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The spatial and temporal discreteness of gravitational wave sources leads to shot noise that may, in some
regimes, swamp any attempts at measuring the anisotropy of the gravitational wave background. Cross-
correlating a gravitational wave background map with a sufficiently dense galaxy survey can alleviate this issue,
and potentially recover some of the underlying properties of the gravitational wave background. We quan-
tify the shot noise level and we explicitly show that cross-correlating the gravitational wave background and a
galaxy catalog improves the chances of a first detection of the background anisotropy with a gravitational wave
observatory operating in the frequency range (10Hz,100Hz), given sufficient sensitivity.

I. INTRODUCTION

The detection of gravitational waves is now in full flow
heralding a new era in gravitational physics. One next frontier
is the measurement and characterization of the gravitational
wave background, a smooth but structured bath of gravita-
tional radiation which may have come from the primordial
Universe, but also from the plethora of gravitational wave sig-
nals emitted by different astrophysical sources from the begin-
ning of stellar activity until today [1]. One hopes that a clean
measurement of this background will shed light on the physics
of the early universe as well as the astrophysical properties of
astrophysical sources (e.g. population of compact binaries).

The astrophysical gravitational wave background (AGWB),
i.e. the background generated by gravitational events at late
cosmic times, is quantifiable through its isotropic energy den-
sity level and through the spatial angular power spectrum en-
coding its anisotropy. Existing data already place bounds on
both the isotropic and anisotropic components [e.g. see 2–6].
A detection of the isotropic level could come as early as 2020
[7].

The AGWB in the LIGO band is mostly generated by a su-
perposition of discrete events – binary mergers, cataclysmic
gravitational events, etc – and, as such can be thought of a
sequence of random processes. One starts off with the spa-
tial distribution of the underlying density field, which can be
modelled as a continuous random field (e.g. a realization
of a multivariate Gaussian distribution on sufficiently large
scales). Sources of gravitational waves will arise from a dis-
crete sampling of this underlying density field; the simplest
approach is to assume that it is a spatial Poisson process where
the variance is set by the local number density of GW sources
which is a relatively complicated function of the underlying
density field. Finally, the events that lead to gravitational
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waves will often also be discrete in time, leading to a third
layer of stochasticity.

The discrete nature of the processes underlying the AGWB
lead to a source of noise which is familiar from the analy-
sis of galaxy surveys – Poisson or shot noise. If the discrete
part of the process is sufficiently sparse (i.e. the number den-
sity of sources or the rate of gravitational wave events is suffi-
ciently small) shot noise may dominate, making it impossible
to characterise the anisotropy of the AGWB (i.e. the underly-
ing smooth field). A clear derivation of the problem from first
principles can be found in [8].

It has been suggested that it could be possible to sidestep
the shot noise problem by cross-correlating a GW map with
a dense galaxy sample tracing the same large-scale structure
[9]. In this situation, the shot noise level of the cross-spectrum
is primarily driven by the density of the much denser galaxy
survey (although the GW shot noise will still be a significant
contribution to the signal to noise of the cross-correlation).
In this paper we explore this claim and quantify how much
one can alleviate the shot-noise problem in measurements of
the anisotropy of the AGWB with current gravitational wave
experiments.

This paper is structured as follows. In Section II we present
a succint synopsis of the anisotropy of the AGWB and of
its cross-correlation with the galaxy distribution. In Sec-
tion III we discuss shot noise (both spatial and pop corn)
and we sketch the argument of why cross-correlating a map
of the AGWB with a galaxy survey may mitigate the shot-
noise problem. In Section IV we compute signal-to-noise ra-
tio (SNR) for auto-correlation and cross-correlations and we
show that the SNR for cross-correlation is significantly larger
than the auto-correlation one and has a mild dependence on
the cut-off chosen to filter out resolvable GW sources. We
also show that most of the SNR comes from z < 0.5, and that
the result depends very mildly on the number density of galax-
ies. The SNR is also enhanced when considering the likely
higher rate of neutron star mergers on top of black hole merg-
ers, hence this observable might be a realistic and promising
target for present and future galaxy surveys.

We must clarify from the outset, that we only intend to
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explore the shot-noise problem here, in isolation from other
sources of noise. Therefore, all results reported below must
be understood as forecasts for a perfect experiment with no in-
strumental noise. They therefore represent the best-case sce-
nario for the detectability of the AGWB in the presence of
spatial and temporal shot noise.

II. AGWB AND GALAXY ANGULAR POWER SPECTRA

The isotropic AGWB signal can be characterized by the en-
ergy density in gravity waves, ρGW, per logarithmic frequency
interval in units of the critical density, ρc, averaged over di-
rections: Ω̄GW ≡ dρGW/dln f/ρc where f is frequency. It can
also be written as the sum of contributions from sources lo-
cated at all the (comoving) distances r in the form Ω̄GW( f )≡
4π
∫

∂rΩ̄GW( f ,r)dr. Each astrophysical model predicts a
functional dependence for ∂rΩ̄GW( f ,r) where we define

∂rΩ̄GW =
f

4πρc
a4
∫

dLGW n̄G(LGW,r)LGW , (1)

n̄G(LGW,r) is the average physical number of galaxies at dis-
tance r with gravitational wave luminosity LGW. We use here,
for definiteness, the reference astrophysical model of [9].

Of interest in this paper is the anisotropy of the AGWB,
which can be modelled as

δΩGW(e) =
∫

dr ∂rΩ̄GWδG(r e) , (2)

when sub-leading contributions from peculiar velocities and
metric perturbations are ignored [10]. The line of sight direc-
tion is given by the unit vector e, and we assume an inhomoge-
neous distribution of galaxies hosting the gravitational wave
sources, characterized by a density nG = n̄G(r)(1 + δG(r)),
where n̄G(r) =

∫
n̄G(LGW,r)dLGW is the mean density of

galaxies in the Universe at comoving distance r.
In the Limber approximation, the general expression of

the angular power spectrum of the anisotropies, CGW
` of the

AGWB reduces to [11, 12]

CGW
` ( f )'

(
`+ 1

2

)−1
∫

dk PG(k)
∣∣∂rΩ̄GW( f ,r`)

∣∣2 , (3)

where ` is the multipole in the spherical harmonic expansion,
PG(k) is the galaxy power spectrum, and r` = (`+ 1/2)/k.
Thus a measurement of CGW

` is sensitive to the shape of ∂rΩ̄

and of PG(k). For details and derivations see [9, 11–13].
Consider now a direct measurement of the galaxy distribu-

tion, and let us construct a weighted average of the galaxy
overdensity of objects along the line of sight by 1

∆
G(e) =

∫
drW (r)δG(r e) , (4)

1We assume that all galaxies are observed, hence W (r) is not a selection
function but rather a weight used to combine the distance dependent over-
densities δG(r). It can be considered as an artificial selection function
W (r)/[r2a3n̄G(r)].

where the weight function W (r) is normalized so
∫

W (r)dr =
1. The auto-correlation and cross-correlation with AGWB in
the Limber approximation are given by

C∆
` '

(
`+ 1

2

)−1
∫

dk PG(k) |W (r`)|2 , (5)

and

CGW,∆
` ( f )'

(
`+ 1

2

)−1
∫

dk PG(k)W (r`)∂rΩ̄GW( f ,r`) . (6)

As we can see, and very much along the lines of what is
done in large-scale structure studies [e.g. 14, 15], we have
a full set of spectra and cross spectra, Eqns. (3), (5) and
(6) which characterize the statistical properties of the data
[δΩGW(e),∆G(e)]. Measuring these spectra can give us a
wealth of information about the underlying processes that lead
to the generation of gravitational waves in the late Universe,
see [9, 16].

III. SPATIAL AND POP CORN SHOT NOISE

In this section we derive how shot noise arises and how it
affects auto and cross-correlations. We distinguish between
the shot noise arising from the discreteness of gravitational
wave sources in space and due to their Poisson nature in the
time domain. This will be useful in our estimate of the SNR
in the next section. We note that, while in the previous sec-
tion, we have presented auto and cross-correlations in terms
of angular power spectra, our discussion here will be in terms
of real-space correlations.

A. The shot noise between two Poisson processes

Consider two discrete sets of points, a and b. In a given
pixel p there are Na,b

p points of each type, of which Nc
p are

common to both sets. We will write the ensemble average
of each quantity as 〈Nx

p〉 ≡ Nx. In a given pixel, let us write
Nx

p = Nc
p +Nx−c

p . Assuming Poisson statistics, the first two
moments of the distribution are:

〈Nx
p〉= Nx, 〈(Nx

p)
2〉−〈Nx

p〉2 = Nx. (7)

The covariance between a and b is therefore:

〈Na
pNb

p〉−〈Na
p〉〈Nb

p〉

= 〈(Nc
p)

2 +Nc
p Na−c

p +Nc
p Nb−c

p +Na−c
p Nb−c

p 〉−NaNb

≡ (Nc)2 +Nc +Nc Na−c +Nc Nb−c +Na−c Nb−c

− (Nc +Na−c)(Nc +Nb−c)

= Nc , (8)

where in the second line we have used the fact that Nc,
Na−c and Nb−c are all uncorrelated. We thus see that the
cross-variance of two Poisson samples is equal to the num-
ber of events in the intersections of the two samples, i.e.
Cov(Na

p,N
b
p)=Nc. We will use this result in the next sections.
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B. AGWB-galaxy count cross-correlations and shot noise

The gravitational wave density fluctuation δΩGW,p in a
pixel p is given by the cumulative flux of all gravitational
wave sources along the line of sight p. Let us discretize this
line of sight into intervals of comoving distance r. Discretiz-
ing also the range of GW luminosities, LGW, and ignoring
metric perturbations and peculiar velocities, we can write

ΩGW,p =
f

ρc θ 2
p
∑
r

∑
LGW

NLGW
r,p

LGW

4π(1+ z)r2 , (9)

where NLGW
r,p is the number of sources in pixel p, in the radial

bin r and in the luminosity bin LGW, and where θ 2
p is the

area of the pixel. In the continuum limit, taking the ensemble
average, and writing〈

NLGW
r,p

〉
= a3 r2

θ
2
p dr dLGW n̄G(LGW,r) , (10)

we find〈
ΩGW,p

〉
=
∫

dr
∫

dLGW
f a4 LGW

4π ρc
n̄G(LGW,r) , (11)

to recover the integral over the radial coordinate of Eq. (1).
On the other hand, the weighted galaxy number per solid

angle along pixel p, ∆G
p , is simply given by

1+∆
G
p = ∑

r

W (r)
θ 2

p r2a3n̄G(r)
NG

r,p , (12)

where NG
r,p is the number of galaxies in pixel (r, p),whose av-

erage is 〈
NG

r,p
〉
= a3r2

θ
2
p dr n̄G(r) , (13)

and by construction we have 〈1+∆G
p 〉= 1 as ∑r W (r)dr = 1.

Assuming purely Poisson statistics for both NG
r,p and NLGW

r,p ,
we can now compute the variance of the different auto- and
cross-correlations [17].
AGWB auto-correlation:〈

ΩGW,pΩGW,p′
〉
−
〈
ΩGW,p

〉〈
ΩGW,p′

〉
= δpp′ ∑

LGW

∑
r

(
f LGW

4π(1+ z)r2ρc θ 2
p

)2〈
NLGW

r,p

〉
=

δpp′

θ 2
p

∫ dr
r2

1
a3n̄G

(
∂rΩ̄GW

)2
, (14)

where, in the last line, we have taken the continuum limit and
we have assumed that all galaxies have the same GW lumi-
nosity, i.e. n̄G(LGW,r) = δ (LGW−L 0

GW)n̄G(r).
Number counts auto-correlation:〈

∆p∆p′
〉
−
〈
∆p
〉〈

∆p′
〉

= δpp′∑
r

[
W (r)

θ 2
p r2a3n̄G(r)

]2 〈
NG

r,p
〉

=
δpp′

θ 2
p

∫ dr
r2

1
a3n̄G

W 2(r) (15)

AGWB - number counts cross-correlation:〈
ΩGW,p∆p′

〉
−
〈
ΩGW,p

〉〈
∆p′
〉

=
δpp′

θ 2
p

∫ dr
r2

1
a3n̄G

W (r)∂rΩ̄GW , (16)

where we have assumed a monochromatic GW luminos-
ity function, and that all galaxies emit GWs (and therefore
Cov(NLGW

p,r ,NG
p,r) = 〈N

LGW
r,p 〉 as shown in the previous sub-

section III A).
We observe that the integral in Eq. (14) diverges at the

lower limit, when r = 0, hence the contribution of Poisson
noise of the AGWB auto-correlation depends on the cut-off
used to regularize it. The reason for this divergence is that,
for fixed luminosities, the flux of nearby sources increases
like ∼ r−2, and therefore the very few closest sources end
up dominating the total GW intensity across the sky. From
an observational point of view, the physical quantity which
sets the cut-off is the observed flux: sources with a flux
above a given threshold can be resolved and filtered out of the
data. Given that the flux per unit frequency Φ from a source
in z is related to the luminosity per unit frequency through
Φ( f ) = (1+ z)LGW/(4πd2

L), we have that a lower bound on
Φ is translated into a lower bound in redshift and an upper
bound in luminosity2. Assuming that all galaxies have the
same associated luminosity, the cut-off on flux directly trans-
lates into a lower cut-off in redshift (or analogously in r).

C. Pop-corn shot noise

So far we have only considered the effect of the spatial dis-
creteness of the sources of gravitational waves. In the fre-
quency band of terrestrial interferometers, e.g. the LIGO-
Virgo frequency band, the dominant contribution to the back-
ground comes from the merging phase of the evolution of
solar-mass compact objects. The signal is “pop-corn”-like:
events are separated in time and with almost no temporal over-
lap. Thus, there is a second shot-noise component due to the
fact that events are discrete in time, and only some of them
will contribute to the GW intensity mapped in a given time
period. In this paper we focus on the contribution to the back-
ground coming from mergers of binary black hole systems.

To compute this pop-corn shot noise we need to use the
fact that the number of galaxies is a Poisson variable and
each galaxy has a given (small) probability βT of containing
a merger during the observation time T , with a Poisson distri-
bution. We then use properties of compound Poisson distribu-
tions, see e.g. Ref. [8]. The only difference brought by this
pop-corn noise on the results of III B is that the variance of
the AGWB auto-correlation gets a correction prefactor of the
form (1+ 1/βT ), but the variance of cross-correlation (and

2More precisely, it defines the region of integration in the plane (z,LGW).
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galaxy auto-correlation) remain the same 3.
The value of βT can be estimated

βT =
T

a3n̄G
× dN

dtdV
, (17)

where dN /dV/dt is the merger rate per units of observed
time and volume. Consider the upper bound for the merger
rate [18]4

dN

dtdV
<

dN

dtmdV
∼ 100Gpc−3yr−1 , (18)

where tm is the comoving time of the source, i.e. t = (1+
z) tm > tm. Then using a constant comoving galaxy density
a3n̄G ∼ 0.1 Mpc−3, we find βT/T < 10−6/yr. It follows that
in the Hz band the shot noise of the AGWB auto-correlation
(dominated by pop corn shot noise) is enhanced typically by
a factor 106 with respect to the shot noise in the mHz band
(which is purely of spatial type). On the other hand, the
shot-noise level of the cross-correlation stays the same over
the whole frequency range and no enhancement due to the
stochasticity in time of sources is present. This highlights the
power of cross-correlation. We stress that this is just an order
of magnitude estimate. To derive more accurate predictions
for SNR in the next section, we will need to keep track of all
the redshift factors in Eq. (17).

IV. RESULTS

Before we embark on assessing the impact of cross-
correlations, we note that the weight function, W (r), should
be chosen so as to maximize the SNR of cross-correlation.
This can be done as long as radial information (i.e. accurate
redshifts) are available for all galaxies in the survey we cross-
correlate with, which we will assume here. As detailed in
Appendix A, the optimal weights can be derived in terms of a
Wiener filter, finding the result

W (r)≡ 4π∂rΩ̄GW

Ω̄GW
. (19)

Physically this means that we approximately weight all galax-
ies by a 1/r2 factor, hence mimicking the properties of a back-
ground mapped in intensity. In principle this means that the

3Let us denote NGW = ∑
N
i yi the total number of GW events in a pixel. N

is the number of galaxies in that same pixel which follows a Poisson distri-
bution of average 〈N〉, and the yi also follow a Poisson statistics of average
〈yi〉 = βT due to the pop-corn nature of GW events. The compound statis-
tics is found by averaging first over the statistics of the yi at fixed N and then
over the statistics of N. One finds easily Cov(NGW,NGW) = 〈N〉(βT +β 2

T )
and Cov(NGW,N) = 〈N〉βT . To compute the modification brought by the
pop-corn nature (due to small values of βT ) we must form the ratio of these
expressions with their asymptotic behaviour when βT →∞. Hence we find for
the auto-correlation of NGW a modification factor (βT +β 2

T )/β 2
T = 1+β

−1
T ,

whereas the modification factor for cross-correlation is trivially βT /βT = 1.
4In [19] it is also found that the inferred merger rate is consistent (at the 68%
confidence level) with being uniform in a comoving volume and source frame
time.

spatial shot noises of auto and cross-correlations (Eqs. (14-
16)) have exactly the same expressions (up to normalisation
factors 4π/Ω̄GW). In detail this is not exactly the case since
the full expressions for galaxy numbers and for the GW back-
ground also involve sub dominant metric and velocity contri-
butions, as well as the dominant galaxy overdensity term in
eqs. (4-6). See [9, 11–13, 20] for details. This implies that
the optimal weight function found from the Wiener filter must
differ slightly from (19).

We can now estimate the SNR of the cross-correlation in
the Hz (LIGO-Virgo) frequency band. We assume that shot
noise is the only noise component, i.e. we assume an ideal ex-
periment with no instrumental noise. The SNR of the AGWB
auto-correlation is given by 5

(
S
N

)2

GW
= ∑

`

2(2`+1)
(

CGW
`

CGW
` +NGW

`

)2

, (20)

while the one of the cross-correlation is given by(
S
N

)2

GW,∆

= ∑
`

(2`+1)(CGW,∆
` )2

(CGW,∆
` +NGW,∆

` )2 +(CGW
` +NGW

` )(C∆
` +N∆

` )
. (21)

The noise power spectrum N` is in fact given by the constants
multiplying δpp′/θ 2

p in Eqs. (14-16), as found from the dis-
crete to continuous rule δpp′/θ 2

p → δ (e− e′).
In both (20) and (21) the dominant contribution to the

denominator comes from the variance of AGWB auto-
correlation NGW

` due to the large pop-corn shot noise. Hence
the SNR of cross-correlation will be typically enhanced with
respect to the AGWB auto-correlation one. Having chosen
the optimal weight (19), it is very easy to obtain analytic
approximations. We first use that C∆

` = (4π/Ω̄GW)CGW,∆
` =

(4π/Ω̄GW)2CGW
` (this is only approximate when including

the subdominant metric contributions). Furthermore, we also
find that all spatial shot noises are similarly related by fac-
tors (4π/Ω̄GW). Including the pop corn shot noise in GW
auto-correlations, we then have N∆

` = (4π/Ω̄GW)NGW,∆
` =

(4π/Ω̄GW)2NGW
` /(1+β

−1
T ). For `� 1 the C` scale roughly

as 1/(`+ 1/2), as a consequence of the Limber expressions
(3)-(6) with large kernels. Using that βT � 1, the cumulative
SNR of the auto-correlation scales as(

S
N

)
GW

(`max)∼ 2βT αcut
√

ln`max , (22)

5The optimal full sky C` estimator for two observables x and y is Ĉxy
` =

∑m ax?
`may

`m/(2`+ 1). Its variance is easily deduced from the assumed Gaus-
sianity of the ax,y

`m , and it allows to deduce the SNR from a Fisher matrix
analysis. The prefactor 2(2`+1) for the auto-correlation SNR (instead of the
usual cosmic variance (2`+ 1)/2) is due to the fact that the signal, which is
the amplitude of the GW background, appears quadratically in the observ-
ables (the C`).
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FIG. 1. Top left : cumulative SNR for AGWB auto-correlation (black dashed line) and cross-correlation (black cont. lines) with galaxy number
counts using the optimal galaxy weight (and its restrictions to redshift bins in colors). Top right : dependence on the cut-off for two different
maximum multipoles (`max = 10 in thick lines and `max = 100 in thin lines). Auto-correlations are in dashed lines, and cross-correlations with
the optimal galaxy weight are in continuous lines. Bottom left : same curves varying instead the galaxy number density a3n̄G. Bottom right
: same curves varying instead the pop corn enhancement factor βT . When not varied, the cut-off distance is 60 Mpc, the comoving galaxy
density is 0.1Mpc−3, and the pop corn enhancement factor is βT = 10−6.

where we defined the cut-off dependent quantity αcut ≡ (`+
1/2)C∆

`=1/N∆
` , which is approximately constant for low `.

A quick estimate for this coefficient is αcut ' a3n̄Grcut ×∫
PG(k)dk, which is independent of the details of ∂rΩ̄GW. For

the SNR of the cross-correlation, one has(
S
N

)
GW,∆

(`max)∼
√

2βT αcut`max , (23)

where we used the scalings Eqs. (5) and (6). For an order
of magnitude estimate, let us consider a cut-off at 60 Mpc
for which αcut ∼ 5× 104. Then assuming integration time of
one year and using for the value of βT=1yr its upper bound
found in Sec. III C, we have (S/N)GW (`max) ∼ 0.1

√
ln`max

and (S/N)GW,∆ (`max) ∼
√

0.1`max. The SNR up to a given
`max, when using either the auto-correlation or the cross-
correlations, is presented in the top left panel of Fig. 1. We
observe that the behaviour with `max is well described by the
analytical scalings we have found. Note that our analysis dif-
fers significantly from Ref. [17], where the constraints derived
on posterior distributions are only cosmic variance limited.

The dependence on the cut-off distance used when com-
puting the GW pop corn shot noise is also illustrated in the

top right panel. For these plots we have integrated the sig-
nal over the frequency range 10Hz< f <100Hz and assumed
an integration time of 1 yr. We used the complete formula
for background anisotropies of [11, 20], where line of sight
and velocity terms are added to the dominant galaxy cluster-
ing one. Given the rate of events (18), we expect an average
of one black hole merger event in the sphere of radius 60Mpc
around us, for an observation time of ten years. Hence it is
rather natural to choose a distance of that order as a cut-off,
since this number might go up to the order of one GW event
per year when including the likely higher rate of neutron star
mergers.

With an instrument with extremely high sensitivity in the
Hz band, GW mergers up to very high redshifts could be de-
tected as individual events. These events could be filtered out
and they would not act anymore as a noise component for
the AGWB. The presence of a turning point in the top right
panel of the figure, is due to the fact that low multipoles cap-
ture mainly contributions from low distance sources. As those
sources are removed when increasing the cut-off distance, the
signal of low multipoles is reduced while high multipoles are
essentially unaffected. Simultaneously, as we increase the
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cut-off distance, the noise gets reduced but the reduction is
smeared over the whole multipole range since the N` are inde-
pendent of `. This is why the turning point for the total SNR
up to `max moves toward higher values cut-off distances as we
increase `max.

In the bottom left panel we have shown the effect of re-
ducing the number density of galaxies, and it is clear that
the SNR is rather insensitive to its precise value as long as
a3n̄G > 10−4, which is comparable with current spectroscopic
surveys.

Finally, the dependence on the enhancement factor βT is
illustrated in the bottom right panel. In this work we have
studied only the contribution to the background coming from
mergers of black holes in the Hz band. Another important
background component in this band is given by merger of
binary neutron star systems, see e.g. [9]. The merger rate
of neutron stars is expected to be much higher (a factor 10)
than the one of black holes [21], the current upper limit for
dN /dt/dV being 2810Gpc−3yr−1. Hence the pop corn shot
noise will affect in a less severe way this background com-
ponent as we expect βT to be typically larger by an order of
magnitude.

We find that most of the signal of the auto-correlation
comes from low redshift (z < 0.5). The Baryon Oscillation
Spectroscopic Survey (BOSS, [22]) has already covered wide
swathes of the sky at these redshifts, and this coverage will
keep improving in both number density and depth with future
spectroscopic surveys, such as the Dark Energy Spectroscopic
Instrument (DESI, [23]), the 4-metre Multi-Object Spectro-
scopic Telescope (4MOST, [24]), and the Euclid satellite [25].
This indicates that this is a realistic target for present galaxy
surveys. Moreover, this also tells us that cross-correlating the
AGWB with lensing could be interesting observable if one
wants to focus on the high-redshift GW signal, but it is not
the best observable to look at to achieve a first detection of the
anisotropies.

V. CONCLUSION

The shot noise due the pop corn nature of GW sources in the
Hz band is not a fundamental limitation that prevents one from
getting information about the GW background anisotropies.
Restricting to the background component coming from merg-
ers of binary black hole systems, we have considered that shot
noise and cosmic variance are the only noise components. In
that idealized case, the SNR of the cross-correlation with a
galaxy catalog is found to be much higher than that of the
auto-correlation. The SNR of the cross-correlation is of order
∼10 for large (& 100) `max for realistic galaxy number den-
sities (a3n̄G ∼ 10−3Mpc−3). Moreover, we have shown that
most of the signal comes from low redshift z < 0.5, indicating
that present galaxy catalogs can already be used to construct
these cross-correlations.

While this analysis has shown that there is some promise
in this method, it is useful to take a more conservative view
of its feasibility with up and coming data, and what we may
learn from such an observation. Currently, it is envisaged that

all events out to approximately 1 Gpc will be resolved (of or-
der 103 in total). If we take this to be the effective cutoff
we see that the SNR can be appreciable if we are able to re-
solve the map down to approximately 1◦, i.e. `max ∼ 100. But
in this situation we need to face a few issues. For a start, we
haven’t included instrumental noise which will degrade the ef-
fective resolution and which rapidly leads to a degradation of
the SNR. Furthermore, for this cut-off choice the signal will
be primarily from GW sources beyond 1 Gpc or a z ∼ 0.4;
the question then arises of how much information we can ex-
tract from the AGWB background about, for example, high
redshift binary populations and merger rates, as compared to
what might be inferred from the direct analysis of the resolved
events at lower redshift.

In this analysis we focused on the contribution of black hole
mergers, but this study can be easily extended to the popula-
tion of binary neutron stars. The neutron star merger rate be-
ing much larger than the one of black holes, this background
component is expected to be less affected by shot noise than
the black hole one studied in this work, as we expect a reduc-
tion of βT by one order of magnitude (i.e. βT ' 10−5 for one
year of observation). Also, βT ∝ T , and therefore the SNR
will keep on improving as more data is collected. The rate
of improvement will ∝

√
T and ∝ T for the cross-correlation

and auto-correlation respectively. For very long total observa-
tion time (such that βT reaches 10−4), the significance of both
observables becomes comparable.

It is worth noting that, although it is always possible to
avoid the offset in the AGWB power spectrum caused by shot
noise, commonly called the “noise bias”, by using only cross-
correlation between different data splits [26] (a technique that
is extensively used in the CMB community to avoid compli-
cated instrumental noise biases), this will not mitigate in any
way the impact of shot noise on the variance of the estimated
power spectrum (which will be the dominant contribution).
Cross-correlating with a denser sample that traces the same
underlying structure, on the other hand, does lead to a signif-
icant mitigating factor (see Eqs. 20 and 21). This has been
used in large-scale structure surveys to study the clustering of
sparse samples, such as damped Lyman-α systems [27, 28].

Most importantly, we must emphasize the fact that our anal-
ysis has not accounted for any form of instrumental noise. For
a realistic instrument, it is in principle not clear what the best
strategy would be to carry out this cross correlation. One pos-
sibilities would be to use only resolved events. In this case
the signal would be dominated by radiometer noise, and the
detection would be limited by the small number of resolvable
events. The second possibility would be to search for a back-
ground of unresolved events. In this case, the detection is
likely to be limited by detector noise and the poor angular res-
olution of Earth-based facilities. This translates into an low
effective `max, and from the top left panel of Figure 1 we infer
that the associated SNR would probably remain below unity.

LIGO-Virgo is expected to detect the isotropic component
of the background with the design sensitivity [7]. Given
that the typical amplitude of the AGWB anisotropies are
suppressed by a factor of at least 10−2 with respect to the
monopole, this means that an improvement in design sensi-
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tivity of at least a factor 10 is necessary to get a detection
(on the angular scales accessible given the diffraction pattern
of the observatories). Einstein Telescope is expected to reach
this sensitivity threshold [29]. However, an improved sensi-
tivity also implies that the catalogue of resolvable sources one
can detect becomes much more complete and deep in redshift
and one expects to have a broad redshift cover (up to z∼ 2−3
at least) of all resolvable sources, with a much better angular
resolution than the one of AGWB anisotropy.

A minor point is that in our analysis we have filtered out
(from the background) the contribution from close sources.
However, in a realistic analysis the cut-off is actually in the
received flux and not in distance. To refine our study, we
should convolve our results with some distance distribution
for a given brightness cut-off. However, since our signal to
noise for the cross-correlation flattens out as a function of the
cut-off, this will not significantly alter the results.

The situation described here is very different in the mHz
band (e.g. the LISA band). In this case the background
is composed by the superposition of signals from binary
systems in the inspiralling phase. Since the duration of the
inspiralling phase is much larger than typical observation
times, the signals add up to form a continuous and almost
stationary background. This is an intrinsic (irreducible)
background. The shot noise in the LISA band will therefore
only be due to the discreteness in space of the GW sources,
and will be a subdominant contribution to the total error

budget (see also [16]).

In summary, we have found that there are no intrinsic (i.e.
shot-noise-like) noise components that constitute a funda-
mental barrier to obtaining information from the anisotropies
in the AGWB in the Hz band, and that cross-correlating with
a galaxy survey traceing the same underlying structures is a
promising method to get a first detection of the anisotropies.
This result holds in idealized case without instrumental noise,
and a future work will be dedicated to applying this analysis
to realistic GW detector networks and galaxy surveys.
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Appendix A: Optimal weights

Consider a vector of N measurements x = (x1, ...,xN) that
we want to linearly combine to find the best estimate of a
given quantity y. Assuming Gaussian statistics, the probabil-
ity for y given x is

−2log p(y|x) = zTC−1
zz z−xTC−1

xx x, (A1)

where we have defined the vector z = (y,x1, ...,xN), and Cab is
the covariance matrix between a and b (Cab ≡

〈
abT

〉
). There-

fore Czz is

Czz =

(
Cyy CT

xy
Cxy Cxx

)
. (A2)

The maximum-likelihood estimator for y can be found by
solving the equation −2∂y log p(y|x) = 0. After a little alge-
bra, this estimator is

ŷ = wT x≡ CT
xyC
−1
xx x. (A3)

The linear coefficients w are the so-called Wiener filter.

In our case, y is the gravitational wave background in a
given pixel ΩGW,p, and x is a vector of number count measure-
ments along that pixel’s line of sight Nr,p. Assuming Poisson
error bars, the different covariance elements are

Crr′ ≡ Cov(Nr,p,Nr′,p) = δrr′ dr r2 a3n̄G(r)θ
2
p , (A4)

CrΩ ≡ Cov(Nr,p,ΩGW,p) = dr∂rΩ̄GW . (A5)

Therefore the Wiener filter weights of the sum (12) are

W (r)
r2a3n̄G(r)

∝
∂rΩ̄GW

r2a3n̄G(r)
. (A6)

Using these weights allows to build the most likely GW back-
ground in a given pixel only from its galaxy number mea-
surement binned in redshifts. Hence it is the good variable
to use for cross-correlating with the directly measured GW
background of that pixel so as to constrain its global ampli-
tude. Once properly normalized, the weights (A6) lead to the
weight function (19).

Equivalently, the weights can be obtained from a least-
squares analysis of the variables Nr,pΩGW,p. This al-
lows to build an estimator for the GW amplitude Ap =
4πΩGW,p/Ω̄GW as

Âp ≡
∑r
(
∑r′Cr′ΩC−1

r′r

)
Nr,pΩGW,p

∑rr′Cr′ΩC−1
r′r CrΩ

, (A7)

where Crr′ ≡ Cov(Nr,pΩGW,p ,Nr′,p ΩGW,p) = Crr′CΩΩ +
CrΩCr′Ω. Assuming that this covariance is dominated by the
pop-corn noise of the GW background, we can then approxi-
mate Crr′ 'Crr′CΩΩ, from which we infer again that the opti-
mal weights are ∝ ∑r′Cr′ΩC−1

r′r , therefore recovering Eq. (A6).
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