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We present a comprehensive construction of scalar, vector and tensor harmonics on max-
imally symmetric three-dimensional spaces. Our formalism relies on the introduction of
spin-weighted spherical harmonics and a generalized helicity basis which, together, are ideal
tools to decompose harmonics into their radial and angular dependencies. We provide a
thorough and self-contained set of expressions and relations for these harmonics. Being gen-
eral, our formalism also allows to build harmonics of higher tensor type by recursion among
radial functions, and we collect the complete set of recursive relations which can be used.
While the formalism is readily adapted to computation of CMB transfer functions, we also
collect explicit forms of the radial harmonics which are needed for other cosmological ob-
servables. Finally, we show that in curved spaces, normal modes cannot be factorized into a
local angular dependence and a unit norm function encoding the orbital dependence of the
harmonics, contrary to previous statements in the literature.

1. INTRODUCTION

Tensor harmonics are ubiquitous tools in
gravitational theories. Their applicability reach
a wide spectrum of topics including black-hole
physics, gravitational waves, quantum-field the-
ory in curved spacetimes, and cosmology. In the
particular context of cosmology, one is usually
interested in the description of tensor harmonics
over maximally symmetric manifolds, since these
are the spaces in better agreement with observa-
tions. In this work we revisit the construction
of scalar, vector and tensor harmonics in sym-
metric three-dimensional spaces with particular
interest in – but not limited to – cosmological
applications.

Scalar harmonics in symmetric spaces are
well known among cosmologists [1], and they are
defined as a complete set of eigenfunctions of the
Laplace-Beltrami operator. Vector- and tensor-
valued harmonics can be similarly defined, and
their explicit forms were gathered in [2–4]. These
objects are found nearly everywhere in cosmo-
logical applications, specially in those related
to large-scale structure and its related observ-
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ables. Indeed, on cosmological scales, where lin-
ear perturbation theory successfully accounts for
the formation of structures, perturbation modes,
that is the components in an expansion on tensor
harmonics, evolve independently from one an-
other. This fact enormously simplifies the con-
struction of observables and the assessment of
their statistics. In particular, a decomposition
based on tensor harmonics is essential for the
computation of cosmic microwave background
(CMB) fluctuations around a maximally sym-
metric (but possibly curved) space [5]. The nor-
mal modes which have been introduced in [6, 7]
correspond to specific components of those of [5],
and are consequently an equivalent presentation
of them. An equivalent covariant formulation of
these normal modes is also presented in [8, 9].

In this article, we review the general con-
struction of harmonics in maximally symmetric
three-dimensional spaces, along with the associ-
ated normal modes, and show how they can be
systematically built by recursions. In doing so,
we collect all explicit expressions of the normal
modes for scalar, vector and tensor harmonics.
Throughout, we choose to use a modern formu-
lation based on spin-weighted spherical harmon-
ics from which even and odd parts and also the
general structure is more tractable. Hence, this
differs from the formulations given in [10, 11].
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Section 2.1 is dedicated to definitions and no-
tation. In particular, we define the harmonics,
the helicity basis, the normal modes and the ra-
dial functions of which many properties are col-
lected in the appendices. Section 3 is dedicated
to the general construction of these radial func-
tions which characterize fully the harmonics and
most relations are collected in Appendix D. The
reader interested only in the actual expression
of the harmonics can jump directly to Section 4
where the explicit expressions of the radial func-
tions are collected, or to Appendix F if inter-
ested in the flat case only. The normalization of
harmonics is discussed in Section 5, while plane
waves are built in Section 6. The formalism is il-
lustrated in Section 7 for the standard multipole
expansion of the CMB radiative transfer func-
tions. Finally the comparison of our results with
previous references is detailed in Appendix G.
The tables of Appendix H gather the most im-
portant ancillary notation used throughout.

2. DEFINITIONS

2.1. Maximally symmetric spaces

We start be recalling some basic properties of
maximally symmetric spaces. A nice and physi-
cist targeted introduction can be found in [12].

Maximally symmetric spaces (as opposed to
spacetime) are uniquely fixed by a real parame-
ter K, known as constant of curvature. In three
dimensions, and using standard spherical coor-
dinates (χ, θ, φ), the metrics of these spaces read

gijdx
idxj = dχ2 +r2(χ)[dθ2 +sin2 θdφ2] . (2.1)

The radial coordinate χ is implicitly defined by
the function r(χ), which assumes different values
according to the sign of the parameter K:

r(χ) =


`c sinh(χ/`c) , (K < 0) ,

`c sin(χ/`c) , (K > 0) ,

χ , (K = 0) .

(2.2)

Here, `c ≡ 1/
√
|K| is the curvature radius,

which is related to the Ricci scalar by R = 6K.
Clearly, K distinguishes between open (K < 0),
closed (K > 0) and flat (K = 0) spaces. When

K 6= 0 we can further use units for which `c = 1,
that is, all lengths are expressed in units of the
curvature radius and, in the closed case, this im-
plies 0 ≤ χ ≤ π. The general case `c 6= 1 can
be trivially restored from dimensional analysis if
needed. To emphasize our special choice of units,
let us introduce a reduced curvature parameter

K ≡ K`2c = K/|K| (2.3)

which assumes the value +1 (−1) in the closed
(open) case.

The Riemann tensor of maximally symmetric
spaces can be written directly in terms of the
space metric and the constant K:

Rijkl = K(gikgjl − gilgjk) . (2.4)

This greatly simplifies identities involving com-
mutators of covariant derivatives. One identity
that we shall need is

[∆,∇k1 · · · ∇kn ]Ti1...ij = 2K [n(n+ 1)/2 + nj]

×∇k1 · · · ∇knTi1...ij
(2.5)

where ∇i is the covariant derivative associated
with the metric (2.1) (i.e., ∇kgij = 0) and ∆ =
∇j∇j is the Laplace-Beltrami operator. In what
follows we shall adopt the unifying notation sin,
tan and cot for trigonometric functions, defined
as the usual functions when K > 0, and as their
hyperbolic counterparts when K < 0.

2.2. Helicity basis

The notion of helicity (or spin) basis is more
conveniently introduced in terms of an orthonor-
mal triad of basis vectors

nχ = ∂χ , (2.6a)

nθ = r−1(χ)∂θ , (2.6b)

nφ = r−1(χ) csc(θ)∂φ , (2.6c)

together with its dual basis

nχ = dχ , (2.7a)

nθ = r(χ)dθ , (2.7b)

nφ = r(χ) sin(θ)dφ . (2.7c)
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From this we can form the standard helicity vec-
tor (spin 1) basis as

n± ≡
1√
2

(nθ ∓ inφ) ,

n± ≡ 1√
2

(
nθ ∓ inφ

)
.

(2.8)

Given a unit vector n at the origin (χ = 0), the
pair (χ,n) denotes a point reached following a
geodesic of length χ whose tangential direction
at the origin is n. It is also obvious from the
spherical symmetry that the tangential vector of
the geodesic at that point is nχ. Hence it is cus-
tomary to use the symbol n for both nχ and its
dual nχ. The helicity basis vectors n± also de-
pend on the point (χ,n) considered, but they are
parallel transported along a radial curve, that is

nk∇kn±i = 0 . (2.9)

Thus, since they depend essentially only on the
direction n, it is customary not to write this
dependence explicitly.

We now use the vector basis (2.8) to build
a suitable tensor basis (spin s) for symmetric
trace-free (STF) tensors. For 0 ≤ |s| ≤ j, we
define

n̂±si1...ij ≡ n
±
〈i1 . . . n

±
is
nis+1 . . . nij〉 , (2.10)

with a similar definition when free indices are
up. The angle brackets mean that we must form
the symmetric trace-free part on the enclosed
indices, and this is performed in practice with
(C.1). Analogously to the helicity basis, these
tensors (which are also parallel transported) de-
pend only on the direction n — a dependence
which will be omitted from now on.

In what follows, it will be convenient to in-
troduce a multi-index notation

Ij ≡ i1 . . . ij , (2.11)

such that the basis for STF tensors is written
succinctly as n̂±sIj or n̂

Ij
±s. In Appendix B we

summarize how the extended helicity basis (2.10)
is related to spin-weighted spherical harmonics.

The generalized helicity basis (2.10) extends
the multi-index notation reviewed in Ref. [13],
which is restricted to using the tensors (2.10)

with s = 0. Up to normalisation differences, it
corresponds to the Legendre tensors introduced
in [14] for the cases s = 0, 2. The explicit ex-
pressions for j ≤ 3, and a collection of properties
(which extends those already found in Appendix
A of Ref. [15] for the case s = 0), are given in
Appendix C. The set of n̂sIj with |s| ≤ j form a
basis for STF tensors with j free indices at each
point. Their normalization, used for extraction
of components along that basis, is given by

n̂±sIj n̂
Ij
∓s′ = δss′djs (2.12)

where

djs ≡
j!

(2j − 1)!!

1

(bjs)2
,

bjs ≡
√

2
|s|
√

(j!)2

(j + s)!(j − s)!
.

(2.13)

2.3. Decomposition of tensor fields

Any STF tensor field in a maximally sym-
metric (three-dimensional) space can be decom-
posed onto the generalized helicity basis using
spin-weighted spherical harmonics. This decom-
position can be understood in two steps. At each
point the helicity basis is a basis for STF tensors
at that point, hence we can decompose the STF
tensor field as

TIj (χ,n) =

j∑
s=−j

sT (χ,n)n̂sIj . (2.14)

The spin functions sT (χ,n) are then decom-
posed onto spin-weighted spherical harmonics,
so as to separate its radial and angular depen-
dencies. This leads to

TIj (χ,n) =

j∑
s=−j

∞∑
`≥|s|

∑̀
M=−`

sT`M (χ)sY
M
` (n)n̂sIj .

(2.15)
Given the rotation property (B.33), this is a de-
composition in irreducible components under the
group of rotations. On the left hand side, we re-
call that j is the number of free indices given the
multi-index notation (2.11).

The functions sT`M are however constrained
by the fact that the tensor fields must assume a
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given value at the origin of coordinates (χ = 0).
Let us consider the tensors YjmIj defined at the
origin of the system of coordinates, and which
are explicitly given in Appendix B, along with
their properties. They form a complete basis (for
STF tensors) and we can use them to decompose
the value of the STF tensor at origin in the form

TIj (χ,n)
∣∣
χ=0

=

j∑
m=−j

tm YjmIj . (2.16)

Therefore we find that at the origin the coeffi-
cient functions sT`M must be

sT`M |χ=0 = δj`tMkjs (2.17)

where

kj±s ≡ (∓1)sbjs
(2j − 1)!!

j!

= (∓1)s(djsbjs)
−1 . (2.18)

This can be seen either from property (B.32)
once (2.17) is replaced into (2.15), or from the
component extraction by contraction of (2.16)
with the n̂sIj , and using the normalization (2.12)

and the property (B.24).

In the next section we define the tensor har-
monics, and in the subsequent one we shall be
guided by the decomposition (2.15) to define
normal modes and radial functions.

2.4. Laplacian and harmonics

The tensor valued eigenfunctions of the
Laplacian are defined as

(∆ + k2)Ti1...ij = 0 . (2.19)

We further ask these modes to be STF and
divergence-free tensors, that is

∇i1Ti1...ij = 0 . (2.20)

Solutions of (2.19) and (2.20) with m free in-
dices, and for a given k, are called harmonics of
type m for the mode k, and are denoted as

Q
(jm)
i1...ij

, j = |m| . (2.21)

When |m| = 0, 1, 2 these are called respectively
scalar, vector and tensor harmonics.

We next introduce some derived harmonics
which are obtained by STF combinations of
(j − |m|) derivatives of these harmonics. More
precisely they are defined as

Q
(jm)
Ij
≡
∇〈i1 . . .∇ij−|m|Q

(|m|,m)
ij−|m|+1...ij〉

kj−|m|
, (2.22)

which implies the basic relation for j > |m|

Q
(jm)
Ij

=
1

k
∇〈ijQ

(j−1,m)
Ij−1〉 . (2.23)

It can be checked by using (2.5) that that they
are not divergenceless and do not satisfy (2.19),
but they satisfy instead

[∆+k2−K(j−|m|)(j+|m|+1)]Q
(jm)
Ij

= 0 (2.24)

as well as

∇pQ(jm)
Ij−1p

= −q(jm)Q
(j−1,m)
Ij−1

, (2.25)

q(jm) ≡ (j2 −m2)

j(2j − 1)

(ν2 −Kj2)

k
. (2.26)

Here we have introduced the notation

ν2 ≡ k2 + (1 + |m|)K , (2.27)

such that harmonics and derived harmonics can
be either characterized by the value of the mode
k or by the related mode ν. If we fix k, then ν is
a function of both |m| and k. Conversely if we
fix ν, then k is a function of both ν and |m|, and
from now on we consider this point of view.

2.5. Comment about notation

For simplicity, we often omit to write the de-
pendence of the harmonics on k (or ν) to al-
leviate the notation. Similarly, wherever not
needed, the dependence on the position on space,
that is on (χ,n), is not written explicitly. Hence,
even though the full expression of an harmonic

should be Q
(jm)
Ij

(χ,n; ν), we shall use Q
(jm)
Ij

(ν),

Q
(jm)
Ij

(χ,n) or simply Q
(jm)
Ij

, depending on the
context. Such practice will be used not only for
the harmonics, but for any other quantities de-
pending on χ, n and ν.
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2.6. Normal modes

In order to find a decomposition of the type
(2.15) for the harmonics and their derivations,
we follow [6, 7] and split the radial and angular
dependence through a new function

sG
(jm)
` (χ,n; ν) ≡ c` sα

(jm)
` (χ; ν) sY

m
` (n) ,

(2.28)
with the conventional factor

c` ≡ i`
√

4π(2`+ 1) . (2.29)

We insist on the fact that sG
(jm)
` depends on

the point considered, that is, on (χ,n), while
the STF basis n̂sIj depends on the choice of n.

Moreover, the radial functions α
(jm)
` (χ; ν) do not

depend on n, while the spin-weighted spherical
harmonics sY

m
` (n) do 1. The radial functions, to

be constructed in Section 2.7, are conventionally
normalized when ` = j as [6, 7]

sα
(jm)
`

∣∣∣
χ=0

=
1

2j + 1
δ`j . (2.30)

Accordingly, it implies that around the origin

sG
(jm)
`=j =

cj
2j + 1

sY
m
`=j +O(χ) . (2.31)

In general radial functions are non-vanishing
only for the conditions

j ≥ max(|m|, |s|) , ` ≥ max(|m|, |s|) , (2.32)

and are chosen to be null functions otherwise.
We now search to build a basis for tensor har-

monics (and their derivations), with j free STF
indices, in the form

`Q
(jm)
Ij
≡

j∑
s=−j

sg
(jm)

sG
(jm)
` n̂sIj , (2.33)

where the sg
(jm) are numerical coefficients yet to

be fixed. These harmonics correspond to consid-
ering a single (`,M) pair in the otherwise gen-
eral sum of (2.15). The summation on ` will be

1 In fact, such separation between radial and angular de-
pendence lies in the heart of the Total Angular Mo-
mentum method – see [6] for more details

taken when we present the construction of plane
waves in Section 6, and the summation on M is
needed only when considering general reference
axis harmonics as detailed in Section 3.5.

Moving forward, let us also define

sg̃
(jm) ≡ sg

(jm)djs , (2.34)

such that from (2.12) we get the inverse relation

`Q
(jm)
Ij

n̂
Ij
∓s = ±sg̃

(jm)
±sG

(jm)
` . (2.35)

From (2.33) and (2.35), we see that the co-
efficients sg̃

(jm) and sg
(jm) are used to relate

the tensors `Q
(jm)
Ij

to the functions ±sG
(jm)
` —

called normal modes — and vice versa. The nor-
mal modes are the coefficients [with a functional
dependence on (χ,n)] of the harmonics in the
generalized helicity basis. Since the coefficients

sg
(jm) (and thus sg̃

(jm)) are yet undetermined,
we can further choose that, for a given (jm) pair

±sg̃
(jm) =

(∓)s

bjs
0g̃

(jm) ,

±sg̃
(jm) = ±sg̃

(j,−m) ,

(2.36)

which, given (2.18), implies that

±sg
(jm) = (∓)s bjs 0g

(jm) ,

= ±sg
(j,−m) ,

(2.37)

and, in particular

−sg
(jm) = (−1)s sg

(jm) , (2.38)

with a similar relation for the sg̃
(jm). The

choices (2.37) [that is sg
(jm) ∝ kjs for the de-

pendence on s] ensure that

`=jQ
(jm)
Ij

∣∣∣
χ=0

= 0g̃
(jm) cj

2j + 1
YjmIj , (2.39)

for exactly the same reasons detailed after
(2.16).

Given the linearity of (2.19), any linear com-
bination of solutions of the type (2.28) for dif-
ferent values of ` is also a solution. This is how
plane-wave solutions are built, and we discuss
this construction in §6. Finally, it is trivial to
restore spatial dimensions (`c 6= 1) since har-
monics, normal modes and radial functions are
all dimensionless.
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2.7. Radial functions

We recall that for simplicity the dependence

on χ and ν of the radial functions sα
(jm)
` is omit-

ted. We also split them into even and odd parts
(also called respectively electric and magnetic ra-
dial functions) as

±sα
(jm)
` = sε

(jm)
` ± i sβ

(jm)
` , (2.40)

and by construction there is no odd part for s =
0, that is

0β
(jm)
` = 0 . (2.41)

We shall check further that they also satisfy the
properties

sε
(j,−m) = sε

(jm)

sβ
(j,−m) = −sβ(jm) .

(2.42)

In practice this means that we only need to build
the radial functions for m ≥ 0.

In most cases ν is real and the electric
and magnetic radial functions are real. How-
ever, when considering super-curvature modes
on open spaces [16, 17], ν can be complex.
In that case one cannot deduce from (2.40)
that complex conjugation on radial functions
amounts to s → −s, and one must rather use
(3.35).

3. BUILDING HARMONICS

We now proceed to the determination of the
radial functions. Indeed, they determine the
normal modes from the definition (2.28), and
subsequently the harmonics (and derived har-
monics) from (2.33). In the next section we first
start by building the radial functions for har-
monics (j = |m|), and in the subsequent one we
deduce the radial functions for the derived har-
monics (j > |m|). In all expressions, the value
of ` is general.

3.1. Radial functions of harmonics (j = |m|)

We recall that harmonics are divergenceless.
We normalize them with

0g̃
(j,±j) = 1 . (3.1)

We first note that [see e.g. Eq. (A.22) in [9]]

∆[curl (`Q
(j,±j)
Ij

)] = curl[∆(`Q
(j,±j)
Ij

)] , (3.2)

where the curl is the obvious generalization to
STF tensors defined by

curlTI` ≡ εjp〈i1∇
jT

p
I`−1〉 . (3.3)

Hence, the curl of an harmonic is also an har-
monic. Furthermore using the divergenceless re-
lation (2.20) it can be proven that [see, e.g., Eq.
(3.13) of Ref. [9] for the j = 2 case]

curl curl (`Q
(j,±j)
Ij

) = ν2(`Q
(j,±j)
Ij

) . (3.4)

Therefore, we can choose

curl (`Q
(j,±j)
Ij

) = ±ν(`Q
(j,±j)
Ij

) . (3.5)

The choice of sign on the right hand side (which
could have been ∓ν) amounts to choosing the
global normalization of the odd radial function,
and our choice is made so that we recover the flat
case construction that is recalled in appendix F.

Using the property (C.19) of the extended he-
licity basis, and the decomposition (2.33) along
with the condition (2.37), we deduce that the
divergenceless relation (2.20) leads to the set of
relations among radial functions for 0 < s < j

d

dχ
±sα

(j,±j)
` + (j + 1) cotχ±sα

(j,±j)
` =

(−λ
s
`)(−λ

s
j)

2(j + s)r(χ)±(s−1)α
(j,±j)
`

+
(+λ

s
`)(+λ

s
j)

2(j − s)r(χ)±(s+1)α
(j,±j)
` , (3.6)

where we defined

±λ
s
` ≡

√
(`+ 1± s)(`∓ s) (3.7)

=
√
`(`+ 1)− s(s± 1) .

Condition (3.6) is a special case of the diver-
gence relation (E.1). In the special case s = 0 it
reduces to

d

dχ
0ε

(j,±j)
` + (j + 1) cotχ 0ε

(j,±j)
`

=

√
`(`+ 1)

r(χ)

√
j + 1

j
1ε

(j,±j)
` , (3.8)
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which is a special case of (E.2).

Hence, when considering the real and imag-
inary parts of radial functions, we see that the
divergenceless relation brings j relations for the
even modes and j−1 relations for the odd modes
(if j ≥ 1). Given (2.41), we conclude that us-
ing (3.6) we can deduce all radial modes in the
case j = |m| (that is for all allowed values of s)

once we know 0ε
(j,±j)
` and 1β

(j,±j)
` . These terms

are in turn found from the Laplace equation
(2.19). Again, using the decomposition (2.33)
along with the condition (2.36) and the identi-
ties (C.22), this leads (when s > 0) to

d2

dχ2
(±sα

(j,±j)
` ) + 2 cotχ

d

dχ
(±sα

(j,±j)
` )

+±sα
(j,±j)
` cot2(χ)(s2 − j(j + 1))

+±sα
(j,±j)
`

1

r2(χ)
(s2 − `(`+ 1))

+±(s−1)α
(j,±j)
`

cotχ

r(χ)
(−λ

s
j)(−λ

s
`)

+±(s+1)α
(j,±j)
`

cotχ

r(χ)
(+λ

s
j)(+λ

s
`)

= −k2
±sα

(j,±j)
` . (3.9)

As for the s = 0 case, it is simply

d2

dχ2
(0ε

(j,±j)
` ) + 2 cotχ

d

dχ
(0ε

(j,±j)
` )

−
[
j(j + 1) cot2(χ) +

`(`+ 1)

r2(χ)

]
0ε

(j,±j)
`

+2
cotχ

r(χ)

√
j(j + 1)`(`+ 1)1ε

(j,±j)
`

= −k2
0ε

(j,±j)
` . (3.10)

When combined with the divergenceless condi-
tion (3.8), this equation leads to

d2

dχ2 0ε
(j,±j)
` + 2(j + 1) cotχ

d

dχ
0ε

(j,±j)
`

+0ε
(j,±j)
`

[
k2 + j(j + 1) cot2(χ)− `(`+ 1)

r2(χ)

]
= 0 . (3.11)

Similarly, the imaginary part of the relation (3.9)
for s = 1, when combined with the divergence-

less condition (3.6) at s = 1, leads to

d2

dχ2 1β
(j,±j)
` + 2j cotχ

d

dχ
1β

(j,±j)
`

+1β
(j,±j)
` cot2(χ)[j(j − 1)− 1]

+1β
(j,±j)
`

[1− `(`+ 1)]

r2(χ)

= −k2
1β

(j,±j)
` . (3.12)

By comparing (3.11) with equation (A.10), we
can now motivate the definition (2.27). More-

over, we find that 0ε
(j,±j)
` ∝ Φν

` /r
j , where Φν

`

are the hyperspherical Bessel functions – see Ap-
pendix A. The normalization which satisfies the
normalization condition (2.30) (this is checked
using (A.5)) and recovers the flat case construc-
tion of appendix F is

0ε
(j,±j)
` =

(2j − 1)!!√
(2j)!

√
(`+ j)!

(`− j)!
ξj
kj

Φν
`

rj(χ)
, (3.13)

with the dimensionless constants

ξm ≡
m∏
i=1

k√
ν2 −Ki2

. (3.14)

We also deduce that the odd radial functions
must be such that 1β

(j,±j)
` ∝ r1−j(χ)Φν

` . The
global normalization is deduced from the solu-
tion (3.13) using the curl condition (3.5) con-
tracted with n̂I` which leads to

1β
(j,±j)
` = ∓νr(χ)0ε

(j,±j)
`

√
j

(j + 1)(`+ 1)`
.

(3.15)
Note that this is a particular case of (E.4) when
j = |m|.

The radial functions for larger values of s are

found from (3.8) for 1ε
(j,±j)
` , and then from (3.6)

for all s > 1, and they satisfy automatically the
Laplace equation (3.9).

3.2. Radial functions of derived harmonics
(j > |m|)

We now discuss the systematic construction
of radial functions for the derived harmonics,
which must be deduced using the definition
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(2.22). We start by noticing that the derived
harmonics satisfy the property

curl `Q
(jm)
Ij

=
mν

j
`Q

(jm)
Ij

(3.16)

which is inherited from (3.5) and the identity for
STF tensors [see e.g. Eq. (4.7) of [8]]

curl∇〈ij+1
TIj〉 =

j

j + 1
∇〈ij+1

curlTIj〉 . (3.17)

The derived harmonics are no more divergence-
less, as was the case for the j = |m| harmonics.
Instead, they satisfy the relation (2.25). As will
be shown later, the normalization of the derived
harmonics which is compatible with (2.30) re-
quires that

0g̃
(jm) ≡ (2|m| − 1)!!

(2j − 1)!!

j∏
p=|m|+1

0κ
m
p

k
,

0g
(jm) ≡ (2|m| − 1)!!

j!

j∏
p=|m|+1

0κ
m
p

k
,

(3.18)

where 2

sκ
m
` ≡

√
(`2 −m2)(`2 − s2)

`2

√
ν2 −K`2 .

(3.19)
The above normalization and (2.36) also imply
the useful relations

±sg̃
(jm) = ±sg̃

(j−1,m) 1

(2j − 1)

sκ
m
j

k
,

±sg
(jm) = ±sg

(j−1,m) j

(j2 − s2)

sκ
m
j

k
,

±sg̃
(jm) = ∓±(s−1)g̃

(jm)

√
(j + s)

2(j + 1− s)
,

±sg
(jm) = ∓±(s−1)g

(jm)

√
2(j + 1− s)

(j + s)
.

(3.20)

From A3 of [15], we see that a general STF tensor
obeys

∇jTI` = ∇〈jTI`〉 +
2`− 1

2`+ 1
gj〈i`∇

pTI`−1〉p

+
`

`+ 1
εpj〈i`curlTI`−1〉p . (3.21)

2 Our definition of sκ
m
` corresponds to the one of [7]

times a factor ν such that ν
√

1−K`2/ν2 =
√
ν2 −K`2.

When combined with (3.16) and (2.25), we ob-
tain the following relation among derived har-
monics

∇p
(
`Q

(jm)
Ij

)
= k

(
`Q

(j+1,m)
pIj

)
−2j − 1

2j + 1
q(jm) gp〈ij

(
`Q

(j−1,m)
Ij−1〉

)
+
mν

j + 1
εrp〈ij

(
`Q

(jm)
Ij−1〉r

)
. (3.22)

Let us now consider a given m and a given
` ≥ |m|, and use the short notation (j, s) to re-

fer to the radial function sα
(jm)
` , since we want

to explore the relations between radial functions
with neighbor values of j and s. Identity (3.22)
allows to derive recursive relations among radial
functions in the space of the (j, s) parameters,
the most famous of which connects (j, s) to the
(j±1, s) ones. To see how this is possible, we first
need to contract (3.22) with np and replace the
harmonics by their expansion (2.33) while using
the identities derived in Appendix C.3. Then,
a relation among radial functions is obtained by

contraction with n̂
Ij
∓s (or equivalently identifica-

tion of the n̂±sIj components), and extraction of
the radial function from the orthogonality rela-
tion (B.13) of spin-weighted spherical harmon-
ics, along with the relations (3.20). Eventually
we obtain the central relation [see also Eq. (C5)
in [7]]

d

dχ
sα

(jm)
` = − iνms

j(j + 1)
sα

(jm)
` (3.23)

+
1

2j + 1

[
−sκmj sα

(j−1,m)
` + sκ

m
j+1sα

(j+1,m)
`

]
,

which holds for either negative or positive values
of m and s.

Since in the (j, s) plane this links the (j, s) ra-
dial functions with the one above [(j− 1, s)] and
the one below [(j+ 1, s)] for a given ` and m, we
hereafter call it the North-South (NS) relation.

Other relations can be obtained from (3.22)
by contracting with np∓ and then repeating the
same procedure. This leads to relations connect-
ing the (j, s) radial functions to the (j∓1, s) and
(j, s+ 1) ones. We thus call it the North-South-
East (NSE) relation. Similarly, contracting in-
stead with np± and using the same method allows
us to relate the (j, s) radial functions to (j∓1, s)
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and (j, s− 1) radial functions — a relation that
we call North-South-West (NSW). Their exact
expressions are collected in Appendix D.

The combination of NS and NSE relations
leads either to a relation between (j, s) radial
functions with the (j − 1, s) and (j, s+ 1) ones,
which we call the North-East (NE) relation, or
to a relation between the (j, s) radial functions
with the (j+1, s) and (j, s+1) ones, which we call
the South-East (SE) relation. Similarly combin-
ing the NS and NSW relations leads either to
the North-West (NW) or the South-West (SW)
relations. All these relations are collected in Ap-
pendix D.

These triangular relations (NW, NE, SW,
and SE) are the building blocks of all sorts of
recursive relations among radial function in the
(j, s) space. For instance, the NS relation is a
combination of the NW and SW. It can also be
found as a combination of the NE and SE re-
lations. Similarly the NSE relation (resp. the
NSW relation) is just the sum of the NE and SE
relations (resp. the NW and SW relations). All
the recursive relations are depicted in the (j, s)
plane in Fig. 1.

There is an alternative method to obtain
the triangular relations. Instead of consider-
ing various contractions of the identity (3.22),
we can instead extract the radial functions of
the divergence relation (2.25), the curl prop-
erty (3.16), and the STF construction of derived
modes (2.23). Again, this proceeds by contrac-
tions with the generalized helicity basis, extrac-
tion of the radial functions using (B.13) and re-
peated use of the properties (3.20). The rela-
tions obtained are also gathered in appendix E.
Combining the curl relation with the divergence
relation in two different manners leads to the
NW and NE relations. Similarly combining the
curl relation with the STF relation in two differ-
ent manners leads to the SW and SE relations.
While this method seems more appealing, it re-
quires that we carefully separate the s = 0 cases
for which the aforementioned combinations can-
not be formed in the same manner. Instead it
is found that in the s = 0 case, the curl relation
gives the imaginary part of the NE and SE re-
lations. Also the s = 0 case of the divergence
relation gives the real part of the NE relation.

triangular relations

j
s
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S
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E

E

E

E E

E E

E

E
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W

curl s = 0

div relation
STF relation curl relation

div s = 0
STF s = 0

NW-NE

gr
ad

-⊕

gr
ad

-	

gr
ad

- 0

FIG. 1: Geographical representation of all recursion
relations among radial functions in the (j, s) space
of parameters. Here, ‘STF’, ‘div’ and ‘curl’ denote
respectively the relations (2.23), (2.25), and (3.16).
Moreover, ‘grad-0’ (resp. ‘grad-±’) is obtained by
contraction of the gradient identity (3.22) with np

(resp. np∓). The triangular relations (NW, NE, SW,
and SE) which can be formed from the grad relations
are collected in appendix D. Shaded squares indicate
radial functions which appear with one derivative in
the recursive relation. We depict only the s ≥ 0
part in the chart as the negative s are deduced from
(2.40). Only functions with |s| ≤ j (and |m| ≤ j) are
non-vanishing.
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Finally the s = 0 case of the STF relation gives
the real part of the SE relation.

This indicates that the triangular relations
(NW, NE, SW and SE) contain the informa-
tion about recursions in the most compact form.
Their validity is only restricted by the fact that
they should not produce instances with s < 0
in the (j, s) space, but they can be applied even
if some of the radial functions vanish because of
s > j. If we instead use the apparently more di-
rect divergence and curl relations, we must treat
the s = 0 case separately. As an illustration,
this is what has been presented in the j = |m|
case of Section 3.1. The solution for the s = 0
case is (3.13). The divergence relation for s = 0,
given by (3.8), gives only the electric function
for s = 1. One has then to rely on the curl rela-
tion for s = 0, which is (3.15), to get the mag-
netic function with s = 1. In order to obtain
the s > 1 harmonics, still for j = |m|, one can
use the divergence relation (3.6), but one could
also use more directly the NE relation. Indeed,
given that the north component of the NE rela-
tions vanishes (since j = |m|), it gives directly
(j = |m|, s+ 1) as a function of (j = |m|, s).

Finally, we recall that all radial functions are
restricted in general to (2.32), and in the closed
case (K = 1) they are also restricted to the inte-
ger values

` ≤ ν − 1 . (3.24)

3.3. Optimal algorithm

Given the plethora of recursion relations in
the (j, s) space for radial functions, there are sev-
eral different ways to deduce the radial modes
for the derived harmonics for increasing values
of j. However we can judiciously add a condi-
tion which selects one method. Since all radial
functions are expressed in terms of derivatives of
hyperspherical Bessel functions, it is always pos-
sible to use equation (A.1) to reduce their form
to an expression which involves the hyperspher-
ical Bessel function and at most its first deriva-
tive. However, there are preferred methods for
the recursive construction of radial function, in
which one never has to rely on (A.1) to reduce
the order of derivatives. Let us summarize one

of these. Given the property (2.42) and the def-
initions (2.40), we only need to build harmonics
for m ≥ 0 and s ≥ 0, and we now assume these
conditions hold.

1. For a given m, the radial function for s =
0 and j = m is given by (3.13), and it
has no derivative of hyperspherical Bessel
functions.

2. We then use the NE recursion to obtain
the s = 1 and j = m solution, with un-
avoidably one derivative of Bessel func-
tion. However, note that this is not pos-
sible in the special case m = 0, and we
discuss the procedure for this case below.

3. We can then use the difference of the NE
and NW relations to form a North-West-
East relation without derivatives whose
exact expression is (D.8) and that we note
NW-NE hereafter. In the case j = m, the
north component vanishes so it is a rela-
tion between (j = m, s−1), (j = m, s) and
(j = m, s + 1). Using it, one can obtain
all radial modes for j = m up to s = j.

4. In order to build the line with j = m+ 1,
that is the radial functions associated with
the first derived harmonics, one needs
only to use the NSE relation to deduce

0α
(m+1,m)
` , and then the NSW relation

to deduce 1α
(m+1,m)
` . This introduces no

derivatives since the NSE and NSW rela-
tion have none. Then all sα

(m+1,m)
` with

2 ≤ s ≤ j can be found either from the
NW-NE relation (D.8), or from the use of
the NSW relation. This, again, brings no
extra derivatives.

5. This last method is iterated to obtain all
radial functions for increasing values of j.

In the special case m = 0, we start from the

known solution 0ε
(00)
` = Φν

` . Then there is no
need to build the (j = 0, s = 1) solution since
it vanishes, so we must proceed directly by in-
creasing the value of j, and build the solution
for (j = 1, s = 0). In that case, contrary to
the procedure mentioned above, we cannot use
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the NSE relation since the East component van-
ishes, that is, it is outside of its applicability
[see (D.3)]. Instead, we must use the NS rela-

tion (3.23) to obtain 0α
(10)
` , and this brings a

derivative of a Bessel function. Finally in or-

der to obtain 1α
(10)
` , we can do as in the general

case, and use the NSW relation which involves
no derivative. The rest of the construction to
j ≥ 2 then proceeds exactly like in the general
case.

In both cases (m = 0 and m > 0), there was
only one step of the procedure involving a deriva-
tive. Hence, with this method it is possible to
obtain radial functions up to any desired values
of (j, s) for any given m, as illustrated in Fig. 2,
and with at most one derivative on Bessel func-
tions, without ever having to use (A.1) to reduce
the order of derivatives. This algorithm has been
implemented in a Mathematica notebook avail-
able at [18]. Note that the optimal algorithm is
not unique. One could for instance rely on (D.2)
to relate the s = j to the s + 1 = j + 1 radial
functions, thus deducing the radial functions on
the diagonal of Fig. 2.

3.4. Symmetry properties

Following the same algorithm (that is the
same set of recursions to travel in the (j, s) space
of radial function) it can be checked that the
properties

−sα
(jm)
` (ν) = sα

(j,−m)
` (ν) = sα

(jm)
` (−ν) (3.25)

are always satisfied. It is indeed the case for the
starting radial function (3.13) of the algorithm,
and it is maintained for all values of (j, s), since
in all recursions for radial functions the factors
m are always multiplied by the sign of s and by
ν. Hence from the definition (2.40) of the even
and odd parts we deduce that (2.42) must be
satisfied.

In addition to (3.25), there are two other sym-
metry properties. First, we have checked for the
first values 3 of j, m and s (but for unspecified

3 In practice we checked it up to j = 4, and for all allowed
values of s and m.

0 1 2 3 4 5 6
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5
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3

2

1

0

j
s

NE NW-NE

N
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E

N
S
E

N
S
E

N
S
W NW-NE

NW-NE

NW-NE

NW-NENW-NE

N
S
W

N
S
W NW-NENW-NENW-NE NW-NE

FIG. 2: Optimal algorithm: for a given |m|, the first

step is to start from the solution 0ε
(|m|,|m|)
` . Then

all other radial functions are deduced following the
algorithm described in the Section 3.3. The steps
2, 3, 4, 5 are depicted in resp. red, green, black and
blue arrows, and the relation needed to deduce each
radial function from the previous ones is written next
to the arrow. Here we have illustrated the case |m| =
2, such that we have necessarily j ≥ 2. The index s
must also satisfy |s| ≤ j.

`) that the following property holds

sα
(jm)
` (χ; ν) = mα

(js)
` (χ; ν) . (3.26)

We have also checked for the first values ofm, s, j
and ` that

sα
(jm)
` = (−1)`−jsα

(`m)
j . (3.27)

Furthermore, it can be checked explicitly on the
first values of j, m and s (but for unspecified `)
that [7]

d

dχ
sα

(jm)
` = − iνms

`(`+ 1)
sα

(jm)
` (3.28)

+
1

2`+ 1

[
sκ
m
` sα

(jm)
`−1 − sκ

m
`+1sα

(jm)
`+1

]
.

Combined with (3.23), this is consistent with the
j ↔ ` symmetry (3.27). We stress that both the
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m ↔ s and j ↔ ` symmetries are immediate in
the flat case, as we demonstrate in Appendix F.

The m ↔ s symmetry is consistent with the
fact that the relations which relate radial modes
with both the same s and m, that is Eqs. (3.23)
and (3.28), are obviously invariant under m↔ s
since sκ

m
` = mκ

s
` . Note that in the m↔ s sym-

metry (3.26), the same ν appears on both sides.
Hence, given the relation between ν and k [see
Eq. (2.27)], the symmetry relates radial func-
tions associated with different k, except in the
flat case. The m ↔ s symmetry can be used as
a shortcut in the algorithm previously described

to, for instance, calculate sα
(jm)
` for |m| > |s|

from mα
(js)
` . Hence solving the radial functions

in the plane (j, s) for a given m also provides
automatically some of the radial functions for
larger values of m. Conversely, this can be left
unused so as to serve as a consistency check.

3.5. General reference axis

When building the harmonics and the de-
rived harmonics, the central relations were Eqs.
(C.17) and (C.18). They depend on `, s and
j, but not on m. This happens because (2.28)
is implicitly related to a special choice of axis,
which is clearly not the most general construc-
tion. Indeed, one could perform an active rota-
tion Rν̂ ≡ R(φν , θν , 0) which brings the zenith
vector ez into a general direction ν̂ with spher-
ical coordinates (θν , φν), that is Rν̂ [ez] = ν̂. In
order to explore this rotation, let us define the
mode vector

ν ≡ νν̂ (3.29)

which contains, at the same time, the informa-
tion about the reference axis used to define har-
monics, and the value of the mode ν itself. In
Section 6 we relate ν to the wave vector of a
plane wave.

The harmonics defined with a general direc-
tion are related to the ones we have built using
the zenith direction. Using the rotation rules

(B.33) for spherical harmonics, one finds

R[sG
(jm)
` n̂sIj ] = c` sα

(jm)
`

∑̀
M=−`

D`
Mm(R)sY

M
` n̂sIj .

(3.30)
This naturally brings the more general definition
for normal modes [11]:

sG
(jm)
` (ν) ≡

∑̀
M=−`

sG
(jm)
`M (ν)D`

Mm(Rν̂),

sG
(jm)
`M (ν) ≡ c` sα

(jm)
` (ν)sY

M
` ,

(3.31)

with the related more general definition for the
tensor harmonics:

`Q
(jm)
Ij

(ν) ≡ Rν̂ [`Q
(jm)
Ij

(ν)] (3.32)

=
∑̀
M=−`

`MQ
(jm)
Ij

(ν)D`
Mm(Rν̂) ,

`MQ
(jm)
Ij

(ν) ≡
j∑

s=−j
sg

(jm)
sG

(jm)
`M (ν)n̂sIj . (3.33)

We then obtain a relation of the type (2.33)

`Q
(jm)
Ij

(ν) =

j∑
s=−j

sg
(jm)

sG
(jm)
` (ν)n̂sIj . (3.34)

Evidently, we could redo the general con-
struction of radial functions using an arbitrary
reference axis (instead of our choice for the
zenith). Provided we rotate the r.h.s of the con-
dition Eq. (2.31) [or Eq. (2.39)], it would pro-
ceed exactly through the same set of equations
and steps, and one would find exactly the same
radial functions. This is not a surprise, since the
latter depend only on ν.

3.6. Conjugation and parity

From (2.40) and (3.25) we deduce

[sα
(jm)
` (ν)]? = −sα

(jm)
` (ν?)

= sα
(jm)
` (−ν?) .

(3.35)

From (2.33) and (2.28) with properties (B.11a)
and (2.38), one then obtains the conjugation
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property[
`Q

(jm)
Ij

(ν)
]?

= `Q
(j,−m)
Ij

(−ν?)(−1)(`+m) .

(3.36)
Furthermore, in the special case of a rota-

tion R around the direction ey of angle π [that
is Ry(π) ≡ R(α = 0, β = π, γ = 0)], we find
from (B.35)

Ry(π)[`Q
(jm)
Ij

(ν)] =
[
`Q

(jm)
Ij

(ν?)
]?
, (3.37)

which we can also relate to (3.36). Rotation
around the y-axis by an angle π, or equivalently
a parity inversion of the x and z axis, is equiva-
lent to considering the mode with −m and −ν,
up to a ±1 factor.

x→ −x y → −y z → −z
Factor (−1)m yes yes

Factor (−1)` yes

Q
(jm)
Ij

→ Q
(j,−m)
Ij

yes yes

Q
(jm)
Ij

(ν)→ Q
(jm)
Ij

(−ν) yes

TABLE I: Transformation rules for harmonics under
the inversion of a single axis.

We can also consider a parity transformation
P, which is defined on tensor fields as

P[TIj (χ,n)] ≡ (−1)j TIj (χ,−n) . (3.38)

Following the same techniques using (B.11b)
along with

n̂sIj (−n) = (−1)j+s n̂−sIj (n) , (3.39)

one finds

P[`Q
(jm)
Ij

(ν)] = (−1)m
[
`Q

(j,−m)
Ij

(ν?)
]?

= (−1)` `Q
(jm)
Ij

(−ν) . (3.40)

It is instructive to combine the previous rotation
with a parity transformation. Indeed, this cor-
responds to an inversion of the y-axis only and
we find

Ry(π)[P[`Q
(jm)
Ij

(ν)]] = (−1)m `Q
(j,−m)
Ij

(ν) .

(3.41)
The factor (−1)m accounts for a rotation of angle
π around the z axis, that is, Rz(π) ≡ R(α =
0, β = 0, γ = π) which is also an inversion of
the x and y axis. Hence, we can deduce the
transformations brought by the inversion of a
single axis. The results are gathered in Table I.

4. RADIAL FUNCTIONS FOR SCALARS,
VECTORS AND TENSORS

We now collect in this section the most com-
mon radial functions. We report the results for
the even and odd components so we can use
s ≥ 0. Furthermore we assume m ≥ 0 since
the negative values are found from (2.42). The
scalar, vector and tensor cases correspond re-
spectively to m = 0, 1, 2, with the general re-
strictions (2.32), on which we also add the re-
striction (3.24) in the closed case. In what fol-
lows, we only report radial functions for j ≤ 2.

For the harmonics (j = m), the radial func-
tions were already derived (even though not for-
mulated using spin-weighted spherical harmon-
ics) up to m = 2 in Ref. [4]. Derived harmonics,
that is with j > m were reported up to j = 2 but
only in the cases s = 0 and s = 2 in [7]. Hence
this section can be used as a complete reference
for radial functions. We shall only need two par-
ticular cases of the general expression (3.14):

ξ1 =
k√

ν2 −K

ξ2 =
k2√

(ν2 −K)
√

(ν2 − 4K)
.

(4.1)

Since radial functions determine the normal
modes with (2.28) and then in turn the harmon-
ics (and derived harmonics) with (2.33), we also
report the values of the coefficients sg

(jm). In
case one needs contractions of the type (2.35),
we repeat that these are related to the sg̃

(jm) us-
ing (2.34), and the first few coefficients needed
are

d00 = 1,

d10 = 1, d11 = 1,

d20 = 2
3 , d21 = 1

2 , d22 = 1.

(4.2)

Throughout, we abbreviate r(χ) given by (2.2)
as r. In the expressions reported below, we note
that the radial functions are not invariant under
ν → −ν in general, even though it is the case for
the hyperspherical Bessel functions of appendix
A. Indeed there is a prefactor linear in ν in each
magnetic radial function, as required by prop-
erty (3.25).
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4.1. Scalar modes (m = 0)

The radial functions of the base scalar har-
monics are simply the hyperspherical Bessel
functions:

0ε
(00)
` = Φν

` . (4.3)

The radial functions for the derived harmonics
are given, up to j = 2, by

0ε
(10)
` =

ξ1

k

d

dχ
Φν
` , (4.4a)

1ε
(10)
` =

ξ1

k

√
`(`+ 1)

2

Φν
`

r
, (4.4b)

0ε
(20)
` =

ξ2

2k2

[
3

d2

dχ2
+ (ν2 −K)

]
Φν
` ,(4.4c)

1ε
(20)
` =

ξ2

k2

√
3`(`+ 1)

2

d

dχ

(
Φν
`

r

)
, (4.4d)

2ε
(20)
` =

ξ2

k2

√
3(`+ 2)!

8(`− 2)!

Φν
`

r2
. (4.4e)

The constants needed to build the harmonics
and derived harmonics are

0g
(00)ξ−1

1 = 0g
(10) = ∓±1g

(10) = ξ−1
1 , (4.5)

and

0g
(20) = ∓

√
3

2
±1g

20 =

√
3

2
±2g

20 = ξ−1
2 . (4.6)

4.2. Vector modes (m = 1)

Similarly, for the radial functions built from
the vector modes, we find that the base harmon-
ics are given by

0ε
(11)
` =

ξ1

k

√
`(`+ 1)

2

Φν
`

r
, (4.7a)

1ε
(11)
` =

ξ1

2k

d(rΦν
` )

rdχ
, (4.7b)

1β
(11)
` = −νξ1

2k
Φν
` . (4.7c)

Note that (4.7a) agrees with (4.4b), which cor-
roborates (3.26).

The radial functions for the derived harmon-
ics are

0ε
(21)
` =

ξ2

k2

√
3`(`+ 1)

2

d

dχ

(
Φν
`

r

)
(4.8a)

, 1ε
(21)
` =

ξ2

k2

[
d2

dχ2
+ cot(χ)

d

dχ

+

(
ν2

2
− 1

r2

)]
Φν
` , (4.8b)

1β
(21)
` = − ξ2ν

2k2
r

d

dχ

(
Φν
`

r

)
, (4.8c)

2ε
(21)
` =

ξ2

k2

√
(`+ 2)(`− 1)

2

d

r2dχ
(rΦν

` ),

(4.8d)

2β
(21)
` = − ξ2

k2
ν

√
(`+ 2)(`− 1)

2

Φν
`

r
. (4.8e)

One checks that (4.8a) agrees with (4.4d), in
agreement with (3.26). The constants needed to
build the corresponding harmonics are

0g
(11) = ∓±1g

(11) = 1,

2√
3

0g
(21) = ∓±1g

(21) =
√

2±2g
(21) =

ξ1

ξ2
.

(4.9)

4.3. Tensor modes (m = 2)

Finally, we give the radial modes related to
the base tensor harmonics. They are

0ε
(22)
` =

ξ2

k2

√
3(`+ 2)!

8(`− 2)!

Φν
`

r2
, (4.10a)

1ε
(22)
` =

ξ2

k2

√
(`+ 2)(`− 1)

2

d

r2dχ
(rΦν

` ),

(4.10b)

1β
(22)
` = −ξ2ν

k2

√
(`+ 2)(`− 1)

2

Φν
`

r
, (4.10c)

2ε
(22)
` =

ξ2

4k2

[
d2

dχ2
+ 4 cot(χ)

d

dχ
+ 2 cot2(χ)

+(−K − ν2)
]

Φν
` , (4.10d)

2β
(22)
` = − ξ2ν

2k2

d

r2dχ
(r2Φν

` ). (4.10e)

Again, one checks that (4.10a) agrees
with (4.4e), (4.10b) agrees with (4.8d), and
(4.10c) agrees with (4.8e), in agreement
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with (3.26). There is an alternative expression
for 2ε

(22), which is

2ε
(22) =

ξ2

4k2

[
d2

r2dχ2
(r2Φν

` )− (ν2 −K)Φν
`

]
.

The constants needed to build tensor harmonics
are

2

3
0g

(22) = ∓ 1√
3
±1g

(22) =

√
2

3
±2g

(22) = 1.

(4.11)

5. NORMALIZATION

In this section we are going to show that ex-
pression (3.18) is the correct one to enforce the
normalization condition (2.30) in all cases. We
will also discuss the overall normalization of the
tensor harmonics in real space.

5.1. Normalization at origin

Following the same algorithm as the one de-
scribed in Section 3.3, one can show that the
radial functions scale like χ|`−j| when χ → 0.
Indeed, since Φν

` ∼ χ` in this limit [see (A.5)],
we find from (3.13) that 0ε

(j,±j) ∼ χ`−j . One
can then check that for the various steps of the
algorithm which increase j and s, this property
is maintained. In practice, to show that such
scaling holds one needs to distinguish the cases
` > j, ` = j and ` < j when applying the algo-
rithm. The constant in the scaling can then be
determined by ` − j iterations of (3.28) (when
keeping only the dominant term as χ→ 0), and
using (2.30). For ` ≥ j we find for χ→ 0

sα
(jm)
` ∼ χ`−j(2j − 1)!!

(`− j)!(2`+ 1)!!

∏̀
p=j+1

sκ
m
p . (5.1)

In the case ` ≤ j, it behaves as

sα
(jm)
` ∼ (−χ)j−`(2`− 1)!!

(j − `)!(2j + 1)!!

j∏
p=`+1

sκ
m
p . (5.2)

This is consistent with `− j iterations of (3.28)
(when keeping only the dominant term as χ →

0). This finally proves that (3.18) is the correct
expression needed to enforce (2.30).

If we now use these results together with
(B.23), we find that the normalization of har-
monics at the origin is

`=jQ
(jm)
Ij

∣∣∣
χ=0

`=jQ
(jm′)?
Ij

∣∣∣
χ=0

= δmm′Nm
j (5.3)

where

Nm
j ≡ (0g̃

(jm))2 (2j − 1)!!

j!

≡ (0g
(jm))2 j!

(2j − 1)!!
, (5.4)

and where the following contraction of indices Ij
was used on the left hand side of (5.3):

sg
(jm)n̂sIj sg

(jm′)n̂
Ij?
s = sg

(jm)
sg

(jm′)djs

≡ Nmm′
j , (5.5)

with Nmm
j = Nm

j . Together with (2.33), the
expressions above allow us to write the contrac-
tion of harmonics at an arbitrary point. Restor-
ing the dependence with ν of the harmonics and
normal modes, we find

`Q
(jm)
Ij

(ν) `
′
Q

(jm′)?
Ij

(ν ′) (5.6)

= Nmm′
j

j∑
s=−j

sG
(jm)
` (ν) sG

(jm′)?
`′ (ν ′) .

5.2. Integral on space

We checked by means of integrations by parts
(on the lowest |m| values) and using (A.1) and
(A.7) that the harmonics satisfy the normaliza-
tion (with again Ij indices contracted)∫

d3V `MQ
(jm)
Ij

(ν) `′M ′Q
(jm′)?
Ij

(ν ′) = (5.7)

δ``′δmm′δMM ′Nm
j (2π)3 (2`+ 1)

4π

δ(ν − ν ′)
(ν2 −Km2)

where d3V ≡ r2(χ)dχ sin θdθdφ. The case j >
|m| is deduced from the case j = |m| through
the construction (2.23) using repeated applica-
tion of (2.25) when integrating by parts. A sim-
ilar method can be used to infer the vanishing
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of (5.7) when m 6= m′. Note also that in the
closed case, ν takes integer values, hence the
Dirac delta function must be understood as a
Kronecker symbol instead, that is we must read
(5.7) with δ(ν − ν ′)→ δνν′ .

From the general definition (3.33) and the
identities (B.13) and (5.5), it follows that the
normalization (5.7) is equivalent to

j∑
s=−j

∫
sα

(jm)
` (χ; ν) sα

(jm′)?
` (χ; ν ′)r2(χ)dχ

= δmm′
π

2

δ(ν − ν ′)
(ν2 −Km2)

. (5.8)

This is a generalization of the normalization re-
lation (A.7) which corresponds only to scalar
modes (see e.g. [16]).

Conversely, for a given j, a closure relation
can be also formulated, showing that we have
built a complete set of basis functions. We find

∞∑
`=0

∑̀
M=−`

j∑
m=−j

4π

(2`+ 1)Nm
j

∫
`MQ

(jm)
Ij

(χ,n; ν)`MQ
(jm)?
Kj

(χ′,n′; ν)
(ν2 −Km2)dν

(2π)3

=
δ(χ− χ′)
r2(χ)

δ2(n− n′)δ〈k1i1
. . . δ

kj〉
ij

. (5.9)

For open cases, the integral runs on ν ≥ 0,
whereas in the closed case the integrals must be
understood as a discrete sum on integer values
such that ν ≥ `+ 1. Again, this is equivalent to
the closure relation for radial functions (which
we checked for the lowest values of j)

j∑
m=−j

∫
sα

(jm)
` (χ; ν)s′α

(jm)?
` (χ′; ν)(ν2 −Km2)dν

=
π

2
δss′

δ(χ− χ′)
r2(χ)

, (5.10)

with the same convention that it is a discrete
sum on ν ≥ ` + 1 in the closed case. This is a
generalization of the closure relation (A.8) which
corresponds only to scalar modes [16]. One
also verifies immediately that (5.9) is compat-
ible with (5.7), since multiplying the former by
`′M ′Q

(jm′)?
Ij

(χ,n; ν ′) and integrating over space

using the latter, yields `
′M ′Q

(jm′)?
Ij

(χ′,n′; ν ′), ex-

actly as the r.h.s. of (5.9) indicates. Similarly
(5.10) is obviously compatible with (5.8).

6. PLANE WAVES

In flat space, a plane wave is an eigenfunction
of the Laplacian which assumes constant values
on planes orthogonal to a constant wavevector k.
For scalar functions it is simply exp(ik ·x). This
idea cannot be generalized to the curved spaces
since the notion of a globally constant vector
does not exist. We will nonetheless seek to build
eigenfunctions of the Laplacian in curved spaces
— which we shall abusively call plane waves —
which look like flat space plane waves near the
origin of coordinate system, i.e., over distances
much smaller than the curvature radius.

6.1. Zenith axis plane waves

Plane waves are defined by summation of har-
monics with different values of `. The most gen-
eral summation on ` is of the form (restoring the
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explicit dependence on ν)

Q
(jm)
Ij

(ν) ≡
∞,ν−1∑
`≥|m|

ζm`
ζmj

`Q
(jm)
Ij

(ν) (6.1)

and similarly

sG
(jm)(ν) ≡

∞,ν−1∑
`≥(|m|,|s|)

ζm`
ζmj

sG
(jm)
` (ν), (6.2)

=
∞∑

`≥(|m|,|s|)

ζm`
ζmj

c` sα
(jm)
` (ν)sY`m(n),

such that

Q
(jm)
Ij

(ν) =

j∑
s=−j

sg
(jm)

sG
(jm)(ν)n̂sIj . (6.3)

The previous sums on ` run until infinity in the
flat or open case, and are limited by (3.24) in
the closed case. The weights ζm` are undeter-
mined coefficients. From these definitions we re-
cover, near the origin, the same behavior as in
(2.31). What we hereafter call plane waves cor-
responds to the choice ζm` = const. (or ζm` = 1).
By contrast, we name pseudo plane waves the
more general case ζm` 6= const. A pseudo plane
is thus specified both by the mode ν and by the

set of ζm` : Q
(jm)
Ij

(ν, ζm` ).
We chose to divide by ζmj in the definitions

(6.1) and (6.2) so as to maintain the normaliza-
tion at origin (2.39). All recursion relations that
were derived so far for the radial functions in the
(j, s) space are, in fact, also valid for the sG

(jm)
` ,

since the coefficients of all recursions are totally
independent from `. Hence all of these recur-
sive relations are transposed as relations among
the summed normal modes sG

(jm)ζmj . This can
be traced back to the fact that the general re-
lation (3.22), from which all recursive relations

originate, is satisfied for the tensors ζmj Q
(jm)
Ij

.

6.2. General axis plane waves

In the previous section, we have summed the
harmonics (2.33) on `. They correspond to a
special choice where the direction used to de-
compose the local structure is also the zenith di-
rection. Hence the plane waves (or pseudo plane

waves) built in Section 6.1 correspond to a wave
vector ν = νez. As detailed in Section 3.5, one
can consider a general direction ν̂ with the as-
sociated wave vector ν = νν̂. The associated
plane waves are built in general as

Q
(jm)
Ij

(ν) ≡ Rν̂ [Q
(jm)
Ij

(ν)] (6.4)

=

∞,ν−1∑
` ≥|m|

∑̀
M=−`

ζm`
ζmj

`MQ
(jm)
Ij

(ν)D`
Mm(Rν̂) .

This form is very similar to the general decom-
position of a STF tensor field (2.15) since it can
also be written more explicitly as

Q
(jm)
Ij

(ν) ≡
∑
`Ms

ζm`
ζmj

c` sg
(jm)

sα
(jm)
` (χ; ν)

×D`
Mm(Rν̂) sY

M
` (n)n̂sIj . (6.5)

The normal modes associated with these general
axis plane waves are

sG
(jm)(ν) =

∞,ν−1∑
`≥(|m|,|s|)

∑̀
M=−`

ζm`
ζmj

c` sα
(jm)
` (χ, ν)

×D`
Mm(Rν̂)sY

M
` (n) , (6.6)

and we get a relation of the type (6.3) for the
mode ν.

6.3. Extended Rayleigh expansion

Eq. (6.5), possibly reshaped using (B.33), is
the generalized Rayleigh expansion for tensor-
valued plane waves. In the flat case, for standard
plane waves (i.e., ζm` = const.) with j = 0 = m,
we recover the usual Rayleigh expansion given
by (F.3).

We can recast Eq. (6.5) in a more covariant
form as

n̂
Ij
∓s(n)Q

(jm)
Ij

(χ,n;ν) =

∞,ν−1∑
`≥(|m|,|s|)

ζm`
ζmj

(2`+ 1)

±sg̃
(jm)

±sg̃(`m) ±sα
(jm)
` (χ; ν) n̂I`∓s(n)Q

(`m)
I`

(χ = 0;ν) .

(6.7)

This extends Eq. (4.13) of [9] or Eq. (4.1.47) of
[19], which are restricted to the case j = |m| and
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s = 0. Eq. (6.7) can be understood essentially
as a simple Taylor expansion, since derived har-
monics are precisely made of derivatives of the
base harmonic. The generalized Rayleigh expan-
sion is essential for the computation of cosmo-
logical observables, and we illustrate its use in
Section 7.4 and in Ref. [17].

6.4. Parity and conjugation

The transformation properties of section 3.6
can be extended to pseudo plane waves. For con-
jugation, we find[

Q
(jm)
Ij

(ν, ζm` )
]?

(6.8)

= (−1)(j+m) ×Q(j,−m)
Ij

(−ν?, (−1)`ζm?` ) .

For π-rotation around axis y, we get

Ry(π)[Q
(jm)
Ij

(ν, ζm` )] =
[
Q

(jm)
Ij

(ν?, ζm?` )
]?
.

(6.9)
Finally for parity transformations, we obtain

P[Q
(jm)
Ij

(ν, ζm` )] = (−1)m
[
Q

(j,−m)
Ij

(ν?, ζm?` )
]?

= (−1)jQ
(jm)
Ij

(−ν, (−1)`ζm` ) . (6.10)

The combination of parity and rotation (which
amounts to an inversion of the y-axis) is similar
to (3.41) and reads

Ry(π)[P[Q
(jm)
Ij

(ν, ζm` )]] = (−1)mQ
(j,−m)
Ij

(ν, ζm` ).

(6.11)
The rules for an inversion of a single axis are
thus exactly the same as in Table I for individual
`Q

(jm)
Ij

, except that the factor (−1)` manifests

itself as ζm` → (−1)`ζm` along with a global (−1)j

factor.

6.5. Orthogonality

As for the special case ν̂ = ez, the plane
waves (when ζm` = const., which we now as-

sume) are orthogonal as we now review. Replac-
ing (6.4) in (5.7), and using (B.14) and (B.34),
we find that in the open or flat case, the plane
waves are normalized according to∫

d3V Q
(jm)
Ij

(ν)Q
(jm′)?
Ij

(ν ′) = δmm′(2π)3

×Nm
j

ν2

(ν2 −Km2)
δ3(ν − ν ′) . (6.12)

Therefore, we conclude that in the open case the
plane waves that we defined have orthogonal-
ity properties very similar to the flat case plane
waves, thus justifying our abusive terminology.

However, in the closed case (K = 1), the sum
on ` in (6.4) does not extend to infinity, and one
cannot rely on (B.14). We find instead∫

d3V Q
(jm)
Ij

(ν)Q
(jm′)?
Ij

(ν ′) = δνν′δmm′2π
2Nm

j

×
ν−1∑
`=|m|

(2`+ 1)

(ν2 −Km2)
D`
mm(R−1

ν̂′ Rν̂) . (6.13)

In the case where the modes have the same di-
rection (ν̂ = ν̂ ′), and using

ν−1∑
`=|m|

(2`+ 1) = ν2 −m2 , (6.14)

this reduces to∫
d3V Q

(jm)
Ij

(νν̂)Q
(jm′)?
Ij

(ν ′ν̂)

= 2π2δνν′δmm′Nm
j . (6.15)

Eq. (6.13) shows that the plane waves as built
in (6.4) are not properly orthogonal in the closed
case. In that case one should work directly with
`MQ

(jm)
Ij

(ν), which according to (5.7) and (5.9)
is a proper orthogonal basis.

In all cases, the closure relation for plane
waves reads
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j∑
m=−j

∫
Q

(jm)
Ij

(χ,n;ν)Q
(jm)?
Kj

(χ′,n′;ν)
(ν2 −Km2)dνd2ν̂

(2π)3Nm
j

=
δ(χ− χ′)
r2(χ)

δ2(n− n′)δ〈k1i1
. . . δ

kj〉
ij

,

(6.16)

with the convention that it is a discrete sum on
ν ≥ |m| + 1 in the closed case. This relation
is found from the definition (6.4) with (B.34)
to express the Wigner D-coefficients, and using
the orthogonality relation (B.13) to handle the
angular integration on ν̂ so as to fall back onto
(5.9). The closure (6.16) is obviously compatible
with (6.12) in the open of flat cases, and is also
compatible with (6.13) even though there is no
Dirac function on the directions of ν̂ and ν̂ ′ in
its right hand side. This is because the factor∑ν−1

`=|m|(2`+1)D`
mm(R−1

ν̂′ Rν̂) effectively plays the
role of a Dirac delta when acting on functions
with an angular structure limited to ` ≤ ν − 1,
and this is exactly the case for the dependence
on the mode direction ν̂ of closed space plane
waves as defined by (6.4).

6.6. Integral on directions

For plane waves, and for the lowest normal
modes [specifically, we checked for j up to 4, and
for all allowed m and s] we have checked that the
following identity holds:∫

sG
(jm)(χ,n;ν) sG

(j′m′)?(χ,n;ν) d2n

= δmm′δjj′
∑
`

|c` sα
(jm)
` (χ; ν)|2,

= δmm′δjj′
4π

(2j + 1)
, (6.17)

in agreement with equation C8 of [7]. Hence the
normalization of plane waves is such that the
dependence on χ, which is there in principle at
the second line, disappears at the third line. In
the particular case of j = m = s = 0, and in the
flat case, this relation is proven using an addition
theorem of spherical Bessel function (e.g. Eq.
(A.12) of [20]).

Moreover, using properties (5.6) and (6.17),

we find for the plane waves harmonics (6.1) that∫
d2n

4π
Q

(jm)
Ij

(χ,n;ν)Q
(jm′)?
Ij

(χ,n;ν)

= δmm′Nm
j . (6.18)

If we further integrate (6.18) on the measure
4πr2(χ)dχ to complete an integration on the
whole volume, we check in the closed case that
it leads again to (6.15) with ν = ν ′, since in the
closed case

∫
d3V =

∫ π
0 4πr2(χ)dχ = 2π2.

6.7. Discussion on general factorization of
normal modes

It is argued in Appendix C of [7], and this
point is recalled in Eq. (1.15) of [21] and Eq.
(A9.3) of [22], that the normal modes can be
factorized in a form which separates clearly the
intrinsic angular dependence and the orbital one.
Restricting the discussion to modes ν = νez for
simplicity, and omitting the explicit dependence
on ν on all functions, this factorization should
be of the form

sG
(jm)(χ,n)

?
=

cj
2j + 1

sY
m
j (n)F (ν, χ,n)

(6.19)
with a universal orbital function F such that 4

|F (ν, χ,n)| = 1 . (6.20)

Translated to the plane wave harmonics using
(2.33), this is

Q
(jm)
Ij

?
= 0g̃

(jm) cj
2j + 1

YjmIj F (ν, χ,n) , (6.21)

with the YjmIj defined everywhere following the

remark after (B.32).
Expressions (6.19) and (6.21) are reminiscent

of what is found in the flat case [Eqs. (F.1) and

4 This function is often written as eiδ(~x,
~k).
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(F.2)], where the orbital function is a pure scalar
plane-wave exp[i(kez)·(χn)]. If this was the case
in the curved case, there would be a clear sepa-
ration between orbital and angular momentum.
Furthermore, the property (6.17) (which is cor-
rect) would be a trivial consequence of (B.13).
We argue in this section why this is not possible
in the general curved case, and that the factor-
ization (6.19) does not exist. However, we insist
that property (6.17) is still correct since it does
not imply the factorization property (6.19).

From the j = m = s = 0 case, one infers
immediately that the universal orbital function
must be F (ν, χ,n) = 0G

(00). In the flat case,
F = eik·x, and since by construction we have

0G
(00) =

∑
`

√
4π(2`+ 1)i`j`(χ)Y 0

` (n) (6.22)

we could be tempted to deduce that the radial
functions can be built exactly like in the flat case,
i.e. is using (F.5), but with the replacement
j`(kr) → Φν

` (χ). In the flat case, the (usual)
spherical Bessel functions can be combined by
means of (F.5) and (F.6), which then leads to
the expressions listed in Appendix F. If we in-
sist on the idea of using the same combinations
in the curved case, but with Φν

` in place of the
usual j`, we must also use the relations (A.2).
But note that these differ from (F.6) by factors
like
√
ν2 −K`2 and

√
ν2 −K(`+ 1)2. Thus, the

results obtained with this method are not the
radial functions reported in Section 4. To be
specific, let us attempt to build the radial func-

tion 0α
(10)
` = 0ε

(10)
` from the factorization (6.19).

Starting from

0ε
(10)
`

?
=

1

2`+ 1

[
`Φν

`−1 − (`+ 1)Φν
`+1

]
, (6.23)

and using (A.2), the radial function takes the
form

0ε
(10)
`

?
= x`

d

dχ
Φν
` + y` cotχΦν

` , (6.24)

where the coefficients are

x` =
1

2`+ 1

(
`√

ν2 −K`2
+

`+ 1√
ν2 −K(`+ 1)2

)

y` =
`(`+ 1)

2`+ 1

(
1√

ν2 −K`2
− 1√

ν2 −K(`+ 1)2

)

and this differs from the correct expression (4.4a)
since obviously x` 6= 1/

√
ν2 −K and y` 6= 0.

Another way to show that (6.19) does not
apply in the curved case consists in exhibiting
counterexamples. In the closed case, the sum
on ` in (6.2) (with ζm` = const.) to form plane
waves is a finite sum since 0 ≤ ` ≤ ν − 1.
Let us first consider the case j = 0, s = 0,
m = 0. If ν = 1, then we have only ` = 0

and 0α
(00)
0 (χ; ν = 1) = F (ν = 1, χ,n) = 1 and

there is no issue. However as soon as we consider
ν = 2, we have 0α

(00)
0 (χ; ν = 2) = cos(χ) and

0α
(00)
1 (χ; ν = 2) = sin(χ)/

√
3, and it is found

that the orbital function must be

F (ν = 2, χ,n) = cos(χ) + i
√

3 cos θ sin(χ) .
(6.25)

Hence the unit norm condition (6.20) is not
met. Of course when χ � 1, that is for dis-
tances much smaller than the curvature scale,
the norm tends to unity, thus recovering the
flat case result. Note however that (6.17) still

holds since |c0 0α
(00)
0 (ν = 2)|2 = 4π cos2 χ and

|c1 0α
(00)
1 (ν = 2)|2 = 4π sin2 χ. One could try to

release this unit norm condition and still look for
a universal orbital function. However, for ν = 2
but for the values (s = 0, j = m = 1), one infers

F (ν = 2, χ,n) = 1 , (6.26)

which is not equal to (6.25). Similarly for (j =
1,m = s = 0) one infers yet another orbital func-
tion, being F (ν = 2) = cosχ + i/

√
3 sinχ sec θ.

To conclude, not only the orbital function cannot
be of unit norm, but also it cannot be universal,
that is in practice it cannot depend only on ν
and on the position in space (χ,n). At best,
(6.19) can be used for a definition of F for each
set of (s, j,m), that is to define sF

(jm) orbital
functions. In the open case, one can also check
numerically (because of the infinite sum in `)
that the orbital function cannot be of unit norm
and cannot be universal.

We thus conclude that the general factoriza-
tion (6.19) does not exist, and we can rely on the
explicit summation (F.5) only in the flat case. In
the curved case, one must determine the radial
modes following the method used in this article
(or a related one). The impossibility of the fac-
torizations (6.19) and (6.21) in the curved cases
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is related to the fact that the norm squared of
plane waves is not a constant, and only its aver-
age over spheres yields the constant Nm

j (inde-
pendent on χ) as seen on (6.18). This is different
from the flat case where it is obvious from (F.2)
that the square of the norm of plane waves isNm

j

everywhere. It is important to stress, however,
that while (6.19) does not exist, its use in Ref. [7]
was meant only as a heuristic motivation, and all
the results are of course correct since they rely
essentially only on the property (7.29).

7. COSMOLOGICAL APPLICATIONS

We are now in position to discuss some phys-
ical applications of the formalism developed so
far. We will focus on the derivation of the
Boltzmann hierarchy to describe the evolution
of CMB, a key cosmological observable, follow-
ing both the pioneering work of [7] based on nor-
mal modes, and the approach built in [8, 9] using
STF tensors. In the next Section we introduce
harmonics and normal modes which are adapted
to the use of the propagating direction (of pho-
tons) rather than the observing direction. In
Section 7.2 we summarize the angular decom-
position for CMB temperature and linear polar-
ization. We then review the standard derivation
of the Boltzmann hierarchy providing only min-
imal ingredients of cosmology in Section 7.3. In
Section 7.4 we address the general method for
extracting the multipolar decomposition of all
cosmological observables when using plane wave
harmonics. When using pseudo plane waves
(ζm` 6= const.) instead of standard plane waves
(ζm` = const.), the results are slightly different,
as detailed in [17].

7.1. Relation to propagation normal modes

In the context of CMB, it is often more conve-
nient to rewrite everything in terms of the prop-
agating direction of photon, rather than the ob-
served direction of the incoming photon. Hence,
let us define the propagation direction as the op-
posite of the observed direction:

n̄ ≡ −n . (7.1)

The helicity bases associated with a direction
and its opposite are related through (3.39). A
given point on the manifold is either denoted
by the pair (χ,n) or the pair (χ,−n̄). Plane-
wave harmonics in the propagation direction are
linked with those built so far as

Q
(jm)
Ij (χ,−n̄) ≡ (−1)j ×Q(jm)

Ij
(χ,n) . (7.2)

In order to be consistent with the construction
of derived harmonics we must use, instead of
(2.23), the defining property

Q
(jm)
Ij = −1

k
∇〈ijQ

(j−1,m)
Ij−1〉 . (7.3)

The expansion of these new harmonics in terms
of the associated normal modes is

Q
(jm)
Ij (χ,−n̄) ≡

j∑
s=−j

sg
(jm)

sG
(jm)

(χ, n̄)n̂sIj (n̄) ,

(7.4)
whereas we recall that the harmonics built with
observation directions are expanded as (6.3).
The normal modes associated with plane waves
are expanded in radial functions in a similar
fashion to (6.2), as

sG
(jm)

(χ, n̄) =
∑
`≥|m|

c̄` sᾱ
(jm)
` sY`m(n̄) (7.5)

where

c̄` ≡ (−1)`c` = (−i)`
√

4π(2`+ 1) . (7.6)

Using (7.5) and (6.2) for plane waves in (7.4) and
(6.3), so as to replace in the definition (7.2), we
deduce from the properties (3.39) and (B.11b)
that the new radial functions are related to the
ones built with observed directions by

sᾱ
(jm)
` (ν) = −sα

(jm)
` (ν) = sα

(jm)
` (−ν) . (7.7)

From the decomposition (2.40) in even and odd
components, we deduce that the ones built when
using propagation directions, are related to those
built using observation directions, by

sε̄
(jm)
` (ν) = sε

(jm)
` (ν) (7.8a)

sβ̄
(jm)
` (ν) = −sβ(jm)

` (ν) . (7.8b)
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To summarize, when using propagation direc-
tion, as is common in the context of CMB, one
needs only to add a factor (−1)` to c`, factors
of (−1)j in the definition of the harmonics, and
then the radial functions are exactly the same
up to a global sign for the magnetic (odd) radial
functions. Equivalently, one can use the same
radial functions but with −ν instead of ν. In
fact this is just the parity transformation rule

(6.10) since P[Q
(jm)
Ij

(n)] = Q
(jm)
Ij (n̄).

7.2. CMB multipole decomposition

At each cosmological time, the temperature
fluctuation field Θ depends both on the position
in space, that is on (χ,n), and on the propa-
gating direction n̄i [which does not necessarily
satisfy (7.1)]. This dependence can be separated
using a multipolar decomposition as

Θ =
∑
j

Θi1...ij n̄
i1 . . . n̄ij , (7.9)

where the STF multipoles ΘIj depend only on
(χ,n) and on time. However, as argued in [6,
7], a shortcut consists in fixing the propagating
direction,

n̄i = −ni, (7.10)

when solving for the observed CMB. This is
equivalent to consider, in a given observed di-
rection ni, only the propagating directions which
are observed at some time by the observer 5.

The temperature multipoles ΘIj are ex-
panded on (general axis) plane wave harmonics
as

ΘIj =

j∑
m=−j

∫
d3ν

(2π)3

Θm
j (ν, η)

0g̃(jm)
Q

(jm)
Ij (ν) (7.11)

The dynamical evolution for STF multipoles
then translates into evolution equations for each

5 When considering first order cosmological perturba-
tions, it is enough to consider the background geodesic,
which is a straight line on the maximally symmetric
spatial background. When considering higher order ef-
fects, time-delay and lensing corrections to the trajec-
tory must also be considered [23–25].

mode components Θm
j (ν, η). From the choice

(7.10), with (7.9), (7.11) and (2.35), the temper-
ature becomes a simple scalar field expanded in
normal modes as

Θ =
∑
jm

∫
d3ν

(2π)3
Θm
j (ν, η) 0G

(jm)
(ν) , (7.12)

where the propagating direction normal modes
are related to the usual ones as specified in § 7.1.

The case of linear polarization is analogous,
and we decompose the angular dependence of the
Stokes parametersQ and U according to (see [19]
or Eq. (1.67) in [26])

Q± iU

2
=
∑
j

[
EIj ∓ iBIj

]
ˆ̄n
Ij
∓2 . (7.13)

The electric and magnetic STF multipoles EIj
and BIj are decomposed in terms of plane waves
as

EIj =
1

2

j∑
m=−j

∫
d3ν

(2π)3

Emj (ν, η)

2g̃(jm)
Q

(jm)
Ij (ν)

BIj = −1

2

j∑
m=−j

∫
d3ν

(2π)3

Bm
j (ν, η)

2g̃(jm)
Q

(jm)
Ij (ν) .

(7.14)

Exactly like for temperature, we then restrict the
propagating direction according to (7.10). Hence
(Q ± iU)n̂±2

ij is a tensor field on space, which is
tangential to spheres of constant χ. From (2.35)
we find that the expansion in normal modes now
reads

Q± iU =
∑
jm

∫
d3ν

(2π)3
(7.15)

×
[
Emj (ν, η)± iBm

j (ν, η)
]
±2G

(jm)
(ν) .

Finally, the velocity of baryons, Vi, which we
need to account for the Compton collisions with
electrons, is decomposed exactly as in (7.11) for
j = 1. This means that the quantity Vin̄

i is
decomposed as in (7.12) with only j = 1, which
in turn defines V m(ν, η).

In the closed case, the plane waves as de-
fined by (6.4) are not orthonormal, as shown in
(6.13). Hence we must work directly with the
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`MQ
(jm)
Ij

(ν), which are orthogonal according to

(5.7) and (5.9). The previous expansions on har-
monics can be read formally if

ν = (ν, `,M) , (7.16)

and then one must use the formal replacement [8,
9] ∫

d3ν

(2π)3
→

∞∑
ν=m+1

ν−1∑
`=m

∑̀
M=−`

. (7.17)

To be clear, with the convention (7.16),

sG
(jm)(ν) refers to sG

(jm)
`M (ν) and Q

(jm)
Ij

(ν)

refers to `MQ
(jm)
Ij

(ν).

7.3. Boltzmann equation

7.3.1. General structure

When using conformal cosmological time η,
the general cosmological metric takes the form

gcosmo
µν = a2(η)(gµν + δgµν) (7.18)

where µ, ν are spacetime indices, a(η) is the scale
factor, and where the background metric gµν ex-
tends the purely spatial metric (2.1) with g0i = 0
and g00 = −1.

Restricting to linear cosmological perturba-
tions, the general Boltzmann equation dictating
the evolution of the distribution function of pho-
tons reduces to an evolution of the black body
temperature Θ which depends on η, the position
on space, and on the propagating direction n̄i.
This equation possesses the general structure(

∂η + n̄i∇i + τ ′
)

Θ = CΘ + G . (7.19)

Here, C is the collision term accounting for all
processes with a final photon propagating in the
direction n̄i, whereas the term proportional to
the Compton interaction rate τ ′ ≡ aneσT (with
the background number density of free electrons
ne and the Thomson cross section σT) accounts
for all collisions with an initial photon propagat-
ing in direction n̄i. Furthermore, G accounts for
the gravitational effects which enter when con-
sidering metric perturbations around a homoge-
neous and isotropic expanding background.

For polarization, the Boltzmann equation is
even simpler since it is not affected by these grav-
itational effects, and one has only(

∂η + n̄i∇i + τ ′
)

(Q± iU) = CQ±iU . (7.20)

We now discuss the individual terms in these
equations in the following sections so as to obtain
a Boltzmann hierarchy in § 7.3.4. Finally we
report its formal integral solution in § 7.3.5.

7.3.2. Gravitational effects

The gravitational term selects only the scalar,
vector and tensor modes, that is |m| ≤ 2 and in
practice this implies a restriction on the sums
on m in (7.12) and (7.15). The effect of the
perturbed metric δgµν on temperature depends
on the combinations

δg00 , δg0in̄
i , δgijn̄

in̄j , (7.21)

since, from the null geodesic equation, one infers

G =
1

2
n̄i∇iδg00 −

1

2
δg′ijn̄

in̄j + n̄in̄j∇jδg0i .

(7.22)
This motivates us to decompose the metric per-
turbations according to

δg00 = −2

∫
d3ν

(2π)3
A(ν, η)Q

(00)
(ν)

δg0i =

∫
d3ν

(2π)3

1∑
m=−1

B(m)(ν, η)Q
(1m)
i (ν)

δgij = −2

∫
d3ν

(2π)3
HL(ν, η)Q

(00)
(ν)gij

+ 2

∫
d3ν

(2π)3

2∑
m=−2

H
(m)
T (ν, η)Q

(2m)
ij (ν) .

(7.23)

It is customary to adopt a gauge in which
B(0)(ν) = 0, and we now assume this to be the
case. This encompasses both the popular syn-
chronous and Newtonian gauge. The decompo-
sition of (7.22) in terms of normal modes takes
the form

G =
∑
jm

∫
d3ν

(2π)3
Gmj (ν, η) 0G

(jm)
(ν) , (7.24)
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and it follows from (2.35) that factors 0g̃
(jm) are

brought in the expressions of the Gmj . For com-
pleteness we report them here [see App. C of
[21] which corrects [6, 7]]. The only non vanish-
ing components are (omitting the dependencies
on ν and η)

G0
0 = H ′L ,

G0
1 = kA ,

G0
2 = − 0g̃

(20)H
(0)′

T ,

G±1
2 = − 0g̃

(21)
[
k B(±1) −H(±1)′

T

]
,

G±2
2 = H

(±2)′

T .

(7.25)

In each case, the mode k is related to ν through
(2.27), hence one must distinguish according to
the value of m. The relevant factors in these
expressions are

0g̃
(20) =

2
√
k2 − 3K
3k

=
2
√
ν2 − 4K

3
√
ν2 +K

,

0g̃
(21) =

√
k2 − 2K√

3k
=

ν√
3
√
ν2 + 2K

.

(7.26)

In practice, the equations are solved in a specific
gauge and not all metric perturbations compo-
nents are kept [7]. The synchronous gauge cor-
responds to the conditions A = 0 and B(±1) = 0,
whereas the Newtonian gauge is found when us-

ing H
(0)
T = 0 and H

(±1)
T = 0.

In fact, the expansion in modes and multi-
poles of (7.12) (7.15), are exactly like Eq. (55)
of [6] and Eq. (23) of [7], with the directional
dependence on ν̂ explicit, so we can easily com-
pare our results and we find that Eqs. (7.25) dif-
fer slightly from Eqs. (35-36) of [7]. This is ex-
pected since our gravitational effects correspond
to Eq. C18 of [21] without the last term. Eqs.
(7.25) also corresponds to what is obtained in
[27], and arise when the observer which defines
the temperature anisotropies is chosen to have a
velocity proportional to (dη)µ. If a different ob-
server is used to define anisotropies, namely, one
with velocity proportional to (∂η)

µ, then (7.22)
gets modified as we must consider the entirety
of Eq. C18 in [21]. This explains the variations

found with the literature, in particular with [6, 7]
where the contribution of B(±1) goes into G±1

1 in-
stead of G±1

2 here (see e.g. § 4.3.1 of [27] for a
detailed discussion).

7.3.3. Collisions

The collision terms, which account for Comp-
ton collisions on electrons, depend only on the
multipoles of temperature and linear polariza-
tion, and they are expanded in multipoles with
definitions following exactly the decomposition
of temperature and linear polarization of the pre-
vious section. We find [6, 7, 19, 26, 27]

ΘCmj = τ ′
(
δj0δ

m
0 Θ0

0 + δj2 P
(m) + δj1 V

(m)
)
,

ECmj = −τ ′
√

6δj2 P
(m),

BCmj = 0 ,

P (m) ≡ 1

10

(
Θm

2 −
√

6Em2

)
.

(7.27)

7.3.4. Boltzmann hierarchy

The only non-trivial part, once the effect of
gravitation and collisions are expanded in STF
multipoles, is the free streaming. It is sufficient
to consider the case of modes aligned with the
zenith direction, and we use the expression

n̄i∇i(sG
(jm)

n̂sIj ) = − d

dχ

(
sG

(jm)
)
n̂sIj (7.28)

as well as the recursion relation for the normal
modes

d

dχ

(
sG

(jm)
)

=
iνms

j(j + 1)
sG

(jm)
(7.29)

+
1

2j + 1

[
−sκmj sG

(j−1,m)
+ sκ

m
j+1 sG

(j+1,m)
]

which is a consequence of (2.28) and (3.23)
translated to propagating direction radial func-
tions (7.7). Using this property into (7.19) and
(7.20), with (7.12) and (7.15), one finally obtains
the hierarchy (again, omitting the dependence
on ν)
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∂ηΘ
m
j =

[
0κ
m
j

2j − 1
Θm
j−1 −

0κ
m
j+1

2j + 3
Θm
j+1

]
+ Gmj + ΘCmj − τ ′Θm

j , (7.30)

∂ηE
m
j =

[
2κ
m
j

2j − 1
Emj−1 −

2κ
m
j+1

2j + 3
Emj+1 −

2mν

j(j + 1)
Bm
j

]
+ ECmj − τ ′Emj ,

∂ηB
m
j =

[
2κ
m
j

2j − 1
Bm
j−1 −

2κ
m
j+1

2j + 3
Bm
j+1 +

2mν

j(j + 1)
Emj

]
+ BCmj − τ ′Bm

j .

Given the maximal symmetry of the background,
the evolution of the gravitational sources Gmj de-
pends only on ν. However, their initial condi-
tions (set deep in the past) does depend fully on
ν. Hence, in practice, the hierarchy (7.30) needs
to be solved only for various values of ν, and the
directional dependence is simply inherited from
initial conditions. Let us also comment that we
do not necessarily need to use the expansions in
normal modes (7.12) and (7.15) with (7.29) to
derive the hierarchy. Indeed, this is a shortcut
based on using (7.10), and one might prefer us-
ing directly the expansions in harmonics (7.11)
and (7.14) along with (3.22) to compute the ef-
fect of free streaming, as in Refs. [8, 9, 19, 27].
The hierarchy for multipoles is eventually recov-
ered using the orthonormality condition (6.12).

7.3.5. Integral solution

We can check using (3.28) and (7.8) that
when the gravitational effects and the collision
term can be neglected (that is when the evolu-
tion of multipoles is only due to free streaming),
the functions

(2j + 1)0ε̄
(j′m)
j (η; ν) ,

(2j + 1)2ε̄
(j′m)
j (η; ν) ,

(2j + 1)2β̄
(j′m)
j (η; ν) ,

(7.31)

are solutions of the hierarchy (7.30) for any j′.
This guides the general resolution of the full hi-
erarchy when collisions and gravitational effects
are taken into account. Let us introduce the op-
tical depth from a cosmological time η to today
(η0)

τ(η, η0) ≡
∫ η0

η
dη′τ ′(η′) , (7.32)

that we abbreviate as τ . It is then straightfor-
ward to obtain the formal solution to the full
hierarchy in the integral form [6, 7]

Θm
j (η0)

2j + 1
=

∫ η0

0
dηe−τ× (7.33)∑

j′

(
ΘCmj′ + Gmj′

)
0ε̄

(j′m)
j (χ) ,

Emj (η0)

2j + 1
=

∫ η0

0
dηe−τ

∑
j′

ECmj′ 2ε̄
(j′m)
j (χ) ,

Bm
j (η0)

2j + 1
=

∫ η0

0
dηe−τ

∑
j′

ECmj′ 2β̄
(j′m)
j (χ) ,

where the argument of the radial functions is

χ = η0 − η . (7.34)

Finally, and this is crucial, it is customary
to expand the directional dependence of the ob-
served temperature (resp. polarization) directly
in Y m

j (resp ±2Y
m
j ). Hence, to obtain the corre-

sponding multipoles, one must consider the nor-
malization at origin (2.31), and this brings extra
factors c̄`/(2` + 1) = (−i)`

√
4π/(2`+ 1). Thus,

for the CMB, we shall use

CMBΘm
` (η0) = Θm

` (η0)(−i)`
√

4π

2`+ 1
, (7.35)

with similar relations for the E and B modes.
Eventually, one might also prefer to use direc-
tions related to observation rather than prop-
agation for the multipoles observed today, and
this brings extra factors of (−1)` for the temper-
ature and electric-type polarization multipoles
and (−1)`+1 for the magnetic-type ones.
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7.4. Other cosmological observables

Quite generally, all types of cosmological ob-
servables, such as weak lensing convergence or
shear, lensing field, galaxy number counts, red-
shift drifts, etc., are all of the form of an integral
on the background past light cone, which can be
written formally as

sO(n) =

∫ η0

0
dη
∑
jm

n̂
Ij
−s S

(jm)
Ij

(η, χ,n) (7.36)

with (7.34). The sources S
(jm)
Ij

are expanded on
plane waves harmonics as

n̂
Ij
−sS

(jm)
Ij

(η, χ,n) (7.37)

=

∫
d3ν

(2π)3
Smj (η;ν)sG

(jm)(χ,n;ν) .

If we decompose the observable as a sum of the
effects of each harmonic as

sO =

∫
d3ν

(2π)3

∑
jm

sOmj (ν)sG
(jm)(χ = 0,n;ν) ,

(7.38)
then we only need to expand the sources under
the integral with the Rayleigh expansion (6.7)
which is equivalent to

±sG
(jm)(χ,n;ν) =

∞,ν−1∑
`≥|m|

(2`+ 1)
ζm`
ζmj

(7.39)

×±sα(jm)
` (χ; ν)±sG

(`m)(χ = 0,n;ν) ,

so as to obtain the integral solutions (with ζm` =
const. since the decomposition (7.37) is on plane-
wave harmonics)

sOmj (ν)

2j + 1
=

∫ η0

0
dη

∑
j′≥|m|

sα
(j′m)
j (χ; ν)Smj′ (η;ν) .

(7.40)
Note that in the angular decomposition (7.38)
we must use the normalization at χ = 0 given
by (2.31) but taking into account the rotation
(6.6), that is 6

sG
(jm)(χ = 0;ν) =

cj
2j + 1

∑
M

Dj
Mm(Rν̂)sY

M
j .

(7.41)

6 In the closed case, and given the formal meaning (7.16),

the normalization at χ = 0 is directly sG
(jm)
`M (χ =

0; ν) = δj`cj/(2j + 1)sY
M
j .

The integral solution for the CMB multipoles
arises immediately with this method, if one notes
that the Boltzmann equation (7.19) is rewritten
as

d

dη
(e−τΘ) = e−τ [CΘ + G] (7.42)

where d/dη ≡ ∂η + n̄i∇i, is the derivative along
the background geodesic. Indeed, the integral
form of the type (7.36) is

Θ(η0) =

∫ η0

0
e−τ [CΘ + G]dη , (7.43)

and following the aforementioned method, we
then recover the solution (7.33), up to the dif-
ference that for CMB we used propagation di-
rection harmonics and multipoles. Even though
this derivation appears much faster, one must
not forget that in the case of CMB the sources
depend on the multipoles themselves, and one
must rely on the Boltzmann hierarchy (which
can be found by derivation of the integral solu-
tions with respect to η0) to solve for their evolu-
tion.

The physical interpretation based on this
method is that free streaming builds multipoles
with increasing j from the initial multipoles of
sources. The effect of free streaming amounts to
intersecting plane-wave harmonics with spheres
of increasing radius, and the radial functions pre-
cisely account for the projection effects of the
sources, taking into account the local angular
structure at emission.

8. CONCLUSION

Thanks to the introduction of the general-
ized helicity basis, we established in this work
a systematic and comprehensive construction
of radial functions, normal modes and ten-
sor harmonics in maximally symmetric three-
dimensional spaces. When combined with spin-
weighted spherical harmonics, they provide a
powerful set of tools adapted to the description
of symmetric and trace-free tensors, and is suited
for separating the radial from the angular depen-
dencies of physical quantities. Furthermore, the
developed framework allows for systematic alge-
braic manipulations which greatly benefits from
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the power of symbolic computational tools. In
particular, in this work, we have made intensive
use of xAct [28].

In Appendix G our results are contrasted
with earlier literature on vector and tensor
harmonics around maximally symmetric curved
spaces. However, our method is not restricted to
vector or tensor harmonics, but can be applied
to higher rank harmonics thanks to the full set of
recursive relations in the (j, s) space. Our results
also extend to curved spaces the construction of
scalar, vector and tensor harmonics presented in
[11], and puts on a firmer ground the pioneering
use of normal modes introduced in [7]. However,
we stress that some of our relations were not fully
demonstrated but only checked explicitly for all
modes up to reasonable values of the eigenvalue
j (typically j ≤ 4 and the associated |m| ≤ j,
|s| ≤ j), as was also the case in [7]. Hence,
from a mathematical point of view, our formal-
ism would benefit from an appropriate general
proof on these relations. Still, for practical phys-
ical applications which depend only on the low-
est values of j (but with all allowed values of m
and s), it can be fully trusted since all relations
were checked with ` being kept general, using the
general properties of hyperspherical Bessel func-
tions. Thus, in a restricted sense, they have been
demonstrated. The relations which were checked
up to j = 4 (and all allowed values of m and s)
but with general values of ` are Eqs. (3.28), (5.8),
(5.10) and (6.17). Relation (3.27), on the other
hand, was checked only for j ≤ 4 and ` ≤ 4.

The radial functions have very rich proper-
ties which fall into four categories. These are
summarized as follows:

• Recursive relations in the space of (j, s)
values. They can all be deduced from the
triangular relations (NW,NW,SW,SE) de-
picted in Fig. 1 and whose expressions are
collected in appendix D. They allow us to
deduce all radial functions using the al-
gorithm described in § 3.3. Furthermore,
Eq. (3.23) is of direct use for the effect of
free streaming on radiation multipoles.

• Sign inversions of either m, s or ν
[Eq. (3.25)], which are of direct use

when studying the properties under par-
ity transformation as in § (3.6).

• Symmetries in the space of (j,m, s, `) val-
ues, namely the m ↔ s and the j ↔
` exchange symmetries [Eqs. (3.26) and
(3.27)].

• Orthogonality relations (5.8) and (5.10),
which imply corresponding orthogonality
relations for harmonics.

Once knowing the radial functions, whose ex-
pressions for j ≤ 2 are gathered in Section 4 (or
Appendix F for the flat case), the harmonics are
built using (2.28) and (2.33), with the needed
coefficients sg

(jm) given by (2.37) and (3.18),
and the explicit forms of the generalized helic-
ity bases reported in Appendix C.

The case of a flat space is very different from
the curved cases. Indeed, we have shown that
the general factorization (6.19), which can be
used in the flat case to build systematically all
radial functions (see Appendix F), does not exist
in the curved case, contrary to previous state-
ments in the literature. Our results provide a
systematic algorithm to build recursively the ra-
dial functions in curved space by systematic ex-
ploration of the (j, s) space of radial functions.
A Mathematica notebook implementing this al-
gorithm is available at [18].

The radial functions are extremely powerful
for the computation of theoretical expressions
for multipoles of observables. Once an observ-
able is written as an integral on the background
past light cone, it is sufficient to decompose the
angular structure on normal modes, and to use
the Rayleigh expansion in the form (7.39) to ob-
tain the result. In practical applications, it is
sometimes preferred to use harmonics which are
decomposed according to a propagation direc-
tion (e.g., photon’s direction in the case of CMB)
rather than the observation direction, and the re-
lation between both convention is simple, as we
summarized in section 7.1.

Finally, it is worth mentioning that radial
functions (and thus harmonics) can also be de-
fined for super-curvature modes. They cor-
respond to values of ν in the complex plane
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and rely on analytic continuations of the ra-
dial functions built here. In [17] we detail how
super-curvature modes can be used to described
spatially anisotropic (i.e., Bianchi) space-times
as super-curvature fluctuations over maximally
symmetric space-times.
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Appendix A: Hyperspherical Bessel functions

Hyperspherical Bessel functions are derived
in detail in Refs. [1, 4, 5]. For the convenience of
the reader, though, we present some key proper-
ties in this appendix.

The Hyperspherical Bessel functions Φν
` are

solutions of the following differential equation

1

r2(χ)

d

dχ
r2(χ)

d

dχ
Φν
`

+

[
ν2 −K − `(`+ 1)

r2(χ)

]
Φν
` = 0 . (A.1)

They satisfy the following recurrence relations

d

dχ
Φν
` =

`

2`+ 1

√
ν2 −K`2Φν

`−1

− (`+ 1)

2`+ 1

√
ν2 −K(`+ 1)2Φν

`+1 ,

cotχΦν
` =

1

2`+ 1

√
ν2 −K`2Φν

`−1

+
1

2`+ 1

√
ν2 −K(`+ 1)2Φν

`+1 ,

(A.2)

with

Φν
0 ≡

sin νχ

ν sinχ
. (A.3)

A closed expression for a general ` is [4, 16]

Φν
` =

1

ν2

(∏̀
i=1

1√
ν2 −Ki2

)
(A.4)

× sin`χ

(
−1

sinχ

d

dχ

)`+1

cos(νχ) .

Near the origin (χ → 0), they are power-law
suppressed (except for ` = 0) as

Φν
` ∼ χ`

∏̀
i=1

√
ν2 −Ki2
(2i+ 1)

. (A.5)

In the closed case, sin = sin and the variable
ν must take positive integer values constrained
by

0 ≤ ` < ν . (A.6)

The lowest value ν = 1 corresponds to a con-
stant global perturbation since there is only

Φν=1
0 = 1. The ν = 2 mode allows only for

global dipolar modulations since Φν=2
0 = cosχ

and Φν=2
1 = (sinχ)/

√
3.

The hyperspherical Bessel functions are nor-
malized similarly to usual spherical Bessel func-
tions [Eq. (F.8)]∫

Φν
` (χ)Φν′

` (χ)r2(χ)dχ =
π

2

δ(ν − ν ′)
ν2

, (A.7)∫
Φν
` (χ)Φν

` (χ′)ν2dν =
π

2

δ(χ− χ′)
r2(χ)

. (A.8)

In the closed case, the integral on ν must be
understood as a discrete sum on ν ≥ `+ 1.

A class of related functions is given by

Ψν,n
` ≡

Φν
`

rn(χ)
. (A.9)

One can check that these functions satisfy the
differential equation

d2

dχ2
Ψν,n
` + 2(1 + n) cotχ

d

dχ
Ψν,n
`

+

[
ν2 −K(1 + n)− `(`+ 1)

r2(χ)

+n(n+ 1) cot2(χ)
]

Ψν,n
` = 0 . (A.10)

In practical numerical computations, hyper-
spherical Bessel functions are challenging to
compute. The reader interested in fast and ac-
curate implementations can check Refs. [29, 30].

Appendix B: Spherical Harmonics and
helicity basis

In this appendix we work in the flat (Eu-
clidean) three-dimensional space, also identified
with the tangent space at the origin of the co-
ordinates (χ = 0) of curved spaces. The unit
direction vector is n, and we also use the helic-
ity vectors (7.34) along with the general helicity
basis (2.10) and the multi-index notation (2.11).

1. Spherical harmonics

Spherical harmonics are defined as functions
on the unit sphere:

Y m
` (θ, ϕ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
eimϕPm` (cos θ) ,

(B.1)
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with the associated Legendre polynomials being
given by

Pm` (z) = (−1)m(1− z2)m/2

× d`+m

dz`+m
(z2 − 1)` . (B.2)

Let us define, for any pair of functions A(n) and
B(n), the Hermitian inner product

{A|B} = {B|A}? ≡
∫

d2nA?(n)B(n) . (B.3)

The spherical harmonics are orthonormal{
Y m
` |Y m′

`′

}
= δ``′δmm′ , (B.4)

and complete

∞∑
`=0

∑̀
m=−`

Y m
` (n)Y m?

` (n′) = δ2(n− n′) . (B.5)

Given the spherical harmonics, which form
a basis for scalar functions on the sphere, one
can define spin-weighted spherical harmonics as
basis for spin functions on the sphere [31]. These
are defined as

sY
m
` =

√
(`− s)!
(`+ s)!

/∂sY`m , s ≥ 0 ,

sY
m
` =

√
(`+ s)!

(`− s)!
(−1)s /∂

−s
Y`m , s ≤ 0 ,

or by induction as

s+1Y
m
` =

1√
(`− s)(`+ s+ 1)

/∂sY
m
` ,

s−1Y
m
` = − 1√

(`+ s)(`− s+ 1)
/∂sY

m
` ,

where the spin-raising ( /∂) and spin-lowering ( /∂)
operators are

/∂ ≡ −(sin θ)s
(
∂θ +

i

sin θ
∂ϕ

)
(sin θ)−s ,

/∂ ≡ −(sin θ)s
(
∂θ −

i

sin θ
∂ϕ

)
(sin θ)−s .

These operators are related to the covariant
derivative D on the sphere. Indeed, it is found
that

/∂ = −
√

2D+ = −
√

2n− ·D , (B.9a)

/∂ = −
√

2D− = −
√

2n+ ·D . (B.9b)

This allows us to derive a central relation for
the computation of covariant derivatives on the
sphere

Dj

(
±sY

m
` n̂±sIs

)
= ∓

(±λ
s
`)√
2
±(s+1)Y

m
` n±j n̂

±s
Is

±
(∓λ

s
`)√
2
±(s−1)Y

m
` n∓j n̂

±s
Is
,

where the coefficients ±λ
s
` where introduced

in (3.7).
An explicit form of the spin weighted spheri-

cal harmonics is

sY
m
` = eimϕ

√
2`+ 1

4π

(`+m)!(`−m)!

(`+ s)!(`− s)!
min(`−s,`+m)∑
r=max(0,m−s)

(
`− s
r

)(
`+ s

r + s−m

)

×(−1)`+m−r−s
(cos θ2)2r+s−m

(sin θ
2)2r+s−m−2`

. (B.10)

Useful properties are

sY
m?
` (n) = (−1)m+s

−sY
−m
` (n),(B.11a)

sY
m
` (−n) = (−1)`−sY

m
` (n), (B.11b)

−sY
m
` (ez) = δms(−1)m

√
2`+ 1

4π
, (B.11c)

and the s↔ m interchange property

(−1)seisφ
sY

m
` = (−1)meimφ

mY
s
` . (B.12)

Finally, we also find the orthogonality relation{
sY

m
` |sY m′

`′

}
= δ``′δmm′ , (B.13)

as well as the closure relation, which generalizes
(B.5)

∞∑
`=|s|

∑̀
m=−`

sY
m
` (n)sY

m?
` (n′) = δ2(n− n′) .

(B.14)

2. Relation with helicity basis

In this section, we detail how spherical har-
monics and spin-weighted spherical harmon-
ics are related to the generalized helicity ba-
sis (2.10). This extends the results already col-
lected in appendix D of [26]. First, from the
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general rule for the integration over products of
n [13]∫

d2n

4π
nI2`+1 = 0 , (B.15)∫

d2n

4π
nI2` =

1

2`+ 1
δ(i1i2 . . . δi2`−1i2`) ,

where the parentheses mean full symmetrization
on enclosed indices, it is possible to show that{

n̂I` |n̂J`
}

= ∆`δ
〈i1
j1
. . . δ

i`〉
j`
, (B.16)

∆` ≡
4π`!

(2`+ 1)!!
. (B.17)

n̂I` is a special case of (2.10) with multi-index
notation, and is simply the STF product of ` unit
direction vectors (see e.g. [13, 32]). Eq. (B.16)
is a particular case of Eq. (C2) in [32].

If we define

YI``m ≡ ∆−1
`

{
n̂I` |Y m

`

}
, (B.18)

we can relate the spherical harmonics to the gen-
eralized helicity basis (with s = 0) as

Y m
` (n) = ∆−1

` n̂I`
{
n̂I` |Y m

`

}
= n̂I`Y

I`
`m . (B.19)

The inverse relation is

n̂I` =
∑̀
m=−`

Y m
` (n)

{
Y`m|n̂I`

}
, (B.20)

=
∑̀
m=−`

∆`Y
m
` (n)Y?I``m .

From the identity

∑̀
m=−`

Y m
` (n)Y m?

` (n) =
2`+ 1

4π
, (B.21)

we get the closure relation

∑̀
m=−`

YI``mY
`m?
J`

= ∆−1
` δ
〈i1
j1
. . . δ

i`〉
j`
. (B.22)

Explicitly the YI``m are given by (for m > 0)

YI``m = C`m

[
(`−m)

2 ]∑
j=0

(
δi11 + iδi12

)
. . .
(
δim1 + iδim2

)
a`mjδ

im+1

3 . . . δ
i`−2j

3 δ`−2j+1 `−2j+2 . . . δi`−1 i` ,

where

C`m ≡ (−1)m
[

2`+ 1

4π

(`−m)!

(`+m)!

]1/2

,

a`mj ≡
(−1)j(2`− 2j)!

2`j!(`− j)!(`−m− 2j)!
.

Since we used a Cartesian basis in a Euclidean
space, we also define YI``m = Y`mI` and we have

the property Y? I``m = (−1)mYI``−m which extends

the definition for negative m. The YI``m satisfy
the orthogonality property

YI``mY
`m′?
I`

= ∆−1
` δm

′
m . (B.23)

They also allow us to build spin-weighted spher-
ical harmonics, in close analogy to (B.19):

±sY
m
` (n) = (∓)sb`s Y`mI` n̂

I`
∓s . (B.24)

This relation is inverted as

n̂I`∓s =
(∓)s∆`

b`s

∑̀
m=−`

±sY
m
` (n)Y?I``m . (B.25)

Using (B.13) and (B.22) we deduce immediately
the useful orthogonality condition for the gener-
alized helicity basis{

n̂I`±s|n̂±sJ`′
}

= δ``′
∆`

(b`s)2
δ
〈i1
j1
. . . δ

i`〉
j`

(B.26)

= δ``′d`s
4π

(2`+ 1)
δ
〈i1
j1
. . . δ

i`〉
j`
.

Furthermore, since the generalized helicity basis
is a complete basis for STF tensors at each point,
we also find the closure relation∑̀

s=−`
(d`s)

−1n̂I`±sn̂
∓s
J`

= δ
〈i1
j1
. . . δ

i`〉
j`
. (B.27)

In the construction of harmonics of this pa-
per, and more specifically in (2.39), we are not
working in a Euclidean space. However we can
still use the object (B.18) if it is understood that
it is defined in the tangent space at the origin.

Finally note that the YI``m are related to the
generalized helicity basis in the zenith direction
Since in this special direction (θ = 0) φ is not
defined, we choose the convention

nθ = ex, nφ = ey, n± =
1√
2

(ex ∓ iey)

(B.28)



32

which implies that at any point (θ, φ) of the unit
sphere, the helicity basis is obtained by a rota-
tion of angle θ around the y axis and a rotation
of angle φ around the z axis from the basis at
the zenith direction. With this choice we get in
particular for m ≥ 0

YI``±m = (∓)m(∆`d`m)−1/2 n̂I`∓m

∣∣∣
zen

. (B.29)

Note that we can recast the value at χ = 0 of
harmonics given in (2.39). We find

`Q
(j±m)
Ij

∣∣∣
χ=0

= δj` (∓
√

2)m ij
(2m− 1)!!√

(2m)!

×ξm
ξj

n̂
Ij
∓m

∣∣∣
zen

. (B.30)

With the formulation (B.29), Eq. (B.24) can
be recast as

±sY
±m
` = (∓1)s(∓1)m

√
4π

2`+ 1
n̂∓sI` n̂I`∓m

∣∣∣
zen

(B.31)
which obviously leads to (B.11a) after complex
conjugation. Using that the generalized helic-
ity basis is a complete basis for STF tensors, we
also obtain by decomposing the generalized he-
licity basis in the zenith direction (considered as
a constant tensor)

j∑
s=−j

(kjs) sY
m
j n̂sIj = YjmIj . (B.32)

with the factors kjs defined by (2.18).

In flat case, the definition of the YjmIj in the
tangent space at χ = 0 can be trivially ex-
tended to any point by simple translations. In
the curved case, one uses the relation (B.29)
and extend it to any point by parallel transport
along the radial geodesic reaching this point.
Since the generalized helicity basis is also paral-
lel transported along radial geodesics, the prop-
erties (B.24) and (B.32) are also valid when YjmIj
and n̂sIj are evaluated at a general point with
χ 6= 0.

3. Rotations

Let us consider an active rotation of angles
R(α, β, γ). With the Euler angle notation, it

consists in actively rotating around the z-axis by
an angle γ, then actively rotating around the y-
axis by an angle β, and finally rotating around
the z-axis by an angle α. The rotated spher-
ical and spin-weighted spherical harmonics are
related to the original ones by (see e.g. appendix
A of [33] or appendix D.3 of [34])

R[sY
m
` n̂sIj ] =

∑
m′

D`
m′m(R)sY

m′
` n̂sIj (B.33)

where the Wigner D-coefficients are related to
spin spherical harmonics through

sY
m
` (β, α) =

√
2`+ 1

4π
(−1)meisγD`

−ms(α, β, γ) .

(B.34)
In particular, when considering only a rotation
Ry(π) around the y-axis by an angle π (that is
α = 0, β = π, γ = 0)

D`
m′m(Ry(π)) = δm−m′(−1)`+m

′
, (B.35)

and

Ry(π)[sY
m
` n̂sIj ] = (−1)`−msY

−m
` n̂sIj . (B.36)

Appendix C: A compendium of useful
formulae

1. Explicit expression of the generalized
helicity basis

From the general formula to extract the STF
part from a symmetric tensor (see e.g. Eq. (2.2)
of [13]) one infers the general expression for the
generalized helicity basis which is

n̂±sI` =

[(`−s)/2]∑
n=0

sa
`
n g(iii2 . . . gi2n−1i2n

n±i2n+1
. . . n±i2n+sni2n+s+1 . . . ni`) , (C.1)

where the parentheses mean full symmetrization
on enclosed indices, and with the coefficients

sa
`
n ≡

(−1)n(2`− 2n− 1)!!(`− s)!
(2`− 1)!!(2n)!!(`− 2n− s)!

. (C.2)

It is instructive to write down explicitly the
first few terms of the generalized helicity ba-
sis (2.10). For j = 1, we have by convention
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n̂i = ni and n̂±1
i = n±i . For two and three in-

dices, we find respectively

n̂ij = ninj − 1
3gij ,

n̂±1
ij =

1

2
(n±i nj + nin

±
j ),

n̂±2
ij = n±i n

±
j ,

(C.3)

and

n̂ijk = ninjnk −
1

5
(gijnk + gjkni + gkini),

n̂±1
ijk =

1

3
(n±i njnk + nin

±
j nk + ninjn

±
k ),

− 1

15
(gijn

±
k + gjkn

±
i + gkin

±
i ),

n̂±2
ijk =

1

3
(n±i n

±
j nk + n±i njn

±
k + nin

±
j n
±
k ),

n̂±3
ijk = n±i n

±
j n
±
k . (C.4)

2. Products and contractions

In the process of obtaining recursive relations
among radial functions, we encounter a series of
products and contractions of generalized helic-
ity basis elements which we now collect. The
contractions

n̂
I`−1p
±s np = n̂

I`−1
±s

(`2 − s2)

`(2`− 1)
(C.5)

n̂I`−1pn±p = − `− 1

2`− 1
n̂
I`−1
± (C.6)

generalize Eq. (A23) of [15]. For s ≥ 0 we also
find

n̂
I`−1p
±s n±p = −(`− s)(`− s− 1)

`(2`− 1)
n̂
I`−1

±(s+1) . (C.7)

For s > 0 we obtain

n̂
I`−1p
±s n∓p =

(`+ s)(`+ s− 1)

2`(2`− 1)
n̂
I`−1

±(s−1) . (C.8)

Repeated application of (C.5)-(C.8) allows to
prove the orthogonality property (2.12).

Defining the Levi-Civita tensor on the
spheres as

εij = nkεkij , (C.9)

we also have parity inverting relations

εp〈i` n̂
±s
I`−1〉p = ± is

`
n̂±sI` . (C.10)

Let us now collect relations related to prod-
ucts of the generalized helicity basis. Applying
A3 of [15], we get

n̂I`±sn
j = n̂

〈I`j〉
±s +

(`− s)(`+ s)

`(2`+ 1)
n̂
〈I`−1
±s gi`〉j

± is

`+ 1
ε j〈i`p n̂

I`−1〉p
±s . (C.11)

For s ≥ 0 we also find

n̂I`±sn
j
± = n̂I`j±(s+1) ∓

i(`− s)
`+ 1

ε j〈i`p n̂
I`−1〉p
±(s+1)

− (`− s)(`− s− 1)

`(2`+ 1)
n̂
〈I`−1

±(s+1)g
i`〉j .

(C.12)

For s > 0 it reads instead

n̂I`±sn
j
∓ = −1

2
n̂I`j±(s−1) ∓

i(`+ s)

2(`+ 1)
ε j〈i`p n̂

I`−1〉p
±(s−1)

+
(`+ s)(`+ s− 1)

2`(2`+ 1)
n̂
〈I`−1

±(s−1)g
i`〉j .(C.13)

Note that the missing case s = 0 for this relation
is in fact given by (C.12) evaluated in s = 0.

Finally, note that the STF part of products
of helicity vectors are the expected relation (for
s ≥ 0)

n̂
〈I`
±sn

j〉
± = n̂I`j±(s+1) (C.14)

but one should be careful that for s ≥ 1 we also
find

n̂
〈I`
±sn

j〉
∓ = −1

2
n̂I`j±(s−1) . (C.15)

3. Derivatives of helicity basis

a. Simple derivative

In this section, we collect relations related
to derivatives of the generalized helicity basis.
We work on the maximally symmetric curved
space with metric (2.1) whose associated covari-
ant derivative is ∇i. We first find

∇pn̂±sIj =
±is

r(χ)
cot θeφp n̂

±s
Ij

+ (j − s) cotχ
[
gp〈ij n̂

±s
Ij−1〉 − npn̂

±s
Ij

]
− s cotχn±p n̂

±(s−1)
Ij

. (C.16)
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The first line might seem peculiar at first sight,
but it can be absorbed when considering in-
stead the derivative of products of spin-weighted
spherical harmonics multiplied by the associated
helicity basis, which is precisely what we always
have in all expressions. Indeed, for s > 0 we get

∇p(±sY m
` n̂±sIj ) = (C.17)

+(j − s) cotχ
[
gp〈ij n̂

±s
Ij−1〉 − npn̂

±s
Ij

]
±sY

m
`

−s cotχn±p n̂
±(s−1)
Ij ±sY

m
`

∓
(+λ

s
`)√

2r(χ)
±(s+1)Y

m
` n±p n̂

±s
Ij

±
(−λ

s
`)√

2r(χ)
±(s−1)Y

m
` n∓p n̂

±s
Ij
,

and in the particular case s = 0 we find simply

∇p(Y m
` n̂Ij ) = (C.18)

+j cotχ
[
gp〈ij n̂Ij−1〉 − npn̂Ij

]
Y m
`

− 1

r(χ)

√
`(`+ 1)

2
+Y

m
` n+

p n̂Ij

+
1

r(χ)

√
`(`+ 1)

2
−Y

m
` n−p n̂Ij .

From (C.14) and (C.15), it is obvious to consider
only the STF part of these relations.

b. Divergence of helicity basis

Furthermore, by contraction with gpij of the
expressions in the previous section, we obtain
relations associated with the divergence of an
helicity basis. For s > 0 it is

∇p(±sY m
` n̂±sIj−1p

) =
(j2 − s2)

j(2j − 1)
(C.19)

×
{

(j + 1) cotχ±sY
m
` n̂±sIj−1

±
(+λ

s
`)√

2r(χ)

(j − s− 1)

(j + s) ±(s+1)Y
m
` n̂

±(s+1)
Ij−1

±
(−λ

s
`)√

2r(χ)

(j + s− 1)

2(j − s) ±(s−1)Y
m
` n̂

±(s−1)
Ij−1

}
whereas in the s = 0 case it is

∇p(Y m
` n̂Ij−1p) =

j(j + 1)

2j − 1
cotχY m

` n̂Ij−1

+
1

r(χ)

√
`(`+ 1)

2

(j − 1)

(2j − 1)
+1Y

m
` n̂+1

Ij−1

− 1

r(χ)

√
`(`+ 1)

2

(j − 1)

(2j − 1)
−1Y

m
` n̂−1

Ij−1
.

c. Curl of helicity basis

The curl is also deduced by contraction with
the Levi-Civita tensor of the expressions in sec-
tion a. If s > 0 we get

curl
(
±sY

m
` n̂±sIj

)
= ±i

s

j
cotχ±sY

m
` n̂±sIj

+i
(+λ

s
`)

2r(χ)

(j − s)
j ±(s+1)Y

m
` n̂

±(s+1)
Ij

−i
(−λ

s
`)

2r(χ)

(j + s)

2j ±(s−1)Y
m
` n̂

±(s−1)
Ij

(C.20)

and for s = 0 we get simply

curl
(
Y m
` n̂Ij

)
= (C.21)

i

√
`(`+ 1)√
2r(χ)

(
+1Y

m
` n̂+1

Ij
+ −1Y

m
` n̂−1

Ij

)
.

d. Laplacian

For a generic function f(χ), and using twice
(C.17) we find for s > 0

∆(f±sY
m
` n̂

Ij
±s) = (C.22)

+
[
f ′′ + 2 cotχf ′

]
±sY

m
` n̂

Ij
±s

+
[
f cot2(χ)(s2 − j(j + 1))

]
±sY

m
` n̂

Ij
±s

+

[
f

r2(χ)
(s2 − `(`+ 1))

]
±sY

m
` n̂

Ij
±s

∓ cotχ

r(χ)
(j − s)

√
2(+λ

s
`)±(s+1)Y

m
` n̂

Ij
±(s+1)

∓ cotχ

r(χ)

(j + s)√
2

(−λ
s
`)±(s−1)Y

m
` n̂

Ij
±(s−1) .
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In the s = 0 case we find

∆(fY m
` n̂Ij ) = (C.23)[

f ′′ + 2 cotχf ′ − f cot2(χ)j(j + 1)
]
Y m
` n̂Ij

− f

r2(χ)
`(`+ 1)Y m

` n̂Ij

− cotχ

r(χ)
j
√

2`(`+ 1)+1Y
m
` n̂

Ij
+1

+
cotχ

r(χ)
j
√

2`(`+ 1)−1Y
m
` n̂

Ij
−1 .

Appendix D: Geographical recursion
relations

We collect recursive relations among radial
functions in the (j, s) plane. We illustrate in
Fig. 1 the radial functions which are related by
these individual relations.

The NSW relation, whose derivation is sum-
marized in section (3.2) is ( for 0 ≤ s ≤ j)

(+λ
s
`)(+λ

s
j)

(j + s+ 1)r(χ)
±sα

(jm)
` =

(j − s) cotχ ±(s+1)α
(jm)
`

+
(s+1)κ

m
j+1

(2j + 1) ±(s+1)α
(j+1,m)
`

+
(j − s) (s+1)κ

m
j

(2j + 1)(j + 1 + s) ±(s+1)α
(j−1,m)
`

±i
(j − s)mν
j(j + 1) ±(s+1)α

(jm)
` . (D.1)

It is understood that when j = s, this is a re-

lation linking ±sα
(jm)
` to ±(s+1)α

(j+1,m)
` only. In-

deed the coefficients in front of these two terms
contain

√
j − s, but the coefficients in front of

the other terms contain (j−s) (and also multiply
radial functions that no longer satisfy |s| ≤ j).
Hence it must be understood that we must di-
vide first by

√
j − s before evaluating in j = s

and we get

(+λ
j
`)√

2r(χ)
±jα

(jm)
` = ±(j+1)α

(j+1,m)
` × (D.2)√

(j + 1)2 −m2

(j + 1)(2j + 1)

√
ν2 −K(j + 1)2 .

A recursive application of this relation allows to

deduce s=jα
(j,0)
` from 0ε

(00)
` = Φν

` . Using (3.26),
we then recover (3.13).

As for the NSE relation, it is (0 < s ≤ j)

(−λ
s
`)(−λ

s
j)

(j − s+ 1)r(χ)
±sα

(jm)
` =

(j + s) cotχ ±(s−1)α
(jm)
`

+
(s−1)κ

m
j+1

(2j + 1) ±(s−1)α
(j+1,m)
`

+
(j + s) (s−1)κ

m
j

(2j + 1)(j + 1− s) ±(s−1)α
(j−1,m)
`

∓i
(j + s)mν

j(j + 1) ±(s−1)α
(jm)
` . (D.3)

Combining relations NS (3.23) with the NSE
or NSW leads to the a set of four triangular re-
lations (see interpretation of this denomination
on Fig. 1)

• NW relation (for 0 < s ≤ j) :

(−λ
s
`)(−λ

s
j)

(j + s)r(χ)±(s−1)α
(jm)
` =

d

dχ
±sα

(jm)
` (D.4)

+(j + 1− s) cotχ ±sα(jm)
`

+
sκ
m
j

(j + s)
±sα

(j−1,m)
` ± i

mν

j
±sα

(jm)
` .

• NE relation (for 0 ≤ s < j) :

(+λ
s
`)(+λ

s
j)

(j − s)r(χ)±(s+1)α
(jm)
` =

d

dχ
±sα

(jm)
`

+(j + 1 + s) cotχ ±sα
(jm)
` (D.5)

+
sκ
m
j

(j − s) ±s
α

(j−1,m)
` ∓ i

mν

j
±sα

(jm)
` .

• SW relation (for 0 < s ≤ j + 1) :

(−λ
s
`)(−λ

s
j)

(j + 1− s)r(χ)±(s−1)α
(jm)
` = − d

dχ
±sα

(jm)
`

+(j + s) cotχ ±sα
(jm)
` (D.6)

+
sκ
m
j+1

(j + 1− s) ±s
α

(j+1,m)
` ± i

mν

j + 1
±sα

(jm)
` .

In the case s = j + 1, it reduces to a re-

lation between±(s−1)α
(jm)
` and ±sα

(j+1,m)
` .

However, both terms contain a factor
1/
√
j + 1− s, so it must be understood

that the expression is to be multiplied
by
√
j + 1− s before being evaluated in

s = j + 1, and we recover (D.2).
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• SE relation is (for 0 ≤ s < j) :

(+λ
s
`)(+λ

s
j)

(j + 1 + s)r(χ)±(s+1)α
(jm)
` = − d

dχ
±sα

(jm)
`

+ (j − s) cotχ ±sα(jm)
` (D.7)

+
sκ
m
j+1

(j + 1 + s)
±sα

(j+1,m)
` ∓ i

mν

j + 1
±sα

(jm)
` .

Let us also stress that by taking the difference
of the NW and NE relations, we obtain a useful
NW-NE relation which involves no derivative,
which is (for 0 < s < j)

(+λ
s
`)(+λ

s
j)

2r(χ)(j − s)±(s+1)α
(jm)
` = (D.8)

(−λ
s
`)(−λ

s
j)

2r(χ)(j + s)±(s−1)α
(jm)
` ∓ i

mν

j
±sα

(jm)
`

+ s cotχ±sα
(jm)
` +

s

(j2 − s2)
sκ
m
j ±sα

(j−1,m)
` .

Similarly, one could combine the SW and SE re-
lations to get a SW-SE relation without deriva-
tives.

Appendix E: Divergence, curl and STF
recursions

Following the method of section 3.2, we can
obtain recursive relations among radial functions
in the (j, s) space, from the divergence relation
(2.25), the curl property (3.16), and the STF
construction of derived modes (2.23).

The divergence relation leads for 0 < s ≤ j
to

d

dχ
±sα

(jm)
` + (j + 1) cotχ±sα

(jm)
` (E.1)

+
j

j2 − s2 sκ
m
j ±sα

(j−1,m)
`

=
(+λ

s
`)(+λ

s
j)

2r(χ)(j − s)±(s+1)α
(jm)
`

+
(−λ

s
`)(−λ

s
j)

2r(χ)(j + s)±(s−1)α
(jm)
` .

In the s = 0 case it reduces to

d

dχ
0ε

(jm)
` + (j + 1) cotχ 0ε

(jm)
` +

0κ
m
j

j
0ε

(j−1,m)
`

=

√
`(`+ 1)(j + 1)√

jr(χ)
1ε

(jm)
` . (E.2)

We can check that this latter case corresponds
to the real part of the NE relation (D.5).

The curl relation among radial functions is
for 0 < s ≤ j

s

[
d

dχ
±sα

(jm)
` + cotχ±sα

(jm)
`

]
± imν±sα

(jm)
`

= −
(+λ

s
`)(+λ

s
j)

2r(χ) ±(s+1)α
(jm)
`

+
(−λ

s
`)(−λ

s
j)

2r(χ) ±(s−1)α
(jm)
` . (E.3)

In the s = 0 case it reduces to

1β
(jm)
`

√
`(`+ 1)j(j + 1)

r(χ)
= −mν0ε

(jm)
` . (E.4)

This latter relation is exactly the imaginary part
of the NE relation (D.5) or the SE relation (D.7).
Note also that combining the curl relation (E.3)
and the div relation (E.1) allows to remove the
derivative of the radial function and leads also
the NW-NE relation without derivative (D.8).

Finally the STF construction of derived har-
monics brings the relation (for 0 < s ≤ j)

d

dχ
±sα

(jm)
` − j cotχ±sα(jm)

` (E.5)

− (j + 1)

(j + 1)2 − s2 sκ
m
j+1 ±sα

(j+1,m)
`

= −
(+λ

s
`)(+λ

s
j)

2r(χ)(j + 1 + s)±(s+1)α
(jm)
`

−
(−λ

s
`)(−λ

s
j)

2r(χ)(j + 1− s)±(s−1)α
(jm)
` .

The case j = s + 1 can also be considered with
method similar to those detailed after (D.6), and
it also reduced to (D.2).

In the s = 0 case it is

d

dχ
0ε

(jm)
` − j cotχ 0ε

(jm)
` − 0κ

m
j+1

j + 1
0ε

(j+1,m)
`

= − 1

r(χ)

√
`(`+ 1)j

(j + 1)
1ε

(jm)
` . (E.6)

This latter relation is nothing but the real part
of the SE relation (D.7).

We then check that combinations of all the
relations of this section can be used to form the
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triangular relations (NW, NE, SW and SE re-
lations). Hence this is an alternative derivation
for all recursions among radial functions in the
(j, s) space. However, the fact that we need to
separate explicitly the real and imaginary parts
of the triangular relations in the cases s = 0
makes this derivation less direct and we prefer
the method based on the various projections of
(3.22).

Appendix F: Radial functions in flat space

In the flat case, there is a complete separabil-
ity between the angular and the spatial depen-
dencies. The spatial dependence is the same for
all modes, and thus the same as for scalar har-
monics, that is, it is a pure Fourier mode. We
choose to align the wavevector k of the Fourier
mode with the zenith direction ez. From this
separability, the plane-wave normal modes are
all of the form [6, 11]

sG
(jm)(r,n) =

cj
2j + 1

sY
m
j (n)eikez ·r , (F.1)

where r = rn, and r is now the radial coordi-
nate, corresponding to plane waves harmonics

Q
(jm)
Ij

(r,n) = 0g̃
(jm) cj

2j + 1
YjmIj eikez ·r . (F.2)

We do not use χ which was in units of curva-
ture, since now the curvature length `c is infi-
nite. Note that the Fourier mode magnitude k is
also no more in units of inverse curvature length.
In practice, the trigonometric functions sin(χ),
tan(χ) and cot(χ) need also to be replaced re-
spectively by r, r and 1/r in all expressions. Us-
ing the Rayleigh expansion

eikez ·n =
∑
`

√
4π(2`+ 1)i`j`(kr)Y

0
` (n) (F.3)

the decomposition of the plane-wave normal
modes is then given by

sG
(jm)(r,n) =

∑
`

c` sα
(jm)
` (kr)sY

m
` (n) (F.4)

with the radial functions built as

sα
(jm)
` (x) ≡

∑
L

sCm0m
`Lj jL(x)iL+j−`

×

√
(4π)(2L+ 1)

(2`+ 1)(2j + 1)
, (F.5)

with the coefficients sCm0m
`Lj defined in (F.9).

The j` are the usual spherical Bessel func-
tions satisfying the relations

j′`(x) =
1

2`+ 1
[`j`−1(x)− (`+ 1)j`+1(x)]

j`(x)

x
=

1

2`+ 1
[j`−1(x) + j`+1(x)] (F.6)

with j0(x) ≡ sin(x)/x. They also satisfy the
differential equation

1

x2

d

dx

(
x2 d

dx
j`

)
+

[
1− `(`+ 1)

x2

]
j` = 0 , (F.7)

and the normalization condition∫
j`(ax)j`(bx)x2dx =

π

2

δ(a− b)
a2

. (F.8)

The constants in (F.5) are the so-called Gaunt
coefficients, and are defined as

sCm1m2m3
`1`2`3

≡
∫

d2Ω (sY
m1 ?
`1

) (Y m2
`2

) (sY
m3
`3

)

= (−1)m1+s

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

×

(
`1 `2 `3
s 0 −s

)(
`1 `2 `3
−m1 m2 m3

)
, (F.9)

where the 3×2 matrices on the third line are the
well-known Wigner 3-j symbols. From the sym-
metry properties of the 3-j symbols, we deduce
that

sCm0m
`Lj = mCs0s`Lj ,

sCm0m
`Lj = sCm0m

jL` (F.10)

which with (F.5) proves rigorously the properties
(3.26) and (3.27) in the flat case.

Let us now collect the explicit forms of the
radial functions in flat space. We recover results
of [6, 7] for s = 0 or s = 2 up to the global
sign inversion for odd modes since we collect re-
sults when defining harmonics with respect to
the observed direction (see section 7.1 for prop-
agation direction harmonics). We also use the
compact notation x ≡ kr and we recall that in
the flat case ξn = 1 for all n since ν = k, so
the constants sg

(jm) are directly read from those
reported in section 4. The first radial functions
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are

0ε
(00)
` = j`(x), (F.11a)

0ε
(10)
` = j′`(x), (F.11b)

1ε
(10)
` =

√
`(`+ 1)

2

j`(x)

x
, (F.11c)

0ε
(20)
` =

1

2

[
3j′′` (x) + j`(x)

]
, (F.11d)

1ε
(20)
` =

√
3`(`+ 1)

2

d

dx

(
j`(x)

x

)
,(F.11e)

2ε
(20)
` =

√
3(`+ 2)!

8(`− 2)!

j`(x)

x2
, (F.11f)

0ε
(11)
` =

√
`(`+ 1)

2

j`(x)

x
, (F.12a)

1ε
(11)
` =

1

2

d(xj`(x))

xdx
, (F.12b)

1β
(11)
` = −1

2
j`(x) , (F.12c)

0ε
(21)
` =

√
3`(`+ 1)

2

d

dx

(
j`(x)

x

)
, (F.13a)

1ε
(21)
` = j′′` (x) +

j′`(x)

x
− j`(x)

x2
+
j`(x)

2
,

1β
(21)
` = −1

2
x

d

dx

(
j`(x)

x

)
, (F.13b)

2ε
(21)
` =

√
(`+ 2)(`− 1)

2

1

x2

d

dx
[xj`(x)],

2β
(21)
` = −

√
(`+ 2)(`− 1)

2

j`(x)

x
, (F.13c)

0ε
(22)
` =

√
3(`+ 2)!

8(`− 2)!

j`(x)

x2
, (F.14a)

1ε
(22)
` =

√
(`+ 2)(`− 1)

2

1

x2

d

dx
[xj`(x)],

1β
(22)
` = −

√
(`+ 2)(`− 1)

2

j`(x)

x
, (F.14b)

2ε
(22)
` =

1

4

[
j′′` (x)− j`(x) + 4

j′`(x)

x
+ 2

j`(x)

x2

]
,

2β
(22)
` = − 1

2x2

d

dx
[x2j`(x)]. (F.14c)

Appendix G: Comparison with literature

The harmonics built in this paper can be re-
lated to the scalar, vector and tensor harmonics
derived in [4] and [10] in the closed case, and ex-
pressed in the usual orthonormal spherical basis
(2.6) rather than with the helicity basis. In these
references, the harmonics and derived harmon-
ics are separated into their electric (even parity)
and odd parity by considering the contributions

`Q
(j,|m|)
Ij

± `Q
(j,−|m|)
Ij

. (G.1)

From the property (2.42), we see that the plus
sign selects only the contribution of the electric
(even parity) radial modes, whereas the nega-
tive sign selects the magnetic (odd parity) radial
modes. To be specific the three vector harmonics
defined in Eqs. (12-14) of [10] are proportional to
respectively the m = 0 harmonics (necessarily of
even type), the m = 1 magnetic harmonics, and
the m = 1 electric harmonics, where the nota-
tion used is k ≡ ν−1, such that it takes positive
integer values. Similarly the tensor harmonics of
Eqs. (26-30) are successively proportional to the
m = 1 magnetic harmonics, the m = 1 electric
harmonics, the m = 0 harmonics (necessarily of
even type), the m = 2 magnetic harmonics and
the m = 2 electric harmonics.

The spectrum of eigenvalues of the Laplacian
can also be compared for scalar and vector har-
monics with the exterior calculus approach of
[35] in the closed case, and we now detail our
agreement. We still work in units such that
`c = 1. The Laplace-de Rahm operator is de-
fined as ∆̃ ≡ −(dδ + δd). For scalar functions it
matches exactly the Laplace-Beltrami operator
(2.19). In the closed case the set of eigenvalues
for scalar harmonics (j = m = 0) is the set of
k2 = ν2 − 1 = L(L+ 2) where L ≥ 0 and ν ≥ 1
are integers. For the derived vector valued har-
monics (j = 1 and m = 0) which correspond
to exact forms, we find that the spectrum is the
same since

∆̃∇iQ(00) = ∇i∆Q(00) = −k2∇iQ(00) . (G.2)

However for vector harmonics (j = m = 1),
which correspond to co-exact forms since they
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are divergenceless, we find

∆̃Q
(11)
i = (∆− 2K)Q

(11)
i = −(k2 + 2K)Q

(11)
i .

The spectrum of ∆̃ in that case is the set of
k2 + 2 = ν2 with the integer values ν ≥ 2, in
agreement with [35].

Appendix H: Tables of symbols

We gather in the Tables below the most com-
monly used symbols of this work.

Variable Definition

r(χ) (2.2)

K (2.3)

ν (2.27)

bjs (2.13)

djs (2.13)

kjs (2.18)

sg
(jm) (2.33)

sg̃
(jm) (2.34)

c`, c̄` (2.29), (7.6)

ξn (3.14)

q(jm) (2.26)

Nm
j (5.4)

sin, tan, cot § 2.1

sκ
m
` (3.19)

±λ
s
` (3.7)

ζm` (6.1)

∆` (B.17)

TABLE II: Main symbols used in the construction of
harmonics.

Function Definition

n̂sIj (2.10)

sα
(jm)
` (2.28)

sε
(jm)
` , sβ

(jm)
` (2.40)

sG
(jm)
` (2.28)

sG
(jm) (6.2)

`Q
(jm)
Ij

§ 2.4

Q
(jm)
Ij

(6.1)

sG
(jm)
`M , sG

(jm)
` (ν) § 3.5

`MQ
(jm)
Ij

, `Q
(jm)
Ij

(ν) § 3.5

sG
(jm)(ν), § 6.2

Q
(jm)
Ij

(ν) § 6.2

YI`
`m (B.18)

TABLE III: Main functions and tensors used in build-
ing harmonics. The barred version of these functions
are related to the propagating direction, and are de-
fined in § 7.1.
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