â
†
kâlâj . (2.6)

The interaction matrix elements are fully anti-symmetrized by construction:

〈ik|Ĥint|jl〉 ≡ ṽikjl = −ṽkijl = ṽkilj . (2.7)

This set of definitions ensures proper transformation laws under a unitary transformation
ψi = U iaψa: all lower indices are covariant while upper indices are contravariant, namely,

%ab = U†ai %ij U jb ; tab = U†ai tij U jb ; ṽacbd = U†ai U†
c
k ṽ

ik
jl U jbU ld . (2.8)

The evolution equation for % can be obtained directly via the Ehrenfest theorem. One
can also apply partial traces to (2.1), which leads to the well-known BBGKY hierarchy [24,
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34–37], whose first two equations read explicitly2 (Einstein summation convention implied):

i
d%ij
dt

=
(
tik%

k
j − %iktkj

)
+

1

2

(
ṽikml%

ml
jk − %ikmlṽmljk

)
,

i
d%ikjl
dt

=

(
tir%

rk
jl + tkp%

ip
jl +

1

2
ṽikrp%

rp
jl − %ikrl trj − %ikjpt

p
l −

1

2
%ikrpṽ

rp
jl

)
+

1

2

(
ṽimrn %

rkn
jlm + ṽkmpn %

ipn
jlm − %ikmrln ṽrnjm − %ikmjpn ṽ

pn
lm

)
.

(2.9)

More than simply recasting in a less compact form the very complicated problem (2.1),
this hierarchy furnishes a set of evolution equations which depend on higher-order reduced
density matrices, and lead to natural truncation schemes for practical applications. The
simplest non-trivial closure is the so-called Hartree-Fock or mean-field approximation, which
corresponds physically to the propagation of particles in a potential due to the interactions
with the particles of the background. Mathematically, it consists in neglecting the correlated
parts in the two-body density matrix and the higher order density matrices. Separating the
uncorrelated and the correlated contributions, the two-body density matrix reads [31, 33]

%ikjl ≡ 2%i[j%
k
l] + Cikjl ≡ %ij%kl − %il%kj + Cikjl . (2.10)

Inserting this decomposition into (2.9), we get:

i
d%ij
dt

=
([
tik + Γik

]
%kj − %ik

[
tkj + Γkj

])
+

1

2

(
ṽikmlC

ml
jk − Cikmlṽmljk

)
=
[
t̂+ Γ̂, %̂

]i
j

+ i Ĉij , (2.11)

where the mean-field potential Γ̂ is defined as (for once, we make explicit the summation)

Γij =
∑
k,l

ṽikjl %
l
k . (2.12)

The mean-field approximation then consists in neglecting Cikjl ' 0 and keeping only the
commutator part in (2.11). However, in the context of neutrino decoupling in the early
universe, one seeks a generalization of the Boltzmann equation for neutrino distribution
functions [3–7], which describes the evolution of densities under two-body collisions. In
other words, we need to truncate the hierarchy (2.9) assuming the molecular chaos ansatz:
correlations between the one-body density matrices arise from two-body interactions between
uncorrelated matrices. This prescribes the form of Cikjl (t), leading to the following formal
expression for the collision term (see appendix A for details):

Ci1
i′1

=
1

4

(
ṽi1i2i3i4

%i3j3%
i4
j4
ṽj3j4j1j2

(1̂− %)j1
i′1

(1̂− %)j2i2 − ṽ
i1i2
i3i4

(1̂− %)i3j3(1̂− %)i4j4 ṽ
j3j4
j1j2

%j1
i′1
%j2i2

+(1̂− %)i1j1(1̂− %)i2j2 ṽ
j1j2
j3j4

%j3i3%
j4
i4
ṽi3i4
i′1i2
− %i1j1%

i2
j2
ṽj1j2j3j4

(1̂− %)j3i3 (1̂− %)j4i4 ṽ
i3i4
i′1i2

)
. (2.13)

The collision term has the standard structure “gain − loss + h.c.”, which will be made more
explicit when we give the full expressions for a system of neutrinos and antineutrinos inter-
acting with standard model weak interactions. In (2.13), the indices (ik, jk) will correspond
to a definite momentum ~pk.

2We made explicit the components of the tensors compared to the expressions found in [24] or [31, 32].
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We will now focus on the case of the early universe and consider three active species of
neutrinos in a background of electrons, positrons (and photons). The influence of baryons
can be discarded given their negligible density compared to relativistic species (the baryon-
to-photon ratio is η ≡ nb/nγ ' 6.1× 10−9 from the most recent measurement of the baryon
density [18]).

2.2 The case of neutrinos in the early universe

Assuming the universe to be homogeneous and isotropic in the period of interest, the density
matrices read,3

〈â†νβ (~p ′, h′)âνα(~p, h)〉 = (2π)3 2Ep δ
(3)(~p− ~p ′)δhh′ %αβ(p, t) δh− , (2.14)

〈b̂†να(~p, h)b̂νβ (~p ′, h′)〉 = (2π)3 2Ep δ
(3)(~p− ~p ′)δhh′ %̄αβ(p, t) δh+ . (2.15)

The Kronecker delta ensures that only left-handed neutrinos and right-handed antineutrinos
are included, whereas wrong helicity contributions can be present in anisotropic environments
[25]. The energy function is Ep = p for neutrinos4 (while it would be Ep =

√
p2 +m2

e for
electrons and positrons). Moreover, in the subspace of charged leptons, the density matrices
are diagonal and correspond to the distribution functions fe(p, t) and fē(p, t).

In the following, we will apply the BBGKY formalism to a system of neutrinos, leaving
the inclusion of antineutrinos5 to appendix E. Note that, for a relativistic system, the hierar-
chy is given by an infinite set of equations. The one-body density matrix will be the neutrino
one, with the notation %αβ (instead of %νανβ ) for clarity. Furthermore, all quantities being di-

agonal in momentum space, we only deal with the diagonal values A(p) of operators A~p
~p ′

=

A(p)δ~p~p ′ , where the “Kronecker symbol” in momentum space is δ~p~p ′ = (2π)3 2Ep δ
(3)(~p−~p ′).

We now calculate the relevant expressions of the vacuum, the mean-field (2.12) and
collision (2.13) terms for neutrino evolution.

2.2.1 Vacuum term

The neutrino kinetic term is easily calculated in the mass basis, where it is diagonal by
definition (the basis elements being the eigenstates of the vacuum Hamiltonian Ĥ0):

tab (p)|mass basis ' pδab +
m2
a

2p
δab . (2.16)

Since terms proportional to the identity do not contribute to flavour evolution, the first term
will later disappear from the evolution equation. In the flavour basis, the vacuum term is
obtained following the transformation laws (2.8):

tij = pδij +

(
U
M2

2p
U †
)i
j

, (2.17)

3The annihilation and creation operators satisfy the equal time anticommutation rules

{âνα(~p, h), â†νβ (~p ′, h′)} = (2π)3 2Ep δ
(3)(~p−~p ′) δhh′ δαβ ; {â†να(~p, h), â†νβ (~p ′, h′)} = {âνα(~p, h), âνβ (~p ′, h′)} = 0

Similar relations hold for the antiparticle operators.
4We always neglect the small neutrino masses compared to their typical momentum, except for the vacuum

term since the diagonal momentum contribution disappears from the evolution equation (section 2.2.1).
5Note that the antineutrino density matrix %̄ij ≡ 〈b̂†i b̂j〉 is defined with a transposed convention, compared

to the neutrino density matrix, to have similar evolution equations and transformation properties.
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with M2 the matrix of mass-squared differences and U the Pontercorvo-Maki-Nakagawa-
Sakata (PMNS) mixing matrix [10].

2.2.2 Weak interactions

Neutrinos and antineutrinos in the early universe interact with each others and with the
electrons and positrons composing the homogeneous and isotropic plasma. The interaction
Hamiltonian is thus given by the charged- and neutral-current terms from the standard model
of weak interactions, expanded at low energies compared to the gauge boson masses. The
different expressions and subsequent interaction matrix elements (2.7) are displayed in the
appendix B.

Mean-field potential. With the set of all relevant ṽikjl , one can compute the mean-field

potential from (2.12). This procedure is outlined in [24], and we just quote here the result:6

Γαβ =
√

2GF (ne − nē)δαe δeβ +
√

2GF (nν − nν̄)αβ

− 2
√

2GF p

m2
W

(ρe + Pe + ρē + Pē)δ
α
e δ

e
β −

8
√

2GF p

m2
Z

(ρν + ρν̄)αβ . (2.18)

The first two terms are the particle/antiparticle asymmetric mean-field potentials arising
from the V−A Hamiltonian. Expanding the gauge boson propagators to next-to-leading order
leads to the symmetric terms proportional to the neutrino momentum p. This expression is
derived in the flavour basis in which δαe is the Kronecker symbol. However it can be directly
read in any basis, through the contravariant (covariant) transformation of upper (lower)
indices (2.8).

The various thermodynamic quantities involved are

ne = 2

∫
d3~p

(2π)3
fe(p)

nν |αβ =

∫
d3~p

(2π)3
%αβ(p)

ρe + Pe = 2

∫
d3~p

(2π)3

(
Ep +

p2

3Ep

)
fe(p)

ρν |αβ =

∫
d3~p

(2π)3
p %αβ(p)

, (2.19)

and the corresponding quantities for antiparticles are obtained by replacing fe → fē and
%αβ → %̄αβ .

The mean-field potentials up to first order in 1/m2
W,Z do not usually take into account

the non-relativistic nature of electrons and positrons [11–14, 21]. Instead, our expression in-
volves both the energy density and the pressure of charged leptons, as mentioned for instance
in [38]. As expected, we recover the more common expression in the ultra-relativistic limit
ρe + Pe → (4/3)ρe.

Collision integral. The collision term is derived by inserting all possible matrix elements
in the general expression (2.13). This leads to collision integrals previously derived in [21, 23],
and progressively included in numerical computations, except for the self-interactions, whose
off-diagonal components were approximated by damping terms or discarded [11–13, 27, 28].
In appendix C, we illustrate how our formalism applies by carrying out an explicit derivation
for neutrino-neutrino scattering, displaying the full matrix structure of the statistical factor.

6The absence of extra complex conjugation on %̄ compared to [24] is due to the transposed definition of
the antineutrino density matrix.
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2.2.3 Quantum kinetic equations

We present here the QKE for %(p, t), obtained from (2.11) after dividing each term by the
momentum-conserving function δ~p~p ′ from (2.14). Moreover, the time derivative d/dt becomes
∂/∂t − Hp∂/∂p to account for the expansion of the universe, H ≡ ȧ/a being the Hubble
rate, given by Friedmann’s equation H2 = (8πG/3)ρ. The QKEs read:

i

[
∂

∂t
−Hp ∂

∂p

]
% =

[
U
M2

2p
U †, %

]
+
√

2GF

[
Ne + Nν , %

]
− 2
√

2GF p
[Ee + Pe

m2
W

+
4

3

Eν
m2
Z

, %
]

+ iI
(2.20)

with the matrices defined in flavour space Ne ≡ diag(ne − nē, 0, 0), Nν ≡ nν − nν̄ , Ee ≡
diag(ρe+ρē, 0, 0) (likewise for Pe), and Eν ≡ ρν+ρν̄ . Similarly, the QKEs for the antineutrino
density matrix read (cf. appendix E):

i

[
∂

∂t
−Hp ∂

∂p

]
%̄ = −

[
U
M2

2p
U †, %̄

]
+
√

2GF

[
Ne +Nν , %̄

]
+ 2
√

2GF p
[Ee + Pe

m2
W

+
4

3

Eν
m2
Z

, %̄
]

+ iĪ
(2.21)

Note that only eq. (2.20) will be solved numerically, since we will be focussing on the case of
zero chemical potential for which antineutrinos evolve like neutrinos.

The collision term is the sum of the contributions from different physical processes:
scattering with charged leptons (νe± ↔ νe±), annihilation (νν̄ ↔ e+e−) and self-interactions
(involving only ν and ν̄). The expressions for the processes involving charged leptons are
exactly the same as the ones quoted in [12] [eqs. (2.4)–(2.10)], and we do not report them here
for brevity. This reference, however, does not contain the full expressions for neutrino self-
interactions, derived for instance in [23]. Our expression for the self-interactions contribution
to the collision integral reads:7

I [νν] =
1

2

25G2
F

2p1

∫
[d3~p2][d3~p3][d3~p4](2π)4δ(4)(p1 + p2 − p3 − p4)[

(p1 · p2)(p3 · p4)Fsc(ν
(1), ν(2), ν(3), ν(4))

+ (p1 · p4)(p2 · p3)
(
Fsc(ν

(1), ν̄(2), ν(3), ν̄(4)) + Fann(ν(1), ν̄(2), ν(3), ν̄(4))
) ]

,

(2.22)

with the statistical factors for scattering and annihilation processes:

Fsc(ν
(1), ν(2), ν(3), ν(4)) = [%4(1− %2) + Tr(· · · )] %3(1−%1)+(1−%1)%3 [(1− %2)%4 + Tr(· · · )]

− [(1− %4)%2 + Tr(· · · )] (1− %3)%1 − %1(1− %3) [%2(1− %4) + Tr(· · · )] , (2.23)

Fsc(ν
(1), ν̄(2), ν(3), ν̄(4)) = [(1− %̄2)%̄4 + Tr(· · · )] %3(1−%1)+(1−%1)%3 [%̄4(1− %̄2) + Tr(· · · )]

− [%̄2(1− %̄4) + Tr(· · · )] (1− %3)%1 − %1(1− %3) [(1− %̄4)%̄2 + Tr(· · · )] , (2.24)

Fann(ν(1), ν̄(2), ν(3), ν̄(4)) = [%3%̄4 + Tr(· · · )] (1−%̄2)(1−%1)+(1−%1)(1−%̄2) [%̄4%3 + Tr(· · · )]
− [(1− %3)(1− %̄4) + Tr(· · · )] %̄2%1 − %1%̄2 [(1− %̄4)(1− %3) + Tr(· · · )] , (2.25)

where we chose the more compact notation %k = %(pk), and Tr(· · · ) means the trace of the
term in front of it.

7It is equivalent with eq. (96) of ref. [23] (one only needs to swap the variables ~p3 ↔ ~p4 in the second and
fourth terms of (2.23)). Our expression makes more explicit the “gain − loss + h.c.” structure of this collision
term.
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2.3 Reduced set of equations

The full QKE (2.20) can be recast in a form more suitable for a numerical resolution. Though
neutrino density matrices will deviate from kinetic and chemical equilibrium, electrons and
positrons undergo very efficient electromagnetic interactions with the photon background,
ensuring that their distribution function remains a Fermi-Dirac one at the photon tempera-
ture Tγ [39]. Due to a very low baryon-to-photon ratio η, the difference between the electron
and positron number densities is very small compared to the number density of relativistic
species (e.g. photons or neutrinos). When electrons and positrons are still relativistic, this
implies that their chemical potentials can be safely ignored as they are of the same order as
η. When they annihilate at temperatures lower than the electron mass, the number density
difference remains constant leading to a complete asymmetry when positrons have disap-
peared, and thus to a sizeable chemical potential for electrons, see e.g. figure 30 of ref. [17].
However the relic number density of electrons is of the order of η and their effect on neutrino
decoupling can be completely ignored. We will thus neglect the chemical potential of e±

since its effect on neutrino decoupling would be of the order of η. In addition, we also neglect
any CP violating phase in the PMNS matrix (its effect can be handled separately, see end of
section 4.3) or CP breaking reactions, implying that the equality % = %̄ will be ensured at all
times [27, 28]. Therefore, we will only solve the equation (2.20), in which the antisymmetric
mean-field Ne + Nν vanishes.

Moreover, since deviations from the equilibrium distribution % ∝ I are small (cf. numer-
ical results below), the mean-field term proportional to Eν will be very close to the identity
(because we are at zero chemical potential), so it will give a negligible contribution within
the commutator. We thus discard this term in the numerical resolution.

The most time consuming part of the QKE is the computation of the collision term.
Thanks to the homogeneity and isotropy of the early Universe, and the particular form of
the scattering amplitudes, the nine-dimensional collision integrals can be reduced to two-
dimensional ones [3, 6, 40, 41]. We follow here the reduction method of ref. [3]. Finally, we
define the comoving temperature Tcm ∝ a−1 [6], which corresponds to the physical tempera-
ture of all species when they are strongly coupled, i.e. Tν = Tγ = Tcm when Tcm � 1 MeV.
From this proxy for the scale factor, we define the comoving variables [4, 11]

x = me/Tcm , y = p/Tcm , z = Tγ/Tcm , (2.26)

which are respectively the reduced scale factor, the comoving momentum, and the dimen-
sionless photon temperature, such that %(p, t) is now expressed %(x, y). We also introduce
the dimensionless thermodynamic quantities ρ̄ ≡ (x/me)

4ρ and P̄ ≡ (x/me)
4P .

Therefore, the QKE is rewritten:

∂%(x, y1)

∂x
= − i

xH

x

me

[
U
M2

2y1
U †, %

]
+ i

2
√

2GF
xH

y1

(me

x

)5
[
Ēe + P̄e
m2
W

, %

]
+

1

xH
I , (2.27)

with the two-dimensional collision integral8 (recall that we assume fe = fē, which regroups
some terms):

8We integrated out the energy delta-function via
∫
p4dp4 δ(E1 + E2 − E3 − E4) = E1 + E2 − E3, since

p4dp4 = E4dE4. In (2.28) E4 stands for E1 + E2 − E3.
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I =
G2
F

2π3y1

(me

x

)5
∫
y2dy2 y3dy3 Ē4 ×

1

2

×
[
4 [2d1 + 2d3 + d2(1, 2) + d2(3, 4)− d2(1, 4)− d2(2, 3)]

×
(
FLLsc (ν(1), e(2), ν(3), e(4)) + FRRsc (ν(1), e(2), ν(3), e(4))

)
− 4x2 [d1 − d2(1, 3)] /Ē2Ē4 ×

(
FLRsc (ν(1), e(2), ν(3), e(4)) + FRLsc (ν(1), e(2), ν(3), e(4))

)
+ 4 [d1 + d3 − d2(1, 4)− d2(2, 3)]×

(
FLLann(ν(1), ν̄(2), e(3), e(4)) + FRRann(ν(1), ν̄(2), e(3), e(4))

)
+ 2x2 [d1 + d2(1, 2)] /Ē3Ē4 ×

(
FLRann(ν(1), ν̄(2), e(3), e(4)) + FRLann(ν(1), ν̄(2), e(3), e(4))

)
+ [d1 + d3 + d2(1, 2) + d2(3, 4)]× Fsc(ν

(1), ν(2), ν(3), ν(4))

+ [d1 + d3 − d2(1, 4)− d2(2, 3)]×
(
Fsc(ν

(1), ν̄(2), ν(3), ν̄(4)) + Fann(ν(1), ν̄(2), ν(3), ν̄(4))
) ]

(2.28)
The d−functions are di = (x/me)d

DHS
i , with dDHS

i defined in [3] as functions of the momenta
p, hence the prefactor x/me. Note that [12] use a different convention (4 times greater
D−functions and opposite sign for D2).

In addition to the QKEs, the remaining dynamical equation is the energy conservation
equation ρ̇ = −3H(ρ + P ), rewritten as an equation on z(x) [5, 9]. See appendix D for the
complete expression including QED corrections to the plasma equation of state.

3 Adiabatic transfer of averaged oscillations

Solving the full QKE (2.27) is a priori a considerable numerical challenge because of the
need to resolve numerically both the effect of the mean-field terms and of computationally
expensive collision integrals. However, previous numerical results [11, 12] seem to indicate
that the expected oscillations are somehow “averaged” while there is a comparatively slow
evolution due to collisions.

We thus expect a clear separation of time-scales to hold, allowing for an effective descrip-
tion which correctly captures the salient features of the dynamical evolution. For convenience,
let us rewrite the QKE (2.27) in the compact form:

∂%

∂x
= −i[H, %] +K , (3.1)

with

H ≡ 1

xH

[
x

me
U
M2

2y
U † − 2

√
2GF y

(me

x

)5 Ēe + P̄e
m2
W

]
(3.2)

and K ≡ 1
xH I . We treat the y dependence ofH implicitly, as the following procedure must be

applied for each y. Since the mean-field Hamiltonian H is Hermitian, it can be diagonalized
by the unitary transformation

H = UmHmU †m with (Hm)jk = (Hm)jj δ
j
k . (3.3)

The density matrix in the matter basis reads %m = U †m %Um, and evolves according to

∂%m
∂x

= −i[Hm, %m]−
[
U †m

∂Um
∂x

, %m

]
+ U †mKUm . (3.4)
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The first approximation that we consider is the adiabatic approximation [10, 42] which consists
in neglecting the time evolution of the matter PMNS matrix compared to the inverse effective
oscillation frequency:9

Adiabatic approximation

∥∥∥∥U †m∂Um∂x
∥∥∥∥� ‖Hm‖ . (3.5)

This condition means that the effective mixing matrix elements vary very slowly compared
to the effective oscillation frequencies, so that the matter basis evolves adiabatically. Such
adiabaticity condition is particularly important in presence of Mikheev-Smirnov-Wolfenstein
(MSW) resonances [43, 44]. Note that the sign of the mean-field contribution to H (3.2)
is opposite to the one encountered due to charged-current neutrino-electron scattering at
lowest order, important for astrophysical environments (Sun, supernovae, binary neutron
star mergers). We numerically checked (figure 1) that the condition (3.5) is indeed satisfied
throughout the range of temperatures of interest.

If we now assume that many oscillations take place before the collision term varies sub-
stantially and write the collision term in matter basis Km ≡ U †mKUm, its variation frequency
∼ K−1

m (∂Km/∂x) must be small compared to the effective oscillation frequency Hm. We also
assume that the collision rate itself is small compared to the oscillation frequencies, namely

Averaged oscillations ‖Km‖ ,
∥∥∥∥K−1

m

∂Km
∂x

∥∥∥∥� ‖Hm‖ . (3.6)

If this new separation of time-scales holds (see figure 2), we can average the evolution over
many oscillations (the collision term produces at constant rate neutrinos with random initial
phases). The non-diagonal parts will then be washed out if the collision rate is not too strong.
More precisely, we can write

(%m)jk(x, y) ≡ e−i(Hm)jjxRjk(x, y)ei(Hm)kkx =⇒ ∂Rjk
∂x

= ei(Hm)jjx(Km)jke
−i(Hm)kkx , (3.7)

where we also assumed a slow variation of Hm, as a consequence of the adiabatic approxima-
tion. If (3.6) holds, ∂Rjk/∂x is integrated over many oscillations and the non-diagonal parts
vanish.10 This leaves us with the effective equation in matter basis:

Adiabatic Transfer of Averaged Oscillations


∂%̃m
∂x

= U †mKUm
:

%m = %̃m

, (3.8)

where the tilde means that we only keep the diagonal terms of %m, then convert it to the
flavour basis to compute the collision term K and only keep the diagonal part of the collision
term U †mKUm when transforming back to the matter basis.

In the flavour basis, the density matrix % = Um%̃mU
†
m has non-diagonal components,

while %̃m is diagonal. Therefore the collision term destroys the coherence between these
components (since it aims at a diagonal % in flavour space, with equilibrium distributions),
which modifies the diagonal values of %m (whose non-diagonal terms average out).

9More specifically, we need to check that
∣∣∣(U†m ∂Um

∂x

)j
k

∣∣∣� ∣∣(Hm)jj − (Hm)kk
∣∣.

10As it is sometimes stated, one could phrase it by saying that the off-diagonal terms are washed out by
going to a comoving frame.
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Figure 1. Evolution of the different quantities appearing in (3.4) in the normal hierarchy of masses,
for a comoving momentum y = 5. The condition (3.5) is satisfied throughout the evolution.
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Figure 2. Comparison of the evolution of the collision term, its relative variation and the effective
oscillation frequencies in the normal hierarchy of masses, for a comoving momentum y = 5. We check
that condition (3.6) is satisfied with several orders of magnitude.
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For clarity, we refer to this approximate numerical scheme to determine the neutrino
evolution “Adiabatic Transfer of Averaged Oscillations” (ATAO) and we solve (3.8) instead
of (3.1).

In the following section, we will numerically solve the QKEs in both the full case and
the ATAO approximation and discuss the validity of the approximate numerical solution.

4 Numerical results

4.1 Numerical implementation

We integrate numerically the QKE for neutrinos (2.27), or (3.8) in the ATAO approximation,
along with the energy conservation equation (D.1). We use our own code NEVO (Neutrino
EVOlver) written in Python with the scipy and numpy libraries.11

Solver and initial conditions. The collision term consists most of the time in nearly
compensating gain and loss terms, and for energies larger than 0.1 MeV, the system is very
stiff. Hence, one must rely on an implicit method. We chose the LSODA method which
consists in a BDF method (with adaptative order and adaptative step) when the system
is stiff, which switches to an explicit method when not stiff (the Adams method). It was
first distributed within the ODEPACK [45] Fortran library, but we used the Python wrapper
solve ivp distributed with the Python scipy module. We remarked that when setting
the absolute and relative error tolerances to 10−n, the spectra are typically obtained with
precision better than 10−n+2, in agreement with section B.5 of [13]. Hence we fixed these
error tolerances to 10−7 so as to obtain results with numerical errors below 10−5.

The initial common temperature of all species, that is all types of neutrinos and the
electromagnetic plasma, is inferred from the conservation of total entropy. Choosing the
initial comoving temperature Tcm,in = 20 MeV, the initial common temperature of all species
is slightly larger because of early e± annihilations, and given by Tin = zinTcm,in with zin−1 =
7.42 × 10−6. Had we chosen to start at Tcm,in = 10 MeV, the initial comoving temperature
would be zin − 1 = 2.98× 10−5, in agreement with Refs. [11, 46]. As initial condition for the
density matrix we take

%(xin, y) =

f
(in)
ν (y) 0 0

0 f
(in)
ν (y) 0

0 0 f
(in)
ν (y)

 , with f (in)
ν (y) ≡ 1

ey/zin + 1
. (4.1)

Momentum grid. The neutrino spectra are sampled withN points on a grid in the reduced
momentum y. When choosing a linear grid, we use the range 0.01 ≤ y ≤ 16 + [N/20],
and integrals are evaluated with the Simpson method. However, for functions which decay
exponentially for large y, it is motivated to use the Gauss-Laguerre quadrature which was
already proposed in [13], and we confirm that this method typically requires half of the grid
points to reach the same precision as the one obtained with a linear spacing. In practice,
when choosing the nodes and weights of the quadrature, we restrict to y ≤ 20+[N/5]. When
using N = 80, we have thus restricted nodes to y ≤ 36, and we used Laguerre polynomials of
order 439 to compute the weights with eq. (B.14) of [13]. Since the tools provided in numpy

are restricted to much lower polynomial orders, we used Mathematica to precompute once for
all in a few hours the nodes and weights. The results reported in this paper were performed

11Time consuming functions are compiled with the just-in-time compiler numba.
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with N = 80 and the Gauss-Laguerre quadrature, checking that with N = 100 the differences
are smaller than the desired precision.

For each momentum yi of the grid, and with Nν flavours, each density matrix has N2
ν

independent degrees of freedom (Nν(Nν + 1) real parts and Nν(Nν − 1) imaginary parts).
In practice we reorganize these independent matrix entries into a vector Aj(yi) with j =
1, . . . , N2

ν and we concatenate them with the yi spanning the momentum grid. We thus
solve for serialized variables, that is a giant vector of length NN2

ν . When using the ATAO
approximation, one needs only to keep the diagonal part in the matter basis, and the giant
vector is of size NNν .12 Note that we do not store the binned density matrix components
%αβ(yi), which would be sub-optimal. Indeed, if neutrinos decoupled instantaneously, their
distribution function would then be

f (eq)
ν (x, y) ≡ 1

ey + 1
. (4.2)

Therefore, we can parametrize the density matrix %αβ(x, y) =
[
δαβ + aαβ(x, y)

]
×f (eq)

ν (x, y), and

we store the values of aαβ , which encapsulate the deviation from instantaneous decoupling.

Numerical optimization via Jacobian computation. The implicit method requires to
solve algebraic equations and thus to obtain the Jacobian of the differential system. For the
sake of this discussion, and to alleviate the notation, we ignore the different flavours and
consider that we have only one neutrino flavour with spectrum f(y). Noting the grid points
yi and the values of the spectra fi = f(yi) on the grid, the differential system is of the type
∂xfi = Ci(x, fj). The implicit method requires the Jacobian Jij ≡ ∂Ci/∂fj . If no expression
is provided, it is evaluated by finite differences in the {fi} at a given x. Since the collision
term involves a two-dimensional integral for each point of the grid, its computation on the
whole grid is of order O(N3). Hence the computation of the Jacobian with finite differences
is of order O(N4). Since algebraic manipulations (mostly the LU decomposition) are at most
of order O(N3), reducing the cost of the Jacobian numerical evaluation is crucial to improve
the speed of the implicit method. Fortunately, it is possible to compute the Jacobian with
an O(N3) complexity. To use a simple example, let us only consider the contribution from
the loss part of the neutrino self-interactions, without including Pauli-blocking factors. This
component of the collision term, once computed numerically with a quadrature, is of the
form

Ci(x, fj) = −
∑
j,k

wjwkg(yi, yj , yk)fifj . (4.3)

In this expression
∑

j wj (resp.
∑

k wk) accounts for the integration on y2 (resp. y3) in (2.28)
using a quadrature, and the function g takes into account the specific form of the factor
multiplying the statistical function (which is for the contribution considered fifj). Noting
then that

∂fi/∂fj = δij , (4.4)

the Jacobian associated with the contribution (4.3) is

Jim = ∂Ci/∂fm = −δim
∑
j,k

wjwkg(yi, yj , yk)fj −
∑
k

wmwkg(yi, ym, yk)fi . (4.5)

12Results are then only converted at the very end in the flavour basis if desired.
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The complexity of the second sum is of order O(N), and since the Jacobian has N2 entries, it
leads to a complexity of order O(N3). The first term is not worse even though the double sum
is of order O(N2), because it concerns only the diagonal entries of the Jacobian due to the
prefactor δim. More generally for all contributions to the collision term, the complexity when
computing the associated Jacobian is always of order O(N3), even when taking into account
Pauli-blocking factors which bring terms which are cubic or quartic in the density matrix. For
instance, terms similar to (4.3), but with factors fifjfk, are handled with the same method
and would lead to three contributions instead of two in (4.5). As for terms with factor
fifjfl, they would be handled using total energy conservation yi + yj = yk + yl, which allows
for instance to replace the variables of summations (e.g.

∑
j,k →

∑
j,l) when varying with

respect to fl. Following these arguments, one notices that the exponent of the complexity for
both the collision term and its associated Jacobian is given by the number of independent
momenta magnitudes, given that integrations on momenta directions have all been removed
with the integration reduction method using the isotropy of momentum distribution. In the
case at hand, we have only two-body collisions, for which total energy conservation implies
that only three momenta magnitudes are independent, hence the complexity inO(N3). When
restoring the fact that we do not have a single flavour but density matrices, the discussion
is similar when using the serialized variables described above, and again the complexity is of
order O(N3). In practice, we found that it takes roughly five times more time to compute
a Jacobian than a collision term. Hence, when compared with the finite difference method,
providing a numerical method for the Jacobian leads to a factor N/5 speed-up. Note that
we must also integrate z with eq. (D.1) jointly with the density matrices, so that we must
pad the Jacobian obtained with the previous description with one extra line and one extra
column. Again, the corresponding entries can be deduced using (4.4) and their computation
is also of order O(N3). It is worth mentioning that providing a method for the Jacobian is
not specific to the ATAO approximation. Indeed, when solving the full QKE one can also
compute the Jacobian of the collision term, and one only needs to add the contribution from
the vacuum and mean field commutators whose complexity is simply of order O(N2).

When compared with the full QKE method, the ATAO numerical resolution allows
to gain at least a factor 5 in time. Hence when using both a method for the Jacobian
and the ATAO approximation, we gain typically a factor N and computations that would
otherwise last days on CPU clusters, are reduced to just few hours on a single CPU. Moreover,
nothing prevents the computation of collision terms and Jacobians to be parallelized on the
momentum grid, as we checked on the 4 or 8 CPUs of desktop machines, reducing even
further the computation time.

4.2 Oscillation parameters

For the numerical calculations, we employ the standard parametrization of the PMNS matrix
which reads [10, 13]

U = R23R13R12 =

 c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

 , (4.6)

with cij = cos θij , sij = sin θij and θij the mixing angles. Rij is the real rotation matrix

of angle θij in the i-j plane, namely, (Rij)
i
i = (Rij)

j
j = cij , (Rij)

k
k = 1 where k 6= i, j,

(Rij)
i
j = −(Rij)

j
i = sij and the other components are zero. Note that we do not introduce
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yet a CP violating phase, postponing its treatment to appendix F. We use the most recent
values from the Particle Data Group [47]:(

∆m2
21

10−5 eV2
,

∆m2
31

10−3 eV2
, s2

12, s
2
23, s

2
13

)
NH

= (7.53, 2.53, 0.307, 0.545, 0.0218) . (4.7)

For completeness, we also give the most recent values of the physical constants used
[47]: the Fermi constant GF = 1.1663787 × 10−5 GeV−2 and the gravitational constant
G = 6.70883× 10−39 GeV−2.

4.3 Neutrino temperature and spectra

A convenient parametrization of neutrino spectral distortions consists in separating effective
temperatures and residual distortions [7], namely,

%αα(x, y) ≡ 1

ey/zνα + 1
[1 + δgνα(x, y)] , (4.8)

where the reduced effective temperature zνα ≡ Tνα/Tcm is the reduced temperature of the
Fermi-Dirac spectrum with zero chemical potential which has the same energy density as the
real distribution:

ρ̄να ≡
7

8

π2

30
z4
να . (4.9)

We plot in figure 3 the evolution of the neutrino effective temperatures, with and without
flavour oscillations. The higher values for the electronic flavour are due to the charged-
current processes (that do not exist for muon and tau neutrinos), which increase the transfer
of entropy from electrons and positrons. Likewise, the non-thermal residual distortions are
more important for %ee (see figure 4). This increased energy density of neutrino species has
historically been parametrized through the effective number of neutrino species Neff , i.e.,
the number of instantaneously decoupled neutrino species that would give the same energy
density. Long after decoupling, this reads:

ρ =

[
1 +

7

8

(
4

11

)4/3

Neff

]
ργ ⇐⇒ Neff ≡

[
(11/4)1/3

z

]4

×
(
z4
νe + z4

νµ + z4
ντ

)
. (4.10)

The final values of the comoving temperatures and Neff are given in table 1. The
inclusion of QED corrections to the plasma equation of state up to O(e3) order reduces Neff

by ∼ 0.001, as predicted in ref. [9], and already observed in [14]. Indeed, without these
corrections, but keeping the ones at order O(e2), we get Neff ' 3.0444 (no oscillations),
compared to Neff ' 3.0434 with the corrections up to O(e3).

Flavour oscillations reduce the discrepancy between the different flavours, thus zνe is
reduced while zνµ and zντ are increased, with a very slightly higher value for zνµ . This
enhanced entropy transfer towards νµ compared to ντ is due to the more important νe − νµ
mixing (cf. figure 5 and the corresponding discussion).

The deviation of the dimensionless temperatures with respect to 1 can be expressed
as a relative change in the energy density, δρ̄ν = 4(zν − 1). Our values for the increase in
the neutrino energy density are δρ̄νe ' 0.70 %, δρ̄νµ ' 0.53 % and δρ̄νe ' 0.52 %. This is in
agreement with the results of ref. [12] (table 1) or ref. [14] (table 2), except for the relative
variation of muon and tau flavours: these works obtain a higher reheating of ντ compared
to νµ, while we find the opposite. This is due to a difference in the values of the mixing
angles.13 Nevertheless, if we use the mixing angles from [12], we obtain δρ̄νe ' 0.694 %,

13For instance, the older values used in [11] lead to higher distortions for νµ than for ντ .
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Figure 3. Evolution of the effective neutrino temperatures, with and without oscillations. Long
before decoupling, they remain equal to the photon temperature z, before freezing-out at different val-
ues depending on the interaction with the electromagnetic plasma. Without mixing, the distribution
function (and thus, the effective temperatures) are identical for νµ and ντ .

0 2 4 6 8 10
y = p/Tcm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10
0
×
δg

ν

νe

νµ

ντ

QKE
No oscillations

Figure 4. Frozen-out effective spectral distortions, with and without oscillations, for xf ' 51
(corresponding to Tcm,f = 0.01 MeV). The full QKE results are indistinguishable from the ATAO
approximate ones.
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Final values z zνe zνµ zντ Neff

Instantaneous decoupling, no QED 1.40102 1.00000 1.00000 1.00000 3.00000

No oscillations (NO), QED O(e3) 1.39800 1.00234 1.00098 1.00098 3.04340

NO, post-averaging, QED O(e3) 1.39800 1.00173 1.00130 1.00127 3.04340

w/o mean-field, QED O(e3) 1.39796 1.00175 1.00132 1.00131 3.04407

ATAO, QED O(e3) 1.39797 1.00175 1.00132 1.00130 3.04397

Full QKE, QED O(e3) 1.39797 1.00175 1.00132 1.00130 3.04397

Table 1. Frozen-out values of the dimensionless photon and neutrino temperatures, and the effective
number of neutrino species. The values without oscillations differ from [7] because of the inclusion of
QED corrections at order O(e3) in this work (cf. appendix D). Neff is different between the ATAO
approximation and full QKE calculations at order 10−6, which we attribute mainly to numerical errors.
The implementations in the third and fourth lines are discussed in section 4.4. The post-averaging
result corresponds to eq. (4.14).

δρ̄νµ ' 0.525 % and δρ̄ντ ' 0.530 %. Furthermore, if O(e3) QED corrections are not included
and only the diagonal components of the self-interaction collision term are kept, the spectra
reach less flavour equilibration and the results of [12] are recovered (at the level of a few
10−5): δρ̄νe ' 0.706 %, δρ̄νµ ' 0.515 % and δρ̄ντ ' 0.522 %.

Finally, the results in table 1 show the striking accuracy of the ATAO approximation,
as expected since the conditions (3.5) and (3.6) are satisfied by several orders of magnitude
(figures 1 and 2). The frozen-out values of the comoving temperatures and of Neff differ
by 10−6, which is beyond our desired accuracy, and beyond the expected effect of neglected
contributions.14

The numerical solution of the QKE shows a larger Neff value (table 1) compared to
the no-oscillation case. To understand this slight increase of the total energy density of neu-
trinos, one should keep in mind that electron-positron annihilations, which is the dominant
process during decoupling, are more efficient in producing electronic type neutrinos (because
of the existence of charged-current processes). Now the mixing and mean-field terms tend to
depopulate νe and populate the other flavours, which frees some phase space for the reactions
which create νe, while increasing the effect of Pauli-blocking factors for reactions creating
νµ,τ . Since the former are the dominant reactions, the net effect is a larger entropy transfer
from e±, hence the larger value of Neff . In the next section, we further clarify the effect of
mixing and mean-field terms in the light of the ATAO approximation.

To conclude, we find that the value of Neff predicted by the Standard model of cosmol-
ogy, including flavour oscillations and QED radiative corrections to the plasma equation of
state, is Neff = 3.0440 with at least 10−4 precision. There is one remaining physical ingre-
dient that could modify the value at this order: QED radiative corrections to the collision
rates [48, 49] were estimated to decrease Neff by 0.001 [16]. The inclusion and analysis of
these corrections are however outside the scope of this paper.

Sensitivity to the parameters of the PMNS matrix. The experimental uncertainties
on the values of the mixing angles [47] lead to small variations of the neutrino distribution
functions and Neff . The numerical sensitivity of Neff to the variation of the mixing angles

14Higher order QED corrections to the plasma thermodynamics or subdominant log-dependent contributions
are not expected to modify Neff above order 10−5 [9].
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around their preferred values are:

∂Neff

∂θ12
' 1.2× 10−3 rad−1 ;

∂Neff

∂θ13
' 3.4× 10−3 rad−1 ;

∣∣∣∣∂Neff

∂θ23

∣∣∣∣� ∣∣∣∣∂Neff

∂θ12

∣∣∣∣ , ∣∣∣∣∂Neff

∂θ13

∣∣∣∣ .
(4.11)

The sensitivity with respect to θ23 is much smaller than for the other mixing angles, and
cannot be separated from numerical noise. Given the uncertainties on the mixing angles [47],
we estimate the associated variation of Neff to be ∆Neff ∼ 2 × 10−5, beyond our accuracy
goal.

Moreover, we neglected up to now a CP violating phase in the PMNS matrix, while
some experiments favour a value different from δ = 0 or δ = π [47]. Under the assumptions
of this work, it can be analytically shown that introducing such a phase would leave Neff

unchanged and only affect the νµ and ντ distributions, thus having no effect on BBN (see
section 5). The corresponding results are gathered in appendix F.

4.4 ATAO transfer functions

The ATAO approximation allows to get some insight on the impact of the mixings and mean-
field terms on the spectral modifications and on Neff . To this purpose, let us define the ATAO
transfer function

T (α→ β, x→ x′, y) =

[
Um(x′, y)

(
U †m(x, y)D(α)Um(x, y)

):
U †m(x′, y)

]β
β

, (4.12)

where D(α) is a diagonal matrix with a non-vanishing (unit) component, that is [D(α)]βγ =

δβαδαγ (no summation). Equation (4.12) corresponds to the probability for a state of flavour α
and momentum y generated at a scale factor x, “averaged” according to the ATAO approxi-
mation, to re-emerge as a flavour β at later x′, if it is not affected by collisions in the meantime.
When evaluated at x′ → ∞, the asymptotic T (α → β, x, y) ≡ T (α → β, x → ∞, y) provide
information on neutrino flavour conversion from their last scattering with other species, until
all neutrino spectra are frozen since mean-field and collisions are then negligible (figure 5).

If mean-field effects can be ignored, the asymptotic ATAO transfer function converges
to the following expression

T vac(α→ β) ≡
[
U
(
U †D(α)U

):
U †

]β
β

, (4.13)

which is independent of y and where the PMNS matter matrix is replaced by the vacuum
one.

To gather further insight on the impact of the mixing and mean-field terms, we have
performed two schematic calculations, including either the neutrino probabilities at the end
of the evolution, i.e. Tcm,f = 0.01 MeV (“NO, post-aver.”), or keeping only the mixing and
collision terms during the evolution (“without mean-field”). The corresponding results are
shown in table 1.

In the first schematic calculation, we have introduced a post-averaging of the no-
oscillation results as

(%post)ββ =
∑
α

(%NO)αα T vac(α→ β) . (4.14)
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Figure 5. Asymptotic ATAO transfer function T (α → β, x, y) for y = 5. Left : Normal hierarchy.
Right : Inverted hierarchy. The asymptotic values for large x correspond to the vacuum oscillation
averages (4.13).

From table 1 one can see that the electronic spectra are suppressed and other neutrino
types spectra are enhanced by the vacuum averaging procedure. One can nearly recover the
oscillation case results by averaging the final results found without oscillations, thus showing
that the different values of the effective neutrino temperatures between the no-oscillation case
and the full oscillation case are likely to be due to the effect of the mixings. However, the post
averaging of the no-oscillation case (which by construction preserves Neff) does not capture
the enhancement of Neff of the full oscillation case, discussed at the end of section 4.3.

In the second schematic calculation we have solved the QKEs (2.27) without the mean-
field term, i.e., keeping only the vacuum and collision terms15 (table 1). This is somehow an
improvement of the “post averaging” procedure, since it neglects the variation of the transfer
functions (which always have their asymptotic vacuum values), but accounts correctly for
the effect of collisions. The accuracy of the results compared to the full treatment shows
once more that the effect of the mean-field is very mild in this case. Indeed, the mean-field
contribution becomes effective when % deviates from a matrix proportional to the identity,
which only happens when x ∼ 3 × 10−1: however at this point the mean-field contribution
is becoming negligible compared to the vacuum one (cf. figure 5). Note that this would not
hold if we introduced chemical potentials [27, 42, 50–53]. The higher value obtained for Neff

in this case can be qualitatively understood. Since T vac(e → e) < T (x � 1, e → e), νe
produced by collisions will be more converted into other flavours (in particular ντ ) at early
times compared to the full calculation. This frees some phase space for the reheating of νe,
which is the dominant process. More entropy is transferred from e± annihilations, which
increases slightly Neff .

These transfer functions also shed some light on the importance of the precise value of
the mixing angles, which explain some discrepancy with previous results (see section 4.3). In-
deed, varying θij within their uncertainty ranges slightly modify the T (α→ β) curves, which

15We thus have Um = U and the matter basis is the mass basis.
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can cross each other. For instance, with the set of parameters used in [12], the asymptotic
value T vac(e → τ) is higher than T vac(e → µ), contrary to figure 5. This higher conversion
of electron neutrinos into tau neutrinos explains why their final temperatures are zντ & zνµ
(the values remaining very close).

Sensitivity to the mass hierarchy. In the inverted hierarchy, for which ∆m2
31 < 0, Neff

is increased by 5× 10−6. In this case, νe can be generated above an MSW resonance (e.g. at
about 4 MeV for y = 5), and are converted nearly entirely as νµ and ντ (figure 5). Again,
this impacts subsequent collisions because it frees some phase space for νe, which is beneficial
for the total production of neutrinos. However, since neutrino decoupling occurs mainly at
temperatures which are below the MSW resonance,16 the differences between normal and
inverted hierarchies are extremely small.

To summarise, neutrino decoupling is mostly sensitive to the neutrino mixings, whereas
it has little sensitivity to the mass-squared differences and therefore to the neutrino mass
hierarchy.

5 Flavour oscillations and Big Bang nucleosynthesis

Predicting a precise value of Neff in the standard cosmological model is timely since forth-
coming generations of CMB experiments aim at measuring a possible contribution of light
relic particles predicted by extensions of the standard model [54]. Yet CMB is not the only
cosmological stage impacted by neutrinos, and Neff can be further constrained using the
predicted abundances of light elements produced during BBN.

Indeed, incomplete neutrino decoupling, by giving rise to slightly non-thermal spectral
distortions in neutrino spectra and modifying the photon to neutrino temperature ratio,
affects BBN in various ways (see ref. [17] for a review).

1. The neutron-to-proton ratio freezes out from equilibrium when the rates of n ↔ p
interconversion reactions (n + νe ↔ p + e−, n + e+ ↔ p + ν̄e, n ↔ p + e− + ν̄e)
drop below the Hubble expansion rate. The neutron fraction Xn ≡ nn/nb, with nb
the baryon density, thus depends on when freeze-out occurs, and on deviations from
standard nuclear statistical equilibrium that all depend on z, zνe and δgνe [7].

2. After the freeze-out, the neutron fraction decreases since neutrons continue to undergo
beta decay until the onset of nucleosynthesis at Tγ = TNuc. The higher energy density
of neutrinos for a given photon temperature, parametrized by Neff , increases the Hubble
rate compared to the instantaneous decoupling case, thus diminishing the number of
neutrons that decayed. This is the so-called clock effect [1, 55], which tends to increase
the fraction of neutrons at the beginning of nucleosynthesis Xn(TNuc), and consequently
the helium fraction YP ≡ 4n4He/nb ' 2Xn(TNuc) since these neutrons are almost fully
converted into 4He.

3. The production of other light elements from the remaining traces of neutrons is also
controlled by the clock effect [6, 7]. For instance, deuterium is mainly destroyed from
its equilibrium value to its frozen-out abundance at the end of BBN [56]. The higher
expansion rate leaves less time for this destruction to happen, which leads to a net
increase of the deuterium abundance.

16This is not the case for very large y but they are subdominant in the total energy density budget.
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There was some discrepancy in the literature about the sign of variation of the different
abundances due to these effects, see for instance table 3 in [11] and table V in [6]. The
extensive analysis of ref. [7] favoured the latter results. Though it did not include flavour
oscillations, it predicted that the main conclusions would hold since the final neutrino spectra
are qualitatively similar to the no-oscillations case, only “averaged”.

We aim at filling this gap and therefore introduce the results from section 4.3 in the BBN
code PRIMAT [17]. This section is meant as an extension of the work [7], from which we will
borrow the notation. We implement neutrino-induced corrections following the three levels
of refinements introduced in [7] i) assuming that the three neutrino species have thermal
spectra at the average temperature T̂ν ≡ 1

3(T 4
νe + T 4

νµ + T 4
ντ )1/4 (“T̂ν”), ii) using the proper

effective temperature for νe, but without non-thermal distortions (“Tνe , no distortions”),
and iii) using the real spectra from NEVO (“Tνe , with distortions”). Note that the total
neutrino energy density, so Neff , is identical in all three implementations, therefore the clock
effect contributions will be identical. We report the obtained values for the abundances of
helium-4, deuterium, helium-3 and lithium-7 in table 2, with the associated relative variations
compared to the instantaneous decoupling case17 in table 3.

Note that a few updates were made to PRIMAT compared to previous implementations [7,
17]: we used the latest values of the physical constants and cosmological parameters such as
the neutron lifetime (τn = 879.4 s), the axial coupling of nucleons (gA = 1.2756) [47] or the
baryon density (Ωbh

2 = 0.0224) [18], and included QED corrections due to electron-positron
pair production to some nuclear rates [57].

BBN framework YP D/H× 105 3He/H× 105 7Li/H× 1010

Inst. decoupling 0.24711 2.4167 1.0690 5.8006

T̂ν (NO) 0.24716 2.4256 1.0703 5.7768

Tνe , with distortions (NO) 0.24716 2.4256 1.0703 5.7767

T̂ν 0.24716 2.4258 1.0703 5.7764

Tνe , no distortions 0.24713 2.4256 1.0703 5.7759

Tνe , with distortions 0.24721 2.4261 1.0703 5.7772

Table 2. Light element abundances, including all weak rate corrections [17] and QED corrections
up to O(e3) to plasma thermodynamics, for various implementations of neutrino-induced corrections.
3He stands for (3He + T) and 7Li stands for (7Li + 7Be) to account for slow radioactive decays. We
compare the inclusion of results from neutrino decoupling with and without (NO) oscillations.

The variation of the 4He abundance due to incomplete neutrino decoupling is estimated
by

δYP = δX [Nuc]
n = δX [FO]

n + δX [∆t]
n , (5.1)

where the first equality comes from the almost total conversion of free neutrons into 4He.

δX
[FO]
n is the variation of the neutron fraction at freeze-out (point 1 above), and δX

[∆t]
n is

the variation due to the different duration of beta decay (clock effect, point 2 above). The

17The instantaneous decoupling baseline is the same with or without flavour oscillations, since in this limit
all three neutrino species have FD spectra at the comoving temperature Tcm.
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BBN framework δYP (%) δ(D/H) (%) δ(3He/H) (%) δ(7Li/H) (%)

T̂ν (NO) 0.020 0.369 0.120 −0.411

Tνe , with distortions (NO) 0.020 0.368 0.120 −0.412

T̂ν 0.021 0.375 0.122 −0.418

Tνe , no distortions 0.007 0.367 0.120 −0.427

Tνe , with distortions 0.042 0.387 0.126 −0.404

Table 3. Relative variations of the light element abundances compared to the instantaneous decou-
pling limit, in the same frameworks as table 2.

variation of the other abundances relative to the proton fraction i/H ≡ ni/nH is given by [7]

δ(i/H) ' δX [∆t]
i + δYP , (5.2)

where δX
[∆t]
i is the variation of the final abundance due to the clock effect, and the δYP

contribution is actually −δXH.

Comparison of implementations. An a priori surprising conclusion of ref. [7] was the
quasi-equivalence of the “T̂ν” and full implementations. We recover this feature in the no-
oscillation case (cf. for instance the first two lines of table 3), while there is a sizeable difference
when using the neutrino spectra with oscillations. Let us focus on the helium fraction YP.

We plot the variation of the neutron fraction at freeze-out δX
[FO]
n on figure 6. First note

that the average temperature implementations give quasi identical results with and without
oscillations, which is a direct consequence of the small difference of Neff in table 1. Then,

including the true Tνe reduces δX
[FO]
n : since Tνe > T̂ν , the weak rates increase and freeze-out

is delayed, thus Xn tracks its equilibrium value longer. This reduction of X
[FO]
n is more

important without oscillations because the effective νe temperature is much higher than the
average temperature in this case (cf. figure 3). Finally, the spectral distortions alter the

detailed balance relation which sets the neutron-to-proton ratio [7], shifting X
[FO]
n in the

opposite direction. Once again, this re-increase of the neutron fraction is more important in

the no-oscillation case, since |δg(NO)
νe | > |δgνe | (cf. figure 4).

All in all, the final value of δX
[FO]
n is higher with oscillations, and exceeds the average

temperature value (i.e., the solid green curve is above the solid blue one, while the dash-
dotted green and blue curves almost coincide). This could be surprising, since zνe and δgνe
are both reduced by about 25 % with mixing (figures 3 and 4), so we would expect the solid
curves to be in homothetic ratio with the dash-dotted ones. However, zνe is reduced by 25
% compared to z = 1, but is much more reduced, by ∼ 68 % compared to ẑ. That is why
the gap between the solid blue and orange curves is 68 % smaller than the gap between the
dash-dotted blue and orange curves. Since the up-shifting of Xn due to distortions is just
reduced by ∼ 10 %,18 the “Tνe , with distortions” value in the oscillation case is higher.

Note however that, although the average temperature implementation is less accurate
in the oscillation case than in the no-oscillation case, it is sufficient to provide the various

18It is not a 25 % reduction since the relation between δgνe and the modification of detailed balance is not
exactly linear.
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Figure 6. Neutron fraction variation around freeze-out, for different implementations of neutrino-
induced corrections, with and without flavour oscillations.

abundances at a relative precision of a few 10−4, which is well beyond experimental uncer-
tainties. Moreover, this method is particularly simple, since all information is contained in
one parameter, the average effective temperature T̂ν(Tγ). It can be used in a BBN code from
a table of its values, or be deduced from the dimensionless heating function N [58, 59] that
parametrizes the heat transfer from e± annihilations and which can be fitted to the desired
precision.

Neff having the same value in all three implementations, the difference between the last

three lines of tables 2 and 3 lies in the variation of δX
[FO]
n . This is somehow hidden for 3He

and 7Li because they are the aggregated results of (3He + T) and (7Li + 7Be) respectively.

Overall effect of flavour oscillations. Let us now discuss the global difference in the final
abundances due to the inclusion of oscillations. To keep the discussion simple, we will discuss
the average temperature implementation, where all the information about neutrino spectra is
encoded in T̂ν (the differences between the three implementations for a given (no-)oscillation
case being explained above). We see from table 1 that Neff is slightly higher when including
oscillations, thus increasing the clock effect. For instance, there will be less time for the
destruction of deuterium to take place, and we expect a higher D abundance. The same
argument goes for 3He and T, causing an increase of 3He/H. Last, the abundance 7Li/H
is dominated by primary 7Be, that is produced during nucleosynthesis: a faster expansion
diminishes the 7Be yield, and thus the value of 7Li/H. The results corresponding to the cases
T̂ν (NO) and T̂ν in tables 2 and 3 can be understood using these simple heuristic arguments.

6 Conclusions

We derived the QKEs governing neutrino evolution at the epoch of weak decoupling using
a BBGKY-like formalism, obtaining the mean-field terms up to O(1/m2

W,Z) order and the
collision terms with their full matrix structure. We solved the QKEs and presented the ATAO
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approximation which allows to increase the computation speed. This approximation is based
on the assumptions that there is a clear separation of time-scales between the oscillation
frequencies and the collision rate, the off-diagonal terms of the density matrix in the matter
basis are averaged out and the matter basis evolves adiabatically.

Results on Neff and the neutrino final spectra were presented with a numerical precision
better than 10−4. A better precision would require the inclusion of several corrections. First,
one would need to consider QED effects in the collision rates [48, 49], and further corrections
to the plasma thermodynamics at order e4 and sub-leading logarithmic-dependent terms at
order e2 [9]. But more importantly it would not be possible to consider a homogeneous
cosmology since fluctuations inherited from the inflationary phase, and imprinted in the
CMB, are of order 10−5. One would then need to consider fluctuations in the QKE as was
done to estimate fluctuations in the CMB.19

The obtained value of Neff ' 3.0440 and the associated spectral distortions were used
in the BBN code PRIMAT to investigate the consequences of incomplete neutrino decoupling
with flavour oscillations on the primordial production of light elements, solving the discrep-
ancy between [11] and [6], with results in agreement with [7]. Even though the subsequent
variations occur at precisions well beyond experimental uncertainties, we were able to under-
stand the physical processes at play, thus checking the validity of our results. The nuclear
abundances, with all weak rates corrections included (as in [17]), and taking completely into
account neutrino distorted spectra, are reported in the last line of table 2. The next update
of PRIMAT will include these results.
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A Derivation of the formal collision term

Compared to the Boltzmann treatment of neutrino evolution, which neglects flavour mixing,
the QKE contains mean-field terms, and the collision term has a richer matrix structure
with non-zero off-diagonal components. To derive this collision term, i.e., the contribution
to the evolution of the one-body density matrix from two-body correlations, one needs an
expression for the correlated part C in (2.11). It is obtained from the evolution equation for
%(12), where we separate correlated and uncorrelated parts [31].

To do so, we need a splitting similar to (2.10) for the three-body density matrix,

%ikmjln = 6%i[j%
k
l %
m
n] + 9%

[i
[jC

km]
ln] + Cikmjln . (A.1)

This allows (2.9) to be rewritten as an equation for the two-body correlation function [24]. In
the molecular chaos ansatz, correlations are built through a collision between uncorrelated
particles. These correlations then evolve “freely”, i.e., we do not take into account a mean-
field background for C. The evolution equation is thus greatly simplified, retaining only the
vacuum and Born terms:

i
dCikjl

dt
=
[
tirC

rk
jl + tkpC

ip
jl − Cikrl trj − Cikjpt

p
l

]
+ (1̂− %)ir(1̂− %)kp ṽ

rp
sq %

s
j%
q
l − %ir%kp ṽrpsq (1̂− %)sj(1̂− %)ql ,

(A.2)

19Furthermore, the physics of decoupling also depends on the Fermi and Newton constants, and the latter
is only known with a 4× 10−5 precision.
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where the second line will be labelled Bik
jl . We can actually solve this equation, starting from

C(t = 0) = 0,

Cikjl (t) = −i
∫ t

0
ds T ikmp(t, s)B

mp
nq (s)T †

nq
jl (t, s) , (A.3)

with the evolution operator

T ikjl (s, s′) = exp

(
−i
∫ s

s′
dτ t̂(τ)

)i
j

exp

(
−i
∫ s

s′
dτ t̂(τ)

)k
l

. (A.4)

Now we consider that there is a clear separation of scales [21], hence the duration of one
collision is very small compared to the variation timescale of the density matrices (i.e., com-
pared to the duration between two collisions, and the typical inverse oscillation frequency).
Therefore, the argument inside the integral of (A.3) is only non-zero for s ' 0: we can ex-
tend the integration domain to +∞, while the operators keep their t = 0 value. Finally we
symmetrize the integration domain20 with respect to 0 (with an extra factor of 1/2), which
leads to the equation with collision term:

i
d%ij
dt

=
[
t̂+ Γ̂, %̂

]i
j
− i

4

∫ +∞

−∞
dt
[
ṽ, T (t, 0)B(0)T †(t, 0)

]ik
jk

(A.5)

= [(tik + Γik)%
k
j − %ik(tkj + Γkj )]

− i

4

∫ +∞

−∞
dt e−i(Em+El−Ej−Ek)t︸ ︷︷ ︸

(2π)δ(Em+El−Ej−Ek)

[
ṽikrlB

rl
jk −Bik

rl ṽ
rl
jk

]
, (A.6)

≡
[
t̂+ Γ̂, %̂

]i
j

+ i Ĉij (A.7)

The exponential of energies comes from the T terms, using that the density matrix for a
given momentum %(p) satisfies t̂%(p) = p %(p).

B Interaction potential matrix elements

The relevant two-body interactions correspond to standard model interactions involving neu-
trinos and antineutrinos. In the early universe, they interact throught weak processes with
electrons, positrons and other (anti)neutrinos. Therefore, we must take as interaction Hamil-
tonian (2.6) the useful part of the standard model Hamiltonian of weak interactions, that is
given by

Ĥint = ĤCC + Ĥmat
NC + Ĥνν

NC , (B.1)

where we separated three contributions:

• the charged current hamiltonian,

ĤCC = 2
√

2GFm
2
W

∫
[d3~p1][d3~p2][d3~p3][d3~p4] (2π)3δ(3)(~p1 + ~p2 − ~p3 − ~p4)

× [ψ̄νe(~p1)γµPLψe(~p4)]Wµν(∆)[ψ̄e(~p2)γνPLψνe(~p3)] , (B.2)

20See section 6.1 in ref. [60] for a detailed discussion of this procedure.
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with ψ(~p) =
∑

h

[
â(~p, h)uh(~p) + b̂†(−~p, h)vh(−~p)

]
the Fourier transform of the quan-

tum fields, PL = (1 − γ5)/2 the left-handed projection operator, and the gauge boson
propagator

Wµν(∆) =
gµν − ∆µ∆ν

m2
W

m2
W −∆2

' gµν

m2
W

+
1

m2
W

(
∆2gµν

m2
W

− ∆µ∆ν

m2
W

)
. (B.3)

The lowest order in this expansion is the usual 4-Fermi effective theory. The momentum
transfer is ∆ = p1 − p4 for a t-channel (νe − e− scattering), and ∆ = p1 + p2 for the
s-channel (νe− e+). At Fermi order, we get for instance (after a Fierz transformation):

ṽ
νe(1)e(2)
νe(3)e(4) = 2

√
2GF (2π)3δ(3)(~p1 + ~p2 − ~p3 − ~p4)

× [ūh1
νe (~p1)γµPLu

h3
νe (~p3)] [ūh2

e (~p2)γµPLu
h4
e (~p4)] . (B.4)

• the neutral current interactions with the matter background (electrons and positrons),

Ĥmat
NC = 2

√
2GFm

2
Z

∑
α

∫
[d3~p1][d3~p2][d3~p3][d3~p4] (2π)3δ(3)(~p1 + ~p2 − ~p3 − ~p4)

× [ψ̄να(~p1)γµPLψνα(~p3)]Zµν(∆)[ψ̄e(~p2)γν(gLPL + gRPR)ψe(~p4)] , (B.5)

where Zµν is identical to Wµν with the replacement mW → mZ . The neutral-current
couplings are gL = −1/2 + sin2 θW and gR = sin2 θW , where sin2 θW ' 0.231 is the
weak-mixing angle.

• the self-interactions of neutrinos,21

Ĥνν
NC =

GF√
2
m2
Z

∑
α,β

∫
[d3~p1][d3~p2][d3~p3][d3~p4] (2π)3δ(3)(~p1 + ~p2 − ~p3 − ~p4)

× [ψ̄να(~p1)γµPLψνα(~p3)]Zµν(∆)[ψ̄νβ (~p2)γνPLψνβ (~p4)] . (B.6)

We show in table 4 the set of interaction matrix elements derived from these Hamiltoni-
ans, which are needed for the neutrino collision term. To compute the mean-field potentials
at order 1/m2

W,Z , one needs the matrix elements from the expansion of the propagator (B.3),
which are obtained similarly and not reproduced here for the sake of brevity.

At leading order, the charged-current processes are written as neutral-current ones
thanks to Fierz rearrangement identities. Therefore one can write the global expression:

ṽ
να(1)e(2)
νβ(3)e(4) = 2

√
2GF (2π)3δ(3)(~p1 + ~p2 − ~p3 − ~p4)

× [ūh1
να(~p1)γµPLu

h3
νβ

(~p3)] [ūh2
e (~p2)γµ(GαβL PL +GαβR PR)uh4

e (~p4)] , (B.7)

with, in the Standard model,

GL = diag(gL + 1, gL, gL) , GR = diag(gR, gR, gR) . (B.8)

One can also introduce non-standard interactions which promote the couplings to non-
diagonal matrices [12].

21To understand the different prefactor from Ĥmat
NC , start from the general neutral-current Hamiltonian:

ĤNC = 2
√

2GFm
2
Z

∑
f,f ′

∫
· · ·

[
ψ̄fγµ(gfLPL + gfRPR)ψf

]
Zµν(∆)

[
ψ̄f ′γν(gf

′

L PL + gf
′

R PR)ψf ′
]

Now the multiplicity of each term and the use of gνL = 1/2, gνR = 0 lead to the Hamiltonians above.
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Interaction process ṽ12
34/
[√

2GF (2π)3δ(3)(~p1 + ~p2 − ~p3 − ~p4)
]

CC

νe(1)e(2)νe(3)e(4) 2× [ūh1
νe (~p1)γµPLu

h3
νe (~p3)][ūh2

e (~p2)γµPLu
h4
e (~p4)]

νe(1)ē(2)νe(3)ē(4) −2× [ūh1
νe (~p1)γµPLu

h3
νe (~p3)][v̄h4

e (~p4)γµPLv
h2
e (~p2)]

νe(1)ν̄e(2)e(3)ē(4) 2× [ūh1
νe (~p1)γµPLv

h2
νe (~p2)][v̄h4

e (~p4)γµPLu
h3
e (~p3)]

NC,matter

νe(1)e(2)νe(3)e(4) 2× [ūh1
νe (~p1)γµPLu

h3
νe (~p3)][ūh2

e (~p2)γµ(gLPL + gRPR)uh4
e (~p4)]

νe(1)ē(2)νe(3)ē(4) −2× [ūh1
νe (~p1)γµPLu

h3
νe (~p3)][v̄h4

e (~p4)γµ(gLPL + gRPR)vh2
e (~p2)]

νe(1)ν̄e(2)e(3)ē(4) 2× [ūh1
νe (~p1)γµPLv

h2
νe (~p2)][v̄h4

e (~p4)γµ(gLPL + gRPR)uh3
e (~p3)]

NC, self-interactions

να(1)νβ(2)να(3)νβ(4) (1 + δαβ)× [ūh1
να(~p1)γµPLu

h3
να(~p3)][ūh2

νβ
(~p2)γµPLu

h4
νβ

(~p4)]

να(1)ν̄β(2)να(3)ν̄β(4) −(1 + δαβ)× [ūh1
να(~p1)γµPLu

h3
να(~p3)][v̄h4

νβ
(~p4)γµPLv

h2
νβ

(~p2)]

να(1)ν̄α(2)νβ(3)ν̄β(4) (1 + δαβ)× [ūh1
να(~p1)γµPLv

h2
να(~p2)][v̄h4

νβ
(~p4)γµPLu

h3
νβ

(~p3)]

Table 4. Interaction matrix elements at lowest order in the expansion of the gauge boson propagators
(Fermi effective theory of weak interactions).

C Neutrino self-interactions collision term

As an illustration of the use of the BBGKY formalism to derive the collision integrals, we
detail the steps to obtain the neutrino-neutrino scattering contribution to (2.22).

Neutrino-neutrino scattering processes correspond to the terms in (2.13) for which the
inner matrix elements are scattering ones ṽνδνσνδνσ

. For simplicity, we focus here on the first

term in the expression of Ci1
i′1

(2.13). Here, the index i1 will refer to να(~p1) and i′1 to νβ(~p1).

There are two possible contributions to this collision matrix (note that we impose ~pk = ~p ′k
for all k, which is enforced by the assumption of homogeneity (2.14)):

• when 1 and 3 have the same flavour, the scattering amplitude is:

ṽ
να(1)νγ(2)
να(3)νγ(4) × ṽ

νδ(3
′)νσ(4′)

νδ(1′)νσ(2′)

= 2G2
F × (2π)6δ(3)(~p1 + ~p2 − ~p3 − ~p4)δ(3)(~p1 − ~p1)

× [ūνα(1)γµPLuνα(3)][ūνδ(3)γνPLuνδ(1)]× [ūνγ (2)γµPLuνγ (4)][ūνσ(4)γνPLuνσ(2)]

= 2G2
F × (2π)6δ(3)(~p1 + ~p2 − ~p3 − ~p4)δ(3)(~p1 − ~p1)

× p3ηp1ρtr[γ
ργµPLγ

ηγνPL]× pλ4pτ2tr[γτγµPLγλγνPL]

= 25G2
F × (2π)6δ(3)(~p1 + ~p2 − ~p3 − ~p4)δ(3)(~p1 − ~p1)× (p1 · p2)(p3 · p4)

With this term, we have the matrix product

%
α(3)
δ(3) %

γ(4)
σ(4)(1− %)

δ(1)
β(1)(1− %)

σ(2)
γ(2) =

[
Tr[%4 · (1− %2)] · %3 · (1− %1)

]α
β
.
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• when 1 and 4 have the same flavour, the scattering amplitude is:

ṽ
να(1)νγ(2)
νγ(3)να(4) × ṽ

νδ(3
′)νσ(4′)

νδ(1′)νσ(2′)

= −2G2
F × (2π)6δ(3)(~p1 + ~p2 − ~p3 − ~p4)δ(3)(~p1 − ~p1)

× [ūνα(1)γµPLuνα(4)][ūνσ(4)γνPLuνσ(2)][ūνγ (2)γµPLuνγ (3)][ūνδ(3)γνPLuνδ(1)]

= −2G2
F × (2π)6δ(3)(~p1 + ~p2 − ~p3 − ~p4)δ(3)(~p1 − ~p1)

× p3λp1ρp4ηp2τ tr[γµPLγ
ηγνPLγ

τγµPLγ
λγνPLγ

ρ]

= 25G2
F × (2π)6δ(3)(~p1 + ~p2 − ~p3 − ~p4)δ(3)(~p1 − ~p1)× (p1 · p2)(p3 · p4)

With this term, we have the matrix product

%
γ(3)
δ(3)%

α(4)
σ(4)(1− %)

δ(1)
β(1)(1− %)

σ(2)
γ(2) =

[
%4 · (1− %2) · %3 · (1− %1)

]α
β
.

We chose the compact notation %k ≡ %(pk) for brevity, and used %1 = %1 thanks to the
momentum-conserving function δ(3)(~p1 − ~p1).

Considering all terms in (2.13), the scattering amplitude is always identical, and the
matrix products arrange such that the final result has the expected “gain − loss + h.c.”
structure. Note that we considered here a particular ordering of the indices, while the full
expression is symmetric through the exchange (3, 4, 3′, 4′)↔ (4, 3, 4′, 3′). In other words, one
must take twice the previous result to account for all non-zero combinations.22 Therefore,

C[νν↔νν] =(2π)3δ(3)(~p1 − ~p1)
25G2

F

2

∫
[d3~p2][d3~p3][d3~p4](2π)4δ(4)(p1 + p2 − p3 − p4)

× (p1 · p2)(p3 · p4)× Fsc(ν
(1), ν(2), ν(3), ν(4))

(C.1)

with the statistical factor:

Fsc(ν
(1), ν(2), ν(3), ν(4)) = [%4(1− %2) + Tr(· · · )] %3(1−%1)+(1−%1)%3 [(1− %2)%4 + Tr(· · · )]

− [(1− %4)%2 + Tr(· · · )] (1− %3)%1 − %1(1− %3) [%2(1− %4) + Tr(· · · )] , (C.2)

where Tr(· · · ) means the trace of the term in front of it.
Finally, the collision integral I which appears in the equation for %(p1) is C without the

momentum-conserving delta-function C[%] = (2π)3 2E1 δ
(3)(~p1 − ~p1)I[%].

D Energy conservation and QED equation of state

The transfer of entropy from electron/positron annihilations into the photon and neutrino
baths is governed by the continuity equation ρ̇ = −3H(ρ + P ), which we rewrite as an
equation on the dimensionless photon temperature z(x) [5, 9]:

dz

dx
=

x

z
J(x/z)− 1

2π2z3

1

xH

∫ ∞
0

dy y3 Tr [I] +G1(x/z)

x2

z2
J(x/z) + Y (x/z) +

2π2

15
+G2(x/z)

, (D.1)

22This symmetry vanishes if 3 and 4 have the same flavour. However, this is precisely compensated by the
extra factor of 2 in the matrix elements for identical flavour, cf. table 4.
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with

J(τ) ≡ 1

π2

∫ ∞
0

dω ω2 exp (
√
ω2 + τ2)

(exp (
√
ω2 + τ2) + 1)2

, (D.2)

Y (τ) ≡ 1

π2

∫ ∞
0

dω ω4 exp (
√
ω2 + τ2)

(exp (
√
ω2 + τ2) + 1)2

. (D.3)

The G1 and G2 functions account for the modifications of the plasma equation of state due
to finite-temperature QED corrections [5, 8, 9]. They can be calculated order by order in an
expansion in powers of α = e2/4π. We use:

G
(2)
1 (τ) = 2πα

[
K ′(τ)

3
+
J ′(τ)

6
+ J ′(τ)K(τ) + J(τ)K ′(τ)

]
, (D.4)

G
(2)
2 (τ) = −8πα

[
K(τ)

6
+
J(τ)

6
− 1

2
K(τ)2 +K(τ)J(τ)

]
+ 2πατ

[
K ′(τ)

6
−K(τ)K ′(τ) +

J ′(τ)

6
+ J ′(τ)K(τ) + J(τ)K ′(τ)

]
, (D.5)

G
(3)
1 (τ) = −

√
2πα3/2

√
J(τ)× τ

[
2j(τ)− τj′(τ) +

τ2j(τ)2

2J(τ)

]
, (D.6)

G
(3)
2 (τ) =

√
2πα3/2

√
J(τ)

[(
2J(τ) + τ2j(τ)

)2
2J(τ)

+ 6J(τ) + τ2
(
3j(τ)− τj′(τ)

)]
, (D.7)

where (· · · )′ = d(· · · )/dτ , and with the additional functions

j(τ) ≡ 1

π2

∫ ∞
0

dω
exp (

√
ω2 + τ2)

(exp (
√
ω2 + τ2) + 1)2

, (D.8)

K(τ) ≡ 1

π2

∫ ∞
0

dω
ω2

√
ω2 + τ2

1

exp (
√
ω2 + τ2) + 1

, (D.9)

k(τ) ≡ 1

π2

∫ ∞
0

dω
1√

ω2 + τ2

1

exp (
√
ω2 + τ2) + 1

. (D.10)

We discarded a logarithmic contribution to G
(2)
1,2 that is subdominant compared to G

(3)
1,2 [9].

Note that our expressions are formally different from those of previous literature. For instance
(D.4) is formally different from the one in [5, 9], while (D.5) matches formally with [5], but not
with [9]. Finally, (D.6) and (D.7) slightly differ from expressions reported in [9]. Actually, all
expressions are identical, since one can prove (after integrations by parts and rearrangements)
the following identities:

J ′(τ) = −τj(τ) , K ′(τ) = −τk(τ) , Y ′(τ) = −3τJ(τ) , 2K(τ) + τ2k(τ) = J(τ) . (D.11)

E Quantum kinetic equations with antiparticles

We present in this appendix the inclusion of antiparticles to the BBGKY formalism.
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Generalized definitions. One must adapt the definitions (2.3) and (2.6) to include the
annihilation and creation operators b̂, b̂†. Throughout this appendix, we will emphasize the
indices which are associated to antiparticles with a barred notation (̄ı, ̄). Therefore, with
capital indices I being either i or ı̄, we have:

%I1···IsJ1···Js ≡ 〈ĉ
†
Js
· · · ĉ†J1

ĉI1 · · · ĉIs〉 , (E.1)

Ĥ0 =
∑
I,J

tIJ ĉ
†
I ĉJ , (E.2)

Ĥint =
1

4

∑
I,J,K,L

ṽIKJL ĉ
†
I ĉ
†
K ĉLĉJ , (E.3)

where ĉI = âi or b̂ı̄ depending on the index I labelling a particle or an antiparticle.

The evolution equations (2.9) and (2.11) are naturally extended to the antiparticle case
thanks to the global indices. The downside of this strategy is that the transformation law of
tensors is now implicit: since â transforms like b̂† under a unitary transformation ψa = Uai ψi,
the behaviour of upper and lower indices is inverted whenever they label an antiparticle
degree of freedom, for instance:

tij = U†ia tab Ubj ; tı̄̄ = Uai tāb̄ U†
j
b . (E.4)

Since we assume an isotropic medium, there are no “abnormal” or “pairing” densities
[24–26] such as 〈b̂â〉, which ensures the separation of the two-body density matrix between
the neutrino density matrix (for which we keep the notation %) and the antineutrino one %̄.
In order for %̄ to have the same transformation properties as %, we need to take a transposed
convention for its components:

%̄ı̄̄ = %
{J=̄}
{I=ı̄} = 〈ĉ†ı̄ ĉ̄〉 = 〈b̂†i b̂j〉 . (E.5)

One could further take transposed conventions for the antiparticle indices in t and ṽ, which
would ensure a clear correspondence between index position and transformation law — con-
trary to (E.4). For instance, t̄ı̄̄ ≡ t̄ı̄ transforms as tij . However, in order to keep a unique
expression for the mean-field potential or the collision term, we stick to the general definitions
above. For instance, we have:

Γij =
∑
K,L

ṽiKjL %
L
K =

∑
k,l

ṽikjl %
l
k +

∑
k̄,l̄

ṽik̄jl̄ %̄
k̄
l̄ . (E.6)

Since the annihilation and creation operators do not appear naturally in normal order in the
Hamiltonian (B.1), recasting it in the form (E.3) leads to extra minus signs in ṽ involving
antiparticles (cf. table 4).

These conventions being settled, we can include the full set of interaction matrix ele-
ments and compute all relevant contributions to the neutrino QKEs (2.20). In the following,
we derive the QKE for %̄, which is not solved in this paper since we consider a zero asymme-
try.23

23We just used the QKE for %̄ to check the numerical stability of the code.
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QKE for antineutrinos. Thanks to our conventions, the evolution equation for the an-
tineutrino density matrix %̄ is similarly obtained within the BBGKY formalism, with some
differences compared to the neutrino case. First and foremost, the evolution equation for %̄ı̄̄
correspond in the general formalism to the equation for %̄ı̄:

i
d%̄ı̄̄
dt

= i
d%̄ı̄
dt

=
([
t̄K + Γ̄K

]
%Kı̄ − %̄K

[
tKı̄ + ΓKı̄

])
+ i Ĉ ̄ı̄ , (E.7)

showing that taking the commutator with a transposed convention leads to a minus sign.
Moreover,

• we express the kinetic terms t̄ı̄, starting from the mass basis:

t̄ı̄ = Uaj
M2

2p

∣∣∣∣ā
b̄

U †
i
b = U †

i
b

M2

2p

∣∣∣∣b
a

Uaj = tij ; (E.8)

• ṽ̄kı̄l is the coefficient in front of b̂†j â
†
kâlb̂i, so it will have the same expression (apart from

the interchange of u and v spinors for neutrinos, which leaves the result identical) as

the coefficient in front of âj â
†
kâlâ

†
i = −â†i â

†
kâlâj , that is −ṽikjl . Therefore, Γ̄ı̄ = −Γij .

Including these two results in (E.7) show that, compared to the neutrino case, the vacuum
term gets a minus sign (from the reversed commutator), but not the mean-field. Formally,

i
d%̄ij
dt

=
[
−t̂+ Γ̂, ˆ̄%

]i
j

+ i Ĉ ̄ı̄ . (E.9)

Two additional remarks:

• s and t channels are inverted when the particle 1 is an antineutrino (2 and 4 left
unchanged). For instance, the scattering between ν̄e and e− is a s−channel (exchanged
momentum ∆ = p1 + p2), contrary to the scattering between νe and e− (∆ = p1 − p2).
This changes the sign of ∆2, leading to another minus sign for Γ at order 1/m2

W,Z ;

• the collision integral Ī is obtained from I through the replacements %↔ %̄ and gL ↔ gR.

Considering all these remarks, we obtained the QKE for %̄ (2.21).

F Effect of the CP violating phase

The generalized parametrization of the PMNS matrix (4.6) when including a CP violating
phase24 reads

U = R23SR13S
†R12 =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (F.1)

where S = diag(1, 1, eiδ).

24We do not include possible Majorana phases that have no effect on neutrino oscillations.
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Although this new phase affects the vacuum oscillation term in the QKEs, it is actually
possible to factorise this dependence and reduce the problem to the case δ = 0, in some limits
that we expose below. We follow the derivation of refs. [27, 28, 61, 62], where conditions
under which the CP phase has an impact on the evolution of % in matter were first uncovered.

In this section, we will note with a superscript 0 the quantities in the δ = 0 case. We
introduce a convenient unitary transformation Š ≡ R23SR

†
23 and define %̌ ≡ Š†%Š (likewise

for %̄). Let us now prove that %̌ = %0 [27]. First, we need to show that %̌ has the same
evolution equation as %0. Let us rewrite the QKE (2.27) in a very compact way:

i
∂%

∂x
= λ[UM2U †, %] + µ[Ēe + P̄e, %] + iK[%, %̄] , (F.2)

with coefficients λ, µ which can be read from (2.27). Applying Š†(· · · )Š on both sides of the
QKE gives the evolution equation for %̌.

First, using that Š†U = U0S† (we recall that U0 is the PMNS matrix without CP phase)
and that M2 and S commute since they are diagonal, the vacuum term reads Š†[UM2U †, %]Š =

[U0M2U0†, %̌]. Then, the mean-field term satisfies Š†[Ēe + P̄e, %]Š = [Ēe + P̄e, %̌]. This prop-
erty only holds because the energy density of muons is negligible, ensuring that muon and
tau neutrinos have the same interactions [27]. Finally, the collision term contains products of
density matrices and GL,R coupling matrices for the scattering/annihilation terms with elec-
trons and positrons. Since [GL,R, Š

(†)] = 0, we can write Š†K[%, %̄]Š = K[%̌, ˇ̄%]. Once again,
the fact that νµ and ντ have identical interactions is key to this factorisation, as pointed
out in ref. [27] and previously in refs. [61, 62] in the astrophysical context. In ref. [27], the
collision term is approximated by a damping factor; the factorisation then holds since the
damping coefficients are identical whether they involve νµ or ντ .

All in all, the QKE for %̌ reads:

i
∂%̌

∂x
= λ[U0M2U0†, %̌] + µ[Ēe + P̄e, %̌] + iK[%̌, ˇ̄%] , (F.3)

which is exactly the QKE for %0, i.e., the QKE without CP phase. Moreover, the initial
condition (4.1) is unaffected by the Š transformation: %̌(xin, y) = %0(xin, y). Since the
initial conditions and the evolution equations are identical for %̌ and %0, then at all times
%0(x, y) = %̌(x, y) [27, 61]. We can therefore write the relation between the density matrices
with and without CP phase,

%(x, y) = Š%0(x, y)Š† . (F.4)

This relation has two major consequences:

1. The trace of % is unaffected by δ, therefore Neff = Neff(δ = 0);

2. The first diagonal component is unchanged %ee = (%0)ee. Equivalently with the parametriza-
tion (4.8), zνe = z0

νe and δgνe = δg0
νe .

Therefore, under the assumptions made above (in particular, the initial distribution has no
chemical potentials), the CP phase will have no effect on BBN, since light element abundances
are only sensitive to Neff , zνe and δgνe . Note that in presence of initial degeneracies, the
initial conditions do not necessarily coincide %̌(xin, y) 6= %0(xin, y) and signatures of a CP
phase could be found in the primordial abundances [27, 28].
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A useful rewriting of (F.4) can be made with the final distributions (x = xf ), when
mean-field effects are negligible. The correspondence between δ = 0 and δ 6= 0 then reads in
the matter basis (which is then the mass basis):

%m(xf , y) = S%0
m(xf , y)S† . (F.5)

Note that the transformation involves now S instead of Š (this is linked to the fact that the
transformation between % and %m is made through U , while the transformation between %0

and %0
m involves U0). We can go further using the ATAO approximation, which constrains

the form of % and allows to analytically estimate the effect of the CP phase. In the ATAO
approximation, %m is diagonal, such that we get the result:

%m(xf , y) = %0
m(xf , y) [ATAO] (F.6)

Defining effective temperatures zνi for the mass states (i = 1, 2, 3), we have then zνi = z0
νi .

Using the PMNS matrix to express the results in the flavour basis, the effective temperatures
read:25

zνe = z0
νe ,

zνµ = z0
νµ −

1

2
(zν1 − zν2) sin (2θ12) sin (θ13) sin (2θ23) [1− cos (δ)] ,

zντ = z0
ντ +

1

2
(zν1 − zν2) sin (2θ12) sin (θ13) sin (2θ23) [1− cos (δ)] .

(F.7)

These relations show that the CP phase only affects the muon and tau neutrino distribution
functions, with a [cos (δ) − 1] dependence. For the preferred values of δ = 1.36π and the

mixing angles [47], and with the results for δ = 0 from Section 4.3, we expect
∣∣∣zνµ − z0

νµ

∣∣∣ =∣∣zντ − z0
ντ

∣∣ ' 4.6× 10−5. This is in excellent agreement with the numerical results obtained
solving the QKE with a CP phase (table 5).

Final values z zνe zνµ zντ Neff

δ = 0 1.39797 1.00175 1.00132 1.00130 3.04397

δ = 1.36π 1.39797 1.00175 1.00127 1.00135 3.04397

Table 5. Frozen-out values of the dimensionless photon and neutrino temperatures, and the effective
number of neutrino species. We compare the results without CP phase (see also table 1) and with
the average value for δ from [47].

Finally, the antineutrino density matrices satisfy the same relation as for neutrinos
(F.4) %̄(x, y) = Š%̄0(x, y)Š†. The QKEs in the absence of CP phase preserve the property
%0 = %̄0∗ if it is true initially. The asymmetry with δ 6= 0 would then read % − %̄ = Š(%0 −
%0∗)Š†. Therefore, CP violation effects in the νµ and ντ distributions (which would be
contributions ∝ sin δ) can arise from the complex components of %0, thus requiring the ATAO
approximation to break down. Since in the cosmological context without initial degeneracies
the approximation is very well satisfied, there can be no additional CP violation and the
formulae (F.7) are equally valid for antineutrinos.

25These expressions are rigorously exact for the energy densities, and they can be rewritten for the effective
temperatures since zν − 1� 1.
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[19] C. D. Kreisch, F.-Y. Cyr-Racine and O. Doré, The Neutrino Puzzle: Anomalies, Interactions,
and Cosmological Tensions, Phys. Rev. D 101 (2020) 123505 [1902.00534].

[20] E. Grohs, G. M. Fuller and M. Sen, Consequences of neutrino self interactions for weak
decoupling and big bang nucleosynthesis, JCAP 07 (2020) 001 [2002.08557].

– 35 –

https://doi.org/10.1103/PhysRevD.46.3372
https://doi.org/10.1103/PhysRevD.46.5378
https://doi.org/10.1016/S0550-3213(97)00479-3
https://arxiv.org/abs/hep-ph/9703315
https://doi.org/10.1016/S0550-3213(00)00554-X
https://arxiv.org/abs/astro-ph/0005573
https://doi.org/10.1016/S0370-2693(02)01622-2
https://arxiv.org/abs/astro-ph/0111408
https://doi.org/10.1103/PhysRevD.93.083522
https://arxiv.org/abs/1512.02205
https://doi.org/10.1103/PhysRevD.101.043524
https://arxiv.org/abs/1912.09378
https://doi.org/10.1103/PhysRevD.49.611
https://doi.org/10.1088/1475-7516/2020/03/003
https://doi.org/10.1088/1475-7516/2020/03/003
https://arxiv.org/abs/1911.04504
https://doi.org/10.1016/j.nuclphysb.2005.09.041
https://arxiv.org/abs/hep-ph/0506164
https://doi.org/10.1088/1475-7516/2016/07/051
https://doi.org/10.1088/1475-7516/2016/07/051
https://arxiv.org/abs/1606.06986
https://doi.org/10.1088/1475-7516/2019/07/014
https://arxiv.org/abs/1905.11290
https://doi.org/10.1088/1475-7516/2020/08/012
https://doi.org/10.1088/1475-7516/2020/08/012
https://arxiv.org/abs/2005.07047
https://doi.org/10.1088/1475-7516/2019/02/007
https://arxiv.org/abs/1812.05605
https://doi.org/10.1088/1475-7516/2020/05/048
https://arxiv.org/abs/2001.04466
https://doi.org/https://doi.org/10.1016/j.physrep.2018.04.005
https://arxiv.org/abs/1801.08023
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://doi.org/10.1103/PhysRevD.101.123505
https://arxiv.org/abs/1902.00534
https://doi.org/10.1088/1475-7516/2020/07/001
https://arxiv.org/abs/2002.08557


[21] G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, Nucl. Phys.
B 406 (1993) 423.

[22] A. Vlasenko, G. M. Fuller and V. Cirigliano, Neutrino Quantum Kinetics, Phys. Rev. D 89
(2014) 105004 [1309.2628].

[23] D. N. Blaschke and V. Cirigliano, Neutrino quantum kinetic equations: The collision term,
Phys. Rev. D 94 (2016) 033009 [1605.09383].

[24] C. Volpe, D. Väänänen and C. Espinoza, Extended evolution equations for neutrino propagation
in astrophysical and cosmological environments, Phys. Rev. D 87 (2013) 113010 [1302.2374].

[25] C. Volpe, Neutrino quantum kinetic equations, Int. J. Mod. Phys. E 24 (2015) 1541009
[1506.06222].

[26] J. Serreau and C. Volpe, Neutrino-antineutrino correlations in dense anisotropic media, Phys.
Rev. D 90 (2014) 125040 [1409.3591].

[27] J. Gava and C. Volpe, CP violation effects on the neutrino degeneracy parameters in the Early
Universe, Nucl. Phys. B 837 (2010) 50 [1002.0981].

[28] M. C. Volpe, Corrigendum to “CP violation effects on the neutrino degeneracy parameters in
the Early Universe” [Nucl. Phys. B 837 (2010) 50–60)], Nucl. Phys. B 957 (2020) 115035.

[29] W. Cassing and U. Mosel, Many body theory of high-energy heavy ion reactions, Prog. Part.
Nucl. Phys. 25 (1990) 235.

[30] P.-G. Reinhard and C. Toepffer, Correlations in nuclei and nuclear dynamics, Int. J. Mod.
Phys. E 3 (1994) 435.

[31] D. Lacroix, S. Ayik and P. Chomaz, Nuclear collective vibrations in extended mean-field theory,
Prog. Part. Nucl. Phys. 52 (2004) 497.

[32] C. Simenel, B. Avez and D. Lacroix, Microscopic approaches for nuclear Many-Body dynamics:
applications to nuclear reactions, 0806.2714.

[33] D. Lacroix and S. Ayik, Stochastic quantum dynamics beyond mean field, Eur. Phys. J. A 50
(2014) 95 [1402.2393].

[34] N. Bogoliubov, Kinetic equations, Journal of Physics USSR 10 (1946) 265.

[35] M. Born and H. Green, A General Kinetic Theory of Liquids. I. The Molecular Distribution
Functions, Proc. Roy. Soc. Lond. A A188 (1946) 10.

[36] J. G. Kirkwood, The Statistical Mechanical Theory of Transport Processes I. General Theory,
J. Chem. Phys. 14 (1946) 180.
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