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Abstract
This article details the computation of the two-point correlators of the convergence, E- and B-

modes of the cosmic shear induced by the weak-lensing by large scale structure assuming that the

background spacetime is spatially homogeneous and anisotropic. After detailing the perturbation

equations and the general theory of weak-lensing in an anisotropic universe, it develops a weak

shear approximation scheme in which one can compute analytically the evolution of the Jacobi

matrix. It allows one to compute the angular power spectrum of the E- and B-modes. In the

linear regime, the existence of B-modes is a direct tracer of a late time anisotropy and their

angular power spectrum scales as the square of the shear. It is then demonstrated that there must

also exist off-diagonal correlations between the E-modes, B-modes and convergence that are linear

in the geometrical shear and allow one to reconstruct the eigendirections of expansion. These

spectra can be measured in future large scale surveys, such as Euclid and SKA, and offer a new

tool to test the isotropy of the expansion of the universe at low redshift.
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I. INTRODUCTION

A. Motivations

The standard model of cosmology describes our universe with a very simple solution
of general relativity describing a spatially homogeneous and isotropic spacetime, known as
the Friedmann-Lemâıtre solution. It is assumed to describe the geometry of our Universe
smoothed on large scales. Besides, the use of the perturbation theory allows one to under-
stand the properties of the large scale structure, as well as its growth from initial conditions
set by inflation and constrained by the observations of the cosmic microwave background
(CMB). It is a very successful model and allows one to deal with all existing observations
in a consistent way with only 6 free parameters [1] from primordial nucleosynthesis (BBN)
to today, involving mostly general relativity, electromagnetism and nuclear physics, that
is physics below 100 MeV and well under control experimentally (see, e.g., Refs. [2–4] for
standard textbooks).

The construction of the cosmological model depends on our knowledge of micro-physics
but also on a priori hypothesis on the geometry of the spacetime describing our universe. It
relies on 4 main hypothesis (see Ref. [5] for a detailed description): (H1) a theory of gravity,
(H2) a description of the matter and the non-gravitational interactions, (H3) symmetry
hypothesis, and (H4) an hypothesis on the global structure, i.e. the topology, of the universe.
The hypothesis H1 and H2, that refer to the physical theories, are not sufficient to solve
the field equations and we need an assumption on the symmetries (H3) of the solutions
describing our universe on large scales.

Among the generic conclusions of this standard model is the need of a dark sector, includ-
ing dark matter and dark energy, which emphasizes the need for extra degrees of freedom,
either physical (new fundamental fields or interactions) or geometrical (e.g., a cosmological
solution with lower symmetry). This has driven a lot of activity to test the hypotheses of the
cosmological model. In that debate, weak-lensing is a key observation to test general rela-
tivity on cosmological scales [6] and to constrain the scale on which the fluid limit holds [7].
It complements tests of the other hypothesis such as the equivalence principle [8] and the
Copernican principle [9]. Our first motivation is thus to provide a new test on the isotropy
of the expansion at late time, hence providing a new test of the standard cosmological as-
sumption. Any detection of a violation of a symmetry of the background spacetime would
have important implications in terms of model building and on the understanding of the
dark sector.

While in the standard ΛCDM model the cosmological constant Λ is the source of the
acceleration of the universe, many models have been proposed to explain the acceleration
of the cosmic expansion. The property of the dark sector is often modelled as a fluid
with an equation of state, Pde = wρde, relating its pressure to its energy density. Such a
phenomenological parameterization allows to characterize the ability of different surveys
to actually demonstrate that w = −1, as expected for a cosmological constant. Among
the plethora of dark energy models, many enjoy an anisotropic pressure Πi

j and thus may
trigger a phase of anisotropic expansion at late time when dark energy starts influencing the
dynamics of the universe. This is for instance the case of magnetised dark energy [10, 11],
solid dark matter [12, 13] induced by a network of frustrated topological defects, bi-gravity
models [14], anisotropic dark energy [15, 16] and in models in which the backreaction [17]
of the large scale structure on the background evolution is the source of the acceleration.
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This has led to the development of a phenomenological parameterisation of the anisotropic
pressure in terms of an anisotropic equation of state as Πi

j = ∆wijρde [18–21]. Our second
motivation is thus to propose new observational tests on the anisotropic pressure of the
dark energy sector, hence constraining another phenomenological deviation from a pure
cosmological constant.

When concerned by anisotropic expansion, we can distinguish between 2 classes of models,
that allows one to divide the different methods to constrain anisotropy. Remind that any
perturbed quantity, X say, such as the gravitational potential, the density contrast, etc.
can be split, in Fourier space, as the product of an initial configuration and a transfer
function as X(t,k) = TX(t,k)Xi(k). First, early anisotropic models (such as anisotropic
inflation) have anisotropic initial conditions (in the sense that the correlation functions
of the initial perturbed quantities is such that 〈Xi(k)X∗i (k′)〉 6= PX(k)δ(k − k′)) while
the transfer functions are independent of direction (i.e. TX(t,k) = TX(t, k)) because the
geometry has isotropized at later times. Second, late time anisotropic models have been
isotropic during most of the history of the universe (hence enjoying isotropic correlation
functions, e.g. 〈Xi(k)X∗i (k′)〉 = PX(k)δ(k − k′)) while their transfer function at late time
is anisotropic, i.e. TX(t,k) 6= TX(t, k). These two types of models have a huge difference in
the way one attacks observational constraints. In particular the propagation of light is only
affected in the second class of models.

Without any source during inflation, any primordial anisotropy is washed out [22, 23]
by the expansion. It was however demonstrated that it affects the construction of the
Bunch-Davies state [22] so that it lets very specific signatures on the primordial power
spectrum [24–26] and affects the onset of inflation [27]. Such deviation from isotropy can
be constrained by CMB observations [28–35]. An early, post-inflationary, anisotropy also
affects the synthesis of light elements during primordial nucleosynthesis [36] (mostly because
it affects the expansion rate).

Tests of a late time anisotropy have mostly focused on the Hubble diagram from type Ia
supernovae [21, 37–46]. An anisotropic expansion will influence the transfer function so
that it can also be constrained by the study of the large scale structure [47–55] and of the
CMB [56–59]. It was argued that supernovae data leads to ∆w < 2.1× 10−4 [41], and that
next generation galaxy surveys are capable of constraining anisotropies at the 5% level [21]
in terms of the anisotropic equation of state.

In this article, we follow our former analysis [60] on the imprint of a late time anisotropy
on weak-lensing. According to the standard lore [61], in a homogeneous and isotropic
background spacetime, weak-lensing by the large scale structure of the universe induces a
shear field which, to leading order, only contains E-modes. It was demonstrated in Ref. [60]
that, even in the linear regime, anisotropic expansion will reflect itself in the existence of
non-vanishing B-modes. The level of B-modes is used as an important sanity check during
the data processing. On small scales, B-modes arise from non-linear effects [62] intrinsic
alignments [63], Born correction, lens-lens coupling [64], and gravitational lensing due to
the redshift clustering of source galaxies [65]. On large angular scales in which the linear
regime holds, it was demonstrated [60] that non-vanishing B-modes would be a signature
of a deviation from the isotropy of the expansion, these modes being generated by the
coupling of the background Weyl tensor to the E-modes.

While light propagation in strictly homogeneous Bianchi universes has been widely in-
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vestigated [66, 67], the analytic computation of the Jacobi matrix was only determined re-
cently [68] (see also Ref. [69]). This article focuses on the computation of the Jacobi matrix
taking into account cosmological perturbations at linear order in a spatially homogeneous
anisotropic Euclidean spacetime of the Bianchi I family. We provide all the technical tools
(perturbation theory, light propagation, expression of the observables). The application of
our formalism is exposed in our companion paper [70] in which we compute the expected
signals for the Euclid [71] and SKA [72] observations.

Among our main results, we emphasize that, as soon as local isotropy does not hold
at the background level, there exist a series of weak-lensing observables that allow one to
fully reconstruct the background shear and thus test spatial isotropy. More precisely, as a
consequence of the non-vanishing of the B-modes, it can be demonstrated that

1. the angular correlation function of the B-modes, CBB
` , is non vanishing [60], and scales

as the square of the ratio of the geometric shear to the Hubble expansion rate, σ2/H2;

2. the B-modes correlate with both the E-modes and the convergence κ leading to the
off-diagonal cross-correlations 〈B`mE

?
`±1m−M〉 and 〈B`mκ

?
`±1m−M〉 in which E`m and

B`m are the components of the decomposition of the E- and B-modes of the cosmic
shear in (spin-2) spherical harmonics and κ`m the components of the decomposition
of the convergence in spherical harmonics. These two correlators scale as σ/H;

3. the deviation from isotropy also generates off-diagonals correlations among κ and E
modes, 〈E`mE?

`±2m−M〉, 〈κ`mκ?`±2m−M〉, and 〈E`mκ?`±2m−M〉. These three correlators
scale as σ/H;

4. for each type of correlator, there are five values of M so that in principle they can be
used to reconstruct the five components of the geometric shear σij.

This last point is very important since it exhibits a rigidity between independent observables
that can be used to control systematic effects.

B. Structure of the article

Section II summarizes the description of the spacetime at the background level (§ II A)
and for linear perturbations (§ II B). For the sake of clarity, the theory of gauge invari-
ant perturbations is detailed in Appendix A. It also introduces the parameterisation of an
anisotropic dark energy sector. The main variables required to describe the evolution of the
background spacetime are summarized in Table I B.

Section III describes the propagation of a light bundle (§ III A) and presents in § III B
the central equation for our analysis, namely the Sachs equation

d2

dv2
Dab = Ra

cDcb ,

for the 2 × 2 Jacobi matrix Dab, the decomposition of which is presented in § III C. It
concludes by specifying these general results to the case of a Bianchi I spacetime (§ III D),
focusing on the technical but useful use of a conformal transformation. The main variables
required to describe the evolution of a geodesic bundle are summarized in Table I B.

Since the geometric shear is obviously small, we develop in Section IV an approximation
scheme referred to as small shear limit in which σ/H is considered as a small parameter.
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Symbol Meaning Appears at Eq.:

µ, ν, . . . Formal space-time indices –

i, j, . . . Cartesian spatial indices –

i, j, . . . Spatial tetrad indices (2.11)

0 Time tetrad index (2.13)

a Average scale factor (2.1)

H Cosmic time Hubble expansion rate (2.18a)

βi Log of directional scale factors (2.2)

σ̂ij Geometrical (cosmic time) shear (2.4)

σij Geometrical (conformal time) shear (2.5)

ϑ ν
0 Timelike vector of background tetrad (2.12)

ϑ ν
i Spacelike vector of background tetrad (2.11)

Θ ν
0 Timelike vector of perturbed tetrad (4.6)

Θ ν
i Spacelike vector of perturbed tetrad (4.6)

∆wji Equation of state of dark energy anisotropic stress (2.16)

βij Homogeneous perturbation of the Euclidean metric. (4.5)

TABLE I: Table of most used quantities describing the

background spacetime.

Symbol Meaning Appears at Eq.:

kµ Null geodesic tangent vector (3.1)

k̃µ Conformally null geodesic tangent vector (3.33)

z Redshift (3.4)

no Initial observed direction (3.5)

na Sachs basis (3.8)

n± Helicity basis (3.11)

ηa Components of the connecting vector in the Sachs basis (3.13)

Rab Optical tidal matrix (3.13)

Dab Jacobi matrix (3.14)

D̃ab Conformal Jacobi matrix (3.37)

D̄A Background angular diameter distance (3.17)

DA Angular diameter distance (3.19)

κ Convergence (3.17)

γab Cosmic shear (3.17)

V Rotation (3.17)

κ`m Multipolar coefficients of the convergence (3.23)

V`m Multipolar coefficients of the rotation (3.23)

E`m Multipolar coefficients of the cosmic shear E-modes (3.25)

B`m Multipolar coefficients of the cosmic shear B-modes (3.25)

TABLE II: Table of most used quantities describing the

propagation of a geodesic bundle.
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FIG. 1: Comparison of the geodesic in the approximation at order {n, p}. In order to adopt an

observer based point of view, we need to relate the local direction of propagation n{n,p} to no.

The transports for the 3 orders of perturbations are respectively detailed in Eqs. (6.12) and (6.37)

that determine xi{n,p}(χ,no) that can be further split in a radial component δr{n,p}(χ,no) and an

orthoradial contribution that defines the deflection angle αa{n,p}(χ,no).

We then use a two-parameter expansion scheme in which both σ/H and the perturbations
of the metric, say Φ, are small. Thus, a given order {n, p} corresponds to term of order
(σ/H)nΦp. In this approximation, the structure of our computation is the following. We
start from the fact that the Sachs equation can be rewritten as (see Eq. (4.34))

d2Dab
dχ2

+
1

k0

dk0

dχ

dDab
dχ

=
1

(k0)2RacDcb ,

where χ is the coordinate along the lightcone in the background Friedmann-Lemâıtre space-

time (see § IV D). At order {0, 0}, R{0,0}ab = 0 and k0{0,0} = −1 so that the equation takes
the form

d2D{0,0}ab

dχ2
= 0

and can be integrated trivially (see § VI B). We then expand this equation order by order
so that it formally takes the form (since k0

{0,0} = −1)

d2D{n,p}ab

dχ2
= S{n,p}

in which the source term contains contribution from Rab and k0 up to order {n, p}, and from
Dab at lower order. The effects to be taken into account are then

1. the tensor and vector contributions to Rab, which starts at order {1, 1} and the con-
tribution of the scalar modes at the relevant order;

2. the evolution of all the perturbative modes, that is of the transfer functions, which is
decomposed as

TX(k, t) = T
{0,1}
X (k, t) + T

{1,1}
X (k, t)

since the order {0, 0} and {1, 0} correspond to homogeneous solutions. This requires
to solve the equations of Appendix A.

3. In order to determine k0, we also need to solve perturbatively the geodesic equation.

4. A source observed in direction no at distance χ, is located at a spacetime point P{n,p}
and its contribution depends on the local direction of the tangent vector to the geodesic
in n{n,p}, which determines the local Sachs basis in P{n,p}. We shall thus proceed with
2 operations:
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(a) transport P{n,p} to P{0,0} (see Fig. 1),

(b) transport n{n,p} and the local Sachs basis (see Fig. 2).

This is what we call the central geodesic approximation and the possibility to go beyond
this approximation is sketched in Appendix C. We however stick to this approximation,
which is sufficient in the small shear approximation. At lowest order, it corresponds
to the usual Born approximation but at higher order there are post-Born corrections
to include.

FIG. 2: The local Sachs basis at a point P{n,p} on the geodesic has to be transported to the

point P{0,0} on the fiducial null geodesic of the background Friedmann-Lemâıtre spacetime. This

implies to perform a transport on the tangent space at the same time that the point of observation

is transported in real space. The transports for the 3 orders of perturbations are respectively

detailed in Eqs. (6.15), (6.34) and (6.54) for n and in Eqs. (6.17), (6.35) and (6.54) for the Sachs

basis.

Section V describes the computation of the angular correlation. Our philosophy is to
adopt an observer point of view, that is, to compute all quantities on the celestial sphere of
the observer. Given the previous perturbative expansion scheme, any observable Xs of spin
s can then be formally expressed as (see Eq. (5.4))

Xs(χ
S
,no)ms

o =

∫ χ
S

0

SXs(χ
S
, χ,no)ms

odχ ,

for a source SX
s

located at χ
S

and observed in direction no. According to the spin s of
the quantity we can expand in the proper spherical harmonics with respect to no. This
allows one to define the expansion of all the quantities in term of spherical harmonics. As
a byproduct, we demonstrate in § V C that the 5 off-diagonal correlators 〈B`mE

?
`±1m−M〉 ,

〈B`mκ
?
`±1m−M〉 , 〈E`mE?

`±2m−M〉, 〈κ`mκ?`±2m−M〉, and 〈E`mκ?`±2m−M〉 are non-vanishing.

Equiped with all these tools, we compute these correlators and the angular power spec-
tra of the E- and B-modes in Section VI order by order. Order {1, 0} recovers the non-
perturbative analysis of Ref. [68] while order {0, 1} recovers the standard case of lensing
by large scale structure in the linear regime; § VI E gives all the details of the computa-
tion at order {1, 1}. This allows us to discuss the dominant contribution in Section VII. In
particular, we argue that the dominant term for the cosmic shear is given by

γab = −αcDcD〈aDb〉ϕ

10



Symbol Meaning Appears at Eq.:

Σ Scalar shear on the sphere (4.15)

Σa Vector shear on the sphere (4.16)

Σab Tensor shear on the sphere (4.16)

Da Covariant derivative on the sphere (4.17)

/∂, /∂ spin-raising and lowering operators (4.21)

Σ2m Multipole of the scalar shear (4.25)

Σ± First derivative of the scalar shear in the helicity basis (4.27)

ms
o spin-s polarization basis (5.1)

SXs Source of the field Xs (5.4)

TXs
`m Anisotropic transfer function of the field Xs (5.13)

XsTLM`m Multipoles of the anisotropic transfer function (5.15)

EXs
`m , BXs

`m Multipoles of the E- and B-modes of the field Xs (5.17)

CEE` Angular power spectrum of the E-modes (5.21)

CBB` Angular power spectrum of the E-modes (5.21)

B Scalar perturbation of the spatial metric (6.5)

αa Deflection angle (6.13)

$a Perturbation of propagating direction (6.17)

ϕ Delflection potential (6.27)

N (χ) Source distribution (6.43)

P (k) Primordial power spectrum (5.14)

TABLE III: Table of most used quantities describing the

propagation of a geodesic bundle.

where αc is the deflection angle at order {1, 0}, ϕ the deflection potential, and Da the
covariant derivative on the celestial sphere.

Many technicalities are gathered in the appendices: linear perturbation theory (§ A),
the expressions of the geometric quantities at first order in perturbation that are need to
compute the source term of the Sachs equation (§ B), details on the lensing method (§ C)
and a catalog of useful mathematical identities (§ D). Throughout this work we adopt units
in which c = 1.

II. SPACETIME STRUCTURES

A. Background spacetime

1. Geometry

At the background level, the universe is described by a spatially Euclidean, homogeneous,
and locally anisotropic solution of the Einstein equation filled with a perfect fluid. Its metric
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takes the general form (see Refs. [73–77] for general references on Bianchi spacetimes)

ds2 = −dt2 +
3∑
i=1

X2
i (t)(dxi)2 , (2.1a)

= −dt2 + a2(t)γij(t)dx
idxj , (2.1b)

where a(t) ≡
√
X1(t)X2(t)X3(t) is the volume averaged scale factor and t the cosmic time.

We define the tangent vector to the fundamental comoving observer by uµdxµ ≡ dt. It
is normalized such that uµu

µ = −1. The spatial metric γij and its inverse γij can be
decomposed as

γij(t) = exp[2βi(t)]δij , γij(t) = exp[−2βi(t)]δ
ij, (2.2)

with the constraint
3∑
i=1

βi = 0 (2.3)

that ensures that the comoving volume remains constant (i.e, γ̇ = γij γ̇ij = 0). Note that, as
a consequence of Eq. (2.2), some spatial directions should contract while others grow [24].
Note also that that there is no sum on i in the definition of γij and Latin indices {i, j, k . . . }
are raised with γij and lowered with γij.

The geometrical shear is defined as

σ̂ij ≡
1

2
γ̇ij (2.4)

where a dot refers to a derivative with respect to cosmic time. We shall also use the conformal
time η defined by a(η)dη = dt, and denote derivatives with respect to it by a prime. Thus,
the conformal shear is defined as

σij ≡
1

2
γ′ij = aσ̂ij . (2.5)

The amplitude of the shear is defined by

σ̂2 ≡ σ̂ijσ̂
ij =

3∑
i=1

β̇2
i and σ2 ≡ σijσ

ij = a2

3∑
i=1

β̇2
i =

3∑
i=1

β′i
2
. (2.6)

2. Decomposition of the geometric shear

The shear, being a symmetric and traceless spatial tensor (σii = 0), has 5 degrees of
freedom, three of which correspond to the Euler angles necessary to express the shear in a
general basis. By choosing the Cartesian basis (2.2), we have set these three angles to zero so
that we are left with only 2 degrees of freedom, namely the three βi with the constraint (2.3).
The components of the shear can thus be expressed as

σ̂ij(t) = β̇i exp[2βi(t)]δij , σ̂ij(t) = β̇i exp[−2βi(t)]δ
ij , σ̂ij(t) = β̇iδ

i
j . (2.7)

These two independent degrees of freedom can also be decomposed as a magnitude and an
angle ϕ. The first is related to the scalar shear while the choice of the angle defines which of
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the spatial directions are initially expanding. These variables can be obtained by performing
the decomposition

βi(t) ≡ CiW (t) , (2.8)

with the 3 constants Ci given by

Ci =

√
2

3
S sin

(
ϕ+

2π

3
i

)
, i ∈ {1, 2, 3} (2.9)

and where S is constant. This parameterization obviously satisfies the required constraints,∑
i

Ci = 0 ,
∑
i

C2
i = S2 . (2.10)

Therefore, once the Cartesian basis is chosen, we can choose the two constants (ϕ,S) to
describe the two degrees of freedom of the shear since σ̂2 = (SẆ )2.

3. Spatial triad

It is convenient to introduce a spatial triad – a set of three orthonormal vectors and co-
vectors; the normalization being defined from γij and γij – related directly to the Cartesian
coordinates xi. Their components in the coordinates basis read

ϑ j
i = exp[−βi(t)]δji , ϑij = exp[βi(t)]δ

i
j . (2.11)

In such a triad basis, the shear components take the simple form

σ̂ij = σ̂ij = β̇iδij σij = σij = β′iδij. (2.12)

Thus, this triad can easily be extended to a tetrad by using the observer’s 4-velocity as the
normalized time-like vector

ϑ µ
0 = δµ0 = uµ, ϑ0

µ = δ0
µ = −uµ . (2.13)

4. Description of matter and field equations

Concerning the matter sector, we assume it is composed of a pressureless matter fluid
and a dark energy component. The dark sector is then described by a fluid whose energy-
momentum tensor enjoys a non-vanishing anisotropic stress,

T µν = (ρ+ P )uµuν + Pδµν + Πµ
ν . (2.14)

The anisotropic stress tensor is symmetric (Πµν = Πνµ), traceless (Πµ
µ = 0) and transverse

(uµΠµ
ν = 0) which means that it has only 5 degress of freedom encoded in its spatial part

Πij. Unless we define a microscopic model, we need to use an equation of state for Πi
j. We

decompose it as
Πi
j ≡ ρde∆w

i
j , (2.15)

so that the pressure tensor takes the general form

P j
i = ρde

(
wδji + ∆wji

)
, (2.16)
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where w is the equation of state relating the isotropic pressure to the energy density and
∆wji is an equation of state for the anisotropic pressure. From a phenomenological point of
view, this corresponds to an extension of the dark energy sector, similar to the ansatz (1)
of Ref. [41], which will allow us to address the question of the deviation from the standard
cosmological constant reference (i.e. w = −1 and ∆wji = 0).

Defining the Hubble expansion rate by

H = ȧ/a, (2.17)

the background equations [22] take the form

3H2 = κ(ρm + ρde) +
1

2
σ̂2 , (2.18a)

(σ̂ij )̇ = −3Hσ̂ij + κΠi
j . (2.18b)

ρ̇m = −3Hρm , (2.18c)

ρ̇de = −3H(1 + w)ρde − σ̂ijΠij . (2.18d)

The first equation is the analogous of the Friedmann equation in presence of a spatial shear,
the second is obtained from the traceless and transverse part of the Einstein equation and
dictates the evolution of the shear. The last two equations are the continuity equations for
the dark matter (P = Πi

j = 0) and dark energy sector. We have set1 κ = 8πG ≡M−2
P .

5. Dynamics

The set of equations (2.18) can be formally integrated. As usual, the dark matter energy
density scales as

ρm = ρm0

(a0

a

)3

. (2.19)

Equation (2.18b) has a first integral given by

σ̂ij =
(a0

a

)3
[
Cij + κ

∫
Πi
j

(
a

a0

)2
d(a/a0)

H

]
(2.20)

where Cij is a constant tensor representing the decaying mode of the shear. Note that if the

term proportional to Cij is not negligible then the shear is not proportional to the anisotropic
stress so that σij and Πij cannot be diagonalized in the same basis. Integrating Eq. (2.18d)
leads to

ρde =

(
a

a0

)−3(1+w)
[
ρde0 −

∫
σ̂jiΠ

i
j

(
a

a0

)2+3w
d(a/a0)

H

]
, (2.21)

1 In order to easily check the homogeneity of the equations, we recall that

[H] ∼MP , [ρ] ∼M4
P , [κ] ∼M−2P , [σ] ∼MP , [Π] ∼M4

P
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or, if one uses the decomposition (2.15), as

ρde = ρde0

(
a

a0

)−3(1+w)

exp

[
−
∫
σ̂ji∆w

i
j

da

aH

]
. (2.22)

In the particular case where w = −1, this latter equation teaches us that the dark energy
density does not remain constant.

B. Linear perturbations

Cosmological perturbation theory around a Bianchi I background spacetime, in the
Bardeen formalism, was first investigated in Ref. [22, 24]. The perturbed spacetime has
a metric of the form

ds2 = a2[−(1 + 2A)dη2 + 2Bidx
idη + (γij + hij)dx

idxj] (2.23)

where A is a free scalar function, Bi ≡ ∂iB+B̄i and hij ≡ 2C
(
γij +

σij
H

)
+2∂i∂jE+2∂(iEj) +

2Eij defined together with the usual transversality and trace-free conditions ∂iB̄
i = 0 =

∂iE
i, Ei

i = 0 = ∂iE
ij.

As summarized in § A 2, one can define 2 scalar (Φ and Ψ), 2 vector (Φi) and 2 tensor
(Eij) degrees of freedom, which are gauge invariant; see Eq. (A25). Similarly, one can define

gauge invariant variables for the matter sector, leading to 4 scalar variables (δρ̂, δP̂ , v̂ and
π̂S respectively for the density, pressure, velocity and anisotropic stress), 4 vector variables
(ˆ̄vi and π̂Vi ) and 2 tensor variables (π̂Tij) the expressions of which are gathered in Eqs. (A33)
and (A35).

Appendix A summarizes all the techniques and results needed to study the perturbations,
including the definition of the Fourier transform (§ A 1), and the construction of the gauge
invariant variables (§ A 2). It then derives the full set of Einstein equations (§ A 3) and the
conservation equations (§ A 4).

Among the important features that differ from the standard perturbation theory around
a Friedmann-Lemâıtre spacetime, let us mention

• the fact that only the components ki of the wave-(co)vector are constant so that both
ki and k are time dependent - see e.g. Eq. (A2);

• the fact that the scalar-vector-tensor modes do not decouple;

• the fact that, even at late time, the two Bardeen potentials are not equal because of
the anisotropic stress.

III. WEAK-LENSING IN A GENERAL SPACETIME

This section provides the definitions and equations describing the propagation of a
geodesic bundle (geodesic equation and Sachs equation) in a general spacetime and in the
particular case of a Bianchi I universe.
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A. Geodesic bundle

Weak-lensing is concerned with the deformation of an infinitesimal bundle of light rays
propagating in curved spacetimes. It is thus related to the geodesic deviation equation.

1. Geodesic equation

The central quantity in the geodesic equation, obtained as the eikonal limit of Maxwell’s
equations, is the wave-vector of an electromagnetic wave, kµ(v) ≡ dxµ/dv, where v is an
affine parameter of a given geodesic xµ(v) and defined such that it is zero at the observer
and increases towards the source. We shall be working in the eikonal approximation where
kµ is a null vector satisfying the geodesic equation

kν∇νk
µ = 0. (3.1)

If we parameterize the bundle of null geodesics by xµ(v, s), where s is a continuous parameter
labeling each ray of the bundle, then each ray has a wave-vector given by kµ(v, s) = ∂xµ/∂v,
whereas the vector ηµ = ∂xµ/∂s gives the infinitesimal separation between two neighbouring
geodesics of the bundle. The photon wave-vector can always be decomposed in components
respectively parallel and orthogonal to uµ as

k̂µ ≡ U−1kµ = −uµ + nµ , (3.2)

where nµ are the components of the local directional vector n, defined such that

uµnµ = 0 , nµn
µ = 1 . (3.3)

Once the geodesic equation is solved, any comoving observer with four-velocity uµ, normal-
ized such that uµuµ = −1, defines the redshift of a source by

1 + z(v,no) ≡ (kµu
µ)v

(kµuµ)o

, (3.4)

where v is the affine parameter that specifies the position of the source down the lightcone
and

no ≡ n(v = 0) (3.5)

is the direction of observation. The energy of a photon at a given redshift is

U(v,no) = Uo[1 + z(v,no)] , Uo = (kµuµ)o . (3.6)

By definition, the local spacelike vector n is a function of the affine parameter v and of
the direction of observation observer no, that is the spacelike vector pointing along the line
of sight.

2. Geodesic deviation equation

A (narrow) light beam is a collection of neighbouring light rays. The behaviour of any
such geodesic, with respect to an arbitrary reference one, is described by the separation (or
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connecting) vector ηµ. Asuming that all the rays converge at a given event O (the location of
the observer), ηµ(0) = 0. The evolution of ηµ(v) along the beam is governed by the geodesic
deviation equation

d2ηµ

dv2
= Rµ

ναβk
νkαηβ , (3.7)

where Rµ
ναβ is the Riemann tensor.

3. Sachs basis and screen space

For any observer whose worldline intersects the light beam at an event different from O,
the beam has a non-zero extension, since a priori ηµ 6= 0. The observer can thus project
it on a screen to characterize its size and shape. This screen is by essence a 2-dimensional
spacelike hypersurface, and chosen to be orthogonal to the local line of sight nµ. Two such
spatial vectors required to construct a basis for the tangent space, na with a = {1, 2}, are
defined by the requirement that

nµanbµ = δab , nµauµ = nµanµ = 0 . (3.8)

With these definitions we can construct a tensor which projects any geometrical quantity
on the two dimensional surface orthogonal to n

Sµν ≡ gµν + uµuν − nµnν . (3.9)

Then, with the help of the orthogonality relations (3.8), this two-dimensional screen basis
can be parallel propagated along null geodesics as [78]

Sµσk
ν∇νn

σ
a = 0. (3.10)

A basis satisfying the condition (3.8) and propagated according to Eq. (3.10) is called a
Sachs basis. It is important to note that the basis formed by the vectors na is defined up
to an overall rotation around no. We can fix this freedom by introducing a spherical basis
at the observer (i.e., at v = 0) by demanding that {no,no

1,n
o
2} = {no

r,n
o
θ,n

o
ϕ}. With this

choice, the integration of Eq. (3.10) allows us to define a unique three-dimensional basis
{nr,nθ,nϕ}(no, v̂) at each point along the geodesics; see Ref. [60]. Furthermore, it will be
convenient to define a helicity basis as

n± ≡
1√
2

(nθ ∓ inϕ) =
1√
2

(n1 ∓ in2) , , (3.11)

whose components in the na basis read

na± = n± · na =
1√
2

(δa1 ∓ iδa2) (3.12)

and are, by construction, constant.
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B. Sachs equation

The screen projection of the connecting vector, ηa ≡ nµaηµ, represents the relative position
on the screen of the two light spots associated with two rays separated by ηµ. Similarly, and
if we set by convention Uo = 1, θa ≡ (dηa/dv)o represents the angular separation of those
rays, as observed from O.

The geodesic equation can be recast as [2] an equation for ηa as

d2ηa
dv2

= Rabη
b , Rab ≡ Rµναβk

νkαnµan
β
b (3.13)

Rab is the screen projected Riemann tensor which can be split into its symmetric traceless
part R〈ab〉 and its trace part R ≡ Rabδ

ab/2. It is also referred to as the optical tidal matrix.
Furthermore, thanks to the linearity of Eq. (3.13), one can decompose the connection vector
on the geodesic to its initial derivative as

ηa(v) = Dab (v)

(
dηb

dv

)
v=0

. (3.14)

This defines the Jacobi map Dab that satisfies the Sachs equation [2, 79]

d2

dv2
Dab = Ra

cDcb , (3.15)

subject to the following initial conditions:

Dab(0) = 0 ,
dDab
dv

(0) = δab . (3.16)

C. Decomposition of the Jacobi matrix and observables

The Jacobi matrix entering the Sachs equation (3.15) encodes all the information about
the deformation of a light beam when propagating through a curved spacetime. This 2× 2
matrix can be decomposed in different ways.

The usual decomposition is described in terms of a convergence κ, a rotation V , and a
shear γab as

Dab(v) ≡ D̄A(v) [(1 + κ)Iab + V εab + γab] (3.17)

with
εab = 2in−[an

+
b] , γaa = 0 , (3.18)

and where screen-basis indices a and b are manipulated with Iab ≡ Sµνn
µ
an

ν
b = δab, that is

with a two-dimensional Euclidian metric.
A canonical decomposition was introduced in Ref. [68] as

Dab(v) ≡ DA(v)

[
cosψ sinψ
− sinψ cosψ

]
︸ ︷︷ ︸

rotation

exp

[
−Γ1 Γ2

Γ2 Γ1

]
︸ ︷︷ ︸

cosmic shear

. (3.19)
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According to this decomposition, the real size and shape of the light source is obtained from
the image by performing the following transformations: (i) an area-preserving shear (Γ1,Γ2),
(ii) a global rotation ψ, (iii) a global scaling. The latter defines the angular distance as

DA(v) ≡
√

detDab(v) , (3.20)

which does not assume any background spacetime and perturbative expansion. On the
other hand, the definition (3.17) introduces the background angular distances D̄A. Both are
related by

DA(v) ' D̄A(v)[1 + κ(v)] . (3.21)

As for the deformation of the source shape, it is given by the reduced shear

D〈ab〉√
detDab

' γab
(1− κ)

. (3.22)

Each one of the above observables are defined on our past lightcone, and, as such, they are
functions of no and v. The convergence and the rotation are scalar functions, and therefore
can be expanded in terms of scalar spherical harmonics as

κ(no, v) =
∑
`,m

κ`m(v)Y`m(no) , (3.23a)

V (no, v) =
∑
`,m

V`m(v)Y`m(no) . (3.23b)

The cosmic shear, on the other hand, being a spin two quantity, can be expanded in terms
of the polarization basis as

γab(n
o, v) ≡

∑
λ=±

γλ(no, v)nλan
λ
b . (3.24)

The coefficients γ± can be further expanded in terms of E- and B-modes on a basis of spin-2
spherical harmonics as

γ±(no, v) =
∑
`,m

[E`m(v)± iB`m(v)]Y ±2
`m (no) . (3.25)

It should be stressed that we adopt an observer-based point of view. This means that
all quantities are expressed in terms of (no, v̂). In general, n(no, v̂) 6= no, with the obvious
exception of, e.g., Friedmann-Lemâıtre spacetimes and spacetimes with a local spherical
symmetry for an observer located at the center of symmetry. Therefore, one of the difficulties
in obtaining cosmological observables as a function of v, or equivalently as a function of the
redshift z, lies in the determination of these coefficients.

D. Particular case of a Bianchi I spacetime

1. Geodesic equation

The Bianchi I spacetime enjoys 3 Killing vectors, ∂i, that allow one to construct 3 con-
served quantities, g(∂i, k) = ki, along any geodesic. It implies that

ki = cst, (3.26)
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on each geodesic so that

ki =
γijkj
a2

. (3.27a)

k being a null vector, one concludes that ω2 ≡ (kt)2 = gijkikj with

ω ≡ 1

a

√√√√ 3∑
i=1

(e−βiki)2. (3.28)

It follows that the components of the direction of observation vector nµ are given by

ni = ki/ω , ni = ki/ω . (3.29)

The constants of motion ki are then directly related to the direction in which the observer
in O needs to look to detect the light signal, i.e. the direction of the source nµo . The redshift
of a source is then given by

1 + z(no, tS) ≡ ωS

ωo

=
ao

a(tS)

√∑3
i=1 [e−βi(tS)ki]

2∑3
i=1 [e−βi(to)ki]

2 . (3.30)

It is always possible to choose the normalisation such that ao = 1 and βi(to) = 0, but we do
not make that choice here.

2. Jacobi matrix

The study of the Sachs equation is simplified after performing a conformal transformation
of the metric by a scale factor a,

gµν = a2g̃µν . (3.31)

It can be checked that any null geodesic for gµν , affinely parametrized by v, is also a null
geodesic for g̃µν , affinely parametrized by ṽ with dv = a2dṽ. The associated wave four-

vectors then read k̃µ = a2kµ. Since the four-velocities of the comoving observers for both
geometries are respectively u = ∂t and ũ = ∂η, so that ũµ = a uµ, we deduce that

ω ≡ gµνu
µkν = a−1g̃µν ũ

µk̃ν ≡ a−1ω̃. (3.32)

The 3+1 decomposition of k̃µ is therefore

k̃µ = ω̃(−ũµ + ñµ) (3.33)

with ñµ ≡ a nµ implying ñµ = nµ/a and

ñi =
k̃i
ω̃
. (3.34)

The Sachs basis (ñµa) for the conformal geometry is then related to the original one (3.8)
by

ñµa = a nµa , ñaµ = a−1 naµ. (3.35)
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One can indeed check that the orthonormality (3.8) and the parallel transport condi-
tions (3.10) are preserved by the conformal transformation with the use of the projection
matrix S̃µν = a−2Sµν , instead of Eq. (3.9).

The separation four-vector ηµ is defined by comparing events only, independently from any
metric. It is therefore invariant under conformal transformations. However, its projection
over the Sachs basis changes (since the Sachs basis itself changes), indeed

ηa ≡ naµη
µ = añaµη̃

µ = a η̃a. (3.36)

This implies that the Jacobi matrix transform as [62, 68]

Dab = a D̃ab . (3.37)

Hence, the angular distance DA in the universe described by a metric gµν is just aD̃A, where

D̃A is the angular distance in the universe described by the metric g̃µν . At lowest order in
perturbations, κ is the relative perturbation of angular diameter distance whatever is the
metric used. As for the reduced shear, it remains unaffected by the conformal transfor-
mation. In the remainder of this article, we will thus discard the effect of an overall scale
factor, in order to simplify the computation. However it should be reminded that, as shown
by Eq. (3.32), a conformal transformation has an effect on the energetic aspects of light
propagation, that is on the relation between the redshift and the affine parameter U(v).

3. General solution

Using such a conformal transformation, it was shown in Ref. [68] that the Sachs equation
can be solved analytically in a Bianchi I universe. This solution relies on the fact that the
Sachs equation can be rewritten as

d2D̃ab
dṽ2

= R̃acD̃cb, (3.38)

with the rescaled optical matrix given by

R̃ab = ω̃2

[
(σab)

′ + σacσcb +
ω̃′

ω̃
σab

]
. (3.39)

The explicit solution of this equation is given in § VII.A-B of Ref. [68].

IV. SMALL SHEAR LIMIT

A. Definition

The current observational status of the ΛCDM model shows that if the expansion is
anisotropic, σ/H has to be small. Moreover, since any primordial anisotropy is washed out
by the expansion of the universe, the term Cij in the evolution of the background shear is
negligible compared to the integral term in Eq. (2.20).

As discussed in the introduction, a late time anistropy may be generated during the
acceleration of the universe, but the effect we are looking for needs to have an amplitude
small enough to be below the detection threshold of ongoing observational surveys.
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In full generality a linear and gauge-invariant perturbative expansion around an
anisotropic background should be performed. It was developped in Ref. [22, 24] in the con-
text of inflation and Appendix A derives the full perturbation theory for a post-inflationary
era. While a numerical integration of these equations can be performed, it is clear from the
previous arguments that an analytical insight in the regime σ/H � 1 is sufficient.

We shall thus work in the small shear limit in which the background shear induced at
late time by the anisotropic stress-energy tensor of the dark component is small, that is in
the limit σ/H � 1. More precisely, we assume that γij − δij ' 2βiδij is a small dimen-
sionless perturbation, and σij/H is of the same order as this homogeneous perturbation.
We shall thus consider the Bianchi I spacetime as a homogeneous perturbation around
an isotropic Friedmann-Lemâıtre spacetime, hence ignoring non-linear corrections in the
background shear as well. In order to implement this approximation scheme, we intro-
duce a two-parameter perturbation scheme (see e.g. Ref. [80]) in which, besides the usual
Scalar-Vector-Tensor (SVT) perturbations over a flat Friedmann-Lemâıtre background, the
geometrical shear is considered as an extra perturbative degree. We refer to Ref. [81] for a
detailed description of general Bianchi spaces in this approach.

B. Spacetime description

1. Metric

We shall thus adopt the metric

ds2 = a2
[
−(1 + 2Φ)dη2 + 2B̄idx

idη + (γij + hij) dxidxj
]
, (4.1)

where hij is defined as [see Eqs. (A19) and (A36)]

hij = −2
(
γij +

σij
H

)
Ψ + 2Eij , (4.2)

and γij is here understood as the Euclidian metric plus a small perturbation

γij ' δij + 2

∫ a

0

σij
H

da′

a′
,

σij
H
� 1 . (4.3)

In order to simplify the notation, we also define the matrix

βij ≡ diag(βi) (4.4)

such that
γij = exp[2β]ij ' δij + 2βij , σij = σij = β′ij . (4.5)

Thus, βij controls the homogeneous perturbation. Indices are now raised and lowered with
the Euclidian metric δij and δij, and the vector modes Bi and tensor modes Eij satisfy
∂iBi = ∂iEij = Ei

i = 0. But since βij is homogenous, everything happens as if we had usual
cosmological perturbation, but also an infinite wavelength perturbations 2βij to the spatial
metric.

To control the perturbative series, we introduce the {n, p} notation, where n and p
indicate powers in β and SVT variables, respectively. Thus, a term like σij/H is of order
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{1, 0}, terms like Ψ and Φ are of order {0, 1}, while a product like σji ∂jΨ/H is of order
{1, 1}. However, since vector and tensor modes only appear due to the coupling between
the shear and scalar modes [22], vector perturbations Bi and tensor perturbations Eij are
also of order {1, 1}. Hence, for any quantity X, one will consider the different quantities:

• X{0,0}(η): the Friedmann-Lemâıtre background value;

• X{1,0}(η): the first order (homogeneous) scalar perturbed quantity in σ/H;

• X{0,1}(η,x): the first order inhomogeneous perturbed quantity in Ψ, . . .;

• X{1,1}(η,x): the first order inhomogeneous perturbed quantity in both σ/H and Ψ, . . .
and vector and tensor perturbations.

Before moving on we should make some general remarks about the adopted perturbative
scheme. Indeed, one might be worried that adding σij/H or βij as a small homogeneous
perturbation to the background metric would not have any significant observable effect, since
the SVT decomposition was already designed to describe the most general perturbation over
a flat Friedmann-Lemâıtre universe. Note however that SVT modes do not include a zero
Fourier-mode in their spectrum (i.e., an infinite wavelength perturbation), since these modes
will be isotropic by construction and hence merely rescale the background geometry. The
tensor βij, on the other hand, is a homogeneous (i.e., space-independent) field, which by
definition corresponds to an anisotropic zero mode. Thus, its effect cannot be absorbed in
a simple rescaling of the scale factor. Moreover, this field sources the background dynamics
through Einstein’s equations.

2. Tetrad basis

Given this expansion scheme, the tetrad basis associated to the perturbed metric up to
order {1, 1} is explicitely given by

Θ j
i ' (δji − βij)(1 + Ψ) +

β′ij
H

Ψ− Ej
i , Θ 0

i = 0 ,

Θi
j ' (δij + βij)(1−Ψ)−

β′ij
H

Ψ + Ei
j , Θi

0 = B̄i ,

Θ 0
0 = 1− Φ , Θ i

0 = −B̄i ,

Θ0
0 = 1 + Φ , Θ0

i = 0 ,

(4.6)

where ϑ j
i refers to the background spatial triad defined in Eq. (2.11). By chosing the

observer to coincide with the timelike vector of the tetrad (uµ = Θ µ
0 , uµ = −Θ0

µ) we obtain
in general that the components of the direction vector n in the tetrad basis as

ki = −k0ni , ni = Θi
µn

µ . (4.7)

At the position of the observer, the direction of the geodesic in the tetrad basis nio is also the
direction in which the observation is made. Again, we remind that we are interested in the
observables related to light propagation as expressed in function of this observed direction
nio.
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Since we have introduced two types of tetrads ({ϑ} and {Θ}), there is an ambiguity
whenever a tetrad index i appears on a tensorial quantity. First, for the geometric shear
tensor, the tetrad index is defined with respect to the triad ϑ µ

i and we remind that σij =

σij = σij = diag(β′i) = β′ij; see Eq. (2.12). Second, for partial derivatives the tetrad index

corresponds also to the tetrad {ϑ} and we define

∂i ≡ ϑ j
i ∂j ' ∂i − β ji ∂j . (4.8)

It makes clear the difference between a derivative in the direction of a tetrad vector ∂i and
the derivative in the direction of the vectors ∂i associated with the Cartesian coordinates.
Since the vector perturbations Bi and the tensor perturbations Eij are already of order
{1, 1}, there is absolutely no difference between their tetrad components Bi and Eij at this
order of perturbations and there is no need to be particularly careful. Everywhere else, a
tetrad index refers to the tetrad {Θ} defined in Eqs. (4.6).

C. Technical interlude

Since we are interested in computing observables on the celestial sphere, spherical coordi-
nates are much more convenient than Cartesian coordinates. This paragraph describes the
use of such spherical coordinates in real space and of the associated derivatives (radial and
on the unit sphere). Several definitions of covariant derivatives have to be distinguished. We
finish by relating them to each other and to the spin-raising operator of spherical harmonics.

1. Spherical coordinates in real space

Consider a tensor depending on Cartesian coordinates Ti1...in(xi) (with indices raised and
lowered respectively with δij and δij); it can always be constructed by considering the tetrad
components of a given tensor. In spherical coordinates, one can then define from the partial
derivative ∂i = ∂/∂xi a covariant derivative Di on the unit sphere and a radial derivative
∂r. To be more precise, this requires the use of the projectors

Sij ≡ δij − x̂ix̂j , x̂i ≡ xi

r
, with r2 =

3∑
i=1

(xi)2 . (4.9)

Remind that Sij = δipδjqSpq and Sji = δipSpj. The covariant derivative on the unit sphere

S2|space of the Cartesian coordinates centered on the observer is denoted by DR3

i and is
defined from the general projection

1

r
DR3

i Tj1...jn ≡ Ski S
q1
j1
. . . Sqnjn

∂

∂xk
Tq1...qn ≡ P

[
∂

∂xi
Tj1...jn

]
(4.10)

where P [. . . ] is to be understood as the projection of all free Cartesian indices with the
projector Sji . This derivative only makes sense if the tensor itself is a projected tensor, that
is, if it satisfies P [Tj1...jn ] = Tj1...jn .

The radial derivative is then obtained simply by

∂rTj1...jn ≡ x̂i
∂

∂xi
Tj1...jn . (4.11)
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Now, any combination of partial derivatives ∂i applied to some tensor, can be decomposed
in terms of radial derivatives ∂r and covariant derivatives on the sphere DR3

i . The simplest
such decomposition is

∂if = x̂i∂rf +
1

r
DR3

i f , (4.12)

for any scalar function f . The decompositions for projected tensors of various ranks is
detailed in appendix D 1. For general tensors which are not necessarily projected, it is
necessary to split them into their projected components on the sphere and their radial
components before decomposing any derivative applying on them. Such decomposition for
the vector and tensor modes is given in Eqs. (D5). To finish, it is easy to check that

DR3

i Sjk = 0 , DR3

i εjk = 0 , (4.13)

where the completely antisymmetric tensor on the sphere is

εij ≡ εijkx̂
k . (4.14)

2. Covariant derivative on the tangent space

For any spatial tensor constant in space, such as σij, one can define scalar, vector and
tensor fields on the unit sphere. First, one can define a scalar field on the unit sphere of
observing directions, S2|obs, by contracting all free indices with the direction of observation,

Σ ≡ 1

2
σikn

i
on

k
o . (4.15)

Indeed, the observing direction can be considered as a point on S2|obs, whose spherical
coordinates are (θo, ϕo), and Σ from the expression (4.15) is thus a function of (θo, ϕo), that
is a scalar field on S2|obs. Then, to define a vector field on the unit sphere, one needs to
contract one index with the observing direction and project the remaining one on the sphere.
Furthermore, in order to get a tensor field on the unit sphere, we shall project the two free
indices on the sphere. These projections are obtained by contraction with the screen basis
vectors no

a at the observer. For instance, the vector and tensor fields on the sphere build
from the geometric shear are simply

Σa ≡ no
a
jσjin

i
o Σab ≡ no

a
ino
b
kσik . (4.16)

We remark that Σab, which is a symmetric 2 × 2 matrix, is not traceless. In fact, using

the partition of the identity δij = ninj + ni1n
j

1 + ni2n
j

2, the trace is given by δabno
a
ino
b
kσik =

−σiknink = −2Σ. Alternatively, the vector and tensor fields (4.16) can be obtained by
applying successively the covariant derivative on the unit sphere Da to Σ(θo, ϕo). Indeed,
with this method, we find the relations

Σa = DaΣ , Σab = DaDbΣ + 2δabΣ ,

DaD
aΣ = −6Σ , Σ〈ab〉 = D〈aDb〉Σ .

(4.17)

Note that the metric and the antisymmetric tensor on the sphere are obtained from

δab = 2n(+
a n

−)
b εab = 2in[−

a n
+]
b (4.18)

and satisfy
Daδbc = 0 , Daεbc = 0 . (4.19)
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3. Background geodesics and identification of covariant derivatives

The covariant derivativeDa, related to the unit sphere in the observer’s tangent space, and
the derivative DR3

i , related to the unit sphere of Cartesian coordinates, are fundamentally
different. But, they can be related in a simple way. Indeed, the solution to the background
geodesic at order {0, 0}, that is, the geodesics of the spatially flat Friedmann-Lemâıtre
spacetime, is given by

ni = nio , nia = no
a
i ,

dxi{0,0}

dχ
= nio ⇒ xi{0,0} = χnio , (4.20)

where, we remind the reader, nio is the direction of the geodesic at the position of the observer
in the tetrad basis. This is the direction of observation, since we have oriented the geodesic
toward the past.

There is thus a straightforward identification between the sphere of the directions of
observation, lying in the tangent space at the observer (the set of directions S2|obs spanned
by nio), and the set of points of R3 reached at an affine parameter χ (or η) on the background
geodesic. Indeed, the points spanned by the coordinates xi{0,0} at a given affine parameter
χ are such that

δijx
i{0,0}xj{0,0} = r2(χ) = χ2

and form a sphere in the Cartesian coordinates. We can then subsequently identify this
sphere of radius χ to the unit sphere S2|space.

This means that we can identify ni0 with x̂i and then Da on S2|obs with no
a
iDR3

i , the
projection onto the screen basis no

a being used only to switch from the extrinsic point of
view of the derivative (the projection of the Cartesian derivative onto the sphere) to an
intrinsic point of view on the sphere. In the rest of this article we thus replace the notation
DR3

i by Di, n
o
a
iDR3

i by Da, and no
±
iDR3

i by D±.

4. Link with spin-raising operator and spin-weighted spherical harmonics

The covariant derivative on the unit sphere is related to the usual spin-raising and spin-
lowering operators. In spherical coordinates, these operators are defined for a spin-s quantity
by

/∂Xs = − sins θ

[
∂θ + i

1

sin θ
∂ϕ

] (
sin−s θXs

)
, (4.21a)

/∂Xs = − sin−s θ

[
∂θ − i

1

sin θ
∂ϕ

]
(sins θXs) . (4.21b)

They are related to the covariant derivative through

/∂ = −
√

2no
−
aDa = −

√
2D+ , /∂ = −

√
2no

+
aDa = −

√
2D− , (4.22)

the vector no
± being defined in Eq. (3.11). Hence, for a tensor field of spin +|s| on the

sphere, Xν1...νs = Xsno
+
ν1 . . . no

+
νs , and a tensor of spin −|s|, Zν1...νs = Z−sno

−
ν1 . . . no

−
νs , we

have

−
√

2∇µXν1...νs = ( /∂Xs)no
+
µno

+
ν1 . . . no

+
νs + ( /∂Xs)no

−
µno

+
ν1 . . . no

+
νs (4.23a)

−
√

2∇µZν1...νs = ( /∂Z−s)no
+
µno
−
ν1 . . . no

−
νs + ( /∂Z−s)no

−
µno
−
ν1 . . . no

−
νs . (4.23b)
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Since the spin-weighted spherical harmonics satisfy the property

Y s
`m =



√
(`− s)!
(`+ s)!

/∂sY`m if 0 ≤ s ≤ `

(−1)s

√
(`+ s)!

(`− s)!
/∂
−s
Y`m if − ` ≤ s ≤ 0 ,

(4.24)

any number of covariant derivatives applied on a spherical harmonic can be computed using
the properties (4.23).

As an application, consider the expansion of the variable Σ in spherical harmonics

Σ(χ, nio) =
+2∑

m=−2

Σ2m(χ)Y2m(nio) . (4.25)

If we align the azimuthal direction with an eigendirection of the geometric shear, the mul-
tipoles coefficients are then given by

Σ20(χ) = −
√
π

5
[β′1(χ) + β̂′2(χ)] , Σ̂2±2(χ) =

√
π

30
[β′1(χ)− β′2(χ)] . (4.26)

The most useful derivatives are then easily obtained to be

Σ±(χ, nio) = no
∓
kno

jσkj(χ) = D±Σ(χ, nio) = ∓
√

3
∑
m

Σ2m(χ)Y ±1
2m (nio) , (4.27a)

Σ±±(χ, nio) = no
〈∓
kno
∓〉
jσkj(χ) = D±D±Σ(χ, nio) =

√
6
∑
m

Σ2m(χ)Y ±2
2m (nio) . (4.27b)

Similarly, if we expand a scalar field ϕ(χ, xi) in spherical harmonics

ϕ(χ, xi) =
∑
`,m

ϕ`m(χ, r)Y`m(x̂i) , (4.28)

then the most useful derivatives are

D±ϕ(χ, xi) = ∓
√
`(`+ 1)

2

∑
`,m

ϕ`m(χ, r)Y ±1
`m (x̂i) , (4.29a)

D±D±ϕ(χ, xi) =
1

2

√
(`+ 2)!

(`− 2)!

∑
`,m

ϕ`m(χ, r)Y ±2
`m (x̂i) , (4.29b)

2D±D∓ϕ(χ, xi) = DaD
aϕ(χ, xi) = −`(`+ 1)

∑
`,m

ϕ`m(χ, r)Y`m(x̂i) . (4.29c)

D. Geodesics and Sachs equations in term of the Friedmannian coordinates

In the approximation that we are considering, we can solve the perturbation equations
and the Sachs equation up to order {1, 1}. We shall define the distance down to the lightcone
on the Friedmann-Lemâıtre background spacetime as

χ ≡ η0 − η. (4.30)
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The geodesic equation (3.1) takes the form

dkν

dv
+ Γναβk

αkβ = 0 , k0 = −dχ

dv
, (4.31)

and using (4.7) can be rewritten directly in terms of tetrad components as

dki

dv
=

dki
dv

= (k0)2
(
ωkjin

knj + ω00i − ωj0inj − ω0jin
j
)
, (4.32a)

dk0

dv
= −

dk0

dv
= (k0)2

(
−ωij0ninj + ω0i0n

i
)
. (4.32b)

where the affine connections are defined in Appendix B 1. Instead of the parameter v we
shall use the parameter χ since, once the wave-vector is integrated, we have

dxµ

dχ
= −k

µ

k0
. (4.33)

The position on the geodesic then becomes a function of the parameter χ and the initial
direction nio. Finally, the Sachs equation with the parameter χ reads [62]

d2Dab
dχ2

+
1

k0

dk0

dχ

dDab
dχ

=
1

(k0)2RacDcb . (4.34)

V. ANGULAR MULTIPOLE CORRELATIONS IN ANISOTROPIC SPACES

As previously explained, we adopt an observer point of view in which all observable
quantities are considered as functions of the direction of observation no and of the affine
parameter v or, equivalently, of the redshift z, keeping in mind that the later also depends on
no. All these quantities can be decomposed on a basis of spin-weighted spherical harmonics,
Y s
`m. The goal of this section is to derive a set of formal expressions concerning these

expansions and to establish general results of the two-point correlation function valid in
Bianchi I geometries.

We consider that the universe has undergone an early period of isotropic expansion fol-
lowed by a late-time anisotropic phase. This is in sharp contrast with the approach of
Ref. [30], in which the universe is supposed to have an early inflationary stage followed by
an isotropic evolution (so that geodesics are Friedmann-Lemâıtre geodesics and anisotropy
is imprinted only in the source term).

The tools we shall develop are not specific to weak-lensing and can be used in other
contextz, such as the study of the cosmic microwave background. We first describe, in
§ V A, the general expansion of spin s quantities. This will allow us to express their angular
power spectrum in § V B. We conclude by demonstrating that, while spatial parity symmetry
implies that the EB correlation matrix vanishes, some off-diagonal correlaions are necessarily
non-vanishing and encode information on the geometrical shear.

A. Multipolar expansions

The spin-s polarization basis is defined as a tensor product of s polarization vectors as

ms
o ≡

{
n+

o ⊗ · · · ⊗ n+
o if s > 0 ,

n−o ⊗ · · · ⊗ n−o if s < 0 .
(5.1)
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Under the action of an active rotation R, this basis transforms as

R[ms
o] ≡ R ·ms

o(R−1 · no) , (5.2)

where no is the vector along the line of sight at the point of observation. Spin-weighted
spherical harmonics transform under the same rotation as

R[Y s
`m(no)ms

o] ≡ Y s
`m(R−1 · no)R[ms

o] =
∑
m′

Y s
`m′(no)ms

oD
`
m′m(R) , (5.3)

where D`
mm′(R) are the components of the Wigner D-matrix. This means that they trans-

form like normal spherical harmonics provided they are accompanied by the polarization
basis to which they are associated.

Now, any cosmological observable Xs of spin s can be expressed in the form

Xs(χ
S
,no)ms

o =

∫ χ
S

0

SXs(χ
S
, χ,no)ms

odχ , (5.4)

where χ
S

refers to the position of the source. Note that we are explicitly making use of the
small shear expansion, since the source term is integrated along a geodesic of the Friedmann-
Lemâıtre spacetime. This means that in order to compute Xs at order {n, p} one needs to
determine the source SXs at the same order. The source term SXs(χ

S
, χ,no) has to be

understood as
SXs(χ

S
, χ,no) = SXs(χ

S
, χ, xi,no)

∣∣
xi=χn

i
o
, (5.5)

that is, evaluated on the background geodesic. Moreover, thanks to Eq. (4.30), the parame-
ters χ and χ

S
can be thought as time coordinates. The intrinsic angular dependence of SXs

on no is a consequence of the (possible) non scalar nature of the source. Moving forward, it
is convenient to decompose Xs into spherical harmonics as

Xs(χ
S
,no)ms

o =
∑
`,m

Xs
`m(χ

S
)Y s

`m(no)ms
o , (5.6)

which will allows us to define multipolar correlations at unequal times of the form
〈Xs

`m(χ
S1

)Xs?
`′m′(χS2

)〉. In order to compute these angular correlators, we first need to take
the Fourier transform of the source (5.4) off the line of sight

SXs(χ
S
, χ, xi,no)ms

o =

∫
d3k

(2π)3/2
SXs(χ

S
, χ,k,no)eik·xms

o , (5.7)

in the sense that we do not bind xi to χ by the relation xi = χnio and χ has to be thought
as a time coordinate thanks to Eq. (4.30). Then, the intrinsic dependence of the source on
no is further expanded in terms of spherical harmonics, with the latter being defined with
respect to an axis aligned with the Fourier mode k. That is

SXs(χ
S
, χ, ,k,no)ms

o =
∑
`,m

SXs
`m(χ

S
, χ,k)i`

√
4π

2`+ 1
Rk[Y s

`m(no)ms
o] , (5.8)

where Rk is a rotation that transports the azimuthal direction to the direction of the Fourier
mode k (see Appendix C for details about this notation). The terms with m = 0, 1, 2
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correspond here to scalar, vector and tensor perturbations, respectively. If we now make use
of the Rayleigh expansion

eik·x = 4π
∑
`,m

i`j`(kr)Y
?
`m(k̂)Y`m(no) =

∑
`

i`
√

(4π)(2`+ 1)j`(kr)Rk[Y`0(no)] , (5.9)

with r = δijx
ixj, and insert the decomposition (5.8) into Eq. (5.7), we find, after comparing

Eqs. (5.6) and (5.7), that

Xs
`m(χ

S
) =

√
2

π

∫
d3k

∫ χ
S

0

dχ′
∑
m′

D`
mm′(Rk)i`

√
(2`+ 1)

4π

∑
`′

sj
(`′m′)
` (kr)SXs

`′m′(χS
, χ,k)

(5.10)
where we have introduced the definitions

sj
(`′m′)
` (x) ≡

∑
L

sCm′0m′

`L`′ jL(x)iL+`′−`

√
(4π)(2L+ 1)

(2`+ 1)(2`′ + 1)
, (5.11)

and
sCm1m2m3

`1`2`3
≡
∫

d2ΩY s,?
`1m1

(no)Y`2m2(no)Y s
`3m3

(no) . (5.12)

The dynamical evolution and the initial conditions of the source can be split as

SXs
`m(χ

S
, χ,k) = TXs

`m (χ
S
, χ,k)Φi(k) , (5.13)

where TXs
`m is the (anisotropic) transfer function and Φi(k) is the primordial gravitational

potential. Then, assuming that anisotropies are induced at late-time evolution only, the
statistics of the primordial power spectrum must obey

〈Φi(k)Φ?
i (q)〉 = P (k)δ3(k − q) , (5.14)

with P (k) being the (isotropic) primordial power spectrum. To account for the angular
dependence of the transfer functions, we further decompose them as

TXs
`m (χ

S
, χ, ,k) =

∑
L,M

XsTLM`m (χ
S
, χ, k)YLM(k̂) . (5.15)

B. Expression of the two-point angular correlators

These formulas can now be combined (using in particular Eq. (D25) to integrate out all
spherical harmonics) to give an expression for the correlation between the multipoles of two
different observables Xs1 and Zs2 . We find

〈Xs1
`1m1

(χ
S1

)Zs2 ?
`2m2

(χ
S2

)〉 =
2

π
(i)`1(−i)`2

∫ ∞
0

dkk2P (k)∫ χ
S1

0

dχ1

∫ χ
S2

0

dχ2

∑
`,m

∑
`′1,m

′
1

`′2,m
′
2

∑
L1,M1
L2,M2

(−1)m
′
1+m′2s1j

(`′1m
′
1)

`1
(kχ1) s2j

(`′2m
′
2)?

`2
(kχ2)

−m′1Cm1mM1
`1`L1

−m′2Cm2mM2
`2`L2

Xs1TL1M1
`1m1

(χ
S1
, χ1, k) Zs2TL2M2 ?

`2m2
(χ

S2
, χ2, k) . (5.16a)
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A central quantity in this description is the two-point correlation function of the E- and
B-modes of a given spin-2 observable (as, for instance, the cosmic shear γ). This expression

requires the decomposition of X±s, ±sj
(`′m′)
` and SXs

`m in their even/odd parity pieces as

Xs
`m(χ) = EXs

`m(χ) + i sgn(s)BXs
`m(χ) , (5.17a)

±sj
(`′m′)
` (x) = |s|ε

(`′m′)
` (x) + i sgn(s)|s|β

(`′m′)
` (x) , (5.17b)

SXs
`m(χ

S
, χ,k) = [TE

Xs

`m (χ
S
, χ,k) + i sgn(s)TB

Xs

`m (χ
S
, χ,k)]Φi(k) . (5.17c)

Note that a spin s = 2 field will have both E- and B-modes, while a scalar (s = 0) field will

only have the E mode, so that 0β
(`′m′)
` = 0 and BX0

`m = 0.
From these expressions and Eq. (5.10), one can verify that

EXs
`m(χ

S
) =

√
2

π

∫
d3k

∫ χ
S

0

dχ
∑
m′

D`
mm′(Rk)i`

√
(2`+ 1)

4π
(5.18a)∑

`′

[
|s|ε(`

′m′)
m (kχ)TE

Xs

`′m′ (χS
, χ,k)− |s|β(`′m′)

m (kχ)TB
Xs

`′m′ (χS
, χ,k)

]
Φi(k) ,

BXs
`m(χ

S
) =

√
2

π

∫
d3k

∫ χ
S

0

dχ
∑
m′

D`
mm′(Rk)i`

√
(2`+ 1)

4π
(5.18b)∑

`′

[
|s|ε(`

′m′)
m (kχ)TB

Xs

`′m′ (χS
, χ,k) + |s|β(`′m′)

m (kχ)TE
Xs

`′m′ (χS
, χ,k)

]
Φi(k) .

Then, the EE and BB covariance matrices can be computed by simply taking appropriate
combinations of X±s`m . In order to simplify the notation we define

MACA′C′

`1m1`2m2
(χ

S1
, χ

S2
) ≡ 2

π
(i)`1(−i)`2

∫ ∞
0

dkk2P (k)

∫ χ
S1

0

dχ1

∫ χ
S2

0

dχ2 (5.19a)∑
`,m

∑
`′1,m

′
1

`′2,m
′
2

∑
L1,M1
L2,M2

(−1)m
′
1+m′2 A

′
j

(`′1m
′
1)

`1
(kχ1) C

′
j

(`′2m
′
2)?

`2
(kχ2)

−m′1Cm1mM1
`1`L1

−m′2Cm2mM2
`2`L2

ATL1M1

`′1m
′
1

(χ
S1
, χ1, k) CTL2M2,?

`′2m
′
2

(χ
S2
, χ2, k)

together with the notation

Aj
(`′m′)
` =

{
|s|ε

(`′m′)
` if A = EXs ,

|s|β
(`′m′)
` if A = BXs .

Thus, the EE and BB correlations become

〈EXs
`1m1

EXs?
`2m2
〉 =

∑
A,C

MACAC
`1m1`2m2

[
δEAδ

E
C + δBAδ

B
C − δEAδBC − δBAδEC

]
, (5.20a)

〈BXs
`1m1

BXs?
`2m2
〉 =

∑
A,C

MACĀC̄
`1m1`2m2

[
δEAδ

E
C + δBAδ

B
C + δEAδ

B
C + δBAδ

E
C

]
, (5.20b)

where, in the last equality, we have introduced the notation according to which Ā equals
EXs (resp. BXs) whenever A is equal to BXs (resp. EXs); the same holding for C̄. The EB
correlation can be computed using the same method.
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The expression (5.20) is quite general. Let us first focus on its diagonal part, which can
be characterized by the following estimators of

CEE
` (χ

S1
, χ

S2
) =

1

2`+ 1

∑
m

〈EXs
`m(χ

S1
)EXs ?

`m (χ
S2

)〉 , (5.21a)

CBB
` (χ

S1
, χ

S2
) =

1

2`+ 1

∑
m

〈BXs
`m(χ

S1
)BXs ?

`m (χ
S2

)〉 . (5.21b)

The angular power spectra are then given by simpler expressions

CEE
` (χ

S1
, χ

S2
) =

2

π

∫ ∞
0

dk k2

4π
P (k)

∑
m,L,M,A,C

[
δEAδ

E
C + δBAδ

B
C − δEAδBC − δBAδEC

]
×

[∑
`1

∫ χ
S1

0

dχ1
ATLM`1m (χ

S1
, χ

S2
, k) Aj

(`1m)
` (kχ1)

]

×

[∑
`2

∫ χ
S2

0

dχ2
CTLM`2m (χ

S1
, χ

S2
, k) Cj

(`2m)
` (kχ2)

]?
(5.22a)

with, again, a similar expression for the B-modes.
The case where the transfer functions are isotropic is easily recovered. To see that, let us

consider the simpler situation where Xs1 = Zs2 = Θ, with Θ being the CMB temperature
fluctuations. Since Θ is a scalar, then it is a pure E-mode with no B-mode. In the previous
formalism, we just need to set ETLM`m = ΘTLM`m and BTLM`m = 0. Then, using ΘTLM`m =√

4πTΘ
`mδ

L0δM0, we get from Eq. (5.16) the standard result

CΘΘ
` =

2

π

∫ ∞
0

k2dkP (k)
∑
m

∣∣∣∣∣
∫ ∞

0

dχ′
∑
`′

TΘ
`′m(k, χ′)j

(`′m)
` (kχ′)

∣∣∣∣∣
2

, (5.23)

where in this specific case it must be understood that the visibility function is included in
the transfer functions TΘ

`m(k, χ′). If we consider only scalar sources, then only the m = 0
mode contributes. Analogously, if we also have sources with no intrinsic direction (like, for
example, no Doppler effect in the CMB), then we have `′ = 0.

C. Implication of spatial parity

We would like to briefly elucidate the relationship between the symmetries of the under-
lying background spacetime and the cross-correlation functions of different observables. In
particular, we want to show that (spatial) parity symmetry implies that the diagonal piece
of the EB correlation matrix is zero, while off-diagonal terms may not necessarily be.

We start by noticing that under a parity inversion {x, y, z} → {−x,−y,−z}, or, equiva-
lently, {no,nθ,nφ} → {−no,−nθ,nφ}, the polarization vectors transform as

n±o (no) → −n∓o (no) . (5.24)

This implies that the polarization basis should transform under parity as

ms
o(no) → (−1)sm−so (no) . (5.25)
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Moreover, the sources transform as

SXs(χ
S
, χ,k,no)ms

o(no) → (−1)sSXs(χ
S
, χ,−k,−no)m−so (no) . (5.26)

We now demand that any physical quantity remains invariant under a full parity inversion.
That is, if at the same time we transform k → −k, no → −no and ms

o → (−1)sm−so ,
the source SXs of a physical observable Xs should remain invariant, which from Eqs. (5.7)
and (5.26) implies the condition

SXs(χ
S
, χ,k,no) = (−1)sSX−s(χ

S
, χ,−k,−no) . (5.27)

If we take into account the parity transformations of the Wigner matrices and of the spherical
harmonics – see Eqs.(D9-D11) – then a comparison of the previous expression with Eq. (5.8)
shows that the parity condition translates to

SXs
`m(χ

S
, χ,k) = (−1)m+sS

X−s

`,−m(χ
S
, χ,−k) . (5.28)

Then, we rewrite Eq. (5.10) as

Xs
`m(χ

S
) =

√
2

π

∫
d3kXs

`m(χ
S
,k)Φi(k) . (5.29)

The above expression should be seen as a definition of Xs
`m(χ

S
,k), and corresponds to the

contribution of each Fourier mode to the observable, but it is not its Fourier component. Its
expression can be obtained by plugging Eq. (5.13) into Eq. (5.10) and then comparing with
Eq. (5.29). Then, if we impose the symmetry (5.28) to Eq. (5.29), using again the parity
transformation of the Wigner matrices, we finally find that

Xs
`m(χ

S
,k) = (−1)`+sX−s`m(χ

S
,−k) . (5.30)

From this expression, it is straightforward to check that the E- and B-modes of a spin-2
quantity transform under parity as

EX2
`m(χ,k) =

1

2

(
X2
`m(χ,k) +X−2

`m(χ,k)
)

= (−1)`EX2
`m(χ,−k) (5.31a)

BX2
`m(χ,k) =

−i

2

(
X2
`m(χ,k)−X−2

`m(χ,k)
)

= (−1)`+1BX2
`m(χ,−k) . (5.31b)

We can now establish our main conclusion: given the above symmetry, together with trans-
lational invariance of primordial fluctuations (see Eq. (5.14)), it follows that, for the E and
B modes of a spin-2 field, we have

〈EX2
`1m1

(χ)BX2 ?
`2m2

(χ)〉 =
2

π

∫
d3k 〈EX2

`1m1
(χ,k)BX2 ?

`2m2
(χ,k)〉P (k) (5.32)

= (−1)`1+`2+1 2

π

∫
d3k 〈EX2

`1m1
(χ,−k)BX2 ?

`2m2
(χ,−k)〉P (k)

= (−1)`1+`2+1 2

π

∫
d3k 〈EX2

`1m1
(χ,k)BX2 ?

`2m2
(χ,k)〉P (k)

= (−1)`1+`2+1 〈EX2
`1m1

(χ)BX2 ?
`2m2

(χ)〉 ,
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where, from the second to the third line, we have used
∫ +∞
−∞ d3k =

∫ −∞
+∞ d3(−k). Similarly,

one can show that the EE and BB covariance matrices obey

〈EX2
`1m1

EX2 ∗
`2m2
〉 = (−1)`1+`2〈EX2

`1m1
EX2 ∗
`2m2
〉 , (5.33a)

〈BX2
`1m1

BX2 ∗
`2m2
〉 = (−1)`1+`2〈BX2

`1m1
BX2 ∗
`2m2
〉 . (5.33b)

We have thus proved that correlations between E and B modes will vanish whenever `1 + `2

is an even number. In particular, the diagonal part of the EB covariance matrix is always
zero in spacetimes that respect parity (but not necesserily isotropy). Evidently, the same
holds for the multipolar coefficients of a spin-0 quantity, such as the CMB temperature a`ms
(see e.g. Ref. [82]).

VI. PERTURBATION SCHEME IN THE SMALL SHEAR LIMIT

A. Expansion scheme

The structure of the computation has been detailed in § I B. Let us recall that order by
order, we need to

1. solve the geodesic equation perturbatively in order to determine the displacement from
the reference Friedmann-Lemâıtre geodesic, xi{n,p}(χ,no), and the local direction of
propagation, n{n,p}(χ,no). Note that xi{n,p}(χ,no) is split in a radial component,
δr{n,p}(χ,no), and an orthoradial component which will be related to the deflection
angle αa{n,p}(χ,no);

2. determine the transport of the Sachs basis, n
{n,p}
a (χ,no);

3. expand the Sachs equation and determine the source terms for D{n,p}ab (χ,no);

4. determine the evolution of the perturbations at the required order;

5. perform the multipolar expansion in terms of the direction of observation no.

To avoid confusion, we shall use the notation that X{n,p} includes all terms up to order
{n, p} while δX{n,p} contains only the terms of order {n, p}.

B. Order {0,0}

Since on the background (i.e., a Friedmann-Lemâıtre spacetime), the metric is just the
Minkowski metric, thanks to the overall conformal transformation described in § III D 2,

the (conformal) Riemann tensor vanishes, so that R{0,0}ab = 0. Since the wave-vector is
decomposed in accordance to Eq. (3.2), in which we can always choose to set Uo = 1, one
deduces that it is given by

k0{0,0} = −1 , ki{0,0} = nio (6.1)

The Sachs equation (4.34) trivially reduces to

d2D{0,0}ab

dχ2
= 0 (6.2)

34



so that the Jacobi matrix is given by

D{0,0}ab = D
{0,0}
A (χ)Iab, D

{0,0}
A (χ) = χ, (6.3)

and its components reduce to

κ{0,0} = γ
{0,0}
ab = V {0,0} = 0 . (6.4)

This completely specifies the property of the geodesic bundle at the background level.

C. Order {1,0}

At this order, the spacetime remains homogeneous, but it now has an anisotropic pertur-
bation described by the shear σij, from which we can define a scalar field Σ on the 2-sphere
by

Σ(χ) ≡ 1

2
σik(χ)nion

k
o . (6.5)

We also introduce a new scalar function,

B(χ) ≡ 1

2
βik(χ)nion

k
o , (6.6)

where βij is defined in Eqs. (4.4) and (4.5).
We will now show that all results at this order can be expressed in terms of these two

fields on the unit 2-sphere and the covariant derivative Da defined in § IV C 2. In what
follows we shall use the convention Bo = B(χ = 0).

1. Geodesic equation: tangent vector

At this order, the 4-velocity of a fundamental observer is just uµ = (dη)µ = ϑ0
µ, so that

U = kµuµ = k0 = k0 . (6.7)

From Eq. (4.31), and using the fact that, at first order, the only non-vanishing Christoffel
symbols are [22]

δΓ
0{1,0}
ij = σij , δΓ

i{1,0}
0j = σij , (6.8)

we obtain that
dk0{1,0}

dχ
=

dk0{1,0}

dχ
= −σiknionko . (6.9)

It thus follows that

k0{1,0} = k0{1,0} = −1 + 2[B(χ)− Bo] ≡ −1 + δk0{1,0} . (6.10)

This result is expected given, that for a Bianchi I space-time, ki is a constant [68]; see
§ III D 1. Alternatively, this result could have been obtained using Eq. (4.32), with the
{1, 0} order of the affine connections given in Appendix B 1. Its physical interpretation is
simple since the factor 2[B(χ) − Bo] can be identified to the Einstein effect between the
events of emission and reception.
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The evolution of the spatial components of the wave-vector is easily obtained using the
tetrad components first. From Eq. (4.32) we obtain

ki{1,0}(χ) = nio +

∫ χ

0

σij(χ
′)n

j
odχ′ = nio +

[
βij(0)− βij(χ)

]
n
j
o (6.11a)

ki{1,0}(χ) = ki{1,0}(χ)− βij(χ)n
j
o = nio +

[
βij(0)− 2βij(χ)

]
n
j
o (6.11b)

k
{1,0}
i (χ) = k

{1,0}
i (χ) + βij(χ)n

j
o = nio + βij(0)n

j
o (6.11c)

Again, this corresponds to the small shear limit of our previous general result [68], where
ki = ki(0) is used first.

2. Geodesic equation: real space

The parametric equation of the geodesic is obtained from the integration of Eq. (4.33)
at order {1, 0}. Separating the difference between the position at order {1, 0} and the posi-
tion of the background geodesic into a radial displacement and an orthoradial displacement
according to

xi
{1,0}

(χ) = χnio + δxi{1,0} with δxi{1,0} = nioδr
{1,0} + χαa{1,0}no

a
i, (6.12)

which defines the deflection angle αa{1,0}, and where we have used that xi
{0,0}

(χ) = χnio, we
get

δr{1,0}(χ) = −2

∫ χ

0

B(χ′)dχ′ , (6.13a)

αa{1,0}(χ) = DaBo −
2

χ

∫ χ

0

DaB(χ′)dχ′ (6.13b)

in which DaBo stands for (DaB)χ=0, and where the last equalities of the equations above
made use of an integration by parts. Note that

lim
χ→0

xi{1,0}

χ
= nio − βij(0)n

j
o . (6.14)

This can be interpreted simply, because it means that very close to the observer, everything
happens as if βij is constant and equal to βij(0). Thus a constant change of coordinates
x̃i ≡ xi + βij(0)xj transforms the metric from γij = δij + 2βij(0) to the Euclidian metric δij.

The geodesic in these new coordinates is simply the Euclidian one, x̃i(χ) = χnio.

3. Evolution of the direction and screen vectors

The infinitesimal change of a unit vector lies in the plan orthogonal to it. The perturba-
tion of the direction vector is thus of the form

ni{1,0} = nio +$a{1,0}no
a
i . (6.15)
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From the previous results for ki and k0, we get immediately

ni{1,0} = nio +$a{1,0}no
a
i , $a{1,0} =

∫ χ

0

DaΣ dχ′ . (6.16)

The transport equation for the screen basis is in turn given by

ni{1,0}a = no
a
i − nio${1,0}a , (6.17)

and it can be checked that the screen basis (3.10) does remain orthogonal to the direction
vector.

4. Sachs equation

At order {1, 0}, given that R{1,0}ab = 0, the right hand side of Eq. (4.34) reduces to

R{1,0}ab D
{0,0}
bc = R{1,0}ab χδbc = χR{1,0}ac ,

so that the Sachs equation (4.34) reduces to

d2δD{1,0}ab

dχ2
=

dδk0{1,0}

dχ
δab + χR{1,0}ab . (6.18)

Its first integral yields

dδD{1,0}ab

dχ
= δab +

∫ χ

0

(
dδk0{1,0}

dχ̃
δab + χ̃R{1,0}ab

)
dχ̃ . (6.19)

The first term gives δab[1 + δk0{1,0}(χ)] = δab[2 + k0{1,0}(χ)], so that

δD{1,0}ab (χ,no) = δab

∫ χ

0

[
2 + k0{1,0}(χ̃)

]
dχ̃+

∫ χ

0

dχ′
∫ χ′

0

χ̃R{1,0}ab (χ̃,no)dχ̃ . (6.20)

The double integral on the right hand side can be performed by means of an integration by
parts. This gives∫ χ

0

dχ′
∫ χ′

0

χ̃R{1,0}ab (χ̃,no)dχ̃ =

∫ χ

0

χ̃(χ− χ̃)R{1,0}ab (χ̃,no)dχ̃

from where we finally conclude that

δD{1,0}ab (χ,no) =

∫ χ

0

{[
2 + k0{1,0}(χ̃)

]
δab + (χ− χ̃) χ̃R{1,0}ab (χ̃,no)

}
dχ̃ . (6.21)

As detailed in Appendix B 2, the source term takes the form

R{1,0}ab (χ,no) = −1

2
(σ′ijn

i
on

j
o)δab + noi

〈an
oj
b〉 (σij)

′ = −δabΣ′ +D〈aDb〉Σ
′ . (6.22)
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By inserting the above in Eq. (6.21) and using Eq. (6.11), we find the following expressions
for the convergence and shear,

κ{1,0}(χ,no) = −
∫ χ

0

(χ− χ̃)

χ
[2Σ + χ̃Σ′] dχ̃ , (6.23a)

γ
{1,0}
ab (χ,no) =

∫ χ

0

(χ− χ̃)χ̃

χ
D〈aDb〉Σ

′dχ̃ , (6.23b)

which simplify to

κ{1,0}(χ,no) = −B(χ)− 3Bo +
4

χ

∫ χ

0

B(χ̃)dχ̃ , (6.24a)

γ
{1,0}
ab (χ,no) = D〈aDb〉Bo +D〈aDb〉B −

2

χ

∫ χ

0

D〈aDb〉B(χ̃)dχ̃ . (6.24b)

Note that in the limit χ → 0, κ{1,0} → 0 and γ
{1,0}
ab → 0 as it should be, given the initial

condition (3.16) for the Jacobi matrix. Finally, since the Jacobi matrix (6.20) is symmetric,
at this order we have

V {1,0} = 0 . (6.25)

We have checked that these results match those found in [68] when expanded in the small
shear limit (where the special choice Bo = 0 is made).

We can now perform the expansion of these observable quantities in terms of spin-
weighted spherical harmonics. Using the results of § IV C 4, the shear can be projected
into the helicity basis so as to transform the covariant derivatives into spin-raising and spin-
lowering operators. The spherical harmonics components of the convergence κ and of the
cosmic shear γ± are then easily obtained at order {1, 0}. Both reduce to a quadrupolar con-
tribution, inherited from the quadrupolar contribution of Σ, so that their only non-vanishing
coefficients are

κ
{1,0}
2m (χ) = −3Bo

2m − B2m +
4

χ

∫ χ

0

B2m(χ̃)dχ̃ , (6.26a)

γ
±{1,0}
2m (χ) =

√
6

(
Bo

2m + B2m −
2

χ

∫ χ

0

B2m(χ̃)dχ̃

)
. (6.26b)

We conclude that B
γ{1,0}
`m = 0 and E

γ{1,0}
2m = γ

±{1,0}
2m .

D. Order {0,1}

We follow the same method for the order {0, 1} as for the order {1, 0}. This corresponds
to the standard approach to weak-lensing in the linear regime of cosmological perturbations.
Our main goal is to rederive these standard results in our formalism, so as to serve as a
basis for the study at order {1, 1}. Note that, at this order, we only need to include scalar
perturbations since, as stressed before, vectors and tensors modes are of order {1, 1}.
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1. Geodesic equation: tangent vector

Using the definition of the deflecting potential as ϕ ≡ Φ + Ψ, the energy of a photon
evolves according to

dk0{0,1}

dχ
= −∂ϕ

∂χ
+

dΦ

dχ
,

dk0{0,1}

dχ
= −∂ϕ

∂χ
+ 2

dΦ

dχ
, (6.27)

the solution of which is

k0{0,1} = k0{0,1} + Φ = −1 + 2Φ− Φo −
∫ χ

0

∂ϕ

∂χ̃
dχ̃ ≡ −1 + δk0{0,1} , (6.28)

where it is understood the integrand is evaluated on the background geodesic, i.e. that
xi = χ̃nio, at a time associated with χ̃. The notation is intentionally simplified in this
section, so, for example, k0,{0,1} means k0 {0,1}(χ, nio), Φ means Φ(χ, xi) with xi = χnio, and
so on. In other words, it is understood that everything is evaluated on the background
geodesic at parameter χ. The only exception is Φo, which is the potential Φ evaluated at
the observer, that is, at χ = 0. Note that the total derivative d/dχ, i.e. the total derivative
along the background geodesic, satisfies

dϕ

dχ
=
∂ϕ

∂χ
+ ϕ,r = −ϕ′ + x̂i∂iϕ , (6.29)

since, from Eq. (4.30),
∂ϕ

∂χ
= −ϕ′ . (6.30)

2. Evolution of the direction and screen vectors

The spatial component of the vector kµ evolves according to

dki{0,1}

dχ
= −∂iϕ+ nio

dΨ

dχ
,

dki{0,1}

dχ
= −∂iϕ+ 2nio

dΨ

dχ
, (6.31)

the solution of which is

ki{0,1} = ki{0,1} + nioΨ = nio[1 + 2Ψ(χ)−Ψo]−
∫ χ

0

∂iϕdχ̃ . (6.32)

Using Eq. (4.7), we then deduce the evolution of the direction vector

dni{0,1}

dχ
= −Sij∂jϕ, (6.33a)

the solution of which is

ni{0,1}(χ, nio) = nio +$a{0,1}(χ, nio)no
a
i, $a{0,1}(χ, nio) ≡ −

∫ χ

0

Daϕdχ̃ . (6.34a)

Similarly, the evolution of the screen projectors leads to

ni{0,1}a (χ, nio) = no
a
i −$a{0,1}(χ, nio)no

i . (6.35)

39



3. Geodesic equation: real space

We can then determine xi{0,1} from Eq. (4.33) using(
dxi

dχ

){0,1}
= −

(
ki

k0

){0,1}
= nio(1 + ϕ)−

∫ χ

0

Sij∂jϕdχ̃ (6.36)

and this leads to

xi{0,1} = χnio + nio

∫ χ

0

ϕdχ̃− no
a
i

∫ χ

0

dχ̃
(χ− χ̃)

χ̃
Daϕ . (6.37)

4. Sachs equation

Finally, at order {0, 1}, the right hand side of Eq. (4.34) is simply R{0,1}ab D
{0,0}
bc = χR{1,0}ac .

Thus, the Sachs equations becomes

d2δD{0,1}ab

dχ2
=

dk0{0,1}

dχ
δab + χR{0,1}ab . (6.38)

The solution of the Sachs equation follows formally the same steps as in the case {1, 0}.
That is, it can be integrated twice, and after an integration by parts for the double integral
over the Riemann term, we get

δD{0,1}ab (χ,no) =

∫ χ

0

{[
2 + k0{0,1}(χ̃)

]
δab + (χ− χ̃) χ̃R{0,1}ab (χ̃,no)

}
dχ̃ . (6.39)

Now, using the perturbed expression for Rab found in the Appendix B 2 (with σij = 0),

χ2R{0,1}ab = χ2no
a
ino
b
j
[
−∂i∂jϕ− δij

(
Ψ′′ − 2ni∂iΨ

′ + npnq∂p∂qΨ
)]

(6.40a)

= −D〈aDb〉ϕ− δabχ2

[
1

2
∂i∂

iϕ+ Ψ′′ − 2ni∂iΨ
′ +

1

2
npnq∂p∂q(Ψ− Φ)

]
(6.40b)

and the expression dk0{1,0}/dχ given in Eq. (6.28), one obtains the formal solution of the
Sachs equation (4.34) as [62]

δD{0,1}ab = χ

[
δab

(
1−Ψ(χ)− Φo +

1

χ

∫ χ

0

ϕ(χ̃)dχ̃− 1

2

∫ χ

0

χ− χ̃
χχ̃

DcD
cϕ(χ̃)dχ̃

)
−
∫ χ

0

χ− χ̃
χχ̃

D〈aDb〉ϕ(χ̃)dχ̃

]
(6.41)

from which κ and γab can be read directly from the expression in brackets in the first and
second lines respectively; see our definitions in Eq. (3.17). Note that, since there is no

antisymmetric part in δD{0,1}ab , we conclude that V {0,1} = 0.
Dropping the (unobservable) monopole correction due to the local potential Φo, we get

their multipoles as

κ
{0,1}
`m = −Ψ`m(χ) +

1

χ

∫ χ

0

ϕ`m(χ̃)dχ̃+
`(`+ 1)

2

∫ χ

0

χ− χ̃
χχ̃

ϕ`m(χ̃)dχ̃ , (6.42a)

γ
±{0,1}
`m = −1

2

√
(`+ 2)!

(`− 2)!

∫ χ

0

χ− χ̃
χχ̃

ϕ`m(χ̃)dχ̃ . (6.42b)

From which we conclude that B
γ{1,0}
`m = 0 and E

γ{1,0}
`m = γ

±{1,0}
`m .
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5. Angular power spectra

To determine the angular power spectrum of the convergence κ and of the E-modes of
the cosmic shear, we follow the procedure described in § V. At the order {0, 1}, the transfer
function is isotropic and there are only scalar sources. Consequently, only E-modes are
generated. The power spectrum for the E-modes is then just given by

C
EE{0,1}
` =

2

π

∫ ∞
0

k2dkP (k)

∣∣∣∣∫ ∞
0

dχN (χ)

∫ χ

0

dχ̃gE` (k, χ, χ̃)

∣∣∣∣2 , (6.43)

where the function gE is defined as

gE` (k, χ, χ̃) = −χ− χ̃
χχ̃

j`(kχ̃)
1

2

√
(`+ 2)!

(`− 2)!
Tϕ(k, χ̃) . (6.44)

In Eq. (6.43), N (χ) represents the distribution of sources as a function of the radial distance
χ defined such that N (χ)dχ is the number of sources between χ and χ+dχ. At order {0, 1},
it is sufficient to consider the homogeneous source distribution, so that the observed shear
and convergence for sources distributed up to χ+ are then defined by

κo(χ+,no) =

∫ χ+

0

N (χ)κ(χ,no)dχ, γ±o (χ+,no) =

∫ χ+

0

N (χ)γ±(χ,no)dχ. (6.45)

Since here N depends on χ alone, this integration can be performed after the multipolar
decomposition so that we perform the replacement, e.g.

E`m(χ)→
∫ χ+

0

N (χ̃)E`m(χ̃)dχ̃ , (6.46)

in order to build the cosmological observables. Let us emphasize that this derivation can
actually be performed in a simpler way [2]: since the source term derives from a potential,
one could have simply used the Fourier transform directly in Eq. (6.41) and then expanded
the exponential according to Eq. (5.9). The present derivation is however more general when
used to higher orders {n, p}.

On small angular scales, that is, in the limit ` � 1, it is possible to use the Limber
approximation [83]. Such aproximation consists in using∫ ∞

0

dxf(x)j`(x) '
√

π

2L
f(L) (6.47)

with L ≡ `+ 1/2. If we commute the time integrals according to∫ ∞
0

dχ

∫ χ

0

dχ̃f(χ, χ̃) =

∫ ∞
0

dχ̃

∫ ∞
χ̃

dχf(χ, χ̃) (6.48)

we arrive at the simple expression

C
EE{0,1}
` ' 1

4

(`+ 2)!

(`− 2)!
P` , (6.49)
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with

P` ≡
∫ ∞

0

dχ̃

χ̃2
P

(
L

χ̃

) ∣∣∣∣Tϕ(Lχ̃ , χ̃
)∫ ∞

χ̃

dχN (χ)
(χ− χ̃)

χχ̃

∣∣∣∣2 . (6.50)

The angular power spectrum of the convergence κ is obtained in a similar way. Indeed,
if we consider only the dominant contribution of Eq. (6.42a) at small scales, it is sufficient
to replace gE` by

gκ` (k, χ, χ̃) =
`(`+ 1)

2

χ− χ̃
χχ̃

j`(kχ̃) Tϕ(k, χ̃) (6.51)

in the previous expressions to get C
κκ{0,1}
` . Using the Limber approximation, we then obtain

C
κκ{0,1}
` ' `2(`+ 1)2

4
P` , (6.52)

and we check immediately that for large `, C
κκ{0,1}
` ' C

EE{0,1}
` .

Finally, the angular power spectrum of the cross-correlations between the shear and the
convergence is given by

C
κE{0,1}
` =

2

π

∫ ∞
0

k2dkP (k)

(∫ ∞
0

dχN (χ)

∫ χ

0

dχ̃gE` (k, χ, χ̃)

)(∫ ∞
0

dχN (χ)

∫ χ

0

dχ̃gκ` (k, χ, χ̃)

)
for which the Limber approximation gives

C
κE{0,1}
` ' −`(`+ 1)

4

√
(`+ 2)!

(`− 2)!
P` . (6.53)

E. Order {1,1}

1. Geodesic equation

In principle, we need to determine k0{1,1} from the geodesic equation and then xi{1,1}.
As we shall see, these terms are only needed for the expression of the convergence κ{1,1}.

We will instead focus on the computation of the cosmic shear γ
{1,1}
ab and also the rotation

V {1,1}, since they give the leading order of the B-mode and the rotation. Fortunately, that
computation does not require the solution of the geodesic equation up to order {1, 1}.

2. Sachs basis

In order to get a definite expression involving only covariant and radial derivatives, we
need to expand the direction vector ni around its background value nio, so as to use the
definition of § IV C 3, taking into account the contributions of order {0, 1} and {1, 0}, and
similarly for the projection vectors nia. We must use

ni(χ, nio) = nio +
[
$a{0,1}(χ, nio) +$a{1,0}(χ, nio)

]
no
a
i , (6.54a)

nia(χ, n
i
o) = no

a
i −
[
${0,1}a (χ, nio) +${1,0}a (χ, nio)

]
nio . (6.54b)
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It turns out that only the expression for the projection vectors is needed since the direction
vector ni appears only in terms which are already of order {1, 1}. Additionally, we must
convert the derivative along the tetrads ϑi noted by ∂i to derivatives along the Cartesian
coordinates, and these are related from Eq. (4.8). This correction is only relevant for the
term ∂i∂jϕ because the other terms are already of order {1, 1}. We thus use

∂i∂jϕ = ∂i∂jϕ− 2βk(i∂j)∂kϕ , (6.55a)

βij = DiDjB + 2BSij + 2D(iBno
j) + Bno

in
o
j . (6.55b)

3. General form

Since in Eq. (4.34) the two terms 1
k0

dk0

dχ
dDab

dχ
and 1

(k0)2
RacDcb do not contain D{1,1}ab (because

dk0/dχ and Rab vanish at order {0, 0}), it can be integrated to give

dδD{1,1}ab

dχ
= δab +

∫ χ

0

[
−d ln k0

dχ

dDab
dχ

+
1

(k0)2RacDcb
]

dχ′ . (6.56)

(We remind the reader of our convention, in which we split k0 and Dab respectively as
k0 = −1 + δk0 and Dab = χδab + δDab.) In the first term of the integral, given that dk0/dχ
is at least of order {1, 0} + {0, 1}, the term D′ab can be expressed using the formulas found
in the two previous sections, that is

dδD{1,0}/{0,1}ab

dχ
=

∫ χ

0

(
dk0,{1,0}/{0,1}

dχ
δab + χ̃R{1,0}/{0,1}ab

)
dχ̃. (6.57)

Equation (6.56) can then be integrated as

δD{1,1}ab (χ) =

∫ χ

0

χ− χ̃
χ̃

S
{1,1}
ab (χ̃)dχ̃ , (6.58)

where S
{1,1}
ab contains all source terms of order {1, 1}. It is explicitely given by

S
{1,1}
ab (χ) =

χ2Rab

(k0)2
+ χRacδDcb −

d ln k0

d lnχ
(2 + k0)δab +

dk0

d lnχ

∫ χ

0

dχ̃χ̃Rab + χ2δxi∂iRab ,

evaluated at order {1, 1}, and where the last term arises from the fact that, at this order,
there is a correction to be considered since we have to go beyond the Born approximation.
That is, we cannot just integrate on the Friedmann-Lemâıtre geodesic; instead we integrate
on the geodesic x̃i(χ,no) = χnio + δxi(χ,no), so that the source term is

Sab(x̃
i(χ,no)) = Sab(χ, n

i
o) + δxi(χ,no)∂jSab, (6.60)

which implies that

S
{1,1}
ab (x̃i(χ,no)) = S

{1,1}
ab (χ, nio) + δxj,{1,0}(χ,no)∂jS

{0,1}
ab , (6.61)
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since ∂iS
{0,0}
ab = ∂iS

{1,0}
ab = 0. It follows that the source term is explicitely given by

S
{1,1}
ab (χ) = χ2

{
Rab

(k0)2

}{1,1}
+ χ

dδk0{1,1}

dχ
δab

+ χ

(
R{1,0}ac δD{0,1}cb +R{0,1}ac δD{1,0}cb +

dδk0{0,1}

δχ

∫ χ

0

χ̃R{1,0}ab dχ̃+
dδk0{1,0}

δχ

∫ χ

0

χ̃R{0,1}ab dχ̃

)
+ χδab

[
d
(
δk0{1,0}δk0{0,1})

dχ
+ δk0{1,0}δk0{0,1}

]
+ χ2δxj,{1,0}∂jR{0,1}ab . (6.62)

We see on this expression that the general source S
{1,1}
ab (χ) has several contributions. First,

it has contributions from the vector and tensor modes B̄i and Eij (respectively noted S{1,1}V

and S{1,1}T ) which are at least of order {1, 1} since they vanish in the pure FL case; they

enter the termsR{1,1}ab and δk0{1,1}. Then, all the other contributions are formally products of
the scalar perturbations by the geometrical shear; they appear as products of {1, 0}×{0, 1}
terms. To compute explicitely these terms, we decompose the source term as

S
{1,1}
ab (χ) = S

{1,1}V
ab (χ) + S

{1,1}T
ab (χ) + S

{1,1}quad
ab (χ) . (6.63)

Each contribution can be further decomposed into its trace, symmetric traceless and anti-
symmetric parts as

Sab = δabS + S〈ab〉 + S[ab] . (6.64)

Since our goal is to compute the effect of an anisotropic phase on the cosmic shear, and
not on the convergence, we are mostly interested only in the symmetric traceless part. We
shall thus not report the computation of the trace contribution to the trace part, except for
the contribution coming from vectors and tensors, so as to be able to compare our results
with the standard results in the literature, in the cases where the vector and tensor modes
are considered even around a Friedmann-Lemâıtre background. A full computation may be
useful in order to cross-correlate weak-lensing with the magnitude of supernovae.

4. Vector and tensor modes contributions

The vector and tensor contributions are easily found from the literature [62, 84]. Splitting
the vector mode into a radial and orthoradial parts as

B̄i = B̃i + r̂iBr , Eij = Ẽij + 2r̂(iẼj) + Err̂ir̂j , (6.65)

the expression for the Riemann tensor given in Appendix B 2 for vector and tensor modes
gives

R{1,1}Tab = no
a
ino
b
j
[
E ′′ij − 4nq∂[qE

′
i]j + npnq(∂i∂jEpq + ∂p∂qEij)− 2npnq∂q∂(iEj)p

]
(6.66a)

R{1,1}Vab = no
a
ino
b
j
(
−∂(iB̄

′
j) + nq∂q∂(iB̄j) − nq∂i∂jB̄q

)
. (6.66b)
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Using the projections of partial derivatives into radial and covariant derivatives (see Ap-
pendix D 1), we deduce that the vector and tensor contributions to the sources (6.63) are

S
{1,1}V
ab (χ) = χδabBr,r +

δab
2

[
−DcD

cBr +
1

χ2

d

dχ

(
χ3DcB̃c

)
+

2

χ

d

dχ
(χ2Br)

]
+

d

dχ

(
χD〈aB̃b〉

)
−D〈aDb〉Br , (6.67a)

S
{1,1}T
ab (χ) = χδab

∂Er
∂χ

+
δab
2

[
DcDcEr − χ2 d2

dχ2
Er − 6

d

dχ
(χEr)−

2

χ

d

dχ
(χ2DcẼc)

]
+ χ

d2

dχ2
(χẼ〈ab〉) +D〈aDb〉Er − 2

d

dχ
(χD〈aẼb〉) , (6.67b)

with the notation for the radial derivative ,r ≡ x̂i∂i. The first terms of each expression
are respectively the V and T contribution of the term in δk0{1,1} in Eq. (6.62). For each
of these two expressions, the first line contributes to the trace of the Jacobi matrix, that

is, to convergence κ{1,1}. The second line contributes to the cosmic shear γ
{1,1}
ab , since it is

symmetric and traceless. By construction there is no antisymmetric part, so the vectors and
tensors do not contribute to the rotation V {1,1}.

In order to compare and recover the results of Refs. [62, 84], we must use the fact that
vector modes are transverse, and that tensor modes are transverse and traceless. This allows
us to get the relations (see also appendix D 1)

0 = DaB̃a + χ(Br),χ + 2Br , (6.68a)

0 = DaẼab + 3Ẽb + χ(Ẽb),χ , (6.68b)

0 = DaẼa + 3Er + χ(Er),χ . (6.68c)

5. Trace free part of the quadratic contributions

Starting from the general expression (6.62), the only contribution of the terms of order

{1, 1} to the trace free part is χ2R{1,1}〈ab〉 . Then, the terms δD{1,0}/{0,1}ab are decomposed as

δD{1,0}/{0,1}ab = χκ{1,0}/{0,1}δab + χγ
{1,0}/{0,1}
〈ab〉 (6.69)

since, as we have just seen, there is no rotation at order {1, 0} and {0, 1}. To finish, it is
obvious that

dδk0{1,0}/{0,1}

dχ
=

(
dk0

dχ

){1,0}/{0,1}
. (6.70)

It follows that the trace-free part of the quadratic contribution of the source term is given
by

S
{1,1}quad
〈ab〉 (χ) = χ2

{
Rab

(k0)2

}{1,1}
+ χ2R{1,0}〈ab〉 κ

{0,1} + χ2R{0,1}〈ab〉 κ
{1,0} (6.71)

+χ2R{1,0}γ{0,1}〈ab〉 + χ2R{0,1}γ{1,0}〈ab〉

+χ

(
dk0

dχ

){0,1} ∫ χ

0

χ̃R{1,0}〈ab〉 dχ̃+ χ

(
dk0

dχ

){1,0} ∫ χ

0

χ̃R{0,1}〈ab〉 dχ̃

+χ2δxi{1,0}∂iR{0,1}〈ab〉 .
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All terms, except the first one, involve products of quantities which are {0, 1} and {1, 0}, and
have been already computed. Note that the first term is kept in the form (R〈ab〉)/(k0)2){1,1},
and its detailed expression must be found using the perturbed Riemann tensor given in
Appendix B 2. This is indeed more convenient since we shall express everything in terms of
the tetrad basis, and we will just need to use the fact that

k0 = k0Θ 0
0 = (1− Φ)k0 . (6.72)

We find for this first term(
R〈ab〉
(k0)2

){1,1}
= ni〈an

j

b〉

[
−σij(ϕ′ + 2ϕ,r) + 2σk(in

k∂j)ϕ− ∂i∂jϕ−
(
σijΨ

H

)′′
(6.73)

−2

(
σijΨ,r

H

)′
+ 2

(
σikn

k

H
∂jΨ

)′
− σij
H

Ψ,rr −
σkln

knl

H
∂i∂jΨ + 2

σikn
k

H
∂jΨ,r

]
.

Then, we can split all partial derivatives into covariant and radial derivatives, using the
expressions of Appendix D 1. This term is then given by(

χ2R〈ab〉
(k0)2

){1,1}
= −χ2D〈aDb〉Σ (2ϕ,r + ϕ′) + 2χD〈aΣDb〉ϕ (6.74)

+2χ2D〈aBDb〉

(ϕ
r

)
,r

+ 2DcD〈aBDb〉D
cϕ− (1− 2B)D〈aDb〉ϕ

−χ2

(
ΨD〈aDb〉Σ

H

)′′
− 2χ2

(
Ψ,rD〈aDb〉Σ

H

)′
+ 2χ2

(
D〈aΣDb〉Ψ

H

)′
− χ2D〈aDb〉Σ

H
Ψ,rr

−Σ

H
D〈aDb〉Ψ +

2χ2

H
D〈aΣDb〉

(
Ψ

r

)
,r

− 2χ2D〈aΣ
′$
{0,1}
b〉 + 2χ2$

{1,0}
〈a Db〉

(ϕ
r

)
,r
.

Finally, the last term of Eq. (6.71) needs to be evaluated. It can be read directly from
the previous results at order {1, 0} and {0, 1}. We need only to split it into radial and
covariant derivatives using the formulas of Appendix D 1. We find that its contribution to
the traceless part of the Jacobi matrix is given by

χ2δxi{1,0}∂iR{0,1}〈ab〉 = −δr{1,0}D〈aDb〉

(
ϕ,r − 2

ϕ

χ

)
(6.75)

−αc{1,0}DcD〈aDb〉ϕ− 2χ2 α
{1,0}
〈a Db〉

(ϕ
r

)
,r
.

Let us emphasize that, when αa 6= $a, the source is partially seen on its side.
To conclude, the source term (6.62) is obtained by combining the two terms (6.67) for the

vector and tensor contribution to the {1, 1} part, the term (6.73) for the quadratic scalar
contribution and the term (6.75) for the post-Born approximation, to which we need to add
the 6 terms which are products {1, 0} × {0, 1} in (6.71), obtained from the expressions of
the former paragraphs. In principle, once all these contributions to the sources of the Sachs
equation are identified and decomposed into radial and covariant derivatives, one should
apply the formalism detailed in Appendix V, and expand each term in spherical harmonics
for both the angular dependence and the Fourier dependence.

This procedure is however extremely long and includes a large number of terms. We
will not detail it here but instead just identify the dominant contribution and compute its

46



effect on the Jacobi matrix in order to derive the leading contribution to the B-modes in
the next Section. Indeed, once we convert the covariant derivatives into spin-raising and
spin-lowering operators, each covariant derivative is clearly associated with a factor `. In the
flat sky approximation, that is, in the small angle approximation, the dominant contribution
arises from the first term on the second line of Eq. (6.75),

δγ
{1,1}
ab (χ,no) ' −

∫ χ

0

χ− χ̃
χ̃

αc{1,0}(χ̃,no)DcD〈aDb〉ϕ(χ̃,no)dχ̃ (6.76)

as it enjoys three covariant derivatives.

6. Trace part of the quadratic contributions

As discussed in the previous paragraph, the computation of the trace of δD{1,1}ab involves
a lot of terms such as k0,{1,1} and the fourth line of Eq. (6.62). This tedious computation
can indeed be performed with all the details given in this article. It will however give only
a small correction to κ, the leading order of which is the standard convergence κ{0,1}.

We thus decide not to include this computation here since we are mostly interested by
the lowest order dominant effect related to the anisotropic expansion.

7. Rotation quadratic contributions

As we have seen, the rotation vanishes at orders {0, 1} and {1, 0} so that its leading

order contribution appears at order {1, 1}. Since R{1,1}ab is symmetric, its contribution arises
simply from the two first terms of the second line of Eq. (6.62), that is from the source term

S
{1,1}
[ab] (χ) = χ

(
R{1,0}[a|c δD

{0,1}
c|b] +R{0,1}[a|c δD

{1,0}
c|b]

)
≡ εabS

{1,1}
rot (χ) . (6.77)

Using the expression of the previous sections, it is explicitely given by

S
{1,1}
rot (χ,no) = − i

2
D+D+Σ′

∫ χ

0

χ(χ− χ̃)

χ̃
D−D−ϕ(χ̃)dχ̃− (− ↔ +)

− i

2
D+D+ϕ

∫ χ

0

(χ− χ̃)χ̃

χ
D−D−Σ′(χ̃)dχ̃− (− ↔ +) . (6.78a)

The general expression for the rotation is then obtained through

V {1,1}(χ,no) =

∫ χ

0

χ− χ̃
χ̃

S
{1,1}
rot (χ̃,no)dχ̃ . (6.79)

The rotation is thus sourced by the coupling between the usual cosmic shear of the standard
scalar perturbation around a Friedmann-Lemâıtre spacetime (D+D+ϕ) and the quadrupolar
contribution due to the geometric shear (D−D−B′′ = D−D−Σ′).
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8. Integration over the source distribution

The last point that needs to be discussed before turning to the multipolar decomposition
and the computation of the angular power spectra is the source distribution.

The source distribution represents the mean number of object normalized to the mean
density observed in a solid angle dΩo, that is

dN

dΩ0dχ
→ N . (6.80)

In the Friedmann-Lemâıtre and Bianchi I background spacetimes, which are both homoge-
neous, N is constant on any constant time hypersurface, which means that it depends on χ
alone. Thus

N (χ,no) = N (χ) +N {0,1}(χ, xi) +N {1,0}(χ) (6.81)

where the second term is the standard fluctuation of the number density due to the large scale
cosmological perturbations and for which it is understood that the position xi is evaluated
on the background geodesic, that is xi = χnio.

Note however than when one turns to redshift space, on which the observations are
actually performed, one needs to take into account that z is a function of χ and the direction
of observation no, so that we should rather use

N (z,no) = N (z) +N {0,1}(z, xi) +N {1,0}(z,no) , (6.82)

where again the position is evaluated on the background geodesic with xi = χnio. It follows
that, when computing the observed quantities,

γ
{1,1}
ab (χ,no) =

∫
dχ
[
N (χ)γ

{1,1}
ab +N {0,1}(χ, xi)γ{1,0}ab +N {1,0}(χ)γ

{0,1}
ab

]
.

The second term is the standard correlation between the fluctuations of the source distribu-
tion and the cosmic shear. It inherits a directional dependence from the spatial dependence
N {0,1}(χ, xi) given that it is evaluated on the background line of sight, that is with xi = χnio.

Because of the coupling to the pure E-mode γ
{1,0}
ab it will induce B-modes in the source av-

eraged cosmic shear. This component is expected to be important on large angular scales.
The third term is a correction that arises from the fact that the formation of structure differs
a priori in the presence of a geometrical shear, but it does not contribute the B-modes since
it does not have a directional dependence. However, it induces a correction for the E-modes
and for the convergence.

Now, in redshift space, one needs to be more careful since

γ
{1,1}
ab (z,no) =

∫
dz̃
[
N (z̃)γ

{1,1}
ab +N {0,1}(z̃, xi)γ{1,0}ab +N {1,0}(z̃,no)γ

{0,1}
ab

]
.

Both the second and the third term depend now explicitely on the direction of observation, so
that the convolution by the source distribution has to be performed before the decomposition

in spherical harmonics, and both terms will generate B-modes out of the E-modes of γ
{1,0}
ab

and γ
{0,1}
ab respectively. However, these effects should not dominate for small angular scales

and we shall thus neglect them.
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VII. ORDERS OF MAGNITUDE

The previous sections have provided all the elements needed to compute the contribution
of the B-modes at order {1, 1} and their correlations with the E-modes and the cosmic
shear. It is obvious that any further computation has to be performed numerically. It is
however important to exhibit the dominant contribution.

A. Dominant effects

Once the covariant derivatives are expressed in terms of spin-raising and spin-lowering
operators, it is rather straightforward to realize that any covariant derivative is associated
with a factor ` in multipole space. The dominant terms contributing to the shear are thus
the ones with the highest number of covariant derivatives applied to ϕ.

For instance, at order {0, 1}, the convergence is dominated by the last term of Eq. (6.42a)
on small scales. That is

κ
{0,1}
`m ∼ `(`+ 1)

2

∫ χ

0

χ− χ̃
χχ̃

ϕ`m(χ̃)dχ̃ ,

simply because of the geometrical factor `2. It is indeed the term which is usually presented
in textbooks. This term dominates over the second one even at small `, i.e. for ` > 2 − 3,
that is for all practical purposes.

When applying this small scale approximation scheme at order {1, 1}, we realize that
there is just one dominant term – the first one on the second line of Eq. (6.75) – which
possesses three covariant derivatives, that is

δγ
{1,1}
ab (χ,no) ' −

∫ χ

0

χ− χ̃
χ̃

αc{1,0}(χ̃,no)DcD〈aDb〉ϕ(χ̃,no)dχ̃ .

Physically it corresponds to the orthoradial displacement of the central geodesic on which
the Sachs equation is evaluated, when compared with the background geodesic. It is as if the
sources of order {0, 1} contributing to the Jacobi map had been lensed by the orthoradial
displacement of order {1, 0}, resulting in an order {1, 1} effect. This is similar to the lensing
of first order sources of CMB around the last-scattering surface by first order gravitational
potential in the foreground, resulting in a second order lensing effect in the CMB.

The first consequence of this is that the formalism used to compute the CMB lensing can
also be applied to obtain the resulting Jacobi map due to this leading order term. However,
there is a slight difference. Indeed, for the CMB the sources are all located in a background
around the last-scattering surface, for which there is a deflection due to the gravitational
potential crossed between emission and reception. For the general solution giving the Jacobi
map, however, the sources are distributed from the observer up to the maximum redshift
of the survey. For each source there is a different deflection angle as it depends on the
trajectory between the source and the observer.

Finally, we must remind that the treatment of CMB lensing by a gradient expansion [85]
holds only until the deflection angle is comparable to the angle of structures in the CMB.
Beyond that scale, this method underestimates the effect of lensing and one has to resort
to a full-lensing method as exposed in Ref. [78, 86]. Since we are interested in an order of
magnitude estimate of the effect of geometrical shear on the cosmic shear, we will present in
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the next section a gradient expansion method based on Ref. [85], but one should be aware
that for any amplitude of the geometric shear, there must exist a scale `∗ beyond which
this treatment is inaccurate. The method for the full-lensing method is exposed briefly in
Appendix C.

B. Lensing of the central geodesic

1. General formalism of the gradient expansion

Any observable at a given affine parameter χ in a given direction no is formally obtained
from an integration on the background geodesic over its sources given by Eq. (5.4), that is

Xs(χ,no)ms
o =

∫ χ

0

SX(χ, χ̃,no)ms
odχ̃ . (7.1)

However, and as discussed above, a true observable like the cosmic shear is obtained by
averaging over the true normalized profile N (χ) of sources as

Xs(no)ms
o =

∫ ∞
0

dχN (χ)Xs(χ,no)ms
odχ =

∫ ∞
0

N (χ)dχ

∫ χ

0

SX(χ, χ̃,no)ms
odχ̃ . (7.2)

Note that the integrals can be interchanged using∫ ∞
0

dχN (χ)

∫ χ

0

dχ̃f(χ, χ̃) =

∫ ∞
0

dχ̃

∫ ∞
χ̃

dχN (χ)f(χ, χ̃) . (7.3)

We consider only the effect of the dominant term in Eq.(6.75), which corresponds to the
lensing of the sources, that is, it transforms the sources according to a parallel transport
along the lensing vector α. A lensed observable X̃s is then obtained from an integration
over the lensed sources. If the lensing effect is small, it is sufficient to use a Taylor expansion
of the lensed sources to express them in terms of the unlensed sources, the small parameter
being the lensing vector α. Furthermore, if the lensed vector can be written as the gradient
of a scalar, as αa = Daα, then at lowest order in the Taylor expansion, we get for the lensed
source

S̃X
s

(χ, χ̃,no)ms
o = SX

s

(χ, χ̃,no)ms
o +Daα(χ̃,no)Da

[
SX

s

(χ, χ̃,no)ms
o

]
. (7.4)

Using Eq. (D26), the multipoles are easily extracted as

S̃X
s

`m (χ, χ̃) = SX
s

`m (χ, χ̃) +
∑

m1,`2,m2

α2m1(χ̃)SX
s

`2m2
(χ, χ̃)sI

mm1m2
` 2 `2

, (7.5)

where the α`m are the multipoles of the lensing scalar when decomposed into spherical
harmonics, and the coefficients sI

mm1m2
` `1 `2

are defined in Eq. (D28).

2. Multipoles of the lensing vector

The previous expression depends on the multipoles of the lensing scalar, that can actually
be obtained very easily. First, following the definitions (6.5-6.6) we define a matrix αij such
that

α±(n0, χ) ≡ D±α(no, χ) = D±

[
1

2
αij(χ)nion

j
o

]
. (7.6)
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Given Eqs. (6.13b) and (6.75), the components of αij(χ) are just

αij(χ) = −βij(0) + 2

∫ χ

0

dχ′
χ− χ′

χ
σij(χ

′) (7.7a)

= βij(0)− 2

χ

∫ χ

0

dχ′βij(χ
′) . (7.7b)

Then, similarly to the computation of the coefficients Σ2m in Eq. (4.26), the multipoles of
α(no, χ), defined by α =

∑
m α2mY2m reduce to a quadrupole and are explicitely given by

α20(χ) = −
√
π

5
[αxx(χ) + αyy(χ)] , α2±2(χ) =

√
π

30
[αxx(χ)− αyy(χ)] , (7.8)

if the coordinates system is adapted to the eigendirections of the geometrical shear.

3. Extracting the spatial shear components from off-diagonal correlations

A byproduct of the formalism just developed is that we can extract information about
the geometric shear σij from cross-correlations between the E- and B-modes multipoles of
the cosmic shear, E`m and B`m, and the multipoles κ`m of the convergence κ, that would
otherwise vanish in the pure Friedmann-Lemâıtre case. Indeed, even if the B-modes are not
sourced initially, as is the case of a Friedmann-Lemâıtre background, at the perturbative
level there will be a lensed B-mode term sourced by the E-modes of the background shear.
In order to extract this effect we decompose the (lensed) E- and B-modes of the source as

S̃γ
±

`m(χ, χ̃) = S̃E`m(χ, χ̃)± iS̃B`m(χ, χ̃) (7.9)

with a similar decomposition for the (unlensed) SX`m. Then, using the properties (D28), it
follows that

S̃B`m(χ, χ̃) = −i
∑
m1,m2
`2=`±1

α2m1(χ̃)SE`2m2
(χ, χ̃) +2I

mm1m2
`2`2

, (7.10a)

S̃E`m(χ, χ̃) = SE`m(χ, χ̃) +
∑
m1,m2
`2=`,`±2

α2m1(χ̃)SE`2m2
(χ, χ̃) +2I

mm1m2
`2`2

. (7.10b)

We remind that there is no tilde on SE`m on the right-hand side of the above equation, since
it corresponds to the unlensed sources. Since the convergence is a spin 0 quantity, then from
Eq. (7.5), its sources are transformed under lensing as

S̃κ`m(χ, χ̃) = Sκ`m(χ, χ̃) +
∑
m1,m2
`2=`,`±2

α2m1(χ̃)Sκ`2m2
(χ, χ̃) Imm1m2

`2`2
. (7.11)

From these expressions, it is clear that the off-diagonal terms coming from the EB, EE, κκ,
κE, κB cross-correlation matrices allow us to put constraints on α2m and, consequently, on
the geometric shear components σij by means of Eqs. (7.7). To see how that is possible, we
must remember that the sources should be convolved with N (χ) by means of Eq. (7.2).
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In Section VI D 5, the EE, κκ, and κE correlations at order {0, 1} (that is, without the
effect of lensing by the geometric shear) have been computed and they are of the form

CXZ
` =

∫ ∞
0

dχ̃1

∫ ∞
χ̃1

dχ1N (χ1)

∫ ∞
0

dχ̃2

∫ ∞
χ̃2

dχ2N (χ2)CXZ
` (χ1, χ2, χ̃1, χ̃2) (7.12)

where the indices X and Z take the values κ,E, and with the source correlations

〈SX`1m1
(χ1, χ̃1)SZ`2m2

(χ2, χ̃2)〉 = δ`1`2δm1m2C
XZ
`1

(χ1, χ2, χ̃1, χ̃2) , (7.13a)

CXZ
` (χ1, χ2, χ̃1, χ̃2) ≡ 2

π

∫ ∞
0

k2dkP (k)gX` (k, χ1, χ̃1)gZ` (k, χ2, χ̃2) . (7.13b)

For the lensed observables, we define similarly

PXZ`M ≡
∫ ∞

0

dχ̃1

∫ ∞
χ̃1

dχ1N (χ1)

∫ ∞
0

dχ̃2

∫ ∞
χ̃2

dχ2N (χ2)α2M(χ̃1)CXZ
` (χ1, χ2, χ̃1, χ̃2)

=
2

π

∫ ∞
0

k2dkP (k)

(∫ ∞
0

dχ̃1

∫ ∞
χ̃1

dχ1N (χ1)α2M(χ̃1)gX` (k, χ1, χ̃1)

)
×
(∫ ∞

0

dχ̃2

∫ ∞
χ̃2

dχ2N (χ2)gZ` (k, χ2, χ̃2)

)
, (7.14a)

such that the following non-vanishing correlations are expressed as

〈B̃X
`mE

X ?
`±1m−M〉 = −i +2I

mM (m−M)
` 2 `±1 PEE`±1M , (7.15a)

〈B̃X
`mκ

X ?
`±1m−M〉 = −i +2I

mM (m−M)
` 2 `±1 PEκ`±1M . (7.15b)

Not only do we get off-diagonal contributions for B-modes with the E-modes and the con-
vergence, but we also get off-diagonal correlations between κ and E-modes. They read

〈ẼX
`mẼ

X ?
`±2m−M〉 = +2I

mM (m−M)
` 2 `±2

(
PEE`±2M + PEE`M

)
, (7.16a)

〈κ̃X`mκ̃X ?
`±2m−M〉 = I

mM (m−M)
` 2 `±2

(
Pκκ`±2M + Pκκ`M

)
, (7.16b)

〈ẼX
`mκ̃

X ?
`±2m−M〉 = +2I

mM (m−M)
` 2 `±2 PEκ`±2M + I

mM (m−M)
` 2 `±2 PκE`M . (7.16c)

Note that in all these cross-correlators, M ranges from −2 to 2, thus spanning the five
degrees of freedom of the lensing potential α2M , and consequently of the underlying Bianchi
geometrical shear σij. These expressions for the correlators are however not ideal to relate
the correlations to the lensing potential, and thus to the components of σij. Instead, we
define appropriate combinations of the correlators by resumming them as [87]

XZA2M
`1 `2
≡
∑
m

√
5(−1)m+`1+`2

(
`1 2 `2

−m M m−M

)
〈X̃X

`1m
ZX ?
`2,m−M〉 . (7.17)

For instance, for the EB and EE correlations, we get

BEA2M
` `±1 ≡

∑
m

√
5(−1)m+1

(
` 2 `± 1
−m M m−M

)
〈B̃X

`mE
X ?
`±1,m−M〉 , (7.18a)

EEA2M
` `±2 ≡

∑
m

√
5(−1)m

(
` 2 `± 2
−m M m−M

)
〈ẼX

`mẼ
X ?
`±2,m−M〉 . (7.18b)
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Then, by using the definition of the symbols +2I
mMm′

`2`±1 and ImMm′

`2`±1 and the orthogonality
relations of the Wigner 3j symbols, we get

BEA2M
``±1 = i

2F`2`±1√
5
PEE`±1M , (7.19a)

BκA2M
``±1 = i

F`2`±1√
5
PEκ`±1M , (7.19b)

EEA2M
``±2 =

2F`2`±2√
5

(
PEE`±2M + PEE`M

)
, (7.19c)

κκA2M
``±2 =

F`2`±2√
5

(
Pκκ`±2M + Pκκ`M

)
, (7.19d)

EκA2M
``±2 =

2F`2`±2√
5
PEκ`±2M +

F`2`±2√
5
PκE`M , (7.19e)

where the symbols 2F``1`2 are defined in Appendix D 4.
Approximate expressions of this correlators can be obtained in the Limber approxima-

tion (6.47) and read

Pκκ`M '
`2(`+ 1)2

4
P`M , (7.20a)

PκE`M ' PEκ`M =
`(`+ 1)

4

√
(`+ 2)!

(`− 2)!
P`M , (7.20b)

Pκκ`M '
1

4

(`+ 2)!

(`− 2)!
P`M , (7.20c)

with the function P`M given by

P`M ≡
∫ ∞

0

dχ̃

χ̃2
P

(
L

χ̃

)
α2M(χ̃)

∣∣∣∣Tϕ(Lχ̃ , χ̃
)∫ ∞

χ̃

dχN (χ)
(χ− χ̃)

χχ̃

∣∣∣∣2 , (7.21)

where we used the notation L ≡ `+ 1/2.
This provides the expressions of the 5 (off-diagonal) correlators (7.19), each having 5

components, and all being linear in σij. We stress that the measurement of these quantities
from further surveys will allow us to get stronger constraints on the spatial isotropy of the
universe, thus pushing forward the “beyond ΛCDM” program.

4. Autocorrelations of B-modes from the lensing of the central geodesic

The previous off-diagonal correlators are the most direct consequence of a late time
geometrical shear on weak-lensing. However, experiments are mostly designed to measure
the diagonal part. In this section we compute the autocorrelation of B-modes induced by
the dominant lensing term. This angular power spectrum will thus be quadratic in σij.
Contrary to the previous estimators, it does not allow us to reconstruct the full geometrical
shear σij, but can be used to set constraints on σ2.

Using the properties of the Wigner 3j symbols given in Appendix D 4 and starting from
the lens sources (7.10), we obtain that the B-modes angular power spectrum of weak-lensing
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cosmic shear generated by the lensing of the central geodesic is

C
BB{1,1}
` =

∫ ∞
0

dχ1

∫ ∞
0

dχ2N (χ1)N (χ2)

∫ χ1

0

dχ′1

∫ χ2

0

dχ′2

×
∑

s=±1,m

α2m(χ′1)α?2m(χ′2)

5
CEE
`+s(χ1, χ2, χ

′
1, χ

′
2)

(2F` 2 `+s)
2

2`+ 1
. (7.22)

If we now factorize the time integrals we simply get

C
BB{1,1}
` =

2

5π

∫ ∞
0

k2dkP (k)
∑
s=±1

(2F` 2 `+s)
2

2`+ 1

∑
m

∣∣∣∣∫ ∞
0

dχN (χ)

∫ χ

0

dχ′α2m(χ′)g`+s(k, χ, χ
′)

∣∣∣∣2 .
(7.23)

Note that for large `, the F -coefficients behave as

lim
`→∞

(2F` 2 `+1)2

2`+ 1
=

15

2π
, lim

`→∞

(2F` 2 `−1)2

2`+ 1
=

15

2π
. (7.24)

Apart from the six terms (sum over m = −2, 0,+2 and over s = ±1), this is numerically
as fast as computing the correlation CEE

` at order {0, 1}. Then, using the Limber approx-
imation (6.47), with the definitions Ls = L + s = ` + 1/2 + s and `s = ` + s, it leads
to

C
BB{1,1}
` ' 1

20

∫ ∞
0

dχ̃

χ̃2

∑
s=±1

(`s + 2)!

(`s − 2)!
P

(
Ls
χ̃

)
(2F` 2 `+s)

2

2`+ 1

×
∑
m

∣∣∣∣Tϕ(Lsχ̃ , χ̃
)
α2m(χ̃)

∫ ∞
χ̃

dχN (χ)
(χ− χ̃)

χχ̃

∣∣∣∣2 . (7.25)

Finally, using (7.8) to get∑
m

|α2m(χ)|2 =
2π

15
αij(χ)αij(χ) ≡ 2π

15
|α(χ)|2 (7.26)

we obtain a very compact expression, valid only for large `, which is

C
BB{1,1}
` ' `4

10

∫ ∞
0

dχ̃

χ̃2
P

(
`

χ̃

) ∣∣∣∣Tϕ( `χ̃ , χ̃
)
α(χ̃)

∫ ∞
χ̃

dχN (χ)
(χ− χ̃)

χχ̃

∣∣∣∣2 . (7.27)

A numerical analysis of some simple anisotropic phenomenological models, together with
observational constraints from Euclid [71] and SKA [72] surveys, will appear in a companion
paper [70].

VIII. DISCUSSION

In this article we have derived the observational signature of a late time anisotropic ex-
pansion on the weak-lensing observables. To that purpose, we have provided all the technical
tools, including the evolution of the background spacetime, the perturbation theory, the de-
scription of the evolution of a geodesic bundle and the manipulation of observables on the
celestial sphere.
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Our strategy is to adopt an approach based on the observer point of view, in which all
observables are expressed in terms of the direction of observation at the observer. Since
a full solution to the problem cannot be attained straightforwardly, and given that CMB
observations suggest that spatial anisotropy cannot be too large, we have developed a small
shear approximation scheme. It allowed us to identify the following contributions compared
to the standard Friedmann-Lemâıtre case:

1. the tensor and vector contributions to the source of the Sachs equation, which starts
at order {1, 1}, and the contribution of the scalar modes coupled to the geometrical
shear, which is of order {1, 1} as well;

2. the evolution of all the perturbative modes, that is, of the transfer functions, which
are decomposed as TXs(k, t), where the dependence with the direction of k comes
from the coupling with the geometrical shear in the Einstein equation (for that, see
the Appendix A);

3. the fact that the geodesic deviates from is Friedmannian form and which leads to
post-Born corrections;

4. the effect of the source distributions which are affected by the background shear or
the scalar perturbations – that are respectively at orders {1, 0} and {0, 1} – and for
which we would in principle need a theory of structure formation;

We have then argued that the dominant term is related to the orthoradial displacement
of the central geodesic on which the Sachs equation is evaluated, when compared with the
background geodesic.

While we have provided all the elements to perform the full computation, we have focused
on this dominant term and demonstrated that there exist 5 off-diagonal correlators between
E`m, B`m and κ`m each of which has 5 independent components and thus allow in principle
to fully reconstruct the geometrical shear σij. All of them are linear in σ/H and only two of
them involve the B-modes. We advocate that their measurements in future surveys such as
Euclid and SKA, on scales where the linear regime holds, can set strong constraints on the
anisotropy. The amplitude for these two surveys is estimated in our companion article [70].

The existence of non-vanishing B-modes also reflects iteslf in the existence of an angular
power spectrum that is quadratic in σ/H. While probably easier to measure, it does not
allow one to fully reconstruct the shear σij.

This analysis sets the ground for stronger constraints on an anisotropic expansion, and
possibly on the anisotropic stress on the dark energy sector. The new estimators that we
proposed will also allow the control of systematics, and are new in the weak-lensing literature.
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Appendix A: Perturbation theory in Bianchi I universes

This section summarizes the general framework of linear perturbation theory in Bianchi I
universes. Our approach is an extension of the formalism we introduced in Ref. [22], where
perturbation theory was developed in the context of an early anisotropic stage. Here, we
adapt this formalism for the physics of the late-time universe. Before we introduce the
parameterization of the perturbations and the whole machinery of gauge-ivariant linear
perturbation theory, we summarize some results regarding the appropriate Fourier transform
in anisotropic spacetimes, and show how they can be used to extract the dynamics of scalar,
vector and tensor modes from Einstein’s equations. We then use these tools to decompose
the background shear and anisotropic stress in a general basis adapted to our coordinate
system.

1. Mode decomposition

a. Fourier and SVT decomposition

In order to correctly describe the dynamics of perturbative modes one needs a complete
set of spatial eigenfunctions adapted to the symmetries of the spacetime one is dealling
with. Since Bianchi I universes are spatially flat, at each constant time hypersurface these
eigenfunctions are standard plane waves. Therefore, any scalar function of the comoving
coordinates {xi} and time can be Fourier decomposed as

f(xj, η) =

∫
d3ki

(2π)3/2
f̂(ki, η)eikix

i

. (A1)

with the obvious inverse transfomation. Due to the lack of rotational symmetry, the direction
of a wave vector will vary with time. In particular, since ki is constant, ki = γijkj vary with
time – its rate of change being given by:

(ki)′ = −2σijkj . (A2)

Note however that kix
i = kixi remains constant. From the above expression, one can easily

deduce the time evolution of the modulus k2 ≡ kikj and unit vector k̂i ≡ ki/k as

k′

k
= −σij k̂ik̂j , (k̂i)′ = (σjlk̂j k̂l)k̂

i − 2σij k̂j . (A3)

As we are going to see, these expressions are crucial for extracting different perturbative
modes from Einstein equations.

Once equiped with a Fourier transform, we can proceed and decompose any 3-dimensional
geometrical object in terms of its scalar, vector and tensor pieces. We start by decomposing
any (3-dimensional) vector Vi in its longitudinal and transverse pieces as Vi = ∂iV + V̄i, with
∂iV̄i = 0. In Fourier space, this decomposition is equivalent to2

Vi = k̂iV + V̄i , k̂iV̄i = 0 . (A4)

2 Note that we can always reabsorb i factors in the terms of the decomposition.
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Since V̄i is orthogonal to k̂i, it can be further decomposed as

V̄i =
∑
a=1,2

Va(k̂
i, η)ea(k̂i) (A5)

where {eai } represents a 2-dimensional basis defined so that

eai k
i = 0 , eai e

b
iγ
ij = δab . (A6)

Analogously, any (3-dimensional) symmetric tensor Vij can be decomposed into a trace
plus a traceless part as Vij = Tγij + ∆ijS + 2∂(iV̄j) + 2V̄ij, where ∆ij ≡ ∂i∂j − γij∆/3, V̄i is
transverse and V̄ij is transverse and traceless. In Fourier space, such decomposition becomes

Vij = Tγij +
(
k̂ik̂j −

γij
3

)
S + 2k̂(iV̄j) + V̄ij (A7)

where V̄i is given by Eq. (A5). V̄ij is a transverse and traceless tensor decomposed as

V̄ij =
∑
λ=+,×

Vλ(k̂
i, η)ελij(k̂

i) (A8)

with the traceless (ελijγ
ij = 0), transverse (ελij k̂

i = 0) and perpendicular (ελijε
ij
µ = δλµ) polar-

ization tensor being defined as:

ελij =
e1
i e

1
j − e2

i e
2
j√

2
δλ+ +

e1
i e

2
j + e2

i e
1
j√

2
δλ× . (A9)

Given the above decomposition, the correspondence between SVT components of any
geometrical equation can be extracted uniquelly. For example, the scalar part of any vectorial
equation of the form Vi = 0 can be extracted by projecting it along k̂i, whereas its vector
part can be extracted with the help of the projector

Pij ≡ γij − k̂ik̂j = e1
i e

1
j + e2

i e
2
j . (A10)

Likewise, the scalar components of any tensorial equation like Vij = 0 can be extracted by
projecting it along γij and Tij, with the later projector defined as

Tij ≡ k̂ik̂j −
1

3
γij . (A11)

The remaining vector and tensor pieces can be extracted with the help of P i
l k̂

j and Λab
ij ,

respectively, where

Λab
ij = P a

i P
b
j −

1

2
PijP

ab . (A12)

In conclusion, the SVT degrees of freedom of any tri-dimensional vector and tensor are given
explicitly by

Vi =
(
k̂jVj

)
k̂i + P j

i Vj ,

Vij =

(
1

3
γklVkl

)
γij +

(
3

2
T klVkl

)
Tij + 2k̂(i

[
Pm
j) k̂

nVmn

]
+ Λmn

ij Vmn .
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b. Mode evolution

The SVT decomposition introduced above is based on the properties of a tensor according
to the rotation symmetries of the background spacetime. As such, in Friedmann-Lemâıtre
spacetimes this decomposition is always possible and will hold during the entire cosmic
evolution. In the Bianchi I case, on the other hand, this decomposition will hold, strictly
speaking, only on a given constant-time hypersurface. Due to the anisotropic evolution
of space, SVT modes which are initially decoupled will couple nontrivialy as time evolves,
implying in a set of coupled dynamical equations already at linear order in perturbations.
Therefore, it is important to have expressions for the time evolution of basis vectors and
polarization tensors, which will be directly dependent on the spacetime shear. We have
already met the time evolution of k̂i; Eq. (A3). For completeness, we also give the time
evolution of the vector eai and polarization tensor ελij [22]

(k̂i)′ = (σjlk̂j k̂l)k̂
i − 2σij k̂j , (A14a)(

eia
)′

= −
∑
b

(σjle
j
ae
l
b)e

i
b , (A14b)(

ελij
)′

= −
(
σklελkl

)
Pij −

(
σklPkl

)
ελij + 4σk(iε

λ
j)k . (A14c)

Special care is needed when extracting SVT modes from Einstein equations, for the
projections of SVT modes do not commute with time evolution anymore. As an illustration,
let us consider the extraction of the scalar component of an equation like (V̄i)

′ +HV̄i = 0,
where V̄i is any transverse tensor. In FLRW this equation does not have a scalar component,
since k̂iV̄i = 0. However, due to Eq. (A3) we now get

k̂i
[
(V̄i)

′ +HV̄i
]

= (k̂iV̄i)
′ − (k̂i)′V̄i = 2σij k̂jV̄i (A15)

which is only zero when σij = 0. Further mode-extracting relations can be easily found in
an analogous manner. For a comprehensive list of relations the reader can check Ref. [22].

c. Background shear and anisotropic stress

Both the (background) spatial shear σij and spatial anisotropic stress Πij are transverse
and traceless tensors. As such, each of them is described by five independent degrees of
freedom, which are best described in the basis {k̂i, e1

i , e
2
i } adapted to the modes we are

considering. In this basis, these two tensors can be written in terms of 10 new scalar
functions as

σij =
3

2

(
k̂ik̂j −

1

3
γij

)
σ‖ + 2

∑
a=1,2

σ
Va k̂(ie

a
j) +

∑
λ=+,×

σ
Tλ ε

λ
ij , (A16a)

Πij =
3

2

(
k̂ik̂j −

1

3
γij

)
Π‖ + 2

∑
a=1,2

Π
Va k̂(ie

a
j) +

∑
λ=+,×

Π
Tλ ε

λ
ij . (A16b)

It is important to note that these new functions, which depend of both k̂i and time, are not
the Fourier transform of their respective tensors, which in fact are homogeneous and depend
only on time. In other words, the dependence of (σ‖ , σVa, σTλ) and (Π‖ ,ΠVa,ΠTλ) with k̂i
arises solely from the local anisotropy of space.
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With the help of background Einstein equations (2.18a) and (2.18b) written in conformal
time and the mode evolution described by Eqs. (A14a), one can show with a bit of algebra
that

(σ′)‖ ≡ σ′
‖

+ 2Hσ‖ + 2
∑
a

σ2
Va

= κa2Π‖ , (A17a)

(σ′)
Va ≡ σ′

Va
+ 2Hσ

Va −
3

2
σ

Vaσ‖ +
∑
b,λ

σ
VbσTλMλ

ab = κa2Π
Va , (A17b)

(σ′)
Tλ ≡ σ′

Tλ
+ 2Hσ

Tλ − 2
∑
a,b

Mλ
abσVaσVb = κa2Π

Tλ , (A17c)

where Mλ
ab is defined as [22]

Mλ
ab =

1√
2

(
1 0
0 −1

)
δλ+ +

1√
2

(
0 1
1 0

)
δλ× .

2. Gauge-invariant variables

a. Geometry

The most general linearly perturbed metric over a Bianchi I spacetime can be parame-
terized as follows

ds2 = a2[−(1 + 2A)dη2 + 2Bidx
idη + (γij + hij)dx

idxj] (A18)

where A is a free scalar function and

Bi ≡ ∂iB + B̄i , (A19a)

hij ≡ 2C
(
γij +

σij
H

)
+ 2∂i∂jE + 2∂(iEj) + 2Eij , (A19b)

defined together with the usual transversality and trace-free conditions:

∂iB̄
i = 0 = ∂iE

i, Ei
i = 0 = ∂iE

ij . (A20)

Under an active coordinate transformation, the coordinates of any point will change
according to

xµ → x̃µ = xµ − ξµ(xν) , (A21)

where the gauge vector ξµ is itself decomposed as

ξ0 = T , ξi = ∂iL+ Li (A22)

with ∂iL
i = 0. Under the transformation of Eq. (A21), the perturbations of the metric will

transform as
δgµν → δgµν + Lξḡµν (A23)
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where Lξḡµν is the Lie derivative of the background metric along ξ. Using the above param-
eterization and the mode decomposition introduced in § A 1, it is straightforward to show
that the scalar and vector metric potentials transform respectively as

A → A+ T ′ +HT , (A24a)

B → B − T +
(k2L)′

k2
, (A24b)

C → C +HT , (A24c)

E → E + L , (A24d)

B̄i → B̄i + γij(L
j)′ − 2ikjσljP

l
iL , (A24e)

Ei → Ei + Li , (A24f)

whereas Eij is automatically gauge invariant. Based on these transformations, we can con-
struct the following gauge-invariant variables:

Φ = A+
1

a

{
a

[
B − (k2E)′

k2

]}′
, (A25a)

Ψ = −C −H
[
B − (k2E)′

k2

]
, (A25b)

Φi = B̄i − γij(Ej)′ + 2ikjσljP
l
iE . (A25c)

It is easily verifiable that whenever σij = 0 the Fourier wave vector k will be constant and the
above variables become the standard Bardeen variables for a Friedmann-Lemâıtre universe.

b. Matter sector

Moving forward, we now parameterize the perturbations of the energy-momentum tensor
defined in Eq. (2.14), which can be decomposed as

T µν = T̄ µν + δT µν . (A26)

From the normalization condition of the fluid total four velocity we can write

δuµ =
1

a
(−A, vi) , vi = ∂iv + v̄i . (A27)

with ∂iv̄
i = 0, as usual. Likewise, the perturbations to the energy density (δρ), pressure

(δP ) and anisotropic stress (δπij) are introduced as follows:

δT 0
0 = −δρ , (A28a)

δT 0
i = [ρ(1 + w)γij + Πij](v

j +Bj) , (A28b)

δT i0 = −ρ(1 + w)vi + γijδπj0 , (A28c)

δT ij = δPδij + γilδπlj − Πjkh
ki , (A28d)

where Bi and hij were defined in Eqs. (A19). Special care to the notation is in order here
because, as one can check, ḡµλδπλν 6= δπµν ≡ ḡµλδπλν + Πλνδg

λµ.
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We also need to parametrize the perturbed anisotropic stress tensor δπij. From the
transversality condition (uµ + δuµ)(Πµν + δπµν) = 0, we conclude that

δπ00 = 0 , δπ0i = −Πijv
j . (A29)

Note however that these conditions do not fix δπij. We therefore further decompose δπij as

δπij = 2
[
πTγij + ∂i∂jπ

S + ∂(iπ
V
j) + πTij

]
(A30)

where T in πT stands for “trace” and where, as usual, we have

∂iπVi = 0 = ∂iπTij , πT ii = 0 . (A31)

Moreover, note that ḡµνδπµν = −Πµνδg
µν 6= 0, which is why the above decomposition tensor

has a trace.
Under the gauge transformation (A21) and using again the appropriate Fourier decom-

position, the above variables transform as

δρ → δρ+ ρ′T , (A32a)

δP → δP + P ′T , (A32b)

v → v − (k2L)′

k2
, (A32c)

v̄i → v̄i − (Li)′ + 2ikjσljP
liL . (A32d)

These transformations suggest the introduction of the following gauge-invariant variables

δρ̂ ≡ δρ+ ρ′
[
B − (k2E)′

k2

]
, (A33a)

δP̂ ≡ δP + P ′
[
B − (k2E)′

k2

]
, (A33b)

v̂ ≡ v +
(k2E)′

k2
, (A33c)

ˆ̄vi ≡ v̄i + B̄i . (A33d)

The perturbed variables in Eq. (A30), on the other hand, do not have simple transforma-
tions as above, essentially because there is no simplifying relation between the background
tensor Πµν and the wave vector ki. Using

LξΠij = Π′ijT + Πilξ
l
, j + Πjlξ

l
, i

we find that

πT → πT +

(
−1

4
T ijΠ′ij +

1

3
σijΠij

)
T , (A34a)

πS → πS − 3

4k2
T ijΠ′ij T + Πij k̂

ik̂jL− iΠij
k̂i

k
Lj , (A34b)

πVi → πVi −
i

k
P j
i k̂

lΠ′jl T + ikP j
i Πjlk̂

lL+ P j
i ΠjlL

l , (A34c)

πTij → πTij +
1

2
Λlm
ij Π′lm T , (A34d)
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where Pij, Tij and Λij
kl were defined in Eqs. (A10), (A11) and (A12). From the variables

above we construct the following new variables

π̂T ≡ πT +

[
−1

4
T ijΠ′ij +

1

3
σijΠij

](
B − (k2E)′

k2

)
, (A35a)

π̂S ≡ πS − 3

4k2
T ijΠ′ij

(
B − (k2E)′

k2

)
− Πij k̂

ik̂jE + iΠij
k̂i

k
Ej , (A35b)

π̂Vi ≡ πVi −
i

k
P j
i k̂

lΠ′jl

(
B − (k2E)′

k2

)
− ikP j

i Πjlk̂
lE − P j

i ΠjlE
l , (A35c)

π̂Tij ≡ πTij +
1

2
Λlm
ij Π′lm

(
B − (k2E)′

k2

)
, (A35d)

which, as one can easily check, are gauge-invariant.

c. Gauge choice

From the construction of gauge-invariant variables presented above, it is clear that an
enormous simplification will be achieved if we work in a gauge where

B = E = 0 = Ei . (A36)

In this gauge the scalar modes become

Φ = A , Ψ = −C , δρ̂ = δρ , δP̂ = δP , v̂ = v , π̂T = πT , π̂S = πS, (A37)

whereas the vector and tensor variables become

Φ̄i = B̄i , ˆ̄vi = v̄i + B̄i , π̂Vi = πVi , π̂Tij = πTij . (A38)

Apart from the spatial velocity ˆ̄vi, in this gauge the gauge-invariant variables coincide with
the original potentials. In other words, by working in this gauge the final equations can be
trivially (again, apart from ˆ̄vi) replaced with the same equations satisfied by gauge-invariant
variables. Note that this choice fixes the gauge completely, and is slightly different from the
choice made in [22].

3. Perturbed Einstein’s equations in Bianchi I

We have now everything needed to obtain the fully mode-projected and gauge-invariant
Einstein equations. This is a tedious but straightforward procedure which requires careful
comutation of time derivatives and the Fourier vectors through the use of Eqs. (A14a-A14c).
We note that the main difference with the approach followed in Ref. [22] is that the trick
bellow Eq. (3.21) in [22] cannot be used when Πij is non-zero.
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a. Scalar modes

Einstein equations give four equations for the evolution of the scalar modes. The first of
them comes from δG0

0 = κδT 0
0 , and is given by

k2Ψ + 3H(Ψ′ +HΦ)− 1

2
σ2 [X − 3Ψ]− k2

2H
σ‖Ψ−

1

2
ik
∑
a

σ
VaΦa −

1

4H
Ψ
[
(σ2)′ + 4Hσ2

]
+

1

2

∑
λ

[
E ′λσTλ + 2Eλ

∑
a,b

σ
VaσVbMλ

a,b

]
= −a2κ

2
δρ . (A39a)

where, for simplicity, we have introduced the new variable

X ≡ Ψ + Φ +

(
Ψ

H

)′
.

The second scalar equation can be extracted from δG0
i = κδT 0

i by projecting it along the

vector k̂i and is given by

Ψ′+HΦ−
σ‖
2
X+(σ2−(σ′)‖)

Ψ

2H
− 1

2

∑
λ

EλσTλ = −a
2

2
κ

[
ρ(1 + w)v + Π‖v −

i

k

∑
a

Π
Vava

]
.

(A40)
The third and fourth equations come from trace and traceless part of δGi

j = κδT ij . They are

Ψ′′ + 2HΨ′ +HΦ′ + (2H′ +H2)Φ− 1

3
k2(Φ−Ψ)− 1

6

k2

H
σ‖Ψ +

1

2
σ2(X − 3Ψ)

−1

2

∑
λ

(
E ′λσTλ + 2Eλ

∑
a,b

σ
VaσVbMλ

ab

)
+

1

2
ik
∑
a

σ
VaΦa +

Ψ

4H
[
(σ2)′ + 4Hσ2

]
= a2κ

[
1

2
δP + πT − 1

3
k2πS +

1

3

(
Ψ

H
Πijσij −

∑
λ

EλΠTλ

)]
(A41a)

and

2

3
k2(Φ−Ψ)− σ‖

[
X ′ − k2

3

Ψ

H

]
− 2ik

∑
a

σ
VaΦa − 2X(σ′)‖ −

Ψ

H

(
(σ′)‖

)′
+ 4

∑
a,b,λ

σ
VaσVbEλMλ

ab

= a2κ

[
−4

3
k2πS +

Ψ

H
Π‖σ‖ +

8

3

Ψ

H
∑
a

Π
VaσVa −

2

3

Ψ

H
∑
λ

σ
TλΠTλ +

2

3

∑
λ

EλΠTλ

]
(A42a)

respectively. Note that, despite the appearence of i factors, these equations are real.
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b. Vector modes

The two equations for the vector modes can be obtained through the combinations
eia(δG

0
i − κδT 0

i ) = 0 and k̂ie
j
a(δG

i
j − κδT ij ) = 0. They are given respectively by

Φa −
2i

k
σ

VaX +
4i

k

∑
b,λ

EλσVbMλ
ab

=
−2a2κ

k2

[
ρ(1 + w)va + ikΠ

Vav −
1

2
Π‖va +

∑
b,λ

Mλ
abΠTλvb − ik

Ψ

H
Π

Va

]
. (A43a)

and

Φ′a + 2HΦa −
5

2
σ‖Φa +

∑
b,λ

ΦbσTλMλ
ab −

2i

k
σ

VaX
′

+
2iΨ

kH

[
3σ‖(σ

′)
Va − 3σ

Va(σ
′)‖ + 2

∑
b,λ

Mλ
ab (σ

Vb(σ
′)

Tλ − σTλ(σ
′)

Vb)

]

+
4i

k

∑
b,λ

Eλ
[
Mλ

ab(σ
′)

Vb +NabσVb(σT+δ
×
λ − σT×δ

+
λ )
]

+
4i

k

∑
b,λ

E ′λσVbMλ
ab

−4i

k
X(σ′)

Va −
2iΨ

kH

[
((σ′)

Va)
′ −

3σ‖
2

(σ′)
Va − 2H(σ′)

Va +
∑
b,λ

Mλ
ab(σ

′)
Vb

]

=
2i

k
a2κ

[
ikπVa + 2ΨΠ

Va + 2
Ψ

H

(
σ‖ΠVa −

1

2
σ

Vaσ‖ +
∑
b,λ

σ
VbΠTλMλ

ab

)]
. (A44a)

c. Tensor modes

There is only one dynamical equation for the tensor modes. This equation follows from
the projection ελ ji (δGi

j − κδT ij ) = 0, which gives

E ′′λ + 2HE ′λ + k2Eλ − 2Eλ
∑
a

σ2
Va
− 2Eλσ

2
T(1−λ) + 2E(1−λ)σT+σT×

−σ
Tλ

[
k2

(
Ψ

H

)
+X ′

]
− 2X(σ′)

Tλ + 2ik
∑
a,b

σ
VbΦaMλ

ab −
Ψ

H
((σ′)

Tλ)
′

= a2κ

[
2πTλ + Π‖Eλ −

Ψ

H

(
σ‖ΠTλ + σ

TλΠ‖ +
∑
a,b

Π
VaσVbMλ

ab

)]
. (A45a)

4. Perturbed Fluid equations

The perturbed conservation equation follows from

(δ∇µ)T µν +∇µ(δT µν ) = 0 . (A46)
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Working in the gauge (A36), the time component (ν = 0) of the above expression gives the
perturbed continuity equation

δρ′ + ρ(1 + w)∇2v + 3H(δρ+ δP )− (ρ+ P )3Ψ′ =

∂jδπj0 −Hγijδπij +HΠijh
ij − σijδπilγlj + σijΠilh

lj − 1

2
(hji )

′Πi
j , (A47a)

where we remind that hij was introduced in Eq. (A19). Likewise, the perturbed Euler
equation follows from spatial part (ν = i) of Eq. (A46). We find

∂

∂η
{[ρ(1 + w)γij + Πij]v

j}+ ∂iδP + ∂lδπli + (1 + w)ρ∂iΦ + Πj
i∂jΦ

+4H{[ρ(1 + w)γij + Πij]v
j} − Πil∂jh

lj +
1

2
Πj
i∂jh

l
l −

1

2
Πjk∂ihjk = 0 . (A48a)

Despite their generality, the above equations are not very useful since they are imple-
mented in real space. In order to obtain their Fourier counterparts we need to project these
equations along the scalar (k̂i) and vector (eia) modes. This mode extraction procedure
is tedious but straightforward, and requires special attention to the use of the evolution
Eqs. (A14aa-A14cb) of the Fourier wave vectors.

a. Scalar modes

Both continuity and Euler equations lead to conservation equations for the scalar modes.
They are given respectively by

δ′ + 3H[(c2
s − w)δ + ωΓ]− (1 + w)(k2v + 3Ψ′)− δ

ρ
σijΠij =

1

ρ

{[(
Ψ

H

)′
σij −

Ψ

H
(σij)

′
]

Πij

+2a2κ
Ψ

H
ΠijΠij − 8ΨΠijσij + k2Π‖v − ik

∑
a

Π
Va(va − Φa)− 6HπT + 2k2πS(H + σ‖)

−2ik
∑
a

σ
Vaπ

V
a − 2

∑
λ

σ
Tλπ

T
λ −

∑
λ

Eλ(σTλΠ‖ + σ‖ΠTλ) +
∑
λ

Πλ(2HEλ − E ′λ)

}
(A49a)

and

v′ +H(1− 3c2
s)v + Φ +

1

1 + w

[
c2
sδ + wΓ +

2

ρ
(πT − k2πS)

]
− 2i

k

∑
a

σ
Vava −

σijΠij

ρ
v

(
1 + c2

s

1 + w

)
=

−1

ik(1 + w)ρ

{
ik(Π‖v)′ + ikΠ‖Φ + 4H(ikΠ‖v +

∑
a

Π
Vava) + ikΨΠ‖

(
2σ‖
H
− 1

)
− ik

∑
λ

Π
TλEλ

+

(
2
∑
a

Π
VaσVa + Πijσij

)
ikΨ

H
+
∑
a

[
(Π

Vava)
′ + σ‖ΠVava + 2ikσ

VaΠVav
]

−
∑
a

(
Π‖σVava + 2

∑
b,λ

σ
VavbMλ

abΠTλ

)}
, (A50a)

68



where we have made use of the equation

w′ = −
[
3H(1 + w) +

Πijσij
ρ

]
(c2
s − w) . (A51)

and of the definition [2]

δ =
δρ

ρ
, δP = c2

sδρ+ wρΓ , (A52)

where c2
s and Γ are the sound speed and the entropy perturbation, respectively.

b. Vector Modes

There is only one conservation equation for the vector modes, which follows from the
vector projection of Eq. (A50). This equation is given by

v′a +H(1− 3c2
s)va −

k2πVa
ρ(1 + ω)

− Πijσij
ρ

(
1 + c2

s

1 + ω

)
va −

1

2
σ‖va +

∑
b,λ

Mλ
abσTλvb =

− 1

(1 + ω)ρ

[
∂η(ikΠ

Vav −
∑
b

Vabvb)− ik
∑
b

UabΠVbv +
∑
b,c

UabVbcvc + 4H(ikΠ
Vav −

∑
b

Vabvb)

ikΠ
VaΦ + ik

(
2
∑
λ,b

Π
TλσVbMλ

ab + 2Π
Vaσ‖ − Π‖σVa −HΠ

Va

)
Ψ

H

]
. (A53a)

where we have introduced

Uab ≡ −σijeiae
j
b , Vab ≡ −Πije

i
ae
j
b . (A54)

c. Friedmannian limit

It is a straightforward exercise to verify that the above equations have a well-defined
Friedman-Lemâıtre limit. Redefining δπij → Pδπij and πT → k2πS/3 to compare with
Ref. [2], we find immediately that

δ′ + 3H[(c2
s − ω)δ + ωΓ] = (1 + ω)(k2v + 3Ψ′) (A55a)

v′ +H(1− 3c2
s)v + Φ = − c2

s

1 + ω
δ − ω

1 + ω

[
Γ− 2

3
(2k2πS)

]
, (A55b)

v′a +H(1− 3c2
s)va =

ω

1 + ω
k2πVa , (A55c)

which are the expected equations.

Appendix B: Perturbed geometric quantities

This section gathers the expression of the geometrical quantities at order {1, 1}, as needed
for the computation of this article.
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1. Connections

Using the commutators of the tetrad field

γcab ≡ Θc
µ[Θa,Θb]

µ , γcab ≡ ηcdγ
d
ab (B1)

the Ricci rotation coefficients are obtained through

ωabc ≡ ηbdΘ
d
νΘ

µ
a ∇µΘ ν

c , ωabc =
1

2
(γabc + γcba − γbca) . (B2)

Up to order {1, 1}, the commutators are

γ0
00 = γi00 = 0 , (B3a)

γ0
0i = −γ0

i0 = ∂iΦ = ∂iΦ− βji ∂jΦ , (B3b)

γj0i = −γj i0 = −E ′ij +

(
σijΨ

H

)′
+ ∂iB̄j − σij(1− Φ) + Ψ′δji , (B3c)

γkij = −2∂[iEj]k +
2

H
∂[iΨσj]k + 2∂[iΨδ

k
j] − 2βq[i∂qΨδ

k
j] , (B3d)

and the Ricci rotation coefficients are thus

ω00i = −ω0i0 = −exp[−β]ij∂jΦ , (B4a)

ωi0j = −ωij0 = δijΨ
′ +
(σij
H

Ψ
)′
− σij(1− Φ)− E ′ij + ∂(iB̄j) , (B4b)

ω0ij = −ω0ji = ∂[jB̄i] , (B4c)

ωijk = −ωikj = 2δi[k∂j]Ψ + 2
σi[k∂j]Ψ

H
− 2∂[jEk]i . (B4d)

2. Riemann and Ricci tensors

We report the Riemann and Ricci tensor components of the metric (4.1), where the overall
scale factor a2 has been removed by a conformal transformation, up to order {1, 1}. We first
give their components in the coordinated basis (with the use of the package xPand [88]),
and then in the tetrad basis {Θ}.

In the coordinate basis, the non-vanishing components are given by

R0i0j = γijΨ
′′ +

(σij
H

Ψ
)′′

+ σij(Φ
′ + 2Ψ′)− σ′ij(1− 2Ψ)

+∂i∂jΦ− E ′′ij + ∂(iB̄
′
j) (B5a)

R0ijk = 2γi[jσk]
q∂qΨ− 2σi[j∂k]ϕ− 2

[(
γi[j +

σi[j
H

)
∂k]Ψ

]′
+∂i∂[jB̄k] + 2∂[kE

′
j]i (B5b)

Rijpq = −4γ[i[pσj]q]Ψ
′ + 4

(
γ[i[p +

σ[i[p

H

)
∂j]∂q]Ψ

−∂q∂jEip − ∂i∂pEjq + ∂p∂jEiq + ∂q∂iEjp (B5c)
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and

R00 = 3Ψ′′ + γij∂j∂iΦ (B6a)

R0i = 2∂iΨ
′ − σji ∂j(Φ + 3Ψ)− 1

2
∆B̄i−

[
σji ∂jΨ

H

]′
(B6b)

Rij = σ′ij(1− 2Φ− 2Ψ)− σij(Φ′ + 3Ψ′) + γij
[
γkq∂q∂kΨ−Ψ′′

]
+∂i∂j(Ψ− Φ) + E ′′ij −∆Eij − ∂(iB̄

′
j)

−
(
σijΨ

H

)′′
+
σij
H
∂k∂kΨ− 2

σk(i
H
∂j)∂kΨ . (B6c)

Projecting using the tetrad (4.6) leads to the components in the tetrad basis

R0i0j = δijΨ
′′ +

(
σij

H
Ψ

)′′
+ σij(Φ

′ + 2Ψ′)− σ′ij(1− 2Φ)

+∂i∂jΦ− E ′′ij + ∂(iB̄
′
j) (B7a)

R0ijk = 2δi[jσk]
q∂qΨ− 2σi[j∂k]ϕ− 2δi[j∂k]Ψ

′ − 2

(
σi[j∂k]Ψ

H

)′
+∂i∂[jB̄k] + 2∂[kE

′
j]i (B7b)

Rijpq = −4δ[i[pσj]q]Ψ
′ + 4

(
δ[i[p+σ[i[p/H

)
∂j]∂q]Ψ

−∂q∂jEip − ∂i∂pEjq + ∂p∂jEiq + ∂q∂iEjp (B7c)

and

R00 = 3Ψ′′ + ∂i∂iΦ (B8a)

R0i = 2∂iΨ
′ − σji ∂j(Φ + 3Ψ)− 1

2
∆B̄i−

[
σ
j

i ∂jΨ

H

]′
(B8b)

Rij = σ′ij(1− 2Φ)− σij(Φ′ + 3Ψ′) + δij
[
∂k∂kΨ−Ψ′′

]
+∂i∂j(Ψ− Φ) + E ′′ij −∆Eij − ∂(iB̄

′
j)

−
(
σijΨ

H

)′′
+
σij

H
∂k∂kΨ− 2

σk(i
H
∂j)∂kΨ . (B8c)

Appendix C: Glimpse on the full lensing method

This section details how a tensor field on the sphere X is lensed by a vector field α, the
lensing being defined as the result of a parallel transport with respect to this vector field.

First, for any direction on the sphere, there exists a rotation which connects the azimuthal
direction with this particular direction n. If this direction has spherical coordinates (θ, ϕ)
this is simply

n ≡ Rn · ez Rn = R(ϕ, θ, 0) = Rz(ϕ) ·Ry(θ) ·Rz(0) (C1)

71



where R(α, β, γ) is a general rotation parameterized by Euler angles. Now, if we want to
define the helicity basis at a given direction n as a result of this rotation applied to the
helicity basis at the north pole, we have to face the fact that the helicity basis at the north
pole is not well defined, since eϕ is not defined at this point. We choose that at the north
pole n±(ez) ≡ 1√

2
(ex∓ iey), since this ensures that the helicity basis at any point is obtained

from the one at the north pole through a rotation, that is

n±(n) = Rn · n±(ez) . (C2)

A spin s tensor is defined as X(n) ≡ Xs(n)ms(n) = [Xsms](n). Its component on the
polarization basis are simply obtained by projection

Xs(n) = m−s(n) ·X(n) = m−s(ez) · [R−1
n .X(n)] = m−s(ez) · [R−1

n X](ez) . (C3)

This means that instead of projecting a tensor on the polarization basis at a point n we can
equivalently rotate it so that the point which initially in n becomes located on the azimuthal
direction. Then we can evaluate its components on the polarization basis at this azimuthal
direction. The azimuthal direction can thus be used as a common reference for all points
on the sphere since for each point there is a unique natural rotation to transport from this
point to the azimuthal direction.

Let us consider that, due to the lensing vector α, the tensor field we observe in the
direction n, is now the result of a parallel transport of the underlying tensor by this vector
field α. Such a parallel transport is equivalent to a rotation around the axis n×α, so that
the lensed tensor field is related to the unlensed one by

X̃(n) ≡ [R−1
n×α(n)X](n) . (C4)

We use the notation RV to indicate the rotation defined by the rotation vector V . This
is the rotation around the axis defined by the vector V with an angle obtained from the
norm of V . It must not be confused with the previous notation Rn, which is the rotation
that brings the azimuthal direction toward the direction n. As emphasized previously, the
components of the lensed tensor field, as any tensor field, can be obtained by transportation
to the azimuthal direction, that is

X̃s(n) = m−s(n).X̃(n) = m−s(ez) · [R−1
n R−1

n×α(n)X](ez) . (C5)

Using the general property of rotations RnRVR
−1
n = RRn·V leads to

R−1
n Rn×α(n)Rn = Rez×[R−1

n α(n)] , (C6)

that is to
R−1
n R−1

n×α(n) = R−1

ez×[R−1
n α(n)]

R−1
n , (C7)

which can be used to recast Eq. (C5) as

X̃s(n) = m−s(ez) · [R−1

ez×[R−1
n α(n)]

R−1
n X](ez). (C8)

This can be understood easily once we extract the helicity components of the lensing vector.
Indeed, the helicity basis components of the lensing vector field are obtained just like for
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any vector field as α±(n) = n∓(n).α(n) = 1√
2
(ex ∓ iey).[R

−1
n α(n)]. If we define

αx =
1√
2

(α+ + α−) , αy =
i√
2

(α+ − α−) , (C9a)

αx = αθ cosαϕ , αy = αθ sinαϕ , (C9b)

where (αx, αy) are the components of the lensing field once transported to the azimuthal
direction, and (αθ, αϕ) their associated polar components, we obtain that

Rez×[R−1
n α(n)] = R(αϕ, αθ,−αϕ) . (C10)

This means that instead of lensing the tensor field at the point n and subsequently ex-
tracting the component, it is equivalent to transport both the field and the lensing vector
at the azimuthal direction with R−1

n and then let the transported lensing vector act on the
transported tensor field. This procedure is explained graphically in Fig. 3.

FIG. 3: The azimuthal point Z is at the azimuthal direction ez, while the point P is located in

Rn ·ez. Because of lensing the signal observed in P is coming from P ′ whose location is at Rn×α(n) ·
Rn ·ez, which corresponds to a covariant transport along α from the point P . As for the point Z ′,

it is obtained by applying R−1
n on P ′ meaning that it is located at R−1

n ·Rn×α(n) ·Rn · ez. This is

equivalent to Rez×[R−1
n α(n)] ·ez which corresponds to a covariant transport from the point Z, along

the vector R−1
n α(n). The lensed field at P (X̃P ) is obtained by covariantly transporting back along

α the unlensed field at P ′ (XP ′) by application of R−1
n×α(n), and we get X̃P =

(
R−1
n×α(n) ·X

)
P

,

and it is in general different from the unlensed field at that point XP . In order to read the

components, everything is transported back into the azimuthal region by application of R−1
n . We

get XZ′ ≡
(
R−1
n ·X

)
Z′

, XZ ≡
(
R−1
n ·X

)
Z

, and X̃Z =
(
R−1
n · X̃

)
Z

=
(
R−1
n ·R−1

n×α(n) ·X
)
Z

. For

the latter, there is an alternative expressions, which corresponds to covariantly transporting back

the field XZ′ along R−1
n α, and this leads to X̃Z =

(
R−1

ez×[R−1
n α(n)]

·R−1
n ·X

)
Z

, from which the

components can be read by projection on the local helicity basis associated with ex and ey. This

is precisely the meaning of Eq. (C8) which is used to compute the components of the lensed field.

With this crucial result at hand, we just need to compose the rotations of Eq. (C8) in
order to obtain the components of the lensed field in terms of the multipole components of
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the unlensed tensor field. Using the general transformation law (D16), we get

X̃s(n) =
∑

`mm′m′′

Y s
`m′′(ez)D

`
m′′m′ [R

−1(αϕ, αθ,−αϕ)]D`
m′m[R−1

n ]Xs
`m (C11a)

=
∑
`mm′

(−1)s
√

2`+ 1

4π
D`
−sm′ [R

−1(αϕ, αθ,−αϕ)]D`
m′m[R−1

n ]Xs
`m (C11b)

=
∑
`mm′

eisαϕY s
`m′(αθ, αϕ)]D`

m′m[R−1
n ]Xs

`m , (C11c)

where it is understood that the components (αθ, αϕ) correspond to the lensing vector field
at the position n considered, and these should be obtained from the definitions (C9).

From this relation between a tensor acting as a source for an observable and its lensed
version due to the geodesic structure between the source and the observer, it is possible in
principle, to obtain the correlations functions (see e.g. Ref. [78] for the case of CMB lensing).
A simplification can be obtained by expanding the spherical harmonics in a small angle
approximation. Indeed, very close to the azimuthal direction, the spin-weighted spherical
harmonics are approximated by

Y s
`m(θ, ϕ) ' (−1)m

√
2`+ 1

4π
eimϕJm+s[(`+ 1/2)θ] (C12)

and given that Jm+s(x) behaves like xm+s when x → 0 there is a natural way to expand
Eq. (C11) in powers of the lensing angle. More details can be found in Ref. [78].

Appendix D: Mathematical tool-box

1. From Cartesian to spherical derivatives

In this section Di refers to the covariant derivative on the unit sphere in Cartesian coor-
dinates, that is DR3

i defined in Eq. (4.10). The key relation to derive all the decompositions
from Cartesian derivatives ∂i to radial and covariant spherical derivatives is the simple re-
lation

r∂ix̂j = Sij, (D1)

which is just the statement that the extrinsic curvature on a unit sphere is equal to the
metric on this sphere. For a scalar, a projected vector and a projected tensor, we have

∂iϕ =
Diϕ

r
+ ϕ,rx̂i (D2a)

∂iB̃j =
DiB̃j

r
+ (B̃j),rx̂i −

x̂j
r
B̃i (D2b)

∂iẼjk =
DiẼjk
r

+ (Ẽjk),rx̂i −
x̂j
r
Ẽik −

x̂k
r
Ẽji , (D2c)

where we use the notation X,r ≡ x̂i∂iX for the radial derivative. Note that this radial
derivative and the covariant derivative on the unit sphere Di commute, as they are just the
geometric versions of derivatives in spherical coordinates.
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Iterating these relations we obtain for scalar perturbations

∂i∂jϕ = 2x̂(iDj)

(ϕ
r

)
,r

+
DiDjϕ

r2
+ ϕ,rrx̂ix̂j + Sij

ϕ,r
r

(D3a)

Sij∂i∂jϕ =
DiD

iϕ

r2
+ 2

ϕ,r
r

(D3b)

P [x̂j∂i∂jϕ] = Di

(ϕ
r

)
,r

(D3c)

Diϕ,r = (Diϕ),r (D3d)

Spi S
q
j∂k∂p∂qϕ =

2

r
Sk(jDi)

(ϕ
r

)
,r

+ Sij∂k

(ϕ,r
r

)
+ ∂k

(
DiDjϕ

r2

)
(D3e)

x̂kSpi S
q
j∂k∂p∂qϕ =

(
DiDjϕ

r2

)
,r

+ Sij

(ϕ,r
r

)
,r

(D3f)

SrkS
p
i S

q
j∂r∂p∂qϕ =

2

r
Sk(jDi)

(ϕ
r

)
,r

+ SijDk

(ϕ,r
r2

)
+

(
DkDiDjϕ

r3

)
. (D3g)

As for vectors and tensor, the useful relations are

x̂ix̂j∂k∂lEij = ∂k∂lEr −
4∂(kẼl)
r

+
2Ẽkl
r2
− 2SklEr

r2
− 2Ẽ(kx̂l) (D4a)

x̂l∂i∂jBl =
DiD

iBr

r2
− 2DiB̃i

r2
+ (Br),rr + 2

(Br),r
r
− 2Br

r2
. (D4b)

Finally, using the fact that the vector modes are transverse and that the tensor modes are
transverse and traceless, we get

Bi ≡ B̃i + x̂iBr (D5a)

DiB̃i = −2Br − r(Br),r (D5b)

Eij ≡ Ẽij + 2Ẽ(ix̂j) + Erx̂ix̂j (D5c)

SijẼij = −Er = 0 (D5d)

DiẼi = −3Er − r(Er),r (D5e)

DiẼij = −3Ẽj − r(Ẽj),r . (D5f)

2. Spin-weighted spherical harmonics

Spin-weighted spherical harmonics are defined in terms of Wigner D-matrices as [90]

Y s
`m(α, β) =

√
2`+ 1

4π
(−1)meisγD`

−ms(α, β, γ) , (D6a)

=

√
2`+ 1

4π
(−1)mD`

−ms(α, β, 0) , (D6b)

= (−1)m+sY −s ?`,−m(α, β) (D6c)

where α, β and γ are the Euler angles. Wigner D-matrices are in turn defined in terms of
infinitesimal generators of three dimensional rotations as [89]

D`
m1m2

= 〈`m1|U(R)|`m2〉 , where U(α, β, γ) = e−iαJze−iβJye−iγJz . (D7)
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In the special case in which the direction is aligned with the z-axis we have

Y −s`m (ez) = δms(−1)m
√

2`+ 1

4π
. (D8)

Under the parity transformation

α→ α + π , β → π − β , γ → γ + π

the spherical harmonics and Wigner D-matrices transform as

Y`m(α, β)→ (−1)`Y`m(α, β) , (D9)

D`
mm′(α, β, γ)→ (−1)`+mD`

−mm′(α, β, γ) = (−1)`+m
′
D`
m,−m′(α, β, γ) . (D10)

In particular, it follows that under parity transformation the Spin-weighted spherical har-
monics behaves as

Y s
`m(α, β)→ (−1)`Y −s`m (α, β) . (D11)

3. Rotation of fields on the sphere

The transformation of the spherical harmonics is given by

[RY`m](n) ≡ Y`m(R−1.n) =
∑
m′

〈n|`m′〉〈`m′|R|`m〉 =
∑
m′

Y`m′(n)D`
m′m(R) (D12)

where the first equality is the definition of the transformation of a function on a sphere
under a rotation. For a scalar field on the sphere, we can deduce the transformation of its
multipolar components of its expansion in spherical harmonics,

X(n) =
∑
`m

X`mY`m(n),

to be
[RX](n) = X(R−1.n) =

∑
`mm′

Y`m′(n)D`
m′m(R)X`m (D13)

so that
[RX]`m′ =

∑
m

D`
m′m(R)X`m . (D14)

The rotation of a tensor field on the sphere is very similar. Once it is broken down into
symmetric traceless tensors then, by using that such tensors are decomposed as X(n) ≡
X±s(n)m±s(n) = [X±sm±s](n), it can be expanded in Spin-weighted spherical harmonics
as

X(n) =
∑
`m

[
X+s
`mY

+s
`m (n)m+s(n) +X−s`mY

−s
`m (n)m−s(n)

]
. (D15)

Under a rotation, it transforms as (see Appendix A of Ref. [86])

[RX](n) = R.X(R−1.n) =
∑
`mm′

Y ±s`m′(n)D`
m′m(R)X±s`mm

±s(n) , (D16)

that is
[RX]±s`m′ = D`

m′m(R)X±s`m . (D17)

We remark that it is exactly the same transformation law as for scalar fields because we
have transformed the full tensor field X±s(n)m±s(n) and not just its component X±s(n)
considered as a scalar function, for which the transformation law is more complicated [86].
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4. Wigner 3j Symbols

The 3j symbols satisfy the following properties(
`1 `2 `3

m1 m2 m3

)
=

(
`2 `3 `1

m2 m3 m1

)
=

(
`3 `1 `2

m3 m1 m2

)
= (−1)`1+`2+`3

(
`1 `3 `2

m1 m3 m2

)
= (−1)`1+`2+`2

(
`1 `2 `3

−m1 −m2 −m2

)
Moreover, they are identically zero whenever any of the following conditions are violated,

m1 +m2 +m3 = 0 , |`i − `j| ≤ `k ≤ `i + `j , {i, j, k} = {1, 2, 3} .

They are also orthogonal in the sense that∑
m1,m2

(
`1 `2 `
m1 m2 m

)(
`1 `2 `′

m1 m2 m′

)
=

1

2`+ 1
δ``′δmm′ (D18)

and that ∑
`,m

(2`+ 1)

(
`1 `2 `
m1 m2 m

)(
`1 `2 `
m′1 m′2 m

)
= δm1m′1

δm2m′2
. (D19)

Since Eq. (D19) holds for any set {m1,m
′
1,m2,m

′
2}, two important cases follow from this

expression. First, consider the case where m2 = −m1 and m′2 = −m′1. Then, using the
selection rule m1 +m2 +m = 0, it follows that∑

`

(2`+ 1)

(
`1 `2 `
m1 −m1 0

)(
`1 `2 `
m′1 −m′1 0

)
= δm1m′1

. (D20)

Second, note that if we further impose that m1 = m′1 = 0, then

∑
`

(2`+ 1)

(
`1 `2 `
0 0 0

)2

= 1 . (D21)

Another useful expression is (
`1 `2 0
0 0 0

)
= δ`1`2

1√
2`1 + 1

. (D22)

A recurrent expression when dealing with deviations of isotropy is the integral of three
spherical harmonics, also known as the Gaunt integral, and defined as∫

d2ΩY s1
`1m1

(n̂)Y s2
`2m2

(n̂)Y s3
`3m3

(n̂) =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

×
(

`1 `2 `3

−s1 −s2 −s3

)(
`1 `2 `3

m1 m2 m3

)
. (D23)
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Note that, due to the symmetries of 3j symbols and the properties of Spin-weighted spherical
harmonics under complex conjugation, the coefficients sCm1m2m2

`1`2`3
defined in Eq. (5.12) satisfy

the following properties

−sCm1m2m3
`1`2`3

= (−1)`1+`2+`3sCm1m2m3
`1`2`3

= sC−m1−m2−m3
`1`2`3

. (D24)

From the definitions (D23), (5.12) and the closure relation of spherical harmonics one can
also verify that

Y`2m2(n)Y s
`3m3

(n) =
∑
`1,m1

sCm1m2m3
`1`2`3

Y s
`1m1

(n) , (D25)

an identity which is needed in order to derive Eq. (5.16).
Let us also define a useful integral for the gradient expansion approach of lensing by

±sI
m1m2m3
`1`2`3

≡
∫

d2Ω [DaY ±s?`1m1
(n̂)]Y`2m2(n̂) [DaY

±s
`3m3

(n̂)] (D26)

where the polarization basis is voluntarily omitted for a simpler notation. It has the useful
property inherited from Eq. (D24)

±sI
m1m2m3
`1`2`3

= (−1)`1+`2+`3
∓sI

m1m2m3
`1`2`3

. (D27)

Its expression can be found using

±sI
m1m2m3
`1`2`3

=
1

2
[`2(`2 + 1) + `3(`3 + 1)− `1(`1 + 1)]

∫
d2ΩY ±s?`1m1

(n̂)Y`2m2(n̂)Y ±s`3m3
(n̂) ,

(D28)

=
1

2
[`2(`2 + 1) + `3(`3 + 1)− `1(`1 + 1)] ±sCm1m2m3

`1`2`3
, (D29)

= ±sF`1`2`3

(
`1 `2 `3

−m1 m2 m3

)
(−1)m1+s . (D30)

where, following Ref. [85], we defined the symbols

sF``1`2 ≡
1

2
[`1(`1 + 1) + `2(`2 + 1)− `(`+ 1)]

√
(2`+ 1)(2`1 + 1)(2`2 + 1)

4π

(
` `1 `2

s 0 −s

)
(D31)

In particular we have

2F` 2 `+1 = (`+ 4)

√
5(2`+ 1)(2`+ 3)

4π

(
` 2 `+ 1
2 0 −2

)
= (−1)`(`+ 4)

√
15

π

√
(`+ 3)(`− 1)

`(`+ 1)(`+ 2)
,

2F` 2 `−1 = (3− `)
√

5(2`+ 1)(2`− 1)

4π

(
` 2 `− 1
2 0 −2

)
= (−1)`(`− 3)

√
15

π

√
(`+ 2)(`− 2)

`(`+ 1)(`− 1)
.
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