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Weak lensing B modes on all scales as a probe of local isotropy
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This article introduces a new multipolar hierarchy for the propagation of the weak-lensing shear,
convergence, and twist valid in a general spacetime. Our approach is fully covariant and relies on no
perturbative expansion. We show that the origin of B modes, in particular on large angular scales, is
related to deviations of isotropy of the spacetime. Known results assuming a Friedmann-Lemaitre
background spacetime are naturally recovered. The example of a Bianchi / spacetime illustrates our
formalism and its implications for future observations are stressed.
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I. INTRODUCTION

Weak gravitational lensing by the large-scale structure
of the Universe has now become a major tool of cosmology
[1], used to study questions ranging from the distribution
of dark matter to tests of general relativity [2]. The stan-
dard lore [3,4] states that, in a homogeneous and isotropic
spacetime, weak lensing effects induce a shear field which,
to leading order, only contains £ modes so that the mea-
sured level of B modes is used as an important sanity check
at the end of the data processing chain. B-mode contribu-
tion to the observed shear can be related to intrinsic align-
ments [5], Born correction and lens-lens coupling [6,7],
and gravitational lensing due to the redshift clustering of
source galaxies [8]. From an observational point of view,
the separation of E and B modes requires, in principle, to
measure the shear correlation at zero separation [9,10] that
can be brought down to the percent-level accuracy, e.g.,
with CFHTLenS data [11].

This paper emphasizes that any deviation from local
spatial isotropy, as assumed in the standard cosmological
framework in which the background spacetime is
described by a Friedmann-Lemaitre (FL) universe, induces
B modes in the shear field. More importantly, and contrary
to the above mentioned effects, these B modes arise on all
cosmological scales. Therefore, any bound on their level
can be used as a constraint on spatial isotropy. This is an
important signature which, in principle, can be exploited in
order to disentangle this geometrical origin of B modes
from other noncosmological effects [12]. Since it is impor-
tant for future surveys to predict the level at which these
cosmological effects produce B modes, we introduce in
this work a new multipolar hierarchy for the weak-lensing
shear, convergence and twist that does not assume a
specific background geometry. This approach will allow
us to pinpoint the origin of the B modes and, in a future
work, to access the magnitude of currently observed level
of B modes.
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This work is organized as follows: we start in Sec. II by
reviewing the basic formalism of weak-gravitational lens-
ing, which will also help us to set up the basic notations and
conventions. In Sec. II B we derive the evolution equations
for the irreducible components of the Jacobi map, which
are then used to derive the main multipole expansion
hierarchy in Sec. IIC. We then show how the standard
FL results are recovered (Sec. Il A) and discuss the par-
ticular case of a Bianchi I (BI) universe (Sec. IIIB).
Finally, we present our conclusion in Sec. IV.

Throughout this paper we work with units in which ¢ =
n = 1. Spacetime indices are represented by Greek letters.
Upper case Latin indices such as {/, J, K, ...} vary from 1
to 3 and represent spatial coordinates. Furthermore com-
ponents of vectors on a spatial triad (a set of three orthogo-
nal spatial vectors which are normalized to unity) are
denoted with lower case Latin indices {i, j, k, .. .}, whereas
the screen projected (two-dimensional) components are
represented by indices {a, b, c, ...} which vary from 1 to 2.

II. MULTIPOLAR HIERARCHY FOR
WEAK LENSING

A. Description of the geodesic bundle

A crucial quantity for weak lensing is the electromag-
netic wave-vector, k, = d,w, where w is the phase of the
wave. In the eikonal approximation, k* is a null vector
(k*k, = 0) satisfying a geodesic equation (k"V k* = 0).
Moreover, if we assume that V,V,w =V, V w for any
scalar function w (torsion-free hypothesis), it follows that
its integral curves x*(v) defined by k*(v) = dx*/dv,
where v is the affine parameter along a given geodesic,
are irrotational (V[Mk,,] = 0). Second, we consider a family
of null (light-like) geodesics collectively characterized
by x“(v, s), where s labels each member of the family.
We adopt the convention according to which v =0 at
the observer and increases toward the source. There is a
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FIG. 1. Representation of two null geodesics of the light
bundle. ¢ is the projection of n* in the plane spanned by the
basis {e,}. The dotted curve represents the worldline of the
observer comoving with u*. The geodesic bundle is thin so
that its transverse dimension has not been depicted and it
converges at the observer.

wave-vector for each geodesic, that is k# (v, 5) = dx*/dv,
and the separation between the geodesics is encompassed
by the vector p# = dx*/ds connecting two neighbor geo-
desics (see Fig. 1). Hence, we first derive the dynamics for
a reference geodesic, and then the dynamics for the devia-
tion vector.

We suppose that the light-rays converge to a fundamen-
tal observer comoving with the four-velocity u* of matter,
which is normalized such that u*#u, = —1. This observer
measures a redshift z given by

©n
1+ z(v)= L2~ (1)

so that the energy of the incoming photon is

U= Uy + 2), Uy = (k*u,,),. 2)

In this work we adopt the perspective of a photon going
to the past, which means that in a local Lorentz frame,
where u* = (—1,0,0,0), we have k°=dt/dv = —U.
Incidentally, this suggests that we introduce of a “reduced
wave-vector”’ through

dx*
do
. . . . 1
in order to simplify our expressions.
At each position x* of a given geodesic we can associate

a direction vector n whose components are n*, and defined
from the reduced wave-vector through

=

= Uk 3)

'Since do = —dr, the new parameter ¥ is simply the negative
of the proper time ¢, reflecting our choice of perspective in which
the observer sheds light on the source.
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k= —ut + n#, (4)
with

utn, =0, n,n* = 1. 5

At the observer, n° = n(v = 0) is the spacelike vector
pointing along the line of sight.”? However, since we now
have

do U

dv ’
it follows that we can either choose (n°, v) or (r°, ¥) as
independent set of variables to parameterize the geodesic,
which correspond to two slices of the past lightcone. As we
shall see below, the use of © simplifies the derivation of the
multipolar expansion for the weak-lensing observables.

At a given point of the geodesic, it is necessary to add

two vectors to u and n in order to obtain a complete basis
of the tangent space. We choose these two vectors n,, with
a = {1, 2}, to be orthonormalized and orthogonal to u and
n, that is they are defined by

(a=1,2).
(6)

Since n and n, comprise a three-dimensional orthonormal

basis, we can simplify the notation by defining n; = n so

that we can collectively write n; = {n®},_, 3. Note that at

the observer we can again define n{ = n;(0 = 0) with a

remaining rotation freedom around n° for the choice of nj.
We now introduce the screen projector tensor

ngnb’u=6ab, nflLuM=nan =0,

S,uv = g,uv + M,uuu - n,unw (7)

which projects any tensor on the two-dimensional surface
orthogonal to the line of sight. Thanks to the orthogonality
relations (6), the basis can be parallel transported along the
null geodesic as [14]

S uok?V,ng = 0. (8)

At v = 0, each n° of the geodesic bundle can be associated
to a spherical basis and this can be used to fix the rotational
freedom. Indeed, for each n? there will be a unique choice
of n{(n°) and n3(n°) if we set {e7, ey, e} = {n°, n{, n3}.
The integration of Eq. (8) then allows to define this basis
at each point on the past lightcone, i.e., to determine
n;(n°, ¥), or, equivalently, {e,, ey, e, }(n’, 0) everywhere.
This prescription emphasizes the importance of introduc-
ing a reference triad as a way of identifying these projec-
tion effects; see Fig. 2.

At this point it is convenient to introduce the helicity
basis defined as

*Note that our definition of n* differ by a minus sign from that
of Ref. [13].
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FIG. 2 (color online). Any position on the past lightcone can be considered as x*(n°, ©). While quantities such as &, are local,
quantities such as W, depend on the local basis at x*(n?, ¥) via the projection on ng npy; see Eq. (23). Observational quantities are
however defined in terms of n° so that one needs to relate the basis {e,, ey, eq,} in (n°, ¥) and in © = 0. The relation n(n°, ¥) induces
“projection effects” and a nonlocal relation between quantities like £, and “W,,. Once a background spacetime is chosen, its
symmetries simplify the comparison. For instance, a B/ spacetime provides a natural triad of Killing vectors associated to its principal
axis. One can use this “global reference” to relate the local S? in x*(n°, ¥) to the observer’s S? by comparing them in the reference S2.

1 1
€+ = N+ Ei(eﬁiiew)zi(nl Iinz). (9)

- V2 V2

Their components in the n, basis read simply

1
né =n..n,= \/—5(6‘1‘ ¥ 18%) (10)
and are, by construction, constant.

We now note that any event on the lightcone is uniquely
specified by (n?, ), i.e., it is of the form x*(n?, ¥). This
means that any local quantity X(x*) evaluated on the light-
cone can be seen as a function X(n° 0). The redshift
defined in Eq. (1) is also a function of (n° ?¥), and
U propagates as (see e.g., Ref. [13])

dInU
do

where the parallel Hubble expansion rate along the line of
sight is defined by

= H”(no, ﬁ), (11)

Hy(n°, 9) = k"k"V ,u,. (12)

Using the standard 1 + 3 decomposition of V ,u,, it takes
the general form

1
Hy(n°, 0) = §® + Oy ntn” + Ay nt, (13)

where O, ‘};w and A* are the expansion, shear and accel-
eration of the flow u*. All these quantities are evaluated on

[x*(n°, 0)] and are thus functions of rn(n°, D) on the past
lightcone.

B. Shear, twist and convergence propagation

The purpose of this section is to derive an equation
governing the shear, twist and convergence of a light-ray
bundle without specifying the spacetime structure. The
evolution of the deviation vector n* is given by the geo-
desic deviation equation

d?>n#
ds>
where R*, 5 is the Riemann tensor. This equation can be

rewritten in terms of its component on the screen basis {n,}
as [3]

R, o k" ke 0, (14)

d’n,
dv?

=R,n", (15)
where
Ry = Rypapk’knting (16)

is the screen projected Riemann tensor. The linearity of
Eq. (15) implies that

v = D(ST)

where the Jacobi map D,, satisfies the Sachs equation
[3,15]
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d2
12 Db = ReDy, (17)
subject to the initial conditions
dDy,
Di0) =0, T (0) = 6. (18)

In order to proceed, we need to decompose both D,
and R, in their irreducible pieces. We start by decom-
posing the projected Ricci tensor into a trace and a trace-
less part as

Rab = Uz(RIab + wab)’ (19)

where R and "W, are related to the Ricci (R uv) and Weyl
(Cupov) tensors through

1 ~ ~ A_A
= —ika“k”, Wy = Cpponk”k7nlin,

(20)
and where
Iy, =S,,nin; 21

is the identity matrix of the screen space. Note again that
W, as well as R and R, are evaluated on the central
geodesic and thus W, [x*(n° 0)] = W,,(n° 0). In
terms of the electric and magnetic parts of the Weyl tensor,
given respectively by [16]

1

= a = a o
Eur = Cpprott”u®, B,, = 3 Enapot C,,*Fur,

(22)
the projected tensor W, becomes
Wa,,(n", ) = —ZYIZZHZ)[&W, + BMUG,T,,(n)]P’/:(%;}a)).
(23)

In the expression above, () stands for the traceless part with
respect to 19, € ,U,(n) is the antisymmetric tensor in the
projected space and is defined as

€.,(n) = uPeg, on* (24)

Now, W, being a spin-2 field, it can be decomposed in
the helicity basis (9) as

Wop(n®, 0) = =2 Whno, d)njn).  (25)
A=%

This decomposition emphasizes once more that the two
components ‘W* are functions of (n°, ¥) alone, because
they are evaluated on the lightcone. Recall that the n} are
constant so that we can use either n or n° in Eq. (25).
We now decompose the Jacobi map in terms of a con-
vergence k, a twist V and a traceless shear vy, as

Dab = Klab + Veab + Yab> (26)

where
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€qp = 2iny, n;’].

All these quantities are defined on our past lightcone so
that we can also think of them as functions of (r°, ¥). The
shear, being also a spin-2 field, is naturally decomposed
similarly as

Yar(n®, ) = D yM(n®, D)nin). 27)
A==
Finally, by inserting the decompositions (25)—(27) in the

Sachs equation (17) we find the desired equation of
evolution

d2 d K W(_y+)
v W*(k V)

(28)

Note that, in practice, the integration of this system
requires the evaluation of the past lightcone structure in
order to determine n;(n°, ¥) and then H,(n?, ©), R(n°, 0)

and W=*(n°, 0).

C. Multipole expansion

Equation (28) is composed of scalars (k, V, R and H))
and spin-2 fields (y* and "W™) defined on the sphere. The
former can be naturally decomposed in a basis of spherical
harmonics as

K(n®, ) = ;Ke,n(ﬁ)Yem(n(’), (29)
V(n, ) = (ZVem(ﬁ)ng(no), (30)
R(n°, ) = ;Rgm(ﬁ)ygm(nol @31
Hy(n°, 9) = (Zhgm(o)ygm(nf’). (32)

The latter, being spin-2 fields on the sphere, can be
expanded on a basis of spin-weighted spherical harmonics
[17] as

W=, ) = Y [Eeu(D) + iBy, (D)IV;2(n%),  (33)
{,m

¥ (n°,0) = Y [E, (D) £ 1By, (0)]Y;2(n°).  (34)

€,m

Note that E modes are those having parity (—1)¢ while B
modes have parity (—1)¢*! [18].

It is important to keep in mind that we are adopting an
observer-based point of view so that all quantities are
expressed in terms of (n, ¥). In general, n(n°, 0) # n°,
with the obvious exception of e.g., FL spacetimes or for an
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observer at the center of symmetry of a Lemaitre-Tolman
spacetime. Part of the difficulty is thus contained in the
determination of these coefficients, which include projec-
tion effects from the geodesic structure.

When inserting these decompositions in Eq. (28), prod-
ucts of spherical harmonics will appear on the r.h.s. They
can be simplified using standard relations between spin-
weighted spherical harmonics (see Appendix A). It follows
that, in terms of multipoles, the equations of evolution for
the convergence, twist and shear take the following general
form:

di)2 €€,¢, €ymy d_ﬁ
X (867 E¢,m, 167 By,m,)
- 2K€|m1(825€2m2 + iaZfBgzmz)

d’E d
tm __ zcmmlmzl:(Rglml —h )

+ 2V, (—18 Egm, + SZBgzmz)iI, (35)

dzB€m mmy my d
di? = 2C€€1€2 h|:<R€1m| - hflml %)

X (87 B,m, =107 Eq,p,)
- 2K€1m1 (52 szmz - i5££€2n12)

- 2V€1ml(6ZiB€2mz + 8Zg€2n12)]r (36)

2
d Kem _ ()Cmmlmz R —h dK€2m2
di2 0,4, €ym; Keym, €imy do

—2(=1mAC ™

X [82(E€1m1£€2m2 + B€1m1:B€2m2)

+ 167 (Bem Eem, — Eeom Bem)]}, 37)

d2v€m _ (]Cmm]mz R 1% —p
dﬁz €€,€, ymy Y lym, Cymy

+2(=1)ym2C,

X [6Zi(E€1mlg€2m2 + B{’lmlgﬁmz)

—%wmﬂw—&wawﬂ (38)

dvfzmz)
do

where

o7 =[1 = (—1)E]/2, L=4¢+4¢+4€ 39
and an implied sum over €;, €5, m;, and m, is understood.
This multipolar hierarchy for weak lensing, which does not
rely on a particular background spacetime—and on any
perturbative expansion—has never been derived before
and sets the basis for general studies of the constraints
on anisotropy and inhomogeneity from the weak-lensing
B modes.
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As soon as the spacetime has a nonvanishing Weyl
tensor, £ and B modes are generated due to the coupling
of the Weyl tensor to the convergence and twist. It shares
some similarities with the Boltzmann hierarchy for the
cosmic microwave background (see e.g., Refs. [18,19])
but one needs to keep in mind that Ry,,, nems Eems Bem
are nonlocal quantities since they have to be evaluated on
the geodesic.

III. APPLICATIONS TO SPATIALLY
HOMOGENEOUS UNIVERSES

A. Standard FL case

In order to illustrate the formalism we consider the
standard case of (flat) FL spacetime with linear perturba-
tions. At the background level, the metric of the FL space-
time takes the simple form

ds? = —d? + a?(1)8,,dx dx’. (40)

This spacetime enjoys 3 translational Killing vectors
a

{ertictey.y = Goaticqyy,) Which define everywhere a natu-
ral Cartesian basis. By normalizing these vectors, we can
then define a triad of vectors e; whose components are e/ =
5!/a (and their associated 1-forms e’ whose components
are e} = 8ia), that is a set of three orthonormal space-like
vectors (and forms) that can be used as a global Euclidian
basis. The set of vectors n¢, which was a priori only
defined at the observer’s position can then be defined
everywhere by imposing that their components nj’ =
n?.e’ in this reference basis remain the same everywhere.
This enables to compare r;(n°, 0) to n¢ even though these
sets of vectors are defined first at two different points of
spacetime, as illustrated in the right part of Fig. 2.

At the background level, the Weyl tensor vanishes (i.e.,

£, = 0and B,, = 0 are at least of order 1 in perturba-

tions) and the Ricci scalar, R(o), depends only on time. For
this spacetime n(n° 0) = n° for all ¥ so that the only

0)

nonzero multipolar coefficient h% is the monopole

m

W) =H="2, (41)

a
where the dot refers to derivative with respect to ¢. From
the expression above and the fact that do = —d¢, we find
from Eq. (11) that U =« a~!. It then follows from Eq. (1) the
well known result 1 + z = ay/a. Moreover, since 65,?1)1 =

BO — 0, it follows from Egs. (37) and (38) that Kg%) and

{m
V(()%) satisfy the same second order homogeneous equation
of the form

d2x(0) dX(O)
Tgo = RooXY — H 5 30 ) 42)

where Xé%) stands for either KE)%) or V(()g). The initial con-

ditions (18) then lead to a homogeneous K(()OO) , given by the
usual angular distance, and a vanishing twist so that
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Ky =D Ve =0. 43)
Then, one concludes that
0) _ p0) _

At first order in the perturbations, the perturbed metric
with only scalar perturbation reads in the Newton gauge

ds? = —(1 + 2®)dr? + a*()(1 — 2W)5,,dxdx’, (45)

where @ and W are the two Bardeen potentials. The
projected Ricci tensor is of the form [14]

R = —D,Dy(® + P), (46)

where D, is the covariant derivative on the 2-sphere. It
follows that

BY =0. (47)

In the Born approximation (i.e., r(rn° ©) = n°), only
A # 0 so that the rhs of Egs. (35) and (36) involves
only ZC?O%Z. Thus ¢, = € and L is even (ie., §; = 0).
As a conclusion, in Eq. (35) for the propagation of the E
modes, the only remaining term on the rhs is

d
(RS - w0 )El 26, @

while in Eq. (36) for the propagation of the B modes it is

d
(Rgg _ 40 _) B

00 dd tm’ (49)

So we see that only £ modes are sourced, while B modes
would need to be initially nonzero to be nonvanishing
today,

BY) =o. (50)

(1)
E tm #0 {m
Indeed, first order vector and tensor modes would generate

B modes since then B(alb) # 0.
The Eq. (37) for the convergence has rhs

d
(R - g5 )ein + Ripe 5D

as usual,® since the other terms in Eq. (37) are at least of
second order in the perturbations. For the twist, the argu-
ment is similar but ’prlrzl V(()g) = 0 and the initial conditions
(18) imply ng = 0. So, in conclusion

Dzo v = (52)

At higher order, £,;, and B, are nonvanishing (note that
one cannot simply drop out By, in the hierarchy, even for
pure scalar modes), which leads to B modes as well as

>The “standard” convergence and shear are —«"/k® and
') /k© in our notations.
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twist. Moreover, projection effects and couplings induced
by hg,, need to be included; see Ref. [20] for the case of
second-order perturbations.

The absence of B modes at first order in perturbations
are due to the fact that

(1) B(€1r21 = ( for scalar modes,
(2) atthis order we can work in the Born approximation.

This latter point is extremely important since otherwise
evenif B, = 0the dependence n(n°, ¥) would generate a
nonvanishing B, [7]. Indeed, in Egs. (35)—(37) part of the
difficulty lies in the determination of the coefficients R,,,
hewms Eem and By, that depend on the whole geodesic
structure, as we shall now illustrate.

B. Example of a Bianchi 7

We now consider the case of a spatially homogeneous
but anisotropic universe described by a Bianchi [ space-
time for which the metric takes the form

ds? = —d? + a?(1)y,,(Hdx!dx’, (53)

where the coordinates have been chosen so as to diagonal-
ize v;;(¢). This solution is spatially homogeneous and the
spatial shear

Ldyy
2 dr
characterizes the spatial anisotropy, a’(t)y;, being the
spatial metric, a(z) is the volume averaged scale factor
and ® =3H = 3ad/a (see Ref. [21] for notations and
properties). It follows that the kinematical quantities enter-
ing H) in Eq. (13) are

(54)

oy =

®=3H  o,+0  A,=0. (55)

o

Similarly to the FL case, this spacetime enjoys 3 Killing
vectors {e;}rer. ) = {3} eqny,) Which define everywhere
a natural Cartesian basis. Normalizing these vectors, we
can then also define a triad of vectors e; that can be used as
a global Euclidian basis. And similarly to what has been
done in the FL case, the set of vectors n{ can then be
defined everywhere by imposing that their components in
this reference basis e; remain the same, in order to allow
the comparison of n;(n?, 0) to n.

However, contrary to the FL case, one has to consider
(i) the nonvanishing background electric Weyl tensor,

1
550‘/)=H0'[J+§0'2'}/]J_0'1K0'JK (56)
while the magnetic part is identically null,

BY) =0, (57)

and (ii) the fact that at background level n; # n¢ (unless in
the particular case of geodesics along one of the three
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proper axis), which induces projection effects so that
(0)
hey # 0.
The triad n;(n?, ) is related to the reference triad n¢ by
a rotation defined by three Euler angles as

n;(n° 9) = R/(a, B, ‘y)n;-’,
= Jng’('y)[jjn;’(ﬁ)jkjng (a)kln[ov (58)

where the Euler angles are also functions of (r°, ©). The
determination of &, B and y requires the integration of the
geodesic equation in the Bianchi spacetime.

Then, for a typical tensor T, at an event x*, its projec-
tion orthogonally to n, i.e., its components T~ [x*, n;] =
T*[x*(n°, )] in the helicity basis n ., can be related to its
projection at the same event x*, but orthogonally to n°
with components T, [x*, n¢] in the helicity basis n% . For a
spin s tensor, this transformation reads (see details in
Appendix B) in general

T*[x*, n;] = exp(xis¢) exp(B*D, )T, (x*, n?), (59)
with
¢=a+y and B = P[nfcosy+ ngsiny].

For a homogeneous spacetime, the dependence in x* of T,
reduces to a time dependence. Eq. (59) evaluated for a
rank-2 tensor (that is s = 2) is needed to account for the
projection effects in the definition of W=[x*(n°, 0)].
Similarly, Eq. (59) in the case s = 0 (that is for a scalar
field) is needed for the projection effects of H)[x*(n?, D)]
and R[x*(n° ¥)]. The Weyl tensor having only a non-
vanishing electric part (with only nonvanishing components
Exv» Eyy and & in the natural Cartesian basis), one has

Womn)= > &,[n@)]r52(n?)  (60)

m=0,+2
with
’277'
820 = E(Z‘gzz - Exx - gyy)’ (61)
a
&y = \/;(5” - 5yy). (62)

The projection of the electric Weyl tensor has a directional
dependence for £ =2 and m =0, *=2. However, the
directional dependence of ¢ and B¢ in Eq. (59), i.e., the
projection effects, sources and mixes E and B modes at
higher ¢, as for cosmic microwave background polarization
E/B modes mixing [22]. This projection effect also induces
nonvanishing R, terms even if the background Ricci is
homogeneous.

To go further and understand how this mixing of E and B
modes arises, let us assume that 62/0? is small, so that
we can work at first order on this parameter (we can
think of B/ has a homogeneous perturbation of FL).
Then, the geodesic equation and the parallel transport of n,,
[Eq. (8)] lead to
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d . . .

ﬁn’ = S’ka'kjnf, S
and thus at lowest order one easily obtains that ¢ =0
and B%n° )= [{D,o(n° 9')d?’. Here o(n,d)=
o,,(0)n'n? /2 can be thought as a lensing potential and
Eq. (59) for ‘W gives

Wt n]=[1+ B*DJIW5 (. nf),  (64)

=0 (63)

b
iigp't

similar to the form for linearized lensing in FL [19,23] on
light polarization. o(n°, D) obviously contains only € = 2
multipoles. Because of the derivative coupling, using [19]

ayxs — Ty ommmy ity
DayglmlD Y€2m2 - ZLﬁlfz CNI{’Z Yfm’ (65)
{m

where
1
Lege, = §[€1(€1 + 1)+ 606, +1)— £+ 1)] (66)

and further defining
Ty pmmymy; *§ omimm;
Loge, = Leee,”Copyg, >
one can convince oneself that, at background level, terms
such as

0 y mmym; v A %
£ =&, + 200 ( [) aamldvf)agg{;zmz (67)
and
0 2D ymmym v A — o0
By = —i21}") 2( ﬁ) aglmldv’)BL £,  (68)

are expected when extracting the £ and B modes out of
Eq. (64). Thus a multipolar € = 4 B mode will appear. One
needs however to rely on the full transformation (59) so
that the £ and B modes shall be generated for larger €’s.
Similar sources arise from R and H), for which projection

effects will generate non-vanishing R(ﬁi and h(g’)l.

A full analysis, including perturbations and magnitude
estimations will be presented in Ref. [12]. Our argument
sketches the expected effects that arise from the higher
multipoles induced by the background Weyl tensor and the
fact that n # n?, an effect that cannot be neglected even in
the Born approximation for anisotropic spaces. Besides, in
B/ spacetimes, the amplitude of vectors and tensors is of
order of the shear times the amplitude of the scalars,
another source of B modes.

IV. CONCLUSION

We have provided a new multipolar hierarchy for weak
lensing. Our formalism, which is fully covariant, does not
rely on perturbation theory nor on the choice of a back-
ground spacetime. It allows us to relate the property of the
shear to symmetry properties of the background spacetime
and discuss the generation of B modes. We have argued
that a violation of local isotropy is expected to leave a
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B-mode signature on all scales. This result is important for
future surveys, such as the Euclid mission [24] (early
results on the B modes have already been obtained from
CFHTLS [25] and DLS [26] and we can forecast that
Euclid will typically decrease the error bars on the B
modes by a factor of order 1040 on scales ranging up to
40 degree, that is in the linear regime where astrophysical
sources of B modes are expected to be negligible) and
may us allow to set new constraints on the deviation
from spatial isotropy on cosmological scales. The quanti-
tative computation of the level of B modes expected on
large scales, where the gravitational dynamics can be
considered linear, for a Bianchi universe is currently being
investigated [12] and requires to study in details the cos-
mological perturbation theory beyond the analysis of a
scalar field [21].
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APPENDIX A: SPIN-WEIGHTED SPHERICAL
HARMONICS

We gather here a few important identities and relations
between spin-weighted spherical harmonics used in this
text. The reader is referred to Ref. [17] for more details.

Spin-weighted spherical harmonics form a complete set
of orthonormal functions on the sphere, satisfying

/dan*is(n)&nY(%,Snl(n) = 5{’{”5mm" (A1)
An important identity, used in particular to derive
Egs. (35)-(38), is

Yo Yiom, = 25 Clitl Yo (A2)
{m
where
Escpmm = f ErY )Y (WYES, (). (A3)

Using the transformation of spherical harmonics under
parity, it can be shown that the above coefficients satisfy

(A4)

Fsommymy __ ¢ 1\Lxs ~mmny
C€€1€2 _( 1) C€€1€2 ’

where L = € + €, + ¢€,.

APPENDIX B: EXPANSION OF TENSORS ON
THE SPHERE

The transformation (58) of the triad is easily computed
for the tangent space basis when the helicity vectors are
used. Indeed we first note that for a general rotation around
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an axis n, the corresponding helicity basis at the point of
the sphere, that is n.(n), transforms as

Ju(@) - ns = exp™n., (BI)
i.e., it is a diagonal matrix in this basis. Furthermore, when
the axis of the rotation does not coincide with the direction
defining the helicity basis, the rotation is still diagonal in
the sense that, if we consider a general rotation J not
necessarily around the axis n, then

n:(J - n)-J - n.(n)=0 (B2)
or J-n.(n) < n.(J-n), where we recall that n..(J - n)
is the helicity basis at the point of the sphere which is the
image of n by J. It comes essentially from the fact that
rotations defined as SO(3) are not only keeping orthogo-
nality conditions, but also orientations of triads as their
determinant is required to be 1.

In order to use these interesting properties, we reformu-
late the transformation (58), which is written with rotations
around the axis of a fixed frame, by its form where the
rotations are performed around the axis of the rotating
frame. In that case it reads

n;(n’ 0) = Jng’”(a)ij‘ln’z”(B)jkjng(y)k]n;)

with nf = J,,g(y) -n3 and nf° = J,.(B) - n. Using the
transformation rule (B1) and the property (B2), we deduce
that the transformation rule for the helicity vectors is just

(B3)

n.(n° 0) = expii(“”).ln/zn (B) - no. (B4)

It then proves convenient to express a rotation as a
parallel transport. Indeed under any rotation of angle ¢
around an axis n,y, a tensorial quantity T in the tangent
space at a point R eqq0r Of the corresponding equator (that
is such that nequaor * Bror = 0) is transformed exactly as if
it were parallel transported with the vector Ryaneport =
@R X Requaor- Let us note this parallel transport

,,‘mnspm(T). We insist that this rephrasing of a rotation as
a parallel transport is valid only on the equator of the
rotation. In our case, this is enough to reformulate our
transformation (B4) as

n.(n% v) = exp= @ NT p(n2) (BS)

with

B(n°) = Bln{ cosy + ngsiny] (B6)

and T p being the parallel transport along 8.

Let us apply the result (B5) to obtain an expression for
the expansion of a tensor on the sphere. For a rank-s tensor
T, its projection orthogonally to n defines a tensor field on
the sphere. For instance, the rank-2 tensor WW defines a
tensor field on the sphere S/, 59 Wp,, given that the screen
projector S,,, depends on the position n on the sphere of
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directions. In the evaluation of the geodesic deviation
equation, we are led to express the components T+ =
T*[n(n° )] of a tensor field at a point n(n°, ¥) in the
helicity basis n.(n° 9) in function of its components
T, = T, (n°) at a reference point n° in the helicity basis
nY. This expansion is obtained as follows:

T* =T ns...n5lyms
= Tﬁl(T N 1 |
— exptix(a+7)Tl—gl(T)|n(, -n%...n%
= exp 5@ N [exp(BD)T|,0] - 0% ...n%.  (B7)

PHYSICAL REVIEW D 87, 043003 (2013)

From the first to the second line, we have used that a scalar
field (the components of T) evaluated in n or its parallel
transport back along B evaluated in n,, are equal. From the
second to the third line, we have used the transformation
rule (B5) of the triad. From the third to the fourth line, we
have used the exponentiation of the parallel transport in
terms of covariant derivatives D, on the 2-sphere. Then,
with a common abuse of notation (see for instance the
discussion at the end of Ref. [23]), which we also consis-
tently use in Eq. (65), this is rewritten in a short form as

Ti = exptis(a+7) exp(BaDa)Toi. (B8)
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