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The gravitational wave radiation emitted by all, resolved and unresolved, astrophysical sources
in the observable universe generates a stochastic background. This background has a directional
dependence inherited from the inhomogeneities of the matter distribution. This article proposes
a new and independent derivation of the angular dependence of its energy density by focusing on
the total gravitational wave signal produced by an ensemble of incoherent sources. This approach
clarifies the origin of the angular correlation and the relation between the gravitational wave signal
that can be measured by interferometers and the energy density of the stochastic background.

I. INTRODUCTION

The superposition of the gravitational wave (GW)
radiation emitted by all, resolved and unresolved, as-
trophysical sources in our universe is at the origin of a
stochastic background of gravity waves of astrophysi-
cal origin (AGWB). This background has a directional
dependence inherited from the inhomogeneities of the
matter distribution in the universe, in full analogy
with the electromagnetic background of radiation, see
e.g. Refs. [1–4]. Moreover, the fact that an emitted
GW signal propagates in an inhomogeneous universe,
gives an additional effect similar to lensing in optics.

In a previous analysis [5], we provided
an expression for the AGWB energy density
d3ρGW(e

O
, ν

O
)/(d2e

O
dν

O
) observed in a solid

angle d2e
O

around a direction e
O

, for an observed
frequency ν

O
. This expression is similar to the

Sachs-Wolfe formula [1] for the Cosmic Microwave
Background temperature anisotropy. It relies on
an energetic analysis and on a coarse-graining from
astrophysical to galactic and then cosmological scales
so that the observed GW flux depends on the effective
luminosity of all the galaxies per unit of solid angle.
The effective luminosity of a galaxy, being the sum
of the contributions of all the GW sources inside it,
depends on the mass of the galaxy but also on many
astrophysical parameters such as the star formation
rates, the stellar evolution, the formation of binary
neutron stars or black hole systems. Hence, the
final result for the energy density of the background
has an astrophysical dependence and a cosmological
dependence through the galaxy distribution and the
gravitational and velocity field distributions. The fact
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that these cosmological variables are correlated on
cosmological scales induces an angular correlation of
the AGWB energy density, which can be characterized
by its angular power spectrum. This quantity also
correlates with other cosmological probes, such as
lensing and galaxy number counts.

From an experimental perspective, ground-based in-
terferometers, such as LIGO and its advanced config-
uration (aLIGO), VIRGO1, and pulsar time arrays,
such as the radio telescope Parks Pulsar Timing Ar-
ray2 (PPTA), the Large European Array for Pulsar
Timing3 (LEPTA) and the future International Pul-
sar Timing Array4 (IPTA), do not directly measure
the AGWB energy density but the GW signal of a
given polarization in a given direction and a given fre-
quency. In Ref. [6] a search for the isotropic stochastic
GW background has been performed using data from
Advanced LIGO’s first observing run. The total GW
density parameter (in units of 3H2

0 ) is constrained to
be ρGW < 1.7×10−7 with 95% confidence, assuming a
flat energy density spectrum in the most sensitive part
of the LIGO band (20-86 Hz). At low frequencies, Pul-
sar Timing Arrays give a bound ρGW < 1.3× 10−9 for
ν = 2.8 × 10−9 Hz [7]. The possibility of measuring
and mapping the gravitational wave background is dis-
cussed in Refs. [8–13] while the description of the dif-
ferent methods which can be used by LIGO and LISA
(Laser Interferometer Space Antenna) to reconstruct
an angular resolved map of the sky can be found in
Ref. [14]. An analogous discussion for Pulsar Timing
Arrays is presented in Refs. [15–19].

An introduction to the different astrophysical
sources contributing to this background can be found

1 https://www.ego-gw.it/public/about/whatIs.aspx
2 http://www.atnf.csiro.au/research/pulsar/ppta/
3 http://www.leap.eu.org
4 http://www.ipta4gw.org
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in Refs. [20–22] while motivations for direct searches
for a stochastic GW background, both isotropic and
anisotropic, can be found in Ref. [23].

The AGWB signal is usually characterized in terms
of the amplitude for a given polarization A, hA(e0, ν0),
and of its 2-point function. A natural question con-
cerns the way to relate this observed GW signal to the
AGWB energy density computed in Ref. [5]. The goal
of this article is to make the relation between the two
approaches explicit and to clarify some ambiguities.

This work gives an independent derivation of the
angular dependence of the AGWB energy density.
It explicitly shows why it is correlated even though
the AGWB signal is the superposition of incoherent
signals. It also paves the way to the reflection on the
possibility to measure the stochastic GW background
and on the different methods which can be used to
achieve this goal.

The article is organized as follows. After a sum-
mary of some general definitions in Section III, Sec-
tion IV defines the energy density of the AGWB per
units of solid angle as the flux of GW from astrophys-
ical sources that we receive in a given direction and
recalls the expression derived in Ref. [5]. Section V
focuses on the propagation of GW in a curved space-
time, in the eikonal approximation. This approach is
very similar to the one used in optics. To conclude,
Section VI explains how the observed GW signal is
related to the observed AGWB energy density. Be-
fore going to technical details, Section II proposes an
heuristic explanation of this relation.

II. HEURISTIC ARGUMENT

For the sake of the argument, we model galaxies as
point-like sources each one emitting GW of amplitude
hi. In fact, this signal is given by the incoherent su-
perposition of all of the GW emitted by the sources
inside the galaxy. However, neglecting this additional
complication does not alter the main argument. Later
in this paper we will refine our model.

The amplitude of the GW signal measured in the di-
rection e

O
and in the solid angle d2e

O
, per frequency

ν
O

is simply the sum of the signals emitted by the
sources contained in a bundle of the observer past light
cone around the direction of observation. Schemati-
cally it is of the form

hobs(xO
, t

O
, e

O
; t) ∝

N(e
O

)∑
i

hi[Pem(x
O
, t

O
)] , (1)

where tO is the cosmic time today (i.e. at the observer
position) and t stands for the time measured in the
laboratory. Pem(xO , tO) is the emission point and its
coordinates are related by a null geodesic to the ob-
server position (x

O
, t

O
). The number of sources along

this line of sight is given by N(e
O

), which is a stochas-
tic variable related to the source distribution (indeed

in a more refined description, this sum can be thought
as an integral over the light cone parameterized, e.g.
by the redshift, so that the stochastic variable will sim-
ply be the number of sources in the beam for a given
redshift bin).

This GW signal can in principle be measured by
interferometers, and it is related to the energy density
per unit of solid angle by

d2ρGW

d2e
O

(x
O
, e

O
) ∝ [ḣobs(tO ,xO

, e
O

)ḣobs(tO ,xO
, e

O
)] ,

(2)
where a dot denotes a derivative with respect to t and
the square brackets refer to a time average on a time
scale larger than the typical period of the signal. Since
the signals in the sum are incoherent, [ḣiḣj ] ∝ δij , we
have

d2ρGW

d2eO

(xO , eO) ∝
N(e

O
)∑

i

d2ρGW

d2eO

[Pem(xO , tO)] . (3)

This quantity is a stochastic variable since N(e
O

) is
a stochastic variable. It follows that the correlation
function between different directions

C(eO · e′O) =

〈
d2ρGW

d2eO

(eO)
d2ρGW

d2e′
O

(e′
O

)

〉
, (4)

is non-vanishing. In Eq. (4), the angular brackets
stand for an average on the cosmological stochastic
variables. From the mapping of d2ρGW /d

2e
O

obtained
in principle thanks to GW radiometry [10], we can
form an estimator of (4), exactly like the C` of the
Cosmic Microwave Background (CMB) are estimated
from its observed intensity map.

Even if the GW sources are uncorrelated due to their
incoherent nature, the energy density of the GW back-
ground they collectively produce is correlated. This
correlation is inherited from the one of the cosmologi-
cal variables. Naively, we could conclude that the cor-
relation function C is related to the correlation func-
tion of the number of galaxies weighted by the GW
luminosity of the galaxies.

This description is indeed simplistic but it explains
clearly the origin of the correlation. In order to make
it more rigorous, in the rest of this paper we shall

1. define the averages [. . . ] acting on the GW and
〈. . . 〉 acting on the cosmological variables;

2. relate the GW signal emitted by a galaxy to the
observed signal. This requires to study the prop-
agation of the GW in a perturbed cosmological
spacetime. Both the geodesic equation in the
eikonal limit and the Sachs equation for GW will
be needed in order to determine the evolution of
the amplitude of the waves;

3. determine the GW emitted by a galaxy as a func-
tion of the sources it contains (BH, NS binary
systems, etc.). This will define the GW lumi-
nosity of the galaxy which will depend on the



3

parameters of the galaxy (mass, metallicity,...)
and on its evolution (star formation rate, stellar
evolution,...).

Hence, the final result for the received signal as a func-
tion of the emitted ones indeed depends on the galaxy
number density, but also on the gravitational poten-
tial and on the velocity field since they enter in the
geodesic and Sachs equations.

The fact that the GW signal of the AGWB is not
correlated whereas the energy density does correlate
is not specific to a GW background: exactly the same
situation is realized for its electromagnetic counter-
part. For example, for the cosmological background of
electromagnetic radiation, the CMB, the electric field
that we receive from different directions plays an anal-
ogous role to the GW signal and it is an uncorrelated
field. On the other side, the analogous of the energy
density of the AGWB is the Cosmic Microwave Back-
ground intensity, which is proportional to the square
of the field and is characterized by a non-vanishing
two-point correlation function. The situation for the
21cm line diffuse background is much more similar to
the AGWB since its intensity mapping is performed
in radioastronomy, that is from the measurement of
the electric field through networks of radio-antenna,
as e.g. in the LOFAR5 experiment.

A derivation of the AGWB energy density based on
an energetic analysis was presented in Ref. [5]. We
propose now an alternative geometrical derivation of
this result, following the approach sketched in this sec-
tion.

III. GENERAL DEFINITIONS

This section details the definitions of the averages
used in our analysis and then recalls some textbook
results on the coarse-grained approach to GW propa-
gation and on the expression for the flux of GW. We
mostly follow Refs. [24–26].

A. Averages

We have seen that two different averages appear in
our approach. They are different in nature and for the
variables on which they act.

1. The symbol [· · · ] denotes the average entering in
the definition of the flux/energy density of GW.
GW vary on a time-scale much smaller than typ-
ical astrophysical scales and also much shorter
than the characteristic time-scale of the exper-
iment. Given a physical system, e.g. the GW
interferometer, characterized by a given quan-
tity A, e.g. the flux of energy of GW from a

5 http://www.lofar.org/

given direction, we denote by [A] the time aver-
age of A on a time-interval t̄ much larger that
the typical time-scale on which A varies,

[A(t)] ≡ 1

t̄

∫ t̄

0

dtA(t) . (5)

2. The symbol 〈· · · 〉 denotes the ensemble average
over stochastic initial conditions of the cosmolog-
ical variables, such as density field, gravitational
potential or velocity field. The stochasticity of
these variables is inherited from their quantum
origin during inflation. This average is the usual
ensemble average used in cosmology to compute
correlation functions and angular power spec-
tra of cosmological observables [27]. If B is a
stochastic quantity, to compare the statistical
properties of its observed distribution and the
theoretically predicted ones inside a given model,
it is necessary to introduce the spatial analogous
of the ergodic hypothesis.6

We emphasize that if B is a stochastic quantity, then
the ensemble average [B] is still stochastic. To avoid
confusion we will refer to the average 〈. . . 〉 as stochas-
tic ensemble average.

As we have explained in the previous section, the
energy density of the GW background is naturally de-
fined in terms of the two-point correlator [. . . ] of the
GW signal, which is still a stochastic field.

B. Coarse-grained form of Einstein equations

Let us now summarize the standard GR results on
the propagation of energy carried by GW. GW are per-
turbations over some curved, dynamical, background
metric ḡµν so that

gµν = ḡµν + hµν , |hµν | � 1 . (6)

A natural splitting between the space-time back-
ground and gravitational waves arises when there is
a clear separation of scales. In particular, a natural
distinction can be made in frequency space, if ḡµν has
frequencies up to a maximum value νB while hµν is
picked around frequency ν such that

ν � νB . (7)

In this case hµν is a high-frequency perturbation of a
static or slowly varying background.

The Einstein equations can then be expanded up to
quadratic order in hµν . Splitting them in high- and

6 The observed distribution is obtained by performing a sky-
average of a single realization, while the theoretical one is
obtained from an ensemble average on some stochastic initial
conditions in the frame of a model. This will give rise to an
irreducible cosmic variance.

http://www.lofar.org/
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low-frequency modes and averaging them over time,
i.e. using the average [· · · ], leads to the Einstein equa-
tion for the background metric

R̄µν −
1

2
ḡµνR̄ =

8πG

c4
(T̄µν + tµν) , (8)

where Tµν is the energy-momentum tensor of matter,
T is its trace, and R̄µν is constructed with ḡµν only.
By definition T̄µν is a purely low-frequency quantity
and it is defined as the smoothed form of the energy-
momentum tensor of matter while tµν arises from the
average of second order terms and is explicitely given
by

tµν ≡ −
c4

8πG
[R(2)
µν −

1

2
ḡµνR

(2)] . (9)

Its trace is t ≡ ḡµνtµν . This coarse-grained form of
the Einstein equations [24] determines the dynamics
of ḡµν in terms of the low-frequency part of the energy
momentum tensor of matter T̄µν and of a tensor tµν
which does not depend on the external matter but
only on the gravitational field itself at quadratic order
in hµν . It can be checked that the left hand side of
Eq. (8) is covariantly conserved with respect to D̄µ

thanks to the Bianchi identity,

D̄µ(T̄µν + tµν) = 0 . (10)

The high-frequency part of the Einstein equations then
implies that (see e.g. Ref. [24] for details)

D̄ρD̄ρh̄µν = 0 , (11)

at leading order in νB/ν once we adopt the Lorentz
gauge, defined by the condition

D̄ν h̄µν = 0 , (12)

where we have defined

h̄µν ≡ hµν −
1

2
ḡµνh , (13)

with h = hµν ḡ
µν . Equation (11) together with the

gauge condition (12), determines the propagation of
GW on a curved background in the limit νB/ν � 1.
When specialized to a perturbed Friedmann-Lemâıtre
spacetime, this equation allows one to characterize
the effect of the large scale structures on the wave
form, see e.g. [28].

Summarizing, the Einstein equations can be split
in a low- and high-frequency parts, which respectively
give the effect of GW and of external matter on the
background spacetime and a wave equation in curved
space describing the propagation of hµν .

C. The energy-momentum tensor of GW

Let us now present the explicit form of tµν defined
in Eq. (9) in order to make its physical interpretation
clear.

Far from the sources (e.g. at the position of
the detector) the background spacetime is well-
approximated by a Minkowski spacetime, i.e. ḡµν =
ηµν and D̄µ → ∂µ (in Minkowskian coordinates). It
follows that the equation describing the GW propaga-
tion, Eq. (11), becomes

2hµν = 0 , (14)

where 2 is the flat-space d’Alembertian, and the
Lorentz-gauge condition (12) reduces to

∂µhµν = 0 . (15)

This gauge condition is not spoiled by a further coordi-
nate transformation xµ → xµ+ξµ with 2ξµ = 0. This
residual gauge freedom still allows one to impose h̄ = 0
and h0i = 0, so that the Lorentz condition implies in
particular ∂0h00 = 0. This leads to the conditions

h0µ = 0 , hii = 0 , ∂jhij = 0 , (16)

which completely fix the transverse-traceless (TT)
gauge. The tensor tµν defined in Eq. (9), far from
the sources takes the form

tµν =
c4

32πG
[∂µhαβ∂νh

αβ ] . (17)

It can be checked that this object is invariant under
a linearized gauge transformation hµν(x)→ hµν(x)−
(∂µξν +∂νξµ). As a consequence, tµν depends only on
the physical modes hTTij and one can just replace the
metric hµν in Eq. (17) with the metric in TT gauge. In
particular, the gauge invariant energy density is given
by

t00 =
c2

32πG
[ḣTTij ḣ

TT
ij ] , (18)

where the dot denotes ∂t = (1/c)∂0. To conclude, far
from the sources where Tµν → 0, Eq. (10) reduces to

∂µtµν = 0 . (19)

D. The energy flux

The energy flux is the energy of GW flowing per
unit of time through a unit surface at a large distance
from the source. From the conservation equation (19)
for the energy momentum tensor, it follows that∫

V

d3x(∂0t
00 + ∂it

i0) = 0 , (20)

where V is a spatial volume in the far region, bounded
by a surface S. The GW energy inside the volume V
is

EV =

∫
V

d3x t00 , (21)
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so that Eq. (20) becomes

1

c

dEV
dt

= −
∫
V

d3x ∂it
0i = −

∫
S

dAeit
i0 , (22)

where ei is the outer normal to the surface and dA is
the surface element.7 Let S be a spherical surface at
large distance r from the source, then dA = r2dΩ and
e = r̂ is the unit vector in the radial direction. Thus,
we get

dEV
dt

= −c
∫

dAt0r , (23)

where

t0r =
c4

32πG
[∂0hTTij

∂

∂r
hTTij ] . (24)

Using that far from the source ∂rh
TT
ij (t, r) =

−∂0h
TT
ij (t, r) + O(1/r2) = ∂0hTTij (t, r) + O(1/r2), we

get

dEV
dt

= −c
∫

dAt00 . (25)

The fact that EV decreases means that the outward-
propagating GW carries away an energy flux

d2E

dAdt
(x

O
, e

O
) = ct00 (26)

=
c3

32πG
[ḣTTij (t

O
,x

O
, e

O
)ḣTTij (t

O
,x

O
, e

O
)] ,

where we have explicitly indicated the dependence on
the observer position xO (where the unit surface dA is
located) and on the direction of observation eO . This
energy flux has dimension of [mass4].

It is useful to introduce a polarization basis {ε+ij , ε
×
ij}

satisfying εAij(e)εijB(e) = 2δAB so that the two degrees
of freedom of the GW are decomposed as

hTTij (t
O
,x

O
, e

O
) =

∑
A=(+,×)

hA(t
O
,x

O
, e

O
)εAij(eO

) .

(27)
in terms of which Eq. (26) becomes

d2E

dAdt
(xO , eO) = cρGW (xO , eO) (28)

=
c3

16πG

∑
A=(+,×)

[ḣA(t
O
,x

O
, e

O
)ḣA(t

O
,x

O
, e

O
)] ,

7 More precisely, we take as volume V a spherical shell centered
on the source but far away from it, in such a way that both
its inner source and its outer source, S1 and S2 respectively
are in the wave region. The time derivative of EV is given by
the sum of two contributions: the energy flowing in through
S1 minus the energy flowing out from S2. We are interested
in the energy flux at a given distance from the source (e.g.
in the energy flowing through a unit surface of our detector)
which for definiteness we choose to be on the outer surface S2

so in the following we take S = S2.

where we have denoted as ρGW (x
O
, e

O
) the energy

density of the source we are considering, received in
the direction e

O
.

If we consider the contribution of several sources
located in an infinitesimal solid angle d2e

O
, they give

a total observed amplitude (of a given polarization)
d2htot

A . The corresponding infinitesimal energy density
in the solid angle d2eO is given by

d2ρGW (x
O
, e

O
) (29)

=
c2

16πG

∑
A=(+,×)

[d2ḣtot
A (tO ,xO , eO)d2ḣtot

A (tO ,xO , eO)] .

IV. CHARACTERIZATION OF A GW
BACKGROUND

A. Definitions

The background of GW of astrophysical origin can
be characterized in terms of its energy density defined
as

ρGW (xO) =

∫
d2eO

d2ρGW

d2eO

(xO , eO) , (30)

where the integrated quantity on the right hand side is
the energy density of the background per unity of solid
angle, which is related to the total amplitude received
through Eq. (29).

B. Our parametrization

In Ref. [5], we derived an analytic expression for the
energy density of GW in terms of the sum of the fluxes
from galaxies located in the solid angle around the
direction of observation, integrated along the line of
sight (for an alternative tentative based on the Boltz-
mann equation see Ref. [29]). The flow received from
a galaxy was expressed as a function of the effective
luminosity of the galaxy. The effective luminosity of
a galaxy was then written by considering the contri-
butions from the different GW sources it contains. In
other words, the idea underlying our approach was to
introduce different scales in the problem and to coarse-
grain from one to the other. This procedure allowed
us to write the energy density of the GW background
in terms of quantities defined on local scales of single
GW sources inside a galaxy.

In order to obtain a parametrization for the GW
signal that we receive from all resolved and unresolved
GW sources, we work in the same framework proposed
in Ref. [5]. We distinguish three scales:

• cosmological scale. The observer measures a GW
signal in a solid angle d2eO around a direction
eO . The angular resolution of the observer is
such that we assume galaxies to be point-like
sources emitting GW and comoving with the cos-
mic flow.
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• galactic scale. A galaxy is described by a set of
parameters θ

G
such as its mass, mean metallicity,

etc. We associate to each galaxy an effective GW
total signal given by the superposition of the GW
signals emitted by all the single GW sources it
contains.

• astrophysical scale. This is the local scale of sin-
gle GW sources.

It follows that the observed GW signal depends on
sub-galactic parameters (properties of the evolution

of binary systems, production of GW by astrophysical
sources,...), galactic parameters (star formation rate,
total mass, evolution of the metallicity,...) and cos-
mological parameters (distribution of the gravitational
potential, number density of galaxies, velocity fields).

C. Summary of our previous result

In Ref. [5], we found that

d3ρGW

dν
O

d2e
O

(x
O
, e

O
, ν

O
) =

1

4π

∫
dλ

∫
dθ

G

√
pµ(λ)pµ(λ)

[1 + zG(λ)]
3 n

G
[xµ(λ), θ

G
]L

G
(ν

G
, θ

G
) , (31)

where L
G

(ν
G
, θ

G
) is the effective luminosity of a galaxy

and ν
G

is the effective frequency of the galaxy. In this
expression, we integrate along the line of sight, param-
eterized by the affine parameter λ. Each galaxy in the
solid angle of observation is characterized by a set of
parameters θG (e.g. mass, metallicity,...). The quanti-
ties zG and nG correspond to the redshift and number
density of galaxy, respectively, while pµ is the spatial
projection of the wave-vector [see Sec. V B below for
detailed definitions].

V. GW PROPAGATION IN A UNIVERSE
WITH STRUCTURES

This section describes the propagation of a GW sig-
nal in a generic curved spacetime in the eikonal ap-
proximation. Our final goal is to express the GW sig-
nal that we receive from a given direction as a function
of the one at emission.

A. Eikonal approximation to GW propagation

Our approach follows the standard eikonal approx-
imation in geometric optics [30]. This approximation
holds for wavelengths λ much smaller than the other
typical length-scales in the problem, i.e. λ � LB
where LB is the typical length-scale of variation of
the background geometry and λ � Lc, where Lc is
the characteristic length-scale over which the ampli-
tude, polarization and wavelength of the field change
substantially. In particular, λ has to be smaller than
the curvature radius of the wavefront. The eikonal
approximation consists in looking for solutions of the
wave equation with a phase θ rapidly varying, i.e. θ
varies on a scale λ, while the amplitude and polariza-
tion of the wave change on a scale Lc, so it is slowly
varying. To perform the expansion systematically, it

is convenient to expand the GW as

hµν(x) = [Hµν(x) + εBµν(x) + . . . ] eiθ(x)/ε , (32)

where ε is a fictitious parameter to be finally set equal
to unity.8 We emphasize that an expansion of this
form is just an ansatz and its validity is verified by
substituting it in the equations.

Defining

kµ = D̄µθ = ∂µθ (33)

and Hµν = Hεµν with the polarization tensor satisfy-
ing ε∗µνε

µν = 1, at leading order in ε, Eqs. (11) and
(12) describing the propagation of GW on a curved
background give, respectively

ḡµνk
µkν = 0 , (34)

εµνkµ = 0 . (35)

From Eq. (34) it follows that 0 = D̄ν(kµk
µ) =

2kµD̄νD̄µθ, i.e.

0 = 2kµD̄µkν , (36)

which is simply the geodesic equation in the space-
time with the background metric ḡµν . Equation (34)
implies that the curves orthogonal to the surfaces of
constant phase (the rays in the geometric optic ap-
proximation) travel along the null geodesics of ḡµν .

To next-to-leading order in ε, Eq. (11) gives

kµ∂µH = −H
2
D̄µk

µ , (37)

kρ(D̄
ρεµν) = 0 , (38)

while Eq. (12) gives an equation for Bµν , i.e. a correc-
tion to the amplitude and polarization Hµν = Hεµν .

8 If a term has a factor εn attached, it is of the order (λ/L)n,
where L is the smallest scale between LB and Lc.
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Equation (35) shows that the polarization tensor is
transverse to the wave vector while Eq. (38) expresses
the fact that it is parallel transported along a geodesic.
Equation (37) can be rewritten as

D̄µ(H2kµ) = 0 , (39)

which shows that the current jµ = H2kµ is conserved.
Its conserved charge is the integral of H2k0 over a
constant time hypersurface. Taking into account that
each graviton carries an energy k0, it can be verified
that H2k0 is proportional to the number density of
gravitons so that the conserved charge is the number
of gravitons.

The set of equations (34-38) for kµ ≡ dxµ(λ)/dλ,
εµν = εµν [xµ(λ)] and H = H[xµ(λ)] can be solved
with initial conditions at the observer position λ = λ

O

and determine the wave signal at the spacetime point
xµ(λ), i.e. hµν [xµ(λ)].

B. Line of sight approach

Let us start from the geodesic equation (34)-(36)
describing the evolution of the phase of the GW signal
in the eikonal approximation.

We consider an observer with 4-velocity uµ (uµu
µ =

−1). At any time, his worldline is the origin of the ob-
server past lightcone containing all observed GW rays.
The 4-velocity uµ defines a preferred spatial section
and the spatial direction of GW propagation, defined
as the opposite of the direction of propagation of the
signal converging to the observer. It is spanned by the
spatial unit vector eµ ,

eµuµ = 0 , eµeµ = 1 , (40)

which provides the 3+1 decomposition of the wave 4-
vector

kµ = E (uµ − eµ) , (41)

where E = 2πν ≡ −uµkµ is the cyclic frequency of the
GW in the observer’s rest frame. The spatial projec-
tion of the wave 4-vector is

pµ ≡ (gµν + uµuν) kν = −Eeµ . (42)

The redshift zG of a source G is defined from the ratio
between the emitted frequency νG in the source’s rest
frame and the observed frequency in the observer’s rest
frame νO , i.e.

1 + z
G
≡ ν

G

ν
O

=
uµ

G
kµ(λG)

uµ
O
kµ(λ

O
)
, (43)

where uµ
G

is the 4-velocity of the source and uµ
O

is the
4-velocity of the observer. The source G located at
a redshift z

G
is emitting GW with a given frequency

spectrum. From the definition (43), it follows that

the frequency measured in O, ν
O

, is related to the
frequency at the emission, ν

G
, by

ν
G

= (1 + z
G

)ν
O
. (44)

Since xµ(λ) is the worldline of a graviton which in-
tersects the worldline of the observer at the time of
observation, it follows that

xµ(λ
O

) = xµ
O
,

dxµ(λ)

dλ

∣∣∣∣
λ=λ

O

= EO(uµ
O
− eµ

O
) . (45)

Therefore, xµ(λ) is a function of the direction of obser-
vation and of 4-position of the observer, i.e. xµ(λ) =
xµ(λ, eµ

O
, xµ

O
). In the following, to make the notation

compact, the dependence on eµ
O

and xµ
O

will be under-
stood.

C. Evolution of the GW amplitude

To derive the evolution of the GW amplitude from
Eq. (37), we study the deformation of a bundle of null
geodesics propagating in an inhomogeneous spacetime.
As we will show, the physical area of the beam is re-
lated to the amplitude of the GW signal in the eikonal
approximation.

Consider a geodesic bundle converging at the ob-
server position in O. In O, we choose an orthonormal
basis {kµ, uµ, sµ1 , s

µ
2} where

kµ ≡
dxµR
dλ

, (46)

is the tangent vector to the null reference-geodesic xµR,
uµ is the tangent vector to the observer’s worldline and
the two spacelike vectors sµ1 and sµ2 are spanning the
plane perpendicular to the line of sight, i.e.

uµu
µ = −1 , kµkµ = 0 ,

saµs
µ
b = δab , sµakµ = sµauµ = 0 . (47)

In full analogy with the electromagnetic case [30,
31], the Jacobi matrix D describes the propagation of
light (GW) beams. The associated deformation ma-
trix is naturally defined by

S ≡ dD
dλ

D−1 . (48)

It can be shown (see § 2.3 of Ref. [32]) that this matrix
is symmetric. It is usually decomposed into a trace ,

trS ≡ 2θ , (49)

and a trace-free part introducing the so-called optical
scalars. Alternatively, S can be defined by

Sab = sµas
ν
b D̄µkν , (50)

which can be checked to be equivalent to Eq. (48); see
Refs. [32–34]. By decomposing the tensor D̄µkν over
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the orthonormal basis (uµ, dµ, sµ1 , s
µ
2 ) and taking the

trace, it can be verified that

D̄µk
µ = trD . (51)

The physical cross-sectional area of a light beam is
defined by

A ≡
∫

beam

dξ1dξ2 =

∫
beam

detD
dξ1

O

dλ

dξ2
O

dλ
. (52)

For an infinitesimal beam, D can be considered con-
stant in the above integral and the evolution rate of A
with the affine parameter reads

1

A

dA

dλ
=

1

detD
d(detD)

dλ
= tr

(
dD
dλ

D−1

)
= trS .

(53)
Therefore, using Eq. (51), it follows

D̄µk
µ = 2θ =

1

A

dA

dλ
. (54)

Plugging Eq. (54) in Eq. (37) describing the evolution
of a GW amplitude in the eikonal approximation, and
after some trivial manipulations, we find

d

dλ

(
H2A

)
= 0 . (55)

Therefore,

H(λ
O

) = H(λ
G

)

√
A(λ

O
)

A(λG)
, (56)

where AG ≡ A(λG) is the physical size of the source
and AO ≡ A(λO) is the size of the beam measured
at the observer position. Using the distance duality
relation (e.g. § 3.2.4 of Ref. [32])

DL = (1 + z
G

)

√
A

O

Ω
G

, (57)

where Ω
G

is the solid angle subtending the surface of
the beam at the observer position seen from the source,
the amplitude of the GW measured by the observer O,
H [G,O], can be expressed as a function of quantities at
the emission point G as

H [G,O] = H
G

(λ
G

)

√
AG

Ω
G

(1 + zG)

DL(λ
G

)
, (58)

where H
G

is the amplitude at emission. From Eq. (35)
it follows that the polarization of the wave is parallel
transported, i.e. there is no polarization mixing during
the GW propagation. Moreover, the phase of the wave
remains constant along null geodesic, i.e. θ(λ

G
) =

θ(λ
O

). Going to TT gauge and using the polarization
basis introduces in section IV A, Eq. (27), we can write
the GW signal of a given polarization received by the

observer O, h
[G,O]
+,× in terms of the emitted one h

[G]
+,× as

h
[G,O]
+,× = h

[G]
+,×D

prox
L

(1 + z
G

)

DL(λG)
, (59)

where we have used Eq. (58) and we have defined

Dprox
L ≡

√
A

G
/Ω

G
which corresponds to the limit of

Eq. (57) for z
G
→ 0, i.e. to the luminosity distance

measured by an observer in the vicinity of the source.

VI. RECOVERING THE ENERGY DENSITY

A. Total GW amplitude

The total GW signal of a given polarization A =
(+,×) received in xo at time to in the direction eo,
coming from the sources located in an observed solid
angle d2eO is

d2htot
A (tO ,xO , eO) = (60)∫
dλ

∫
dθ

G

d3NG [xµ(λ), θG ]

dλ
h

[G,O]
A [xµ(λ), θ

G
] ,

where h
[G,O]
A [xµ(λ), θ

G
] is the GW signal of polariza-

tion A = (+,×) that the observer receives from a
galaxy G located in xµ(λ). We have explicitly indi-
cated that it depends on the parameters character-
izing the galaxy, θ

G
. The quantity d3N

G
[xµ(λ), θ

G
]

represents the number of galaxies with parameters θ
G

contained in the physical volume d3V , seen by the ob-
server O under the solid angle d2e

O
. The physical

volume d3V is defined as

d3V =
√
−gεµναβuµdxνdxαdxβ . (61)

The physical number density of galaxies with param-
eters θ

G
, n

G
[xµ(λ), θ

G
], is given by

d3N
G

[xµ(λ), θ
G

] ≡ n
G

[xµ(λ), θ
G

] d3V [xµ(λ)] . (62)

To simplify our final result, it is useful to rewrite
Eq. (61) expressing the physical volume element as

d3V [xµ(λ)] = d2eOD
2
A(λ)

√
pµ(λ)pµ(λ)dλ , (63)

that uses that d3V is the volume with cross-section
D2

A and depth
√
pµ(λ)pµ(λ)dλ = −(uµk

µ)dλ along
the line of sight, pµ being defined in Eq. (42).

Substituting Eqs. (62-63) in Eq. (60) leads to
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d2htot
A (tO ,xO , eO) = d2eO

∫
dλ

∫
dθG

√
pµ(λ)pµ(λ)

[1 + z
G

(λ)]
4 D2

L(λ)nG [xµ(λ), θG ]h
[G,O]
A [xµ(λ), θG ] , (64)

where we have used the reciprocity relation

DL = (1 + z
G

)2DA . (65)

If the eikonal approximation to GW propagation is

valid, then, using the results of Sec. V A, the GW sig-
nal received from a galaxy G in terms of the emitted
one can be derived by using Eq. (59). Inserting this
result in Eq. (64) gives

d2htot
A (t

O
,x

O
, e

O
) = d2e

O

∫
dλ

∫
dθ

G

√
pµ(λ)pµ(λ)

[1 + z
G

(λ)]
3 DL(λ)n

G
[xµ(λ), θ

G
]Dprox

L h
[G]
A [xµ(λ), θ

G
] , (66)

where h
[G]
A [xµ(λ), θG ] is the signal of polarization A =

(+,×) at emission. This expression is completely gen-
eral, i.e. it does not require to specify a specific space-
time geometry.

B. Energy density

To make the notation more compact, it is useful to
introduce

d2QA(xµ(λ), θ
G

) ≡
d3N

G

dλ
[xµ(λ), θG ]

√
4πDprox

L h
[G]
A (xµ(λ), θG) , (67)

in terms of which Eq. (66) writes

d2htot
A (t

O
,x

O
, e

O
) =∫

dλ

∫
dθ

G
d2QA(xµ(λ), θ

G
)
[1 + z

G
(λ)]√

4πDL(λ)
. (68)

We assume that only signals emitted by the same
source at the same location in the sky are correlated
and that the signal emitted is unpolarized. Further-
more, a given emitted GW signal can be written as
the sum of monochromatic signals. We assume dif-
ferent frequencies to be uncorrelated. Explicitly, we
decompose d2QA in Fourier modes

d2QA(xµ(λ), θ
G

) =

∫
dω

G
d2Q̃A(λ, e

O
, ω

G
, θ

G
)eitGωG ,

(69)

so that d2Q̃A has dimension [mass−2]. Its two-point
correlator takes the form[

d2Q̃A(λ, e
O
, ω

G
, θ

G
)d2Q̃∗B(λ′, e

O
, ω′

G
, θ′

G
)
]

= δABδ(λ− λ′)δ(θG − θ′G)δ(ω
G
− ω′

G
)

× d3N
G

dλ
[xµ(λ), θ

G
]P[ω

G
, θ

G
] , (70)

where the power spectrum P[ωG , θG ] has dimensions of
[mass−3]. More generally, since the GW signals from
different directions are uncorrelated, we can also write
when correlating different directions9

[
d2Q̃A(λ, e

O
, ω

G
, θ

G
)

d2e
O

d2Q̃∗B(λ′, e′
O
, ω′

G
, θ′

G
)

d2e′
O

]
= δABδ(λ− λ′)δ2(e

O
− e′

O
)δ(θ

G
− θ′

G
)δ(ω

G
− ω′

G
)

× d3N
G

dλd2e
O

[xµ(λ), θ
G

]P[ω
G
, θ

G
] , (71)

which reduces to Eq. (70) when multiplied by
d2e

O
d2e′

O
.10

Replacing Eqs. (67) and (68) in Eq. (29) and us-
ing Eq. (70), together with Eqs. (62) and (63) for the
infinitesimal number of galaxies, gives

d2ρGW

d2eO

(xO , eO) =
c2

4π

∫
dλ

∫
dθG (72)

×
√
pµ(λ)pµ(λ)

[1 + zG(λ)]
4 n

G
[xµ(λ), θ

G
]

∫ +∞

0

dω
G

ω2
G
P[ωG , θG ]

8πG
,

where we have used that the dot defined in Eq. (28)
denotes a derivative with respect to the proper time of
the observer which is related to the one of the source
by dtO = (1+zG)dtG . The corresponding quantity per

9 This parametrization for the two-point correlation corre-
sponds to the correlation written in Eq. (2.5) of Ref. [10]
for a quantity corresponding to d2h̃A/d

2eO in our notation.
10 More precisely, to recover Eq. (70) one has to formally mul-

tiply both sides of Eq. (71) by d2e′
O

d2eO and consider that

δ2(eO − e′
O

)d2eOd2e′
O
→ d2eO when e′

O
→ eO .
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units of frequency reads

d3ρGW

dν
O

d2e
O

(x
O
, e

O
, ω

O
) =

c2

4π

∫
dλ

∫
dθ

G
(73)

×
√
pµ(λ)pµ(λ)

[1 + z
G

(λ)]
3 nG [xµ(λ), θG ]

(2π)3ν2
G
P[ν

G
, θ

G
]

8πG
,

where we used ω
O,G = 2πν

O,G . It can be concluded
that Eqs. (73) and (31) coincide once we make the
identification

L
G

(ν
G
, θ

G
) =

c2

8πG
(2π)3ν2

G
P[ν

G
, θ

G
] , (74)

We observe that the energy density of the AGWB,
Eq. (73), is a stochastic quantity which can be char-
acterized in terms of its two-point correlation function
introduced in Eq. (4). This correlation function is non
vanishing due to the non vanishing correlator of the
cosmological quantities (velocity, density and gravita-
tional potential fields) which appear in Eq. (73) when
specialized to a perturbed Friedmann-Lemâıtre uni-
verse, see Ref. [5]. The analytic expression of this cor-
relation function in a universe with structures has been
computed in our previous work Ref. [5].

We have therefore refined the simple model pre-
sented in section II and our results confirmed what
announced in Eqs. (3) and (4), following an heuristic
argument. The anisotropies of the AGWB are char-
acterized in terms of the energy density of the back-
ground and its two-point correlation function while
the total amplitude of the GW signal received from
different directions is uncorrelated.

VII. CONCLUSIONS

This article has clarified the relation between the
GW signal that can be measured by interferometers
and PTA and the energy density of the stochastic GW
background. This provides a new and independent
derivation of the result we established in Ref. [5]. It ex-
plicitely shows why the total signal enjoys angular cor-
relations despite the fact that individual GW sources
are incoherent and thus uncorrelated. The correla-
tion arises from the cosmological variables and in par-
ticular the galaxy number density, the gravitational
potentials and the cosmic velocity fields. All these
fields inherit their stochasticity from the quantum ini-
tial conditions during inflation. This has two conse-
quences: (1) the AGWB is correlated with other cos-
mological probes, such as weak lensing or galaxy num-
ber counts and (2) it encodes information on both cos-
mology and astrophysics (star formation rates, rates of

binary mergers etc.; see e.g. Refs. [35–37]) The com-
putation of the angular power spectrum and numer-
ical predictions will be presented in two companion
papers [38, 39].

A related question concerns the observability of this
AGWB and the strategy to be developed so as to de-
tect it. As already mentioned in the introduction of
this paper, angular searches are implemented for both
ground-based interferometers and pulsar-time array.
In order to map the intensity of the AGWB, tech-
niques similar to those employed in radio astronomy
for intensity mapping, GW radiometry [10], can be
used.

The recent detection by the Advanced Laser Inter-
ferometric Gravitational-wave Observatory (LIGO) of
the gravitational wave sources GW150914 [40] followed
by GW151226 [41] and GW170104 [42] and by the very
recent observation of a black hole merging from both
the LIGO and VIRGO detectors [43], have pointed out
that the rate and mass of coalescing binary black holes
appear to be greater than many previous expectations.
As a result, the stochastic background from unresolved
compact binary coalescences is expected to be partic-
ularly loud. As explained in Ref. [6], the contribution
of the AGWB coming from BBH binary systems has
a high chance to be detected before Advanced LIGO
will reach its final sensitivity.
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