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In the literature different approaches have been proposed to compute the anisotropies of the
astrophysical gravitational wave background. The different expressions derived, although starting

from our work 1704.06184, seem to differ.

In this article, we compare the various theoretical

expressions proposed so far and we provide a separate derivation based on a Boltzmann approach.
We show that all the theoretical formula in the literature are equivalent and boil down to the one of
1704.06184 when a proper matching of terms and integration by parts are performed. The difference
between the various predictions presented for anisotropies in a cosmological context can only lie in
the astrophysical modeling of sources, and neither in the theory nor in the cosmological description
of the large scale structures. Finally we comment on the gauge invariance of expressions.

Introduction

The anisotropic stochastic gravitational-wave (GW)
background, generated by the superposition of various
unresolved astrophysical and cosmological sources, has
attracted a growing attention in the past years. It is
probable that the astrophysical gravitational waves back-
ground (AGWB) from unresolved stellar-mass binaries
may be detected within a few years of operation of the
LIGO-Virgo network [1, 2].

While the homogeneous component of the AGWB,; i.e.
its monopole, in a perfectly homogeneous and isotropic
spacetime has been studied for many years, the computa-
tion of its anisotropies and their angular power spectrum
has only been derived recently. The computation of the
anisotropies of the AGWB relies on (i) the underlying
cosmology (assumed to be well described by a Friedmann-
Lemaitre cosmology) (ii) the large scales structure or
galaxy clustering and its effect on GW propagation (de-
scribed using linear perturbation and effectively includ-
ing non-linearities in the matter evolution) and (%i) the
local astrophysics on sub-galactic scales (given by the
astrophysical modeling of the time-dependent GW lumi-
nosity L., of a given galaxy as a function of halo mass
M, and GW frequency at emission v,).

The first theoretical expression of anisotropies of the
AGWB was derived in Refs. [3, 4], using a coarse-graining
approach. In this work both a covariant expression valid
in any spacetime and its application to the case of a per-
turbed Friedman-Lemaitre universe are presented. Using
this framework, the first predictions of the AGWB power
spectrum have been presented in Ref. [5], for the contri-
bution of binary black holes (BH) mergers and for fre-
quencies in the LIGO-Virgo band. Making use of the as-
trophysical framework described in Refs. [6-8], the influ-
ence of various astrophysical parameters/functions (BH
formation models, BH mass cut-off, stellar initial mass
function, metallicity) on the angular power spectrum was
investigated in Ref. [9] and extended to the LISA band in
Ref. [10]. Similar predictions were proposed, on the basis
of the same formalism, in Refs. [11, 12] (see Ref. [13] for a

comment on the analytic approach used in these works).
The first attempt to describe anisotropies of a GW with
a Boltzmann approach was proposed by Ref. [14] while
Ref. [15] refines it by introducing an emissivity function
that realistically describes GW emission at the galactic
scale.

Recently, Ref. [16] proposed a new derivation of
anisotropies in a cosmological context, starting from the
covariant expression presented in Ref. [3]. Using meth-
ods adapted to large scale structure observed in redshift
space, the authors show the presence of new effects in
their result, not previously taken into account in the lit-
erature, in particular a Kaiser-like projection term that
would become relevant on large angular separation.

The goal of this article is to compare different ex-
pressions for anisotropies, obtained using the covariant
approach of Ref. [3] as a starting point and making
use of different perturbation methods. In particular
we investigate the origin of the new projection terms
recently found in Ref. [16]. To that purpose, we will first
provide in § I a line-of-sight approach of our covariant
expression [3]. Then, after a brief reminder of its
implementation within cosmological perturbation theory
in § II, we compare in § IIT the results of Ref. [3] in a
cosmological context with the result recently presented
in Ref. [16]. We show that the discrepancy arises from
the different choices on how to model the GW luminosity
of galaxies. In particular we show that projection effects,
which play an important role in galaxy surveys, do not
correspond to observable cosmological effects in the
context of a background. To finish, we comment on the
modeling of the luminosity perturbation in § I'V.

Notation: We assume a standard Friedmann-Lemaitre

background spacetime with scale factor a, conformal time
n and conformal Hubble function H = dIna/dn.

I. LINE OF SIGHT EXPRESSION

A simplified approach is to describe the AGWB ob-
served today in terms of its energy density per units of



observed frequency v, and solid angle d€2, as
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where z#()) is the geodesic followed by the GW ob-
served in direction e and z(\) describes the redshift
along that geodesic. It is defined as 1 + z(\) =
(U D lan (0 / [UuPGwlo, Where pgyy = da’/dX is the
GW four-momentum and u . the tangent vector to the
observer (O) or source (G) geodesic. The physical num-
ber density of galaxies is denoted as n., and the GW
luminosity of galaxies as L£,. They are both defined
in the matter comoving frame (i.e. comoving with u
at z#(\)), and the latter depends on the redshifted fre-

quency v(A) = v, (14 z(N)).

The expression (1) is fully covariant in the sense that
it is valid for any spacetime metric. It was derived using
the distance reciprocity relation Da /Dy, = 1/(1+ 2)? be-
tween the luminosity (Dy,) and angular (Dp) distances,
since the power received scales by definition as 1/D?
while the area spanned by a solid angle scales like DX.
The factor d7/d\ = —u,ply accounts for the physical
depth spanned (equal to the proper time of the source
spanned d7) in an infinitesimal change dA of the affine
parameter used in f integration. Instead of integrat-
ing with this affine parameter, one usually integrates
over the conformal time 7 and makes use of the relation
(dr/dX)dA = (d7/dn)dn.

Equation (1) is rather formal and requires some ex-
tra manipulations to obtain the general expression in
a perturbed cosmological framework. However, in this
general form it is apparent that it is the integral form
of a Boltzmann equation with a source term but with-
out any collision term (as was actually initially proposed
in the context of GW by Ref. [14]). Indeed, defining
a total derivative in phase space along a geodesic by
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Eq. (1) is the integrated version
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which is a Boltzmann-type equation for the distribution
function
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with emissivity function
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The galaxy number density n, converts the galaxy lu-
minosity £, into a luminosity per unit of volume. In
this Boltzmann approach, the factor dr/dn accounts for

the fact that the rate of emission is defined, as it should,
with respect to the time in the comoving frame of GW

sources. The practical expression of this time conversion
factor is
dr —u,p” v
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Neither the line of sight expression (1) nor the Boltz-
mann equation (2) make any hypothesis on the space-
time symmetries. Note however that at the core of these
descriptions is indeed hidden some kind of a coarse-
graining since the source term involves the continuous
galaxy number density field, which allows one to define
a continuum of sources. All the works mentioned earlier
make such an assumption, whether it is explicitly said
or not. For comparison, we stress that this is not the
case for the collision term of the CMB radiative trans-
fer, which is based on the more fundamental microscopic
form of Compton interactions.

II. LINEAR PERTURBATION THEORY
A. General expression

Let us now restrict to the framework of linear cosmo-
logical perturbation theory, with a metric perturbed in
full generality (but with only scalar perturbations de-
scribing the large scale structure) as

ds® = a® [—(1 4 2¢)dn? + 20; Bdz’dn
+(1 = 2¢)6;;dz*dz? + 20;0; Edz'dz?] . (6)

One needs to solve for the geodesic of gravitons, so as
to determine their trajectory, and the frequency evolu-
tion and the redshift along a geodesic. In practice, when
integrating with the parameter 7, it is sufficient to con-
sider the background geodesic which is a straight line,
since time-delays and lensing appear only as second or-
der contributions. For simplicity we omit here the con-
tributions of the perturbations at the observer’s position
since observables do not depend on them. The redshift
perturbation is

1+z = (1+2)[1+46In(1 + 2)], (7)
dIn(l+2z2) = —+€0;(v+ B) (8)
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with 1+ 2 = 1/a, and v’ = a~ v’ = a~10% is the spatial
component of the matter velocity. The perturbed time
conversion factor [Eq. (5)] is

dr ,

an =a[ll+¢+e€'0;(v+ B)]. (9)
Hence, with 7 = (1 + Z)v,, we find from Eq. (1) that the
linearly perturbed GW background energy density per
units of observed frequency and angle is
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where the luminosity perturbation is defined by
Lo (n,v) = Ls(n,v)[1+ dz(n,v)], and the integration is
performed on the background geodesic z* = e*(n, — n).
The terms with dIn £, /dIn ¥ come by Taylor expanding
L. (v,n) around 7. What remains to be specified, is the
relation between the galaxy density contrast J, and the
underlying cosmological perturbations, and also a model
for the luminosity perturbations d..

B. Gauge invariance

Under a general gauge transformation generated by the
vector field £&# = (T,0'L), the perturbations transform
as ) L o+ HT+ T, 6L 6 —nT, ET B1L,
BEB+L T, v v-1, 66 & ¢+ (Inng)T
and d, A Sc+TdIn L, /0n. Tt follows that two of the
four scalar perturbations (¢,1, B, E) can always be set
to zero by a proper choice of (T,L). Note that Lg is
defined as the luminosity seen in the matter comoving
frame, that is with respect to a tetrad field whose time-
like vector is the matter velocity. This differs from the
standard approach of the Boltzmann equation, where the
distribution function, and thus its sources and associated
collision term, are defined with respect to a tetrad whose
timelike vector is proportional to (dn), [17]. The per-
turbations on these two different time slices are related
by 52‘1"} =6, +€0;(v+ B)dIn L, /0v, and 5}‘117} trans-
forms under a general gauge transformation similarly to
Sz, but with an additional term —e’0;,70In L /0 [18-
20]. Using these transformation properties, it is easy to
check that the general expression (10) is gauge invariant,
as it should be the case since it describes an observable
quantity.

C. Gauge fixing

Restricting to the Newtonian gauge (NG) by setting
B =FE =0in Eq. (10), we get
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In Eq. (4) of Ref. [5], which was derived in Newtonian
gauge, we introduced a phenomenological bias factor to
relate d, to matter overdensities (in practice relating the
comoving density contrasts), and we set d, = 0.

Even though the expression (11) is given in a specific
(Newtonian) gauge, the perturbation variables can al-
ways be promoted to gauge invariant variables replacing
WY+ HB-E) - B —E' ¢ ¢ HB - E),
v —>v+ E, §, = 0.+ (B—E)(Inng) and 6 —
§c+ (B —E"0InL,/0n. This standard method allows
one to re-express the result in an arbitrary gauge, and it
is straightforward to check that after integration by parts
of the integrated effects, one recovers the expression (10)
in an arbitrary gauge.

Similarly, restricting to the synchronous gauge (SC)
(with comoving condition on cold matter) by setting ¥ =
v =B =0 in Eq. (10), we get
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where the effect of metric perturbations appears as an
integrated term.
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III. COMPARISON WITH LITERATURE

Recently Bertacca et. al. [16] (see their Section III,
and we follow here the notation of v1 of this preprint)
also focus on a perturbed Friedmann-Lemaitre spacetime
and using the cosmic rulers formalism [21] find a general
expression for the AGWB anisotropies on a perturbed
cosmology. We start from Eq. (81) of [16] (in an arbi-
trary gauge) and for the sake of comparison we restrict
it to the Newtonian gauge. This gives [setting to zero
perturbations at the observer’s position]
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where the evolution bias is defined as b, =
H~tdIn(fi a®)/dn and the function K corresponds to
L /(47) in our notation. This expression looks very dif-
ferent from our Eq. (11) but it can be easily compared
with it. Using integration by parts, and noticing for in-
stance that

4 a2, b d _d a’ng
anG<be H/H +’H,d77 ¢—adn 2 v,

and replacing K = L, /(47), Eq. (13) reduces to'
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We remark that the difference with Eq. (11) is the last
term and the absence of §.. Hence Eq. (14) is equivalent
to Eq. (11) with the choice 6 = (1. — n)dIn L, /dn.
In order to gain insight on the physical significance of
this choice, let us define the luminosity perturbation on
constant redshift hypersurfaces

OlnL
64 =0p — (n, —n)——< 1
2=0c—(m.—n) on (15)
where
n.=n—H 5n(1+2), (16)

is the time at which a galaxy in a fiducial unperturbed
cosmology would have the same redshift as a galaxy oth-
erwise located at x*(n) in the (true) perturbed cosmol-
ogy. It follows that 6, = (1. —1)01n L /On corresponds
to setting the perturbation of the galaxy luminosity to
zero on constant redshift hyper surfaces 67 = 0, which
is the choice of [16] to describe the perturbation of the
galaxy luminosity. The difference between Eqs. (11) and
(14) is then reduced to

dspGW(e7 Vo)

P (17)
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We showed how to perform this comparison in the
Newtonian gauge for simplicity. However, using the same

INote that instead of using integration by parts to obtain Eq. (14)
from (13), we could consider that the time variable in the integra-
tion of Eq. (13) is in fact 7., and then use the change of variable (16)
to integrate on 7. From first order expansion of all background
quantities in 7, — 7, one recovers Eq. (11) up to the difference (17).

types of integrations by parts, it is easy to check that the
difference is the same in an arbitrary gauge, i.e. the dif-
ference between Eq. (10) and Eq. (81) of Ref. [16] is
also given by Eq. (17). We stress that both these expres-
sions are gauge invariant even though they differ, since
the difference involves 67 which is itself a gauge invari-

ant quantity, as d1In(1 + z) < dIn(1 + z) — HT. Tt also
follows that the difference between the restriction to the
synchronous gauge (12) and Eq. (85) of Ref. [16] is given
by (17).

As a result, we find that the new terms found in
Ref. [16] written in the form of typical projection terms
in large scale structure observables [see for example the
Kaiser-like term in the third line of Eq. (13)], can be re-
moved with some integration by parts, hence do not cor-
respond to measurable physical effects. This is a general
result and applies to any background: projection effects,
very relevant when dealing with large scale structure ob-
servables (i.e. sources that we can observe directly and
localize in space) are not effective when dealing with a
background. A background by definition is given by the
superposition of signals from unresolvable sources and
it is therefore blind to the location in redshift space of
sources, which need to be described using a local model
for galactic physics.

IV. LUMINOSITY PERTURBATION

In Ref. [16], the perturbation of the effective luminos-
ity as a function of the observed redshift is set to zero on
constant redshift hypersurfaces, i.e. 67 = 0. Since we do
not directly observe the luminosity of galaxies but only
the integrated flux that we receive from them, in our work
Ref. [3] we had assumed the luminosity of a galaxy to be
a function of its local time 7 (even though it is only a co-
ordinate and ideally one should prefer to use its proper
time), rather than a function of redshift which depends
on the way galaxies are observed later, and we had chosen
an astrophysical model of GW sources such that the lu-
minosity perturbation vanishes in the Newtonian gauge,
i.e. 0 = 0. A similar choice for source luminosity per-
turbations is made in the context of the cosmic infrared
background [22]. Furthermore, constant redshift hyper-
surfaces are observer dependent, hence parametrizing the
galaxy luminosity in terms of the observed redshift may
be useful and well-motivated in the case we could directly
access and measure the emitted luminosity, which is not
the case in the context of a background.

Conclusion

We have compared different predictions for the
anisotropies of the gravitational wave background pro-
posed in the literature, starting from our covariant ap-
proach of Ref. [3]. We have shown that they are all equiv-
alent and they all contain the same type of cosmologi-



cal effects. Differences in predictions can only arise in
the way galactic physics is computed. In particular, the
expression for the background anisotropies proposed in
Ref. [16] reduces, after some integration by parts to the
former expressions of Refs. [3, 4], except for a term [see
Eq. (17)] which is the result of a different modeling of
GW luminosity as a function of redshift and frequency.
Moreover, we have shown that both the approaches of
Ref. [16] and Refs. [3, 4] used to expand the covariant
expression of Ref. [3] on a perturbed cosmological frame-
work, give a gauge-invariant observable. This is a nice
cross-check of the results derived so far: by construc-
tion, gauge invariance is built in the computation of an
observable, and different choices of the time coordinate
used to parametrize it should not change its transforma-
tion property under gauge transformations.

More generally, any difference between AGWB power
spectra can arise from (%) the underlying cosmology (7,)
(#i) the large scales structure or galaxy clustering (.
and the bias model) and/or (44) the local astrophysics on
sub-galactic scales encompassed by the luminosity func-
tion L (n,v) (its background and perturbed values). As
shown in this article, see also the previous note [13], since
the physics on cosmological scale is quite well under-
stood, the main source of uncertainties present in the
predictions for the AGWB anisotropies is given by the
description of galactic and sub-galactic physics. This is
extremely interesting because we are left with an observ-
able that is very sensitive to the details of the astrophys-
ical modeling as shown in Refs. [9, 10], and that can be
used to constrain astrophysics.

The expressions that we provided in Refs. [3, 4], cor-

respond to an astrophysical model where 6, = 0 in the
Newtonian gauge (6). This is equivalent to assuming
that the associated gauge invariant variable o, + (B —
E"0In L, /0n vanishes. This is a very natural choice in
the framework of the coarse grained modeling used to de-
scribe anisotropies, since it allows one to compute both
galaxy density and luminosity at the same time. Alterna-
tively, in Ref. [16] the modeling corresponds to the choice
that the gauge invariant luminosity perturbation on con-
stant redshift hypersurfaces 6% vanishes identically. The
result of different choices for the d, is expected to give
little differences on observable scales since their difference
(15) is proportional to the time perturbation dn and to
the derivative of the galaxy luminosity with respect to
time, and in any realistic astrophysical model the galaxy
luminosity is expected to have a smooth time evolution.
There are of course other physically reasonable models to
set 0., and one could for instance assume that it vanishes
in the synchronous gauge. One would then use the very
simple expression (12) in which the effect of metric per-
turbations would merely be interpreted as an integrated
effect (with no physical projection effects present).
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