
Mémoire d’habilitation à diriger des recherches

Mécanismes de structuration gravitationnelle : 
théorie et estimation

Christophe Pichon

Equipe Univers profond & Grandes Structures 
Institut d’Astrophysique de Paris (CNRS –UPMC) 

98 bis boulevard Arago, 75 014 Paris,  France 

Soutenu le 13 Mars 2009 à l’Institut d’Astrophysique de Paris devant le jury constitué de :

     Prof.     Steve   Balbus    Examinateur, 
     Prof.     Edmund  Bertschinger   Rapporteur, 
     Prof.     James   Binney    Rapporteur, 
     Prof.     Jean   Heyvaerts    Examinateur, 
     Prof.     Jean-François Giovannelli   Rapporteur.

1



2

2



 Plan
1. Contexte & Résumé 

      1.1  Recherche passée.
           1.2   Prospective
2.  Encadrement et enseignement

3. Travaux de recherche 
 3.1  Matière noire compacte.            10
  3.1.1  Dynamique du centre Galactique        
  3.1.2 Disques relativistes  & formation des QSO       
 3.2   Matière noire du voisinage solaire         
  3.2.1  La densité locale de matière noire Galactique      
  3.2.2  La fonction de luminosité locale        
  3.2.3 Magnétisme du milieu interstellaire        
 3.3  Matière noire galactique          15
  3.3.1  La stabilité des galaxies spirales
  3.3.2   Evolution spectro-dynamique des disques 
  3.3.3   Galaxies & environnement cosmologique
  3.3.4 Modèle HMF et formation adiabatique des barres 
 3.4   La matière noire en deçà de 10 Mpc          24
  3.4.1  Déconvolution de la Forêt Lyman α
  3.4.2  La température du milieu intergalactique 
  3.4.3  Les métaux dans le milieu intergalactique
  3.4.4  Profil dynamique de masse des amas
  3.4.5 Cosmologie numérique et formation des galaxies
 3.5   Matière noire dans les grandes structures        31
  3.5.1 Emergence de la vorticité dans les grandes structures
  3.5.2 Emergence du chaos  dans les grandes structures
  3.5.3 Le Skeleton des grandes structures
  3.5.4 Astigmatisme cosmique plein ciel
  3.5.5  Séparation des composantes des cartes Planck
  3.5.6 Dynamique gravitationnelle dans l’espace des phases ; physique théorique  & gravitation
 3.6 Activité de recherche transverse et prospective       39
  3.6.1 Haute résolution angulaire et  optique adaptative multi -conjuguée
  3.6.2   Etoile 2D : Evolution stellaire à deux dimensions
  3.6.3 Le projet Galactica :  La Voie Lactée dans son environnement cosmologique.
  3.7 Conclusions             44
4.   Bibliographie

5.   Selection d’articles 
1. Dynamique galactique & formation des galaxies                                                                51
2. Topologie et géométrie des grandes structures                                                                  194
3. Physique théorique                                                                                                             291
4. Méthodes inverses                                                                                                              334

3

3



The difference between theory and practice in practice is greater than 

the difference between theory and practice in theory.
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Mécanismes de structuration gravitationnelle :  théorie & estimation

Christophe Pichon IAP

Soutenu le 13 Mars 2009 à l’Institut d’astrophysique de Paris devant le jury : 
  Steve Balbus (UPMC), Ed Bertschinger (Rapporteur), James Binney (Rapporteur), Jean Heyvaerts 

(Examinateur), Jean-François Giovannelli (Rapporteur).

Ce document est divisé en quatre parties ; dans la première partie, le contexte de mon activité de recherche passée 
et en cours est décrit de manière télégraphique ; la seconde partie présente brièvement mes activités 
d’enseignement et d’encadrement ; la troisième partie reprend la première de manière plus détaillée, et propose 
aussi pour chaque thème abordé une réflexion plus personnelle ; la dernière partie correspond à ma bibliographie 
et un échantillon des articles publiés/soumis les plus significatifs (référés avec un symbole ¶ dans le résumé ci-
dessous). Ce format de présentation atypique correspond aux contraintes imposées par une recherche transverse.

1. Contexte & Résumé 

Globalement, mon activité de recherche de ces dix dernières années au CNRS s’articule autour de la dynamique 
gravitationnelle, avec pour point saillant la détermination dynamique de la matière noire. Quelle est  sa distribution 
géométrique? Comment  peut-elle influencer l’évolution structurelle et dynamique de son environnement ? J’ai en 
particulier étudié la physique des mécanismes d’instabilité appliquée aux systèmes complexes que sont les objets 
autogravitants. Cette physique m’a permis de m’intéresser à des sujets aussi divers que la dynamique des grandes 
structures de l’univers, le milieu intergalactique et  interstellaire, la dynamique des galaxies et  leurs trous noirs. 
L’acquisition des méthodes inverses utilisées dans ce contexte m’a amené à aborder d’autres problèmes connexes 
de l’astrophysique. La maîtrise des simulations numériques (hydrodynamique, N-corps) a constitué un autre axe de 
développement. En tant que théoricien, mon souci a toujours été de faire le lien entre la mesure d’une part, et la 
physique du mécanisme qui sous-tend le phénomène observé d’autre part, et  ce par le biais d’une description 
physique et mathématique détaillée de ce phénomène. 

 C’est  avant tout  la curiosité vis-à-vis de domaines de recherches (le milieu intergalactique, la relativité 
générale, la physique des trous noirs, etc.) ou des outils nouveaux pour moi (la statistique, l’analyse automatique 
des données, les simulations numériques, les méthodes inverses) qui a guidé ma démarche. C’est aussi le sentiment 
que la recherche qui m’intéresse doit correspondre à cette diversité, pour inventer de nouvelles façons 
d’appréhender notre Univers. C’est  précisément en mariant des points de vue apparemment discordants issus de 
thématiques différentes et  en utilisant  des outils originaux qu’il m’a semblé possible d’innover. Cela correspond 
enfin à un goût prononcé pour dégager ce qui relève du général au détriment du particulier. 
A titre d’exemple, l’analyse des grandes structures s’est  par essence fortement  reposée sur l’analyse statistique, 
compte tenu de la nature des données et  du modèle ; a contrario, la dynamique galactique a historiquement 
transposé une fraction des acquis de la physique des plasmas et  de la mécanique céleste pour décrire de manière 
détaillée les systèmes gravitationnels non collisionnels. Ces deux disciplines, la cosmologie et  la dynamique des 
galaxies, gagnent à transposer dans leurs domaines respectifs les savoir-faire de chacune. C’est  cette conviction qui 
a été par exemple la ligne directrice du travail de thèse de mon étudiant D. Aubert (voir ci-dessous).  

Afin d’atteindre les objectifs scientifiques décrits ci-dessus, je me repose sur un intérêt marqué pour des outils 
de l’astrophysique théorique (théorie perturbative, champs contraints, théorie WKB, représentation duale etc), des 
compétences en analyse numérique (simulations, calcul haute performance, parallélisme etc), et  en méthodes 
inverses, optimisation et  statistique (théorie de l’estimation, descente à mémoire limitée, régularisation auto-
calibrée, etc..). Ma stratégie repose donc sur la recherche de l’innovation en travaillant de manière transverse entre 
la cosmologie, la dynamique gravitationnelle (relativiste ou classique), la haute résolution angulaire, la MHD, etc 
Ce parti pris présente toutefois peut-être l'inconvénient de compliquer quelque peu l’exposition globale de mon 
activité de recherche et sans doute sa visibilité immédiate auprès de la communauté de ces différentes disciplines. 
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En bref, mes principaux travaux de recherche recouvrent1 (en % la fraction de leadership sur le projet) :  

• Dynamique du centre Galactique : étude des propriétés cinématiques du centre Galactique en utilisant les 
mouvements propres et  la photométrie IR de Genzel et  al. Extraction non paramétrique du potentiel gravitationnel 
du centre galactique à partir d’un ajustement simultané des comptages d’étoiles et  des mesures de vitesses 
(mouvements propres et  vitesses radiales). Les mouvement  propres ne sont plus compatibles avec un modèle 
isotrope, le trou noir Galactique se situe à 8.1 kpc du soleil et sa masse doit  être révisée à la hausse de 10 % 
[Genzel, Pichon, Eckart, Gerhard (2000) 40%]. Profil de masse des amas :  mesure non paramétrique du profil de 
masse de Abell 85 et  Coma à partir des redshifts de leurs composantes en faisant  l’hypothèse que l’amas est 
stationnaire et  isotrope [Durret, Gerbal, Lobo, Pichon (1999) 20%]. Généralisation du formalisme de la 
dynamique stellaire des disques minces au cadre de la relativité d’Einstein ; construction d’une source physique 
interne pour la métrique de Kerr ; description détaillée d’amas stellaires relativistes en rotation différentielle 
localement stables ou de disques supermassifs correspondant à l’étape d’effondrement  final d’un proto-quasar 
[Pichon, Lynden-Bell (1996) 70 %, Bicak, Lynden-Bell, Pichon (1994) 20 %]. 
 

• Stabilité des galaxies spirales : Détermination de la masse de halo nécessaire pour maintenir la stabilité 
dynamique globale [Pichon, Cannon (1997) 70 %] de disques galactiques proches à partir d’une analyse non-
paramétrique [Pichon, Thiébaut, (1998) 50 %] de l’ensemble de leurs données cinématiques. NGC 3198 & 6503 
ne sont  pas maximales. Identification des configurations d’équilibre des disques minces auto-gravitants ; calcul de 
fonctions de distribution contraintes à des mesures cinématiques paramètrées [Pichon & Lynden-Bell (1996), 
financement “jeune chercheur” de l’INSU 99, encadrement  de stage de DEA]. Evolution spectro-dynamique des 
disques :  introduction de la cinématique stellaire dans les modèles de synthèse spectrale de données ; inversion 
non paramétrique simultanée de l’histoire de formation stellaire des disques galactiques et de leur cinématique. 
[Orvirk, Pichon, et al.  2006ab¶, 80% encadrement  de stage de DEA (2001) et  doctoral (2005)]. La fonction de 
luminosité locale : nouvelle méthode pour inverser l’équation statistique des comptages dans le voisinage local en 
introduisant les mouvements propres afin de tenir compte de l’autocohérence dynamique. L’inversion donne accès 
de manière univoque simultanément  à la cinématique et à la fonction de luminosité de chaque population (sans 
référence à des tracés d’évolution stellaire) et conduit  à un diagnostic pour distinguer cinématiquement  le disque 
mince du disque épais ou du halo [Pichon, Siebert, Bienaymé, (2002)¶ 70%]. Encadrement  doctoral et 
postdoctoral]. 

• Environnement  des halos galactiques : distribution statistique des flux cosmologiques de matière et de moment  au 
travers des précurseurs des` halos galactiques. Mesure statistique de l’évolution temporelle des flux de masse, de 
gaz, ainsi que le moment advecté et  les couples de marée subis par les halos identifiés de nos simulations. 
L’évolution dynamique (instabilités azimutales, gauchissement, accrétion, friction dynamique), physique 
(chauffage, refroidissement) et  chimique (flux de gaz froids pauvres en métaux) des galaxies est étudiée dans le 
cadre des conditions aux limites imposées par leur environnement cosmologique. [Aubert, Pichon, Colombi 2004  
70%¶, Aubert, Pichon 2007 70% ¶, Pichon Aubert, 2006 80% ¶, encadrement  de stage de DEA (2001) et  doctoral 
(2004)]. Bimodalité de l’accrétion du gaz à la surface du Viriel [Ocvirk, Pichon, Teyssier 2008.¶ 50%, Dekel et 
al.  2008 5 %]. Statistique des grands arcs, et  contrainte sur les sous-structures de matière noire [Peirani, Pichon, 
Alard, Gavazzi, Aubert, 2008 30%]. 

• Cartographie du milieu intergalactique : à partir des raies d’absorption Lyman α dans le rayonnement  des quasars, 
reproduction de la structure tri-dimensionnelle du gaz intergalactique à l’aide d’algorithmes de reconstruction non 
paramétriques incorporant  la température et les vitesses particulières. Mesure de la température de l’IGM. Mesure 
de la topologie de l’univers par comparaison des fonctions de corrélation transverse et  longitudinale à partir de 
paires de quasars. Mesure du spectre de puissance tri-dimentionnel du flux et  de la densité HI par inversion 
simultanée de la serie Lyman. [Pichon et al. (2000) ¶ 70 %, Rollinde, Petitjean, Pichon (2001) 30 % ; Rollinde, 
Petitjean, Pichon, et  al. (2003) 20 %] ; encadrement  doctoral. Etude des propriétés topologiques des simulations 
hydrodynamiques et  de matière noire sondées par un faisceau de lignes de visée issues de QSO [Caucci, Colombi, 
Pichon et al. (2008) 30 % encadrement doctoral]. Calcul des invariants de Minkovski (surface, volume, génus) 
des grandes structures. Les métaux de l’IGM :  classification automatique par système expert  après identification 
des multiplets dans le spectre des Quasars ; encadrement doctoral. Mesure du clustering des systèmes CIV, SiIV, 
MgIV et abondance ; contrainte sur la distribution géométrique, le facteur de remplissage, et sur la nature de la 
source des premiers métaux. Contrainte sur l’époquede formation des premières galaxies via les abondances 
relatives d’ OIV sur HI dans les régions les plus vides du MIG. [Pichon et  al. ApJL (2004) 80 %¶, Bergeron, 
Aracil, PetitJean, Pichon, (2002) 10 %, Aracil, PetitJean, Pichon, Bergeron (2004) 20 %, Scannapieco, Pichon, et 
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al., ApJ (2006) 70 %¶, encadrement doctoral].  

• Caractérisation de la topologie et  de la structure filamentaire de l'univers via le “squeleton”. Analyse du squelette 
global et du squelette local (les “lignes de crête” du champ de densité) par segmentation ou intégration numérique 
des trajectoires conduisant aux points critiques (en définissant  le patch gravitationnel de chaque région dans ses 
coordonnées lagrangiennes). Algorithme du squelette totalement  connecté en dimension quelconque, correction de 
la distorsion en redshift [Sousbie, Colombi, Pichon. 2008 50% ¶] sous licence CECILL CNRS. Contrainte sur le 
contenu en matière noire du SDSS par le squelette [Sousbie, Pichon, et  al. (2007) 80 %¶]. Nature de l’écoulement 
le long des filaments, alignement  du spin des halos orthogonalement  aux filaments [Sousbie, Pichon, et  al. (2008) 
¶ 80 %]. Calcul explicite de la longueur, la courbure et la torsion différentielle dans le cadre de l’approximation 
du squelette “tendu” et lien avec les paramètres de forme spectrale d’un champ gaussien aléatoire. Statistique de 
la longueur, de la courbure et  des points singuliers du squelette local [Pogosyan, Pichon et al.  (2008) 70 %, 
encadrement doctoral et  postdoctoral]. Statistique de l’émergence de la vorticité générée par croisement de 
coquilles dans des caustiques statistiquement rares lors de la formation de grandes structures de l’univers [Pichon 
& Bernardeau (1998) 50 %¶].

• Physique théorique : statistique des équilibres oscillants perpétuels en rotation. Analyse des propriétés 
thermodynamiques du réseau formé par des particules ayant  une loi d’interaction par paire avec un potentiel en 
r2+1/r2 . Etude des symétries des configurations d’équilibre en fonction du nombre de particules [Pichon, Lynden-
Bell, Pichon, Lynden-Bell (2007) 50 % ¶]. Instabilités orbitales dans les disques galactiques et  formation de 
barres; thermodynamique d’une assemblée d’orbites résonantes (modèle dit HMF pour Hamiltonian Mean Field), 
et formation adiabatique de structures barrées [Pichon & Lynden-Bell (1992) 50 %].

• Asymétrie de la convergence cosmique sur tout le ciel à partir d’une simulation à N corps de 70 milliards de 
particules; analyse de l’effet des masques Galactiques sur la reconstruction [Pichon, et al.  2008, soumis ¶ 80 %, 
Teyssier, Pires, Prunet, Aubert, Pichon, et al. 2008 30 %¶] mptools :  des outils pour la génération de grosses 
conditions initales cosmologiques (possiblement  contraintes) en architecture distribuée :  validation jusqu’ à 40963 
en matière noire seule et 10243 en hydrodynamique AMR. Analyse des oscillations baryoniques acoustiques. 
[Prunet, Pichon, et  al. (2008) 50%]. Inversion des résidus asymétriques des cartes de lentilles fortes et  contrainte 
sur la sous structuration des halos de matière noire [Peirani, Alard, Pichon, Gavazzi, Aubert (2008) 30%]. 
Emergence du chaos dans les simulations numériques :  identification d’une échelle de transition Eulerienne dans 
les exposants de Lyapounov variant  avec l’amplitude des perturbations initiales, et  d’une masse de transition pour 
certaines quantités lagrangiennes [Thiébaut, Pichon, Prunet, (2008) ¶ 80%].

----------------------------------

 J’entends poursuivre mon investigation sur la géométrie des grandes structures, continuer à exploiter de 
grosses simulations hydrodynamiques pour, entre autres, étendre au gaz mes travaux sur l’accrétion de la matière 
noire à la surface du Viriel. J’aspire en particulier à poursuivre les travaux théoriques sur les systèmes 
gravitationnels ouverts. Je souhaite développer un solveur numérique de Boltzmann et  faire de la sorte la synthèse 
entre mes travaux doctoraux théoriques sur la réponse gravitationnelle des systèmes non collisionnels d’une part, et 
les méthodes numériques que j’ai acquise plus récemment   d’autre part. A moyenne échéance j’aimerais aussi 
continuer à développer un savoir-faire en MHD, et publier le fruit  de mes investigations de ces dix dernières années 
sur la calibration automatique des méthodes inverses.  Dans le contexte des grands projets de la discipline, je pense 
pouvoir à l’avenir contribuer à la valorisation scientifique des missions Planck, SKA et GAIA. A moyen terme, je 
souhaite refocaliser ma recherche sur des aspects plus géométriques et théoriques de la dynamique 
gravitationnelle. Enfin, à plus courte échéance, je souhaite mener à terme les projets/articles ci-dessous qui relèvent 
de près ou de loin de la dynamique gravitationnelle et des méthodes inverses : 

• Théorie de la bifurcation des lignes critiques [Pichon, Pogosyan prep. 80%]. Profil universel des filaments 
[Sousbie, Pichon, Colombi. prep.], connectivité des filaments aux rayon du Viriel [Pichon, Sousbie, prep.]. 
Théorie variationnelle des lignes de crête d’un champ gaussien aléatoire :  squelette moyen et/ou bruité [Pichon, 
Pogosyan et  al. prep. 50%]. Test de Alcock-Paczynski avec le squelette sur le SDSS [Pichon, Sousbie et  al. in 
prep. 80%]. Utilisation des peakpatches comme test  de non-Gaussianité pour la détection des cordes cosmiques 
dans les cartes Planck du fond diffus cosmologique. Application du squelette à la détection des dendrites 
neuronales, et aux vaisseaux sanguins du foie avant opération. 

• Cartographie de la convergence cosmique. Reconstruction de cartes de convergence gravitationnelle à partir de 
mesures d’ellipticité sur l’ensemble de la voûte céleste. Gestion des masques et  de la contamination associée en 
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modes B, de la non-linéarité du modèle, et  des amas quasi ponctuels à l’échelle de la carte par une pénalisation de 
type L1-L2 [Pichon, et  al. soumis ¶80%]. Exploitation scientifique de la simulation HORIZON-4π :  détection des 
oscillations acoustiques baryoniques (BAO) à partir de la fonction de corrélation 3D des catalogues virtuels de 
LRG [avec Aubourg]. Détection des BAOs à partir de corrélations croisées des spectres de quasars [avec Rollinde, 
ANR BOSS 2008]. 

• Formation des galaxies par le biais de simulations numériques cosmologiques. Exploitation scientifique de la 
simulation MareNostrum. Evolution en redshift  de la fonction de luminosité des galaxies [Devriendt, Pichon et al. 
prep. 40%]. Evolution des propriétés spectro morphologiques des galaxies en fonction de l’environnement des 
galaxies mesurées par la distance au squelette [Gay, Pichon, Leborgne et al. prep. 80 %]. Corrélation métallicité-
dispersion en vitesse des systèmes dampés dans MareNostrum [avec Rollinde]. Inversion de l’histoire de la 
formation stellaire cosmique de MareNostrum [avec Ocvirk]. Croissance adiabatique d’un bulbe/disque/barre 
dans un halo autogravitant [Magorrian, Aubert, Pichon prép. 20%]. Evolution séculaire et  perturbative du halo 
ouvert : [avec Aubert]. Résolution de l'équation de Boltzmann dans l'espace des phases par n-simplex ; 
Identification des caustiques par rectification de l’espace des phases via une transformation en variables angle-
action [Macejewski, Colombi, Alard, Bouchet Pichon, 2008. 10 %]. 

•  Déconvolution multibande de Planck :  déconvolution myope des 10 canaux polarisés de Planck pour séparer le 
fond diffus des autres composantes. Correction des masques et pénalisation L1L2 [Prunet, Pichon, Thiébaut prep]. 
Reconstruction en volume du champ magnétique par rotation Faraday multi-spectrale ; analyse statistique et 
topologique de l’hélicité du champ reconstruit [Thiébaut, Prunet, Pichon, Thiébaut  prép. 60%]. Tomographie et 
optique adaptative multi-conjuguée. Déconvolution aveugle et  PSF variable dans le champ [Thiébaut, Pichon 
prép.].

—Quelques galaxies synthétiques dans la simulation MareNostrum à z=1.55. Les couleurs sont construites à partir de la connaissance, pour 
chaque particule macro-étoile produite par la simulation, de la masse, la métallicité et l'âge de l’étoile, ce qui permet de lui associer un 

spectre [Ocvirk, Pichon, Teyssier 2008]. Encart :  un exemple d’arc gravitationnel synthétique produit avec notre code de tracé de rayon 
[Peirani, Alard, Pichon, Gavazzi, Aubert 08].
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 2. Encadrement et enseignement

J’ai encadré/j’encadre dix étudiants en thèse (voir Annexe A), dont  D. Aubert (“Etude des flux cosmologiques 
au travers de la sphère du viriel d’un disque Galactique & applications” tutelle de thèse soutenue en mai 2005) à 
temps plein, et avec P. Petitjean, en co-tutelle, trois étudiants sur la forêt Lyman α (E. Rollinde “La physique du 
milieu intergalactique", B. Aracil  :  “Etude du milieu intergalactique à l’aide des raies d’absorption dans le 
spectre des quasars” et Sara Caucci  “la topologie du milieu intergalactique”) sur la tomographie et  la topologie 
des grandes structures à partir de faisceaux de lignes de visée issues de quasars), avec O. Bienaymé un sur la 
cinématique du voisinnage solaire (A. Siebert :  “Structure et dynamique des disques de la Galaxie”) et avec 
A. Lançon (P. Ocvirk “Evolution chemo-spectro-dynamique des disques galactiques” cotutelle de thèse soutenue 
en juillet 2005), avec H. Courtois (Thierry Sousbie “Le Squelette de l’univers, un outil d'analyse topologique des 
grandes structures” en cotutelle de thèse soutenue en décembre 2006) sur les propriétés hydrodynamiques du flot le 
long des filaments des grandes structures, et la détermination d’une relation de fermeture pour cet  écoulement, avec 
S. Prunet  (Jérôme Thiébaut, en co-tutelle depuis 2007, sur l’émergence du chaos dans les simulations numériques 
cosmologiques, et  l’inversion des cartes de polarisation, avec R. Teyssier (Damien Chapon  en co-tutelle depuis 
2008) sur la structure et  l’évolution de la Voie Lactée, et enfin avec Christophe Gay (depuis 2007, tutelle), sur la 
statistique du squelette global.

 Parmi ces ex-étudiants en thèse, deux d’entre eux ont été recrutés à l’Observatoire de Strasbourg, et  un à 
l’Institut d’astrophysique de Paris.

J’ai aussi encadré cinq stages de DEA en 2001 (D. Aubert, P. Ocvirk & M. Guenno), le troisième en co-tutelle 
avec A. Lançon, un stage de magistère de mathématique en 2002 (Myriam Fischer) et  2 stages de M2 en 2007 
(Jérôme Thiébaut et  Christophe Gay). J’ai également encadré les stages de M1 de Benjamin Depardon sur la 
polarisation du milieu interstellaire en 2005, de Annie Hugues sur les métaux du MIG en 2004, d’Isabelle Paris et 
Florence Brault  en 2007 sur les effets d’environnement sur les propriétés morphologiques et  spectro-
photométriques des galaxies en fonction de leur position par rapport aux grandes structures.

 J’ai co-encadré (avec P. Petitjean) le travail postdoctoral de E. Scannapieco sur les métaux du milieu 
intergalactique ; j’ai de plus co-encadré le travail postdoctoral de Pierre Ocvirk (avec R. Teyssier) sur la bimodalité 
de l’accrétion des métaux sur les galaxies L* (Ocvirk, Pichon, Teyssier, 2008), de Felix Stoehr (en postdoc) sur les 
fonctions de corrélation transverse de la forêt  du MIG (Copolani et al., 2006.), de Damien Le Borgne (postdoc) sur 
l’inversion du SFR cosmique à partir des comptages (Le Borgne, Elbaz, Ocvirk, Pichon 2008) et sur les 
caractéristiques morphologiques et  spectroscopiques des galaxies dans la simulation MareNostrum (Gay, Pichon, 
Le Borgne, Teyssier, Sousbie prep.), et  de Sebastien Peirani (postdoc) sur la construction et l’inversion de lentilles 
fortes (Peirani, Alard, Pichon, Gavazzi, Aubert 2008), et j’ai enfin encadré en postdoc HORIZON T. Sousbie sur le 
squelette de l’univers (Sousbie, Pichon et al. 2008a,b, Sousbie Colombi, Pichon 2008). 

J’ai obtenu plusieurs fois du temps à l’UKAAF (centre de calcul astrophysique Britannique) financé par l’UE, 
et, en collaboration, au CINES, à l’IDRIS et  au CCRT. J’ai eu l’occasion d’observer à l’AAT  (Sidding Springs) à 
Hawaii (CFHT), et à Calar Alto. J’ai obtenu par le biais de mes collaborateurs du temps HST, NTT et VLT. J’ai 
interagi régulièrement avec P. Fernique sur l’interface d’Aladin (portail image du CDS).

J’ai été coordinateur d’une action spécifique INSU et membre d’une seconde (avec S. Colombi). J’ai participé 
au TMR Milieu Intergalactique. Avec mes collègues, j’ai obtenu plusieurs financement  ANR (HORIZON, Ecostat et 
BOSS), PNC, PNG, GDR-galaxies. J’ai référé une bonne douzaine d’articles,2 et  j’ai été examinateur de la thèse de 
F. Soules (Dec. 08).

 J’ai activement  contribué à la mise en oeuvre du projet HORIZON http://www.projet-horizon.fr et  de son 
ANR ; je suis de fait  CoI IAP  du projet (depuis septembre 2006) et  éditeur principal du site, dans la lignée du 
projet  INC (avec S. Colombi). J’ai été rapporteur de la commission 34, et  membre du CS à l’Observatoire de 
Strasbourg. Je suis depuis 2005 responsable de l’équipe Univers profond et grandes structures de l’IAP.

 J’ai enseigné en licence de statistique, et en master d’astronomie. J’ai aussi enseigné durant plusieurs écoles 
(Luminy, Cargèse) du CNRS, en post-DEA (simulation numérique & programmation CUDA), et j’ai écrit plusieurs 
articles de vulgarisation/critiques de livres pour les revues Pour La Science et  Science & Vie. J’ai aussi fait des 
interventions dans des forums dans le cadre de la fête de la science. J’ai donné des conférence publique devant 
l’association des astronomes amateurs d’Alsace et la Société Française de Physique.

9
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9

http://terapix.iap.fr
http://terapix.iap.fr


3. Travaux de recherche 

Cette troisième partie retrace de manière plus détaillée mon activité de recherche articulée autour d’une présentation par 
décalage spectral vers le rouge croissant, centré sur le trou noir de notre galaxie, avec pour fil directeur la problématique de 
la matière noire. Elle est suivie par une sélection des articles qui m’ont semblé les plus représentatifs de mon travail. (en % la 
fraction de leadership sur le projet).

3.1 Matière noire compacte.
La compréhension de la dynamique des noyaux galactiques pose deux problèmes :  quelle est l’influence 
dynamique du trou noir central sur les étoiles environnantes, et quels sont les taux de concentration et 
d’anisotropie induits par le trou noir sur le cuspide central ? 

3.1.1 Dynamique du centre Galactique. [30 %]

Le centre de notre galaxie se prête particulièrement bien à l’étude de ces phénomènes.

— La région du centre Galactique :  le comportement asymptotique du profil de masse aux échelles du dixième de parsec 
traduit la présence de l’objet central massif. La cohérence dynamique entre les mouvements propres et les vitesses radiales 
suppose une distance au centre galactique de 8.5 kpc [Genzel, Pichon, Eckart, Gerhard, Tott 2001].

 En effet, en dépit de l’extinction phénoménale aux longueurs d’onde visibles, plusieurs groupes disposent 
maintenant  de données cinématiques très détaillées de l’amas d’étoiles central à l’aide d’observations dans 
l’infrarouge proche. Je me suis donc attaché à modéliser ces données.

En collaboration avec O. Gerhard, j’ai analysé les propriétés cinématiques des étoiles du voisinage du trou noir 
central à l’aide des vitesses radiales, des mouvements propres et de la photométrie infrarouge. J’ai développé et 
testé des méthodes pour estimer le degré d’anisotropie et pour extraire le potentiel gravitationnel du centre 
Galactique de manière non paramétrique à l’aide d’un ajustement  simultané des comptages d’étoiles et des mesures 
de vitesse. 

10

10



 Il découle de cette analyse que la masse du trou noir doit être revue à la hausse et  que les barres d’erreurs 
avaient  été surestimées par le passé. Nous avons déduit un estimateur pour la distance soleil-centre Galactique 
indépendant  de l’anisotropie de l’amas de l’ordre de 7.8-8.2 kpc (cf. Fig 2.1). J’ai par ailleurs montré que les 
estimateurs algébriques de Leonard-Merritt sont systématiquement  biaisés d’un facteur dépendant de la pente du 
cuspide et de l’anistropie de la distribution au voisinage du trou noir [Genzel, Pichon, Eckart,Gerhard Tott (2001)]. 

 En 2001, le nombre d’étoiles présentant  des mesures de vitesse radiale et/ou de mouvement propre était trop 
faible pour mener une véritable mesure non paramétrique de la masse du trou noir, ce qui correspondait  à l’objectif 
initial de ma contribution à ce travail. En effet, pour une telle mesure, il faut  pour la méthode retenue échantillonner 
la distribution des étoiles (en position et  énergie) sur la voûte céleste, puis la déprojeter (1/2 dérivation) et dériver le 
résultat de la déprojection pour calculer le gradient  de pression qui s’oppose à la dispersion. Scott (92) a montré 
que du point de vue de l’échantillonnage non paramétrique cette opération était équivalente à un échantillonnage en 
dimension 5, soit  2 points de mesure indépendants. En pratique, j’avais pour ce projet  développé une base 
analytique de splines cubiques à pas d’échantillonnage quelconque, sa transformée d’Abel inverse, et le potentiel 
gravitationnel induit. L'intérêt  d’une telle base est sa flexibilité dans l’échantillonnage (en l'occurrence 
logarithmique) et  l’absence d’erreur (analyticité) dans le calcul du modèle. Une alternative consiste par exemple à 
reparamétrer le modèle en log-log, mais la pénalité associée à l’optimisation d’une fonction de coût non-linéaire 
est, à mon avis trop forte quand elle peut  être évitée. Cet outil m’a in fine servi pour la mesure du profil de masse 
d’Abell 85 et la mesure du Kz avec les données Hipparcos dans d’autres contextes et géométries. 

Par ailleurs, pour revenir au trou noir Galactique, l'hypothèse d’isotropie spatiale de la distribution projetée des 
étoiles n'était pas vraiment  vérifiée. Rétrospectivement, il est  intéressant  de noter que ma mesure, élevée, de la 
masse du trou noir a été confirmée spectaculairement par la mesure directe des accélérations des étoiles S1 et S3 
(puis de 26 autres étoiles à ce jour). Le centre  Galactique a fait depuis l’objet de nombreuses mesures dynamiques. 
Accessoirement, cette recherche m’a alors permis à titre personnel de me convaincre de la réalité du concept  de 
trou noir!

3.1.2 Disques relativistes & formation des QSO [40%]

— Plongement d’une surface à courbure extrinsèque non nulle dans une métrique de Kerr. Cette courbure induit une densité 
d'énergie supplémentaire que l’on identifie à une pression cinétique dans le disque mince correspondant à l’identification des 

deux surfaces externes. [Pichon, Lynden-Bell (1996)]. 

Lors de l’effondrement d’un nuage baryonique de gaz, la conservation du moment angulaire conduit  à son 
aplatissement. La contraction se poursuit jusqu’à ce qu’une description relativiste du cœur devienne nécessaire. S’il 
semble établi que la phase ultime de l’effondrement  corresponde à un trou noir supermassif, il convient  d’étudier 
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plus en détail les étapes conduisant à la formation d’un tel objet. Pour ce faire, j’ai construit des familles de 
solutions analytiques exactes aux équations d’Einstein correspondant à des disques supermassifs minces. Ces 
solutions sont établies de manière géométrique en identifiant de part  et  d’autre d’un plan de symétrie les points 
décrivant  deux surfaces de section traversant  un champ du vide donné. Cette identification définit le saut des 
dérivées normales du champ à partir desquelles les propriétés du disque se déduisent. J’ai étudié la nature des 
sections conduisant  à une solution physique. Pour une métrique statique, j’ai montré que le champ du vide peut  être 
construit de manière générale par superposition linéaire de sources fictives de part et d’autre du plan de symétrie en 
analogie avec la démarche newtonienne. La solution correspondante peut  alors être interprétée en termes de deux 
flots stellaires en contre rotation [Bicak, Lynden-Bell & Pichon (1994)]. Le choix d’une section à courbure 
extrinsèque nulle conduit à des disques dénués de pression radiale. Tout  profil courbe induira au contraire un disque 
susceptible d’être stable vis-à-vis des instabilités radiales [Pichon, Lynden-Bell (1996)].

En raison de la complexité induite par les forces gravitomagnétiques (qui entraînent  les repères inertiels), il 
n’existe pas de solution stationnaire générale pour laquelle la composante non diagonale de la métrique peut  être 
choisie indépendamment. Néanmoins, il est  possible de générer par transformation algébrique des familles 
complètes de métriques stationnaires à partir de solutions statiques connues avec une distribution d’énergie et  de 
pression et  une courbe de vitesse qui se déduit  du choix de la métrique du vide dans laquelle le disque est  plongé. 
A grande distance, ces disques deviennent newtoniens mais présentent  dans leur région centrale des propriétés 
relativistes (décalage vers le rouge important, écoulement luminique, ergorégions, etc). J’ai transposé dans ce 
contexte la méthode d’inversion newtonienne présentée ci-dessus pour construire de manière univoque toutes les 
fonctions de distribution compatibles avec un écoulement relativiste donné.

Ce type de solutions présente un intérêt  à la fois astrophysique et théorique. La généralisation du formalisme de 
la dynamique stellaire des disques minces au cadre de la relativité d’Einstein, et  la description statistique détaillée 
de l’écoulement  pour un ensemble très général de solutions relativistes constitue un progrès théorique important, en 
particulier au vu du nombre très restreint  de solutions physiques aux équations d’Einstein à symétrie non sphérique. 
Par exemple, une des solutions que j’ai obtenu représente une source physique interne pour la métrique de Kerr qui 
correspond ultimement au champ généré par un trou noir en rotation. 

Ces solutions sont  plus généralement  susceptibles de décrire des amas stellaires relativistes en rotation 
différentielle localement  stables. Les configurations à pression isotrope correspondent  éventuellement  à des disques 
supermassifs que l’on peut associer à l’étape d’effondrement  final d’un proto-quasar. J’ai calculé la fraction de 
l’énergie de masse qui est  rayonnée lors de l’effondrement  de ces objets. Celle-ci peut atteindre dix pour cent de la 
masse au repos du disque, ce qui suggère que ces derniers pourraient avoir une durée de vie suffisante pour avoir 
des conséquences observationnelles [Pichon & Lynden-Bell (1996)].

Il est rétrospectivement intéressant  de noter que l’astuce utilisé pour introduire la pression dans ces disques 
(l’association d’une densité d'énergie supplémentaire à la courbure extrinsèque de la surface immergée) se retrouve 
en théorie des branes qui a été développée parallèlement en cosmologie théorique. La dérivation des fonctions de 
distribution pour ces disques supermassifs était  une de mes premières innovations théoriques, car elle correspondait 
à la transposition de la formule classique pour les disques galactiques (publiée dans Pichon & Lynden-Bell 1996) 
mais aussi à sa généralisation imposée par l'entraînement des repères inertiels. A terme et dans ce contexte, la 
recherche numérique de solutions aux équations d’Einstein m'intéresserait (cf 3.6.2 ci-dessous). 

3.2 Matière noire du voisinage solaire

Si l’absence de matière noire dans le voisinage local est maintenant acquise, c’est en partie grâce à la 
performance de la mission Hipparcos. Le lancement du satellite GAIA va dans quelques années révolutionner notre 
connaissance de la Voie lactée. Le voisinage solaire reste le laboratoire privilégié de la physique du milieu 
interstellaire, dont la structure géométrique quelconque (et notre point de vue particulier) se prête bien à la 
modélisation non paramétrique. Mes travaux dans ce domaine recouvrent l’estimation dynamique par le biais de 
méthodes inverses. 

3.2.1 La densité locale de matière noire Galactique [20%]
Les nouvelles données obtenues par Hipparcos et Tycho fournissent  des contraintes détaillées sur le potentiel 
Galactique et  son aplatissement  et  peuvent  conduire enfin à une mesure “exacte” de la distribution de masse au 
voisinage solaire. Les contraintes locales, fournies par Tycho et le programme complémentaire des mouvements 
propres tirés des plaques astrographiques, permettent aussi en principe de connaître de manière détaillée les 
distributions stellaires du halo et du disque épais, et de mettre en évidence une éventuelle continuité entre ces deux 
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populations. Cette étude nous renseigne sur les véritables processus dynamiques et  physiques en jeu lors de la 
formation galactique et conduit  à des contraintes fortes sur la fonction de luminosité du halo et du disque épais et 
sur la distribution de la matière noire. 

Dans une première étape, en collaboration avec M. Crézé et O. Bienaymé, j’ai contribué à la mesure de la masse 
dynamique locale dans la sphère de Hipparcos, déduite de l’ajustement simultané du profil de densité – mesuré à 
partir des distances issues des parallaxes, et  de la distribution des vitesse orthogonales au plan du disque – mesurée 
à partir des mouvements propres. Ma contribution a consisté à mener une réduction non paramétrique des données 
Hipparcos et  retrouver que ces nouvelles mesures contraignent fortement la distribution de masse totale au 
voisinage solaire et  retrouver une densité qui exclut tout  modèle de distribution aplatie pour le halo de matière 
noire Galactique [Crézé, Chereul, Bienaymé, Pichon (1998)]. 

 Ce travail correspondait à la transposition de la géométrie sphérique à la géométrie plane des outils que j’avais 
développé pour le centre Galactique. L'intérêt  de la formulation analytique tient  à la flexibilité qu’elle offre du 
point  de vue de l’échantillonnage, ce qui est  un point critique pour améliorer le conditionnement du problème 
inverse et  donc l’importance relative du biais associé au prior. Il n’a en pratique été implémenté que dans l’article 
Durret  et  al. décrit ci-dessous. Le satellite GAIA permettra bientôt  de sonder de manière détaillé le potentiel 
gravitationnel de notre galaxie, et l'intérêt de ce type de modèle non paramétrique devrait alors être évident.

3.2.2 La fonction de luminosité locale [80%]
Si la photométrie et les parallaxes d’Hipparcos permettent de déterminer avec précision la partie brillante du 
diagramme HR dans une sphère de 100 pc, il n’est pas possible d’étudier la fonction de luminosité à plus grande 
échelle, car à partir des comptages seuls, nous  ne  savons pas distinguer une étoile brillante éloignée d’une étoile 
de faible luminosité plus proche.

J’ai proposé une nouvelle méthode [Pichon, Siebert, Bienaymé, (2001)], pour inverser l’équation statistique des 
comptages dans le voisinage local. Afin de briser la dégénérescence de cette équation, j’ai introduit  les contraintes 
supplémentaires requises par l’autocohérence dynamique en tenant compte des mouvements propres. L’inversion 
donne accès simultanément à la cinématique et  à la fonction de luminosité de chaque population dans au moins 
deux régimes :  l’ellipsoïde singulier et  l’ellipsoïde de Schwarzschild à rapport d’axe constant pour les modèles 
plans parallèles.

—  Mise en oeuvre de la déconvolution des comptages cinématiques de données de type “Tycho”. Les isocontours du 
diagramme HR imposé (à gauche) et reconstruit (à droite) ainsi que sa décomposition en dispersion cinématique correspondant 

à quatre populations distinctes caractérisées par leur rayon de décrochement à la séquence principale. [Pichon, Siebert 
Bienaymé, 2001]. 

Son application aux données telles que le catalogue de Tycho, et dans le proche avenir GAIA, conduira (en 
supposant connus le potentiel vertical et  le courant  asymétrique) à une détermination non-paramétrique de la 
fonction de luminosité du voisinage local sans aucune référence aux tracés d’évolution stellaire. Elle permettra 
aussi de déterminer la proportion d’étoiles pour chaque composante cinématique et  constituera un diagnostic pour 
distinguer le disque mince du disque épais ou du halo.
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Plus récemment, en collaboration avec A. Siebert, nous avons transposé ces travaux au régime où les vitesses 
radiales remplacent les mouvements propres, ce qui correspond au type de données qui seront  disponible grâce au 
relevé RAVE.

Ce travail a eu me semble-t-il un impact en deçà de son intérêt  conceptuel et  technique. D’un point de vue 
conceptuel, il était intéressant de noter que la cohérence dynamique (l’existence d’une fonction de distribution 
sous-jacente qui assure à l’équilibre le lien entre les vitesses et  les positions) permettait de remonter à des 
magnitudes absolues sans connaître la distance des étoiles mesurées, et  ce même si a priori il y a une 
dégénérescence supplémentaire associée au mouvement propre et à la dépendance quadratique du potentiel vertical. 
D’un point  de vue méthode, le problème inverse correspondant  reste à ce jour le plus redoutable que j’ai abordé, 
l’espace des données ayant 5 dimensions, l’espace des paramètres 3, et le modèle nécessitant  de calculer des 
millions d’intégrales multiples. Peut être faudra-t-il attendre GAIA pour que l'intérêt de ce type de démarche 
apparaisse ? 

3.2.3 Magnétisme du milieu interstellaire [50%]

— Champ magnétique reconstruit par tomographie polarisée :  le codage couleur correspond au point de départ des lignes de 
champ. Notez la région multiplement visitée en bas à gauche.

La structure plus ou moins turbulente du champ magnétique du milieu interstellaire reste aujourd’hui largement 
inexplorée. C’est pourquoi il est  important d’élaborer de nouvelles méthodes pour sonder ce champ. J’ai entamé 
l’étude de la reconstruction tomographique du champ magnétique dans le milieu interstellaire à partir de la mesure 
spectrale de cartes de polarisation. Dans ce contexte, la dépendance spectrale de la longueur de Faraday permet de 
sonder différentiellement le milieu en profondeur et  donc d’accéder au champ tridimensionnel. L’inversion permet 
de reconstruire le champ B en volume, et  donc ses propriétés spectrales et  sa topologie. C’est un problème inverse 
non-linéaire novateur de grande dimensionalité qui permet aussi d’étudier les propriétés statistiques d’hélicité du 
champ [Thiébaut, Prunet, Pichon, Thiébaut  prép.]. L’objectif est  de traiter le problème de la reconstruction du 
champ magnétique tridimensionnel de notre Galaxie d’une part, et de reconstruire le champ magnétique du 
voisinage de quasars à moyen terme en inversant aussi la densité électronique par le biais de la composante 
circulaire de la polarisation. 

Ce problème offre la perspective de sonder en volume le champ magnétique du milieu interstellaire. Il présente 
néanmoins plusieurs difficultés d’ordre technique ; la première provient  de la nature du noyau ; la seconde relève 
des hypothèses sur la distribution spatiale des électrons, et des cosmiques ; pour obtenir un problème inverse bien 
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posé, il a été supposé que leur variation spatiale était  modulée à plus basse fréquence spatiale que le champ 
magnétique, et  pouvait  donc être considéré comme constant  lors de l’inversion. Deux alternatives s’offrent à nous :  
soit  il est possible de définir une relation fonctionnelle entre ce champ et  le champ magnétique, soit il doit être 
considéré comme un degré de liberté supplémentaire, ce qui suppose de le contraindre par un jeu supplémentaire 
d’observables. Une possibilité consiste à considérer la composante circulaire de la polarisation ; cependant, dans le 
milieu interstellaire, cette composante est typiquement  plusieurs ordres de magnitudes plus faible que les 
composantes rectilignes. Seul le voisinage des quasars est susceptible de produire un signal suffisamment intense 
pour une telle détection.

3.3 Matière noire galactique.

A plus grande échelle, la problématique de la matière noire se pose de manière plus critique. En particulier, elle 
semble incontournable dans les régions externes des galaxies. Les enjeux actuels sont de déterminer quelle est sa 
distribution géométrique afin de comprendre sa nature :  par exemple, quelle est sa contribution dans le disque 
d’une galaxie.

—Quelques galaxies virtuelles (parmi 160 000) apparues dans MareNostrum à z=2.4 générées par synthèse spectrale. Cette 
simulation “physique complète” suit la formation stellaire dans un gaz métallique d’une boîte de (50 Mpc/h)3. La géométrie des 
galaxies produites et la distribution des couleurs est assez réaliste. Des simulations “zoom” conduites par R. Teyssier jusqu’à 

z=0 montrent que des galaxies elliptiques se forment aussi à plus bas redshift.

3.3.1 La stabilité des galaxies spirales [70%]
De par sa nature, la matière noire est difficile à observer. Néanmoins il est  possible d’estimer indirectement  son 
effet  sur la matière visible voisine. Par exemple, la rotation des étoiles et/ou du gaz autour du centre d’une galaxie 
nous renseigne sur la distribution de masse totale, visible et invisible dans cette galaxie, et donc cette courbe de 
rotation peut être utilisée pour mesurer cette masse. Elle ne permet  cependant  pas de distinguer la composante 
visible de la composante noire. Pour ce faire, il faut avoir recours à un modèle plus détaillé qui tienne compte du 
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fait  que les composantes froide et lumineuse ont une dynamique assez différente. En particulier les structures 
observées dans de nombreux disques galactiques comme les barres, le gauchissement ou les spirales sont  le résultat 
d’instabilités au sein de la composante froide seule mais dont  la signature nous renseigne sur la distribution de la 
matière cinématiquement plus chaude mais invisible que constitue le halo ; par analogie, de même que l’analyse 
détaillée des mouvements d’un ensemble d’oscillateurs permet de déduire leur constante de raideur sans avoir accès 
à la nature physique des ressorts, l’analyse de la réponse d’un disque soumis à des déplacements perturbatifs 
virtuels permet de caractériser la “raideur” de son halo, c’est-à-dire la relative fraction de masse dans le disque.  
Mes collègues et moi avons confronté directement  les mécanismes d’instabilité aux observations cinématique de 
NGC 3198 et NGC 6503 pour fournir une estimation du rapport  masse–luminosité dans ces disques. En effet  une 
analyse détaillée des propriétés cinématiques observées permet d’induire la fonction de distribution du disque 
[Pichon & Thiebaut  (1998)]. La connaissance de cette fonction de distribution permet de calculer le taux de 
croissance d’instabilités éventuelles pour ce disque qui en pratique dépend de la fraction de masse couplée 
dynamiquement [Pichon & Cannon (1997)]. 

— Représentation synthétique du principe de mesure de la masse de matière noire dans le disque d’une galaxie spirale. 
L’ajustement de la réponse du disque ou l’absence de réponse permet de déterminer la fraction de masse dans le disque. 

De la présence observée du disque sous sa forme actuelle nous pouvons inférer qu’il n’a pas subi d’instabilités 
rapides conduisant à la formation d’une forte spirale ou d’une barre. De ce taux de croissance maximal compatible 
avec les observations et de l’étude de stabilité, nous déduisons une borne inférieure pour la fraction de masse dans 
un halo noir stabilisant, et  une borne supérieure pour la masse de la composante visible. La photométrie donnant 
accès à la quantité de lumière correspondante, cette analyse conduit  donc à une borne supérieure pour le rapport 
masse–luminosité par une méthode purement dynamique, et sans hypothèse sur la chimie des étoiles.

 En particulier, cette analyse permet d’apporter des éléments de réponse au problème du caractère transitoire ou 
intrinsèque de la formation des spirales dans les galaxies. Elle permet de plus de tester quantitativement 
l’hypothèse selon laquelle l’autogravité d’une galaxie spirale est  dominée par le disque jusqu’au maximum de sa 
courbe de vitesse (hypothèse dite du disque maximal) ; NGC 3198 et  NGC 6503 ne le sont  pas. L’existence de 
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modes propres d’instabilité azimutale différents pour des galaxies présentant  des types morphologiques distincts 
constitue un lien direct  entre la théorie dynamique des disques galactiques et les observations détaillées de leur 
cinématique. 

Ce travail a fait  l’objet  d’une soumission de plusieurs demandes de temps de télescope (Kitt  Peak, CFHT, Calar 
Alto), qui ont été rejetées car les TAC souhaitaient d’abord que la méthode fasse l’objet d’une validation sur des 
données existantes ; l’article correspondant soumis à MNRAS a été rejeté sur la base que les données existantes ne 
justifiaient pas une telle méthode, et que les galaxies ne pouvaient présenter d’orbite en contre-rotation ! En 
pratique, il conviendrait aujourd’hui de reprendre ce type d’analyse sur des échantillons plus vastes de galaxies 
observées (du catalogue SDSS par exemple, ou de données GIRAFFE du VLT), mais aussi issues de simulations 
numériques. Du point  de vue de la modélisation, elle pourrait être menée avec un halo autogravitant en couplant 
ces résultats avec ceux obtenu dans le cadre du travail de thèse de D. Aubert  (voir ci-dessous); il reste cependant  à 
rendre compte du gauchissement possible du disque mince. Le formalisme de stabilité linéaire, qui a servi à valider 
le N-corps depuis, pourrait maintenant  être utilisé dans le contexte des solutions numériques aux équations de 
Boltzmann.

— Evolution du taux de croissance d’une instabilité linéaire et du taux de croissance en fonction d’une combinaison 
linéaire de la fraction de masse dans le halo, q, et de la température cinématique du disque, Q. 

D’un point de vue théorique, j’ai utilisé mon code d’analyse linéaire numérique (qui calcule les modes propres d’un 
disque galactique quels que soient son potentiel et sa fonction de distribution) pour étudier de manière systématique 
les processus d’amplification de la barre en variant indépendamment  le profil de température, la contribution du 
halo et  le pic de densité central (qui détermine l’existence ou non de résonance interne de Lindblad susceptible 
d’absorber l’onde de densité avant  amplification) [DEA de P. Ocvirk]. Ceci permet d’explorer les régimes de 
formation et de dissolution des barres, et en particulier le rôle du cuspide central. 

J’ai enfin généralisé ce type d’analyse à l’étude de stabilité d’un disque quelconque, avec éventuellement une 
fraction de la masse sous forme de gaz. Dans mon algorithme, cette fraction de masse gazeuse peut  être décrite soit 
sous forme d’un polytrope, soit comme une composante non isotrope (avec pour équation de fermeture l’annulation 
du tenseur de chaleur) susceptible de rendre compte de la composante nuage moléculaire du disque. L’algorithme 
reproduit avec succès les modes propres gazeux polytropiques publiés du disque Kuzmin-Toomre. Ces études me 
conduisent à des taux de précession et de croissance pour des disques mixtes. 

La description du couplage gravitationnel gaz-étoile permettrait de décrire de façon réaliste les disques de type 
tardifs, et donc de rendre compte des propriétés de l’ensemble de la séquence de Hubble. L’objectif à terme de ce 
travail est de globalement reprendre les travaux de Weinberg sur l’implémentation de la méthode des matrices d’un 
système couplé disque-halo. Une difficulté que j’ai rencontrée dans ce contexte, et qui m’a été expliqué beaucoup 
plus tard par A. Kalnajs, est que les disques gazeux chauds peuvent développer des ondes de pression très 
enroulées. L’hypothèse linéaire limite cependant ce type d’analyse. 
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3.3.2 Evolution spectro-dynamique des disques :  [70%]

—Données synthétiques spectro-intégrales de champs de galaxies.  Le panneau inférieur identifie grâce au pseudo inverse les 
régions du spectres pertinentes pour l’inversion. 

L’étude dynamique de galaxies extérieures repose en grande partie sur la mesure, en divers points de l’objet, de la 
distribution de vitesses stellaires projetées sur la ligne de visée. Les vitesses moyennes et  leur dispersion servent 
régulièrement à une première caractérisation globale du potentiel gravitationnel et  de la température dynamique, 
mais il ressort  clairement des modèles dynamiques disponibles que les moments d’ordre supérieur de la distribution 
des vitesses sont nécessaires à une étude plus fine (en particulier pour tenir compte des étoiles en contre rotation 
dans les parties centrales du disque). Récemment, il est  devenu possible d’obtenir des spectres de galaxies 
combinant de bonnes résolutions spatiales (100 pc) et spectrales (∼ 5km/s). 
A. Lançon et  ses collègues ont  développé un code de synthèse de spectres galactiques à haute résolution spectrale. 
qui repose sur le modèle de synthèse de populations stellaires Pégase. En utilisant  les caractéristiques 
instrumentales des spectrographes aujourd’hui disponibles sur les grands télescopes nous avons simulé des 
observations de galaxies et  implémenté les méthodes d’inversion non-paramétriques que j’ai développées [Pichon, 
Thiébaut, 1998], pour contraindre l’évolution chémo-dynamique de la galaxie. En particulier, nous avons 
développé un module d’inversion qui permet de recouvrir simultanément  le taux de formation stellaire, l’opacité, 
l’évolution en métallicité et  la cinématique [Ocvirk, Pichon, Lançon, Thiébaut  2007a,b]. J’ai co-encadré la thèse de 
Pierre Ocvrik, qui portait  sur la mise en œuvre de méthodes inverses régularisées pour le recouvrement de l’histoire 
de la formation stellaire et/ou des propriétés cinématiques de galaxies externes à partir de spectres haute résolution 
(R=10 000). En particulier, j’ai montré que l’étude du modèle inverse permet  de souligner l’importance de la 
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régularisation, de prédire les biais de l’inversion en matière de SFH, et  d’identifier les régions pertinentes du 
spectre. Ces travaux ont  trouvé un aboutissement dans la mise en oeuvre d’une variante de la méthode dans le cadre 
de la reconstruction de l’histoire de formation stellaire cosmique à partir des comptages de champs GOODS [Le 
Borgne, Elbaz, Ocvirk, Pichon 2008] (voir ci-dessous).

Au delà de la composante astrophysique de ce travail, certains résultats sont intéressants pour les problèmes 
inverses linéaires en général. L’analyse de termes dominants dans la pseudo-inverse permet  par exemple en 
principe de déterminer, en fonction du rapport  signal à bruit, quelle région du spectre contraint  tel ou tel paramètre 
physique. Couplée aux simulations hydrodynamiques cosmologiques MareNostrum (voir ci-dessous), cette 
méthode inverse permettrait de contraindre les biais de recouvrement  de l’histoire de formation stellaire. Plus 
généralement, cette stratégie (génération d’un échantillon statistique de pseudo-données par le biais de simulations 
numériques, analyse des biais de mesure par l’intermédiaire d’une méthode inverse, validation d’un développement 
instrumental et  déprojection des données dans l’espace du modèle pour contraindre la physique du processus) 
correspond à la trame de mon travail de recherche dans ce domaine. 

3.3.3 Galaxies & environnement cosmologique [90%]

  
— Un exemple de simulation haute résolution 10243 sur laquelle la mesure des flux rentrants sur la sphère du viriel R est 

représentée à droite. Ces mesures permettent de caractériser la statistique de l'accrétion sur les galaxies L* pour prédire leur 
évolution [Aubert & Pichon 2007].

Du point de vue de son évolution dynamique, la “condition aux bords” qu’impose l’environnement 
cosmologique d’un disque galactique donnée est  un champ temporel que nous caractérisons statistiquement, pour 
répondre à la question lancinante de “l’inné ou de l’acquis” des départs à l’axisymmétrie plane des disques 
galactiques. Dans le cadre d’un modèle cosmologique donné, je souhaite répondre à des questions du type “quel est 
l’effet  relatif des satellites sur l’excitation spirale d’un disque (Weinberg 1998), comparé au penchant du disque à 
former spontanément une telle spirale (Toomre 1964)”. Inversement, la confrontation statistique de ce type d’étude 
aux grands relevés en cours permettra de dégager des contraintes locales sur les modèles cosmologiques.

Les problèmes les plus sérieux auxquels sont confrontés les modèles hiérarchiques (la surproduction de galaxies 
naines dans le groupe local, la crise des cuspides de NFW, la crise du refroidissement catastrophique et  la crise du 
moment angulaire des disques) se posent tous aux échelles galactiques Il est  donc important d’étudier les effets de 
ce paradigme sur l’évolution galactique pour aborder ces paradoxes.
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— Distribution des angles entre le spin et le moment angulaire sur la sphère mesuré à partir de 100 000 halos ; et vue en 
projection recentrée des satellites (à gauche). A droite dispersion en vitesse et orientation du spin des halos par rapport au 

squelette :  l'accrétion est anisotrope. [Aubert, Pichon, Colombi 2004, Sousbie, Pichon et al. 2008]. 

 Ce travail est  complémentaire à l’analyse en termes d’arbres de coalescence, où l’accent est mis sur 
l’identification discrète de halos et le suivi des progéniteurs en fonction du décalage spectral vers le rouge. La 
description fluide se justifie aux échelles galactiques où une fraction dominante de la masse est  accrétée sous forme 
d’un flux de matière non virialisée.

Elle présente de plus l’avantage de la résolution angulaire sur la sphère du viriel ; tous les mécanismes 
d’excitation qui dépendent  de manière plus critique de la géométrie des interactions peuvent être abordés de cette 
façon (comme l’excitation de la structure spirale, ou encore l’accrétion prograde ou rétrograde d’un satellite, la 
friction dynamique...).

Spécifiquement, dans le cadre de la thèse de D. Aubert, j’ai abordé l’étude des propriétés des proches 
environnements des halos galactiques dans des simulations cosmologiques pour des univers ΛCDM. Par ce travail 
j’ai établi les liens qui peuvent exister entre les caractéristiques de la dynamique interne des galaxies (profils des 
halos, instabilités du disque ...) et la statistique des perturbations, qui est  liée à la physique des structures à plus 
grandes échelle. Pour ce faire j’ai généralisé au contexte d’un système ouvert les équations de la dynamique d’un 
système stellaire en coordonnées sphériques. Spécifiquement, en collaboration avec J. Heyvaerts et D. Aubert, j’ai 
formalisé le processus de diffusion des orbites sous l’effet  de la perturbation stochastique de l’environnement d’une 
galaxie, ainsi que l’évolution non-linéaire du couple Poisson–Boltzmann non collisionnel dans un régime ouvert ; 
ceci a fait  l’objet  d’une série de publications [Pichon, Aubert  2006, Aubert  Pichon (2007)]. Cette équation de 
diffusion généralise le formalisme de Lennard Balescu dans le contexte de la dynamique stellaire non collisionnelle 
ouverte, et illustre le théoreme fluctuation-dissipation dans l’espace rectifié des angles actions du halo. Ma et 
Bertschinger avaient mis l’emphase sur la description des proto-halos en formation, ce qui leur permet de calculer 
les coefficients de diffusion qui gouvernent l’évolution galactique dans un formalisme de type champ contraint. Ici 
nous portons nos efforts sur les halos plus évolués subissant l’accrétion d’objets relativement moins massifs, ce qui 
justifie le traitement perturbatif de la dynamique interne.
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Pour s’assurer une bonne représentation statistique de l’environnement des galaxies, j’ai construit  une ferme de 
calcul de 24 processeurs pour générer, réduire et analyser environ 500 simulations cosmologiques. Pratiquement 
j’ai developpé un pipe-line consistant à générer des conditions initiales (GRAFIC : E. Bertschinger) et  à les faire 
évoluer (GADGET : V. Springel) au cours du temps pour finalement  les analyser avec nos propres outils 
parallélisés sous Yorick : mesures des flux et  des densités de flux à la surface des halos, mesures des spectres de 
puissance et bispectres angulaires du potentiel et  du flux de masse à l’interface entre le milieu galactique et  inter-
galactique, génération de flux synthétiques à partir des flux mesurés, reconstruction du potentiel à partir des 
conditions aux bords. J’ai de la sorte construit  la carte d’identité de halos et de leur environnement  pour environ 
100 000 d’entre eux.

— Réponse linéaire spirale, gauchissement, et polarisation du halo en présence d’une perturbation potentielle lié à un 
environnement cosmologique fluctuant [Pichon & Aubert 2006].

J’ai mis en évidence la propagation des propriétés des environnements de halos vers les régions les plus internes 
par le biais de l’étude de la susceptibilité des halos et des disques en couplant des méthodes analytiques (réponse 
linéaire vis-à-vis des excitations) et  numériques. Le calcul de l’opérateur de réponse en polarisation du halo me 
permet d’évaluer la friction dynamique exercée par le halo sur les perturbations entrantes dans la sphère du viriel 
(le calcul des effets non-linéaires de friction dynamique est indispensable pour tenir compte de l’amortissement de 
la perturbation, sans quoi les corrélations induites dans le disque et  les parties internes de la galaxie sont 
singulières). J’ai en particulier étudié l’anisotropie de l’accrétion aux petites échelles dans l’environnement  proche 
des halos galactiques en me reposant sur une étude statistique à un et  deux points. J’en ai déduit que l’accrétion se 
fait  préférentiellement dans le plan perpendiculaire à la direction définie par le moment angulaire du halo. [Aubert, 
Pichon, Colombi (2004)]. La valeur de ce spin est dominée par l’accrétion récente des sous-structures et celle-ci ne 
s’effectue pas de manière isotrope. Cette anisotropie peut être estimée à 15%. J’ai aussi montré que dans le 
référentiel du halo, les sous structures présentent  un spin intrinsèque statistiquement orthogonal à leur vecteur 
vitesse, en accord avec l’idée d’un écoulement suivant  des structures en filament, résultat qui a été confirmé depuis 
par la littérature et nos propres mesures avec le squelette (voir ci-dessous) [Sousbie, Pichon et  al. (2008)]. Nous 
avons enfin mené une mesure détaillée des propriétés statistiques des processus d’accrétion de matière noire sur les 
halos de galaxies [Aubert, Pichon (2007)]. Le cœur de ces travaux est décrit en détail dans sa thèse.

Ce travail constitue à mon avis un des aspects les plus prometteurs de la recherche présentée dans ce document. 
Notamment parce qu’il devrait  à terme permettre de prédire les propriétés statistiques des galaxies, moyennant sa 
généralisation à la physique du gaz et  de la formation stellaire. Le formalisme de Vlazov-Poisson ouvert, sa 
résolution perturbatrice, et  l'équation de Lennard-Balescu qui s’en déduit trouveront je l'espère leur audience, peut-
être aussi dans le contexte de l’évolution cosmique des ceintures d'astéroïdes. La diffusion du profil moyen des 
halos induite par l'accrétion des sous structures cosmiques permettra il me semble d’aborder le problème de la 
formation des barres. L’idée est  d'écrire les équations de diffusion couplées pour la composante stellaire du disque 
et  du halo. Sous l’action de l’environnement, une fraction de l’ensemble des disques va diffuser au delà de leur 
seuil d’instabilité linéaire. En ce sens, le décompte de la fraction de ces objets se déduit  de l’aire de la PDF du 
profil moyen dans la région d’instabilité. Conceptuellement, ce projet correspondait globalement à une volonté de 
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transposer aux échelles galactiques la théorie perturbative développé entre autres par F. Bernardeau dans le 
contexte cosmologique. 

J’étudie avec J. Magorrian et D. Aubert la polarisation d'un halo de matière noire lors de la croissance adiabatique 
de perturbations. Pour ce faire, nous procéderons à une comparaison entre le calcul linéaire (méthode des matrices), 
la réponse par la méthode dite de Young (calcul analytique), les résultats simulés du code à particules perturbatives 
de J. Maggorian ainsi qu'avec les résultats obtenus par intégration N-corps directs sur cartes GRAPEs. Dans le 
régime perturbatif, la méthode linéaire permet  une description directe de la fonction de distribution dans l'espace 
des phases et de ses moments (densité, flux, dispersion de vitesse, moment  angulaire) et adaptée au modèle à 
l'équilibre sous-jacent. De même, le code à particules perturbatives permet de focaliser l'intégration numérique sur 
les régions résonantes et constitue de fait  le meilleur type de simulation pour ce type de problèmes. Enfin 
l’intégration à N-corps directe sur cartes dédiées constituera une référence à haute précision pour les autres 
méthodes, en particulier dans les études auto-gravitantes à géométrie arbitraire. A l'aide de ces méthodes, nous 
cherchons à comprendre la polarisation du halo liée à la croissance d'un disque, d'une spirale ou d'une barre et de 
sous-structures. Ceci nous permettra d'aborder les problématiques des profils NFW, des lois d'échelles type Dn-σ, 
de la distribution de l'émission induite par l'annihilation de particules de matière noire. D'autre part, GAIA fournira 
a terme des contraintes observationnelles sur le potentiel de la galaxie qui devront être interprétées en terme de 
croissance de perturbations [Magorrian, Aubert  Pichon, prép]. D. Aubert  et  moi analysons dans l’espace des phases 
la réponse non-linéaire du modèle 1D plan parallèle perturbativement au second ordre avec pour objectif une 
comparaison avec le code simplectique de S. Colombi [Aubert, Pichon, Colombi prép].

Un des intérêts du formalisme perturbatif est de valider les intégrateurs numériques dans le régime symétrique où il 
s’applique. Une fois cette validation acquise, ce formalisme présente l’avantage d’être explicite (et  peut donc être 
mis en oeuvre dans des méthodes inverses par exemple) alors que les intégrateurs peuvent explorer des 
configurations moins symétriques. La théorie des processus stochastiques (mouvement  browniens etc) ouvre de 
plus la perspective de suivre l’évolution statistique du modèle de référence. L'inconvénient  de cette formulation est 
de faire l’hypothèse qu’un système intégrable de référence existe, ce qui n’est pas strictement vrai en général ; 
cependant, les temps dynamiques dans une galaxie sont tels qu’il est raisonnable de faire l’hypothèse que si le 
chaos doit  se développer, il le fera sauf exception (le centre galactique par exemple) sur des temps longs par rapport 
au temps typique entre deux perturbations dues a l’environnement. 

3.3.4 Modèle HMF et formation adiabatique des barres [80%]

Une fraction importante des disques galactiques observés présente une structure barrée qui se caractérise par des 
isophotes allongées au-delà du bulbe central. S’il est vrai que les simulations numériques sont  sujettes à de fortes 
instabilités bi-symétriques, seulement  quarante pour cent des disques observés sont constitués d’une forte barre. 
Pourquoi certaines galaxies forment-elles une barre et d’autres pas? 
J’ai abordé cette question en menant  l’étude de la stabilité d’un système stellaire autogravitant avec pour point de 
vue les instabilités induites par l’alignement d’orbites résonantes. De fait, j’ai montré qu’il est possible de re-écrire 
les équations de la dynamique exclusivement en termes de couplage entre des flots d’étoiles décrivant une même 
orbite résonante. En portant mon attention sur les étoiles en résonance interne de Lindblad, j’ai montré que ce 
couplage conduisait  à une instabilité de type instabilité de Jeans. L’instabilité de Jeans peut  être interprétée comme 
un processus au cours duquel de plus en plus d’étoiles sont capturées par un potentiel d’amplitude croissante. Pour 
ce faire nous avons élaboré un modèle jouet construit sur un ensemble d’ellipses couplées par un potentiel 
d’interaction mutuel variant  comme deux fois le cosinus de l’angle relatif d’alignement [Pichon (Knight prize 
1992)].
 Pour référence, ce modèle a depuis pris le nom de modèle HMF (pour Hamiltonian Mean Field) et est devenu une 
référence en physique théorique, générant  beaucoup d’activité bibliographique. De la même manière, dans un 
disque galactique cette instabilité azimutale procède par capture du lobe des orbites résonnantes par un potentiel 
tournant. Le taux de précession de ce potentiel d’amplitude croissante correspond alors au taux de précession de la 
barre. Ce type d’instabilité n’est possible que si le moment d’inertie adiabatique des orbites piégées est positif. Ce 
mouvement coopératif a lieu à la résonance interne de Lindblad dans les parties centrales des galaxies. J’ai montré 
que le critère d’instabilité global est  obtenu en considérant l’effet de toutes les résonances compatibles avec la 
symétrie de l’instabilité considérée [Pichon & Cannon (1997)]. J’ai par ailleurs étudié le devenir de ce type 
d’instabilité en construisant  la fonction de distribution induite par l’alignement adiabatique d’orbites en résonance 
interne de Lindblad.
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— Représentation en phase de l’instabilité azimutale de Jeans du modèle HMF expliquant pourquoi une fraction seulement 
des galaxies barrent. Une interprétation thermodynamique est aussi possible [Pichon, Lynden-Bell (1992)].

 Cette fonction de distribution est  obtenue en maximisant  l’entropie du système compte tenu des contraintes de 
conservation du nombre d’orbites, du moment angulaire et de l’énergie totale du système, et de la conservation 
adiabatique détaillée de la circulation de chaque étoile décrivant  son orbite. J’ai montré alors qu’il existe une 
température critique en deçà de laquelle le disque évolue spontanément  vers un état barré avec une composante bi-
symétrique naissante tournant à la fréquence prédite par l’analyse ci-dessus. Toutes les caractéristiques 
morphologiques de la “barre” s’en déduisent. Le système peut dans certaines configurations présenter une chaleur 
spécifique négative ; en considérant  l’ensemble des étoiles non résonantes comme une source thermique à chaleur 
spécifique positive, on conçoit qu’il se produise l’équivalent  d’une catastrophe gravothermale. La barre s’amplifie 
alors et son taux de précession décroît  pendant  que la température diminue encore, en accord qualitatif avec les 
résultats des simulations numériques. Ces résultats peuvent aussi bien rendre compte du devenir d’une barre 
engendrée spontanément par instabilité orbitale, mais aussi expliquer la disparition adiabatique d’une structure 
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barrée qui posséderait une température d’équilibre en deçà de la température critique [Pichon (1992) Knight Prize,
1994 PhD].

La formulation thermodynamique de l’instabilité était une transposition assez directe de la physique du 
ferromagnétisme tel qu’il m’avait  été enseigné en physique statistique. L’instabilité HMF est aussi la transposition 
au contexte galactique de l’instabilité à deux faisceaux bien connue en physique des plasmas. Elle a fait l’objet 
d’une étude quasi exhaustive par Chavanis en 2005. Même si dans sa formulation naïve (IRL seule) ce mécanisme 
prédit  un taux de précession en deçà de celui mesuré dans les simulations, son extension au problème de la capture 
d’orbites par piégeage résonant  pourrait expliquer la croissance, puis la saturation des barres galactiques, comme 
l’a suggéré M. Tagger en 1995. 

— Schéma représentant le modèle d’une pollution localisée de l’IGM :  les métaux sont dans les bulles centrés sur les halos 
massifs. Un tel modèle permet de calculer théoriquement la fonction de corrélation attendue à la BBKS [Scannapieco, Pichon 
& al. 2006]. 

3.4 La matière noire en deçà de 10 Mpc 

A plus grande échelle encore, la matière noire devient omniprésente. Elle définit le contexte de l'émergence des 
structures. Sa description statistique est incontournable. Elle façonne la structure du milieu intergalactique, dont 
nous observons indirectement la nature via les raies en absorption dans le spectre des quasars. Ce squelette définit 
le cadre des processus (magnéto-)hydrodynamiques qui façonnent les galaxies. Cependant, à ces échelles, la 
rétroaction galactique (jets, supernovae, etc.) joue aussi un role qu’il convient de définir.

3.4.1 Déconvolution de la Forêt Lymann α [70%]
Ces dernières années, un modèle cohérent de la distribution spatiale de la matière baryonique dans l’Univers a 
émergé de la confrontation des observations de raies d’absorption observées dans le spectre des quasars à grand 
décalage spectral et  des résultats de simulations numériques à N-corps. Ces simulations incluent  une description de 
l’état  physique du gaz (photo-ionisation et  hydrodynamique) qui apparaît confiné principalement  par le potentiel 
gravitationnel de la matière noire. Il est ainsi possible de suivre l’évolution cosmologique du milieu inter-galactique 
et  plus spécialement de la forêt Lymann-α. Il est apparu que la distribution spatiale des nuages de la forêt  suit la 
structuration filamentaire de la matière noire, dont les noeuds sont  les lieux où se forment  de façon préférentielle 
les galaxies. Les simulations ont également confirmé que la forêt Lyman-α contient à grand décalage spectral une 
quantité de baryons très proche des prédictions de la théorie de nucléosynthèse primordiale. Elle constitue donc le 
réservoir de gaz qui alimente la formation des étoiles et des galaxies. 
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— Tomographie des grandes structures par le biais de la Forêt Ly-α des spectres de quasars les traversant. Le prior permet 
d’interpoler entre les lignes de visées. La corrélation attendue entre le champ de vitesse et le champ de densité permet de 

corriger partiellement de la distorsion en redshift. L’équation d’état permet de corriger de l’élargissement thermique. [Pichon & 
al. 2001].

 

Etudier la distribution spatiale du gaz absorbant  à grand décalage spectral est donc un moyen unique de mettre en 
évidence les structures de l’Univers et de suivre leur évolution cosmologique. J. Bergeron, P. Petitjean et moi avons 
obtenu du temps VLT pour observer des champs contenant 25 quasars (ainsi que des paires rapprochées) afin de 
réaliser la cartographie 3D du milieu inter-galactique avec pour objectif la modélisation de la distribution spatiale 
du gaz sur toute les lignes de visée. Avec J.L. Vergely, j’ai développé et testé des méthodes statistiques d’inversion 
tomographique régularisée (cf. Fig 5.3) pour caractériser les structures dans ce milieu continu. En particulier, j’ai 
montré comment  le formalisme des champs contraints permettait  de relier la densité sous-jacente à la vitesse la plus 
probable le long de la ligne de visée, ce qui permet de corriger statistiquement  les distorsions de décalage spectral 
vers le rouge induites par les vitesses particulières du gaz HI [Pichon, Vergely, Rollinde, Colombi, Petitjean 
(2001)]. S. Colombi a dans le cadre de ce projet  produit  une série de simulations hydrodynamiques PM 
correspondant à différentes résolutions et différentes cosmologies.

Ce travail fait  en particulier le lien entre la théorie des champs contraints, et les méthodes inverses. Dans ce 
contexte, la formulation continue de Tarantola avec prior gaussien, s’est  avérée particulièrement  adaptée (de fait, 
elle a été développée dans un contexte de tomographie) d’autant que pour la cosmologie, l’existence a priori d’un 
champ log normal est motivée théoriquement. Je travaille actuellement à une extension du formalisme des champs 
contraints pour corriger statistiquement les distorsions de décalage spectral vers le rouge induites par les vitesses 
particulières du gaz HI dans des données volumétriques de type SKA ou LOFAR, ce qui correspond à une 
prolongation de ces travaux sur les absorbants. La technique consiste à supposer que la probabilité jointe d’avoir le 
logarithme du champ de densité dans l’espace réel et dans l’espace des redshifts suit une statistique non 
(log)Gaussienne de type Edgeworth, mais que cette correction est faible. Dans ce contexte, il est alors possible de 
calculer l'espérance du champ contraint, compte tenu de la donnée du champ dans l’espace des redshifts.
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— La structuration de la fonction de corrélation du carbone dans l’ IGM mesurée et modélisée par un modèle de pollueur 
dans des bulles ; l’amplitude du coude et sa taille permettent de contraindre la taille de bulles et la masse du progéniteur 

[Pichon & al. 2004].

  Ces simulations m’ont  permis, en collaboration avec Stéphane Colombi, Sara Caucci (que j’ai encadrée en 
cotutelle sur le milieu intergalactique) et  Thierry Sousbie, d’étudier les propriétés topologiques du flux et 
ultimement de la matière noire sous-jacente [Caucci, Colombi, Pichon et  al. (2008)]. Nous calculons en particulier 
les invariants de Minkovski (surface, volume, génus) des grandes structures. L’objectif est  d’appliquer ces mêmes 
outils à des données issues de la reconstruction d’observables comme des faisceaux de lignes de visée au travers du 
milieu intergalactique, ou des catalogues de galaxies. Nous avons aussi comparé le squelette du champ de matière 
noire reconstruit à celui de la simulation de départ. 

Ce travail va faire maintenant l’objet d’une étude systématique sur les simulations hydrodynamiques MareNostrum 
RAMSES (voir ci-dessous) et  Gadget, où les structures du gaz en température, métallicité matière noire et densité 
sont systématiquement  comparées par ce biais à grande et  petite échelle. La géométrie de la distribution des métaux 
pourra être abordé en particulier avec les outils de segmentation de type peakpatch (voir ci-dessous).

3.4.2 La température du milieu intergalactique [40%]
En collaboration avec E. Rollinde, nous avons mené une première mesure de la température (12 000 K) du milieu 
intergalactique à décalage spectral vers le rouge de 2 à partir du QSO Q1122, et  obtenu un index polytropique de 
l’ordre de 0,2. Nous avons montré que le rapport  CIV/HI ne pouvait être constant, ce qui va à l’encontre des 
scenarii de mélange. Nous étudions actuellement  la possibilité de contraindre l’asymétrie de la PDF du contraste en 
densité à partir de ces mêmes mesures afin de déterminer dynamiquement  le biais cosmologique à ce décalage 
spectral vers le rouge [Rollinde, Petitjean, Pichon (2001)].
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.— La taille des vides dans le milieu intergalactique par le biais de la Forêt Ly-α contrainte à partir d’un quadruplet de 

lignes de visée [Rollinde,Petitjean, Pichon et al., 2002].

Grâce au programme observationnel décrit  ci-dessus, nous avons aussi identifié une structure vide de 25 Mpc à 
partir de l’observation d’un quadruplet de quasars. La confrontation de la fonction de corrélation transversale, 
(mesurée en comparant les positions relatives des raies d’absorption entre les deux composantes d’une paire de 
quasars) à la fonction de corrélation longitudinale (mesurée le long d’un spectre donné) conduit  à une estimation de 
la constante cosmologique. En effet, la première corrélation fait  intervenir une distance angulaire, alors que la 
seconde dépend d’une distance radiale, et  le rapport de ces deux distances nous renseigne sur la topologie globale 
de l’univers et dépend en particulier de sa courbure [Rollinde, Petitjean, Pichon, Colombi, et al. 2002].

Depuis, des observations complémentaire de paires de quasars ont été effectuées et  ont permis de compléter la 
première étude sur la corrélation des absorbants selon la direction transversale [Coppolani et  al. 2005]. Avec 
Stéphane Colombi et  Bastien Aracil, j’ai écrit un algorithme d’inversion de la série Lymann qui permet de 
reconstruire le spectre de puissance du gaz non paramétriquement (par validation croisée). Cette inversion 
corrigeait aussi de l’élargissement thermique des raies. L’objectif est d’inverser la forêt  pour remonter au spectre de 
puissance de la matière noire sous-jacente. 

 
La difficulté du travail sur l’équation d’état tient  au fait  qu’il convient  d’inverser un champ et  plusieurs paramètres 
simultanément  (l’équation d’état), alors que l’effet  des paramètres est  partiellement dégénéré avec la forme du 
champ. Du point de vue des méthodes inverses, la difficulté consiste ausssi à éventuellement extraire à la fois un 
signal continu et des paramètres discrets du signal (e.g. l’exposant de l’équation polytropique). 
 

3.4.3 Les métaux dans le milieu intergalactique [80%]
 En parallèle, et dans l’optique d’augmenter rapidement et considérablement le nombre de mesures des paramètres 
physiques (température, densité, flux ionisant, turbulence, ...) du MIG, j’ai contribué à développer des outils de 
traitement  automatique des spectres à haute résolution pris avec l’instrument UVES du Very Large Telescope en 
collaboration étroite avec B. Aracil. Ce travail fait  partie du grand programme "QSO absorption line systems" pour 
lequel 30 nuits (350 heures) de VLT ont été utilisées. Nous avons automatisé l’étape primordiale et  fastidieuse de 
normalisation des spectres et développé l’identification automatique des raies et  leur ajustement physique dans les 
spectres à haute résolution. Enfin, nous avons mis au point une procédure d’inversion permettant d’obtenir le 
champ de profondeur optique pour tout multiplet  métallique malgré la possible superposition fortuite d’autres 
absorptions [Scannapieco, Pichon et al. (2006)]. 

27

27



Le Large Programme VLT  (PI. J. Bergeron), consiste à observer 19 quasars à haut signal sur bruit et  haute 
résolution. Ces observations nous ont  permis, grâce aux méthodes automatiques, de rassembler une statistique 
significative et  objective sur les propriétés physiques du MIG. En particulier j’ai calculé la fonction de corrélation 
des systèmes carbonés (CIV et  SiIV) ainsi que ferreux (FeII et  MgII) des quasars du grand programme. J’ai ainsi 
posé une contrainte sur l’époque d’éjection des premiers métaux (ou de manière équivalente sur la masse des 
galaxies responsables de l’éjection) ainsi que sur le facteur de remplissage des bulles polluées par les premiers 
métaux (f∼10%). 

— Principe de génération de spectres métalliques par le biais de simulations hydrodynamiques ΛCDM. Cet outil de synthèse a 
permis de valider l’estimation de la bimodalité de la fonction de corrélation des systèmes carbonés dans un modèle à bulles 

[Scannapieco, Pichon & al. 2004].

Cette double contrainte provient de l’amplitude de la fonction de corrélation (le biais du clustering) et de la 
présence d’un coude dans la fonction de corrélation correspondant  à la taille de ces bulles [Pichon et  al. ApJL 
2004]. Avec D. Pogosyan, nous avons calculé analytiquement dans le contexte des champs contraints la fonction de 
corrélation des sous structures situées à l'intérieur d’une bulle de rayon R, centrée sur un amas de masse supérieure 
à M :  ce formalisme généralise BBKS et  a permis de prédire la distribution observée des systèmes FeII et  MgII 
[Scannapieco, Pichon et al. (2006)]. 

Cette publication correspond à travail assez considérable de modélisation, de synthèse d’observables virtuelles, et 
de reduction automatisé, pour un résultat  assez joli. Le résultat  théorique sur la fonction de corrélation, assez pointu 
(il généralise à quatre points la fonction de corrélation des structures biaisées de Kaiser), a permis de prédire avec 
succès la distribution des systèmes moins ionisés (FeII, MgII), ce qui correspond à une validation de la cohérence 
du modèle hiérarchique. L’outil de synthèse et  réduction automatique était particulièrement  élaboré, et devrait être 
appliqué aujourd’hui à la simulation MareNostrum pour sonder les régions plus denses au voisinage des halos ; ce 
type d’investigation permettrait de contraindre le niveau de pollution du milieu intergalactique en métaux.

3.4.4 Profil dynamique de masse des amas [20%]
En collaboration avec F. Durret  et D. Gerbal, j’ai mis en oeuvre les outils d’analyse non paramétrique que j’avais 
développés dans le cadre de la détermination de la masse du trou noir au centre de notre galaxie pour étudier non 
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paramétriquement le profil de masse cumulée des amas de galaxies Abel 85 & Comas en faisant l’hypothèse que 
l’amas est  stationnaire et  isotrope. J’ai montré que ces amas étaient dynamiquement  dominés par la matière noire, 
en accord avec les résultats du satellite X ROSAT [Durret, Gerbal, Lobo, Pichon (1999)].

— Représentation synthétique de la projection de la base de B-spline utilisé pour la déprojection non paramétrique. Ce type de 
base échantillonnée logarithmiquement permet de construire avec précision un modèle mieux conditionné [Durret, Gerbal, 

Lobo, Pichon (1999)]
 Lors des travaux d’investigation relativement à ce problème inverse, j’ai en particulier montré qu’il était  possible 
de placer dans le noyau de la régularisation une classe entière de fonctions (solution d’une équation différentielle 
linéaire dont le terme de pénalisation serait la norme), ce qui permet d’utiliser l’inversion non paramétrique comme 
un diagnostic (ou le terme de chi2 lève la dégénérescence). Mon rôle sur cet article s’est limité a la déprojection. 

3.4.5 Cosmologie numérique et formation des galaxies [70%]

Les modèles de formation des structures dans le cadre du modèle concordant ΛCDM expliquent  remarquablement 
bien les observations aux grandes échelles, mais semblent avoir des difficultés persistantes à bien rendre compte de 
la structure et l’évolution des galaxies. On peut  évoquer le débat sur l’existence de cuspide de matière noire au 
centre des galaxies, la surproduction de galaxies naines dans le groupe local, la crise du refroidissement 
catastrophique et  la crise du moment angulaire des disques. Tous ces débats viennent surtout  d’analyses statistiques 
d’échantillons de galaxies qui sont confrontées aux résultats de simulations numériques. Pour faire avancer le 
débat, il convient, à partir des acquis des investigations numériques, d’étudier la dynamique d’une galaxie 
« moyenne d’ensemble » en prenant  précisément  en compte la réalité de son environnement, et  l’histoire de son 
évolution. 
Inversement, il est clair qu’aux échelles galactiques, les interactions avec l’environnement intergalactique peuvent 
prendre une forme constructive (accrétion adiabatique de gaz, moteur de l’évolution séculaire) ou destructive 
(chute de satellite, warp, barres, etc) en fonction de la nature détaillée du processus d’accrétion (choc d’accrétion, 
injection filamentaire du gaz froid, etc) Seule une analyse fine et  quantitative de ces processus (paramètre d’impact, 
nature du fluide et des objets accrétés de la composante diffuse, orientation relative de l’accrétion) peut nous 
permettre de déterminer quel mécanisme l’emporte et expliquer les caractéristiques statistiques observées des 
galaxies et de la Voie Lactée. 

Pour aborder ce problème, j’ai activement contribué à la mise en oeuvre du projet HORIZON http://www.projet-
horizon.fr (PI Teyssier) ; je suis CoI IAP du projet depuis septembre 2006, dans la lignée du projet INC (avec S. 
Colombi). Ma participation s’est focalisée de manière critique dans la réalisation et la post analyse de la simulation 
hydrodynamique « physique complète » Mare Nostrum (10243 particules dans 50 h-1Mpc avec 4 niveaux de 
raffinement) et  en particulier sur : la génération des conditions initiales ; le suivi des runs ; l’élaboration 
d’algorithmes d’analyses et leur parallélisation mpi (adaptahop : la détection des sous-structures [Aubert, Pichon, 
Colombi (2004)] et  powmes : spectre de puissance multi-échelle [Colombi, Jaffe, Novikov, Pichon, 2008] 
implémentés par S Colombi); la production systématique des catalogues des structures et des sous-structures ; la 
génération de la base de données synthétiques associée à partir des propriétés morphologiques et spectroscopiques 
des galaxies générées ; la production de catalogues d’observables virtuelles associées et leur mise en ligne.
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Ce travail a aussi conduit  à l’analyse des cartes des différents champs physiques et  l’analyse des processus 
d’accrétion au rayon du viriel [Ocvirk, Pichon, Teyssier 2008, Dekel et al. 2008], l’étude de fonction de luminosité 
et  de son évolution cosmique [Devriendt, Rimes, Pichon et al. prép.] ; la mesure des fonctions de corrélation  
pondérées en flux, la construction de cartes de lentilles faibles et  fortes, la génération de spectres synthétiques de 
QSOs et de données type spectro-intégrale de champ ; la comparaison des résultats de MareNostrum avec ceux 
issus d’une équipe internationale utilisant  les mêmes conditions initiales et un code SPH (voir ci-dessous http://
www.iap.fr/users/pichon/MareNostrum/). 

—Cartes d’accrétion dans MareNostrum à deux décalages spectraux vers le rouge différents :  apparition d’une bimodalité 
dans la distribution des chocs en fonction de la masse du progéniteur. La nature de ces cartes est qualitativement différente 

pour les galaxies de fortes et de faibles masses : elle peut expliquer la rétroaction négative “anti-hiérarchique” .

Plus spécifiquement, j’ai montré avec P. Ocvirk et R. Teyssier que la bimodalité observée dans les propriétés 
spectro-photométriques des galaxies pouvait peut-être s’expliquer par un effet de rétroaction négative des galaxies 
les plus massives à redshift 2 qui, en raison de leur formation stellaire plus élevée, et compte tenu de la metallicité 
du gaz dans leur environnement direct, éjectent plus d'énergie thermique dans le milieu intergalactique et  coupent 
efficacement  l'accrétion filamentaire de gaz froid. A contrario, cette accrétion continue pour les galaxies moins 
massives. Les métaux jouent un rôle critique dans la définition de cette masse de transition entre accrétion diffuse 
chaude et  accrétion froide anisotrope. Ce travail a aussi fait  l’objet de la publication d’une lettre dans Nature [Dekel 
et al. 2008] qui argue que ce processus correspond au mode principal de régulation galactique. 

Ce travail correspond au pendant hydrodynamique du travail que D. Aubert a effectué dans le cadre de sa thèse. J’ai 
en particulier mené la réduction systématique des clichés AMR de MareNostrum et l’extraction de tous les 
catalogues correspondants.
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Avec J. Devriendt, nous avons montré que les fonctions de luminosité des galaxies de MareNostrum, après 
correction des effets d’extinction de la poussière (modélisée à partir de la métallicité) et  des différences de 
cosmologie, étaient en accord avec celles observées dans les relevés infra rouges profonds.

En collaboration avec D. Le Borgne et P. Ocvirk, nous avons inversé les comptages par bande specrale des galaxies 
dans l’infra-rouge des catalogues GOODS, afin de reconstruire l'évolution cosmique de la densité de formation 
stellaire. L’inversion prédit aussi les fonctions de luminosité qui peuvent être comparées à bas redshift avec des 
catalogues existants. Nous avons trouvé que l’accord est  excellent à ces redshifts. L'intérêt  d’une telle inversion est 
de projeter dans l’espace des modèles les contraintes observationnelles relatives a la distribution “anti-
hiérarchique” des galaxies observées. D’un point de vue technique, le noyau du problème inverse bi-dimensionnel 
est élémentaire, mais la dynamique dans les données impose une reparamétrisation logarithmique.
 Cette dernière investigation, (où mon rôle a été essentiellement consultatif et  rédactionnel), correspond à une 
première mise en oeuvre des méthodes inverses multi dimensionnelles que je développe depuis plusieurs années sur 
des données observées et non simulées. Certaines prédictions de la méthode inverse ont été confortées par des jeux 
de données indépendantes. Une extension possible consisterait  à retrouver le taux de formation stellaire d’un 
échantillon de galaxies virtuelles issues de la simulation MareNostrum, pour valider les techniques d'archéologie 
spectrale et les biais associés. De fait, cela devrait  être la motivation principale des simulations numériques 
couplées aux méthodes inverses.

Cet effort  a aussi été accompagné par la réalisation d’un nombre important  de tâches, et  notamment : un gros 
investissement  dans le hardware pour la production, le rapatriement, la gestion, et  la mise en ligne des 90 To de 
données simulées associées à la collaboration ; la gestion de la méso machine (3 noeuds) et  de la grille de calcul (7 
noeuds) ; l’écriture de mpgrafic [Prunet, Pichon et al. 2008.], un code de génération de conditions initiales (incluant 
les oscillations baryoniques) massivement parallèle (testé jusqu'à 40963, pour lequel j’ai écrit le prototype de 
validation) et d’un code de mesure fine du spectre de puissance [Colombi, Jaffe, Novikov, Pichon 2008] basé sur 
un développement sous pixel de Taylor (où j’ai fourni la simulation test) ; la production de toutes les conditions 
initiales cosmologiques de la collaboration : 128-10243 en 20, 100 et 500 h-1Mpc et  jusqu'à 40963 pour le 
programme HORIZON-4π ; la génération de conditions initiales contraintes ; la production et  la validation (spectre 
de puissance, fonction de masse, sous-structures) de toutes les simulations matière noire de la collaboration en 
2563, 5123 pour 20, 100, 500 h-1Mpc avec Gadget et  10243 particules pour 50, 100 et 500 h-1Mpc avec RAMSES ; la 
production de simulations « zoom » issues des simulations de référence jusqu’à 40963, la réalisation (avec 
notamment R. Teyssier, S. Prunet et D. Aubert) de la simulation HORIZON-4π (40963 particules pour 2000 h-1Mpc, 
soit  presque 8 fois la Millenium), enfin la production d’outils de visualisation 2D, 3D et 4D OpenGL et 
stéréoscopique. Enfin, j’ai procédé à la mise en ligne de tous les produits correspondants, soit  plus de 60 articles 
sur la partie interne et  externe du site http://www.projet-horizon.fr. Cet  investissement  devrait profiter globalement 
à ma recherche sur la formation des galaxies, et à la discipline, et plus généralement à l’IAP dans le cadre du projet.
Il est  paradoxal d’avoir investi autant  d'énergie dans une discipline, la simulation numérique, et  plus 
particulièrement l’hydrodynamique numérique, pour laquelle j’avais (et dans une certaine mesure j’ai encore) de 
sévères réserves, au moins en tant qu’outil théorique. S’il est indéniable que l’approche Monte Carlo a ses vertus 
dans le cadre de la génération d’observables virtuelles (ou de validations de méthodes inverses), la génération 
d’objets numériques fortement non-linéaires avec un ensemble d'ingrédients (algorithmiques et physiques) 
croissants (et rarement recoupés d’une expérience à l’autre) m’avait dans un premier temps semblé assez vaine 
d’un point de vue explicatif. La production d’échantillons statistiques d’objets observés, telle qu’elle est  menée 
actuellement en cosmologie (2dF, SDSS etc) a sans doute contribué à infléchir partiellement mon jugement. 
Malheureusement, le mode d’évaluation actuel de la recherche biaise fortement  la tendance à poursuivre cette 
course en avant, plutôt  que de consacrer plus d’énergie à valider les outils dans ce domaine. De plus, par sa nature 
non-expérimentale, l’astrophysique observationnelle ne pose pas de contraintes fortes sur les modèles numériques, 
ce qui autorise cette dérive.
Par ailleurs, le modèle hiérarchique m’a longtemps semblé protéïforme et  infalsifiable. Mais depuis 1998, date qui 
correspond aussi à mes premiers travaux sur le sujet, la valse des paramètres semble avoir globalement cessé. Les 
compétences en statistiques que j’ai acquise depuis m’ont permis de tempérer cette impression d'impunité :  le 
modèle fait des prédictions précises pour les distributions d’observables. Dans une certaine mesure, je ne parviens 
cependant  pas à décider si l’évolution de mon jugement correspond à une accoutumance ou à un réel progrès de la 
discipline !

3.5 Matière noire dans les grandes structures

A l’échelle des grandes structures, la caractérisation de la distribution de la matière noire a pour double objectif 
de contraindre les paramètres du modèle standard, mais aussi de définir le contexte global de la formation des 
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galaxies. A ces échelles, la dynamique devient relativement plus simple, mais une description intrinsèquement 
statistique de la formation des structures devient indispensable.

— Carte de vorticité pour la caustique la plus vraisemblable (en bas) ; position lagrangienne des régions contribuant au 
croisement de coquille (en haut à gauche) ; Ces cartes permettent d’estimer aux grandes échelle quelle est la contribution aux 

modes B de ces croisements primordiaux [Pichon, Bernardeau (1999)].

3.5.1 Emergence de la vorticité dans les grandes structures [50%]
Lors de leur formation, la dynamique des galaxies est en partie dominée par les propriétés de leurs halos. En 
particulier la géométrie et le taux de précession de ces halos de matière noire affectent  l’évolution de la composante 
baryonique. Il était par conséquent  souhaitable de relier statistiquement  ces propriétés aux fluctuations de densité 
primordiale. Peebles a étudié en 1969 la distribution en moment  angulaire des halos induite par effets de marée en 
supposant que les fluctuations à grandes et petites échelles n’étaient pas couplées. Pour aborder ce problème d’un 
point  de vue cosmologique, le champ de vorticité constitue une grandeur macroscopique intermédiaire qu’il est 
possible de relier aux fluctuations élémentaires.  

En collaboration avec F. Bernardeau, j’ai calculé la distribution statistique de la vorticité générée à grande échelle, 
c’est-à-dire la probabilité de mesurer dans une sphère donnée une vorticité supérieure à un seuil donné. Nous 
faisons l’hypothèse que cette vorticité est générée par croisement de coquilles dans des caustiques statistiquement 
rares (ce qui permet  de ramener le calcul à celui d’une caustique isolée dont les propriétés statistiques se déduisent 
des paramètres cosmologiques par l’intermédiaire de conditions de contrainte sur la réalisation d’une surdensité 
correspondant à un triplet de valeurs propres pour le tenseur de déformation local). Cette approche présente un 
triple intérêt. Elle permet  d’abord de valider le régime où le flot  peut être considéré comme potentiel ; cette 
hypothèse d’écoulement  irrotationnel est à la base de toutes les méthodes de reconstruction du champ de vitesse à 
partir de catalogues de décalage spectral, ou des calculs perturbatifs, qui visent  tous deux à estimer les paramètres 
cosmologiques. La statistique du champ de vorticité est par ailleurs une quantité qu’il est  possible de mesurer et 
d’extraire des simulations numériques en discrétisant le champ sur les cellules de Voronoi définies par la 
distribution des particules de la simulation. Mes travaux explorent de manière semi-analytique l’évolution et  les 
propriétés du flot  au delà du premier croisement  [Pichon, Bernardeau (1999)]. Il convient maintenant de développer 
la théorie susceptible de relier les propriétés du champ de vorticité à la géométrie des halos primordiaux en 
corrélant les champs de vorticité et de densité.
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Les caustiques formées lors du premier croisement de coquille sont maintenant  à la limite de résolution des 
simulations N-corps, moyennant un échantillonnage suffisant de l’espace des vitesses. J’envisage donc de mener 
numériquement la mesure de cette vorticité générée par croisements.

—Le squelette (bleu) et l’antisquelette (rouge) d’un champ gaussien invariant d’échelle 1D (à gauche) et 2D (à droite) dans 
l’espace position-lissage. Dans ces espaces abstraits, le squelette représente l’arbre de coalescence du champ. La théorie multi-

échelle des peakpatches de Bond et al. et Hanami permet de faire le lien entre ces deux espaces.

3.5.2 L'émergence du chaos dans les grandes structures [80%]

S’il est acquis qu`à grande échelle, la formation des structures (filaments, vides, murs) est assez bien décrite par la 
physique quasi linéaire (approximation de Zeldovitch, théorie perturbative...), la question du comportement  plus ou 
moins stochastique de la dynamique gravitationnelle à plus petite échelle se pose de manière récurrente, et 
notamment dans le contexte des tentatives de re-simulation de l’univers local. En collaboration avec J. Thiébaut, 
j’ai abordé cette question en comparant des observables Eulériennes et Lagrangiennes issues d’un jeu de 
simulations numériques N-corps qui ne diffèrent que du point de vue des phases des conditions initiales. J’ai 
montré qu’à des échelles typiquement intra amas, les exposants de Lyaponov (définis comme la dérivée du 
logarithme de la dispersion inter-simulation en fonction du facteur d’expansion) augmentent  avec l’amplitude des 
fluctuation initiales, tant  du point de vue Lagrangien (masses caractéristiques) qu’Eulerien (longueur 
caractéristique). [Thiébaut, Pichon et al. (2008)]

Ces travaux gagneraient  à être étendus à plus petite échelle, notamment lors de la formation des structures 
virialisées, en se reposant peut-être sur la théorie KAM et en faisant intervenir des invariants adiabatiques. 

3.5.3 Le Skeleton des grandes structures [70%]

La toile cosmique représente sans aucun doute un des exemples les plus frappants de motif géométrique. Sa 
complexité intrinsèque rend sa compréhension délicate, mais celle-ci est d’une grande importance car la structure 
filamentaire actuellement observée de la distribution de matière conserve les traces de l’évolution de notre Univers 
depuis sa naissance. De plus, elle définit la nature de l’environnement dans lequel se forment les galaxies et  la 
compréhension de son influence est donc critique. D’après la théorie de Bond et. Al (1996) qui est la plus 
communément acceptée, la structure filamentaire de la distribution de matière a pour origine la cohérence à grande 
échelle des fluctuations initiales du champ de densité, accentuées par les divers effets gravitationnels non-linéaires 
entraînant la croissance des halos par accrétion de matière ainsi que leurs fusions. 
 Le Squelette  local 3D, le lieu géométrique où le gradient du champ est premier vecteur propre du Hessien  
[Sousbie, Pichon et al. (2007)] a été développé pendant la thèse de T. Sousbie, que j’ai co-encadrée, et  correspond 
aux lignes de crête du champ de densité : c’est un outil d’analyse de la topologie et de la géométrie des grandes 
structures qui permet d’une part  de donner une définition mathématique de la structure filamentaire de la 
distribution de matière dans l’Univers, et d’autre part  d’en formaliser l’extraction et la caractérisation par le biais 
de méthodes numériques basées sur l’intersection de surfaces critiques. Sa mise en oeuvre sur le SDSS permet de 
poser une contrainte sur le contenu en matière et  la géométrie de l’univers (longueur totale et  différentielle 
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[Sousbie, Pichon et  al. (2007)], de mener un test de Alcock-Paczynski pour contraindre les paramètres de courbure 
et  de contenu en énergie de l’univers [Pichon, et al., prép], d’étudier l’évolution dynamique des filaments  et faire 
le lien avec la théorie des champs aléatoires pour conduire un test  de non-gaussianité et  la relier avec la théorie de 
la bifurcation [Pogosyan, Pichon, et al., soumis, Colombi, Pichon, Ringeval prép.].

 — Le squelette local de la distribution de galaxies dans le SDSS permet de contraindre le contenu en matière noire. Plus la 
constante cosmologique domine moins les filaments sont longs par unité de volume. [Sousbie, Pichon et al. (2007)]

 Le squelette global repose sur une formulation probabiliste de la recherche de ses lignes critiques suggérée par S. 
Colombi. L’obtention d’un squelette continu et totalement  connecté (par opposition au squelette local développé 
précédemment) permet de plus de se « promener » le long de la toile cosmique, rendant possible la caractérisation 
précise des propriétés des galaxies en fonction de la distribution de matière dans leur environnement  (position dans 
les filaments, structure dynamique interne, distance curviligne aux halos les plus proches, anisotropie du tenseur de 
pression, orientation du tenseur de chaleur, etc…). Nous avons en particulier montré que le déplacement de 
Zeldovitch préservait la structure du squelette cosmique moyennant un lissage sur une échelle calibrée en fonction 
du facteur d’échelle, a, et de l’échelle de non-linéarité. En collaboration avec D. Pogosyan, T. Sousbie et S. 
Colombi, notre but  est  aussi d’étendre le formalisme du squelette aux espaces de dimension quelconque, afin d’une 
part d’étudier les propriétés de la distribution de matière dans un espace 6D des phases (position-vitesse) à partir de 
simulations numériques, et  d’autre part  de donner une suite à certains travaux théoriques en faisant  le lien entre 
évolution temporelle de la distribution de la matière et squelette calculé dans un espace position-échelle de lissage, 
et en particulier du parallèle entre les squelettes 4D dans l’espace position-lissage et position-temps. 

 Enfin, en parallèle, nous explorons l’exploitation de l’outil squelette ND au delà de la thématique de 
l’astrophysique, et  en particulier dans les domaines médicaux comme la neurologie ou le diagnostic préopératoire. 
Nous avons pour ce faire déposé une licence CECILL pour le logiciel de tracé de squelette ND.
En collaboration avec D. Pogosyan, j’ai étudié les caractéristiques statistiques des lignes critiques d’un champ ; j’ai 
en particulier mené le calcul analytique exact  de la longueur différentielle du squelette local dans l’approximation 
dite du squelette “tendu”, qui consiste à négliger les variations du hessien relativement  aux variations du gradient 
dans le calcul du vecteur tangent au squelette. Dans ce contexte, nous avons en particulier montré que le flux 
d'élément de squelette est proportionnel à la courbure gaussienne moyenne de la section mono-dimensionnelle du 
champ. Ce calcul revient  a marginaliser analytiquement une PDF de dimension 20 en se reposant sur ses symétries. 
Cette approximation permet  aussi de calculer la distribution statistique de la courbure du squelette, et  d’identifier la 
nature des points singuliers (vecteur tangent  nul) des lignes critiques :  points critiques (gradient  nuls), points de 
bifurcation (“vecteurs propres” du tenseur des dérivées troisième du champ) et  points plateaux (courbure nulle dans 
la direction transverse à la ligne critique) [Pogosyan, Pichon, et  al. 2008]. J’étudie par ailleurs l’évolution des 
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propriétés spectro morphologiques des galaxies en fonction de leur environnement mesurées par la distance au 
squelette [Gay, Pichon, Le Borgne et al. prep.]

—Squelette logique extrait d’un champ gaussien aléatoire. Un développement possible de nos travaux sur le squelette d’un 
champ à N-D est d’en étudier la topologie et les propriétés de connexion des points critiques d’un champ au sens de la théorie 

des graphes discrets (diamètre, robustesse, invariance d’échelle, etc) pour la relier au continuum associé.

 J’ai calculé les gradients des couleurs, de la métallicité et de l'âge des galaxies en fonction de la distance aux 
filaments dans la simulation hydrodynamique MareNostrum. Cette analyse conforte mes travaux sur le devenir 
dynamique des galaxies relativement aux grandes structures :  les galaxies se forment  en volume, et migrent vers 
les filaments pour s’écouler vers les amas. Ce mouvement  est retracé dans le spin et le champs de vitesse des 
galaxies relativement au système de coordonnée défini par le filament. De même, la spectro-photométrie des 
propriétés des galaxies reflète ce mouvement. J’ai aussi formalisé le calcul de la longueur différentielle du squelette 
global, comme géodésique moyenne (au sens de moindre action et de moyenne d’ensemble) parmi toutes les 
trajectoires possibles et toutes les réalisations possibles d’un champ contraint.
 
Les perspectives de cette thématique semblent  aller bien au delà de la cosmologie. En particulier sa mise en oeuvre 
sur des espaces abstraits dans le contexte de la théorie de la bifurcation me semble très intéressante. La 
segmentation dans des espaces symplectiques augmentés (espace des phases+gastrophysique) permettra peut-être 
d’identifier des courants d’étoiles de résidus d’accrétion, etc. Au-delà de l’astrophysique, le squelette peut servir à 
la détection des dendrites neuronales, et des vaisseaux sanguins du foie avant  opération. Les principaux chantiers 
sont actuellement i) la gestion du bruit et  ii) la gestion des lignes critiques secondaires, et en particulier les lignes 
évanescentes. Spécifiquement, je travaille actuellement à la caractérisation du profil universel des filaments, et de 
leur connectivité au rayon du Viriel. Je tente de formuler avec D. Pogosyan une théorie variationnelle des lignes de 
crête d’un champ gaussien aléatoire, avec entre autres objectifs l’identification du squelette moyen d’un champ 
bruité. Mon souhait est  d’utiliser mes algorithmes de champ contraint  pour étudier la statistique de ce squelette en 
fonction des propriétés des sommets. Avec S. Colombi, nous tentons enfin d’utiliser les peakpatches comme test  de 
non gaussianité pour la détection des cordes cosmiques dans les cartes Planck du fond diffus cosmologique.

3.5.4 Astigmatisme cosmique plein ciel [80%]

J’ai plus récemment abordé le problème de la reconstruction de cartes de convergence gravitationnelle [Pichon, 
Thiébaut et  al. soumis] à partir de mesures d’ellipticités sur l’ensemble de la voûte céleste. Pour ce faire, j’ai utilisé 
les cartes de kappa obtenues à partir de notre simulation Horizon-4π, et  j’ai transposé sur la sphère les techniques 
d’inversion pénalisée que j’avais développées par ailleurs. Cet  travail d’inversion gère en particulier les masques et 
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la contamination associée en modes B, la non-linéarité du modèle, et les amas quasi ponctuels à l’échelle de la carte 
par une pénalisation adaptative. J’utilise aussi le squelette et  les comptages des points sources (à l’intérieur de 
chaque patch) pour quantifier la qualité de la reconstruction. Je démontre que l’interpolation associée à la 
régularisation est extrêmement efficace pour “boucher les trous”.

— Exemple de fuite des modes B due aux masques galactiques pour l’inversion de la convergence :  la mâchoire du 
cosmos :-). Les modes vectoriels apparaissent dans la carte des résidus au voisinage des régions masquées.

 En collaboration avec Karim Benabed, j’ai commencé à étudier l’inversion de l’équation des lentilles dans le 
contexte du fond diffus cosmologique, où c’est  le fond diffus lui même qui subit la déflexion due à l’ensemble des 
grandes structures entre la surface de dernière diffusion et l’observateur à redshift  zéro. C’est  un problème inverse 
mal posé, puisque l’on dispose de trois champs observés sur la sphère et que l’on cherche à en reconstruire quatre. 
Il convient donc de se reposer fortement sur la forme spectrale des a priori. Parallèlement, en collaboration avec E. 
Thiébaut, nous avons développé un module de déconvolution d’images avec PSF variable dans le champ basé sur 
une formulation creuse du problème, avec positivité et bruit non stationnaire. 
La procédure nous permet d’ittérer alternativement sur la détermination de la PSF (décrite comme une somme de 
B-splines) et de l’image. L’objectif scientifique est d’appliquer cette méthode aux données de type MEGACAM 
pour améliorer l’estimation des paramètres de forme des galaxies en vue d’une mesure de l’astigmatisme cosmique. 
La pénalisation de l’inversion se fait à partir d’une norme L1-L2. [Thiébaut et Pichon prép.]

Ce travail correspond à une synthèse de différents savoir-faire acquis dans le contexte de la simulation numérique, 
la cosmologie, le squelette et les méthodes inverses. Au fil de ces dix dernières années, j’ai investi une fraction 
importante de mon temps de recherche à l’investigation des méthodes inverses, et  en particulier pour l’estimation 
des paramètres de régularisation optimaux en explorant  différentes méthodes. Grâce à l’algorithme d’optimisation 
Optimpack de mon collègue E. Thiébaut, j’ai pu mettre en oeuvre ces méthodes inverses sur des problèmes de 
grande dimensionalité. A l’avenir j’aimerais étudier les perspectives de diagnostic automatique pour les méthodes 
inverses non-linéaires, en particulier pour établir dans quelle mesure un problème non-linéaire donné présente des 
symétries d’invariance qui le rendent dégénéré. En ce sens, l’exploration plus systématique de la vraisemblance 
semble être une option.

3.5.5 Séparation des composantes des cartes Planck [50%]
Le succès des mesures récentes des anisotropies du fond diffus (expériences WMAP, BOOMERanG, MAXIMA, 
DASI) pour déterminer une contrainte sur la courbure de l’univers, la densité baryonique, ou encore l’indice 
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spectral des fluctuations de densité primordiales, a démontré tout à la fois l’importance de ces mesures pour l’étude 
des modèles cosmologiques, et  de la maîtrise complète des méthodes inverses pour y accéder. La présence 
d’émissions Galactiques parasites (poussières, synchrotron, free-free) mais aussi extragalactiques (radio-galaxies, 
galaxies IR, effet SZ des amas), qui représentent des effets systématiques encore sous-dominants comparées aux 
erreurs statistiques des données actuelles, deviendront  bientôt  comparables (données B2K, MAP) et domineront 
(Planck).

Toutes les méthodes d’inversion multibande reposent dans leur forme actuelle sur une connaissance a priori de 
la structure spatiale et  spectrale des diverses composantes à séparer. Avec E. Thiébaut et S. Prunet, nous avons 
généralisé ces méthodes en y incluant  la polarisation, et  nous tentons d’y inclure l’estimation de la dépendance 
spectrale des composantes obtenues directement à partir des données, sous forme paramétrique par une méthode 
non-linéaire de maximum de vraisemblance optimisé par minimisation à métrique variable et mémoire limitée. Ce 
choix nous permet  de poser des contraintes de type masque dans l’espace des mesures, et des contraintes de type 
lissage adaptatif dans l’espace modèle [Prunet, Pichon, Thiébaut prep]. 

L’objectif initial de ce travail était de fonctionner en régime myope, i.e. dans un contexte où la matrice de mélange 
n’est que partiellement  connue. Ce problème, couplé au travail sur la sphère avec un nombre très important de 
pixel, s’est  avéré plus difficile en pratique que ce que nous avions anticipé. Ma motivation était  aussi de me 
familiariser avec les symétries de la sphère en tant qu’espace harmonique moins trivial que la transformée de 
Fourier.
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—Projection 2D d’un 4-Simplex (à gauche) permettant de résoudre le système Poisson-Boltzmann de manière symplectique 
(conservation de la hiérarchie des invariants de Poincaré) pour étudier les propriétés dynamiques d’un fluide autogravitant, des 

échelles galactiques aux échelles cosmologiques ; potentiel correspondant (à droite). Cette structure symplectique peut par 
exemple faciliter l’identification des queues de marée dans l’espace des phases d’un halo galactique.

3.5.6 Dynamique gravitationnelle dans l’espace des phases ; physique théorique & gravitation [60%]

La distribution observée des galaxies présente, à grande échelle, des propriétés remarquables, qui se traduisent  par 
l’existence d’amas, de filaments et  de nappes entourant de grands vides. L’étude des effets de la dynamique 
gravitationnelle non collisionnelle (dans un univers en expansion) est donc un élément  déterminant pour interpréter 
les structures observées, que ce soient les “grandes”, comme les amas de galaxies, ou les “petites”, comme les 
halos de galaxies ou les galaxies elliptiques.
 
L’objectif est de comprendre la structure dans l’espace des phases des objets en cours d’évolution, et en particulier 
le comportement  de la hiérarchie des équations de la dynamique, pour éventuellement  dégager des relations 
universelles simplifiant la problématique (équations d’état  :  par exemple, une approximation à un, trois ou cinq 
flots avant  thermalisation permet de tronquer la hiérarchie BBJKY à la divergence du tenseur de flux de chaleur). 
Dans ce but, j’ai développé un solveur de Poisson N-simplex : couplé avec les travaux de S. Colombi sur le moteur 
d’évolution inertiel, l’objectif est  de mieux modéliser les caustiques et de tester la validité de certains résultats des 
simulations à N-corps (NFW…).

Je m’intéresse en particulier à l’identification des sous-structures et des caustiques dans les halos de matière noire à 
partir d’une formulation en termes des variables angle-action du système sous-jacent pour rectifier l’espace des 
phases. A cette fin, j’utilise les simulations que j’ai produites (voir ci-dessus) pour identifier ces caustiques au 
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voisinage des plus gros halos [Macejewski, Colombi, Alard, Pichon, 2008]. J’envisage d'améliorer l’identification 
de ces caustiques par rectification de l’espace des phases via une transformation en variables angle-action.

L’objectif de cette investigation à long terme est  de faire la synthèse entre les analyses géométriques de type 
squelette et  les analyses dynamiques présentés ci-dessus ; en particulier, une validation croisée avec la théorie 
perturbative matricielle (voir ci-dessus) appliquée à l’effondrement sphérique et aux disques est envisagée. De fait, 
j’ai noté que la théorie perturbative prédit  la réponse d’un système gravitationnel en phase, et  non seulement dans 
l’espace des configurations. Je souhaite aussi implémenter une formulation AMR de l’équation de Boltzmann non 
collisionnelle (avec un critère de raffinement basé sur la courbure du flot).

—Un exemple de quasi-cristal oscillant perpétuellement. Ces systèmes obéissent à une loi d’interaction qui a la propriété 
particulière de découpler leur mouvement d’échelle des mouvement internes. Ils sont construits en imposant une force de 

friction qui les fait se relaxer vers une configuration symétrique dépendant du nombre de particules ; [Pichon, Lynden-Bell2 

(2007)].

Avec D. Lynden-Bell [Pichon, et al. 2007], j’ai étudié les propriétés thermodynamiques du réseau formé par des 
particules ayant une loi d’interaction par paire avec un potentiel en r2+1/r2 qui ont  la propriété de découpler leur 
mouvement radial (qui oscille perpétuellement) et  azimutal/alt-azimutal (qui se thermalise). Pour une telle loi, j’ai 
caractérisé les symétries des configurations d’équilibre (oscillant) en fonction du nombre de particules, ainsi que 
leur comportement asymptotique de chaleur spécifique pour un système en rotation ou non. La description 
asymptotique du système dans la limite fluide est analysée, et la stratification du quasi cristal mesurée dans la 
limite des grands N est expliquée. L'intérêt astrophysique de ces objets est  de constituer un contre exemple de 
relaxation violente, car un des degrés de liberté ne se relaxe jamais.

Ces axes de recherches plus ésotériques correspondent  néanmoins à un intérêt de longue date pour la théorie des 
systèmes dynamiques, et  son lien avec la physique statistique et la thermodynamique. La mise en oeuvre des outils 
classiques de la physique théorique dans un contexte à l’interface entre la physique du solide et la dynamique 
gravitationnel s’est  avéré intéressante d’un point de vu conceptuel, notamment en lien avec le modèle HMF. Dans 
le cadre de se travail, j’ai aussi écrit mon premier programme à N corps! Depuis, je m’intéresse avec D. Aubert  à 
l’écriture d’un code hydrodynamique (+transfert du rayonnement) sur carte graphique (CUDA tesla). L’objectif à 
terme est de coupler ce mode de calcul pour la partie transfert avec le reste du calcul sur le CPU de la machine hôte 
et  fournir un modèle pour la mise en oeuvre des méthodes de rectification de distorsion des vitesses particulières 
(voir ci-dessus). 
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—Carte de la projection sur la voûte céleste d’une tranche de la simulation horizon-4π :  40963 particules de matière noire dans 
2000 Mpc/h. Cette simulation peut servir à la détection des BAO, l’astigmatisme cosmique, l’identification des grands vides et 

amas, la distribution des sources X, SZ, la recherche de groupes locaux, etc.

3.6 Activité de recherche transverse et prospective

Ces thèmes de recherches sortent du cadre “dynamique gravitationnelle” au sens large et correspondent à des 
activités de recherche guidées par les affinités de mes collaborateurs ou des projets. 

3.6.1 Haute résolution angulaire et optique adaptative multi -conjuguée [30%]

J’ai élaboré avec E. Thiébaut un outil de déconvolution automatique d’images grand champ, MAAD (pour 
Multiscale Algorithm for Automatic Deblurring, [Thiébaut Pichon, prep.], dont  une version est  disponible en ligne 
(sous forme de webservice MAAD) ce qui permet  à la communauté française (et plus généralement quiconque sur le 
web) de procéder de manière interactive à la déconvolution soit  des images accessibles par le serveur du CDS 
(SDSS, 2MASS DSS, Shandra, CFH, HST  etc), soit  de leurs propres images. Nous développons aussi deux 
versions plus spécialisées de MAAD, l’une faisant intervenir une description de la fonction d’étalement  du point 
variable dans le champ, l’autre faisant intervenir une déconvolution multi-spectrale (type séparation de 
composantes ou spectroscopie intégrale de champ) ; voir aussi l’URL ci-dessus. J’ai travaillé sur la détermination 
automatique des paramètres de régularisation dans le régime à plusieurs paramètres. Je m’intéresse à la 
déconvolution automatisée (éventuellement myope) de cubes de données type x, y, fréquence (spectroscopie 
intégrale de champ), visibilités u,v, fréquence (LOFAR, SKA) ou x, y, temps (hyperrésolution).
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— Le webservice MAAD [Thiébaut, Pichon, prep.] et son intégration à ALADIN. Ce service permet de déconvoluer une 
image d’une PSF paramétrée, mesurée ou estimée interactivement dans l’image en imposant éventuellement la positivité du 

modèle avec une pénalisation quadratique ou préservant les bords (de type L1-L2).

 En collaboration avec E. Thiébaut  et  R. Lane, j’ai transposé au contexte de l’estimation des pentes du front  
d’onde dans la pupille d’un télescope de grande taille mes travaux sur la tomographie des grandes structures. Dans 
ce contexte, plusieurs Shack Hartman (SH) sont  conjugués sur différentes étoiles de référence, ce qui conduit  pour 
chacun d’entre eux à une estimation des pentes du front  d’onde dans le plan pupille. Notre objectif était d’estimer 
ces pentes dans une direction quelconque, afin de prédire l’évolution de la PSF optimale dans le plan image, en 
fonction du positionnement des étoiles de référence, de l’amplitude de la turbulence, et  des caractéristiques du 
télescope. Ce problème nous conduit  donc à déprojeter en volume l’information relative à chaque SH, interpoler au 
sens de la statistique a priori de la turbulence, et  reprojeter dans le plan pupille en se reposant sur une formulation 
creuse des corrélations à priori. Cette thématique s'inscrit dans le prolongement ce qui avait  fait l’objet de mon 
stage de DEA.

E. Thiébaut  m’a fait  découvrir les nombreux avantages à traiter un problème d’estimation comme un problème 
inverse, car seule une faible classe de problèmes en astrophysique peut être inversé explicitement, classe qui se 
réduit  comme une peau de chagrin quand la statistique du bruit est  prise en compte. Par exemple, l’estimation d’un 
champ, à partir d’une mesure directe mais partielle ou bruitée de ce champ, ne peut être abordée correctement  que 
dans ce contexte. 
De plus, l’inversion non paramétrique est une estimation à biais autocalibrable, c’est  donc idéalement une approche 
optimale en termes de compromis biais-variance. Cependant, elle induit une double sanction :  (i) les données en 
astrophysique sont  souvent  trop parcellaires ou bruitées pour contraindre fortement le modèle flottant et  (ii) la 
complexité associée à la paramétrisation de ce modèle est souvent importante comparée aux méthodes 
paramétriques de projection du modèle dans l’espace des données. En pratique, cela induit  donc beaucoup d’efforts 
pour un résultat  cruel :  l’essentiel de l’information ne provient pas des données mais du prior. Enfin la mise en 
oeuvre de prior explicite nécessite de régler les hyperparamètres correspondants, car en astrophysique, l’estimation 
du bruit  n’est  en général pas suffisamment précise pour intégrer des priors baysiens (type filtre de Wiener optimal). 
Cette thématique de recherche présente enfin l'inconvénient d’être très générique :  il est difficile d’un point  de vue 
bibliographie qu’elle concerne aussi bien l’astrophysique que les sciences médicales, la géophysique etc. la 
dissémination des connaissances sur le web compense cependant en partie cette difficulté. 
Au fil des problèmes inverses linéaires que j’ai abordés dans différents contextes, j’ai pu mesurer l’importance de 
mener une analyse “spectrale” généralisée du problème, c’est-à-dire d’étudier son conditionnement  en comparant 
les caractéristiques du bruit à la distribution de ses valeurs singulières, mais aussi/ et  surtout d’analyser les biais du 
modèle en mesurant les vecteurs singuliers correspondants (pour un problème stationnaire - bruit plus modèle, la 
symétrie associée définit  l’harmonicité de la base ; ce n’est pas génériquement  le cas). J’ai aussi pu apprécier la 
diversité des approches possibles pour biaiser un modèle donné : prior explicite défini positif (e.g. de type 
gaussien), prior avec noyau contenant des classes entières de fonctions, condition initiale dans la descente d’un 
problème non-linéaire, choix de l'échantillonnage avant discrétisation, nature faiblement  non paramétrique du 
modèle, choix ad hoc du poids de la régularisation ou de la norme correspondante. Outre le fait  que le choix de ce 
prior est rarement  argumenté, j’ai aussi été frappé par le fait que dans la discipline, et ce alors que les diagnostics 
existent (matrice de Fischer, Information, divergence de Kullback etc.), l’analyse a posteriori du gain associé aux 
données relativement au prior est très rarement menée ! 
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Dans ce domaine j’aimerais à terme construire des outils de diagnostics (type calcul symbolique etc.) pour 
déterminer dans quelle mesure un problème inverse non-linéaire est intrinsèquement  dégénéré (au moins dans le 
régime ou la source de cette dégénérescence est  associée à des symétries plus ou moins triviales). Un tel outil 
permettrait de découpler le problème de l’optimisation numérique de la dégénérescence, ou du bogue ! Je souhaite 
aussi étudier le nombre de contraintes simultanées qu’il est possible de poser, et  le problème du réglage des 
hyperparamètres correspondants. Enfin, j’aimerais élaborer des techniques de régularisation non stationnaires 
basées sur une segmentation a priori de l’espace (par exemple basée sur les peakpatches du module du gradient  du 
champ) ce qui permettrait de fixer un hyperparamètre par région.

3.6.2 Etoile 2D :  Evolution stellaire à deux dimensions [20%]
En collaboration avec C. Tout et R. Cannon, nous avons développé un code implicite de résolution d’équations aux 
dérivées partielles à deux dimensions ayant  pour caractéristique une grille eulérienne flottante qui s’ajuste aux 
gradients des champs à déterminer. Notre objectif est  la description de l’évolution stellaire d’une étoile où la 
rotation peut jouer un rôle important  et  donc aplatir l’étoile. Nous avons à ce jour vérifié que notre algorithme 
résout  l’équation de Poisson et  l’étoile polytrope à une dimension. A terme, l'algorithme serait utilisable pour tout 
problème bi-dimensionnel (Hydro, MHD etc.) dans la mesure où la mise en équation est  entièrement automatisée à 
l’aide d’un module d’algèbre symbolique et que le solveur est générique.

Ce travail est un exemple parmi d’autres de l’utilisation que je fais de Mathematica (depuis sa version 1.2 en 1992) 
pour le calcul symbolique. C’est un outil particulièrement  attrayant car il permet  de développer ses propres 
“grammaires” abstraites, en prenant  en charge toute la dimension fastidieuse du travail. Il m’a permis de faire 
souvent l’expérience à moindre frais que la “bonne” solution à un problème mathématique donné (présentant 
certaines symétries) est infiniment plus simple qu’une solution boguée. Je ne saurais dire si on peut en déduire que 
la nature préfère le beau (au sens symétrique) ; toujours est-il que la complexité (au sens combinatoire) d’une 
expression mathématique décrivant un phénomène physique donné dépend fortement  de sa pertinence (erreur de 
calcul, non respect des symétries, etc.). 

Pour illustrer l'intérêt  d’une recherche transverse, j’ai eu l’occasion de rencontrer le problème du conditionnement 
et  de l’échantillonnage de manière récurrente lors de ces investigations. En théorie de la stabilité des disques 
minces par exemple, le conditionnement est abordé indirectement  dans la stratégie d’une “bonne” base sur laquelle 
la réponse du disque doit être projetée :  c’est l’ “art” du théoricien que de construire cette base, quitte à introduire 
un epsilon pour éviter la division par presque zéro lors de la recherche des modes propres projetés sur cette base 
(une forme ad hoc de régularisation). En général, ce sont  les symétries du disque à l’équilibre qui imposent 
l’échantillonnage (ici la forme de la base). 
Dans le contexte des méthodes inverses, le conditionnement correspond à un hyper-paramètre explicite (le 
multiplicateur de Lagrange associé à la contrainte du prior), qui permet de faire le meilleur compromis biais-
variance. Comme je l’ai mentionné ci-dessus, le choix de la base est en principe imposé par son comportement 
asymptotique (il doit tendre vers un Dirac), mais en pratique la façon dont elle est échantillonnée (linéairement, 
logarithmiquement, symétriquement etc.) aura un impact  plus ou moins considérable suivant le conditionnement du 
problème. Plus celui ci est  mauvais, plus les biais associées à ce choix seront critiques. A prior donné, la non-
linéarité du problème (intrinsèque ou lié au choix de la norme de pénalisation) rendra-elle la descente plus ou 
moins difficile?
Enfin dans le contexte des schémas de discrétisation d’équations différentielles (en hydrodynamique, MHD, 
dynamique symplectique, etc.) le souci de construire un algorithme causal (e.g. upwind), respectant les invariances 
physiques (conservation de l’énergie, du moment, des circulations ...) impose des stratégies d’échantillonnage 
particulières :  c’est  d’ailleurs un sujet  de recherche en mathématiques appliqués particulièrement actif formalisé en 
termes de forme différentielles discrètes. On retrouve de fait dans ce domaine des contraintes (e.g. de courant) plus 
ou moins fortes suivant le schéma (explicite ou implicite). 
Au sens large, ces coïncidences reflètent en fait les dualités entre les formulations différentielles (PDE ou 
projection en ODE) et variationnelles (intégrale) des équations de la physique, et  la nécessité de préconditionner la 
recherche des solutions (ce n’est  d’ailleurs pas un hasard si c’est  ce même terme qui est utilisé dans le contexte de 
l’optimisation pour la recherche des solutions à la formulation variationnelle du problème, et dans celui de 
l’analyse différentielle, pour résoudre les PDE).
 De fait, la formalisation des symétries imposées par la physique dans le langage mathématique (qui est  par 
construction transdisciplinaire) conduit à des invariances dans les stratégies de recherche. 
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3.6.3 Le projet Galactica :  la physique de la Voie Lactée dans son environnement cosmologique. [50%]

—Un exemple de formation de type Voie Lactée à z=2 avec une résolution of 80 pc. (c) Agertz Teyssier 08.

La question de l'inné ou de l'acquis des propriétés dynamiques des disques de galaxies reste encore largement 
ouverte. Si l'environnement  joue une part  importante dans l'établissement  de ces caractéristiques (spirales, 
gauchissement, disques épais), son influence est  modulée par la propension intrinsèque que possède un objet  à 
réagir ou non à des perturbations. La cosmologie numérique moderne atteint aujourd’hui une dynamique qui lui 
permet d’aborder l’historique de la génération de galaxies de type Voie Lactée dans un contexte réaliste, avec une 
résolution suffisante pour explorer la structure interne de la galaxie jusqu’à la centaine de parsecs. L’objectif de ce 
travail est de mener une simulation dimensionnante réaliste du groupe local (Voie Lactée, Andromède, l’amas de la 
Vierge etc) dans une boîte de 80 Mpc/h, en mode simulation zoom contrainte, avec une résolution initiale de 40963 
dans la région centrale, et  d’utiliser 8 niveaux de raffinement de RAMSES,  soit  une résolution ultime  de 75 pc/h 
au niveau de raffinement le plus élevé pour la Voie Lactée. Un tel programme présente un intérêt intrinsèque pour 
comprendre les mécanismes de structuration interne des galaxies sur une fraction importante de l’âge de l’univers, 
mais aussi dans le cadre de la phase préparatoire des missions Planck (avant plan), SDSS-3/RAVE et  surtout  GAIA, 
car la simulation produira un nombre commensurable d’étoiles avec celui mesuré par le satellite. Il sera donc 
possible de valider les modèles de structure Galactiques sur les données virtuelles issues de cette simulation. 

Spécifiquement, ce travail permettra de résoudre l'échelle verticale du disque froid de la Voie lactée, de modéliser 
la détection directe des sous-structures noires dans le voisinage solaire, de sélectionner les satellites nains lumineux 
dans le halo, d’identifier des courants stellaires et les caustiques dans l’espace des phases étendu (mouvement 
propre, vitesse radiale, métallicité)... Cette modélisation des données virtuelles fera l’objet de la seconde partie du 
projet. Comme la simulation est dimensionnée pour résoudre l'échelle verticale du disque froid de la Voie Lactée, il 
sera pertinent d’étudier de manière détaillée les processus d'accrétions vers les régions centrales par instabilité 
spirale. Il sera aussi possible de modéliser la détection directe des sous-structures noires (des Wimps par GLAST), 
de sélectionner les satellites nains lumineux dans le halo (et  aborder le problème de l'excédent de satellites 
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visibles), de valider l’identification des courants stellaires et  les caustiques dans l’espace des phases étendu 
(mouvement  propre, vitesse radiale, métallicité) pour tester les méthodes archéologie stellaire. Avec T. Sousbie, 
nous souhaitons en particulier étendre à des dimensions abstraites la recherche du squelette (basée sur une 
tessellation de Voronoi) pour identifier les courants stellaires (voir ci-dessus). Enfin, la physique du gaz 
interstellaire et  la distribution des nuages moléculaires dans le disque et des cirrus/HVC dans le halo pourra être 
abordée.
Dans ce contexte, j’explore actuellement l’optimisation de la recherche des conditions initiale contraintes du 
groupe local en temps que problème inverse pour affiner la position et  la géométrie d’une sous région. J’ai aussi 
formulé l’inversion de MAK (Monge Ampère, Klimotovich) en tant  que problème inverse non-linéaire pour tenir 
compte des masques et du bruit.

De fait, les analyses relatives au croisement  de coquilles comme celle que j’ai menées avec F. Bernardeau 
pourraient ouvrir la perspective de généraliser ce formalisme aux petites échelles, où l’approximation de Zeldovitch 
n’est plus satisfaisante. 

 Plus généralement, ce projet de recherche me permettrait  de faire la jonction d’un point de vue numérique entre 
plusieurs de mes thématiques de recherches principales :  la structure galactique et la cosmologie, la simulation 
numérique et les méthodes inverses, la modélisation symplectique des systèmes gravitationnels et  les problèmes 
d’identification dans l’espace des phases. Il présente cependant l'inconvénient  d’être un peu trop à la mode à mon 
goût, ce qui induit des conditions de travail plus contraignante.

 
— (à gauche) un exemple de segmentation des peakpatches d’une tessellation de Delaunay de la projection d’une simulation 

CDM ; (à droite) un zoom sur l’amas en haut à droite. Une telle segmentation permet de calculer le squelette avec une 
résolution adaptative jusqu’à la particule [Soubie et al. en prep.].
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Conclusions

Mon objectif global de recherche est de comprendre les mécanismes de structuration de l’Univers, et plus généralement 
d’inventer et développer des outils originaux pour confronter ces modèles aux grands relevés. Je cherche notamment à 
dégager ce qui relève du détail spécifique à chaque objet/thématique, des propriétés statistiques et des symétries globales au 
sens large. C’est pour cette raison que j’ai dans un premier temps focalisé ma recherche sur la gravitation,  un processus 
physique classique relativement intuitif (et central en astrophysique) qui conduit néanmoins à un grand nombre de 
phénomènes distincts suivant le contexte (univers en expansion, faible ou grand nombre de particules, etc.). Ensuite, au fil de 
mes collaborations, j’ai abordé d’autres thématiques connexes.

Cet exposé a permis, je l'espère, de mettre en évidence l'intérêt de mener une recherche transverse pour stimuler l'innovation 
dans ce contexte.  C’est une stratégie qui correspond à la fois à une formation (en tant que théoricien à Cambridge, où la 
théorie constitue une spécialisation en soi), et à un penchant que je retrouve parmi certains de mes collègues sur le plan 
international (e.g.  mes rapporteurs et examinateurs, G. Miralda-Escudé, A. Nusser, P. Saha, C. Kochanek etc).  C’est une 
stratégie que le mode de financement du CNRS autorise, ce qui a fortement motivé mon intérêt pour ce poste.3 Le risque 
associé est l’émiettement et le manque de profondeur, que j'espère avoir en partie évité. Si la présentation des différentes 
thématiques a parfois été rapide,  l’échantillon des articles qui suivent en cinquième partie permettra au lecteur d’approfondir 
les différents sujets abordés. 

L’analyse rétrospective des travaux accomplis présentés dans ce manuscrit permet de dégager quelques avancées :  
(i) dès le début des années 90,  G. Gilmore soulignait les limitations du modèle de galaxies sphériques isolées et prônait la 
nécessité de rendre compte de l’environnement du milieu intergalactique dans le devenir dynamique d’une Voie Lactée. J’ai 
activement contribué à la formulation statistique de cette contrainte (Pichon, Aubert 06) et à sa quantification dans les 
simulations cosmologiques (Aubert, Pichon, 07, Aubert, Pichon,  Colombi 08). Son extension aux flux hydrodynamiques 
correspondants (Ocvirk, Pichon, Teyssier 08) est maintenant devenue un sujet de recherche très dynamique (e.g. Dekel et al. ). 
(ii) l’analyse géométrique des lignes critiques d’un champ par le biais du squelette (Sousbie, Pichon et al.  07a, 08a,b,c) et les 
développements théoriques correspondants (Pogosyan, Pichon et al. 08) constituent un autre axe de contributions 
significatives à la discipline, rendu possible par les incitations/suggestions de Stéphane Colombi. Son extension à la 
connectivité de la toile cosmique aux échelles galactiques devrait me permettre de faire le lien avec le point ci-dessus.
(iii) la cosmologie observationnelle est rentrée dans les années 90 dans une époque qui se prête bien à une analyse en termes 
de méthodes inverses. Je pense avoir contribué à transposer le savoir-faire correspondant (issu de l’imagerie), acquis au 
contact d’Eric Thiébaut (voir par exemple Pichon et al.  2001, 2009 et dans le même registre, l’inversion non paramétrique 
des modèles de synthèse spectrale appliqués à la reconstruction de la cinématique et de l’histoire de formation stellaire des 
galaxies: Ocvirk, Pichon et al,a,b).  La transposition systématique de ces méthodes dans le contexte de la réduction de données 
astrophysiques (e.g.  la thèse de B. Aracil, Le Borgne et al. 09) a de beaux jours devant elle. Leur mise en oeuvre pour les 
données GAIA (e.g.  dans l’esprit de Pichon et al. 2002) devrait me permettre de faire la synthèse entre mes différents axes de 
recherche (méthodes inverses, dynamique symplectique et géométrie).
(iv) d’autres travaux,  plus théoriques, sur les disques relativistes, la génération de vorticité par croisement de coquilles, ou sur 
la formulation thermodynamique du modèle HMF ont aussi eu un impact (même si pour ce dernier, je n’ai pas été l’architecte 
de sa divulgation !).  Globalement, à une époque où le recours systématique à la simulation numérique est une facilité 
illustrative à laquelle peu résistent, je me suis attaché à promouvoir une formulation analytique (e.g. Scannapieco et al. ou 
Pogosyan et al) qui reflète ma motivation première. 

Au fil de ces 10 années de recherche au CNRS, j’ai développé un savoir faire qui recouvre une bonne fraction des différentes 
composantes d’un travail de modélisation :  (i) génération de simulations,  (ii) production de pseudo-observables (iii) 
automatisation des procédures de pré-reduction, (iv) estimation non paramétrique, et (v) interprétation théorique & analyse 
des mécanismes. 

 Les choix stratégiques associés à une recherche transverse (de prospection plutôt que d’ingénierie) se prêtent mal à un 
exercice de prospective à long terme. De fait, dans le contexte actuel, il est délicat de trouver un équilibre entre cet objectif 
transverse et le mode d'évaluation de la recherche qui favorise la mise en oeuvre efficace d’un savoir faire existant. 
Globalement, j’entends néanmoins poursuivre mon investigation sur la géométrie des grandes structures, et mes travaux 
théoriques sur les systèmes gravitationnels ouverts. J’aimerais aussi développer un savoir faire en hydrodynamique et en 
MHD (voir en relativité numérique), continuer à valoriser de grosses simulations hydrodynamiques, et publier le fruit de mes 
investigations de ces dix dernières années notamment sur la calibration automatique des méthodes inverses. Dans le contexte 
des grands projets de la discipline, je pense donc pouvoir à l’avenir contribuer à la valorisation scientifique des missions 
Planck, GAIA/Alma et SKA, notamment par le biais d’encadrements doctoraux.
A moyen terme, je souhaite refocaliser ma recherche sur des aspects plus géométriques et théoriques de la dynamique 
gravitationnelle, car c’est à mon sens la contribution la plus originale que je puisse apporter à la discipline. 
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— Les lignes de champs conduisant à la segmentation tridimensionnelle de l’espace au sens des peak patches.
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5. Sélection dʼarticles publiés et soumis

Cette partie présente un échantillon des articles publiés/soumis les plus significatifs de mon point de vue. J’ai 
choisi par soucie d’efficacité (et  d’équité vis a vis de mes collaborateurs) de consacrer mon temps de recherche de 
ces derniers mois à soumettre sous forme d’article mes travaux les plus récents (en particulier les articles sur le 
squelette global et  l’astigmatisme cosmique). Cette cinquième partie est classé en 4 sections principales :  i) la 
dynamique galactique ii) la topologie et géométrie des grandes structures iii) physique théorique et iv) les méthodes 
inverses. La fin de cette partie présente la première page des autres articles. 
Ces différentes sections sont séparées par des images en fausses couleurs de la simulation MareNostrum (en bleu la température, rouge la matière noire et vert 
la densité du gaz).

1. Dynamique galactique & formation des galaxies

• Dynamical flows through dark matter haloes I:  inner perturbative dynamics, secular evolution and applications
•   Numerical linear stability analysis of round galactic discs
•   Dynamical flows through dark matter haloes – II. One- and two-point statistics at the virial radius
•   The origin and implications of dark matter anisotropic cosmic infall on ≈ L* haloes
•   Initial conditions for large cosmological simulations #
•   Full-Sky Weak Lensing Simulation with 70 Billion Particles #
•   Bimodal gas accretion in the MareNostrum galaxy formation simulation

2. Topologie et géométrie des grandes structures

•  The 3D skeleton: tracing the filamentary structure of the Universe
•  The three-dimensional skeleton of the SDSS
•  The fully connected N dimensional Skeleton: probing the evolution of the cosmic web
•  The local theory of the cosmic skeleton
•  Vorticity generation in large-scale structure caustics 

3. Physique théorique

•            Lattice Melting and Rotation in Perpetually Pulsating Equilibria #
•            New sources for Kerr and other metrics: rotating relativistic discs with pressure support
•            On the Onset of Stochasticity in LCDM Cosmological Simulations
 
4. Méthodes inverses

•  Non-parametric reconstruction of distribution functions from observed galactic discs 
•            ASKI: towards a full-sky lensing map making pipeline
•  Stellar Content (& Kinematics) from high-resolution galactic spectra via Maximum A Posteriori
•  On the kinematic deconvolution of the local neighbourhood luminosity function
•  Inversion of the Lyman a forest: three-dimensional investigation of the intergalactic medium
•  The sources of intergalactic metals#
 
  
Chaque article est  présenté dans son intégralité. Les articles labelisés # correspondent  à des travaux où je n’étais 
pas directement le porteur du projet 4, mais où mon investissement en travail/méthode justifie sa présentation.
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4 la tradition étant de faire signer les étudiants premier auteur si leur investissement le justifie.
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—  les champs physiques d’une galaxie parmi 160 000 à redshift z=1.55 de la simulation MareNostrum ;
champ stellaire, gaz, matière noire, métallicité du gaz, masse stellaire, métallicité stellaire, température ; 

voir http://www.iap.fr/users/pichon/  pour quelques centaines d’autres objets [Ocvirk, Pichon, Teyssier 2008].

— Une vision composite globale de la simuation et un zoom d’un filament [Devriendt, Pichon,  et al. in prep.].
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Annexe A

Encadrement doctoral, post-doctoral et pré-doctoral (en % la fraction d’encadrement)

Encadrement pré-doctoral

1. D. Aubert :  “L’environnement statistique d’une galaxie L*” DEA Astronomie Paris VI    100 %
2. P. Ocvirk :  “La stabilité linéaire des disques galactiques gazeux” DEA Astronomie Strasbourg  100 %
3. M. Guenno :  “Histoire de formation stellaire à partir de spectres HR” DEA Astronomie Strasbourg 50 % 
4. J. Thiébaut :  “Emergence du chaos à grande échelle” M2 Astronomie Nice 100 %
5. C. Gay :  “Courbure du squelette” M2 particule matière Paris XI 80 %
6. Myriam Fischer :  “Entropie des sphéroïdes anisotropes” Magistère de Mathématique de Strasbourg 100 %
7. B. Depardon :  “Dépolarisation magnétique du milieu interstellaire” Ecole des Mines de Paris  70 %
8. Annie Hugues :  “Statistique des systèmes carbonnées” M1 Université de Melbourne  70 %
9. Isabelle Paris :  “Synthèse chromatique des galaxies de MareNostrum” M1 Paris VI  100 %
10. Florence Brault :  “Environnement spectroscopique des galaxies de MareNostum” M1 Paris VI 100 %

Encadrement doctoral

1. D. Aubert : “Etude des flux cosmologiques au travers de la sphère du viriel d’un disque Galactique” 100 %
2. E. Rollinde : “La physique du milieu intergalactique" avec P. Petitjean,  50 %
3. A. Siebert : “Structure et dynamique des disques de la Galaxie” avec O. Bienaymé 50 % 
4. P. Ocvirk : “Evolution chemo-spectro-dynamique des disques galactiques” avec A. Lançon 70 % 
5. B. Aracil :“Etude du milieu intergalactique via les raies d’absorptions des quasars” avec P. Petitjean 50 %
6. Sara Caucci : “la topologie du Milieu intergalactique” avec P. Petitjean 33 %
7. T. Sousbie : “Le Squelette de l’univers, un outil d'analyse des grandes structures” avec H. Courtois 50 %
8. C. Gay (2007-), sur la statistique du squelette global.  100 %
9. J. Thiébaut, sur l’inversion des cartes de polarisation, (2007-), avec S Prunet  70 %
10. D. Chapon en co tutelle (2008-) sur la structure et l’évolution de la Voie Lactée avec R. Teyssier 50 %

 J’ai aussi collaboré avec J. L. Vergely et J. Petry durant leur thèse. Parmi ces ex-étudiants en thèse, deux 
d’entre eux ont été recrutés à l’Obervatoire de Strasbourg, et un à l’Institut d’astrophysique de Paris.

Encadrement post-doctoral

1. E. Scannapieco :  les métaux du milieu intergalactique (Scannapieco et al.  2006 ; Pichon et al. 2005) ;  40%
2. P. Ocvirk :  la bimodalité de l’accrétion des métaux sur les galaxies (Ocvirk, Pichon, Teyssier, 2008), 40% 
3. F. Stoehr :  les fonctions de corrélation transverse de la forêt du MIG (Copolani et al., 2006),  20%
4. D. Le Borgne :  l’inversion du SFR cosmique à partir des comptages (Le Borgne, et al. 2008),  10%
5. S. Peirani (postdoc) la construction et l’inversion de lentilles fortes (Peirani, Alard,Pichon, et al 2008), 30% 
6. T. Sousbie le squelette de l’univers (Sousbie Pichon et al. 2008a,b, Sousbie Colombi, Pichon 2008). 70%
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ABSTRACT

We investigate statistically the dynamical consequences of cosmological fluxes of matter and
related moments on progenitors of today’s dark matter haloes. These haloes are described as
open collisionless systems which do not undergo strong interactions anymore. Their dynamics
is described via canonical perturbation theory which accounts for two types of perturbations:
the tidal field corresponding to flybys and accretion of dark matter through the outer boundary
of the halo.

The non-linear evolution of both the entering flux and the particles of the halo is followed
perturbatively. The dynamical equations are solved linearly, order by order, projecting on a bi-
orthogonal basis to consistently satisfy the field equation. Since our perturbative solution
of the Boltzmann–Poisson is explicit, we obtain, as a result, expressions for the N-point
correlation function of the response of the halo to the perturbative environment. It allows
statistical predictions for the ensemble distribution of the inner dynamical features of haloes.
We demonstrate the feasibility of the implementation via a simple example in Appendix B.
We argue that the fluid description accounts for the dynamical drag and the tidal stripping of
incoming structures. We discuss the realm of non-linear problems which could be addressed
statistically by such a theory, such as differential dynamical friction, tidal stripping and the
self-gravity of objects within the virial sphere.

The secular evolution of open galactic haloes is investigated: we derive the kinetic equa-
tion which governs the quasi-linear evolution of dark matter profile induced by infall and its
corresponding gravitational correlations. This yields a Fokker–Planck-like equation for the
angle-averaged underlying distribution function. This equation has an explicit source term
accounting for the net infall through the virial sphere. Under the assumption of ergodicity we
then relate the corresponding source, drift and diffusion coefficients for the ensemble-average
distribution to the underlying cosmic two-point statistics of the infall and discuss possible
applications.

The internal dynamics of substructures within galactic haloes (distortion, clumps as traced
by Xray emissivity, weak lensing, dark matter annihilation, tidal streams, etc.), and the im-
plication for the disc (spiral structure, warp, etc.) are then briefly discussed. We show how
this theory could be used to (i) observationally constrain the statistical nature of the infall,
(ii) predict the observed distribution and correlations of substructures in upcoming surveys,
(iii) predict the past evolution of the observed distribution of clumps and finally (iv) weight
the relative importance of the intrinsic (via the unperturbed distribution function) and external
(tidal and/or infall) influence of the environment in determining the fate of galaxies. We stress
that our theory describes the perturbed distribution function (mean profile removed) directly
in phase space.

Key words: galaxies: haloes – galaxies: kinematics and dynamics – galaxies: statistics – dark
matter.

�E-mail: pichon@iap.fr
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1658 C. Pichon and D. Aubert

1 I N T RO D U C T I O N

It now appears clearly that the dynamical (azimuthal instabilities, warps, accretion), physical (heating, cooling) and chemical (metal-poor cold
gas fluxes) evolution of galaxies are processes which are partly driven by the boundary conditions imposed by their cosmological environment.
It is therefore of prime importance to formulate the effects of such an interaction in a unified framework.

Modern digital all-sky surveys, such as the Sloan Digital Sky Survey (SDSS), two-Micron All-Sky Survey (2MASS) or the two-degree
Field (2dF) provide for the first time the opportunity to build statistically relevant constraints on the dynamical states of galaxies which can
be used as observational input. Other projects, like GAIA or Planck, will provide small-scale information on our Galaxy and its environment
and will soon allow detailed confrontation of the predictions of models with the observations. We ought to be able to draw conclusions on the
internal dynamics of the halo and its inner components and constrain their statistical properties.

Unfortunately, it is difficult to study the response of haloes to moderate amplitude perturbations. Current N-body techniques suffer
from resolution limitations (due to particle number and drift in orbit integration, see e.g. Power et al. 2003; Binney 2004, for a discussion
of such effects) that hide to some extent linear collective effects which dominate the response of the halo (Murali 1999; Weinberg 1998b).1

Simulations on galactic scales are also often carried out without any attempt to represent the cosmological variety arising from the possible
boundary conditions (the so-called cosmic variance problem). This is because the dynamical range required to describe both the environment
and the inner structure is considerable, and can only be achieved for a limited number of simulations (e.g. Diemand, Moore & Stadel 2004;
Gill et al. 2004; Knebe et al. 2004). By contrast, the method presented below circumvents this difficulty while relying on an explicit treatment
of the inner dynamics of the halo, in the perturbative regime. Specifically, our purpose is to develop a tool to study the dynamics of an open
stellar system and apply it to the dynamics of a halo which is embedded into its cosmological environment. One can think of this project as
an attempt to produce a semi-analytic explicit resimulation tool, in the spirit of what is done in N-body simulations with zoomed-in initial
conditions.

The concept of an initial power spectrum describing the statistical properties of the gravitational perturbations has proved very useful in
cosmological studies (e.g. Peebles 1980; Bernardeau et al. 2002). The underlying paradigm, that gravity drives cosmic evolution, is likely to
be a good description at the Mpc scale. We show below that a similar approach to galactic haloes is still acceptable, and marginally within the
reach of our modelling capabilities. The description of the boundary is significantly more complex, but the inner dynamics of hot components is
better behaved. Here, we describe a stable system which undergoes small interactions, rather than an unstable system in comoving coordinates
undergoing catastrophic multiscale collapse.

The purpose of this investigation is to derive analytically the dynamical response of a galactic halo, induced by its (relatively weak)
interaction with its near environment. Interaction should be understood in a general sense and involve tidal potential interactions (like that
corresponding to a satellite orbiting around the galaxy), or an infall where an external quantity (virialized or not) is advected into the galactic
halo.

With a suitable formalism, we derive the propagation of an external perturbation from the near galactic environment down to the scale of
the galactic disc through the dark matter halo. We essentially solve the coupled collisionless Boltzmann–Poisson equations as a Dirichlet initial
value problem to determine the response of the halo to infall and tidal field. The basis over which the response is projected can be customized
to, say, the universal profile of dark matter haloes, which makes it possible to consistently and efficiently solve the coupled dynamical and
field equations, so long as the entering fluxes of dark matter amounts to a small perturbation in mass compared to the underlying equilibrium.

In a pair of companion papers, Aubert & Pichon (in preparation) described the statistical properties of the infalling distribution of dark
matter at the virial radius, R200 as a function of cosmic time between redshift z = 1 and today. These papers focused on a description of
the one- and two-point statistics of the infall towards well-formed L� dark matter haloes. All measurements were carried for 15 000 haloes
undergoing minor mergers. The two-point correlations were measured both angularly and temporally for the flux densities, and over the whole
5D phase space for the expansion coefficients of the source.

Together with the measurements presented there, we show in this paper that the formalism described below will allow astronomers to
address globally and coherently dynamical issues on galactic scales. Most importantly, it will allow them to tackle problems in a statistically
representative manner. This investigation has a broad field of possible applications. Galaxies are subject to boundary conditions that reflect
motions on larger scales and their dynamics may constrain the cosmology through the rate of merging events for example, or the mass
distribution of satellites. Halo transmission and amplification also fosters communication between spatially separated regions (see e.g. Murali
1999) and continuously excites the disc structure. For example, spirals can be induced by encounters with satellites and/or by mass injection
(e.g. Toomre & Toomre 1972; Howard & Byrd 1990), while warps results from torque interactions with the surrounding matter (Jiang &
Binney 1999; López-Corredoira, Betancort-Rijo & Beckman 2002). Therefore, the proportion of spirals and warps contains information on
the structure’s formation and environment. The statistical link between the inner properties of galactic haloes, and their cosmic boundary can
be reversed to attempt and constrain the nature of the infall while investigating the one- and two-point statistics of the induced perturbations.
This is best done by transposing down to galactic scales the classical cosmic probes for the large-scale structures [lensing, Sunyaev–Zel’dovich
(SZ) effect, etc.] which have been used successfully to characterize the power spectrum of fluctuations on larger scales.

1 It has been argued that shadowing (Earn & Tremaine 1991) will in practice allow for another orbit to correct for the drift, but this is of no help to resonant
processes because it requires that the same orbit does not diffuse for a few libration periods.
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The outline of this paper is the following: we describe in Section 2 the linear response of a spherical halo which undergoes cosmological
infall of dark matter, and compute the induced correlations in the inner halo; Section 3 presents the second-order perturbative response of
the galactic halo to the infalling flux (Appendix D gives the higher-order corrections to the dynamics and addresses the issue of dynamical
friction). Section 4 derives the Fokker–Planck equation that the cosmic mean halo profile obeys in such an open environment. Section 5
describes briefly possible astrophysical applications. In particular, it is discussed how the statistical analysis of mean and variance properties
of galactic haloes and galaxies can be compared to the quantitative prediction of the concordant Lambda cold dark matter (�CDM) cosmogony
on those scales. We also show how to revert in time observed tidal features within our Galaxy, or in external galaxies. The last section draws
conclusions and discusses prospects for future work.

2 T H E S P H E R I C A L H A L O : L I N E A R R E S P O N S E

In the following section, we extend to open spherical stellar systems the formalism developed by Kalnajs (1976) (for stellar discs), Aoki,
Noguchi & Iye (1979) (for gaseous discs), Fridman & Poliachenko (1984), Tremaine & Weinberg (1984) and e.g. Palmer & Papaloizou (1987),
Murali (1999), Vauterin & Dejonghe (1996), Bertin et al. (1994) by adding a source term to the collisionless Boltzmann equation. Since the
formalism is otherwise fairly standard, we will present it relatively swiftly. In a nutshell, the dynamical equations are solved linearly while
projecting over a bi-orthogonal basis to consistently satisfy the Poisson equation (e.g. Kalnajs 1971, 1976, 1977). The dynamical equation of
an open system characterized by its distribution function, F, together with the field equation, read formally

∂t F + {H + ψ e, F} = se and ∇2� = 4πG
∫

dvF, (1)

where H is the Hamiltonian of the system, { } is the usual Poisson bracket and (�, ψ e, se) stands for the potential, the perturbing exterior
potential and incoming source term. The latter, se(r , v, t) accounts for the entering dark matter at the virial radius and is discussed in detail
below (Section 2.3, see also Aubert, Pichon & Colombi 2004; Aubert & Pichon in preparation). In a somewhat unconventional manner, ψ e(r , t)
refers here to the external potential, i.e. the tidal potential created by the perturbations outside the outer boundary of the halo (i.e. R200).

Let us expand the Hamiltonian and the distribution function, F, as

F = F + ε f and H = H0 + εψ, (2)

where we assume that everywhere in phase space ε
�= m/M � 1 i.e. that the mass of the perturbation, m, is small compared to the mass, M, of

the unperturbed halo. In equation (2), f represents the small response to the perturbations, F represents the equilibrium state and ψ the small
response in potential. Putting equation (2) into (1) and reordering in ε yields the linearized Boltzmann equation

∂ f
∂t

+ ∂H0

∂I
· ∂ f
∂w

−
(

∂ψ

∂w
+ ∂ψ e

∂w

)
· dF

dI
= se, (3)

where I and w are conjugate canonical variables which are described in the following section.

2.1 The Boltzmann equation in action–angle

The most adequate representation of multiply-periodic integrable systems relies on the action–angle variables,2 since resonant processes will
dominate the response of the live halo, and are best expressed in those variables. We will use vector notation for simplicity. The details of
the computation of these variables is discussed in Appendix B following work by Murali (1999) (see also Fig. 1). This achieves separation of
variable between the phase space canonical variables (angle and actions) on the one hand, and time on the other hand. We denote as usual the

set of action variables by I and angle variables by w (see Appendix B). The rates of change of angles is ω
�= dw/dt. Along the multiperiodic

orbits, any field, Z, can be Fourier-expanded with respect to the angles as

Z (r ,v, t) =
∑

k

Zk(I, t) exp (ik · w). (4)

Conversely

Zk(I, t) = 1

(2π)3

∫
dwexp(−ik · w)Z (r ,v, t), (5)

where k
�= (k 1, k 2, k 3) is the Fourier triple index conjugate to the three angles w

�= (w1, w2, w3). Given equations (1)–(2), the linearized
Boltzmann equation in such a representation is

∂ fk(I, t)
∂t

+ ik · ω fk(I, t) = ik · dF
dI

[
ψk(I, t) + ψ e

k (I, t)
]+ se

k(I, t). (6)

2 Note that (w, I) are canonical variables, and as such preclude nothing about the evolution of the system. They simplify the expression of the linearized
equations, order by order.
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Figure 1. The action–angle (I, w)–spherical coordinate (r, v), transformation. The dark matter particle at running spherical coordinate (r, θ , φ) describes a
rosette in the orbital plane orthogonal to its momentum, L. The line of node of the orbital plane intersects the xy plane at a constant (in spherical symmetry)
angle w3 with respect to the x-axis. The orbital plane is at an angle β = acos (L z/L) to the xy plane. The particle polar coordinate in the orbital plane with
respect to this line of node is ψ . The angle coordinates, w2, is measured along ψ but varies linearly with time by construction. Finally, the radial angle w1

varies with radius between periapse and apoapse (strongly inspired from fig. 1 of Tremaine & Weinberg 1984).

Here, ψ is the potential perturbation created by the inner density fluctuations of the halo and ψ e the potential perturbation created by external
flybys. The gravitational field of incoming particles is accounted for by the source term se. The solution to equation (6) may then be written as

fk(I, t) =
∫ t

−∞
exp(ik · ω(τ − t))

[
ik · dF

dI

[
ψk(I, τ ) + ψ e

k (I, τ )
]+ se

k(I, τ )

]
dτ. (7)

Equation (7) assumes that the perturbation has been switched on a long time ago in the past so that all transients have damped out.3

2.2 Self-consistency

Equation (7) can be integrated over velocities and summed over k to get the density perturbation

ρ(r , t) =
∑

k

∫ t

−∞
dτ

∫
dvexp(ik · ω(τ − t) + ik · w)

{
ik · dF

dI

[
ψk(I, τ ) + ψ e

k (I, τ )
]+ se

k(I, τ )

}
. (8)

Let us expand the potential and the density over a bi-orthogonal complete set of basis functions such that

ψ(r , t) =
∑

n

an(t)ψ [n](r ), ρ(r , t) =
∑

n

an(t)ρ[n](r ), (9)

∇2ψ [n] = 4πGρ[n],

∫
ψ [n]∗(r )ρ[p](r )dr = δn

p, (10)

where ψ [n]∗(r is the complex conjugate of ψ [n](r )). We naturally expand the external potential on the same basis (Kalnajs 1971) as

ψ e(r , t) =
∑

n

bn(t)ψ [n](r ). (11)

Thus, the coefficients an are representative of the density and potential perturbations in the halo itself, at r < R200, while the coefficients bn

represent the potential created in the halo by density fluctuations at r >R200. Taking advantage of bi-orthogonality equation (8) is multiplied
by ψ∗

p(r ) and integrated over r, which yields

ap(t) =
∑

k

∫ t

−∞
dτ

∫∫
dvdr exp(ik · ω(τ − t) + ik · w)ψ [p]∗(r )

{∑
n

ik · dF
dI

[an(τ ) + bn(τ )] ψ
[n]
k (I) + se

k(I, τ )

}
. (12)

We may now swap from position–velocity to action–angle variables. Since this transformation is canonical dvdr = dwdI. In equation (12)
only ψ [p](r ) depends on w, so we may carry the w integration over ψ [p]∗, which yields ψ

[p]∗
k (I). Equation (12) then becomes

ap(t) = (2π)3
∑

k

∫ t

−∞
dτ

∫
dI exp[ik · ω(τ − t)]

{∑
n

ik · dF
dI

[an(τ ) + bn(τ )] ψ
[p]∗
k (I)ψ [n]

k (I) + se
k(I, τ ) ψ

[p]∗
k (I)

}
. (13)

3 Mathematically, we only retain the particular solution to equation (6), while assuming that the homogeneous solution did not hit long-lived resonances.
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At this point, it seems natural to expand the source term on a basis too, but unlike the previous one, this basis should also describe velocity
space. We admit for now that such a basis φn(r , v) exists, and write

se(r ,v, t) =
∑

n

cn(t)φ[n](r ,v), so (14)

se
k(I, τ ) =

∑
n

cn(τ )σ [n]e
k (I), (15)

where σ
[n]e
k (I) is the angle transform of φ[n](r , v) (see equation 24 below). The coefficients cn are representative of the mass exchange

between the halo and the external world. The sum in equation (15) spans velocity space as well as configuration space, and therefore involve
significantly more terms. Such an expansion is performed in Aubert & Pichon (in preparation) to constrain the source function measured
in cosmological simulations. Calling a(τ ) = [a1(τ ), . . . , an(τ ), . . . ], b(τ ) = [b1(τ ), . . . , bn(τ ), . . . ], and c(τ ) = [c1(τ ), . . . , cn(τ ), . . . ], we
define two matrices, K and Q. The matrix K has elements K p,n defined by

K p,n(τ ) = (2π)3
∑

k

∫
dI exp(ik · ωτ )ik · dF

dI
ψ

[p]∗
k (I)ψ [n]

k (I), (16)

which depend only on the halo equilibrium state. The matrix Q has elements

Q p,n(τ ) = (2π)3
∑

k

∫
dI exp(ik · ωτ )σ [n]e

k (I) ψ
[p]∗
k (I), (17)

which depend only on the expansion basis of the source. Equation (13) then becomes

a(t) =
∫ t

−∞
dτ {K (τ − t) · [a(τ ) + b(τ )] + Q(τ − t) · c(τ )} . (18)

The kernels K and Q are functions of the equilibrium state distribution function, F, and of the two bases, φ[n](r , v), and ψ [n](r ) only. They
may be computed once and for all for a given equilibrium model. Assuming linearity and knowing K and Q, one can see that the properties
of the environments (represented by b and c) are propagated to the inner dynamical properties of collisionless systems (described by a). We
may perform a ‘half’ Fourier transform with respect to time. In the limit where the transients may be neglected, which implies that the system
should be stable, this transform amounts to a Laplace transform with p = iω + ε+ . Temporal convolutions are then replaced by matrix
multiplications and equation (18) becomes

â(ω) = [1 − K̂ (ω)]−1 · [K̂ (ω) · b̂(ω) + Q̂(ω) · ĉ(ω)]. (19)

In this expression, 1 is the identity matrix, and K̂ and Q̂ include Heaviside functions before Fourier transform to account for causality (see
Aubert et al. 2004, for details). Section D3 gives an explicit expression for K̂ (ω). Note the difference between ω, the angular frequency of the
orbits, defined above equation (6), and ω, the half-Fourier transform variable associated with time which appears in equation (19). Here b and
c could be given deterministic functions of time or stochastic random fields (characterized statistically in Aubert & Pichon in preparation). In
contrast, a describes the detailed response of the halo in phase space within R200.

2.2.1 Higher moments

The second moment is obtained by multiplying (7) by v and by performing an integration over velocities. Summing over k leads to

ρv̄(r , t) =
∑

k

∫ t

−∞
dτ

∫
dvexp(ik · ω(τ − t) + ik · w)

{
ik · dF

dI
v
[
ψk(I, τ ) + ψ e

k (I, τ )
]+ vse

k(I, τ )

}
. (20)

Using the same bi-orthonormal expansion as above, we may express the mass flux as a function of the coefficients an and bn (associated with
the potential perturbations of external origin). If we define the following new tensors

K[2],n(r , τ ) =
∑

k

∫
dvexp(ik · ωτ + ik · w)v ik · dF

dI
ψ

[n]
k (I), (21)

and a similar expression for Q [2],n(r , τ ), involving the expansion basis of the source, the mass flux may be written as a convolution

ρv̄(r , t) =
∫ t

−∞
dτ {K 2(r , τ − t) · [a(τ ) + b(τ )] + Q2(r , τ − t) · c(τ )} .

After half-Fourier transforming with respect to time, we get

ρ ˆ̄v = K̂ [2](r , ω) · (1 − K̂ )−1 · [b̂ + Q̂ · ĉ] + Q̂[2](r , ω) · ĉ. (22)

We will return to equation (22) in Section 5.
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2.3 Sinks, sources and tidal field

Let us now turn to an explicit description of the source term (se, hence c), and the tidal field (ψ e, hence b) entering equation (6). We consider
here a source at the virial radius corresponding to cosmic infall. Note however that we might have considered just as well sinks reflecting the
presence of a super massive black hole at the centre of the host galaxy or the deflection/absorption of orbits due to a galactic disc.

2.3.1 Source of infall at R200

A possible Ansatz for the source term consistent with the first two velocity moments of the entering matter has been proposed by Aubert et al.
(2004). Following them se(r , v, t) can be written as

se(r ,v, t)
�=
∑

m

Ym(Ω)δD(r − R200)

[∑
α

cn(t)gα(v) Ym(Ω)

]
,

where m stands for the two harmonic numbers, (�, m)and Y m(�)
�= Y m

� (�) is the usual spherical harmonic. The Dirac function
δ D(r − R200) appears because the source terms are located at the virial radius in our representation.4 This equation corresponds to the
parametrization of φ[n] as

φ[n](r ,v) = gα(v) Ym(Ω)δD(r − R200)
�= gα(v) Ym(Ω)Ym′ (Γ)δD(r − R200), (23)

of Gaussian functions, gα, covering the radial velocity component and spherical harmonics for the angle distribution, Γ, of the velocity vector

and orientation, Ω = (θ , φ) of the infall (see Aubert & Pichon in preparation, for details). Here we have n
�= [m, α]

�= [m, m′, α]
�= [�, m, �′,

m ′, α]. From equation (15)

σ
[n]e
k (I)

�= 1

(2π)3

∫
d3wexp(−ik · w)φ[n](r ,v). (24)

With equations (23) and (24) it becomes

σ
[n]e
k (I) = 1

(2π)3

∫
d3wexp (−ik · w) Ym[Ω(I,w)] gα(v[I,w])δD(r (I,w) − R200). (25)

We can make use of the δ D function occurring in equation (25) since wr
�= w̃r(r , I) (given by equation B1). Therefore equation (25) reads

σ
[n]e
k (I) =

∫
d2w

(2π)3

∫
dwr exp (−ik · w) Ym[Ω(I,w)] gα(v[I,w])

1

|∂w̃r/∂r |−1
δD(wr − w̃r[R200, I]),

=
∫

d2w

(2π)3
exp (−ik · w) Ym[Ω(I,w, w̃r[R200, I])] gα(v[I,w, w̃r(R200, I)])

ωr(I)

|ṙ (R200, I)| exp (−ikr · w̃r[R200, I]) . (26)

In equation (26) we sum over all intersections of the orbit I with the R200 sphere, at the radial phase corresponding to that intersection with a

weight corresponding to ωr/|ṙ | (see Fig. 2). Note that equation (26) involves d2w
�= dw2dw3.

2.3.2 Tidal excitation from beyond R200

The tidal potential is given as a boundary condition on the virial sphere and deprojected in volume. Let us call b′
�m(t) the harmonic coefficients of

the expansion of the external potential on the virial sphere. We expand the potential over the bi-orthogonal basis, (u�m
n , d�,m

n ) (see Appendix B),
so that

ψ e(r ,Ω, t) =
∑
n,�,m

b′
�m(t) Y m

� (Ω)

(
r

R200

)�

=
∑

n

bn(t)ψ [n](r ),
(27)

where ψ [n](r )
�= Y m

� (�)u�m
j (r ). The first equality in equation (27) corresponds to the inner solution of the 3D potential whose boundary

condition is given by Y �
m(�)b′

�m on the sphere of radius R200 (defined below). Since the basis is bi-orthogonal, it follows that

bn(t) =
[∫

d�m
n (r )

(
r

R200

)�

dr

]
b′

�m(t). (28)

It is therefore straightforward to recover the coefficient of the 3D external potential from that of the potential on the sphere.

4 This choice is mainly justified by the measurements performed in Aubert et al. (2004) and Aubert & Pichon (in preparation) and stands as a good compromise
between a relaxed halo inside this boundary and a low contribution of the orbits of relaxed particles to the flux.
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Figure 2. A typical rosette orbit in its orbital plane; the intersection with the R200 sphere is shown, together with the corresponding velocity vectors, both
entering and exiting. The net flux of such quantities enters equation (25) and characterize the source of infall perturbing the halo. Note that by construction,
in the linear regime all infalling material re-exits R200, since the perturbation evolves along the unperturbed orbits. This is to be contrasted to the situation
presented in Fig. 3 where dynamical friction is qualitatively accounted for.

2.4 Induced correlations in the halo

Our purpose is to characterize statistically the response of the dark matter halo to tidal perturbation and infall. This is best done by computing
the N-point statistics of the perturbed density field. Let us start with the two-point correlation. From equation (19) the variance–covariance
matrix of the response is given by

〈â · â∗
〉 = 〈[K̂ · b̂ + Q̂ · ĉ] · (1 − K̂ )−1 · (1 − K̂ )−1∗
 · [K̂ · b̂ + Q̂ · ĉ]
∗〉. (29)

This expression of the n × n matrix, 〈 â · â∗
〉 involves autocorrelation terms like the components of 〈 b̂ · b̂
∗
〉 (the tidal field) and 〈 ĉ · ĉ∗
〉

(the source of infall), but also cross-correlation terms such as the components of 〈 b̂ · ĉ∗
〉. For a spherical harmonic basis, the induced density
perturbation reads (see equation B2 in Appendix B)

ρ(r ,Ω, t) =
∑

n

anρn(r ) =
∑
n�m

an
�m(t)Y m

� (Ω)dn
�m(r ), (30)

The functions dn
�m(r ) depend on the chosen basis. An example is given by equation (B3). Again, n stands here for n, �, m, respectively, the

radial and the two angular ‘quantum numbers’. As a consequence the two-point correlation function for the perturbed density reads

〈ρ(r ,Ω + �Ω, t + �t)ρ(r ′,Ω, t)〉 =
∑

n�mn′�′m′
Y m

� (Ω)Y m′∗
�′ (Ω + �Ω)dn

�m(r )dn′
�′m′ (r ′)
〈

an
�m(t)an′∗

�′m′ (t + �t)
〉
. (31)

The statistical averages, 〈an
�m(t) an′∗

�′m′ (t + �t)〉 are given by the temporal inverse Fourier transform of equation (29). If the perturbation is

stationary and statistically rotationally invariant, 〈an
�m(t) an′

�′m′ (t + �t)〉 �= Cnn′
� (�t)δm′

m δ�′
� . The correlation function then obeys

〈ρ(r ,Ω + �Ω, t + �t)ρ(r ′,Ω, t)〉 =
∑
nn′�m

P�(cos(γ ))dn
�m(r )dn′

�m(r ′)Cnn′
� (�t), (32)

where γ stands for the angle between Ω and Ω′. Evaluating equation (32) for γ = 0, �t = 0, r = r ′ gives a measure of the cosmic variance
of the amplitude of the response of the halo as a function of radius r. The full width half-maximum (FWHM) of 〈ρ(r , Ω + �Ω, t)ρ(r , Ω, t)〉
is a measure as a function of time t and radius r, of the angular extent of the ensemble average mean polarization. Conversely, the FWHM of
〈ρ(r , Ω, t)ρ(r + �r , Ω, t)〉 is a measure of its radial extent in the direction Ω. Note that equation (7) together with (18) yield a description
of the response both in position and velocity. For instance, equation (22) allow us to predict the induced correlations amongst streams.
Applications of equations (29)–(32) (and their non-linear generalization in Section 3.2) will be discussed in greater details in Section 5. The
actual implementation of equations (29)–(32) is carried in a simplified framework in Section B4.

2.4.1 Link with propagators

Let us emphasize that the splitting of the gravitational field into two components, one originating outside of R200, and one from the inside, via
point particles obeying the distribution se(r, v, t) is somewhat ad hoc from the point of view of the linear dynamics. It is convenient from the
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point of view of the measurements, and crucial for the non-linear evolution (described below), or the ensemble average, as shown above.5 It
allows us to specify the statistical characteristics of the infall without having to refer to the properties of the object on which this infall occurs.

We discuss in Appendix A the formulation of the response of a self-gravitating sphere in terms of a propagator (i.e. the Green function of the
collisionless Boltzmann–Poisson equation). This formulation is mathematically equivalent to the approach described above, but there we relied
on Gauss’s theorem to reproject all the information beyond R200 back on to the virial sphere. This information involves two contributions:
one relative to particles beyond R200, which contribute to the tidal field, the other relative to particles entering R200 which contribute to
se(�, v).

The main asset of this formulation is to localize the boundary, which is possible since the interaction is purely gravitational, at the expense
of having two sources of different nature. In particular, this implies that the environment may be characterized once and for all, independently
of the detailed nature of the inner halo.

In this section, we assumed that the polarization of the halo was linear. This hopefully provided some insight for some aspects of the
dynamics, but effectively ignores non-linear phenomena such as dynamical friction or tidal stripping. Let us now expand perturbation theory
to higher orders.

3 N O N - L I N E A R P E RT U R BAT I V E R E S P O N S E

In the following, we describe, using perturbation theory, the non-linear response of the halo to material entering at the virial sphere. It is
assumed that the perturbation is first order in the hierarchy, and that the halo is dynamically stable. This should warrant the validity of the
expansion. We use the angle–action variables of the unperturbed system as canonical variables and investigate the non-linear evolution of the
infall and the tidal excitation.

In essence, the key is to expand the potential on to the bi-orthogonal potential density basis which allows us to decouple position–velocity
and time (i.e. perform a separation of variable), and solve in turns each order of the perturbation expansion.

3.1 Perturbative expansion

Recall that the dynamical equation of an open system characterized by its distribution function, F is given by equation (1). Let us expand
again F as

F = F +
∑

n

εn f (n) and H = H0 +
∑

n

εnψ (n), (33)

where the unperturbed equilibrium is characterized by the distribution function, F (I). Note that (n), the order of the expansion should not be

confused with n
�= (n, �, m). Finally, it is assumed that the external perturbation enters as a first order only, i.e. se ∝ ε and ψ e ∝ ε. In short,

the rewriting of equation (1) to order εn yields

∂ f (n)
k

∂t
+ ik · ω f (n)

k =
(

dF
dI

· ik
[
ψ

(n)
k + δ1

nψ
e
k

]− n−1∑
k=1

{
ψ (k), f (n−k)

}
k
+ δ1

nse
k

)
. (34)

In the following, we solve equation (34) recursively, order by order, to recover the perturbative response of the halo to the tidal interaction
and infall. We expand both the potentials and the source term over a bi-orthogonal basis, so that, with (n) referring to the order in the hierarchy
and [p] to the label in the basis

ψ
(n)
k (I, t) =

∑
p

a(n)
p (t)ψ [p]

k (I), ψ e
k (I, t) =

∑
p

bp(t)ψ [p]
k (I), se

k(I, t) =
∑

p

cp(t)σ [p]
k (I). (35)

Recall also that the superscript, [p], in equation (35) spans discretely a 3D or 5D space depending on the type of function basis. The first-order
solution for a p was given in equation (13). Let us turn to the higher-order equations.

3.1.1 Second-order perturbation theory

The second-order equation for a(2)
p reads

a(2)
p (t) = (2π)3

∑
n

∫ t

−∞
dτ a(2)

n (τ )

(∑
k

∫
dIψ [n]

k (I)ψ [p]∗
k (I)

dF
dI

· ik exp(ik · ω[τ − t])

)
+ (2π)3

∫ t

−∞
dτ
∑

k

∫
dI exp(ik · ω[τ − t])

{
f (1)(τ,w, I), ψ (1)(τ,w, I)

}
k
ψ

[p]∗
k (I), (36)

5 One should account for the fact that ψ e should be switched on long before any particles enter R200 since no particle is created at the boundary.
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where { f (1), ψ (1)} is the Poisson bracket of the perturbation to first order. Now for a set (f , ψ) we have

{ f , ψ}k =
∫

dwexp(−ik · w)

{∑
k1

fk1 (I) exp(ik1 · w),
∑

k2

ψk2 (I) exp(ik2 · w)

}
. (37)

Therefore

{ f , ψ}k =
∑

k1+k2=k

(
ψk2

d fk1

dI
· ik2 − fk1

dψk2

dI
· ik1

)
�=
∑

k1+k2=k

[[ fk1 , ψk2 ]], (38)

where the sum is over k1 with k2 = k − k1. Given equation (7) and (36) it may be rearranged as

a(2)
p (t) = (2π)3

∑
q1

∫ t

−∞
dτ1 a(2)

q1
(τ1)

{∑
k

∫
dIψ

[q1]
k (I)ψ [p]∗

k (I)
dF
dI

· ik exp(ik · ω[τ1 − t])

}

+ (2π)3

∫ t

dτ1

∫ τ1

dτ2

{∑
k

∫
dI exp(ik · ω[τ1 − t])

∑
q1,q2

[
a(1)

q1
(τ1) + bq1

(τ1)
]

×
∑

k1+k2=k

[[
exp(ik1 · ω[τ2 − τ1])

[
dF
dI

· ik1

[
a(1)

q2
(τ2) + bq2

(τ2)
]
ψ

[q2]
k1

(I) + cq2
[τ2]σ e,[q2]

k1
(I)

]
, ψ [q1]

k2

]]
ψ

[p]∗
k

}
. (39)

Note that the right-hand side (r.h.s.) of equation (39) is linear in a(2) while it is quadratic in a(1), b(1), c(1), involving products such as a a, a c,
b c and so on. More generally, the perturbation theory at order (n) is linear in a(n). Note also that equation (39) involves a double-ordered time
integral over τ 1 and τ 2 of the source coefficient, cq1

(τ 1) and cq2
(τ 2), which accounts for the fact that, non-linearly, the relative phase of the

accretion events matter (equation D12 gives the analogue to equation 39 in the complex frequency plane). Equation (39) includes in particular
a term like

exp(i(k1 + k2) · ω[τ1 − t]) exp(ik1 · ω[τ2 − τ1])ψ [p]∗
k1+k2

∑
q1,q2

(
dσ

e,[q2]
k1

dI
ψ

[q1]
k2

− dψ
[q1]
k2

dI
σ

e,[q2]
k1

)[
a(1)

q1
(τ1) + bq1

(τ1)
]

cq2
(τ2) (40)

which involves the rate of change of the source term with respect to action variation (via ∂σ
e,[q2]
k1

/∂I ) modulated twice over time as exp(i(k1 +
k2) · ω[τ 1 − t]) exp(ik1 · ω[τ 2 − τ 1]).

The second-order solution can be synthetically written by introducing tensors K 2 and Q2 similar to those defined in equations (16) and
(17) to express the first-order solution as equation (18). These latter tensors will now be referred to as K 1 and Q1. Specifically, the components
of these tensors are defined as

(K 1)p,q1
[τ1 − t]

�= (K )p,q1
[τ1 − t] = (2π)3

∑
k

∫
dI exp(ik · ω[τ1 − t])ψ [p]∗

k ψ
[q1]
k

dF
dI

· ik, (41)

(K 2)p,q1,q2
[τ1 − t, τ2 − τ1] = (2π)3

∑
k

∫
dI exp(ik · ω[τ1 − t])

∑
k1+k2=k

[[
exp(ik1 · ω[τ2 − τ1])

dF
dI

· ik1 ψ
[q

2
]

k1
, ψ

[q1]
k2

]]
ψ

[p]∗
k , (42)

while Q i involves replacing ψ
[q]
k ∂F/∂I · k by σ e,[q]

m . For instance,

(Q2)p,q1,q2
[τ1 − t, τ2 − τ1] = (2π)3

∑
k

∫
dI exp(ik · ω[τ1 − t])

∑
k1+k2=k

[[
exp(ik1 · ω[τ2 − τ1])σ

e,[q
2

]

k1
, ψ

[q1]
k2

]]
ψ

[p]∗
k ,

This implies in particular that Q1
�= Q given by equation (17). Note that each component of K 2 has the same complexity as K 1, i.e. the

perturbation theory is linear order by order; on the other hand it involves all the couplings in configuration space, hence the double sum in k.
With these definitions, equations (13) and (39) read formally

a(1) = K 1 · [a(1)
1 + b
]+ Q1 · c, (43)

a(2) = K 1 · a(2) + K 2 · [a(1) + b
]⊗ [a(1) + b

]+ Q2 · [a(1) + b
]⊗ c. (44)

where the dot operator is not merely a tensor contraction, but also involves a time convolution. For example, Z being a given field,

(K 1 · Z)p(t)
�=
∑

q

∫ t

−∞
dτ (K1)p,q (τ − t)Zq (τ ), (45)

and similarly the higher-order contraction rule over the fields Z1 ⊗ · · · ⊗Zn is defined as(
K n · Z1 ⊗ · · · ⊗ Zn

)
p
(t)

�=
∑

q1,...,qn

∫ t

dτ1 · · ·
∫ τn−1

dτn(Kn)p,q1,...,qn (τ1 − t, . . . , τn − τn−1)Z 1
q1

(τ1) · · · Zn
qn

(τn). (46)

Note that the order of the argument does matter (i.e. equation 46 defines a non-commutative algebra). Note also that the sum of the order in
each term corresponds to the order of the perturbation. For instance, in equation (44), the second term involves the product of two first-order
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terms, while the first term is a single second-order term. Note finally that the contraction for the Qn involve a summation over five indices, �,
m, α, �′, m ′ (whereas contraction over K n involves only three indices: n, �, m). We illustrate and discuss in Fig. 5 through synthetic diagrams
the corresponding expansion. (See also Fig. D1 in Appendix D for an expansion to higher order.)

In Appendix D, we show in equations (D3)–(D4) how to rewrite equation (44) to the order of n.
As for all expansion schemes, the issue of the truncation arises. Depending on the physical process investigated, the truncation order

may vary. For instance, it may be legitimate to truncate the perturbation to second order since the second order is the first order for which
dynamical friction is taken into account.

3.2 Non-linear two-point correlation functions

Let us now re-address the computation of the two-point correlation function (cf. Section 2.4) of the response of the halo to tidal excitation and
infall while accounting for the non-linearities described in Section 3.1.1. First, let us reshuffle the hierarchy in a format which is best suited
for the statistical average of the non-linear response.

3.2.1 Reordering in b and c

Let us define F (ω, t)
�= exp(iωt) the Fourier operator, so that F · Z and F
 · Z are, respectively, the half-Fourier and inverse half-Fourier

transform of their argument Z. Calling

R1
�= F
 · (1 − K̂ 1)−1 · F , (47)

equation (44) (and its generalization equation D3) reads like a recursion

a(n) �= R1 · K
[
a(n−1), . . . , a(1), b, c

]
, for n � 2, (48)

where K stands formally for some combination of K n and Qn . Note that K 1 accounts for the self-gravity of the halo. If the halo is very hot,

this self-gravity may be neglected altogether and R1 → 1. If not, we may define K ′
i

�= R1 · K i , Q ′
i

�= R1 · Q i , and rewrite the recursive

relations equation (48) with K 1
�= 0. For instance,

a(1) = R1 · (K 1 · b + Q1 · c) = K ′
1 · b + Q ′

1 · c, (49)

which we can rearrange as

a(1) �= Ab · b + Ac · c (50)

where Ab
�= K ′

1 and Ac
�= Q ′

1. Let us also introduce K ′′
1 = K ′

1 + 1. Similarly, the contribution of b and c values to the second-order term for
a can be expressed as

a(2) �= Abb · b ⊗ b + Acc · c ⊗ c + Acb · c ⊗ b + Abc · b ⊗ c, (51)

where

Abb = K ′
2 ◦ K ′′

1 , Acc = K ′
2 ◦ Q ′

1 + Q ′
2 ◦ [Q ′

1, I] ,

Acb = K ′
2 ◦ [Q ′

1, K ′′
1] , Abc = K ′

2 ◦ [K ′′
1, Q ′

1] + Q ′
2 ◦ [K ′′

1, I]. (52)

Here the bracket, [ , ] accounts for the differential composition, so that,

Acb · b ⊗ b = K ′
2 · (Q ′

1 · b) ⊗ (K ′′
1 · b) = R1 · K 2 · (R1 · Q1 · b) ⊗ ([1 + R1] · K 1 · b).

In Section D1.2, we also show how to write an equation similar to equation (51) for the third-order contribution and more generally for an
arbitrary order (see equation D8).

3.2.2 Non-linear correlators

We may now complete the calculation of, say, the two-point correlation function of the density, Cρ

2 :

Cρ

2
�= 〈ρ(x1)ρ(x2)〉 =

∑
n

n∑
p=1

εn
〈
ρ(p)(x1)ρ(n−p)(x2)

〉
, (53)

where x i = (r i , τ i ), i = 1, 2. Following equation (35), let us also expand the response in density, ρ, over the basis function {ρ[q](r )}q , so that

Cρ

2 =
∑

n

εn
n∑

p=1

∑
q1,q2

ρ[q1](r 1)ρ[q2](r 2)
〈

a(p)
q1

(τ1)a(n−p)
q2

(τ2)
〉
.

Now, given equations (49) and (51), we may rearrange this equation as

Cρ

2 = ε2
∑
q1,q2

ρ[q1](r 1)ρ[q2](r 2)
[
C {2}

2 + εC {3}
2 + · · ·] , (54)
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where C {2}
2 is a simple reshuffling of equation (29), i.e.

C {2}
2 = Ab × Ab · 〈b ⊗ b〉 + Ac × Ac · 〈c ⊗ c〉 + Ab × Ac · 〈b ⊗ c〉 + Ac × Ab · 〈c ⊗ b〉, (55)

and

C {3}
2 = (Abb × Ab + Ab × Abb) · 〈b ⊗ b ⊗ b〉 + (Acc × Ac + Ac × Acc) · 〈c ⊗ c ⊗ c〉 + (Abc × Ac + Ab × Abc) · 〈b ⊗ c ⊗ c〉

+ (Abb × Ac + Ab × Abc) · 〈b ⊗ b ⊗ c〉 + (Acb × Ab + Ac × Abb) · 〈c ⊗ b ⊗ b〉. (56)

The × operator is non-commutative and guaranties that the order is preserved in the dot contraction. Recall that Ab
�= K ′

1 and Ac
�= Q ′

1 ,
while Abb, Acc, Acb and Abc are given by equation (53) (or in terms of the underlying distribution function, F 0(I), and the basis function,
ψ [n](r ) via equations (41), (42) and (47) through the definitions of K 1, Q1, K 2 and Q2). It follows from equation (36) that the non-linear
two-point correlation will involve at least the three-point correlation of the incoming flux and of the external potential. We will see in Section 5
that this is a generic consequence of mode coupling. Now the three-point correlation of the incoming flux, c, and the tidal field, b may be
re-expressed in terms of the mean and the two-point correlations of those fields while relying on Wick’s theorem, since we showed in Aubert &
Pichon (in preparation) that these fields were approximately Gaussian. Section D2 presents formally the generalization of equations (55)–(56)
for the N-point correlation function to arbitrary order.

Equations such as equation (44) or its reordered version (equation 51) might look deceivingly simple. One should nevertheless keep in
mind that the perturbation theory involves an exponentially growing number of terms. This is probably best realized by looking at diagrams
such as Fig. D2 (presented in Appendix D) while keeping in mind that each straight line represents a triple sum over k = (k 1, k 2, k 3) and a
time integral (see also Appendix B). The prospect of achieving resummation (in the spirit of what was achieved by e.g. Bernardeau (1992)
for the gravitational instability of the large-scale structures) given the relative complexity of the double source expansion is slim. Yet it might
be possible to construct scaling rules (see Fry 1984) since gravity is also here the driving force. Let us stress once again that the perturbative
expansion accounts explicitly, within its convergence radius, for all aspects of the non-linear physics taking place within the R200 sphere.

3.3 Implication for dynamical friction and tidal stripping

One of the possible assets of this perturbative formulation is that the incoming flux may describe a virialized object which has a finite extent,
and as such will undergo internal phase mixing reflecting the fact that different points in the object will describe different orbits, at different
frequencies (see Fig. 3). In the perturbative regime, dynamical friction will also account for both the overall drag of the object, but also its tidal
stripping (i.e. the fact that the less bound component of the object will undergo a differential more efficient friction). Specifically, the deflection
of perturbed trajectories will correctly describe the balance (or lack thereof) between the self-gravity of the entering flow and its tendency
to be torn by the differential gravitational field of the halo (which imposes the unperturbed different orbital trajectories). As such, the flow
paradigm implemented in this paper and in Aubert et al. (2004) and Aubert & Pichon (in preparation) should allow for the appropriate level
of flexibility in defining what a structure is and how time-dependent the concept is, within the self-gravitating halo (see also Section 3.3.1).

Let us briefly discuss how to identify substructures within the halo.

Figure 3. Displays qualitatively a bundle of orbits (in their orbital plane) which undergo dynamical friction and phase mixing within the R200 radius. As
expected, dark matter describing orbits which initially are at the same position, but with ‘slightly’ different initial impact parameters will end up in quite
different regions at later time. On the right-hand side the curve represents a possible angular distribution of a given entering object (for which the kinematic and
angular spread has been greatly exaggerated). The caustics corresponding to the successive rebound of the orbits is clearly visible here (Fillmore & Goldreich
1984). Note that the amplitude of the friction force was ad hoc, and the self-gravity within the bundle was not taken into account.
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Figure 4. Left-hand panel: Schematic representation of the successive deflection of a given orbit on correlated clumps within the halo in position space. Each
clump is represented with its polarization cloud. The grey-scale coding in the cloud reflects their spatial and temporal correlation within the clumps. During
the deflections, the orbital parameters change (though the individual change is here grossly exaggerated). Right-hand panel: The same orbit as viewed in
angle–action variables. The dynamics in these variable is straightforward (it corresponds to straight lines obeying w= ω (I)t + w0) and the diffusion process
resembles Brownian motion obeying a Langevin equation the particle receiving a random kick at each deflection, represented by a change in colour which
reflects the fact that the ‘collision’ is instantaneous in contrast to the time interval separating two collisions.

3.3.1 Substructure counts and distribution

The identification of substructures within a given halo is a very promising but difficult topic (see e.g. Springel et al. 2001; Gill, Knebe &
Gibson 2004; Aubert et al. 2004). Once the boundary flow has been propagated inwards, we have in principle access to the full distribution
function of the perturbation as a function of time. When the field f (v, r, t) is known inside R200, we may attempt to identify collapsed objects
and apply some form of count in cell statistics in order to characterize their spatial distribution as a function of time. This would allow us in
particular to put aside objects which have been disrupted by tidal stripping or phase mixing (indeed 10 per cent of the mass of the halo is
believed to remain in the form of virialized objects, while 90 per cent is disrupted by the tidal field). Recall that the disruption process is in
principle well described by the perturbative expansion.

The criterion for the detection of objects must be carried while accounting for both the density contrast and the corresponding velocities
(see also Arad, Dekel & Klypin 2004). Indeed, we do not wish to identify as objects local overdensities which may just correspond to caustics
or local wave reinforcement. Here we are interested in the temporal coherence of objects.

For this purpose, we may coarse-grain the perturbed distribution function both in position and velocity, with some given smoothing
function, W (r/Rs,v/Vs), and then apply some thresholding (W ◦ f > f min where ◦ stands for convolution) on the amplitude of the distribution
function, defining a set of connex regions. For each of these regions, we may then compute the energy of the corresponding clump. If it is
negative, the clump will be labelled as bound for the corresponding threshold (f min), and coarse-graining parameters (Rs,Vs). Note that since
the response only involves the perturbed density, one need not subtract the mean potential (which is quite a difficult task in general).

Once the bound regions are identified, we may compute the corresponding mass and assign it to the bottom of the local potential well.
This procedure may be applied for a range of threshold values, and standard statistical tools for discrete sources but in spherical geometry.
We may in particular construct in this manner the mass function of satellites as a function of radius, or, say the two-point correlation function
versus mass and cosmic time. Both issues are subjects of strong discussions when addressed through standard N-body simulations.

This time-dependent identification of virialized objects is useful because of biasing, i.e. the fact that most observational tracers will only
be sensitive to the more massive tail of the mass function of virialized objects.

Conversely, we may want to label regions which match the thresholding but not the requirement on binding energy, i.e. identify caustics,
cusps and shells (Fillmore & Goldreich 1984). We may then characterize statistically the mean distance between the apoapses (see Fig. 3),
which will in general depend on Rs,Vs and f min but also on the underlying equilibrium, via F(I) and on the statistical properties of c through,
say the distribution of impact parameters. Note in closing that the competing effects of phase mixing, tidal stripping and dynamical friction
all assume that the underlying basis function reaches sufficiently high spatial frequencies to resolve these phenomena. In practice, since the
projection of the response (both linearly and non-linearly) is achieved over a basis which has a truncation frequency, �max, there is a finite
time-scale, T max ∝ �max/〈ω〉 above which phase mixing would induce winding at unresolved scales (here 〈ω〉 represents the typical frequency
of the dark matter in that region). Since the dynamical time is shorter in the inner region of the galaxy, such a threshold is going to be reached
there first. Beyond this critical time, the dynamics is inaccurately modelled for the corresponding clump. This issue will be important for the
non-linear coupling of clumps, since substructures entering the halo at later times will be dragged by streamers which are beyond the accuracy
threshold.6

6 These limitations are also clearly encountered in classical N-body simulations.
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4 QUA S I - L I N E A R E VO L U T I O N O F H A L O P RO F I L E

The previous sections dealt with the halo polarization while considering that perturbations were transient. In practice, a halo undergoes
recursive excitations from its environment that will induce departures from its equilibrium state so that it will not remain static. In Appendix
C, we derive a quasi-linear formalism for the collisionless open Boltzmann equation in order to take this effect into account. This follows
in essence the work of Weinberg (1993, 2001a) or Ma & Bertschinger (2004), though the derivation differs. We introduce here an explicit
expression, valid at low redshift, for the source of stochastic ‘noise’. We account explicitly for the correlation induced by the entering material
(as characterized by Aubert & Pichon in preparation) rather than rely on some ad hoc assumption on its nature. We also account consistently
for the mean secular infall which adiabatically restructures the mean profile.

4.1 Context and derivation

Gilbert (1970) gives a very elegant derivation from first principles of the secular equation based on a 1/N (N being the number of particles in
the system) expansion of the collisional relaxation equations presented by Bogolyubov & Gurov (1947). Weinberg (1993, 2001a) and Ma &
Bertschinger (2004) rely on the same expansion scheme to derive their kinetic equation for the mean halo profile.

Weinberg (1993) focuses on the secular collective relaxation of a system induced by the finite number of particles within a multiperiodic
uniform medium, hence transposing to collisionless stellar dynamics the derivation of Lenard–Balescu (Lenard 1961; Balescu 1963) applied
originally to plasma physics in order to describe the secular convergence of such systems towards thermalization.

Weinberg (2001a) derives a similar result for the spherical halo in angle and action variables, while relying on the Kramers–Moyal
(Risken 1989) expansion, which corresponds to a Markovian description based on the transition probability of a change in action induced by
the interaction with a dressed particle cloud. His Fokker–Planck coefficients differ slightly from equations (C13)–(C14) given in Appendix C

in that the spectral properties of 〈b̂nb̂n′ 〉 are postulated in his case, while c
�= 0.

Ma & Bertschinger (2004) construct a Fokker–Planck equation for the mean profile of a halo in a cosmic environment while relying on the
constrained random field of peaks in the standard cosmological model to derive the drift and diffusion coefficients from first principles. Their
derivation is dynamically accurate to second order in the perturbation theory (in position–velocity space) and relate the kinetic coefficients
to the properties of the underlying linear power spectrum. In contrast to the theory presented here, their kinetic equation describes the very
early phase of halo formation, whereas we focus here on the quasi-linear evolution (in angle–action space) of fully relaxed equilibria at low
redshift.

In Appendix C, we account explicitly for the nature of the perturbation’s power spectrum as defined in Aubert & Pichon (in preparation)
and present an explicit derivation for the Fokker–Planck equation obeyed on secular time-scales by the distribution function in angle–action.
It is natural to use these variables to describe a relaxed collisionless halo since they allow to split the dynamics into a secular (phase-averaged)
and a fluctuating part. (See Fig. 4 for a schematic explanation.)

Even though individual dark matter particles obey a collisionless dynamics, the phase average (‘ensemble average’) distribution for the
open system satisfies a collisional kinetic equation where the clumpiness of the open medium breaks the mean field approximation (see also
Ma & Bertschinger 2004). Indeed, individually, clumps and tidal remnants deflect the actions of the underlying distribution in a stochastic (but
correlated) manner, so that in the mean ensemble sense, the coarse-grained distribution (i.e. the distribution averaged over the angles) obeys
a collisional diffusion of the Fokker–Planck type. In this formulation, the graininess of the system (as defined by the second-order closure of
the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy of the N-point distribution) corresponds to the mean number of clumps
expected in the halo, while the detailed (kinetic and angular) power spectrum of the gravitational fluctuations is given by the cosmogony.

It is usual in plasma physics to take a two-time-scale approach to the Boltzmann equation. The short time-scale describes the dynamics of
the system on the dynamical (orbital) time-scale, while the longer time-scale corresponds to the secular evolution. The action–angle variables
are best suited here. This time-scale separation procedure leads to the following system of equations:

∂ f
∂t

+ ω · ∂ f
∂w

− ∂ψ

∂w
· ∂F

∂I
= ∂ψe

∂w
· ∂F

∂I
+ se, (57)

∂F
∂T

=
〈[

∂ψ

∂w
+ ∂ψe

∂w

]
· ∂ f

∂I

〉
T

−
〈[

∂ψ

∂I
+ ∂ψ e

∂I

]
· ∂ f
∂w

〉
T

+ Se. (58)

In equations (57) and (58), se and Se stand for the perturbative and secular advected source terms, while f stands for the fluctuating distribution
and F stands for the secular distribution function (see Appendix C for details). The bracket around the quadratic terms stands for a time
average over a secular time, T which is long compared to dynamical time, t (taken by a dark matter particle to describe its orbit). If we fix F(I,
T), equation (57) corresponds exactly to equation (6) whose solution was described in Section 2.1. This formal solution may then be injected
in the quadratic terms of equation (58). Following this route, we show in Appendix C how to rearrange equation (58) as a Fokker–Planck
equation:

∂F
∂T

= 〈D0(I)〉 − 〈D1(I)〉 · ∂F
∂I

− 〈D2(I)〉 :
∂2 F
∂I2 , (59)

where D0, D1 and D2 are given by equations (C13)–(C15), while : stands for the total contraction. Note that equation (59), in contrast to
equation (58) refers this time to the driving equation for the mean halo profile since we invoked ergodicity to replace time averages by ensemble
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averages (see Appendix C for details). The D0 term enters here because the halo is an open system, which may receive or lose mass. The
drift term with the factor D1 accounts for the dynamical friction induced by the polarization cloud around the tidal remnants; the diffusion
term with the factor D2 arises because of the fluctuations in the potential (both tidal and associated with the infalling dark matter) induced
by the clumps. The diffusion term will in general induce a spreading of the energy distribution by accelerating some orbits to higher energies
while decelerating some others. The polarization cloud will in general induce a drag on the clumps, represented by the D1 term. Note that
the former should be independent of the mass of the clump (since the energy is exchanged via the mean field) while the latter will not (since
more massive clump polarize the medium more). From the point of view of the entering dark matter, the net effect is therefore a segregation
process in which the more massive clumps fall in (as discussed by Gilbert 1970).

According to Risken (1989), the corresponding Langevin (Langevin 1908) equation reads (when the source term, D0 is omitted)

∂I

∂t
= Δ1(I) + Δ2(I) · ξ(t). (60)

Here �1(I) and �2(I) are given in terms of D1(I) and D2(I) by

Δ2 = D
1/2
2 and Δ1 = D1 − D

1/2
2 : ∇I D

1/2
2 ,

where [D2]1/2 stands for the square root of the matrix D2 which is computed via diagonalization, provided the eigenvalues are positive. The
3D random field, ξ(t), should have spectral properties which reflect the stochastic properties of b and c. The probability distribution of the
solution to the stochastic equation (60) obeys the Fokker–Planck equation (59). In this form, the effect of diffusion on the departure from
phase mixed equilibrium is easily interpreted.

4.2 Prospects for universal halo profiles

As has been suggested and illustrated by Weinberg (2001a) and Ma & Bertschinger (2004), it would be very worthwhile to use equation (59)
and predict the asymptotic dark matter profile (and, say the cosmic evolution of the concentration parameter) which will be shaped in part by
encounters and interlopers.

Note that the diffusion coefficients, Di are relatively straightforward to compute for a given halo model, F(I) but equation (59) corresponds
to an evolution equation for F(I) and will in practice require re-evaluating the coefficients for different values of F.

Let us now draw constraints on the stationary solutions of equation (59). Again (following Section 5), this may be done in one of two
ways: take D0, D1 and D2 as given function of the actions, and deduce what equation F should obey from requiring that equation (59) has
a stationary solution (this is the route first explored by Weinberg 2001b); or, if we assume that a given model, say a universal profile, should
correspond to the asymptotic solution of equation (59), we may find the relationship relating the corresponding asymptotic D i coefficients.

For simplicity, let us illustrate this second point while neglecting here the fact that the diffusion coefficients depend on the distribution
function, and restricting ourselves briefly to an isotropic distribution, F(E, T). Calling

H (E) = 〈D1〉 · ω + 〈D2〉 : ∂ω/∂I

〈D2〉 : ω ⊗ ω
, (61)

and Q(E) = 〈D0〉
〈D2〉 : ω ⊗ ω

, (62)

the stationary solution (∂F/∂T = 0) to equation (59) reads formally:

F(E) =
∫ E

0

exp

[
−
∫ e3

e2

H [e1]de1

]{∫ e3

Q[e4] exp

[∫ e4

e2

H [e1]de1

]
de4

}
de3. (63)

This distribution function should satisfy the self-consistency requirement that

ρ(r ) = 2
√

2

∫ 0

−ψ

F(E)
√

E + ψ dE, ∇2ψ(r ) = 4πGρ(r ). (64)

Imposing that F (E) obeys equations (62)–(64) yields a non-linear integral equation for the D i , i.e. a (admittedly indirect) constraint on the
angular correlation of the external field. Section 5 describes other means of constraining the power spectrum of the infalling dark matter.
Weinberg (2001b) found iteratively the corresponding solution while making some assumptions on the spectral properties of b in the régime
where c = 0. In the light of his investigation, he concluded that the tidal excitation drives the halo towards a less steep profile. It will be
interesting to explore this venue with a realistic accounting of the source of infall. The setting here would be that the satellite problem and
the cusp problem of dark matter haloes might be the two sides of the same coin, so that the evolution towards a universal profile might be
triggered by the actual infall of substructures.

Let us now return to the perturbative dynamics described in Sections 2 and 3 and explore its implications for galaxies.

5 A P P L I C AT I O N S : H A L O P O L A R I Z AT I O N , D I S C DY NA M I C S A N D I N V E R S I O N

Aubert & Pichon (in preparation) provided a detailed statistical description of how dark matter falls on to a L� galactic halo: how much
mass is accreted as a function of time, how is it accreted, i.e. in what form, with what velocity distribution, along which direction and for
how long? Putting the theory described here and the tabulated measurements from that paper together, allows us to address globally, and
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coherently dynamical issues on galactic scales in a statistically representative manner. With the help of the theory presented in Sections 2
and 3, we are now in a position to ask ourselves: what are the expected features of a halo/galaxy induced by their cosmic environment.
Specifically, we may now ‘simply’ propagate the cosmological framework and its statistics to observables (describing the departure from
spherical symmetry/stationarity) on galactic scales. On these scales, the realm of astrophysical applications for the perturbative open solution
of the Boltzmann–Poisson equations is extremely wide. It is clearly beyond the scope of this paper to attempt an exhaustive inventory. Rather,
we shall here focus on a few specific issues, for which we show how the open perturbative framework improves our understanding, and allows
for a statistical investigation.

In particular, we shall restrict ourselves to settings where the detailed geometry of the infall matters, since the theory described above
does account for the configuration and the time lag involved in the accretion on top of L� galaxies.

Recall that the purpose of the statistical propagation is threefold: (i) to constrain the properties of the infall on the basis of the observed
distribution for the properties of galaxies and their environment; (ii) to predict some of the statistical properties of galaxies which are not
directly observable, while relying on the properties of the infall; (iii) to weigh the relative importance of the intrinsic properties of the disc
plus halo compared to the strength of the environment.

We will distinguish three classes of problems; first we will describe how to transpose to galactic scales (Section 5.1) the classical probes
used in cosmology to trace the large-scale structures. We will then explore in Section 5.2 the implication for the properties of external galaxies,
and in Section 5.3 for the structures within the Milky Way halo. Finally, we will elaborate in Section 5.4 on the prospect of inverting the
upcoming data sets for the past history of our own Galaxy and for field galaxies in the local group.

5.1 Cosmic probes in the neighbourhood of galaxies: R200/10 < R < R200

A series of observational probes of the statistical properties of the density field have been devised over the years, such as weak lensing,
galaxy counts, the SZ effect, X-ray or γ -ray emissivity maps. In the light of large galactic surveys which are available today, it becomes
quite desirable to apply these probes in the neighbourhood of galactic haloes in order to study the dark matter distribution within the R200

radius. Some of these tracers are only sensitive to the baryon density, which need not trace directly the dark matter density. In this section, we
will systematically assume for simplicity a simple biasing, though this assumption may be lifted (at the expense of extra non-linearities, see
Section E3) provided the biasing law is known (i.e. the observables are assumed to scale like the dark matter density, or some power of it);
we refer to Section 3.3.1 for a brief discussion of thresholding, which is bound to be important in practice.

The calculation described in the previous sections, together with the statistical measurements described in Aubert et al. (2004) and
Aubert & Pichon (in preparation) should allow us to make statistical predictions about observables which may be expressed in terms of
the distributions of clumps within the galactic haloes, either via their gravitational potential, their projected density or even their velocity
distributions (e.g. Galactic streams).

We will consider in turns observable which may be approximated as linear functions of the perturbed fields, either in projected coordinates
on the plane of the sky, or as seen by an observer at the galactic centre of a halo. We will also consider observables which involve quadratic
functions of this field (e.g. the square of the electron density), or even more non-linear functions of the dark matter distribution within the
virial radius (such as the locus of virialized clumps, which dissolve at a function of time). We will in particular build the two-point statistics
for these observables, since the mean of the perturber is often zero by construction. Finally, we will also consider metals lines in absorptions
systems, which involve the cross-correlation of the density and the velocity fields. Note that all these measurements could in principle be
carried as a function of redshift, or a function of the mass of the halo, or while varying the anisotropy of the equilibrium for the halo (by
varying F(I) in e.g. K in equation 41). Note finally that some tracers correspond to the scales of clusters, and we will assume here that the
measurements presented in Aubert & Pichon (in preparation) could be reproduced for these objects (whereas the theory described here is
scale independent provided the system is dynamically relaxed and spherical).

In this section, we will focus on a couple of probes which are supposed to scale linearly with the dark matter density in the main text
(weak lensing, SZ effect), and postpone to Appendix E a presentation of other probes (X-ray emissivity, dark matter disintegration, metal
lines in absorption spectra).

Note that all probes described below are a departure from the mean profile of galactic haloes (just as cosmic perturbation theory describes
the growth of structure as a departure form the mean density/expansion of the Universe) and as such, assume that we have a good understanding
of this profile. This will undoubtedly turn out to be a serious observational constraint when attempting to ensemble average galaxies of various
size and properties.

5.1.1 Weak lensing in stacked haloes

Weak lensing corresponds to the deflection of light emitted from background galaxies by the gravitational potential of structures between those
galaxies and the observer. It has recently been used quite successfully to constrain the statistical distribution of the large-scale structures. On
smaller scales, the effects of substructures in haloes on the lensing measurements have been demonstrated by, for example, Dalal & Kochanek
(2002) and Kochanek & Dalal (2004).

In the weak lensing regime (Peacock 1999), the relationship between the observed convergence and the underlying projected dark
matter profile is approximated to be linear. Hence, we may straightforwardly propagate our statistical predictions for the clumpy dark matter
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distribution around a dark matter halo (or within the neighbourhood of clusters of galaxies provided some re-adjustment of the theoretical
predictions described in Aubert et al. (2004) and Aubert & Pichon (in preparation) on these larger scales).

The cumulative deflection angle, α(θ , w)
�= δx/r k(w) by which light is deflected is given by

α(θ, w) = 2

c2

∫
dw′ rk(w′ − w)

rk(w)
∇⊥ψ(rk(w′)θ, w′), (65)

where r k is the angular comoving distance, dw
�= dr/

√
1 − kr 2(k = 0, ±1) and x the transverse comoving distance. Defining the convergence,

κ(θ) by

κ(θ) = 1

2
∇θ · α(θ), (66)

the mean ensemble average convergence of the rescaled halo, 〈κ(θ )〉, reads

〈κ(θ )〉 = 1

c2

∫
dw′ rk(w′ − w)

rk(w)
∇2

⊥ψNFW(rk(w′)θ, w′). (67)

Now recall that (cf. equation 9 where ψ [n] is given by equations (B2)–(B3) in Section B2)

δψ(r ) =
∑

n

anψ
[n](r ), hence δκ(θ) =

∑
n

anκ
[n](θ), (68)

where

κ [n](θ) = 1

c2

∫
dw′ rk(w′ − w)

rk(w)
∇2ψ [n](rk(w′)θ, w′). (69)

It follows that the correlation function of the relative convergence obeys

〈δκ(θ)δκ(θ′)〉
〈κ(θ )〉2

= 1

〈κ(θ )〉2

∑
n,n′

〈anan′ 〉κ [n](θ)κ [n′](θ′). (70)

Hence, the statistical properties of the relative convergence will depend on the statistical distribution of the clumps of the halo through the
{an} coefficients which are given in equation (29) in terms of bn and cn.

In practice one has to devise an observational strategy, given the expected size of the caustics of subclumps within haloes of galaxies or
clusters, the number of background sources, and the expected number of foreground objects (i.e. galaxies or clusters).

Finally, it is believed that one in a hundred large ellipticals on the sky should undergo strong lensing. In the long run, the statistical
properties of such a non-linear signal will be worth investigating within the framework described in this paper (following the non-linear steps
described in say, Section E3).

5.1.2 Thermal SZ effect of stacked haloes

When the photons of the cosmic microwave background (CMB) enter the hot dense gas within the clusters and galactic haloes, they interact
with the electrons of the gas. The diffusion process transfers the energy of the photons to the electrons which in turn re-emit this energy
at a higher frequency. The corresponding spectral redistribution induces a local temperature decrement seen in the temperature map of the
clusters, known as the thermal SZ effect (see e.g. Peacock 1999). The temperature decrement (at low frequency) reads as a function of the
distance to the cluster centre, R:

�T (R)

TCMB
= −2

kBσT

mec2

∫
dzne(z, R)Te(z, R), (71)

where m e, n e and T e are, respectively, the mass, the numerical density and the temperature of the electrons, while σ T is the Thomson scattering
section (6.65 × 10−25 cm2), c the speed of light, kB Boltzmann constant and T CMB is the CMB temperature.

Let us assume that the variation in temperature is small compared to the variation of the electron number density.7 Let us also assume
that the electron density is proportional to the dark matter density (constant biasing) as mentioned above. Let us define the departure from the
cosmic average for the profile as

δ�T (R) = �T (R) − 〈�T 〉(R). (72)

The relative fluctuation of the temperature decrement reads

1

〈�T 〉2(R)
〈δ�T (R)δ�T (R′)〉 = 1

�NFW(R)2

∑
n,n′

〈anan′ 〉
∫

dz

∫
dz′ρ[n](R, z)ρ[n′](R′, z′), (73)

where �NFW is the mean rescaled projected dark matter mass profile. Note that the double integral in equation (73) is carried over known
functions and is just a geometric factor which will depend on R, �R and �� only. Again, the knowledge of the statistics of the {an} (which
in turn only depend on the equilibrium, F0, and the statistics of bn and cn at R200, see equation 19 or 20) therefore allows us to predict

7 Note that we may lift this assumption at the cost of non-linearities, provided we may rely on an equation of state to relate it to the underlying density.
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the statistical properties of the relative fluctuations in the temperature decrement. The Atacama Large Millimetre Array (ALMA) will soon
provide detailed SZ maps of clusters for which it should be possible to apply these techniques.

Let us note in passing that the kinetic SZ effect of stacked haloes may also be investigated following the same route

�T (R)

TCMB
= −2

kBσT

mec2

∫
dzne(z, R)vz(z, R). (74)

In closing, let us note that maps of SZ effects within our own Galaxy will be available with the upcoming Planck satellite, and will
provide statistical information on the small-scale distribution of local clumps. Recall finally that Appendix E presents other statistical probes
of the outer structures found in galactic haloes (X-ray emissivity, dark matter disintegration, metal lines in absorption spectra). Most of these
probes could be used to say, probe the shape of the density profile in the outer parts of galaxies, or the biasing law relating dark matter to stars
or gas.

5.2 Galactic structure: R < R200/10

In the previous section, we investigated the dynamical consequences of the cosmic infall in the outer region of the halo. Let us now turn to the
regions of the halo where we expect to find the galaxies themselves. At lower redshift, the galaxies essentially come in two flavours, ellipticals
and spirals. The response of ellipticals should follow closely that of the dark matter halo since both components are hot enough not to undergo
gravitational instabilities. In effect, describing an embedded ‘spherical’ elliptical galaxy within a dark matter halo amounts to changing the
distribution function to account for the presence of the elliptical and its possibly distinct kinematics. Note that, as mentioned before the above
theory could be amended to account perturbatively for the possible triaxiality of the elliptical (Binney & Spergel 1984).

For a disc or a very flattened spheroid, the situation becomes quite different. The cooler disc is likely to be either drawn beyond its
stability threshold by the perturbation, or will respond much more strongly to the perturber than its dark halo. Hence we need to model the
disc component differently. The protogalactic environment is likely to be extremely noisy, particularly in outer regions, so that the halo may
perturb the disc by transmitting numerous disturbances into the inner galaxy. Moreover, the inner halo may continue to oscillate as it settles
after the coalescence of advected objects. Halo oscillations may easily perturb the disc through the time-dependent gravitational potential.
Conversely, the structural integrity of observed discs set limits on the degree of disequilibrium in the protogalactic halo.

Within the realm of features found in galactic discs, a fraction is known to be the result of instabilities (e.g. galactic bars), while others
have been shown to correspond to transients (e.g. galactic warps).

With the advent of modern systematic surveys, it is possible to construct distributions corresponding to, say, the fraction of spirals which
fall within some Hubble type, or the fraction of warps whose inclination is larger than some angle. On the disc scale, we may construct the
probability distribution function (PDF) of, say, the pitch angle of dynamically induced spirals, or the PDF of the extent of the bar, its amplitude,
or less directly observed the PDF of pattern speeds. Some of these processes depend crucially on gas physics and will not be addressed here.

5.2.1 Pitch angle distribution for spirals

For stellar discs, the stars obey formally the same equation as equations (6)–(11), but this time the modes may be unstable, and sometimes the
disc cannot be treated in isolation from the live halo in which it is embedded. On the other hand, it is often well approximated as an infinitely

thin structure; such a 2D system becomes integrable again with two actions, dJ
�= dJ rdL z,D . Here J r is the radial action of the stars in the

plane of the disc, and L zD is the momentum of the stars in the disc. Following Weinberg (1998a) and adding some source of infall at R200, we
may describe the coupled system disc plus halo in the complex plane as(

âD

âH

)
=
(

K̂ DD K̂
∗
DH

K̂ DH K̂ HH

)
·
(

âD

âH + b̂

)
+
(

0
Q̂

)
·
(

0
ĉ

)
,

where K̂ HH is given by equation (D15), while

(K̂ DD)p,q =
∑

k

∫
dJ

ψ D ,[p]
k (J)ψ D ,[q]∗

k (J)

k · ωD − ω
k · ∂FD

∂J
,

and a similar expression involving ψ
[p]
k (J) ψ D ,[q]∗

k (J) for the cross term, K̂ DH. See Pichon & Cannon (1997) for details relative to the disc.
Here âD and âH are the coefficients of the expansion for the disc and the halo, respectively, FD is the distribution function of stellar stars
within the disc, {ψ D ,[q] (r )}q the potential basis function over which the disc response is projected and ωD the angular frequencies of the
stars in the disc.

Let us first assume that the unperturbed disc is stable. Solving the coupled equation for [âH, âD] yields (after inverse half-Fourier
transform) the temporal evolution of the spiral response as a function of time for a given tidal field, b(t) and a given infall history, c(t). The
pitch angle, I of the spiral, defined by tan(I) = 1/π

∫ π

0
dθd logR/dθ (where R(θ ) corresponds to the crest of the spiral wave), is a non-linear

function of a D , which we may write formally as I[aD]. Hence we may ask ourselves what its cosmic mean, 〈I[aD]〉 is, given that âD(ω)
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obeys

âD(ω) = K̂ HD · [b + Q · c]

/
Det

∣∣∣∣ 1 − K̂ DD K̂
∗
DH

K̂ DH 1 − K̂ HH

∣∣∣∣ .
Note that I[aD] will depend on the statistical properties of b, c and also on the distribution function for the halo, F(I), and the distribution

function for the disc, FD(J). More generally, we may in this manner construct the full PDF of the pitch angle, as a function of say, cosmic
time (or relative mass in the disc or . . .), following the same route as sketched in Section E3.

If the disc is intrinsically unstable, we must then add to the driven response described above the unstable modes. The amplitude of the
response will then depend on exactly when each unstable mode has been exited. Such a prescription is beyond the scope of this paper, but
could be addressed statistically through the description of a phase transition.

5.2.2 Warp excitation

As mentioned earlier (Jiang & Binney 1999; López-Corredoira et al. 2002), warps are intrinsically stable modes of thin discs which respond
to their environment. The action of the torque applied on the disc of a galaxy is different for different angular and radial positions of the
perturbation. The orientation of the warp and its amplitude are functions of the external potential.

The work done by the presence of perturbations on the stellar system is

dE
dt

= −
∫

dr∇(ψ + ψ e) · ρv = −
∫

dr (ψ + ψ e)∇(ρv), (75)

where ψ + ψ e is the total potential perturbation (self-response plus external component).
Using equations (20) and (75)〈

dE
dt

〉
= −
∑
n,n′

∫
dr

〈
[an′ (t) + bn′ (t)] ∇ψn(r )

∫ t

−∞
dτ K[2],n(r , τ − t) [an(τ ) + bn(τ )] + Q[2],n(r , τ − t)cn(τ )

〉
.

The power spectra of potential fluctuations drive the energy rate of change through the cross-correlation between the source and the potential.
Note in closing that the framework described in this paper should allow us in the future to address the possibility of warps induced by

the accretion of gas.

5.3 Substructures in our own Galactic halo

Let us now turn to the Milky Way. Our knowledge of the structure of its halo has increased dramatically in the course of the last decade with
the advent of systematic imaging and spectroscopic surveys (e.g. SDSS, 2dF), both in the optical and at longer wavelengths (e.g. 2MASS),
and this observational investigation will undoubtedly continue with efforts such as the Radial Velocity Experiment (RAVE), or the upcoming
launch of GAIA. This has led to the discovery of quite a few substructures within our halo, both in projection on the plane of the sky (tidal tails)
as star counts but also via kinematical features (streams). The extent of the upcoming systematic stellar surveys will allow for a systematic
analysis of the dynamical properties of Galactic substructures.

5.3.1 Extent of tidal tails and streams in proper motion and galactic coordinates

The number of stars, dN, in the solid angle defined by the Galactic longitudes and latitudes (�, b)
�= � (within d�d(sin b)), with proper motions

(μ�, μb)
�= μ (within dμbdμ�) at time t is given by (Pichon, Siebert & Bienaymé 2002)

dN
�= Aλ(μ, �, t) dμ d� =

{∫∫
durr 4dr f (r , u, t)

}
dμ d�. (76)

The variables r, u are the vector position and velocity coordinates (u r, u �, ub) in phase space relative to the local standard of rest, while r =
(R, �, z) and v= (v R , v�, v z) are those relative to the Galactic centre. In particular, the radius r (within dr) corresponds to the distance along
the line of sight in the direction given by the Galactic longitudes and latitudes (�, b) (within the solid angle d�cos(b)db).

These velocities are given as a function of the velocities measured in the frame of the sun by

v� = 1

R
{r� sin(b) sin(�)ub − r� cos(b) sin(�)ur − r� cos(�)u� + r cos(b)[u� − sin(�)u�] + [r� + r cos(b) cos(�)]v�},

vR = 1

R
{[r cos(b) − r� cos(�)] sin(b) ub − r� sin(�) u�− cos(b) [r cos(b) − r� cos(�)] ur

+ r� u� − r cos(b) cos(�) u� + r cos(b) sin(�) v�},
vz = sin(b) ur + cos(b) ub + w�, (77)

where

� = tan−1

[
r cos(b) sin(�)

R
,

r� − r cos(b) cos(�)

R

]
,
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R =
√

r 2� − 2r�r cos(b) cos(�) + r 2 cos(b)2 and

z = r sin(b). (78)

R measures the projected distance (in the meridional plane) to the Galactic centre, � the angle in the meridional plane between the star and
the Galactic centre, while z is the height of the star. Here u�, v�, w� and r� are, respectively, the components of the Sun’s velocity and its
distance to the Galactic centre.

Recall that equation (7) together with equation (19) provides us with the full phase space distribution of the infall as a function of the
actions of the unperturbed halo. Let us call f n, the phase space basis defined by

fn(r ,v, τ )
�=
∑

k

exp(ik · ωτ + ik · w)v ik · dF
dI

ψ
[n]
k (I), (79)

so that the perturbation at time t and position (r, v) reads

f (r ,v, t) =
∑

n

∫ t

dτ fn(r ,v, τ − t)an(τ ). (80)

We may now seek the characteristic signature in observed phase space (today i.e. at t = 0), of a given perturbation.

A(�,μ) =
∑

n

∫
dτan(τ )

∫
drr 4

∫
dur fn(r [�, r ],v[rμ, ur], τ ), (81)

where v [rμ, u r] is given by equation (77), and r [�, r ] is given by equation (78). In particular, we may compute the autocorrelation of the
kinematic count defined by

Cμ
A (��, �μ)

�= 〈A(� + ��,μ + �μ)A(�,μ). (82)

It involves an integral over time of the autocorrelation of the coefficients, 〈an(τ ) an′ (τ ′)〉 as

Cμ
A =
∑
n,n′

∫∫
dτ dτ ′〈an(τ )an′ (τ ′)〉

∫∫
r 4drr ′4 dr′

∫∫
dur du′

r fn(r [�, r ],v[rμ, ur], τ ) fn′ (r [� + ��, r ],v[r ′μ + r ′�μ, u′
r], τ

′).

Recall that 〈an(τ )an′ (τ ′)〉 can be re-expressed in terms of the coefficients of 〈 b̂ · b̂
∗
〉, 〈 ĉ · ĉ∗
〉 and 〈 b̂ · ĉ∗
〉 via equation (29). The width

of the correlation, Cμ
A(��, �μ), both in velocity space and in position space accounts for the expected cosmic size of structures within the

Galactic halo.

5.3.2 Angular extend of tidal tails

The marginal distribution over proper motions of equation (76) yields the projection on the sky of the perturbation:

A(�, t)
�=
∫∫

A(�,μ, t) dμ =
∫∫∫

durr 4dr f (r , u, t) dμ, (83)

which can be derived from equation (81) but is also found directly via integration over the density as

A(�, t) =
∑

n

an(t)

∫
ρ̃n(r , �)r 2dr , given

ρ̃n(r , �)
�= ρn(R(r , �), �(r , �), z(r , �)), (84)

where ρn is given by equation (9) and R(r , �) is given by equation (78). Note the generic difference between equations (81) and (84): the
former involves the explicit cumulative knowledge of an(τ ) for all τ since it involves a kinematical (inertial) quantity, μ, while the latter only
require the knowledge of the current an(t). This difference is weaker than it seems in practice, since self-gravity implies that an(t) depends
in turn on the previous an(τ ) via equation (18). The corresponding angular correlation reads

CA(��)
�= 〈A(� + ��)A(�)〉 =

∑
n,n′

〈an(t) an′ (t)〉
∫∫

dr dr ′ r ′2r 2ρ̃n[r , �]ρ̃n[r ′, � + ��].
(85)

The FWHM of the correlation defined by equation (85) corresponds to the ‘cosmic’ width of tidal stream projected on the sky.

5.4 Past history of galaxies: dynamical inversion

Let us now see how the theoretical framework presented in Sections 2 and 3 may be applied to invert observed properties of galaxies back
in time and constrain the past infall and the tidal field on a given dark matter halo. In short, the idea is to notice that the perturbation theory
provides an explicit relationship between the response and the excitation of the inner halo which we can tackle as an integral equation for the
source.8 Let us present first the inversion for our Milky Way (Section 5.4.1), and discuss briefly extra galactic stellar streams.

8 Since our treatment of the dynamics (including the self-consistent gravity polarization) is linear order by order, we may in principle recover the history of the
excitation.
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5.4.1 The Galactic inverse problem

Let us rewrite formally equation (81) as A(�,μ) = A�,μ ·a, where the dot product accounts for both the summation over n and the integration

over τ (cf. equation 45). Let us assume that we have access to kinematic star counts, i.e. to a set of measurements {Ai
�= A(�i , μi )}i�n . We

want to minimize

χ 2 =
∑

i

[
Ai − A�,μ

i · R1 · (K · b + Q · c)
]2

, (86)

subject to some penalty function. Recall that R1 is given by equation (47) and accounts for the self-gravity of the halo. Let us formally rewrite

againA�,μ
i · R1 ·(K 1 ·b+ Q1 ·c)

�= M · b̃, with b̃ = [b, c]. Let us also write A = (Ai )i�n . The solution to the linear minimization, equation (86)
reads

b̃
�= M

(−1)
λ · A = (M
 · M + λP)−1 · M
 · A, (87)

where P is some penalty which should impose smoothness for b and c both angularly and as a function of time. For instance, for the b field
we could use (see e.g. Pichon et al. 2002)

P[b�m] =
∑

�

[(� + 1)�]2

∫
dωω2|Ĉ�|, where Ĉ�(ω)

�= 〈|b̂�m |2〉

(so that large ω and � are less likely in the solution) and a similar expression for the c field which should also impose smoothing along
velocities. The penalty coefficient, λ, should be tuned so as to provide the appropriate level of smoothing. In practice, it might be necessary to
impose further non-linear constraints on the solution, b̃, such as requiring that the excitation is locally as compact and connex as possible on
the R200 sphere. This can be done via some form of non-linear bandpass filter in the former, in order to limit the effective degrees of freedom
in b̃.

5.4.1.1 Accounting for non-linearities. The non-linear solution, equation (51) may be formally rewritten as a2
�= M2 · b̃ ⊗ b̃, so that the

perturbative inverse reads

b̃
�= M

(−1)
λ · A − M

(−1)
λ · M2 · (M(−1)

λ · A
)⊗ (M(−1)

λ · A
)
, (88)

where M
(−1)
λ is defined by equation (87), provided the regime for the perturbative expansion applies. If not, we may still find the best non-linear

solutionto the penalized likelihood problem of jointly minimizing ||A − M · b̃ − M2 · b̃ ⊗ b̃||2 + λP , while using equation (88) as a starting
point.

When proper motions measurements are not available (i.e. we only have access to star counts), equations (86)–(88) still apply with some
straightforward modifications, but the conditioning of the problem should decrease significantly, since the dynamics is less constrained.

For a data set such as GAIA, we shall have access to the full 6D description of phase space for some of the stars (via radial velocity
measurements and parallax) or at least 5D measurements (�, b, μ�, μb, u r).

Recall that in practice, the fields, b and c are, respectively, 3D (two angles and time) and 5D (two angles, time and three velocities).
Consequently, the inverse problem is generically very ill-conditioned since data space is either 2D (�, b), 4D (�, b, μ�, μb), 5D (�, b, μ�, μb,
π) or 6D (�, b, μ�, μb, π, v r). In fact it is anticipated that the conditioning is even poorer because the dynamical evolution involves damped
modes, implying an exponential decay (which corresponds to a major challenge for extrapolation). It remains that the weakly damped modes
should be tractable back in time up to some horizon, which will depend on the nature of the halo (via the conditioning of Mλ defined in
equation 87), the volume of data, and the signal-to-noise ratio in the measurements.

Let us close this discussion of the inverse problem by emphasizing again the true complexity of the implementation: equation (87),
and its non-linear counterpart, equation (88), include via the dot product large sums over n and integrals over τ . M and M2 are functions of
A�,μ (which require a couple of integrals) and Abb, etc. which are themselves functions of K i (equation 53) [which involves the underlying
distribution function, F 0(I), and the basis function, ψ [n](r ) via equations (41), (42) and (47)].

Streamers (or tidal tails) in external galaxies may also be integrated backwards through the same procedure. It will involve the deprojection
of the stream and of the underlying halo.

In contrast to the Galactic inverse problem, it will in principle be possible to reproduce the inversion process on a statistical set of haloes,
which would allow us to compare directly to the predicted statistical properties of the b and the c (though clearly the bias introduced by the
penalized inversion would have to be accounted for).

This completes our rapid survey of possible applications for the perturbative treatment of the dynamics of an open halo.

6 C O N C L U S I O N

In the last few years, with the observational convergence towards the concordant cosmological model, a significant fraction of the interest has
shifted towards smaller scales. Indeed, it now becomes possible to project down to these scales some of the predictions of the model. This in
turn offers the prospect of transposing there what has certainly been a key asset of modern cosmology, both observationally and theoretically,
statistics. This is a requirement both from the point of view of the (often understated) variety of objects falling on to an L� galaxy, but also
because of the sheer size of the configuration space for infall. It is also a requirement from the point of view of the non-linear dynamics within
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time-scales corresponding to the relaxation processes and the dynamical evolution decouple. Hence, we could assume a hierarchy in time so
that the distribution function is constant in time when computing the polarization.

Finally, in Section 5 we considered in turn a few classical probes of the large-scale structures which had been used in the past to constrain
the main cosmological parameters and the initial power spectrum, which we transposed to the galactocentric context. Note that these are built
upon observables, hence they may be used to constrain the boundary power spectrum of the an. Since equation (65), (71), (E1) and (E10)
involve different combinations of 〈anan′ 〉, they will constrain them at different scales with different biases, which should ultimately allow us to
better characterize the power spectrum. This situation is the direct analogue of the cosmic situation, where the different tracers (weak lensing,
Lyα forest, CMB, etc.), constrain different scales of the cosmological power spectrum (with different biases). Note also that our knowledge
of the statistical properties of the boundary (via the bn and cn coefficients) together with some assumptions on the equilibrium F0 allows us
to generate given realizations of the an as shown in Aubert & Pichon (in preparation) and therefore virtual observables for any of these data
sets, for the purpose of, for example, validating inverse methods. We investigated the consequences of the infall down to galactic scales and
showed how it could be used to account for the observed distribution of disc properties (spiral winding, warps, etc.). We demonstrated how
the analytical model (both linear and non-linear) are quite useful when attempting to ‘invert’ the observations for the past accretion history
of a given galaxy. This stems mainly from the fact that perturbation theory provides an explicit scheme for the response of the system, in
contrast to the algorithmic procedure corresponding to N-body simulations.

Again, let us emphasize that equation (18) and its non-linear generalizations (D3) and (C7) yield in principle the detailed knowledge of
the full perturbed distribution (inside R200) at later times. (This is to be contrasted to the situation in N-body simulations where the response
of the system is partially hidden by the mean profile of the halo, which requires first identifying substructures Aubert et al. 2004.) Hence,
we should be in a position to weigh the relative importance of the environment (via se and ψ e) against the inner properties of the galaxy: the
unperturbed distribution function of the halo, F(I) (its level of anisotropy, the presence of a central cusp, etc.), the disc (its mass, its profile,
its distribution function, F(J), etc.).

The work presented here derives from the fact that it was realized that the bi-orthogonal projection pioneered by Kalnajs (1976) could be
applied order by order to the perturbative expansion of the dynamical equations. Yet this in turn required the knowledge of the relative phases
involved in the perturbation, which involves characterizing the properties of the perturber. The characterization only made sense statistically
in order to retain the generality of the approach of Kalnajs (1976). Hence the emphasis on statistics.

6.1 Discussion and prospects

Our purpose in this paper was to address in a statistically representative manner dynamical issues on galactic scales. We also advocated using
perturbation theory in angle–actions in order to explicitly propagate this cosmic boundary inwards in phase space. As was demonstrated in
the paper (and shown quantitatively in Section B4), this task remains in many respects quite challenging.

One of the limitations of the above method is the reliance on numerous expansions combined to the special care required in their
implementation. One could argue that this level of sophistication might not be justified in the light of the weakness of some of the assumptions.
Indeed, we are limited to systems with spherical geometry whereas galaxies most likely come in a variety of shapes. This assumption could
be lifted provided we compute the modified actions of the flattened spheroidal equilibrium using perturbation theory for the equilibrium in
the spirit of Binney & Spergel (1984), but implies a higher level of complexity (it would also require statistically specifying the orientation
of the halo relative to the infall, as discussed in part in Aubert et al. 2004). We assumed here that the perturbation was relatively light, which
excludes a fraction of cosmic event which might dominate the distribution of some of the observables.

Sections 4.2 and 5 and Appendix E presented a few possible applications for the framework described here and in Aubert & Pichon (in
preparation). These galactic probes would need to be further investigated, in particular in terms of observational and instrumental constraints.
The biasing specific to each tracer should be accounted for. The second-order perturbation theory needs to be implemented in practice together
with the diffusion coefficients of Section 4, following Appendix B and extending Section B4. Similarly, the identification and evolution of
substructures within the halo mentioned in Section 3.3.1 deserves more work. In Aubert et al. (2004), we showed that the accretion on to L�

haloes was anisotropic; the dynamical implication of this anisotropy will require some specific work in the future.
We will need to demonstrate against N-body simulations the relevance of perturbation theory for dynamical friction; in particular, we

should explore the regime in which the second-order truncation is appropriate, and at what cost. Note that truncated perturbation theory
implies that modes will ring forever. At some stage, one will therefore have to address the problem of energy dissipation.

Implementing a realistic treatment of the infalling gas will certainly be amongst the more serious challenges ahead of us. This is a
requirement both from the point of view of the dynamics but also from the point of view of converting the above predictions into baryon-
dependent observables. The description of the gas will require a proper treatment of the various cooling processes, which can be quite important
on galactic scales. In particular, the thickening of galactic discs is most likely the result of a fine-tuning between destructive processes such
as the tidal disruption of compact substructures on the one hand, and the adiabatic coplanar infall of cold gas within the disc. In fact, the
non-linear theory presented in Sections 3 and 4 could be extended to the geometry of discs to account for the adiabatic polarization towards
the plane of the disc.

Note that we assumed here that transients corresponding to the initial conditions where damped out so that the response of the system
was directly proportional to the excitation. The underlying picture is that of a calmer past, which in fact is very much in contradiction with
both our measurements and common knowledge on the more violent past accretion history of galaxies. Indeed, infalling subclumps will
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contribute via the external tidal potential at some earlier time, and the larger the look-back time, the relatively stronger the importance of the
perturbation (since the intensity of infall is in fact an increasing function of look-back time). We are therefore facing a partially divergent
boundary condition. Because of the characteristics of hierarchical clustering, the actual bootstrapping of the analytical framework is therefore
challenging. This could be a problem in particular for non-linear dynamics, where the coupling of transients may turn out to be as important
as the driven response. The importance of these shortcomings will need to be addressed in the future.

Finally, let us note that the theory presented in Sections 2–4 describes perturbative solutions to the collisionless Boltzmann–Poisson
equation in angle–action variables, and as such are not specific to the description of dark matter haloes. It could straightforwardly be transposed
to other situations or geometries provided the system remains integrable. As mentioned in Section 2.3, the stellar dynamics around a massive
black hole would seem to be an obvious context in which this theory could be applied. For instance, we might want to investigate the capture
of streams of stars by an infalling black hole. In a slightly different context, note in passing that the above theory could also be applied to
celestial mechanics, since an angle–action expansion corresponds to an all-eccentricity scheme.

Let us close this paper by a summary of the pros and cons of the theory presented here.
Possible assets:

(i) fixed boundary: localized statistics;
(ii) fluid description: no a priori assumption on the possibly time-dependent nature of the objects;
(iii) non-linear explicit treatment of the dynamics: proper account of the self-gravity of incoming objects and statistical accounting of

causality;
(iv) dynamically consistent statistically representative treatment of the cosmic environment;
(v) customized description of resonant processes within the halo via angle–action variables of universal profile;
(vi) ability to construct one- and two-point statistics for a wide range of galactic observables;
(vii) theoretical framework for dynamical inversion and secular evolution.

Possible drawbacks:

(i) weak perturbation with respect to spherical stationary equilibrium: not representative of, for example, equal mass mergers;
(ii) complex time dependent 5D boundary condition;
(iii) ad hoc position of the boundary;
(iv) no obvious truncation of two-entry perturbation theory;
(v) no account of baryonic processes;
(vi) inconsistency in relative strength of merging events versus time;
(vii) non-Gaussian environment probably untractable;
(viii) finite temporal horizon given finite �max;
(ix) no statistical accounting of linear instabilities.
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A P P E N D I X A : L I N E A R P RO PAG ATO R I N AC T I O N – A N G L E

As mentioned in Section 2.4.1, it is useful to regard the open collisionless system as a segmentation of the source for the propagator (i.e.
the Green function of the coupled Boltzmann–Poisson equation), where one distinguishes two contributions for the initial distribution: the
contribution at R200 with v r < 0 (what we describe as the source term in equation 6) and the contribution beyond R200 or at R200 with v r > 0
(what we describe as the tidal field in the main text). In order to make this comparison, let us derive generally (without any reference to
a boundary for now) the Green function satisfying the linearized Boltzmann–Poisson equation. Let us call G(w, I, t |w′, I ′, t ′) this Green
function; it obeys

∂G
∂t

+ ω · ∇wG + ∂F
∂I

· ∇w

∫
dr ′′

|r ′′ − r | dv′′G(r ′′,v′′, t |w′, I ′, t ′) = δD(w− w′)δD(I − I ′)δD(t − t ′), (A1)

so that the distribution function at (I, w, t) reads

f (w, I, t) =
∫

dt ′
∫

dw′
∫

dI ′G(w, I, t |w′, I ′, t ′) f (w′, I ′, t ′). (A2)

Let us define the linear propagator, U ω,k,w0 (I|I ′), as

Uω,k,w0 (I|I ′) = δD(I − I ′)
k · ω − ω

−
∑
n,n′

∂F
∂I

· k
ψ

[n]
k (I)

(k · ω − ω)
((1 − K̂ [ω])−1)n,n′

∑
k′

ψ
[n′]
k′ (I ′)

(k′ · ω′ − ω)
exp(iw0 · [k − k′]), (A3)
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so that the distribution function, f (I, w, t), at time t, with action I and angles w induced by the propagation of the distribution at earlier time
t′, with action I′, and angles w′ reads

f (I,w, t) =
∫

dt ′
∫

dI ′
∫

dw′
∑

k

∫
dω exp(iω[t − t ′] − ik · [w− w′])Uω,k,w0 (I|I ′) f (I ′,w′, t ′). (A4)

It is interesting to contrast equation (A3) to the propagator found by Ichimaru (1973) for the uniform plasma. In particular, the gradient of the
density profile breaks the stationarity in w−w0 of the propagator, equation (A3). Note also that the first term on the r.h.s. of equation (A3)
corresponds to free streaming inside the halo (i.e. dark matter particles describing their unperturbed orbits), and reads in real space

Gfree(I,w, t |I ′,w′, t ′) =
∑

k

∫
dω exp(iω[t − t ′] − ik · [w− w′])

δD(I − I ′)
k · ω − ω

= δD(I − I ′)δD(w− w′ − ω[t − t ′]),

while the second term in equation (A4) corresponds to the self-gravitating polarization of the halo induced by the perturbation. Note that
since the field dynamical equation is solved with a right-hand side (i.e. a source breaking the mass conservation in phase space), Liouville’s
theorem is not obeyed anymore: a new fluid is injected into the halo. We may now assume that in equation (A2), f (r ′, v ′, t ′) = f (w ′, I ′, t ′)
is split in two: one contribution from dark matter particles exiting R200 or beyond R200; another contribution describing particles on R200 with
negative radial velocity. The former component may then be resumed over the corresponding region of phase space with a 1/|r − r ′| weight,
and yields ψ e. The latter corresponds to se(t ′).

A P P E N D I X B : I M P L E M E N TAT I O N

Let us describe in this appendix in greater details how Section 2 are implemented in practice, while focusing here on a simple isotropic halo
(i.e. F(I) = F(E), where E = v2/2 + �(r ) is the energy, and �(r) the unperturbed potential). We will show here how to compute the operator,
K (defined by equation 16) and elements of Q (defined by equation 17), for the corresponding basis, following, e.g. Tremaine & Weinberg
(1984), Murali (1999) and Seguin & Dupraz (1994). We will then implement in practice the average induced correlation triggered by some ad
hoc coloured radial perturbation. Similarly, one could compute the non-linear coefficients, [[ ]] entering equation (39), but the implementation
of the non-linear formalism of Sections 3 and 4 are beyond the scope of this paper.

B1 Detailed angle–action linear response for isotropic spheres

The 3D nature of galactic halo makes the implementation slightly more complicated than one would think at first sight. The assumption that the
halo is spherical allow us to assume that the equilibrium is integrable. Hence, the action space is effectively at most 2D, but configuration space
remains 3D (though one angle is mute). In practice, this implies that integration over action space, occurring in, for example, equation (41) is
effectively 2D. On the other hand, the sum over k involves three indices, each corresponding to a degree of freedom.

Let us define I1 as the radial action, I 2
�= L as the total angular momentum and I 3

�= L z as the z-component of the angular momentum,
so that

I1 = 1

π

∫ ra

rp

dr
√

2[E − �(r )] − I 2
2 /r 2.

Here ra and rp are, respectively, the apoapses and periapses of dark matter particles. This defines I
�= (I 1, I 2, I 3) introduced in Section 2.1.

Similarly, let us define the corresponding angles, w
�= (w1, w2, w3) (see Fig. 1) given by

w1 = ω1

∫ r

rp(I)

dr√
2[E − �(r )] − I 2/r 2

, w2(I, w1) = χ −
∫ r (I,w1)

rp(I)

dr (ω2 − I2/r 2)√
2[E − �(r )] − I 2

2 /r 2
, w3 = φ − asin(cot(β) cot(θ )), (B1)

where cos β = L z/L .

B2 Computing the linear response operator

Following very closely the notation of Murali (1999), let us introduce a bi-orthogonal basis constructed around spherical harmonics

ρ(r , t) =
∑
�mn

a�mn(t)d�m
n (r )Y�m(Ω) and ψ(r , t) =

∑
�mn

a�mn(t)u�m
n (r )Y�m(Ω) (B2)

for, respectively, the density and the potential. Weinberg (1989) suggests the following potential–density pair

u�m
n (r ) = − 4πG

√
2

αn| j�(αn)| R−1/2 j�(αnr/R) and d�m
n (r ) = − αn

√
2

| j�(αn)| R−5/2 j�(αnr/R), (B3)

where j � stands for the spherical Bessel function and where αn obeys the relation αn j �−1/2(αn) = 0. Here R is the truncation radius of the
basis. Hernquist & Ostriker (1992) suggest another set of (non-normalized) bi-orthogonal functions defined by

u�m
n (r ) = − −r �

(1 + r )2�+1

√
4πC2�+3/2

n (ξ ) and d�m
n (r ) = Kn�

2π

r �−1

(1 + r )2�+3

√
4πC2�+3/2

n (ξ ), (B4)
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where K n� = n/2(n + 4� + 3) + (� + 1)(2� + 1), ξ = (r − 1)/(r + 1) and C�
n(x) stand for ultraspherical polynomials.

The action–angle transform of the potential basis is given by

W �n
k (I)

�= ψn
k (I) = 1

2π

∫ π

−π

dw1 exp(−ik1w1)u�k3
n (r ) exp[ik2(χ − w2)]. (B5)

We may now rewrite equation (16) as

K n′
n (τ − t) = −δ�

�′δ
m
m′

(2π)3

4πG

∫∫
dE

LdL
ω1

dF
∂E

∑
k

C�k2 ik · ω exp[ik · ω(τ − t)]W ∗�n′
k (I)

[
W �n

k (I) + 4π

3
δ1
� p�m

n Xk(I)

]
, (B6)

where

p1m
n =
∫

drr 2 d1m
n (r )

∂�

∂r
(B7)

and

C�k2 = 22k2−1

π2

(� − k2)!

(� + k2)!

�2[1/2(� + k2 + 1)]

�2[1/2(� − k2) + 1]
, if � + k2 even, else 0. (B8)

Here � is the standard Gamma function. Note that X k(I) accounts for the fact that the response is computed in a non-inertial referential frame.
To take into account the barycentric drift of the halo, the perturbed Hamiltonian should include the induced inertial potential ab · r , where ab

is the acceleration of the barycentre in the frame of the unperturbed halo. Its action–angle transform is given by

Xk(I) = 1

2π

∫ π

−π

dw1 exp(−ik1w1)r exp[ik2(ψ − w2)]. (B9)

As can be seen from equation (B6), this inertial contribution is limited to the dipole component (� = 1) of the response: as expected, it is
equivalent to a spatially homogeneous field force.9

B3 Implementation and validation

The actual computation of the linear response of the halo to a tidal field is a two-step procedure. First, the kernel K must be computed via
equation (B6). It involves an integration over the orbits’ space and requires to Fourier transforms the bi-orthogonal basis (W and X quantities)
along orbits. It can be done by ‘throwing orbits’ in the equilibrium potential and finding the associated sets of (I, ω) in the halo’s model: such
a procedure provides the angle dependence of the functions of the basis for a given action. Knowing W (I), X (I), ω(I) over a given sampling
of the I space, equation (B6) can be computed. In order to achieve high computing efficiency and accurate responses, we implemented the
calculation of equation (B6) in a parallel fashion, where the integrals in each subspace of the action space are computed by a different processor.

Secondly, the expansion a(t) of the halo’s response is computed either by iteration or by means of a Volterra’s equation solver (e.g. Press
et al. 1992). We found that both methods give very similar results and differ only by their time consumption. The iterative method can be very
fast if a proper initial guess is available but if it is not the case it may take a significant amount of time to achieve convergence. Conversely,
the Volterra solver’s time consumption is fixed for a given time resolution.

In order to validate our implementation, we set up two tests. The first one is suggested by Weinberg (1989). A Plummer’s halo is embedded
in a homogeneous force field and should experience a global drift described by the response of the potential:

ψ(r , t) = −r b(t) · ∇�(r ), (B10)

where r b stands for the barycentre position and � stands for the equilibrium potential. We chose the force field to have a a0sin(νt) time
dependence with a0 = 0.01 and ν = 0.01. The Plummer model has a unit mass M and characteristic radius b. The response was computed
using a 60 × 60 sampling in (E, L) and 20 radial terms of the basis given by equation (B3). We switched off the drift compensation modelled
by the X term in equation (B6). Fig. B1 shows the response computed at t = 10 (in units of

√
b3/G M) along with the prediction given by

equation (B10). Clearly the two responses coincide, providing a first validation of our implementation.
A second test involves reproducing the contraction of a Hernquist’s halo induced by a central spherical mass (which would model the

presence of a galaxy, for example). This central mass is assumed to follow a Hernquist’s profile, whose potential is given by

�(r ) = − G M
r + a

. (B11)

The halo has a unit mass M and characteristic radius a, while the central object has a final mass of m p = 0.001 and ap = 0.25 as a constant
characteristic radius. The perturber is turned on at t = 0 and follows a m p(t) = m p(t f)(3(t/t f)2 − 2(t/t f)3) temporal evolution, where tf is
the final time-step. We compare the linear response at t = t f with the simulation of the same test case using a perturbative particle code
(Magorrian private communication). The response was computed using a 60 × 60 sampling in 13 subregions of the whole (E, L) space and
21 radial terms of the basis given by equation (B4). Self-gravity of the response is not taken in account in both methods. Fig. B2 shows the
comparisons between the two type of calculations, made for two different growing time tf. Clearly, the two methods are in good agreement.
One can see that matter is dragged towards the centre and the longer it takes to grow the perturber, the further from the centre are the affected
regions.

9 Technically speaking, the δ�1 dependence arise from the fact that r is expressed as a function of Y1m (Ω) spherical harmonics.
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Figure 5. Diagrammatic representation of the expansion to second order given in equations (43)–(44). The top diagram states that one should sum over all
orders in the coupling in order to model the non-linear response of the halo; the second diagram from the top stands for equation (43) and the third for
equation (44). The loops correspond to the self-coupling, i.e. the self-gravity response of the halo to the perturbing flow. The second diagram corresponds to
the ‘propagation’ of the double excitation (see also Appendix A for a discussion of the distribution function propagator in angle–action variables): the input are
the external potential, ψe (through its bn coefficients) and the source, se (expanded over the cn coefficients); the output is the coefficient of the expansion of
the inner potential. The coupling is achieved via the operator K i and Qi defined by equations (42) (Section 3.1.1) and (D4), while the contraction is achieved
by equations (45) and (46) and is represented by the wiggly horizontal line.

the dark matter halo in order to account for the relative time ordering of accretion events. It was pointless to describe continuous infall, haloes
are typically not in fully phase-mixed equilibria, and the resulting fluctuation spectrum may seed or excite the observed properties of galaxies.

In this paper, we aimed at constructing a self-consistent description of dynamical issues for dark matter haloes embedded in a moderately
active cosmic environment. It relied entirely on the assumption that the statistics of the infall is well characterized, as described in Aubert
& Pichon (in preparation), and that the mass of the infalling material (or to a lesser extend that of the flyby) should be small compared to
the mass of the halo. It also assumed that the halo was spherical and static or evolving adiabatically (Section 4). The emphasis was on the
theoretical framework, rather than the details of the actual implementation. In other words, we aimed at describing a self-consistent setting
which allows us to propagate the cosmological environment into the core of galactic haloes.

In Section 2, we derived the dynamical equations governing the linear evolution of the induced perturbation by direct infall or tidal
excitation of a spherically symmetric (integrable) stationary dark matter halo. The simplified geometry of the initial state allowed us to focus
on the specificities of an open system. Specifically, we revisited the influence of the external perturbations on the spherical halo, and extended
the results of the literature by considering an advection term in the Boltzmann equation. This approach was compared to the classical Green
solution in Appendix A. Note that both the intrinsic properties of the halo, via the distribution function, F (equation 16), and the environment,
via (se, ψ e) (equation 17), of the infall and the tidal distortion were accounted for. Clearly, the subclass of problems corresponding to tidal
perturbations only will turn out to be easier to implement at first. Appendix B presents the details of the angle–action variables on the sphere
together with an explicit expression for the kernel, K, and carried out a test case implementation of the statistical propagation of an ensemble
of radial excitations with a power-spectrum scaling like ν−2.

In Section 3, we derived the non-linear response of the galactic halo to second order (equation 44) in the perturbation (and to order
n in Appendix D together with the corresponding N-point correlation function) to account for tidal stripping and dynamical friction. The
dynamics was ‘solved’ iteratively, in the spirit of the successful approach initiated in cosmology by Fry (1984) and considerably extended
by Bernardeau (1992). In particular, we presented and illustrated a set of diagrams (Figs 5 and D1), each corresponding to the contribution
of the perturbation expansion. Though the actual implementation of the non-linear theory is going to be CPU intensive, we argue that it will
improve our understanding of the competing dynamical processes within a galactic halo. In particular, we discussed how this explicit theory
of non-linear dynamics provides the setting in which substructure evolution (and destruction) will have to be carried, in order to account for,
e.g. tidal stripping.

In Section 4, we presented the Fokker–Planck equation governing the quasi-linear evolution of the mean profile of the ensemble-averaged
halo embedded in its cosmic environment. Specifically, we showed how the infall, drift and diffusion coefficients (equations C13–C15) are
related to the two-point correlation of the tidal field and incoming fluxes. Appendix C gives a derivation of this equation from first principles,
while in the main text, we focused on the bibliographic context and possible applications. The key physical ingredient behind this secular
evolution theory was the stochastic fluctuation caused by the incoming cosmic substructures. The key technical assumption was that the two
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Figure B1. Isocontours in the xy plane of the potential’s response of a Plummer sphere embedded in a homogeneous force field (see text for details). The force
field is aligned along the x-axis. The dashed line stands for the prediction and the solid line stands for the linear calculation presented in this paper.
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Figure B2. The radial profile of the density response of a Hernquist’s halo due to a central perturber. Lines stand for the linear response of the halo as the central
perturber grows over a t = 0.63t d (dotted line) and t = 10t d time-scale (dashed line). td is the dynamical time of the main halo within its core radius. Radii
are given in units of the main halo’s core radius. Density units are in code units. Superimposed are the calculations of the same response using a perturbative
particle simulation (Magorrian private communication). No scaling has been applied and the two methods agree quantitatively.

B4 Statistical propagation: a test case

In this section, we compute the two-point statistics of a halo responding to a simple type of tidal perturbation as an illustration of statistical
propagation. Without any assumption on the type of perturbation, we recall that the two-point statistics of the halo’s response is given by
equation (29) and can be derived directly from the perturbations statistics. Let us simplify the computation of the correlation by assuming that
the halo is only tidally perturbed, so that equation (29) reduces to

〈â · â∗
〉 = 〈[K̂ · b̂] · (1 − K̂ )−1 · (1 − K̂ )−1∗
 · [K̂ · b̂]
∗〉. (B12)

Furthermore, let us also (rather crudely) assume that the tidal field is monopolar, and has a radial dependence equals to the Nth element of
the radial basis which diagonalize the Poisson equation. Then, the coefficient of the tidal perturber can be written as

bn
�m(t) = b(t)δnN δ�0δm0, (B13)

where the perturbing tidal field is described by

ψ e(r ,Ω, t) = b(t)uN
00(r ). (B14)

Since no radial coupling occurs, the halo’s response can be simply written as

ψ(r ,Ω, t) = a(t)uN
00(r ). (B15)
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Figure B3. The halo’s density profile chosen for the statistical propagation’s example follows a hernquist model (top left-hand panel). We apply a monopolar
tidal field ψe(r ) with a radial structure given by the d N (r ) function of the bi-orthogonal basis of Hernquist & Ostriker (1992). Here are shown the corresponding
density profiles ρe(r ) = �ψe/4πG for N = 1, 5, 10.

Consequently, the only remaining degree of freedom is the temporal variation of the tidal field. If we consider an ensemble of tidal environments
and if we assume stationarity and Gaussianity of the induced perturbations, it will be described by the temporal two-point correlation function
of b(t) coefficients, or equivalently by their temporal power spectrum Pb(ν):

Pb(ν) = 〈b̂(ν)b̂∗(ν)〉, (B16)

where ν stands for the frequency. If the temporal power spectrum of the response is given by Pa(ν) then equation (B12) reduces to

Pa(ν) = 〈â(ν)â∗(ν)〉 =
∣∣K̂ 00

N N (ν)
∣∣2∣∣1 − K̂ 00

N N (ν)
∣∣2 Pb(ν). (B17)

Equation (B17) simply states that the frequency structure of the ‘tidal noise’ is transmitted to haloes via a (scalar) transfer function given by
the response kernel.

Let us further describe our test halo again by a Hernquist’s model (Hernquist 1990). The corresponding kernel is computed following the
procedure described by Section B2 using the Hernquist & Ostriker (1992) potential–density pair (see Fig. B3). Further details can be found
in Murali (1999) and Seguin & Dupraz (1994). The radial dependence of the tidal perturber is given by the Nth potential function u N (r ) =
u00

N (r ) of the basis described by Hernquist & Ostriker (1992). The associated density function is given by dN (r ) = dN (r )00 = �u N (r )/4πG
and examples of such profiles are given in Fig. B3 along with the halo’s profile. For simplicity, the tidal frequency distribution has been chosen
to follow a power law:

Pb(ν) ∼ ν−2. (B18)

This power law describes the ensemble frequency behaviour and therefore a single realization of the tidal noise may deviate from this relation
as long as statistical convergence is achieved. Fig. B4 shows both an example of the time dependence of such a perturber and the time
dependence of the induced response. One can see that the halo acts as a low-pass frequency filter and do not recover all the high-frequency
features present in the tidal field. Also, the halo response appears as delayed in time, reflecting the effect of the halo’s own inertia.

The same computation was performed for an ensemble of 1000 different tidal perturbations. Fig. B5 shows the power spectrum Pb(ν)
averaged over all the realizations along with Pa(ν) averaged over the 1000 haloes’ responses (shown as symbols with error bars). Pb(ν) departs
from a power law at low frequencies (ν < 50 in code units) because of the finite time range over which the tidal field is applied (not shown
here). At higher frequencies, the frequency distribution of the perturbers follows exactly equation (B18). Independently, Pa(ν) is directly
predicted from Pb(ν) using equation (B17), without relying on the computations of individual responses, and shown on the same plot as solid
lines. Clearly, the predicted power spectrum of the response matches the statistically averaged one and even reproduces ‘bumpy’ features seen
at various frequencies. The filtering effect of the halo response can still be seen in the predicted spectra: Pa(ν) follows the ν−2 law at low
frequencies but exhibits a steeper slope at higher frequencies. This cut-off effect is more important for large-scale perturbations (low N) and
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Figure B4. An example of time evolution of the tidal field’s amplitude b(t) (plain line). Its power spectrum P b(ν) follows a ν−2 law. Assuming an N = 2
radial dependence, the amplitude a(t) of the induced halo’s response can be computed (dashed line). The halo does not respond to high-frequency features and
globally its response is slightly delayed, reflecting its own inertia.
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Figure B5. An example of statistical propagation. The average power spectrum of the 1000 tidal perturbations applied to the Hernquist halo (top curve)
follows a ν−2 law (dashed thick curve). Symbols stand for power spectrum of the halo’s response averaged over the 1000 realizations of ψe(r , t) with four
different radial dependences (with N = 1, 3, 5, 10, from top to bottom). The superimposed curves show the direct predictions on the power spectra, following
equation (B17). For clarity, these curves have been divided, respectively, by 1, 20, 40 and 70. Frequencies are in code units.

reflects the fact that perturbations at high frequencies are unable to ‘resonnate’ efficiently with the halo’s large-scale modes. Conversely, tidal
perturbations with features on small spatial scales (large N) are more likely to induce large frequencies and preserve the frequency structure
of the perturbation. Moreover, the ‘bumps’ seen in the Pa(ν) curves reflect the eigenfrequencies of the halo. The scale-free spectrum of the
perturber hits resonances which react in a stronger fashion than any other frequency. Again, these resonances occur at larger frequencies as
the radial order N increases: smaller radial-scale perturbations relate to shorter characteristic time-scales.

The illustration presented in this section is admittedly simplistic but hints at the possibilities which can be foreseen for statistical
propagation: for a given set of constrained environment, predictions on the statistics of the induced response can be made without relying on
the computation of individual realizations. Predictions on spatial or spatiotemporal correlations of the halo’s response can be made following
the same procedure. It will possibly allow us to study the impact of the different scales of accretion or potential, the influence of the rate of
change of these perturbations and their relative relevance on the statistical properties of matter within the halo as discussed in Section 5.
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A P P E N D I X C : S E C U L A R E VO L U T I O N W I T H I N FA L L

Let us derive in this appendix the secular equation for the evolution of the ensemble average halo embedded in a typical cosmic environment
(with infall and tidal field). This follows the pioneering work of Weinberg (2001a) and Ma & Bertschinger (2004). The settings in which
they derive their coefficients differ: their starting point is the kinetic closure relation given by Klimontovich (1967), Ichimaru (1973) and
Gilbert (1970) who note that the BBGKY hierarchy may be closed while assuming that the two-point correlation function will relax on a
shorter dynamical time-scale, whereas the one-point distribution function evolves on a longer secular time-scale.10 Hence, if one assumes
that the distribution function F entering the linearized equation (6) can be considered to be constant, then the second-order equation in
the BBGKY hierarchy is automatically satisfied while the r.h.s. of the first equation is proportional to the propagated (via equation A3)
excess correlation induced by the dressed clumps. This kinetic theory has been successfully applied in plasma physics, leading to the so
called Lenard–Balescu (Lenard 1961; Balescu 1963) collision term, and was also transposed by Weinberg (1993) for a multiperiodic ‘stellar’
system.

Note that the BBGKY hierarchy is a 1/N expansion, where N is the number of particles in the system. Formally, it would make sense
here to identify N as a measure of the clumpiness of the medium, but this definition is qualitative only. We rely here on the same time-ordering
hierarchy, but the degree of clumpiness in the system is explicitly imposed by the boundary condition. In this appendix, the derivation is
carried from first principles, while relying on an explicit infall and tidal field.

C1 Quasi-linear equations in angle–action variables

The collisionless Boltzmann equation of an open system may be written as

∂F

∂t
+ {H , F} = Se + se, with H = v2

2
+ �(I,w, t, T ), (C1)

where F is defined by

F(I,w, t, T ) = F(I, T ) + f (I,w, t) and �(I,w, t, T ) = �0(I,w, T ) + ψ(I,w, t) + ψ e(I,w, t), (C2)

with F describing the secular evolution of the DF and f describing the fluctuations of the DF over this secular evolution. In equation (C1), the
r.h.s. stands for the incoming infall, both fluctuating (se[I, w, t]) and secular (Se(I, T )). Since this system evolves secularly because of its
environment, these actions are not conserved. The last two terms on the r.h.s. of equation (C2) represents the fluctuating component tracing
the motions of clumps within the environment of the halo.11 Note that since F(I, T ) is assumed to depend here only on the action, it represents
a coarse-grained distribution function (averaged over the angles) for which we make no attempt to specify where each star is along its orbit
nor how oriented the orbit is. Note also that the canonical variables I and w are the actions and the angles of the initial system. Developing
the collisionless Boltzmann equation, equation (C1), over the secular and the fluctuating expansion leads to

∂F
∂t

+ ∂ f
∂t

+ ω · ∂ f
∂w

− ∂ψ

∂w
·
(

∂F
∂I

+ ∂ f
∂I

)
− ∂ψ

∂w

e

·
(

∂F
∂I

+ ∂ f
∂I

)
+
[

∂ψ

∂I
+ ∂ψ e

∂I

]
· ∂ f
∂w

= Se + se. (C3)

This equation involves two time-scales, t and T . On the fluctuation time-scale, t, secular quantities can be described as static, leaving only the
linearized open collisionless Boltzmann equation (6):

∂ f
∂t

+ ω · ∂ f
∂w

−
(

∂ψ

∂w
+ ∂ψ

∂w

e
)

· ∂F
∂I

= se, (C4)

where the amplitude of f is of first order compared to F and involves only the fluctuating part of the external forcing, se(I, w, t). On a
longer time-scale, T , the Boltzmann equation, equation (C3) can be T-averaged, considering that the average of fluctuations are zero on such
time-scales. This leads to a second equation:

∂〈F〉
∂T

=
〈[

∂ψ

∂w
+ ∂ψ e

∂w

]
· ∂ f

∂I

〉
T

−
〈[

∂ψ

∂I
+ ∂ψ e

∂I

]
· ∂ f
∂w

〉
T

+ 〈Se〉T . (C5)

The brackets denotes averaging over a time longer than the typical time-scale of fluctuations:

〈Y 〉T
�= 1/�T

∫ T +�T /2

T −�T /2

dtY (t).

The time interval, �T , should be chosen so that a given dark matter particle describing its orbit will encounter a few times the incoming clump
at various phases along its orbit. Because the incoming clump is subject to dynamical friction, the resonance will only last so long, and induce
a finite but small kick, �I during �T . Because the infall displays some degree of temporal and spatial coherence, we may not assume that
the successive kicks are uncorrelated, in contrast to the situation presented by Weinberg (2001a), Ma & Bertschinger (2004) or the classical
image described in Brownian motion. In other words, when we write an effective microscopic Langevin counterpart to the corresponding
Fokker–Planck equation, it will involve a coloured 3D random variable (see equation 60).

10 This time ordering is originally due to Bogolyubov & Gurov (1947).
11 We neglect here the secular drift of the external potential which should slowly shift the frequencies, ω in equation (C3).
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Derivative and averaging may be exchanged considering that F and � evolve slowly with respect to time. Terms involving the product
of two first-order quantities survive to the time averaging because we cannot presume that the response in distribution function and potential
within R200 are uncorrelated. In order to evaluate those quadratic terms, we may integrate equation (C4), while assuming that F(I, T) is
effectively constant with respect to time t. The solution, equation (7), may then be re-injected into the quadratic terms in equation (C5) so that
they involves terms such as

∂ f
∂I

· ∂ψ

∂w
= −
(∑

k1,k2

ei(k1+k2)·wψk2 (I, t)

∫ t

−∞
dτeik1·ω(τ−t)ψk1 (I, τ )k1 ⊗ k2

)
:

∂2 F
∂I2

−
(∑

k1,k2

ei(k1+k2)·wk1ψk2 (I, t)k2 · ∂

∂I

∫ t

−∞
dτeik1·ω(τ−t)ψk1 (I, τ )

)
· ∂F

∂I
, (C6)

where we may factor the action derivative of F(I, T) out of the τ -time integral because the secular distribution is assumed to be constant over
a few dynamical times. Since the hand-hand side of equation (C5) does not depend on w, we may average its r.h.s. over dw. This implies
that in equation (C6), only the k1 = −k2 terms remain. We rely effectively on the averaging theorem (Binney & Tremaine (1987)) to convert
orbit averages into angle average. The corresponding evolution equation hence depends on the actions only, as expected. Note that in doing
so, we assume that no other resonances matter. The secular equation, equation (C5), becomes finally after some similar algebra for the other
contributions12:
∂F
∂t

= 〈D0(I)〉 − 〈D1(I)〉 · ∂F
∂I

− 〈D2(I)〉 :
∂2 F
∂I2 , (C7)

where

〈D0(I)〉 = 1

(2π)3

∫
〈Se〉T dw+

〈∑
k

ik · ∂

∂I

([
ψ∗

k (I, t) + ψ e∗
k (I, t)
] ∫ t

−∞
eik1·ω(τ−t)se(k, I, τ )dτ

)〉
T

, (C8)

while the drift coefficient, D1, obeys

〈D1(I)〉 =
〈∑

k

k k · ∂

∂I

([
ψ∗

k (I, t) + ψ e∗
k (I, t)
] ∫ t

−∞
eik ·ω(τ−t)[ψk (I, τ ) + ψ e

k (I, τ )]dτ

)〉
T

, (C9)

and the diffusion coefficient, D2, is given by

〈D2(I)〉 =
〈∑

k

k ⊗ k
[
ψ∗

k (I, t) + ψ e∗
k (I, t)
] ∫ t

−∞
eik ·ω(τ−t)

[
ψk (I, τ ) + ψ e

k (I, τ )
]

dτ

〉
T

. (C10)

Note that the infall coefficient, D0, includes both the secular infall, and a contribution arising from the possible correlation between the
fluctuating tidal field and the fluctuating infall. It may be an explicit function of time, T , reflecting the fact that, as more mass is accreted, the
profile of dark matter changes with time. The coefficients D0, D1 and D2 are also an implicit function of time because of the time average,
〈 〉T and via the secular distribution function, F(I, T), which occurs in ψ k(I, t) through equation (18). Clearly, if the potential and/or the source
term are completely decorrelated in time, so that 〈ψ∗

k(I , t) ψ∗
k (I, τ )〉T ∝ δD(t − τ ) and 〈ψ∗

k(I, t) se∗
k (I, τ )〉T ∝ δ D(t − τ ), equation (C10)

or (C9) would vanish. Provided �T is long compared to the typical correlation time of the potential (and/or the source term), we may take
the limit t → ∞ in the integrals entering equations (C8)–(C10). Note, finally, that equation (C7) does not derive from a kinetic theory in the
classical sense, in that it does not rely on a diffusion process in velocity space induced by the discrete number of particles in the system.

C2 Linking the infall, drift and diffusion to the cosmic two-point correlations

Up to this point we investigated the secular evolution of a given (phase-averaged) halo, undergoing a given inflow and tidal field accretion
history. Let us now invoke ergodicity so as to replace temporal averages by ensemble averages in equations (C8)–(C10). In doing so, we now
try and describe a mean galactic halo embedded in the typical environment presenting the most likely correlations. This involves replacing

〈 〉T with 〈 〉 �= E{ }. Let us use equation (10) to expand equation (C10). This yields

〈D2(I, T )〉 =
∑

k

k ⊗ k
∑
n,n′

(∫ ∞

−∞

〈
a∗

n′ (t)an(τ )
〉

eik ·ω(τ−t)dτ

)
ψ

[n′]∗
k (I)ψ [n]

k (I), (C11)

where a n(t)
�= an(t) + bn(t) corresponds to the coefficient of the total (self-consistent plus external) potential. If the first-order perturbations

are stationary, let us write the two-point cross-correlation of the temporal fields, 〈an(t), an′ (τ )〉 as C[an, an′ ](t − τ ) so that the integral in
equation (C11) may be carried as (assuming parity for the correlation function)∫ ∞

0

C[an, an′ ](�τ )eik ·ω�τ d�τ = Pn,n′
a [k · ω], (C12)

12 Note that when Se = se = 0 this equation is conservative by construction.
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giving the temporal power spectrum evaluated at the temporal frequency, k · ω. Consequently, the diffusion coefficient becomes

〈D2(I)〉 =
∑

k

k ⊗ k
∑
n,n′

ψ
[n′]∗
k (I)ψ [n]

k (I)Pn,n′
a [k · ω]. (C13)

The same procedure may be applied to the other coefficient:

〈D1(I)〉 =
∑

k

k
∑
n,n′

k · ∂

∂I

(
ψ

[n′]∗
k (I)ψ [n]

k (I)Pn,n′
a [k · ω]

)
, (C14)

while, for the secular correlation (equation C8):

〈D0(I)〉 = 1

(2π)3

∫
〈Se〉T dw+

∑
k

k
∑
n,n′

k · ∂

∂I

(
ψ

[n′]∗
k (I)σ [n],e

k (I)Pn,n′
ac [k · ω] big), (C15)

where Pn,n′
ac [ω] is the mixed power spectrum given by 〈â∗

nĉn〉 = 〈[â∗
n + b̂∗

n]ĉn〉. Hence

Pn,n′
ac [k · ω] = (( Âb + 1) × (1) · 〈b̂∗ ⊗ ĉ〉 + Âc × (1) · 〈ĉ∗ ⊗ ĉ〉) [k · ω]. (C16)

Recall also that (given equations 19 and 49)

Pn,n′
a [k · ω] = (( Âb + 1) × ( Â∗

b + 1
) · 〈b̂ ⊗ b̂

∗〉 + Âc × Â
∗
c · 〈ĉ ⊗ ĉ∗〉 + ( Âb + 1) × Â

∗
c · 〈b̂ ⊗ ĉ∗〉 + Âc × ( Â∗

b + 1
) · 〈ĉ ⊗ b̂

∗〉) [k · ω],
(C17)

where Ab and Ac involve K and therefore the secular distribution function, F, via equation (16). Recall that Ab and Ac involve (1 − K̂ )−1,
which reflects the fact that the perturbation is dressed by the self-gravity of the halo. Equation (C7), together with equations (C13)–(C14) and
(C17) provides a consistent framework in which to evolve secularly the mean distribution of a galactic halo within its cosmic environment.
Note that it is possible via equation (51) to apply non-linear corrections to the induced correlation within R200.

A P P E N D I X D : P E RT U R BAT I O N T H E O RY TO H I G H E R O R D E R

D1 Perturbative dynamical equations

In this section, we ‘solve’ the dynamical equation to order n, which will allow us in the next section to present the N-point correlation to
order n.

D1.1 Perturbation theory to all orders

Recall that for n � 2, f (n)
k (I , t)obeys equation (34). Given equation (15), it follows that

a(n)
p (t) =
∑
q,k

∫
dτ exp(ik · ω[τ − t])

[
a(n)

q (τ ) + δn
1 bq (τ )
](

(2π)3

∫
dIψ [n]

k (I)ψ [p]∗
k (I)

∂F
∂I

· ik

)

−
n−1∑
k=1

∑
q,k

∫
dτ exp(ik · ω[τ − t])

[
a(k)

q (τ ) + δk
1 bq (τ )
](

(2π)3

∫
dI
{
ψ [q](w, I), f (n−k)(w, I, t)

}
k
ψ

[p]∗
k (I)

)
, (D1)

where the first term in equation (D1) corresponds to the usual self-gravity coupling at order n, and the sum corresponds to the feed of
lower-order potential coupling into the nth order equation. Here f (n)

k (I,t) obeys

f (n)
k (I, t) =

∑
q

∫
dτ exp(ik · ω[τ − t]) ×

[
∂F
∂I

· ik ψ
[q]
k

[
a(n)

q (τ ) + δn
1 bq (τ )
]+ n−1∑

k=1

[
a(k)

q (τ ) + δk
1 bq (τ )
]{

f (n−k), ψ
[q]
k

}
k

]

+
∑

q

∫
dτ exp(ik · ω[τ − t])cq (τ )δ1

nσ
e,[q]
k . (D2)

Note that the response in equation (D2) is, as expected, out of phase with respect to the potential excitation, an(τ ) because of inertia (hence the
modulation in exp (ik · ω(τ − t))). Now, to nth order equation (D1), (D2) may be rewritten formally as (using the contraction rule equation 46)

a(n) = K 1 · a(n) + K 2 ·
( ∑

i1+i2=n

[
a(i1) + δ1

i1
b
]⊗ [a(i2) + δ1

i2
b
])+ · · · + K j ·

( ∑
i1+···+i j =n

⊗
j

[
a(i1) + δ1

i1
b
])+ · · · + K n ·

⊗
n

[
a(1) + b
]

+ Q2 · (a(n−1) ⊗ c
)+ · · · + Q j ·

⎛⎝ ∑
i1+···+i j =n−1

[⊗[
a(i1) + δ1

i1
b
]]⊗ c

⎞⎠+ · · · + Qn ·
[⊗

n−1

[
a(1) + b
]]⊗ c, (D3)
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Figure D1. Diagrammatic representation of the expansion to third order (top diagram, corresponding to equation D5) and fourth order (bottom diagram, given
equation D6); again (see Fig. 5 for details) the coupling of the tidal interaction (through the bn coefficients) and the incoming infall (expanded over the cn
coefficients) yields the coefficient of the response inside R200. The coupling is achieved via the operator K i and Q i as explained in Fig. D2; the curly brace in
front of the diagrams account for the number of such diagrams entering the expansion, corresponding to the permutation of the input (recalling that the order
matters). Note also for each branch the sum of the order of the subbranch correspond to the order of the expansion.

where the kernels K 1 and K 2 are given by equations (41)–(42), while K n , n � 2 obey formally

(K n)p,q1,q2,...,qn [τ1 − t, τ2 − τ1, . . . , τn − τn−1] = [2π]3
∑

k

∫
dI exp(ik · ω[τ1 − t])

∑
k1+k2=k

[[
exp(ik1 · ω[τ2 − τ1]) · · ·

×
∑

k2n−1+k2n=kn

[[
exp(ik2n−3 · ω[τn − τn−1])

∂F
∂I

· ik2n−3ψ
[qn ]
k2n−3

, ψ
[qn−1]
k2n−2

]]
· · · , ψ [q2]

k4

]]
, ψ

[q1]
k2

]]
ψ

[p]∗
k . (D4)

Note that the nth order Kernel involves ‘only’ one integral over action space, but n couplings in configuration space and n + 1 time-ordered
instants (t , τ 1, . . . , τ n). Note also that equation (D1) implies that secular perturbation theory accounts for both the rate of change in frequency
of the system, via ∂nω/∂In , the rate of change in equilibrium via ∂n F/∂In but also the rate of change in the incoming flow via ∂nσ [p],e/∂In .
Note, finally, that the relative phases (causality) are accounted for via the ordered time integrals. For instance, equation (D3) reads to third
order as

a(3) = K 1 · a(3) + K 2 · ([a(1)
1 + b
]⊗ a(2) + a(2) ⊗ [a(1) + b

])
+ K 3 · ([a(1) + b

]⊗ [a(1) + b
]⊗ [a(1) + b

])+ Q3 · ([a(1)
1 + b
]⊗ [a(1)

1 + b
]⊗ c
)+ Q2 · a(2) ⊗ c, (D5)

and is illustrated in Fig. D1 together with a(4)

a(4) = K 1 · a(4) + K 2 · (a(3) ⊗ [a(1) + b
]+ [a(1) + b

]⊗ a(3) + a(2) ⊗ a(2)
)

+ K 3 · (a(2) ⊗ [a(1) + b
]⊗ [a(1) + b

]+ [a(1) + b
]⊗ a(2) ⊗ [a(1) + b

]+ [a(1) + b
]⊗ [a(1) + b

]⊗ a(2)
)

+ K 4 · [a(1) + b
]⊗ [a(1) + b

]⊗ [a(1) + b
]⊗ [a(1) + b

]
+ Q2 · (a(3) ⊗ c

)+ Q3 · (a(2) ⊗ [a(1) + b
]⊗ c + [a(1) + b

]⊗ a(2) ⊗ c
)+ Q4 · [a(1) + b

]⊗ [a(1) + b
]⊗ [a(1) + b

]⊗ c. (D6)

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 368, 1657–1694
85



1690 C. Pichon and D. Aubert

Figure D2. Reordered diagrammatic representation to second order (first order included) of the expansion given in equations (43)–(44). This time only bn and
cn are inputs. The closed loop accounts for the self-gravity and represents (1 − K̂ 1)−1. The thin loop traces the fact that the perturbed potential contributes
also directly to the second-order term via a1 + b (see equation 44 for details). Note that in each diagram, each oblique line represents a sum over k and a time
integral. The dashed line stands for infall coupling, while the thick line stands for the tidal coupling.

Note that equation (D6) depends recursively on equation (D5) and both depends recursively on equations (44) and (43). When the recursion
is carried through (see Fig. D2) the expected relative complexity of the non-linear evolution appears clearly.

D1.2 Reordering to higher order

In the main text, we give in equation (53) and above the first- and second-order reshuffling of the perturbation in b and c. Similarly, the
third-order term reads in terms of products of b and c as

a(3) = Abbb · b ⊗ b ⊗ b + Accc · c ⊗ c ⊗ c + Abbc · b ⊗ b ⊗ c + Accb · c ⊗ c ⊗ b

+ Abcb · b ⊗ c ⊗ b + Acbb · c ⊗ b ⊗ b + Abcc · b ⊗ c ⊗ c + Acbc · c ⊗ b ⊗ c,

where (following the same convention as in the main text for the brackets)

Abbb = K ′
3 ◦ K ′′

1 + K ′
2 ◦ [K ′′

1, K ′
2 ◦ K ′′

1] + K ′
2 ◦ [K ′

2 ◦ K ′′
1, K ′′

1],

Accc = K ′
3 ◦ Q ′

1 + K ′
2 ◦ {[Q ′

1, K ′
2 ◦ Q ′

1 + Q ′
2 ◦ [Q ′

1, 1]] + [K ′
2 ◦ Q ′

1 + Q ′
2 ◦ [Q ′

1, 1], Q ′
1]} + Q ′

3 ◦ [Q ′
1, Q ′

1, 1]

+ Q′
2 ◦ [K ′

2 ◦ Q ′
1 + Q ′

2 ◦ Q ′
1, 1], 1],

Abbc = K ′
3 ◦ [K ′′

1, K ′′
1, Q ′

1] + Q ′
3 ◦ [K ′′

1, K ′′
1, 1] + K ′

2 ◦ [K ′′
1, K ′

2 ◦ [K ′′
1, Q ′

1] + Q ′
2 ◦ [K ′′

1, 1]],

Abcb = K ′
3 ◦ [K ′′

1, Q ′
1, K ′′

1] + K ′
2 ◦ [K ′

2 ◦ [K ′′
1, Q ′

1] + Q ′
2 ◦ [K ′′

1, 1], K ′′
1],

Accb = K ′
3 ◦ [Q ′

1, Q ′
1, K ′′

1] + K ′
2 ◦ [Q ′

1, K ′
2 ◦ [Q ′

1, K ′′
1]],

Acbb = K ′
3 ◦ [Q ′′

1, K ′′
1, K ′′

1] + K ′
2 ◦ [Q ′

1, K ′
2 ◦ K ′′

1],

Abcc = K ′
3 ◦ [K ′′

1, Q ′
1, Q ′

1] + Q ′
3 ◦ [K ′′

1, Q ′
1, 1] + K ′

2 ◦ [K ′′
1, K ′

2 ◦ Q ′
1 + Q ′

2 ◦ [Q ′
1, 1]] + K ′

2 ◦ [K ′′
1, K ′

2 ◦ Q ′
1 + Q ′

2 ◦ [Q ′
1, 1]]

+ Q ′
2 ◦ [K ′

2 ◦ [K ′′
1, Q ′

1] + Q ′
2 ◦ [K ′′

1, 1], 1],

Acbc = K ′
3 ◦ [Q ′

1, K ′′
1, Q ′

1] + Q ′
3 ◦ [Q ′′

1, K ′
1, 1] + K ′

2 ◦ [K ′
2 ◦ [Q ′

1, K ′′
1], K ′′

1] + K ′
2 ◦ [Q ′

1, K ′
2 ◦ [K ′′

1, Q ′
1] + Q ′

2 ◦ [K ′′
1, 1]]

+ Q ′
2 ◦ [K ′

2 ◦ [Q ′
1, K ′′

1], 1]. (D7)

Generically, after reordering, equation (53) becomes

a(n)
p (t) =
( ∑

i1,...,in∈[b,c]

Ai1···in · (i1 ⊗ · · · ⊗ in)

)
p

(t),

=
∑

i1,...,in∈[b,c]

∫ t

−∞
dτ1 · · ·
∫ τn−1

−∞
dτn

∑
q1···qn

[
Ai1···in

]
p,q1,...,qn

(t − τ1, . . . , τn − τn−1)[i1]q
1
(τ1) · · · [in]qn

(τn), (D8)

which involves 2n terms. Here [A i1 ...in ] p,q1,...,qn
(θ 1, . . . , θ n) is some linear tensor of order n + 1 which returns the nth order response to the

excitation bi (θ ), c j (θ ) at various times θ 1, θ 2, . . . , θ p. Note that it involve the equilibrium distribution function, F0 and its derivatives with
respect to the actions, I, together with the properties of the basis function.
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D2 The N-point correlation function

In the main text, we presented the calculation of the two-point correlation of the fields within the R200 sphere. More generally, we are interested
in the N-point correlation of, say, the density (at various times):

CN
�= 〈ρ(x1)ρ(x2) · · · ρ(xN )〉 =

∞∑
n=N

εn
∑

p1+p2+···+pN =n

〈
ρ(p1)(x1)ρ(p2)(x2) · · · ρ(pN )(xN )

〉
=
∑
n=N

εn
∑

p1+p2+···+pN =n

∑
q1,...,q N

ρ[q1](r 1) · · · ρ[q N ](r N )
〈

a(p1)
q1

(τ1) · · · a(pN )
q N

(τN )
〉
.

(D9)

Now, solutions to the nth order perturbation theory are given by equation (D8). It follows that〈
a(p1)

q1
(τ1) · · · a(pN )

q N
(τN )
〉 =
∑

i1,...,i p1 ∈[b,c]

· · ·
∑

i1,...,i pN ∈[b,c]

∑
q1,1,...,q pN ,pN

∫
dp1θ
[

Ai1···i p1

]
q1,q1,1,...,q1,p1

(τ1, θ1,1, . . . , θ1,p1 ) · · ·

×
∫

dpN θ
[

Ai1···i pN

]
q N ,q pN ,1,...,q pN ,pN

(τN , θ1,p1 , . . . , θpN ,pN )

× 〈[i1]q1,1
(θ1,1) · · · [i p1 ]q1,p1

(θpN ,1) · · · [i pN ]q1,pN
(θ1,pN ) · · · [i pN ]q pN pN

(θpN ,pN )〉. (D10)

If the perturbation is a centred Gaussian random field, Wick’s theorem states that

〈[i1]q1,1
(θ1,1) · · · [i p1 ]q1,p1

(θpN ,1) · · · [i pN ]q1,pN
(θ1,pN ) · · · [i pN ]q pN pN

(θpN ,pN )〉
=
∑

all permutations

∏
〈[i1]q1,1

(θ1,1)[i p1 ]q1,p1
(θpN ,1)〉 · · · 〈[i pN ]q1,pN

(θ1,pN )[i pN ]q pN pN
(θpN ,pN )〉. (D11)

Putting equations (D10)–(D11) into (D9) yields formally the N-point correlation function to arbitrary order. A special case in given in the main
text corresponding to third-order expansion of the two-point correlation, equation (34). The N-point correlation of other (possibly mixed)
moments of the distribution function may be computed following the same route.

D2.1 Synthetic hierarchy

D3 Perturbation theory in the complex Fourier plane

Let us close this appendix by a presentation of the perturbative solutions in the complex Fourier plane. In frequency space, equation (39) reads

â(2)
p (ω) =

∑
q1

â(2)
q1

(ω)

(
[2π]3
∑

k

∫
dIψ

[q1]
k (I)ψ [p]

k (I)
∂F
∂I

· k
1

k · ω − ω

)

+ [2π]3
∑

k

∫
dI
∑
q1,q2

∫
dω′
[

â(1)
q1

(ω′) + b̂q1
(ω′)

]
i

k · ω − ω′

×
∑

k1+k2=k

[[
i

k1 · ω − (ω − ω′)

[
∂F
∂I

· ik1ψ
[q2]
k1

(I)
[
â(1)

q2
(ω′) + b̂q2

(ω′)
]+ σ

e,[q2]
k1

(I)ĉq2
[ω′]

]
, ψ [q1]

k2

]]
ψ

[p]
k . (D12)

Following equation (45), let us also define in frequency space the contraction rule:

(K̂ · Ẑ)p(ω)
�=
∑

q

K̂ p,q (ω)Ẑq (ω) (D13)

(note that equations D13 only involve a sum and no integral) and the higher-order contraction rule (cf. equation 46):(
K̂ n · Ẑ

1 ⊗ · · · ⊗ Ẑ
n)

p
(ω)

�=
∑

q1,...,qn

∫
dω1 · · ·
∫

dωn K̂ p,q1,...,qn (ω1, . . . , ωn)δD

(
ω −

n∑
i=1

ωi

)
Ẑ 1

q1
(ω1) · · · Ẑ n

qn
(ωn). (D14)

The operator, K̂ n[ω1, ω2, . . . , ωn], obeys

(K̂ n)p,q1,q2,...,qn [ω1, ω2, . . . , ωn] = [2π]3
∑

k

∫
dI

i

k · ω − ω1

×
∑

k1+k2=k

[[
i

k1 · ω − ω2
· · ·
∑

k2n−1+k2n=kn

[[
i

k2n−3 · ω − ωn

∂F
∂I

· ik2n−3ψ
[qn ]
k2n−3

, ψ
[qn−1]
k2n−2

]]
· · · , ψ [q2]

k4

]]
, ψ

[q1]
k2

]]
ψ

[p]
k . (D15)

A P P E N D I X E : OT H E R C O S M O L O G I C A L P RO B E S

In this appendix, we discuss other non-linear statistical probes of the cosmic environment of haloes, expanding over Section 5.1.
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E1 Dark matter disintegration

It has been claimed that dark matter could be made of neutralinos which can be traced indirectly via their disintegration signature, which
scales like the square of the local dark matter density (Stoehr et al. 2003). The total number of γ photons received during integration time, t γ

reads

Na(Ω, tγ ) = Deff tγ
Ncont

2

〈σv〉
m2

χ

��

4π

1

��

∫
dΩ
∫

drρ2
DM(r )

�= Wχ

∫
dΩ
∫

drρ2
DM(r ), (E1)

where Deff is the effective size of the telescope, �� the angular resolution of the telescope, and N cont(E γ ) is the number of continuum
photons and 〈σv〉 is the continuum cross-section of neutralinos of mass, mχ . The integral accounts for measured flux of γ photons arising
from neutralinos disintegrating in the direction, Ω. (See Stoehr et al. 2003 for details about the computation of N cont, Deff and 〈σv〉). Since
the N a(Ω, T ) scales like the line integral of the square of the density along the line of sight, it is straightforward to propagate the statistical
properties of the density fluctuations to that of N a. For instance, the cosmic mean will scale like

〈Nannih(Ω)〉 = Wχ

∫
dr〈ρDM(r )〉2 + Wχ

∫
dr
〈
δρ2

DM(r )
〉

, (E2)

where〈
δρ2

DM(r )
〉 =∑

n,n′
〈anan′ 〉ρ[n](r )ρ[n′](r ). (E3)

Hence, we expect an excess of annihilation because of the polarized clumps within the halo. Similarly, we may predict the angular correlation
function, or the related variance as a function of smoothed angular scale as

〈δNa(Ω)δNa(Ω′)〉 = W 2
χ

∫∫
drdr ′〈δρ2

DM(Ω, r )δρ2
DM(Ω′, r ′)

〉
= W 2

χ

∑
n1,n2,n3,n4

〈an1 an2 an3 an4 〉
∫∫

drdr ′ρ[n1](r ,Ω)ρ[n2](r ,Ω)ρ[n3](r ′,Ω′)ρ[n4](r ′,Ω′), (E4)

where δN annih(Ω)
�= N annih(Ω) − 〈N annih(Ω)〉. Note that we assumed here that the resolution of the telescope was effectively infinite (i.e.

�� → 0 in equations E1). Now we may rely on Wick’s theorem to express the four-point correlation entering equation (E4) as products of

two-point correlations. Calling δa
�= a − 〈a〉, we have 〈δan1δan2δan3 〉 = 0 and

〈δan1δan2δan3δan4 〉 = 〈δan1δan2 〉〈δan3δan4 〉
+ 〈δan1δan3 〉〈δan2δan4 〉 + 〈δan2δan3 〉〈δan1δan4 〉. (E5)

If the infall is statistically isotropic, equation (E4) may be averaged over the direction, Ω and reads

〈δNannih(Ω)δNannih(Ω′)〉� =
∑

�

Cannih
� P�[Ω · Ω′], (E6)

where

Cannih
� = W 2

χ

∑
�

CDM
�1

CDM
�2

U �
�1,�2

. (E7)

Note that the geometric factor, U �
�1,�2

, only depends on the basis function, ρ[n](r ) and possibly the resolution of the telescope if it is not assumed
to be infinite:

U �
�1,�2

=
∑

n1,n2,n3,n4

∫
dΩY m∗

� (Ω′)

∫
dΩ′Y m∗

� (Ω′)

∫∫
drdr ′ρ[n1](r ,Ω)ρ[n2](r ,Ω)ρ[n3](Ω′, r ′)ρ[n4](Ω′, r ′), (E8)

given that ρ
[n]
(r ) = un

�m(r ) Y m
� (Ω) and given the properties of spherical harmonics, the integral

∫
dΩY m1

�1
(Ω)Y m2

�2
(Ω)Y m3

�3
(Ω′)Y m4

�4
(Ω′)dΩ can be

re-expressed iteratively in terms of Clebsch–Jordan coefficients. Ensemble average and comparison with the observation is possible at the
high-� limit corresponding to the small-scale structure of the dark matter halo, for which we may expect independent angular regions of the
Galactic halo to be representative of an ensemble average.

E2 Bremsstrahlung X-ray emission of stacked haloes

Assuming that the gas traces the dark matter, we may reproduce the thought experiment of Section E1, though the ensemble average is
constructed while staking projections of haloes on the sky rather than in a galactocentric framework.

The emissivity per unit volume at frequency ν, εν(r ), for a hydrogen plasma is given by (Peacock 1999)

εν(r )drdν = εXn2
e(r )√

Te(r )

{
1 + log10

[
kBTe(r )

hν

]}
exp

[
− hν

kBTe(r )

]
dr dν, (E9)
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where T e is the temperature in K, ν the frequency in Hz, kB the Boltzmann constant, h the Planck constant, and εX
�= 6.8 × 10−32 for an

emissivity in W m−3 Hz−1. Let us assume here that the cluster is isothermal, hence the variation of T e with z are neglected compared to that
of ne squared.13 Let us also assume that M/L is the mass-to-light ratio of the cluster is constant. Hence the emissivity per unit surface, σν , is
given by

σν(R) =
∫

dz (M/L)2 εν(R, z)
�= WX

∫
dzρ2

DM(R, z). (E10)

Hence, taking an ensemble average yields

〈σν(R)〉 = WX

∫
dz〈ρDM〉2(R, z) + WX

∫
dz〈δρ2

DM〉(R, z), (E11)

where〈
ρ2

DM

〉
(R, z) =

∑
n,n′

〈anan′ 〉ρ[n](r )ρ[n′](r ). (E12)

The two-point correlation of the cosmic fluctuation of the emissivity is given by

〈δσν(R)δσν(R′)〉
〈σν(R)〉2

=

∫∫
dzdz′〈δρ2

DM(R, z)δρ2
DM(R′, z′)

〉
〈σν(R)〉2

,

where〈
δρ2

DM(R, z)δρ2
DM(R′, z′)

〉 = ∑
n1,n2,n3,n4

〈an1 an2 an3 an4 〉ρ[n1](R, z)ρ[n2](R, z)ρ[n3](R′, z′)ρ[n4](R′, z′). (E13)

Note the cancellation of the dependence on W X (hence T or M/L) in equation (E13). Relying again on Wick’s theorem, equation (E5), we
may express the four-point correlations as products of known (cf. equation E5) two-point correlations.

E3 Galactic halo’s ellipticity

More generally, let us consider a problem which depends non-trivially on the perturbed distribution function, e.g. the ellipticity, eH, of the
departure from sphericity of the substructures induced by the environment around a given halo. The ellipticity is defined as

eH = 3λ1∑
i λi

− 1
�= G(δρ(r )) , with {λi } = Eigenval(IH) (E14)

and

IH,i, j =
∫

�R200
drδρ(r )xi x j∫

�R200
drρNFW(r )

, (E15)

so that λ1 is the largest eigenvalue of I H and eH = 0 if the halo’s perturbation is spherical. Since we know the statistical properties of δρ(r ),
we may predict the statistical properties of eH. In practice, assuming G is a well-behaved function of its arguments, we may Taylor-expand
eH with respect to δρ as

eH =
∑

n

(
∂nG
∂δρn

)
· [δρ(r 1) − 〈δρ(r 1)〉] · · · [δρ(r n) − 〈δρ(r n)〉] . (E16)

Note that the derivative in equation (E16) is a Frechet functional derivative, so that the dot involves an integration over r. Hence the ensemble
average, 〈eH〉 will involve N-point correlations, and reads

〈eH〉 =
∑

n

∑
i1···in

〈ai1 · · · ain 〉
(

∂nG
∂δρn

)
· ρ[i1](r ) · · · ρ[in ](r n), (E17)

where, once again, we may rely on Wick’s theorem to re-express 〈ai1 · · · ain 〉 as products of two-point correlations. Since the relationship
between the density perturbation and the ellipticity is not linear, we expect a non-zero ellipticity on average.

Note that in principle, we may reconstruct the full PDF of e. Formally, calling z
�= (e, a2, . . . , an) (so that z = (G(a1, . . . , an), a2, . . . , an) =

g(a1, . . . , an)), inverting for z as a function of {ai} (provided the ellipticity is not degenerate in a1), and marginalizing over the other coefficients
yields

PDF(e) =
∫

da2 · · · danPDF(g−1(z))

|∂z/∂an| .

Now in practice, equation (E17) might not be the simplest procedure to compute 〈eH〉, and Monte Carlo resimulation may turn out to be more
practical.

13 This is a better approximation than for the SZ effect.
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E4 Metal lines in quasi-stellar object (QSO) damped Lyman α systems

Let us, finally, consider a more convolved observable, which will depend on both the clump distribution within the haloes, but also on their
velocities.

In the red part of a high-resolution spectrum of quasars, groups of absorption features are found, corresponding to the physical situation
where the light emitted by the quasar is partially absorbed by the metal-rich14 clumps which the line of sight happens to intercept. Formally,
the normalized flux in a QSO is proportional to minus the log of the optical depth along the line of sight. The optical depth in the metal
transition is (Pichon et al. 2001)

τ (w, R) = c σ0

H (z)
√

π

∫ +∞

−∞

nZ(v, R)

b(v, R)
exp

{
− [w − v − vz(v, R)]2

b(v, R)2

}
dv, (E18)

where c is the velocity of light, σ 0 is the metal absorption cross-section, H (z̄) is the Hubble constant at redshift z, nZ(v, R) the ionized metal
number density field, b(v, R) the Doppler parameter (accounting for the thermal broadening of the line), and vp(v, R) is the peculiar velocity,
at impact parameter, R from the centre of the cluster. The observed normalized flux, F, is simply F = exp(−τ ). If we assume here again
constant biasing, so that nZ ∝ ρDM. This assumption may be lifted once the identification of virialized substructure described in Section 3.3.1
is carried through. The two-point correlation of the optical depth fluctuation will involve statistical properties of both the density and the
velocity field in a non-trivial manner.

1

〈τ 〉2(w, R)
〈δτ (w, R)δτ (w′, R)〉, (E19)

with

δτ (w, R) = τ (w, R) − 〈τ 〉(w, R). (E20)

Note that the distance to the halo centre, R
�= b(cos [ϑ b], sin [ϑ b]) still occurs in equation (E20). Since we do not know in general the impact

parameter of the line of sight with respect to the halo centre, let us marginalize over its a priori probability distribution, which we may
infer from, for example, the PT model (which at these scales corresponds essentially to the autocorrelation of the unperturbed universal halo
profile). Given that we consider systems at the redshift of a damped Lyα, we may assume that we fall close to a galactic structure. Calling
pb(b, z̄, M)dbdz̄ the probability of a given point in space to be at a distance, b within d b of an object of mass larger than M, which is at
redshift z̄ within dz̄, we may construct the weighted sum

Cτ (�w) =
∫ ∞

0

db

∫ ∞

0

dz̄

∫ 2π

0

dϑb pb(b, z, M) 〈δτ (w, b cos[ϑb], b sin[ϑb])δτ (w + �w, b cos[ϑb], b sin[ϑb])〉w . (E21)

This quantity may now be compared to the observable. Let us assume some equation of state for the metal phase, so that b(R, z) =
b0 (ρ(R, z)/ρ̄)γ . Equation (E18) may then be written formally as δτ (w, R) = T [δρ(v, R), vz(v, R)]. Let us Taylor-expand this expression in
the neighbourhood of the mean density fluctuation as

δτ (w, R) =
∑

n

(
∂nT

∂δρ · · ·∂δvz

)
[δρ(r 1) − 〈δρ(r 1)〉] · · · [δvz(r n) − 〈δvz(r n)〉] . (E22)

Again the derivative in equation (E22) is a functional derivative (cf. Section E3). Equations (E21)–(E22) together with equation (29) yield the
expected correlation as a function of the statistical environment.

14 Since we make predictions at lower redshift we need to concentrate on metals such as Mg II or Fe II which are found typically at redshift z � 1.5 in the visible.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT

In a series of three papers, the dynamical interplay between environments and dark matter
haloes is investigated, while focusing on the dynamical flows through the virtual virial sphere. It
relies on both cosmological simulations, to constrain the environments, and an extension to the
classical matrix method to derive the responses of the halo. A companion paper (Paper I) showed
how perturbation theory allows us to propagate the statistical properties of the environment to
an ensemble description of the dynamical response of the embedded halo. The current paper
focuses on the statistical characterization of the environments surrounding haloes, using a
set of large-scale simulations; the large statistic of environments presented here allows us to
put quantitative and statistically significant constrains on the properties of flows accreted by
haloes.

The description chosen in this paper relies on a ‘fluid’ halocentric representation. The in-
teractions between the halo and its environment are investigated in terms of a time-dependent
external tidal field and a source term characterizing the infall. The former accounts for fly bys
and interlopers. The latter stands for the distribution function of the matter accreted through the
virial sphere. The method of separation of variables is used to decouple the temporal evolution
of these two quantities from their angular and velocity dependence by means of projection on
a 5D basis.

It is shown that how the flux densities of mass, momentum and energy can provide an
alternative description to the 5D projection of the source. Such a description is well suited
to regenerate synthetic time lines of accretion which are consistent with environments found
in simulations as discussed in the Appendix. The method leading to the measurements of
these quantities in simulations is presented in detail and applied to 15 000 haloes, with masses
between 5 × 1012 and 1014 M� evolving between z = 1 and 0. The influence of resolution,
class of mass, and selection biases are investigated with higher resolution simulations. The
emphasis is put on the one- and two-point statistics of the tidal field, and of the flux density of
mass, while the full characterization of the other fields is postponed to Paper III.

The net accretion at the virial radius is found to decrease with time. This decline results
from both an absolute decrease of infall and a growing contribution of outflows. Infall is found
to be mainly radial and occurring at velocities ∼0.75 times the virial velocity. Outflows are
also detected through the virial sphere and occur at lower velocities ∼0.6Vc on more circular
orbits. The external tidal field is found to be strongly quadrupolar and mostly stationary,
possibly reflecting the distribution of matter in the halo’s near environment. The coherence
time of the small-scale fluctuations of the potential hints a possible anisotropic distribution of
accreted satellites. The flux density of mass on the virial sphere appears to be more clustered

�E-mail: aubert@astro.u-strasbg.fr
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than the potential, while the shape of its angular power spectrum seems stationary. Most of
these results are tabulated with simple fitting laws and are found to be consistent with published
work, which rely on a description of accretion in terms of satellites.

Key words: methods: N-body simulations – galaxies: formation – galaxies: kinematics and
dynamics.

1 G A L A X I E S I N T H E I R E N V I RO N M E N T

Examples of galaxies interacting with their environments are nu-
merous. The Antennae, the Cartwheel Galaxy and M51 are among
the most famous ones. One of our closest neighbours, M31, exhibits
a giant stellar stream which may be associated with its satellites
(e.g. McConnachie et al. 2003). Even the Milky Way shows relics
of past interactions with material coming from the outskirts, such
as the Sagittarius dwarf (Ibata, Gilmore & Irwin 1995). It appears
clearly that the evolution of galactic systems cannot be understood
only by considering their internal properties but also by taking into
account their environment. From a dynamical point of view, it is
still not clear, for example, if spirals in galaxies are induced by in-
trinsic unstable modes (e.g. Lynden-Bell & Kalnajs 1972; Kalnajs
1977) or if they are due to gravitational interactions with satellites
or other galaxies (e.g. Toomre & Toomre 1972). Similarly, normal
mode theories of warps have been proposed (Hunter & Toomre
1969; Sparke & Casertano 1988) but failed to reproduce long-lived
warps in a live halo for example (e.g. Binney, Jiang & Dutta 1998).
Since warped galaxies are likely to have companions (Reshetnikov
& Combes 1998), it is natural to suggest satellite tidal forcing as a
generating mechanism (e.g. Weinberg 1998; Tsuchiya 2002). An-
other possibility is angular momentum misalignment of infalling
material (e.g. Ostriker & Binney 1989; Jiang & Binney 1999). The
existence of the thick disc may also be explained by past small
mergers (e.g. Quinn et al. 1993; Walker, Mihos & Hernquist 1996;
Velazquez & White 1999). Conversely, very thin discs put serious
constraints on the amplitude of the interactions they may have ex-
perienced in the past.

On a larger scale, dark matter haloes are built in a hierarchical
fashion within the cold dark matter (CDM) model. Some of the most
serious challenges these models are now facing – the overproduction
of dwarf galaxies in the Local Group (e.g. Klypin et al. 1999; Moore
et al. 1999), the cuspide crisis of Navarro–Frenk–White (NFW)-like
haloes (e.g. Flores & Primack 1994; Moore 1994), the overcooling
problem and the momentum crisis for galactic discs (e.g. Navarro
& Steinmetz 1997) – occur at these scales; it is therefore important
to study the effects of the cosmological paradigm on the evolution
of galaxies in order to address these issues.

In fact, the properties of galaxies naturally present correlations
with their environments. For example, Tormen (1997) showed that
the shape of haloes tends to be aligned with the distribution of
surrounding satellites. Also, the halo’s spin is sensitive to recently
accreted angular momentum (e.g. van Haarlem & van de Weygaert
1993; Aubert, Pichon & Colombi 2004). More generally, haloes
inherit the properties of their progenitors.

At this point, a question naturally arises; ‘what is the dynamical
response of a galactic system (halo + disc) to its environment?’. One
way to address this issue is to compute high-resolution simulations
of galaxies into a given environment (e.g. Abadi et al. 2003; Gill
et al. 2004; Knebe et al. 2004). However, if one is interested in re-
producing the variety of dynamical responses of galaxies to various

environments, the use of such simulations becomes rapidly tedious.
An alternative way to investigate this topic is presented here, which
should complement both high-resolution simulations and large cos-
mological simulations. In a series of three papers, a hybrid approach
is presented to investigate the interplay between environments and
haloes. It relies on both cosmological simulations (to constrains the
environments) and a straightforward extension of the classical tools
of galactic dynamics (to derive the haloes’ response). A companion
paper (Pichon & Aubert 2006, hereafter Paper I) describes the ana-
lytic theory which allows us to assess the dynamics of haloes in the
open, secular and non-linear regimes. The purpose of the current
paper is to set out a framework in which to describe statistically the
environments of haloes and present results on the tidal field and the
flux density of matter. Paper III (Aubert & Pichon, in preparation)
will conclude the complete description of the environments of dark
haloes.

1.1 Galactic infall as a cosmic boundary

Clearly, a number of problems concerning galactic evolution can
only be tackled properly via a detailed statistical investigation. Let
us briefly make an analogy to the cosmological growth of density
fluctuations. Under certain assumptions, one can solve the equa-
tions of evolution of those overdensities in an expanding universe
(e.g. Peebles 1980, see Bernardeau et al. 2002 for an extensive re-
view). Their statistical evolution due to gravitational clustering fol-
lows, given the statistical properties of the initial density field. For
example, the power spectrum, P(z, k), may be computed for various
primordial power spectra, Pprim(k), and for various cosmologies. In
other words, the statistical properties of the initial conditions are
propagated to a given redshift through an operator ℵ given by the
non-linear dynamical equations of the clustering:

P(z, k) = ℵ(Pprim(k), z). (1)

In a similar way, how would the statistical properties of environ-
ments be propagated to the dynamical properties of galactic sys-
tems? This is clearly a daunting task: the previous analogy with the
cosmological growth of perturbation is restricted to its principle.
For example, the assumption of a uniform and cold initial state can-
not be sustained for galaxies and haloes. While spatial isotropy is
clearly not satisfied by discs, and hot, possibly triaxial haloes, the
velocity tensor of galaxies may also be anisotropic. Environments
also share these inhomogeneous and anisotropic features since they
are also the product of gravitational clustering and cannot be sim-
ply described as Gaussian fields. These boundary conditions are not
pure ‘initial conditions’ since they evolve with time and in a non-
stationary manner (e.g. the accretion rate decreases with time). A
whole range of mass must be taken into account, each with differ-
ent statistical properties. Finally, trajectories cannot be considered
as ballistic (even in the linear regime) and must be integrated over
long periods. Notwithstanding the above specificities of the galactic
framework, two questions have to be answered.
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(i) What is the ‘galactic’ equivalent of Pprim(k), i.e. how does one
describe statistically the boundary conditions?

(ii) What is the ‘galactic’ equivalent of ℵ, i.e. how does one de-
scribe the inner galactic dynamics?

The second point is discussed extensively in Paper I and is briefly
summarized in Section 2. In that paper, it is shown how a perturba-
tive theory can describe the dynamics of haloes which experience
both accretion and tidal interactions (see also Aubert et al. 2004).
Within this formalism, the environment is described by the external
gravitational potential and a source function. The former describes
fly bys and the tidal field of neighbouring large-scale structures. The
latter describes the flows of dark matter, i.e. the exchanges of mate-
rial between the halo and the ‘interhalo’ mediums. The knowledge
of these two quantities fully characterizes the boundary condition.
The focus here is on well-formed haloes which do not undergo
major merger between z = 1 and 0. This bias is consistent with
a galactocentric description in which a perturbative description of
the inner dynamics is appropriate and equal mass mergers are ex-
plicitly ignored. As briefly explained in Section 2, this formalism
provides a link between the statistical properties of environments
to the statistical distributions of the responses of haloes: this link
is referred to as statistical propagation. In this manner, the distri-
bution of haloes’ dynamical state can be directly inferred from the
statistical properties of environments, without relying on the follow
up of individual interacting haloes. The observed distributions of
dynamical features provide information on the cosmic boundaries
which influence haloes. This, together with the perturbative formal-
ism described in Paper I, should allow us to address statistically the
recurrent ‘nurture or nature’ problem of structure formation within
galactic systems.

This statistical formalism is complementary to methods based on
merger trees (which also couple environment and inner properties
of galactic systems; see e.g. Kauffmann & White 1993; Roukema
et al. 1997; Somerville & Kolatt 1999). These ‘analytic’ or ‘semi-
analytic’ models, with prescription for the baryons contained in
haloes, angular momentum transfer, cooling and star formation,
may predict properties of galaxies given in their formation history
(e.g. Cole et al. 1994). This history may be provided analytically
using extended Press–Schechter formalism (see e.g. Bond et al.
1991; Lacey & Cole 1993) or using simulations (e.g. Kauffmann
et al. 1999; Benson et al. 2001). Even though this technique now
extends its field of application to subhaloes (see e.g. Blaizot et al.
2006), it remains somewhat limited for the purpose of dynamical
applications. These require a detailed description of the geometrical
configuration of the perturbations, and of the dynamical response
of the halo. Both of these are difficult to reduce to simple recipes.
Conversely, full analytic theories of the inner dynamics of interact-
ing haloes were developed in e.g. Tremaine & Weinberg (1984),
Weinberg (1998) and Murali (1999). Relying on the matrix method,
these theories do take properly into account the resonant processes
that occur when the halo is perturbed by an external potential. How-
ever, they usually do not account for the perturbations induced by
the accretion of matter, while these authors generally considered
test cases where a halo responds to a given configuration (or statis-
tics; see e.g. Weinberg 2001) of perturbations. Paper I extended
these theories to open stellar systems and, while relying on numeri-
cal simulations to constrain the environments, it reformulated them
in terms of the statistics of the inner dynamics of a representative
population of haloes.

Paper I presents a list of possible applications. For instance, grav-
itational lensing by haloes is affected by inner density fluctuations,

which are induced by the halo’s environment: hence the statistics
of the lensing signal are be related to the statistics of halo’s pertur-
bations, therefore to the cosmological growth of structures. Paper I
showed how this approach could be extended to other observables,
such as X-ray temperature maps, SZ surveys or direct detection of
dark matter. Statistical propagation allows us to relate cosmology
to the inner properties of cluster and galaxies. Conversely, it should
be possible to show if the perturbations measured in simulations
are consistent with a secular drift towards a universal profile of
haloes. Closer to us, the correlation of the numerous artefacts of
past accretion in the Local Group, such as streams or tidal tails, can
be understood in terms of statistics of environments. All processes
which depend critically on the geometry of the interactions may be
tackled in this framework.1

The statistical propagation relies on the knowledge of the prop-
erties of the environment and is stated by the point (i) mentioned
above. This question is investigated the current paper by using a
large set of simulations, where each halo provides a realization of
the environment. From this large ensemble of interacting haloes,
the aim is to extract the global properties of their ‘cosmic neigh-
bourhood’. Such a task requires an appropriate description of the
source and the surrounding tidal field. It is the purpose of this work
to implement this description which should both provide insights
on the generic properties of cosmic environments and be useful in a
‘dynamical’ context. Specifically, a method is presented to constrain
the exchanges between the halo and its neighbourhood, via the prop-
erties of accretion and potential measured on the virial sphere. The
advantages, specificities and caveats (and the methods implemented
to overcome them) provided by this halocentric approach will be
presented in this paper.

As shown in the following sections, the source function is given by
the phase-space distribution function (DF hereafter) of the advected
material. As a consequence, its full characterization is a complex
task since it involves sampling a five-dimensional space and relies
on the projection of its DF on a suitable 5D basis. In particular, it
is shown that how such a description can be used to constrain the
kinematic properties of accretion by dark matter haloes in cosmo-
logical simulations. The detailed statistical characterization of the
higher moments of the source is postponed to Paper III. An alter-
native description of the source is also presented; it relies on flux
densities through the virial sphere, i.e. the moments of the source
DF. Even though it is less suited to the dynamical propagation, this
alternative description is easier to achieve numerically and to in-
terpret physically. In particular, it illustrates how the source term
may be characterized statistically via its moments. The link be-
tween these flux densities and the 5D projection of the source is
discussed together with the one- and two-point statistics of the flux
densities of mass through haloes in simulations. Also, the mean of
reprojecting the effect of the external gravitational potential inside
the halo (through Gauss’s theorem) while knowing its properties
on the virial sphere is discussed. The potential’s one- and two-
point statistics are also investigated around simulated haloes and
interpreted.

Finally, Appendix F provides means of regenerating such flows
ab initio from its tabulated statistical properties. Such tools yield a
way to embed idealized simulations of galaxies into realistic cos-
mological environments.

1 However, all departure to angular isotropy on the sphere will be ignored
here (in contrast to what was stressed in Aubert et al. 2004), and its impli-
cations will be postponed to the discussions in Section 8.
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The outline of the paper is as follows. Section 2 presents briefly
the dynamics of open collisionless systems and states the princi-
ple of statistical propagation. Section 3 presents the procedure used
to compute the source term, and illustrates its implementation on
a given halo. The simulations and the corresponding selection bi-
ases of our sample are then described in Section 4.2. Sections 5
and 6 present the statistical measurements for one- and two-point
statistics, respectively. Section 7 draws a global picture of galactic
infall on L� galaxies, while a discussion and conclusions follow in
Section 8.

Among the different results described in this paper, the reader
will find the following.

(i) A statistical description of the external gravitational field felt
by haloes: the potential is found to be quadrupolar and stationary.

(ii) A study of the evolution of accretion: accretion by dark mat-
ter haloes decreases with time, while the outflows become more
significant at recent times.

(iii) Constrains on the trajectory of infalling material: accretion
is found to be essentially radial, while outflows are found to be more
circular.

(iv) Results on the two-point statistics of the external potential
measured on the viral sphere: the potential provides hints of an
anisotropic perturbation of the halo.

(v) Results on the two-point statistics of the accretion’s distri-
bution on the virial sphere: accretion is dominated by small-scale
fluctuations and has a shorter coherence than the external gravita-
tional field.

2 DY NA M I C S O F O P E N C O L L I S I O N L E S S

S Y S T E M S

The exchanges occurring between a halo and its environment can be
characterized in several ways. One of the classical method involves
building a merger tree where the whole history of formation of a
halo is expressed in terms of global properties of its progenitors
(e.g. Kauffmann & White 1993; Lacey & Cole 1993; Somerville
& Kolatt 1999). While well suited to study the evolution of those
characteristics, it cannot be directly applied to predict in detail the
haloes’ inner dynamic because of the lack of spatial information
on these interactions. One could track the whole (six-dimensional)
phase-space history of all the progenitors, but not only would it
be difficult to store in practice it would also not give information
on the influence of large-scale structures through their gravitational
potential. In the present paper, following Aubert et al. (2004), it
is suggested to measure the relevant quantities on a surface at the
interface between the halo and the intergalactic medium. Accre-
tion is described as a flux of particles through the haloes’ external
boundaries.

This section presents an extension of the formalism developed by
e.g. Tremaine & Weinberg (1984) and Murali (1999) to open spher-
ical collisionless systems. The dynamics of a dark matter spheri-
cal halo is obtained by solving the collisionless Boltzmann equa-
tion coupled with the Poisson equation

∂t F + v · ∂r F − ∇� · ∂vF = 0, (2)

�� = 4πG

∫
d3vF(v), (3)

where F(r, v, t) is the system’s DF coupled to �(r , t) ≡ ψ + ψ e,
the total gravitational potential (self-gravitating + external pertur-
bation). Note that, in a somewhat unconventional manner, ψ e refers

here to the external potential, i.e. the tidal potential created by the
perturbations outside the boundary. The gravitational field of in-
coming particles is accounted for by the source term. Equation (2)
coupled with Hamilton’s equations is a conservation equation

∂t F + ∇̃(uF) = 0, (4)

where u ≡ (v, − ∇�) and ∇̃ ≡ (∂r ,∂v). As a consequence, consid-
ering a ‘source of material’ described by f e(w) located on a surface
S(w) implies

∂t F + ∇̃(uF) = −δD[S(w) − a]u · ∇S
|∇S| fe(w), (5)

where w≡ (r , v) describes the phase space and a defines the surface
boundary of the studied system (here δD stands for the Dirac delta
function). If this boundary is defined as a spherical surface with
radius R, then equation (5) becomes (e.g. Appel 2002)

∂t F + ∇̃(uF) = −δD(r − R)vr fe(w) (6)

≡ −δD(r − R)se(w). (7)

The function se will be hereafter referred to as the ‘source’ function.
Formally, the right-hand side of equation (7) can be seen as an addi-
tional local rate of change of the system’s DF. Note that equation (7)
involves the external potential, ψ e, via u.

2.1 Moments of the source term

Integrating equation (7) over velocities leads to the mass conserva-
tion relation

∂tρ + ∇(vρ) = −δD(r − R)(ρvr)e ≡ −δD(r − R)�ρ, (8)

where the source appears as an external flux density of matter (ρvr)e

or �ρ . Taking the next moment of equation (7) leads us to the Euler–
Jeans equation

∂tρv+ ∇ · (ρvv) + ρ∇� = −δD(r − R)(ρvrv)e, (9)

where the source adds a flux density of momentum, �ρv, to the
conventional Jeans equation. Taking the successive moments of
equation (7) will generically include a new term in the resulting
equations.

2.2 Propagating the dynamics

Following Tremaine & Weinberg (1984), equation (7) can be solved
along with Poisson’s equation in the regime of small perturbations.
In the spirit of Paper I, let us define the system’s environment by
the external perturbative potential ψ e(r , t) and the source se(r , v, t).
Given this environment, the system’s linear potential response ψ(r,
t) can be computed. Writing the following expansions:

ψ(r , t) =
∑

n

an(t)ψ [n](r ), (10)

ψ e(r , t) =
∑

n

bn(t)ψ [n](r ), (11)

se(r ,v, t) =
∑

n

cn(t)φ[n](r ,v), (12)

where φ[n] (r ,v) and ψ [n] (r ) are suitable basis functions, and solving
the Boltzmann and Poisson’s equations for an, one finds (Aubert
et al. 2004)

a(t) =
∫ ∞

−∞
dτ K (τ − t) · [a(τ ) + b(τ )] + H(τ − t) · c(τ ). (13)
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Table 1. Description of the various flux densities. The first 10, together with the external potential,
are sufficient to characterize fully the environment as shown in Section 3.3.

Flux density, � Flux, � Motivation

Mass ρvr dm/dt Heating and cooling
Angular momentum ρvr r × v dL/dt Warp, shape of haloes
Kinetic energy ρvr σi σ j dE/dt Virialized objects
Shear ρvr(∂v j /∂xI + ∂vi /∂xj ) dc/dt Tidal field
Vorticity ρvr ∇ × v dω/dt Anisotropic accretion

The kernels K and H are functions of the equilibrium state DF, F0,
and of the two bases, φ[n](r , v) and ψ [n](r ) only (see Paper I). As
a consequence, they may be computed once and for all for a given
equilibrium model. Since the basis function, ψ [n], can be customized
to the NFW-like profile of dark matter haloes, it solves consistently
and efficiently the coupled dynamical and field equations so long as
the entering fluxes of dark matter amount to a small perturbation in
mass compared to the underlying equilibrium.

Assuming the linearity and knowledge of K and H, one can see that
the properties of the environments (through b and c) are propagated
exactly to the inner dynamical properties of collisionless systems.
Note in particular that the whole phase-space response of the halo
follows from the knowledge of a. For example, taking the temporal
Fourier transform of equation (13), the cross-correlation matrix is
easily deduced:

〈â · â∗�〉 = 〈(I − K̂ )−1 · [K̂ · b̂ + Ĥ · ĉ]·
[K̂ · b̂ + Ĥ · ĉ]

�∗ · (I − K̂ )−1∗�〉, (14)

where x̂ = x̂(ω) is the Fourier transform of x(t). The environment’s

two-points statistic, via 〈b̂ · b̂
∗�〉, 〈ĉ · ĉ∗�〉 and 〈b̂ · ĉ∗�〉, modifies the

correlation of the response of the inner halo.
Linear dynamics do not take into account the effects on the per-

turbation induced by dynamical friction. More generally the damp-
ing of incoming fluxes will ultimately require non-linear dynamics
(since the relative temporal phases of the infall do matter in that
context). It is also assumed in equation (13) that the incoming mate-
rial does not modify the equilibrium state of the system. The secular
evolution of the system should also be ultimately taken into account,
through a quasi-linear theory for example (see e.g. Paper I).

Let us emphasize that, since the addressed problem is linear, the
response, equation (13), can be recast into a formulation which only
involve an ‘external potential’, namely the sum of ψ e and the poten-
tial created by the entering particles described by se. While formally
simpler at the linear deterministic level, this alternative formulation
does not translate well non-linearly or statistically (since it would
require the full knowledge of the perturbation everywhere in space
in a manner which is dependent upon the inner structure of the halo).

In the following sections, our aim is to describe how the two fields
ψ e(r, t) and se(r, v, t) can be extracted from haloes in cosmological
simulations. Then it will be shown how to characterize their statisti-
cal properties as a function of time via their expansion coefficients,
bn(t) and cn(t).

2.3 Convention and notations

In what follows, let us characterize the properties of two fields,
either angularly, kinematically, statistically or temporally, or any
combination (for various classes of masses). For a given field, X, let

us introduce the following notations for clarity:

X ≡ 1

4π

∫
X (θ, φ) d sin(θ) dφ, (15)

which represents the angular average of X over the sphere. Alterna-
tively, let us define the temporal average over �T as

X ≡ 1

�T

∫ T +�T

T

X (t) dt . (16)

Finally, let us define the ensemble average as

〈X〉 ≡
∫

X F (X ) dX = E{X}, (17)

where F is the density probability distribution of X. Here E{X}
stands for the expectation of X. In practice, in Section 5, an estimator
for ensemble average of X measured for N haloes is given:2

〈X〉N = 1

N

N∑
i

Xi . (18)

The underlying probability distributions are sometimes very skewed
(when e.g. corresponding to a strong or weak accretion event around
massive or smaller haloes), which requires special care when at-
tempting to define statistical trends. Hence, let us also define 〈〈X〉〉
as the mode (or most probable value) of the fitting distribution of F .

All external quantities (flux densities, potential, etc.) will gener-
ally be labelled as Xe. Let us introduce moments of the source over
velocities, which correspond to flux densities, noted �X , and their
corresponding fluxes, noted �X . Table 1 gives a list of such flux
densities and flux pairs. Finally, the harmonic transform of the field,
X, will be written as aX

�,m and its corresponding power spectrum CX
� ,

while the parameters relative to fitting the statistics of the field will
be written as qX . Note that the contrast of the field, X, was also
introduced as

δX ≡ X − X

〈X〉 , (19)

and its corresponding harmonic transform, ã X
�m . A summary of all

the notations can be found in Appendix H.

3 T H E S O U R C E O F I N FA L L

Let us first describe our strategy to fully characterize the source
of cosmic infall at the virial radius via collisionless dark matter
simulations, and enumerate the corresponding biases. In particular,
let us illustrate our procedure on a template halo.

2 An alternative would be to weight the sum by the relative number of ob-
jects in each halo, hereby down-weighting light haloes. It is found that this
alternative estimator did not significantly affect our measurements.
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3.1 Describing the source

As argued in Section 2, computing the response of an open system
to infalling material requires the knowledge of the source function,
se(r, v, t). Given the particles accreted by a halo, one possibility
involves storing those phase-space properties for all particles. While
feasible for a limited number of haloes, this task would become
rapidly intractable for our large number of simulations. In order to
compress the information, the accreted DF is projected here on a
basis of function, following equation (12).

Since the measurement is carried at a fixed radius, the phase space
is reduced from six to five degrees of freedom: two for the angular
position on the sphere, described by two angles (θ , φ) ≡ Ω, and
three for the velocity space described in spherical coordinates by
(v, �1, �2) = (v, Γ), where v is the velocity modulus and Γ are
the two angles describing its orientation (see Fig. 1). The angle, �1,
indicates how radial is the velocity, with �1 > π/2 for infalling dark
matter and �1 < π/2 for outflows. �2 indicates the orientation of
the tangential motion of the infall.

Recall that the two fields, cn (hence se(Ω, Γ, v, t)) and bn (hence
ψ e(Ω, t)) are, respectively, five and two dimensional (as a function
of mass and time). Note also that both se and ψ e are statistically
stationary with respect to Ω, while se is partially isotropic and not
stationary with respect to Γ; neither ψ e and se is stationary with
respect to the cosmic time.

3.1.1 Harmonic expansion of the incoming fluxes

The Ω and Γ dependences are naturally projected on a basis of
spherical harmonics, Y�m(Ω) and Y�′m′ (Γ). The velocity amplitude
dependence is projected on a basis of Gaussian functions, gα(v),
with mean μα and a given rms σ . One can write

φ[n](r ,v) = Ym(Ω)Ym′ (Γ)gα(v), (20)

where n ≡ (�, m, α, �′, m′) = (m, α, m ′). The expansion coefficients,
cmα

m′ (t), are given by

cm
m′α(t) = (

G−1 · sm
m′

)
α
, (21)

θ

φ

Γ1 Γ2

X

Z

Figure 1. The angles Ω and Γ. The dot indicates the position of the particle
on the sphere. The dashed ellipse represents the plane which contains both
the particle and the sphere centre. X and Z are arbitrary directions defined by
the simulation box. (θ , φ) = Ω are the particle’s angular coordinates on the
sphere. Γ = (�1, �2) define the orientation of the particle’s velocity vector
(shown as an arrow).

where(
sm

m′
)

β
=

∫
dΩdΓdvv2gβ (v)Y ∗

m(Ω)Ym′ (Ω)se(v,Ω,Γ, t), (22)

given

Gα,β =
∫

dvv2gα(v)gβ (v). (23)

Note that the expansion defined in equation (12), where the coeffi-
cients are given by equation (21), involves five subscripts spanning
the five-dimensional phase space, while the expansion in equa-
tion (10) only involves three subscripts. This description of the
source term is reduced to a set of coefficients which depends on
time only. Furthermore, this procedure requires parsing the particles
only once, and all the momenta (e.g. mass flux density, probability
distribution function, hereafter PDF, of impact parameter, etc.) of
the source terms can be computed directly from these coefficients.
As a consequence, the statistics of momenta follow linearly from
the statistics of coefficients only, as shown in Section 4.2.

3.1.2 Harmonic expansion of the external potential

Let us call b′
�m(t) the harmonic coefficients of the expansion of the

external potential on the virial sphere. Following Murali (1999), let
us expand the potential over the biorthogonal basis (u�m

n , d�,m
n ), so

that

ψ e(r ,Ω, t) =
∑
n,�,m

b′
�m(t) Y m

� (Ω)

(
r

R200

)�

,

=
∑

n

bn(t)ψ [n](r ), (24)

where ψ [n](r ) ≡ Ym
� (Ω)u�m

j (r). The first equality in equation (24)
corresponds to the inner solution of the three-dimensional poten-
tial whose boundary condition is given by Y�

m(Ω)b′
�m on the sphere

of radius R200 (defined below). Since the basis is biorthogonal, it
follows that

bn(t) =
[∫

d�m
n (r )

(
r

R200

)�

dr

]
b′

�m(t). (25)

It is therefore straightforward to recover the coefficient of the 3D
external potential from that of the potential on the sphere.

3.2 From simulations to expansion coefficients

Once a halo is detected, its outer ‘boundary’ is defined as a sphere
centred on its centre of mass with a radius, R200 (or virial radius),
defined implicitly by 3M/(4πR3

200) = 200ρ0. This choice of radius
is the result of a compromise between being a large distance to
the halo centre, to limit the contribution of halo’s inner material to
fluxes, and being still close enough to the halo’s border, to limit
the simulation’s fraction to be processed and avoid contributions
of fly by objects. Let us emphasize that several definition of the
virial radius can be found in the literature, involving e.g. the critical
density, or a different contrast factor, where the latter may or may
not depend on the cosmology. Hence, one should keep in mind that
all the quantitative results presented in this article depend on our
specific choice of a definition.

The time evolution of accretion is measured backwards in time by
following the biggest progenitor of each halo detected at redshift z =
0. The positions and velocities of particles passing through the virial
sphere between snapshots are then stored. All positions are measured
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Figure 2. Top: the distribution of the ratio between the virial radii measured
at z = 1 and 0. Bottom: the distribution of R200(z = 1)/R200(z = 0) as a
function of the halo’s final mass. Each point represents one halo. Symbols
stand for the median value of R200(z = 1)/R200(z = 0) in six different classes
of masses. Bars stand for the interquartile. The two measurements were
performed on 9023 haloes which satisfy the selection criteria defined in
Section 4.2.

relative to the biggest progenitor centre of mass, while velocities are
measured relative to its average velocity, for each redshift z. In one
of the simulation described below, the total comoving drift distance
of the centre of mass was compared to the distance between the
halo’s positions measured at z = 1 and 0. The haloes were chosen
to satisfy the criteria described in Section 4.2. It is found that the
scattering of the motion of the centre of mass represents less than
10 per cent of the distance covered in 8 Gyr. The centre of mass of
the biggest progenitor seems stable enough to be a reference.

Sticking to the previous definition of R200 would imply a chang-
ing outer boundary, and an ‘inertial’ flux through a moving surface
would have to be taken into account. To overcome this effect, the
sphere was kept constant in time at a radius equals to R200(z = 0).
This choice corresponds to a reasonable approximation since the
actual virial radius does not change significantly with time between
z < 2 for a reasonably smooth accretion history. As shown in Fig. 2,
the virial radius at z = 1 is only 20 per cent smaller than R200 mea-
sured at z = 0. Larger haloes have larger variations, but the median
value of the difference between the two radii remains smaller than
30 per cent for final masses smaller than 1014 M�. Finally, mea-
surements were done using physical coordinates (and not comoving
coordinates). These choices were partly guided by the fact that they
simplify future applications of these results to the inner dynamic of
the haloes (see Paper I).

3.2.1 Sampling on the sphere

As shown in Section 2, the source function se reads

se ≡ f (r ,v, t)vr =
∑

i

δ3
D[r − r i (t)]δ3

D[v− vi (t)]vr,i . (26)

Switching to spherical coordinates leads us to

se =
N∑
i

δD[R200 − ri (t)]
R2

200

δD[v − vi (t)]
v2

(27)

× δD[Ω − Ωi (t)]
sin �1

δD[Γ − Γi (t)]
sin(�1)

vr,i (t),

where i is the particle index. Now,

vr,iδD[R200 − ri (t)] =
∑

k

vr,k,i

∣∣∣∣ dt
dr

∣∣∣∣ δD(t − t200,k,i ),

=
∑

k

wk,iδD(t − t200,k,i ), (28)

where t200,k,i corresponds to the kth passage of the ith particle through
the virtual boundary R200 (and vr,k,i is the corresponding radial ve-
locity). In our conventions, the weight function wk,i takes the value
1 if the particle is entering and −1 if it is exiting the virial sphere.
Given that our time resolution is finite, let us consider a time inter-
val �T around t and define the (temporal) average phase-space flux
density over �T:

se(t) ≡ 1

�T

∫ t+�T

t

dτ se(τ ). (29)

Equation (28) becomes

se(t) =
N∑

i,k

δ(v − vi,k)

v2�T R2
200

δ(Ω − Ωi,k)

sin �1

δ(Γ − Γi,k)

sin(�1)
wi,k . (30)

The simulations were sampled in time regularly in ln (z) [i.e. �ln
(z) = constant]. From z = 2 to 0.1, 23 snapshots were taken (and a
z = 0 snapshot was added to the sample). If �t is small, the sum
over k should mostly involve one passage, i.e.

se(t) ∼ 1

�T R2
200

N∑
i

δ(v − vi )

v2

δ(Ω − Ωi )

sin �1

δ(Γ − Γi )

sin(�1)
wi . (31)

Now, these measurements only give access to (v, Ω, Γ) at fixed
redshift, z, and at every varying redshift �z. Consequently, these
values need to be interpolated at the sought t200,i approximated
by

t200,i = ti (zn) + t(zn+1) − t(zn)

ri (zn+1) − ri (zn)
[R200 − ri (zn)]. (32)

Given these ‘crossing’ instant, the positions, r, and velocities, v, are
also linearly interpolated. For instance, one gets for the x component
of the velocity

vx,i (t200) = vx,i (zn) + vx,i (zn + 1) − vx,i (zn)

t(zn+1) − t(zn)
[t200 − t(zn)]. (33)

Such an interpolation is not strictly self-consistent since a ballistic
motion requires a constant velocity along the trajectory. The worst-
case scenario would correspond to particles which have entered the
virial sphere with an outflowing velocity vector and vice versa. As
a simple but important check, the distribution of interpolated ra-
dial velocities was plotted (see Fig. 3). Those were computed from
the whole history of accretion of a typical halo (R200 = 860 kpc,
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Figure 3. The distribution of interpolated radial velocities vr of particles
passing through the virial radius. Those particles were taken from the whole
history of accretion of a typical halo [R200 = 860 kpc, M(z = 0) = 3 ×
1013 M�]. Entering particles (solid line) have vr < 0, while exiting particles
(dashed line) have vr > 0, as it should be.

Mz=0 = 3 × 1013 M�). The two types of particles (entering/exiting)
are confined in their radial velocity plane: entering (respectively
exiting) particles have negative (respectively positive) radial veloc-
ities. Velocities are correctly interpolated. It also means that our
time-steps are small enough to ensure a small variation of posi-
tions/velocities of particles, validating a posteriori our assumptions.
A fraction of exiting particles do have a negative radial velocity but
represent less than a few per cent of the total population. For safety,
those particles are rejected from the following analysis.

One should note that the measured angular scales are sensitive to
the time sampling (see Fig. 4). Increasing the sampling time tends to

TIME

POSITION

TIME

POSITION

TIME

POSITION

ΔT

ΔT

ΔT

Figure 4. The impact of time averaging on the measured scales of dark mat-
ter passing through the sphere. On the left-hand side, time–position diagram
of dark matter (black ellipses) as they pass through the sphere. Time integra-
tion is performed during �T (the two horizontal lines). On the right-hand
side, the accreted dark matter as seen on the sphere. A longer integration
time increases the length-scale of the incoming blob. If �T gets very large,
different blobs may be seen as one (upper diagram).

increase the apparent size of objects as measured in the sphere. Since
this increase depends on the shape or the orientation of the objects,
this effect cannot be simply time averaged. As a consequence, a
varying time-step would induce a variation of typical spatial scale.
The interpolation given by equation (32) allows also for a constant
time-step resampling of the source term se. All reference to the time
average will be dropped from now on.

Given equation (30), computing the expansions coefficients of se

is straightforward:

cm
α,m′ =

[
G−1

N∑
i

wi
g(vi )Y ∗

m(Ωi )Y ∗
m′ (Γi )

�T R2
200

]
α

. (34)

It is expected that the above procedure is more accurate than the
strategy presented in Aubert et al. (2004), where the flux densities
were smoothed over a shell of finite thickness (R200/10).

The harmonic expansion b′
m of the external potential ψ e(R200,

Ω) is computed directly from the positions of external particles
(e.g. Murali & Tremaine 1998):

b′
�,m(t) = − 4πG

2� + 1

N∑
j

Y ∗
�m[Ω j (t)]

R�
200

r �+1(t)
j

, (35)

where rj and Ωj are the distance and the two angles defining the
position of the jth external particles, respectively. The quantities
rj (t) and Ωj(t) at time t are obtained by linear interpolation between
two snapshots. Using equation (24), ψ e(r < R200, Ω) can be recon-
structed from the coefficients b′

m.
Section 4.2 makes extensive use of equations (34) and (35) for

each halo in our simulations to statistically characterize these two
fields.

3.3 From flux densities to the 5D source

The description of the source term se involves time-dependent coef-
ficients c�m

α�′m′ (t). Their computation from the particle coordinates is
quite straightforward and as shown in the previous sections, the dif-
ferent margins can be recovered through the manipulation of these
coefficients. Yet a projection of the source on an a priori basis is
a complex operation. Here this projection aims at describing a 5D
space for which little is known. As shown in the following sections,
the distribution of incidence angles is quite smooth, while the distri-
bution of velocities appears to be easily parametrized by Gaussians.
The 5D basis presented in the current paper induces little bias, but
it is very likely that a more compact basis exists and that the size of
the expansions chosen can be reduced in the future.

Because of this large amount of information contained in the
source, it is not always convenient to relate coefficients or their
correlations to physical quantities, like the mass flux or the flux
density of energy. An alternate description of the source term was
presented in Aubert et al. (2004) with the following ansatz:

se(r ,v, t) =
∑

m

Ym(Ω)
�̂ρ,m(2π)−3/2

det(�̂ρσσ,m/�̂ρ,m)

× exp

[
−1

2

(
v− �̂ρv,m

�̂ρ,m

)
�

(
�̂ρσσ,m

�̂ρ,m

)−1(
v− �̂ρv,m

�̂ρ,m

)]
.

(36)

This representation of the source is by construction consistent with
the first two velocity moments∫

d3vse(r ,v) = �ρ(r ),

∫
d3vvse(r ,v) = �ρv(r ), (37)
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while∫
d3v

(
vi − �ρv,i

�ρ

)(
v j − �ρv, j

�ρ

)
se(r ,v)

= �ρσi σ j (r ) − �ρv(r )2

�ρ(r )
+

∑
m

Ym(Ω)δ(r − R200)
�̂ρv,m(t)2

�̂ρ,m(t)
,

≈ �ρσi σ j (r ). (38)

Obviously, the third moment is not fully recovered from the ansatz
given by equation (36). This example should be taken as an illus-
tration and highlights the possibility of building a source term from
its moments. It is not unique and more realistic expressions could
be found, which satisfies higher moments of the source. Still, the
successive measurements on the sphere of the flux density of mass
�ρ , momentum �ρv and velocity dispersion �ρσσ allow a coher-
ent description of the infall of matter. Unlike the coefficients, these
flux densities are easier to interpret since they describe physical
quantities and are directly involved in specific dynamical processes
(see Table 3.3). Furthermore, these three flux densities are easily ex-
pressed in terms of coefficients, c�m

α�′m′ (t), or more precisely in terms
of a subset of the source’s coefficients, implying a smaller number of
computations relative to a complete calculation of c�m

α�′m′ (t). Finally,
these flux densities are particularly suited to the regeneration of syn-
thetic environments. As shown in Appendix F, synthetic spherical
maps can be generated from the two-point correlations and cross-
correlations of these fields. Such environments would be consistent
with the measurements in simulations and will allow us to easily
embed simulated galaxies or haloes in realistic environments as a
function of time.

The expression given in equation (36) has one important draw-
back: it is not of the form of equation (12), i.e. it would require a
reprojection over a linear expansion for a dynamical propagation.
Nevertheless, its capacity makes it easier to compute than the full set
of coefficients and the associated strategy would be (i) to measure
the flux densities from the simulation, (ii) to build a source term
from e.g. equation (36) and (iii) to project over an appropriate 5D
basis when needed, i.e. when the source is used as an input to the
analytic description of the haloes’ dynamics.

The following sections will make intensive use of the coefficients
described by equations (34) and (35). In particular, it will show how
the manipulation of these coefficients allows us to recover relevant
physical quantities. In the current paper, only the first moment of
the source, the flux density of mass �ρ , together with the exter-
nal potential, will be fully assessed. The kinematical properties of
the accreted material will in particular be investigated. The com-
plete characterization of the c(t) coefficients is beyond the scope
of the current paper and will be completed in Paper III. The full
measurements of these 11 fields required by equation (36) and the
comparisons between the two expressions of the source will also
be assessed in the future paper as well. Appendices G1 and G2 de-
scribe how the other moments, the flux density of momentum �ρv

or the flux density of energy �ρσ 2 may be recovered from the source
expansion.

3.4 A template halo

As an illustration, let us first apply the whole machinery to one
typical halo. At z = 0, this ‘template’ halo has a mass M of 3.4 ×
1013 M�, with a virial radius R200 of 800 h−1 kpc. The correspond-
ing circular velocity is Vc0 = 600 km s−1. Its accretion history is
shown in Fig. 5 for z < 1. Each point on the azimuth–time diagram
represents one particle of the simulation passing through the virial
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Figure 5. An example of accretion history. Top: azimuth–time diagram.
Each point in the diagram represents one particle passing through the virial
sphere at a given azimuth (y-axis) at a given time measured from the big bang
(x-axis). Bottom: the distribution of crossing instances of particles (in black).
Time increases from left to right. The infalling (respectively outflowing)
particles distribution is shown in red (respectively blue).

sphere at a given azimuth and at a given time. Temporal space has
been sampled using 15 equally spaced bins between z = 1 and 0 (see
bottom panel in Fig. 5). For each time-step, the expansion coeffi-
cients cm′

α,m(t) are computed from equation (34). The Gaussian basis
gα(v) involved 25 functions with mean μα equally distributed from
v = 0 to 1.5 in Vc0 units and with a rms σ = 0.03. The harmonic
expansions were carried up to � = 50 in position space and �′ = 25
in velocity space.

3.4.1 Advected mass: angular space (�ρ)

The template halo accretes an object at ts = 11 Gyr (where t =
14 Gyr stands for z = 0) adding 7.5 × 1012 M� to the system
during a ∼1-Gyr interval. The corresponding spherical flux density
field, �ρ(Ω, ts), is shown in Fig. 6. It represents the distribution
of accreted particles as seen from a halocentric point of view. The
field �ρ(Ω, ts) has been reconstructed from the coefficients (see
equation 34). It reads

�ρ(Ω, t) =
∫

dΓdvv2se(v,Ω,Γ, t) =
∑

m

am(t)Ym(Ω). (39)

Since∫
dΓ Y�′,m′ =

√
4πδ�′0δm′0 , and

∫
dvv2gα(v) = μ2

α + σ 2. (40)

It follows that

am(t) =
√

4π
∑

α

(μ2
α + σ 2)cm

α,0(t), (41)

allowing us to recover �ρ(Ω, ts). Also shown is the same field, but
computed this time using directly the angular distribution of parti-
cles as described in Aubert et al. (2004) (see below). All the major
features are well reproduced by the expansion coefficients (equa-
tions 34–41). Clearly, an object is ‘falling’ through the virial sphere.
It is straightforward to obtain the angular power spectrum C�ρ

� from
the cm

α,m′ coefficients via the definition of a�m in equation (41):

C�ρ

� = 1

4π

1

2� + 1

∑
m

|a�m |2. (42)
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SGP

SGP

Figure 6. An example of a flux density reconstructed from the coefficients
cm′α,m: the mass flux density, ρvr(Ω). It represents the angular distribution
of incoming mass as seen from a halocentric point of view. Here ts ∼
11 Gyr. Light regions correspond to strong infall, while darker regions stand
for low accretion and outflows. Top: the spherical field obtained directly from
the spatial distribution of particles. Bottom: the reconstructed spherical field
from the coefficients (equation 34).

The angular power spectrum of �ρ(Ω, ts), derived from the ex-
pansion (equation 34), is shown in Fig. 7. From the positions and
velocities of particles, it is also possible to evaluate �ρ(Ω, ts) on an
angular grid and recover the angular power spectrum ‘directly’. The
agreement between the two C�ρ

� is good, though for the smallest
scales (� � 30), the power spectrum computed from the coefficients
is slightly larger than the one derived directly from the particles.
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Figure 7. The angular power spectrum, C�/C1 (equation 42), of the distri-
bution of incoming matter, �ρ (Ω) (shown in Fig. 6) at t∼ 11 Gyr, for our
template halo. For a given �, the corresponding angular scale is π/�. The his-
togram corresponds to the power spectrum derived directly from the angular
distribution of particles. The solid line is the power spectrum reconstructed
from the coefficients.

This may be explained by the fact that a grid sampling tends to
smooth the actual �ρ field. As a consequence, the amplitude of
small-scale fluctuations is decreased, leading to a smaller C�ρ

� . A
more complete discussion on harmonic convergence can be found
in Appendix A. For a given �, the corresponding angular scale is
π/� in radians.

Note that the coefficients a00 are closely related to the accretion
field averaged over all directions, �M(t), defined by

�M(t) ≡ �ρ = 1

4π

∫
dΩρvr(Ω, t) = a00√

4π
. (43)

Measuring a00(t) amounts to measuring the accretion flux density,
i.e. the quantity of dark matter accreted per unit surface and per unit
time.

3.4.2 Advected mass: velocity space

Integration over the sphere leads us to the distribution of accreted
matter in velocity space:

ρvr(Γ, v, t) =
∫

dΩse(v,Ω,Γ, t), (44)

=
√

4π
∑
α,m′

c0
α,m′ gα(v)Ym′ (Γ). (45)

Projections over �2 and v give the probability distribution of the
incidence angle �1, ϑ(�1, t), defined as

ϑ(�1, t) =
∫

d�2dvv2ρvr(Γ, v, t),

= 2π
√

4π
∑
α,�′

c0
α,{�′,0}

(
μ2

α + σ 2
)

Y�′,0(Γ).
(46)

The impact parameter b of an incoming particle (measured in units
of the virial radius) is related to �1 by

b
R200

= sin(�1), (47)

therefore the probability distribution of impact parameters, ϑ(b), is
easily deduced from equation (46). At t ∼ 11 Gyr, the ϑ(b) computed
from the source coefficients is compared to that derived directly from
the velocities of particles in Fig. 8. Note that for pure geometrical
reasons small impact parameter b is less likely since there is only one
trajectory passing through the centre, while there is a whole cone
of trajectories with b �= 0. As a consequence, errors are intrinsically
larger for small values of b. The reconstruction from the source
coefficients is clearly adequate. In this example, the high probability
for infalling particles to have a small impact parameter (b < 0.5)
implies that velocities are strongly radial. The object ‘dives’ into
the halo’s potential well.

Projection over �1 leads to the probability distribution of particle
velocities, ϕ(v, ts), as they pass through the virial sphere. The PDF
ϕ(v, t) is defined as

ϕ(v, t) ≡ v2

∫
dΩ dΓse(v, �,Γ, t). (48)

Here the v2 weighting accounts for the fact that the probability
distribution of measuring a velocity, v, within dv is of interest here.
Using coefficients, it follows that

ϕ(v, t) = 4π
∑

α

v2gα(v)c0
α,0. (49)
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Figure 8. Top: excess probability distribution of impact parameters b and
ϑ(b), derived from the cm

α,m′ (t) source coefficients (equation 34) of our
template halo at ts ∼ 11 Gyr (line). The histogram corresponds to the
same distribution derived directly from the positions and velocities of par-
ticles. Error bars stand for 3σ errors. The impact parameters are given in
units of R200. The unit in y-axis is 5 × 109 M� kpc−2 Myr−1. Infall is
mainly radial. Middle: the velocity distribution of particles, ϕ(v), accreted at
ts ∼ 11 Gyr, for our template halo. Velocities are expressed in terms of the
circular velocity at z = 0. The unit in y-axis is 5 × 109 M� kpc−2 Myr−1.
The histogram corresponds to the velocity distribution obtained directly from
the velocities of the particles. The solid line is the reconstructed distribution
from the source coefficients. Bottom: the probability distribution, ℘(b, v),
of particles in the b − v subspace. Units are the same as above. Red/blue
stands for high/low densities. No correlation is found between b and v for
this specific example.

The reconstructed velocity distribution is also shown in Fig. 8. It
reproduces well the actual velocity distribution. For this specific
halo, the satellite is being accreted with a velocity of 0.75 Vc0.

The correlation between the incidence angle �1 and the velocity’s
amplitude v may be studied by integrating ρvr(�, v, t) over �2 only.
The DF, ℘(�1, v), of particles in the (�1, v) subspace is defined by

℘(�1, v) ≡
∫

d�2dvv2ρvr(Γ, v, t) ,

= 2π
√

4π
∑
α,�′

c0
α,{�′,0}gα(v)Y�′,0(�1,0). (50)

Given the relation (equation 47), the correlation ℘(b, v) between the
impact parameter and the velocity’s amplitude is easily obtained.
The ℘(b, v) distribution is shown in Fig. 8. Again, note that ℘(b, v)
represents an excess probability of finding an impact parameter b
(with a velocity v) compared to isotropy. In this specific example, no
real correlation may be found between the two quantities. Finally,
the integration of ℘(b, v), ϕ(v, t) and ϑ(�1) over their respective
space leads to the same quantity, namely the integrated flux �M(t).

3.4.3 External potential

The final field needed on the virial sphere is the external tidal field
created by the dark matter distribution around the halo.

Using equation (35), the external potential ψ e(Ω, t) is easily com-
puted from the positions of external particles, having restricted the
sampling to particles within a 4 Mpc (physical) sphere centred on
the halo. The position of external particles is linearly interpolated at
a given measurement of time. The coefficients bm for the template
halo are computed at ts ∼ 7 Gyr (measured from the big bang). The
reconstructed field ψ e(Ω, t) is shown in Fig. 9 along with the mod-
ulus of the advected mass |ρvr(Ω)|. The two reconstructions were
restricted to harmonics � � 20.

The two spherical fields show the same main features. However,
almost no small-scale feature is seen in the map of the external po-
tential even though they have the same resolution. Since the gravita-
tional potential is known to be smoother than the associated density
and is dominated by the global tidal field, it is not surprising that
ψ e(Ω, t) appears smoother than the advected mass field |�ρ(Ω)|.

The potential’s angular power spectrum may also be computed
by replacing a�m by b�m in equation (42) (see Fig. 10). The power
spectrum of the potential, C�ρ

� , sharply decreases with �, while C�ρ

�

has a gentler slope. Large scales are clearly more important for the
potential than for the advected mass. Furthermore, Cψ

� systemati-
cally peaks for even � values, reflecting the ‘even’ symmetry of the
potential measured on the sphere.

4 S I M U L AT I O N S A M P L E A N D S TAT I S T I C A L

B I A S E S

Section 3.4 details the measurement strategy for a given typical
halo. It is now possible to reproduce the above measurements for
all the haloes of the simulation sample. Let us first describe in turn
the construction of our sample, and the corresponding biases, which
constrain our ability to convert a large set of simulations into the
statistics of the source.

4.1 Simulations

In order to achieve a sufficient sample and ensure a convergence
of the measurements, a set of ∼500 simulations was produced
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SGP

SGP

Figure 9. A comparison between the external potential, ψe(Ω) and the
modulus of the flux density of matter, |ρvr(Ω)|. The measurement is made
at t ∼ 7 Gyr (measured from the big bang) on our template halo. The two
fields were, respectively, reconstructed from cm

α,m′ and bn coefficients with
�max � 20. Even though the two fields are similar and exhibit a strong
quadrupolar component, ψe(Ω) is smoother than ρvr(Ω). It is expected that
the corresponding expansion coefficients be statistically correlated.
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Figure 10. A comparison between the angular power spectrum of ρvr(Ω)
and ψe(Ω) for our template halo (the two fields are shown in Fig. 9). The two
power spectra C� are normalized by C2, i.e. the quadrupole contribution. The
slope of the potential’s power spectrum is clearly stronger. Large scales (i.e.
small-� values) dominate the angular distribution of ψe(Ω), as expected.

as discussed in Aubert et al. (2004). Each of them consists of a
50 h−1 Mpc3 box containing 1283 particles. The mass resolution is
5 × 109 M�. A �CDM cosmogony (�m = 0.3, �� = 0.7, h = 0.7
and σ 8 = 0.928) is implemented with different initial conditions.
These initial conditions were produced with GRAFIC (Bertschinger
2001), where a BBKS (Bardeen–Bond–Kaiser–Szalay; Bardeen
et al. 1986) transfer function was chosen to compute the initial

10−18 10−16 10−14 10−12

10−2

10+0

10+2

10+4

a00
2

C
4

Figure 11. Scatter plot of C
�ρ

4 versus a2
00 measured at lookback times

t = 7.8 (red), 5.6 (green), 4.0 (yellow) and 2.9 (blue) Gyr. The quantity
a00 scales as the average accretion rate of the haloes while C

�ρ

4 scales as
the contribution of � = 4 structures in the flux density of mass measured on
the sphere. This plot illustrates how a threshold on the accretion rate affects
in a non-trivial way the typical clustering measured for �ρ . In particular,
one should note how C

�ρ

4 remains constant at recent times for low accretion
rates.

power spectrum. The initial conditions were used as inputs to the
parallel version of the tree code GADGET (Springel, Yoshida & White
2001). The softening length was set to 19 h−1 kpc.3 The halo de-
tection was performed using the halo finder HOP (Eisenstein & Hut
1998). The density thresholds suggested by the authors (δouter = 80,
δsaddle = 2.5δouter, δpeak = 3.δouter) were used.

4.2 Selection criteria

As shown in Aubert et al. (2004), the completion range in mass of the
simulations spans from 3 × 1012 to 3 × 1014 M�. Since the empha-
sis is on L� galaxies, the survey is focused mainly on galactic haloes
and light clusters, only haloes with a mass smaller than 1014 M� at
z = 0 were considered. The interest is for haloes already ‘formed’,
i.e. which will not experience major fusions anymore. To satisfy
these requirements, the focus is on the last 8 Gyr (redshifts z < 1 in
a �CDM cosmogony). Since the history of a given halo is followed
by finding its most massive progenitor, it is required not to accrete
more than half its mass in a two-body fusion. As a final safeguard,
a halo is rejected if it accretes more than 5 × 1012 M� between
two time-steps (i.e. per 500 Myr, see the next section). This mass
corresponds approximately to the smallest haloes considered at z =
0. The final range of mass of haloes which satisfy these criteria is
∼5 × 1012–1014 M�, the fraction of rejected haloes being ∼20 per
cent. Clearly, such a priori selection criteria will modify the distri-
butions of measured values and the related biases may be difficult
to predict. For instance, Fig. 11 shows the scatter plot of the con-
tribution of π/(� = 4) = 45◦ fluctuations to �ρ field versus a00,
i.e. the accretion rate. It appears from this plot that modifying the
threshold for the accretion will modify the average angular scale of
�ρ in a non-trivial way. Since only a small fraction of haloes are
rejected, the biases are expected to be moderate, but as for now their

3 A second set of simulations with a resolution increase by a factor of 23

(respectively 26) was carried in order to investigate the convergence of some
measurements (see Section 6.2.2).
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impact cannot be estimated accurately on the average source or its
moments.

Let us emphasize that the above selection criteria should be added
to those corresponding to the simulations themselves. Aside from
the fact that a 50 Mpc3 h−1 box size implies a limited range of mass,
the universe described in these simulations is more homogeneous
than it should be, since each box must satisfy a given mean density.
In other words, the probability of rare events is reduced. This effect
should not influence the number of haloes with high accretion rate,
since strong accretions are rejected a priori. On the other hand, it
should influence the number of objects which experience low accre-
tion history, which are probably less numerous in our simulations
than in larger simulated volumes since voids are less likely. Fur-
thermore, the intrinsic mass resolution sets a minimum accretion
rate equals to one particle mass (5 × 109 M�) per time interval.
One could imagine an object with a mass smaller than the parti-
cle’s mass which would not be included in the simulation at the
current resolution. Furthermore, an object with a mass equals to a
few times the minimum mass is to be considered as diffuse accre-
tion. Finally, this mass resolution is related to the spatial resolu-
tion, which limits intrinsically the angular description of fluxes on
the virial sphere. For a given type of simulation, all these effects
cannot be avoided and reduce the representability of the following
measurements.

In short, this strategy involves a bias in mass, redshift, resolution
and strength of a merging event. However, these biases should only
influence somewhat extreme realizations (related to e.g. very low
accretion or equal mass mergers) of the source or the external poten-
tial and since the focus is on the typical scales, presumably related to
moderate interactions, hopefully they should not significantly affect
the measurements.

4.3 Reduction procedure

In the following discussion, most of the distances (respectively ve-
locities) will be expressed as functions of the virial radius R200

(respectively the circular velocity Vc) measured at z = 0. These
quantities are related to the halo’s virial mass by

Vc =
√

G M200

R200
. (51)

Here M200 = M(r < R200). The mass dependence of R200 and Vc is
given in Fig. 12 and may be fitted by

R200 = 537M1/3 , Vc = 400M1/3, (52)

where R200 is expressed in (h−1 kpc), Vc in km s−1 and M in units
of 1013 M�. Here M stands for the total mass of the halo, returned
by the halo finder HOP. In equation (52), R200 and Vc appear to be
strongly correlated to the final masses of haloes, the few outliers be-
ing related to external subhaloes or peculiar halo geometries. Since
the selection criteria are quite restrictive, most of the haloes experi-
ence the same relatively quiet history of accretion and account for
the lack of scatter.

The simulations in that redshift interval involved 15 snapshots
sampled with �(log z) = cst for z � 1 down to z = 0.1 plus a snap-
shot at z = 0. The gap between the last snapshot and the second
to the last is nearly 1.4 Gyr. As a consequence, the assumption of
ballistic trajectories is not valid anymore (see the Appendix). Sim-
ulations were resampled in 15 bins distributed regularly in time (i.e.
not in redshift) using the procedure described in Section 3.2: the
corresponding time-step is ∼500 Myr. To take into account the
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Figure 12. Virial radii (R200) and circular velocities (Vc) as functions of
haloes final masses. The quantities have been measured at redshift z = 0.
Scaling relations between R200 or Vc and the final mass are also given.

last gap, results obtained from the last three ‘new’ bins (which
cover the last 1.4 Gyr) were averaged into a single bin centred on
0.8 Gyr.

The source coefficients, cm
α,m′ (t), were computed following the

procedure described in Section 3.4. Maximum harmonic orders
were set to �max = 50 for the position–angular description. For a
typical halo with R200 = 500 kpc, �max = 50 corresponds to a spa-
tial scale of 30 kpc, i.e. equals to 1.5 times the spatial resolution of
the simulation. The harmonic description of the velocities angular
dependence is restricted to �′

max = 15. The velocity amplitude is
projected on a Gaussian basis which involves 25 functions regularly
spaced from v/vc = 0 to 1.5 with a rms of 0.03. These parame-
ters allow a satisfying reproduction of distributions computed from
particles.

The external potential coefficients, bm(t), were computed follow-
ing the procedure described in Section 3.4. Only particles within a
4-Mpc physical sphere centred on the halo are taken into account.
Maximum harmonic orders were set to �max = 20.

A set of 100 simulations have been fully reduced allowing us to
compute cm

α,m′ (t) and bm(t) for 15 000 haloes. Since a well-defined
(if only biased) sample of histories of haloes was constructed in our
simulations, it may be projected on our basis, to compute the external
potential and the flux density of mass, following Section 3.4. Let
us now characterize the corresponding coefficients, via one-point
(Section 5) and two-point (Section 5) statistics.

5 O N E - P O I N T S TAT I S T I C S

In this section, let us first describe the evolution and the statistical
distributions of the global properties (i.e. integrated over the sphere)
of the source and the potential. Let us discuss the evolution of the
mean potential, of the mass flux�M(t) and the kinematical properties
of se via the velocity distribution φ(v) and the impact parameter
distribution ϑ(b).

Let us then describe in turn the statistical PDF, mean and vari-
ance of the integrated fluxes, their corresponding flux densities
and finally their mean kinematical features, following the steps of
Section 3.4.

5.1 Mean external potential

The mean external potential on the sphere is actually somewhat
meaningless but is being used as a normalization value for potential
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Figure 13. The time evolution of the monopole component of the external
potential, b00(t). The time evolution is fitted by a second-order polynomial −
b00(t) = 35 948 ∗ t2 − 61 480.7 ∗ t + 793 067. Lookback time t is expressed
in Gyr, while b00 coefficients are expressed in units of GM/R. M is expressed
in 1010 M�, R in kpc h−1 and G = 43 007 in internal units.

fluctuations (see Section 6.1). Because of isotropy, the mean poten-
tial is seen as a monopole and only the b00(t) coefficient is statisti-
cally different from zero. Furthermore, following equation (24), the
three-dimensional potential component induced by the monopole
is a constant potential throughout the sphere volume. As a conse-
quence, it influences the halo’s dynamics only through its temporal
variation.

The time evolution of the 〈〈b00〉〉 coefficient is given in Fig. 13.
The b00(t) distribution exhibits a tail due to large − b00 values and
is better fitted with a lognormal distribution than with a normal
distribution (see Fig. C1). Hence, 〈〈b00〉〉 stands for the most probable
value of the lognormal fitting distribution.4 The evolution shown in
Fig. 13 reflects the measurement procedure. Given that the potential
is computed from all the particles contained within a fixed physical
volume, the overall expansion implies that particles tend to exit the
measurement volume with time. In other words, the average density
in the measurement volume decreases with time. This effect leads
naturally to the decline of the average potential within the virial
sphere due to external material.

5.2 Mass flux: ΦM(t)

At each time-step, the a0,0 distribution is fitted by a Gaussian func-
tion with mean 〈a0,0〉 (see also Fig. C3). This Gaussian hypothesis
is clearly verified for low redshifts while strong accretion events
give rise to a tail in the a0,0 distribution at high z. At these epochs
(lookback time t > 7 Gyr), the Gaussian fit tends to slightly over-
estimate the mode position. Yet the Gaussian hypothesis remains a
good approximation of the distribution, while the time evolution of
the Gaussian mean value 〈a0,0〉 (t) represents well the evolution of
the mode of a0,0.

The time evolution of the average flux of matter through the
sphere, �M(t) = �ρ , is directly derived from the evolution of the

4 Since the measured distribution is quite peaked, fits made with a normal
distribution (not shown here) return a very similar time evolution of the mode
position.
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Figure 14. Top: the time evolution of the average flux density of matter
through the virial sphere, 〈�M(t)〉 = 〈�ρ〉(t) (symbols). Bars stand for
3σ errors. Here �M (t) is computed directly from a00 coefficients follow-
ing equation (56). Its time evolution is fitted by a third-order polynomial
(solid line). Bottom: the MAH log M(z)/M(z = 0) for three different classes
of masses. Masses are expressed in solar masses. Symbols represent the
median value of log M(z)/M(z = 0) within each classes. Lines represent the
fitting function suggested by van den Bosch (2002b). Even though the global
behaviour is reproduced by the fitting functions, the measured accretion rate
is systematically smaller. This discrepancy has already been noted by van
den Bosch (2002b).

monopole (see equation 43) and is shown in Fig. 14. It can be fitted
by

�M(t) ≡ 〈�ρ〉(t) = −0.81t3 + 10.7t2 − 19.3t + 17.57, (53)

where �M(t) is in units of M� Myr−1 kpc−2 and lookback time t
is expressed in Gyr. As expected, the average quantity of material
accreted by haloes decreases with time. For z < 1, a large fraction
of the objects of interest are already ‘formed’ and only gain matter
through the accretion of small objects or diffuse material. In a hier-
archical scenario, such a source of matter becomes scarcer, inducing
a decrease in the accretion rate. Furthermore, recall that �M(t) is
measured as a net flux, i.e. the outflowing material may cancel a
fraction of the infalling flux. Therefore, the decrease with time may
also be the consequence of an increasing contribution of outflows:
the measurement radius R200(z = 0) becomes the actual virial radius
of the halo as time goes by, i.e. the radius where the inner material
is reprocessed and where outflows are susceptible to be detected.
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As a check, the average mass accretion history (hereafter MAH)
of the haloes was computed. The MAH �(t) is defined as

�(t) ≡ M(t)
M(z = 0)

, (54)

where M(z) is the halo’s mass at a given instant. Using the extended
Press–Schechter formalism, van den Bosch (2002b) showed that
haloes have an universal MAH, fitted by the following formula:

log[�(M(z = 0), t)] = −0.301

[
log(1 + z)

log(1 + z f )

]ν

, (55)

where zf and ν are two parameters which depend on the considered
class of mass only. These two parameters are found to be correlated
and for instance Wechsler et al. (2002) found a similar relation
using a single parameter. For each halo, its mass evolution M(t) was
computed from its final mass M(z = 0) and its integrated flux of
matter �M (t):

M(t) = M(t = 0) − 4πR2
200

∫ t

t=0

dt�M(t). (56)

From equation (54), �(t) was computed for each halo. The median
value of �(t) for three classes of mass was compared to the fit sug-
gested by van den Bosch (2002b) (see Fig. 14). For the three classes,
the agreement with the fitting formula is qualitatively satisfying: the
three measurements evolve in the expected manner while their rela-
tive positions are the same as the relative positions of the three fits.
However, our measurements are quantitatively inconsistent with the
three curves. At low redshift, �(t) is systematically larger than the
expected value (i.e. the accretion rate is smaller). The median mass
at z = 1 is well recovered even though the two methods disagree
slightly quantitatively. In other words, our measurements overesti-
mate the accretion at high redshift and underestimates at low red-
shift. This may be related to the measurement procedure through the
sphere: at higher redshift, accreted material is assumed to be added
to the biggest progenitor, even though it has not yet reached the
central object and its mass is overestimated. Still, this material ends
up in the most massive progenitor and the final mass is recovered.
Note that since specific selection criteria were applied, these haloes
may not be completely representative of the whole halo population.
Finally, recall that the median value of �(t) was represented here
because of strong outliers, while the fitting formula is given for the
average MAH (extracted from merger trees). A similar discrepancy
between the extended Press–Schechter theory and the results ob-
tained from numerical simulations had already been noticed by van
den Bosch (2002b) and Wechsler et al. (2002). In particular, van
den Bosch (2002b) found that the Press–Schechter models tend to
underestimate the formation time haloes compared to simulations.
Clearly, our measurements seem to confirm this discrepancy. Since
the global behaviour of MAHs is recovered and since the median
mass at z = 1 is recovered, it is concluded that the measure of
�M(t) through the virial sphere reproduces the accretion history of
haloes.

5.3 Mean kinematics

Let us now turn to the kinematical properties of the flow, while
averaging the source over the virial sphere.

5.3.1 probability distribution of the modulus of velocities

Given the source coefficients cm
α,m′ , the average velocity distribution

〈ϕ(v, t)〉 (defined by equation 19) is easily computed since it only

involves 〈c0
α,0(t)〉. The ensemble average of 〈c0

α,0〉 and the related
ensemble dispersion σ (c0

α,0)(t) ≡ 〈(c0
α,0 − 〈c0

α,0〉)2〉 are derived by
fitting the c0

α,0(t) distribution by a Gaussian function. From these
two quantities, it follows

〈ϕ(v, t)〉 = 4πv2
∑

α

gα(v)
〈

c0
α,0

〉
, (57)

and

σ [ϕ(v, t)] = 4πv2

√∑
α

gα(v)2σ
(

c0
α,0

)2
, (58)

which are, respectively, the ensemble average and rms of the velocity
distribution. The time evolution of 〈ϕ(v, t)〉 is given in Figs 15 and
16. Errors on 〈ϕ(v, t)〉 are computed as

�[〈ϕ(v, t)〉] = 3
σ [ϕ(v, t)]√

Nhaloes
. (59)

At ‘early times’ (t > 5 Gyr), the distribution is unimodal with a
maximum around 0.7Vc (z = 0). No outflows can be detected at
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Figure 15. The time evolution of the average velocity distribution, 〈ϕ(v,
t)〉, defined in equation (19), for z < 1 (symbols). Ages are expressed as
lookback times (i.e. t = 0 for z = 0). Velocities are given relative to the
halo’s circular velocity at z = 0. The unit in y-axis is 5 × 109 M� kpc−2

2 Myr−1/Vc. Error bars stand for 3σ errors. Here ϕ(v) is fitted by the sum of
two Gaussians with opposite signs (solid line). Each Gaussian contribution
is also shown (dashed lines).
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Figure 16. The time evolution of the average velocity distribution in the t–
V/Vc plane. Red (online) colours stand for positive values of the distribution
(i.e. infall), while blue (online) colours stand for negative ones (i.e. outflows).
Each of these components is fitted by a Gaussian function in the V/Vc space.
The time evolutions of the mean of the Gaussians are given by the two lines
(solid for infall, dashed for outflows). The rms of Gaussians are also shown
as bars.

any velocity and the infalling dark matter dominates. At later times,
〈ϕ(v, t)〉 drops below zero for velocities around 0.4Vc (z = 0). Out-
flows dominate at ‘low’ velocities. Meanwhile, the amplitude of the
previous peak decreases and shifts to higher velocities. The fraction
of infall relative to the total amount of material passing through the
sphere drops from 1. to 0.6 between t = 8 and 0.8 Gyr.

This behaviour is likely to be due to our measurement at a fixed ra-
dius, R200(z = 0). At ‘early times’, this measurement radius is bigger
than the actual virial radius of haloes. Thus no sign of ‘virialization’
(outflows consecutive to accretion) is detected. Later, the actual R200

gets closer to the measurement radius. Outflows pass through the
measurement radius as a sign of internal dynamical reorganization.
The fact that accretion intrinsically decreases with time would pro-
vide another explanation of this trend. This decrease can actually be
traced in Figs 15, 16 and D1.

The global behaviour of 〈ϕ(v, t)〉 can be modelled by sum-
ming two Gaussians representing the infalling and outflowing
components:

〈ϕ(v, t)〉 = qı,3(t)

qı,2(t)
√

2π
exp

{
− [v − qı,1(t)]2

2qı,2(t)2

}
+ qo,3(t)

qo,2(t)
√

2π
exp

{
− [v − qo,1(t)]2

2qo,2(t)2

}
. (60)

Subscripts ı and o stand for infall and outflow. Note that qı,3(t) �
0 and qo,3(t) � 0. The coefficient time evolution is given in
Fig. D1, where t can be expressed in Gyr and ϕ(v, t) in 5 ×
109 M� kpc−2 Myr−1/Vc. Examples of fits are shown as solid lines
in Fig. 15. Note that all the six coefficients evolve roughly linearly
with time (see Fig. D1). Their linear fitting parameters are given
in Table D1. Using equation (60) and the linear parametrization of
the Gaussian coefficients, 〈ϕ(v, t)〉 is reproduced accurately. The
only restriction concerns the negative amplitude of the Gaussian
(qo,3) which should not be greater than 0. Since this condition is not
naturally satisfied by a linear fit, it should be set manually.

The evolution of the relative positions of two Gaussians is given
in Fig. 16. For t > 5 Gyr, it is consistent with the ‘no outflow’
hypothesis, the amplitude of the negative Gaussian being close to

zero at this epoch. Both Gaussians mean values seem to drift to
higher velocities as a function of time. Even though the relative
velocity of accreted material is determined by the initial conditions
(namely large-scale clustering), the velocity of an infalling satellite
should partly reflect the properties of the accreting body. A dense
massive halo will not accrete like a fluffy light one. In other words,
the velocity of infalling material should reflect the actual circular
velocity of the accreting body. As a consequence, it is expected that
accretion velocity drifts with time towards Vc (z = 0).

Furthermore, the mean values of both Gaussians evolve roughly
linearly over the whole time range with comparable rate of change
(see Fig. D1 and the following discussion). As a consequence, their
relative positions remain roughly constant (see Fig. 16). This indi-
cates that these two components may be physically related, outflows
being the consequence of a past accretion. Mamon et al. (2004) men-
tion the existence of a backsplash population, rebounding through
the virial radius and this population is known to have a different
velocity (e.g. Gill et al. 2004). The outflows detected via our de-
scription of the source are consistent with this backsplash com-
ponent. The difference in velocity may be explained if outflows
are representative of an earlier accretion with a velocity typical
of earlier times. Also past accreted material is influenced by the
halo’s internal dynamics. Its velocity distribution would be ‘repro-
cessed’ (e.g. via dynamical friction, tidal stripping or phase mixing)
to lower velocities as the material exits through the measurement
radius.

However, recall that the distribution shown here is a ‘net’ dis-
tribution. In other words, it is quite plausible that an outflowing
component may be completely cancelled by an infalling component
which has an exact opposite distribution. This effect is illustrated
in Fig. 17, where the velocity distribution of infall and outflows is
being shown separately. This distribution has been computed from
300 haloes at t = 2.3 Gyr. This distribution is quite representative
of the average ones, except a few high velocities events which skew
the distribution of the infalling component and which are induced
by outliers. If the Gaussian fits are removed from these two sepa-
rate distributions, two almost identical distributions appear for the
two components, centred on V/Vc ∼ 0.6. These two identical dis-
tributions are related to the virialized component of infall, which
already interacted with the inner region of the halo. The overall
shape of these two distributions may provide insights on the typical
dynamical state in the haloes’ inner regions.

5.3.2 Impact parameters and incidence angles

The average distribution of incidence angle, 〈ϑ(�1, t)〉 has been
computed following the same procedure described above for 〈ϕ(v,
t)〉. Defining c̃�′ (t) as

c̃�′ (t) = 2π
√

4π
∑

α

cα,0,{�′,0}
(
μ2

α + σ 2
)
, (61)

yields

〈ϑ(�1, t)〉 =
∑

�′
Y�′,0(Γ)〈c̃�′ (t)〉 (62)

and

σ (ϑ(�1, t)) =
√∑

�′
Y�′,0(Γ)2σ (c̃�′ (t))2, (63)

where 〈ϑ(�1, t)〉 and σ (ϑ(�1, t)) are derived by fitting the c̃�′ (t) dis-
tribution by a Gaussian function. Errors on 〈ϑ(�1, t)〉 are computed
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Figure 17. Top: the net velocities distribution (histogram) measured from
300 haloes at t = 3.4 Gyr. This distribution is the representative of the
distribution computed from coefficients and averaged over 15 000 haloes.
Velocities are given in circular velocity units, while units in y-axis are ar-
bitrary. The two components are fitted by two Gaussians (dashed lines).
Bottom: the separate velocities distribution of accretion (red histogram) and
outflows (black histogram). The dashed curves represent the difference be-
tween these two distributions and their respective fits shown above. It results
in two residual distributions, centred on the same velocity and displaying
nearly the same shape. These two residual distributions describe the material
which already experienced one passage through the virial sphere.

similarly to errors on 〈ϕ(v, t)〉 (see equation 59). The time evolution
of 〈ϑ(�1, t)〉 is shown in Fig. 18. Since the impact parameter and
the incidence angle are simply related by b/R200 = sin (�1), 〈ϑ(b,
t)〉 is also easily computed (Fig. 19).

The infall (�1 > π/2 or the upper branch in 〈ϑ(b, t)〉 diagrams)
is clearly mostly radial. The infalling part of the distribution peaks
for �1 ∼ π instead of having a uniform behaviour and this trend
can be observed for all redshifts below 1. The distribution slightly
widens with but remains skewed towards large values of �1. In the
〈ϑ(b, t)〉 representation, the higher branch becomes flatter with time.
The outflows (�1 < π/2 or lower branch in 〈ϑ(b, t)〉 diagrams)
are mainly undetectable at early times, as mentioned earlier. As
time increases, the outflow contribution becomes stronger and radial
orbits (�1 ∼ 0) also appear to be dominant. However, the behaviour
of the ‘outflowing’ part of the 〈ϑ(�1, t)〉 distribution is almost linear
and does not peak. Tangential orbits cannot be neglected for this
component.
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Figure 18. The time evolution (symbols) of the distribution of the aver-
age incidence angle �1 〈ϑ(�1)〉 is defined by equation (46). Ages are ex-
pressed as lookback time. Bars stand for 3σ errors. The unit in y-axis is 5
× 109 M� kpc−2 Myr−1. Outflows are counted negatively, leading to neg-
ative values of 〈ϑ(�1)〉 for �1 < π/2. The result of the model described in
equation (64) is also shown (red line).

The evolution of 〈ϑ(�1, t)〉 can be fitted by the following
parametrization:

〈ϑ(�1, t)〉 = p0√
2πp1(t)

exp

[
− (�1 − π)2

2p1(t)2

]
+ p2(t)�1 + p3(t),

(64)

where p0 = 2 × 10−6 in our units. The ‘infalling’ part is modelled
as a Gaussian, while the ‘outflowing’ part is fitted linearly. The time
evolution of the three parameters pk(t), k = 1, 2, 3, can be fitted
by a linear evolution and the related linear parameters are given in
Table D2. The evolution of p1(t) confirms that the ‘infalling’ part of
the distribution, 〈ϑ(�1, t)〉 widens with time.

This result implies that the material experiences a circularization
as it interacts with the halo. Consequently, orbits are more tangential
as particles exit and re-enter the halo’s sphere. Such an effect has
already been measured by e.g. Gill et al. (2004). Dynamical friction
would provide a natural explanation for this evolution of the orbits,
but this argument is refuted by e.g. Colpi, Mayer & Governato (1999)
or Hashimoto, Funato & Makino (2003). Gill et al. (2004) mention
the secular evolution of haloes to explain this circularization: the
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time evolution of the potential well induced by the halo would affect
the orbits of infalling material and satellites. Other processes, such
as tidal stripping or satellite–satellite interactions, may also modify
the orbital parameters of dark matter fluxes. Clearly, the interactions
between the infall and the halo drive this circularization, but the
detailed process still has to be understood.

This dynamical circularization could also explain why the ‘out-
flowing’ part of the 〈ϑ(�1)〉 (or 〈ϑ(b)〉) is flatter than the infalling
one: by definition this component interacted with the halo in the
past, unlike most of the infall. Finally, the �1 or b representation
explicitly separates infall and outflows. It implies that virialized par-
ticles which pass through the sphere do not ‘cancel’ each other and
do contribute to the distributions. Such a ‘relaxed’ material is likely
to have a non-zero tangential motion, flattening the distributions as
its contribution becomes important. Since the actual size of the halo
gets closer to the measurement radius as time advances, this com-
ponent contributes more with time and its flattening effect on the
incidence angle (or impact parameter) distributions should increase
as well.

Fig. 20 presents a correlation between the velocity amplitude
v and the impact parameter b, at four different instances and for
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Figure 19. The time evolution (symbols) of the impact parameter b dis-
tribution 〈ϑ(b, t)〉 is defined by equation (46). Ages are expressed as
lookback time. Bars stand for 3σ errors. The unit in y-axis is 5 × 109

M� kpc−2 Myr−1. The lower (respectively higher) branch is the 〈ϑ(b, t)〉
distribution for outflows (respectively infall). The result of the model de-
scribed in equation (64) is also shown (red line).
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Figure 20. Top: the distribution, 〈℘(b, v)〉, of particles in the (b, v) subspace
at lookback time t = 1.8, 3.4, 5.1 and 6.7 Gyr; the infall (contour plot)
and outflow (density plot) are represented separately. Beyond the bimodal
feature, no residual correlation appears.

both the infall and the outflow components. Considering these two
components separately, no correlation can be found: the incidence
does not depend on the amplitude of the first approximation. The
only notable result comes from the fact that accreted material has
systematically a higher velocity than outflows, which confirms the
results obtained from the distribution of velocities only. Again, this
effect is related to the separate origin of these two fluxes, accretion,
being dominated by newly accreted material, and outflows, which
were processed by the inner dynamics of haloes.

6 T WO - P O I N T S TAT I S T I C S

Let us now focus on the second-order statistics, through the corre-
lations on the virial sphere. The two-point correlations are assessed
through the angular power spectrum and the angulo-temporal cor-
relation function for both the external potential, ψ e and the first
moment of the source term, i.e. the flux density of mass, �ρ .

6.1 External potential

6.1.1 Angular power spectrum

The potential’s angular power spectrum Cψe

� is computed for each
halo from the b̃�,m coefficients (Aubert et al. 2004),

b̃�,m ≡
√

4π

(
b�,m

〈b00〉 − δ�0
b0,0

〈b00〉

)
, (65)

related to the potential contrast

δ[ψe](Ω) ≡ ψ e(Ω) − ψ e

〈ψ e〉 =
∑
�,m

b̃�,mY�,m(Ω). (66)

The probability distribution of Cψe

� (t) was weighted as described in
Appendix A. For each time-step and each harmonic �, Cψe

� was fitted
by a lognormal distribution (see Fig. C2). Let us define 〈〈Cψe

� 〉〉(t) as
the mode of the fitting distribution. The time evolution of the external
potential’s power spectrum is shown in Fig. 21. Globally, the power
spectrum is dominated by large scales and is quite insensitive to
time evolution. However, two regimes may be distinguished. For
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Figure 21. The angular power spectrum of the external gravitational poten-

tial ψe(Ω, t). Symbols represent the mode of the Cψe

�
distribution for each

harmonic � and each time-step. Times are lookback times. Bars stand for 3σ

errors on the mode value. The large-scale contribution remains constant with
time, while the small-scale contribution smoothly increases with time. The
bump for the 〈C2〉 component indicates a strong quadrupolar configuration
for ψe(Ω, t).

low-order harmonics, 〈〈Cψe

� 〉〉(t) remains mostly constant. For smaller
scales (� > 5), 〈〈Cψe

� 〉〉(t) increases along time. As a consequence, the
power spectrum’s amplitude does not change but its shape evolves
while smaller scales become more important relative to larger scales.

These two regimes reflect the two-fold nature of tidal interac-
tions of a halo with its environment. Small angular variations of
the potential relate to small spatial scales and presumably track the
presence of objects which are getting closer or going through the
virial sphere. Since small-scale contribution increases, it suggests
that these objects tend to get smaller with time. It would be con-
sistent with the global decrease of the accretion rate, as long as the
merger rate does not increase strongly during this epoch. However,
the rise of small scales may also be related to an increasing con-
tribution of weak and poorly resolved accretion events. In such a
case, the isolated particles’ contribution to the potential should be
measured. This possibility is investigated in Section 6.2.

Meanwhile, large-scale fluctuations of potential (� � 4) may re-
flect the ‘cosmic tidal field’ resulting from the distribution of matter
around the halo on scales larger than the radius of the halo. The
amplitude of such a tidal field should remain fairly constant, as in-
deed measured. Furthermore, the peripheral distribution of matter is
not spherically distributed but is rather elongated along some direc-
tion: haloes tend to be triaxial with their ellipsoid aligned with the
surrounding distribution of satellites. The intersection of an elon-
gated distribution of matter with the virial sphere would induce a
quadrupolar component, as detected in our measurements. These
two effects cannot be easily disentangled, since they actually are
two sides of the same effect. Large-scale distribution of matter is
responsible for both the ‘cosmic tidal field’ and the halo triaxial-
ity (via the distribution of satellites). In other words, it is not clear
whether the large-scale behaviour of 〈〈Cψe

� 〉〉(t) reflects the tidal field
or the reaction of the halo to this tidal field.

6.1.2 Angulo-temporal correlation

6.1.2.1 Correlations and coherence time. To further investigate
these two regimes of tidal interactions, let us compute the angulo-

Figure 22. The angulo-temporal correlation function,we(θ ,�t)=〈δ[ψe](Ω,
t)δ[ψe](Ω + �Ω, t + �t)〉. Blue (respectively red) colours stand for low
(respectively high) values of the correlation. Isocontours are also shown.
Large angular scale isocontours (θ ∼ π/2) have large temporal extent, due
to the quadrupole dominance over the potential seen in the virial sphere.

temporal correlation function of the external potential contrast, de-
fined as

〈〈we(θ, t, t + �t)〉〉 = 〈〈δ[ψe](Ω, t)δ[ψe](Ω + �Ω, t + �t)〉〉, (67)

which is related to Tψe

� (t, t + �t) coefficients by

we(θ, t, t + �t) =
∑

�

T ψe

� (t, t + �t)(2� + 1)P�[cos(θ )], (68)

where

T ψe

� (t, t + �t) ≡ 1

4π

1

2� + 1

∑
m

b̃�m(t)b̃∗
�m(t + �t). (69)

Here, θ stands for the angular distance between two points on the
sphere located at Ω and Ω + �Ω. The Tψe

� (t, t + �t) coefficients
were computed for each halo and each pair of time-step, for each
harmonic. The Tψe

� (t, t + �t) distributions were fitted by a lognor-
mal distribution and 〈〈Tψe

� (t, t + �t)〉〉 was deduced from it. The
corresponding 〈〈we(θ , t, t + �t)〉〉 are shown in Fig. 22.

For large angular scales (>45◦), isocontours remain open during
the whole time range. Large scales have a long coherence time
(∼5 Gyr) and are consistent with a ‘cosmic tidal field’ resulting from
the large-scale distribution of matter. The latter is not expected to
evolve significantly with time at our redshifts and the triaxiality of
the halo is also a fairly constant feature. The innermost isocontours
are closed around the measurement time t1. Small angular scales
(<45◦) have shorter coherence time (∼1.5 Gyr). This is consistent
with a contribution to the potential due to objects, where satellites
pass by or dive into the halo and apply a tidal field only for a short
period.

This difference between large and small scales can also be inves-
tigated through the time matrices of the Tψe

� (t, t + �t) coefficients
(see Fig. 23). The diagonal terms describe the time evolution of the
angular power spectrum, Tψe

� (t, t) = Cψe

� (t). A smooth (respectively
peaked) distribution of values around the diagonal indicates a long
(respectively short) coherence time. Clearly, different scales have
different characteristic time-scales. The non-diagonal elements of
the quadrupole matrix (� = 2) decrease slowly with the distance
to the diagonal while the T20 matrix is almost diagonal. Not sur-
prisingly, the smaller the angular scale, the smaller is the coherence
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Figure 23. The time matrices of the Tψe

�
(t, t + �t) coefficients. Blue (re-

spectively red) colours stand for low (respectively high) values of the co-
efficients. The diagonal terms are equal to the angular power spectrum, i.e.

Tψe

�
(t, t) = Cψe

�
(t). As can be seen from Fig. 21, fluctuations observed for T1

are within the error bars. A smooth (respectively sharp) decrease of Tψe

�
(t,

t + �t) with the distance to the diagonal implies a long (respectively short)
coherence time. Here, coherence time decreases with angular scale.

time: a small 3D object passing through the sphere is likely to have
a small angular size on the sphere.

For a given � and a given t, the correlation coefficients Tψe

� can
be fitted by a Lorentzian function defined by

T�(t, t + �t) = qTe
3 (t)
2/π

qTe
2 (t)[

�t − qTe
1 (t)

]2 + [
qTe

2 (t)/2
]2 + qTe

4 (t),
(70)

where the characteristic time-scale, �TT e
�
, is given by qTe

2 (t) and the
reference time t is equal to qTe

1 (t). Examples of fits are shown in
Fig. 24.

For example, the time evolution of �TT e
�

= qTe
2 (t) is given in

Fig. 24 for different � values. Given the error bars, the characteris-
tic time-scales are constant over time (except for the � = 4 mode).
In the prospect of the regeneration of the potential, the stationary
hypothesis can then be considered as valid for most of the angular
scales. Meanwhile, the � = 4 potential fluctuations display a de-
creasing �TT e

�
with time. The same effect exists at a 1σ level for

� = 5. One interpretation would be that satellites achieve higher ve-
locities along time: for a given typical size, a faster satellite would
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Figure 24. Top and middle: the time evolution of the characteristic time-

scale �TT e
�

, obtained by fitting Tψe

�
(t, t + �t) with equation (70). Symbols

are the measurements while bars stand for 3σ fitting error bars. The second-

order fit of the time evolution of each Tψe

�
is also shown. Except for the

� = 4 and (marginally) for the � = 5 modes, no time evolution is observed.

The time resolution is 0.53 Gyr. Bottom: examples of Tψe

�
(t, t + �t) fitted

by Lorentzian functions.
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spend less time to be accreted and the associated potential would be
detected on a smaller time-scale. This picture is supported by the
results shown in Section 5.3.1, where the mean velocity of infalling
material increases along time. Another possibility would be that
� = 4 fluctuations had a longer radial extent in the past. Since there
is no reason for potential fluctuations to have such a property, one
could imagine successive potential fluctuations which overlapped,
leading to an apparent longer radial extent. This possibility is further
investigated in the following paragraphs, by comparing the coher-
ence time variation of the potential fluctuations to the evolution of
the typical velocity of the infall.

6.1.2.2 Correlations without the dipole and the quadrupole. In or-
der to focus on the coherence time of small angular scales, the
correlation function 〈〈we(θ , t, �t)〉〉 was also computed without the
dipole (� = 1) and the quadrupole (� = 2) component of the potential
(see also equation 68). The angulo-temporal correlation function is
shown in Fig. 25. Again, the isocontours of the correlation func-
tion are closed around �t = 0. This shows that the potential on the

Figure 25. Top: the angulo-temporal correlation function, we(θ , �t) =
〈δ[ψe](Ω, t)δ[ψe](Ω + �Ω, t + �t)〉. The dipole (� = 1) and the quadrupole
(� = 2) components were removed. Blue (respectively red) colours stand
for low (respectively high) values of the correlation. Isocontours are also
shown. The main axes of the ‘ellipses’ centred on (�Ω = 0, �t = 0) give
indications on the characteristic time and angular scales of ψe(Ω, t). Bottom:
comparison between the measured 2D correlation function (solid lines) and
the fit obtained using equation (71) (dashed lines).

sphere has a finite coherence time. In contrast to coherence times
measured on the Tψe

� coefficients, all the angular scales are mixed
and the typical time-scales are those of structures as they are ‘re-
ally’ seen from a halocentric point of view, where ‘potential blobs’
appear and disappear on the sphere. To evaluate the related typical
time-scale �Tψe , 〈〈we(��, t, �t)〉〉 was fitted with a 2D function for
different values of t. The model used is given by

〈〈we(θ, t, �t)〉〉 = qwe
6 (t) + qwe

5 (t)
2π

qwe
4 (t)[

�t − qwe
3 (t)

]2 +
[

qwe
4 (t)

2

]2

× sin
{

2π
[
�� − qwe

1 (t)
]
/qwe

2 (t)
}

�Ω
, (71)

where the angular dependence is fitted by a cardinal sine function
while the time dependence is fitted by a Lorentzian function. Ex-
amples of 2D fits are shown in Fig. 25. The correlation function
was also computed using only harmonics with � � 4, 5, 6, 7 and
the same fitting procedure is applied. The evolution of the resulting
characteristic time-scales �Twe = qwe

4 (t) is shown in Fig. 26. Bars
stand for 3σ fitting errors.

Note that �Twe tends to decrease with time for every truncation
order. The � � 3 and 4 correlation function displays a rise of �Twe

before it drops to lower values. Furthermore, �Twe tends to decrease
with �min, suggesting that the �min contribution dominates each we

reconstruction. Correlation functions with �min � 5 show marginal
�Twe variation but recall that our time resolution is 0.53 Gyr, hence
any fluctuations on smaller scales should be taken in caution. Still,
the 0.81-Gyr variation observed for � � 3 between t = 5.1 and
0.8 Gyr is significant and so is the variation observed for � � 4
(1.3 Gyr).

6.1.2.3 A longer coherence length. As mentioned above, the vari-
ation of the characteristic time-scale can be explained by the mea-
sured increase in mean velocity. Conversely, the decrease of coher-
ence time may be the consequence of smaller potential blobs as
time passes: a ‘large’ (three-dimensional) potential takes longer to
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Figure 26. The cosmic evolution of the potential’s coherence time. This
characteristic time-scale is obtained by fitting the 2D correlation function we

(θ , �t) with the function given in equation (71). The correlation function is
computed using harmonics coefficients with � �3 (crosses), � �4 (squares),
� � 5 (triangle), � � 6 (circle) and � � 7 (diamonds). Bars stand for 3σ

fitting errors. The time resolution is 0.53 Gyr.
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disappear than a smaller one. One crude approximation could be

L1

L2
= V1�T1

V2�T2
, (72)

where L is the radial size, V is the radial velocity and �T is the
coherence time of the potential blob. It is assumed that the � �
4 truncation is the representative of the potential due to infalling
objects, i.e. �T1/�T2 ∼ 1.95. Let us also consider that the radial
velocity variation is equal to the one measured for the mean velocity
of infall (see Section 5.3.1): V1/V2 = 0.77. Following equation (72),
it suggests that L1 ∼ 1.5L2, i.e. the radial size decreases with time.
The same calculation with � � 3 leads us to L1 ∼ 1.1L2: the results
remain qualitatively the same. In other words, the coherence length
was longer in the past and the velocity variation cannot explain
the variation of coherence time. The only other way to explain a
longer coherence length involves potential blobs falling successively
through the sphere, coming from roughly the same direction. To
induce a decreasing coherence time, these blobs would have to be
either bigger before or more numerous. Such a crude picture is
coherent with the measured decrease of accretion with time and the
anisotropic nature of accretion by haloes (see e.g. Aubert et al. 2004;
Knebe et al. 2004; Zentner et al. 2005).

6.2 Flux density of mass:�ρ≡ρvr

The mode 〈〈C�ρ

� 〉〉 of the distribution of the �ρ angular power spec-
trum is computed using equations (41) and (42). In order to deal with
adimensional quantities, the reduced harmonic coefficients, ã�,m , are
defined as

ã�,m ≡
√

4π

(
a�,m

〈a00〉 − δ�0
a0,0

〈a00〉

)
. (73)

The accretion contrast, δ[�ρ ], and the ã�,m coefficients are linked by

δ[�ρ ](Ω) ≡ �ρ(Ω) − �ρ

〈�ρ〉 =
∑
�,m

ã�,mY�,m(Ω). (74)

6.2.1 Angular power spectrum

Given 〈a00〉(t), the angular power spectrum C�ρ

� (t) is computed
for each halo. At each time-step and for each harmonic order �,
the C�ρ

� (t) distribution was fitted by a lognormal distribution (see
Fig. C4). The probability distribution of C�ρ

� (t) is weighted as de-
scribed in Appendix A.

The evolution of 〈〈C�ρ

� (t)〉〉 with time is shown in Fig. 27. The
shape of 〈〈C�ρ

� (t)〉〉 remains mostly the same with time and is fitted
by a simple function

〈〈C�ρ

� 〉〉(t) = q�ρ

1 (t) + q�ρ

2 (t)[
� + q�ρ

3 (t)
]2 . (75)

The time evolutions of q�ρ

1 , q�ρ

2 and q�ρ

3 are shown in Fig. D2 and
can be fitted by decreasing the exponential

q�ρ (t) = h + k exp
(
− t

u2

)
. (76)

Only the dipole (� = 1) harmonic does not fit with the previous
functional form and is systematically lower than the contribution
of the other harmonics. If particle velocities were measured in an
absolute referential, the dipole strength would reflect the motion of
the halo in the surrounding matter. Also strong mergers may cover a
180◦ angle on the sphere and would contribute to the dipole. Since
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Figure 27. The average angular power spectrum, 〈〈C�ρ

�
〉〉 (t), at t = 0.8, 3.5,

5.7, 7.8 Gyr (symbols). 〈〈C�ρ

�
〉〉 (t) is taken as the mode of the lognormal

function used to fit the C� distribution. Bars stand for 3σ errors. For a given
�, the corresponding angular scale is π/�. 〈〈C�ρ

�
〉〉 (t) may be fitted by a

generic model given by equation (75) (solid line).

velocities are measured in the rest frame of the halo and strong
mergers are excluded, the dipole strength is substantially lowered,
as is measured.

The values for h, k and u are given in Table D3. The offset q�ρ

1 of
〈〈C�ρ

� (t)〉〉 increases with time. From equation (73), one can see that
〈〈C�ρ

� (t)〉〉 is proportional to the square of the accretion contrast. If
the power spectrum experiences a global shift towards higher values
with time, it implies that the accretion contrast increases with time.
Since the average velocity does not vary strongly with time, this
suggests that objects are getting denser with time. This effect is
similar to the global increase of the 3D power spectrum P(k) with
time due to the density growth. Also, the q�ρ

2 coefficient is found to
evolve as q�ρ

1 . This illustrates the fact that the amplitude of 〈〈C�ρ

� (t)〉〉
remains mainly constant. The q�ρ

3 coefficient should be seen as a
typical scale and varies slightly from q�ρ

3 = 6 at z = 1 to q�ρ

3 =
11 at z = 0.1. 〈〈C�ρ

� (t)〉〉 becomes marginally ‘flatter’ as time passes,
implying that small scales contribute more to the spatial distribution
of �ρ(Ω, t), consistently with the evolution of 〈〈C�(t)ψ

e 〉〉. The flat
power spectrum measured for �ρ on small scales suggests that
isolated particles contribute significantly and increasingly with time.
In other words, the accretion becomes low enough to be poorly
resolved in terms of particles.

6.2.2 Resolution in mass and particle number

In order to assess these environments/resolution effects, 〈〈C�ρ

� (t)〉〉
was computed for three different classes of mass (see Fig. 28) at
a lookback time of 800 Myr. For the heaviest haloes, the power
spectrum is peaked towards low-� values. The contribution of large
scales is quite important. For smaller masses, the power spectrum
gets flatter and all scales almost contribute equally for the lightest
class of mass. Recall that the harmonic decomposition of a Dirac
function leads to C� = constant, thus a flat power spectrum indicates
that isolated particles contribute significantly to the distribution of
matter on the sphere. The relative behaviour of the three 〈〈C�ρ

� (t)〉〉
confirms that larger haloes still experience important mergers (i.e.
on large scales) while small ones are in quiet environments at our
simulation resolution. The effect of the mass resolution on the
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Figure 28. The average angular power spectrum, 〈〈C�ρ

�
〉〉 (t), at t = 0.8

Gyr (symbols) for three different classes of masses. 〈〈C�ρ

�
〉〉 (t) is taken as

the mode of the lognormal function used to fit the C
�ρ

�
distribution. Bars

stand for 3σ errors. Masses are expressed in solar masses. For a given �, the
corresponding angular scale is π/�. The three measurements are fitted by
equation (75) (solid line). The power spectrum gets flatter for small haloes.
Accretion by small haloes is dominated by small objects or even isolated
particles.
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Figure 29. The average angular power spectrum, 〈〈C�ρ

�
〉〉 (t), at t = 0.8 Gyr

for three different mass resolutions in the simulations. 〈〈C�ρ

�
〉〉 (t) is taken

as the mode of the lognormal function used to fit the C
�ρ

�
distribution. For

a given �, the corresponding angular scale is π/�. Circles stand for the
measurements performed on the main set of simulations (50 Mpc h−1, 1283

particles), while error bars stand for 3σ errors. Square and triangles stand
for measurements performed on simulation with higher mass resolution,
respectively, 50 Mpc h−1 for 2563 particles (1532 haloes analysed) and 20
Mpc h−1 for 2563 particles (545 haloes analysed). In these two cases, error
bars stand for 1σ errors.

angular structure of accretion was also investigated with two smaller
sets of simulations: the first one involves 10 simulations with 2563

particles in 50 Mpc h−1 boxes and the second in five simulations with
the 2563 particles in 20 Mpc h−1 boxes. The related 〈〈C�ρ

� 〉〉 measured
at a lookback time of 800 Myr are shown in Fig. 29. Here, 1532 and
545 haloes satisfying the conditions described in Section 4.2 were
detected in these two additional sets of simulations. For clarity,
1σ error bars are shown for the two high-resolution measurements,
while the ‘larger statistics’ power spectrum is still represented with

3σ bars. For large scales (� < 10), the three power spectra are
consistent, thus suggesting that convergence was achieved there.
On smaller scales, the two higher resolution spectra differ signifi-
cantly from the one measured using the other set of simulations (50
Mpc/1283 particles): high-� holds significantly less power. This con-
firms that the lack of resolution tends to overestimate the importance
of small scales and implies that the study of �ρ requires simula-
tions at higher resolution in order to understand, e.g., the detailed
statistics of small infalling objects. Interestingly, the two higher res-
olution simulations have identical 〈〈C�ρ

� 〉〉, given the admittedly large
error bars. This suggests that statistical convergence at scales � <

50 does not require extremely resolved simulations and simulation
boxes with a mass resolution only 8–10 times greater than that used
in this paper should suffice.

Finally, it clearly appears from Figs 27 and D2 that the angulo-
temporal correlation function related to 〈〈C�ρ

� 〉〉(t) is dominated by
the overall shift of the angular power spectrum towards higher val-
ues and consequently no coherence time should be detectable. It
is shown in Appendix E that how the evolution of 〈〈C�ρ

� 〉〉(t) is re-
lated to mass biases and possible resolution effects. The previous
measurements on the potential were not sensitive to these effects
because of the smoother nature of the field.

In Appendix E, the measured secular evolution is avoided by using
an alternative definition of 〈〈C�ρ

� 〉〉(t). It is found that the angular
power spectrum of �ρ can be fitted by a simple power law (see
Fig. E1) at every time:〈〈

C
′�ρ

�

〉〉
(t) ∼ �−1.15. (77)

The corresponding angulo-temporal correlation function is given in
Fig. E3. As expected, there is a shorter coherence time for the �ρ

field than that for the potential, because of the ‘sharper’ nature of the
former. Overall, these results strongly suggest that the class of mass
and resolution biases should be systematically investigated beyond
what was shown here.

7 A S C E NA R I O F O R T H E AC C R E T I O N O F A

T Y P I C A L H A L O AT z � 1

Let us draw a summary of the previous results, in order to get a
synthetic picture of the flux properties at the virial radius. A typi-
cal halo in our sample has a mass of 1013 M� and a radius R200 ∼
500 kpc at z = 0. It is embedded in a quasi-stationary gravitational
potential, ψ e. Such a potential is highly quadrupolar and is likely
to be induced by the large-scale distribution of matter around the
halo. The halo accretes material between z = 1 and 0 at a rate which
declines with time. At high redshift, only accretion is detected at
R200. It is mainly radial and occurs at a velocity close to 75 per cent
times the circular velocity. As time advances, accretion of new ma-
terial decreases, while outflows become significant. Outflows occur
at lower velocities and on more circular orbits. A fraction of the out-
flowing component is due to a backsplash population made of mate-
rial which already passed through the virial sphere. Another fraction
of outflows corresponds to ‘virialized’ material of the halo which
goes further than R200 and is being ‘cancelled’ by its infalling coun-
terpart. The clustering on the sphere of the gravitational potential
drifts towards smaller scales, while the clustering of matter follows
marginally the same trend at our level of resolution. It reflects the
increasing contribution with time of weak/diffuse accretion, poorly
sampled at our resolution. In parallel, the coherence time of potential
fluctuations is found to be decreasing with time by the halocentric
observer. This decrease may be related with the accretion of satel-
lites, where objects were numerous enough to ‘overlap’ in the past,
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which implies that accretion occurs mainly in the same direction on
the virial sphere.

This scenario seems consistent with most of the past studies
made on the subject using the full 3D information contained in
simulations. The decline of accretion rate has been already mea-
sured by e.g. van den Bosch (2002a) even though our measure-
ments are in a slight quantitative disagreement. The ‘rebound’ of
matter through the virial sphere has already been measured by e.g.
Mamon et al. (2004) or Gill et al. (2004). Furthermore, the velocity
bimodality is recovered together with the circularization of orbits
measured by Gill et al. (2004) in high-resolution simulations. Fi-
nally, the variation of the coherence time of the potential is found
to be related to the anisotropy of accretion, already demonstrated
by e.g. Aubert et al. (2004), Knebe et al. (2004) or Zentner et al.
(2005).

8 S U M M A RY A N D D I S C U S S I O N

This paper, the second in a series of three, presents measurements
of the detailed statistical properties of dark matter flows on small
scales (� 500 kpc) in the near environment of haloes using a large
set of �CDM cosmological simulations. The purpose of this in-
vestigation was two-fold: (i) characterize statistically (via one- and
two-point statistics) the detailed (angular and kinematic) incoming
fluxes of dark matter entering the virial sphere of a biased (described
in Section 4.2) sample of haloes undergoing minor mergers for the
broader interest of astronomers concerned with the environment of
galaxies; (ii) compute the first two moments of the linear coeffi-
cients, cn (respectively bn), of the source term (respectively external
potential) entering equations (13) and (14) (Paper I).

We concentrated on flows at the haloes’ virial radius while de-
scribing the infalling matter via flux densities through a spherical
shell. In parallel, we measured the statistical properties of the tidal
potential reprojected back on to the boundary. The statistical one-
and two-point expectations of the inflow were tabulated both kine-
matically and angularly on the R200 virtual sphere. All measurements
were carried for 15 000 haloes undergoing minor (as defined) merg-
ers between redshifts z = 1 and 0. The two-point correlations are
carried both angularly and temporally for the flux densities and the
tidal field. We also provided a method to regenerate realization of
the field, via equations (37) and (F6).

We briefly demonstrated how a perturbative description of the
dynamics of haloes could propagate the statistical properties of en-
vironments down to the statistical properties of the halo’s response.
The description of the environment involved the projection of the
potential and the source on a basis of functions. This basis allowed
us to decouple the time evolution from the angular and velocity de-
pendence of these two quantities. Hence, the accretion and the tidal
potential were completely described by the projection coefficients
and their statistical properties, which depend on time only. We also
discussed how the flux densities of matter, momentum and energy
could be related to the source and its expansion coefficients. We
restricted ourselves to the one- and two-statistical descriptions of
the tidal field ψ e and the flux density of mass �ρ and postponed to
Paper III (Aubert & Pichon, in preparation), the full description of
the higher moments. Since these measurements will be used as an
entry to a perturbative description of the inner dynamics of haloes,
only objects with quiet accretion history were selected as discussed
in Section 4.2. Throughout this biased sample of haloes, we made
statistical measurements of the kinematic properties of accretion
and derived results on the following quantities.

(i) The evolution of the accretion rate at the virial sphere: the net
accretion is found to decrease with time, probing both the increasing
contribution of outflows and the decline of strong interactions.

(ii) The evolution of the net velocity distribution of the accretion:
infall exhibits a typical velocity of 0.75Vc. A backsplash component
is detected at recent times with a significant outflowing component
at a lower velocity (∼0.6Vc).

(iii) The evolution of the impact parameters/incidence angle dis-
tribution of the infall. The infall is found to be mainly radial while
outflows are on more circular orbits.

(iv) The angulo-temporal two-point correlation of the external
potential on virial sphere. The potential appears to be mainly dom-
inated by a strong and constant quadrupole. The coherence time of
smaller angular scales provides hints of an anisotropic accretion.

(v) The angular power spectrum of accreted matter. The cluster-
ing is dominated by small angular scales, possibly at the resolution
limit.

(vi) The angulo-temporal correlation of the flux density of mass.
The coherence time appears shorter than that for potential fluctua-
tions, as expected.

These results can be interpreted in terms of properties of ac-
creted objects or of smooth accretion and are coherent with previ-
ous studies (e.g. Ghigna et al. 1998; van den Bosch 2002a; Aubert
et al. 2004; Gill et al. 2004; Knebe et al. 2004; Mamon et al. 2004;
Benson 2005). These studies were mainly focused on to the prop-
erties of accreted satellites. Properties of accreted subhaloes could
also be directly derived from these results, once a clear definition
allows us to distinguish structures within the general flow of matter.
Substructures are expected to form a distinct ‘phase’ of the accreted
fluid: for instance, the velocity dispersion is expected to be quite dif-
ferent in compact objects than in the smooth accreting component.
This phase separation will be assessed in Paper III where a system-
atic comparison of the current approach with an analysis in terms of
pre-identified satellites will be carried, in the spirit of Aubert et al.
(2004). The contribution of outflows, the lack of a standard defi-
nition for subhaloes, resolution issues and the fact that properties
are measured at one radius (which could be statistically propagated
towards inner regions) are all issues which must be assessed before
a complete and rigorous comparison can be performed. Yet, the cur-
rent agreement between a fluid description of the environment and
these above mentioned published results is clearly encouraging hits
for the reliability of the method presented here.

These kinematic signatures provide insights in the processes
which occur in the inner regions of haloes. In particular, the kine-
matic discrepancies between the different components of the mass
flux should be understood in terms of dynamical friction, tidal strip-
ping or even satellite–satellite interactions within the halo. The kine-
matical properties of accreted matter may be transposed to the kine-
matical properties of satellites observed around galaxies. Newly
accreted material exhibits kinematic signatures (radial, high-
velocity trajectories) different from the ones measured for matter
which already interacted with the halo (tangential, low-velocity or-
bits). Admittedly, it is not straightforward to apply directly these
results to the luminous component (see Paper I, for a discussion of
thresholding), and to see how projection effects may affect the dis-
tributions. Nevertheless, the corresponding observational measure-
ments on satellites should provide information on the past history
of these objects.

As discussed in Paper I, these measurements can be used as an
entry to the perturbative theory of the response of the open halo.
Phenomena related to accretion can be consistently assessed via

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 374, 877–909131



Dynamical flows through – II 901

this framework: dynamical friction, tidal stripping and phase mix-
ing. With the statistical description of the tidal field presented in this
paper only, we may already implement the theory presented in Pa-
per I in the regime of pure tidal excitation. The complete knowledge
of the source (which will be completed in Paper III) should con-
siderably extend the realm of application provided by this theory.
Specifically, we have shown in Paper I that the internal dynam-
ics of substructures within galactic haloes (distortion, clumps as
traced by X-ray emissivity, weak lensing, dark matter annihilation,
tidal streams, etc.) and the implication for the disc (spiral structure,
warp, etc.) could be predicted within this framework. Conversely,
the knowledge of the observed properties of a statistical sample of
galactic haloes could be used to (i) constrain observationally the sta-
tistical nature of the infall (ii) predict the observed distribution and
correlations of upcoming surveys, (iii) time reverse the observed
distribution of clumps, and finally (iv) weight the relative impor-
tance of the intrinsic (via the unperturbed DF) and external (tidal
and/or infall) influence of the environment in determining the fate
of galaxies.

The current measurements reduce the degree of freedom that still
exists in the setting of numerical experiments in a galactic context.
For instance, given that the structure of the external tidal field is
found to be simple, it can easily be modelled as an external com-
ponent in numerical simulations (or even in analytical studies). It
would provide a simple but statistically relevant contribution of the
large-scale structure to the dynamical states of haloes. The tempo-
ral coherence of the first � > 2 angular harmonics of the tidal field
should allow one to draw more accurate representations of external
contribution to the field that would include the fluctuations due to
smaller structures. The kinematics of accretion is not random as well
and the distribution of velocities at R200 follows a Gaussian-shaped
curve which characteristics evolve with time and exhibit a certain
distribution of the impact parameter. These results put prescrip-
tions that could be used to generate encounters between satellites
and galactic discs that follow the ones measured in cosmological
simulations at large radii. We also presented first constrains on the
angulo-temporal correlation function of the accretion. Even though
it is not completely clear yet how resolution will eventually affect
these results, such functions contain some glimpses of informa-
tion regarding the angular distribution of encounters with external
systems but also regarding the frequency of accretion events. This
frequency can also be probed by the temporal coherence of the
fluctuations in the tidal field. The apparent contradiction that exists
between the observed number of discs and the predicted large num-
ber of mergers may be solved by a better knowledge of the frequency
of the latter: it may be low enough to solve this contradiction. In
this context, simulations of successive mergers between a galaxy
and satellites should be consistent with large-scale simulations and
we provide first constrains on the rate of minor encounters at the
outer boundary of the halo.

As argued in Paper I, we emphasize that an a priori discrimination
between ‘objects’ and diffuse matter may not constitute the best way
to describe accretion: it is not clear that luminous matter is always
attached to dark matter overdensities, there is no unambiguous def-
inition of substructures and their state change with time under the
influence of tidal shocks or dynamical friction. The generation of
objects that follow the current results is admittedly the easiest way
to proceed but should be followed by a more general description of
matter in terms of ‘fluid approach’, where ‘objects’ only constitute
a specific phase of such a fluid. The statistical measurements on
both ψ e and �ρ allow the regeneration of synthetic environments.
Knowing the average evolution and the angular power spectra of

these quantities, the generation of spherical maps in the Gaussian
regime is straightforward. We describe such a regeneration proce-
dure in Appendix F. Such maps would efficiently provide realistic
environments of haloes, consistent (up to two-point statistics) with
those measured in cosmological simulations and could be ‘embed-
ded’ into simulation of galaxies. Again, virialized structures would
be naturally included (since they have their own statistical signature
on the virial sphere) without relying on any ad hoc prescription on
their nature.

Extensions to non-Gaussian fields are also possible (following
e.g. Contaldi & Magueijo 2001) but would rely on higher order
correlations. It was assumed throughout these investigations that
fields could be approximated as Gaussian fields, fully described
by their two-point statistics. Yet a simple visual inspection of �ρ

maps reveals that they are not strictly Gaussian, a finding confirmed
by preliminary analysis of their bispectrum. Furthermore, Paper I
demonstrated that a dynamical description which takes into account
non-linear effects, such as dynamical friction, requires higher order
correlations. Therefore, extensions to non-Gaussian fields are in
order in the long run.

It should again be emphasized that some aspects of the
present work are exploratory only, in that the resolution achieved
(Mhalo > 5 × 1012 M�) is somewhat high for L� galaxies. In fact,
it will be interesting to confirm that the properties of infall do not
asymptote for lower mass (Mhalo < 5 × 1012 M�) together with the
intrinsic properties of galaxies. In addition, a systematic study of
biases induced by our estimators of angular correlations should be
conducted. For a fixed halo mass, our lack of resolution implies that
we overestimate the clumsiness of the infall.

As demonstrated in Section 6.2.2, the limited resolution (both
spatially and in mass) of our simulations appeared to be an issue for
some of the results presented here (e.g. the angular power spectrum
of �ρ). The systematic use of higher resolution simulations (in the
spirit of Section 6) will be required to fully assess these limitations.
In particular, a fraction of the accretion detected as a weak/diffuse
component may be associated with unresolved objects; the influ-
ence of small-mass satellites should therefore be explored. With the
prospect of deducing the properties of galaxy from haloes environ-
ments, lower mass haloes are more likely to host only one galaxy,
making them more suitable for such a study. Cosmological simu-
lation of small volumes also tends to prevent the formation of rare
events which may be relevant for the representativity of the study:
for example, some discs seem to indicate that they were formed
in ‘very quiet’ environments. The right balance between resolution
and volume should be found. Aside from these biases induced by
simulations, we also introduced selection criteria on both the mass
or the accretion history of haloes and the influence of these arbitrary
choices on our statistical distribution should be assessed precisely.

Eventually using hydrodynamical codes which include baryonic
effects in simulations and introducing the physics of gas in our
model, we would construct a complete semi-analytic tool to study
the detailed inner dynamics of galaxies.
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A P P E N D I X A : H A R M O N I C C O N V E R G E N C E

As explained in Section 3.1, the angular dependence of the source
function is expanded over a basis of spherical harmonics Y�m(Ω). In
order to set the maximal order of this expansion, �max, we compared
the two-point correlation function of the spherical field ρvr(Ω) to the
one inferred from harmonic coefficients, a�m , and power spectrum
C� (see equations 41 and 42). Within a set of randomly distributed
particles, let dpoisson(θ ) be the probability of finding two particles
with an angular separation θ . If d(θ ) is the same probability for a
given distribution of particles then its two-point correlation function
ξ (θ ) is defined as

ξ (θ ) ≡ d(θ )

dpoisson(θ )
− 1. (A1)

The correlation function ξ (θ ) and the a�m coefficients are related by
(e.g. Peacock 1999)

ξ (θ ) =
�max∑
�=0

C�(2� + 1)P�(cos θ ), (A2)

0.1 0.20.05 0.5

0.1

1.0

10.0

100.0

lmax=10
lmax=30
lmax=50
lmax=60

θ

ξ(
θ)

200 halos

Figure A1. The average angular two-point correlation function, 〈〈ξ (θ )〉〉, of
the advected mass spherical field ρvr(Ω). The correlation function is shown
as a function of the angular distance on the sphere θ given in radians. Using
the positions of accreted particles around 200 haloes at z = 1, the average
correlation function can be computed (dots). Lines represent the correlation
function deduced from the harmonic coefficients of the ρvr(Ω) fields around
the same 200 haloes, with �max = 10, 30, 50, 60. The convergence is ensured
for �max � 50.
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where θ is an angular distance of the sphere and P�(x) is a Legen-
dre function. The average angular correlation function 〈〈ξ (θ )〉〉pair is
defined as

〈〈ξ (θ )〉〉pair ≡ 1∑
p n2

p

∑
p

n2
pξp(θ ), (A3)

where ξ p(θ ) is the two-point correlation function of the pth halo
computed using np particles passing through the virial sphere. From
a set of 200 haloes extracted from a simulation, we computed 〈〈ξ (θ )〉〉
using different values for �max (see Fig. A1). From the same set of
haloes, we also computed the average two-point correlation function
directly from the particles’ positions using equation (A1).

From Fig. A1, it clearly appears that 〈〈ξ (θ )〉〉pair has not converged
for �max � 30. For �max � 50, the actual two-point correlation func-
tion is well reproduced. Since no real difference can be distinguished
between �max = 50 and 60, we chose to limit the harmonic expansion
of the source term to � � 50. Note that the truncation in �max defines
an effective resolution beyond which the distribution is effectively
coarse grained.

A P P E N D I X B : A N G U L O - T E M P O R A L

C O R R E L AT I O N

Let us consider a spherical field X(Ω, t) which can be expanded over
the spherical harmonic basis

X (Ω, t) =
∑
�m

x�m(t)Y�m(Ω). (B1)

The correlation wX between two successive realizations of X is de-
fined as

wX (Ω,Ω′, t, t ′) ≡ 〈X (Ω, t)X (Ω′, t ′)〉, (B2)

where 〈·〉 stands for the statistical average. If X(Ω, t) is isotropic, the
correlation should not depend on Ω or Ω ′ but only on the distance
θ between the two points. It implies that wX can be expanded on the
basis of Legendre polynomials, PL(y),

wX (Ω,Ω′, t, t ′) = wX (θ, t, t ′) =
∑

L

(2L + 1)TL PL[cos(θ )]. (B3)

How are TL and x�m related? Rewriting equation (B2) as

wX (θ, t, t ′) =
∑
�m

∑
�′m′

〈x�m(t)x∗
�′m′ (t ′)〉Y�m(Ω)Y ∗

�′m′ (Ω′), (B4)

one can write∫
dΩdΩ′Y ∗

�1m1
(Ω)Y�2m2 (Ω′)wX = 〈

x�1m1 (t)x∗
�2m2

(t ′)
〉
. (B5)

Meanwhile, assuming isotropy, one can also write∫
dΩdΩ′Y ∗

�1m1
(Ω)Y�2m2 (Ω′)wX

=
∑

L

(2L + 1)TL

∫
dΩdΩ′Y ∗

�1m1
(Ω)Y�2m2 (Ω′)PL[cos(θ )]

=
∑
LM

(4π)TL

∫
dΩdΩ′Y ∗

�1m1
(Ω)Y�2m2 (Ω′)YLM(Ω)Y ∗

LM(Ω′)

=
∑
LM

(4π)TLδL�1δL�2δMm1δMm2 , (B6)

where PL is expressed in terms of spherical harmonics using the
spherical harmonics addition theorem. In the end, we get

T� = 1

4π

〈
x�m(t)x∗

�m(t ′)
〉
. (B7)

For a given realization of X(Ω, t), T� can be estimated by

T� = 1

4π

1

2� + 1

∑
m

x�m(t)x∗
�m(t ′). (B8)

A P P E N D I X C : D I S T R I BU T I O N S

In this appendix, we present the various distributions fitted either by
normal or by lognormal PDF. For each quantity, the mode (or most
probable value) of the distribution has been obtained from these fits.
The Gaussian distribution is defined by

N(x) = A

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
, (C1)
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Figure C1. The probability distribution of b00 at four different times. This
coefficient is proportional to the external potential averaged on the sphere.
The lognormal fit is also shown.
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Figure C2. The probability distribution of Cψe
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lookback time t = 1.9 Gyr. Note that x-axis is sampled logarithmically; the
corresponding lognormal fit of the mode is also shown.
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the lookback time t = 1.9 Gyr. Note that x-axis is sampled logarithmically;
the corresponding lognormal fit of the mode is also shown.

while the mode is equivalent to the mean μ. The lognormal distri-
bution is given by

LN(x) = A

σ
√

2π
exp

{
− [log(x/μ)]2

2σ 2

}
, (C2)

while the mode is given by μ exp (−σ 2). The different fits mentioned
in the main text are described in the following figures.

(i) Fig. C1 shows the distributions of the harmonic coefficient
b00(t) which is proportional to the potential averaged on the sphere.
It is expressed in units of GM/R, where M is expressed in 1010 M�,
R in kpc h−1 and G = 43 007 in internal units.

(ii) Fig. C2 shows the distributions of the external potential’s
power spectrum for four different harmonics � = 2, 5, 10, 20 at t =
1.3 Gyr. The distribution has been fitted by a lognormal function.

(iii) Fig. C3 shows the distributions of the mean flux �M(t). The
mean flux is proportional to the harmonic coefficient a00. The dis-
tribution is fitted by a normal distribution. The normal model agrees
well with the measured distribution at recent times but fails to re-
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sponding fit of the mode is also shown.

produce the outliers’ tail at high redshift. Consequently, the mode
position is underestimated at these times.

(iv) Fig. C6 shows the distributions of one of the coefficients
involved in the computation of the velocity distribution φ(v). Four
different times are being represented. The coefficient distribution
has been fitted by a Gaussian distribution.

(v) Fig. C4 shows the distributions of the power spectrum values
C�ρ

� for four different harmonic orders, �. The fits were made at t =
1.9 Gyr. This distribution has been fitted by a lognormal distribution.

(vi) Fig. C5 shows the distributions of the power spectrum val-
ues C

�ρ′
� for four different harmonic orders, �. The fits were made

at t = 2.95 Gyr. This distribution has been fitted by a lognormal
distribution.

A P P E N D I X D : F I T S A N D TA B L E S

In the main text, some statistics are fitted by simple laws and the time
evolution of these statistics can be described by the time evolution of
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Figure E1. The angular power spectrum of the external potential, 〈〈C′�ρ

�
〉〉

(t), at four different lookback times (symbols). Harmonics coefficients were
normalized using equation (E2), halo by halo. 〈〈C′�ρ

�
〉〉 (t) is taken as the

mode of the lognormal function used to fit the C′�ρ

�
distribution. Bars stand

for 3σ errors. For a given �, the corresponding angular scale is π/�. The
power spectra maybe fitted by a generic model given by equation (E3) (solid
line). Unlike 〈〈C′�ρ

�
〉〉 (t), 〈〈C′�ρ

�
〉〉 (t) remains the same with time because of

a different normalization.

Still, the angular power spectrum 〈〈C′�ρ

� 〉〉 (t) of δ′
[�ρ ](Ω) is much

more regular than the one obtained from the previous definition.
Its overall amplitude remains constant over the last 8 Gyr, while its
shape seems to be less dominated by small-scale contributions. This
alternative power spectrum is well fitted by a single power law

〈〈C ′�ρ

� 〉〉(t) = 0.75�−1.15, (E3)

for the whole time range covered by the current measurements. This
constant shape suggests that harmonic coefficients scale like a00, i.e.
the mass flux. Such a scaling is not obvious, since a strongly clus-
tered �ρ field may coexist with a nil net flux (i.e. a00 ∼ 0). It also
implies that the evolution measured on the previous definition of the
power spectrum, 〈〈C�ρ

� 〉〉(t), is more related to the evolution of the
average flux (traced by a00) than to the modification of the fluctu-
ations amplitude (traced by the others a�m). Still, the evolution of
〈a00〉 spans over one magnitude, while the evolution of 〈〈C�ρ

� 〉〉(t)
spans over several order of magnitudes: this strongly suggests that
two different populations of haloes contribute to the two types of
power spectrum. In Fig. E2, the scatter plot of C40 and C′

40 as a func-
tion of a00 shows that the haloes which experience strong accretion
dominate the peak of the C′

40 distribution, while haloes with low
accretion dominate the peak of the C40. Furthermore, C40 does not
scale anymore like a00 as it drops below some level, providing hints
of resolution and isolated particles’ effects. To conclude, δ′

[�ρ ](Ω)
appears as better way to rescale the fluctuations’ amplitude since
it provides a more regular behaviour of the power spectrum, but it
is a more complex quantity to manipulate. Meanwhile, δ[�ρ ](Ω) is
probably the correct way to proceed but is clearly more sensitive to
resolution effects, which should be assessed with bigger simulations
in the future.

Since the behaviour of δ′
[�ρ ](Ω) is more regular than the previous

contrast definition, the angulo-temporal correlation function of the
flux density of mass has been computed from this new definition.
Since this definition is different from that used for the potential, we
restrict ourselves to a qualitative description. The correlations are

10−18 10−16 10−14 10−12
10−4

10−3

10−2

10−1

10+0

10+1

10+2

10+3

a02

C
40

10−18 10−16 10−14 10−12

0.001

0.01

0.1

1.0

10.0

100.0

1000.

a02

C
í 4

0

Figure E2. Scatter plots of the power spectra C
�ρ

40 (top) and C′�ρ

40 (bottom)
as a function of a2

00. The four colours stand for different lookback times:
t = 7.8 (red), 5.6 (green), 4.0 (yellow) and 2.8 Gyr (blue). The monopole
a00 scales like the integrated flux of matter. The quantities C

�ρ

40 and C′�ρ

40
differ by the normalization applied to the harmonic coefficients a�m . See the
main text for more details.

Figure E3. The angulo-temporal correlation function, w′� (θ , �t) =
〈δ[� ](Ω, t)δ[� ](Ω + �Ω, t + �t)〉. Blue (respectively red) colours stand
for low (respectively high) values of the correlation. Isocontours are also
shown. Large angular scale isocontours (�Ω ∼ π/2) have large temporal
extent, due to the quadrupole dominance over the potential seen in the virial
sphere.
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given in Fig. E3. Clearly, the correlation is more peaked around �t
= 0 and more generally w�ρ is sharper than wψ . Note that no multi-
pole � has been removed during the computation of w�ρ , implying
that the quadrupole effect measured in the potential correlation is
simply not detected for this field. This strongly suggests a large-
scale ‘cosmic’ origin for the quadrupolar tidal field rather than an
artefact of the spherical intersection of an ellipse. Furthermore, the
correlation time is smaller than the one measured for the potential,
even compared to the correlation time of the potential without the
� = 2 component. This is coherent with the fact that density blobs
should be ‘sharper’ than potential blobs as they pass through the
sphere.

A P P E N D I X F : R E G E N E R AT I N G G A L AC T I C

T I M E L I N E S

Given the measurements in Sections 5 and 6, let us describe here
how to regenerate realizations of the history of the environment of
haloes, first for the tidal field only, and then for the full accretion
history.

F1 Regenerating tidal fields

Let us first focus on the generation of the potential tidal field gener-
ated by fly bys, hence neglecting the influence of the infall through
the virial sphere.5

First, we consider two time variables: T (the ‘slow time’) which
describes the secular evolution of the field and tf (the ‘fast time’)
which describes the temporal evolution around a given value of T,
hence describing high-frequency variations. We assume that cor-
relations exist only on small time-scales, while variations on the
‘slow time’ scale describe secular drifts. Therefore, the field’s re-
generation should include both correlations on short time-scales and
long-term evolution.

Let us call Ψ̂ = ψ̂m,ω(T ) the temporal (with respect to the fast
time) and angular Fourier transforms of the potential, at fixed slow
time, T. The probability distribution of Ψ̂, p(Ψ̂) is given by

p(Ψ̂) = exp
[ − 1

2 (Ψ̂ − 〈Ψ̂〉)� · C−1
�̂

· (Ψ̂ − 〈Ψ̂〉)]
(2π)1/2 det

1/2 |CΨ̂|
, (F1)

where the variance reads

CΨ(T ) = 〈(�̂m,ω − 〈�̂m,ω〉).(�̂m,ω − 〈�̂m,ω〉)〉, (F2)

and the mean field obeys

〈Ψ̂〉(T ) = 〈
�̂m,ω

〉
. (F3)

Since the potential is isotropic, 〈Ψ̂〉(T ) is essentially zero (see also
Fig. F1), while C� stands for the angular power spectrum described
in Section 6.1. Let us call {Ψ̂m,ω(Ti )}i�N , the set of sampled Ψ̂ a
fixed slow time, Ti . Relying on a linear interpolation between two
such realizations, the corresponding external potential reads in real
space

ψ e(t,Ω) =
∑

i

∑
m

∫
dω exp (ım · Ω + ıωt)Km

i (t, ω), (F4)

5 Note that this assumption is not coherent with the way the measurements
are carried, since it implies that the infalling material somehow disappears
after crossing R200.
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Figure F1. Probing the Gaussianity of the harmonic expansions a�m , de-
scribing the flux density of mass (top) and b�m , describing the potential
ψe (bottom). Units are arbitrary. Only the real part of the coefficients is
shown here, but the imaginary parts have similar distributions. Clearly, the
distributions are quasi-Gaussians.

where the kernel, Km
i (t, ω), reads

Km
i (t, ω) =

[
�̂m,ω(Ti+1)

t − Ti

Ti+1 − Ti
+ �̂m,ω(Ti )

Ti+1 − t
Ti+1 − Ti

]
× �(Ti+1 − t)�(t − Ti ), (F5)

recalling that �(x) is the Heaviside function.
To sum up, the computation of �̂m,ω following F1 and F3 ensures

that correlations on short periods are reproduced, while the inter-
polation procedure allows us to take into account the long-period
evolution of the field. This procedure can be repeated for an arbitrary
number of virtual tidal histories.

F2 Regenerating tidal fields and infall history

Let us assume briefly that the fields are stationary both in time and
angle, and that their statistics is Gaussian. As shown in Fig. F1, this
assumption is essentially valid for the expansions of the potential
and the flux density of mass. Let us call the 11-dimensional vector
Π(t) ≡ (�ρ , �ρv, �ρσσ , ψ e); and Π̂m,ω the temporal and angular
Fourier transforms of the fields. The joint probability of the field,
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p(Π̂m,ω), reads

p(Π̂m,ω) = exp
[ − 1

2 (Π̂ − 〈Π̂〉)� · C−1
�̂

· (Π̂ − 〈Π̂〉)]
(2π)11/2 det

1/2 |CΠ̂|
, (F6)

where

C� = [〈
(�̂i

m,ω − 〈�̂i
m,ω〉) · (�̂ j

m,ω − 〈
�̂ j

m,ω

〉)〉]
i, j�11

(F7)

and

〈Π̂〉 = [〈
�̂i

m,ω

〉]
i�11

. (F8)

Since these fields are mostly isotropic, their expansion coefficients
are nil on average. Hence, the quantity C� stands for the angular
power spectrum of the 11 fields. For, respectively, the potential and
the flux density of mass, its temporal evolution is described in Sec-
tions 6.1 and 6.2. These measured power spectra are sufficient to
generate environments restricted to the flux density of mass and the
potential. We emphasize that these two fields would not be coherent
if no cross-correlations is specified. These cross-correlations and
the power spectra for higher moments of the source are postponed
to Paper III.

Assuming the full knowledge of these 11 fields and their cross-
correlation, it is therefore straightforward to generate for each (m,
ω) a 11-dimensional vector which satisfies equation (F6), and re-
peat the draw for all modes (both ω and m). Inverse Fourier trans-
form yields �(t). Once �(t) is known, we can regenerate the whole
five-dimensional phase-space source as a function of time via equa-
tion (37). This process can also be repeated for an arbitrary number
of virtual halo histories. The assumption of stationarity in time can
be lifted following the same route as that sketched in Section F1
(see equation F5).

A P P E N D I X G : F RO M E X PA N S I O N

C O E F F I C I E N T S TO F L U X D E N S I T I E S

G1 From expansion coefficients to advected momentum

The phase-space distribution of advected momentum is given by

�ρv(Ω, v,Γ, t) ≡ se(Ω, v,Γ, t)v (G1)

=
∑

α,m,m′
cm

αm′ (t)gα(v)Ym(Ω)Ym′ (Γ)v, (G2)

where the velocity vector may be written as a function of spherical
harmonics

v = −v

√
2π

3

[ − Y ∗
1−1(Γ) + Y ∗

11(Γ)
]
eθ

−iv

√
2π

3

[
Y ∗

1−1(Γ) + Y ∗
11(Γ)

]
eφ

v

√
π

3
Y ∗

10(Γ)er. (G3)

Then, one can write

�ρv(Ω, t) ≡
∫

dvdΓv2se(Ω, v,Γ, t)v (G4)

=
∑

α,m,m′
[�ρv]m(t)Ym(Ω), (G5)

where

[�ρv]m(t) =
∑

α

(
3σ 2μα + μ3

α

)
Tm(t), (G6)

and

Tm(t) =
√

2π

3

[
cm

α,1,−1(t) − cm
α,1,1t

]
eθ

+ i

√
2π

3

[ − cm
α,1,−1(t) − cm

α,1,1t
]
eφ

+ 2

√
π

3
cm
α,1,0(t)er. (G7)

G2 From coefficients to advected velocity dispersion

The distribution of advected velocity dispersion is given by

�ρσi σ j (Ω, v,Γ, t) = se(Ω, v,Γ, t)[v− V(Ω, t)]I [v− V(Ω, t)] j ,

(G8)

where the subscripts i and j stand for r, θ , φ and

V i (Ω, t) ≡
∫

dv dΓv2se(Ω, v,Γ, t)vi∫
dv dΓv2se(Ω, v,Γ, t)

= �ρvi (Ω, t)
�ρ(Ω, t)

. (G9)

Using equations (G8) and (G9), we find

�ρσi σ j (Ω, t) + �ρvi (Ω, t)�ρv j (Ω, t)

�ρ(Ω, t)

=
∫

dvdΓv2se(Ω, v,Γ, t)viv j (G10)

=
∑

m

[q i j (t)]mYm(Ω). (G11)

The six independent elements of the symmetric tensor q(t) can be
computed from cm

αm′ (t) coefficients using equation (G3) and recalling
that∫

dΩY�1,m1 Y�2,m2 Y�3,m3 =
√

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

×
(

�1 �2 �3

0 0 0

)(
�1 �2 �3

m1 m2 m3

)
,

(G12)

where

(
�1 �2 �3

m1 m2 m3

)
= W �1,�2,�3

m1,m2,m3
is the Wigner 3j symbol. One

can find

[qrr (t)]m =
∑
αm′

Hm
αm′ (t)2W 11�′

000 W 11�′
00m′

[qrφ(t)]m =
∑
αm′

Hm
αm′ (t)i

√
2W 11�′

000

(
W 11�′

1−1m′ + W 11�′
11m′

)
[qrθ (t)]m =

∑
αm′

Hm
αm′ (t)

√
2W 11�′

000

(
W 11�′

1−1m′ − W 11�′
11m′

)
[qφφ(t)]m =

∑
αm′

Hm
αm′ (t)(−1)W 11�′

000

(
W 11�′

11m′ + 2W 11�′
1−1m′ + W 11�′

−1−1m′
)

[qφθ (t)]m =
∑
αm′

Hm
αm′ (t)iW 11�′

000

(
W 11�′

−1−1m′ − W 11�′
11m′

)
[qθθ (t)]m =

∑
αm′

Hm
αm′ (t)W 11�′

000

(
W 11�′

11m′ − W 11�′
−1−1m′ − 2W 11�′

1−1m′
)
,

(G13)

where Hm
αm′ (t) = √

4π(2�′ + 1)(6σ 2μ2
α + μ4

α)cm
αm′ (t).
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A P P E N D I X H : N OTAT I O N S

Table H1. A summary of the notations used throughout the paper.

Symbol Meaning

(r , v) Position and velocity
t, τ Lookback time variables
R200 Virial radius measured at z = 0
Vc Circular velocity measured at R200

F The phase-space DF of the halo
ψ The self-gravitating potential
ψe The external potential, induced by external perturbations
se The source function in phase space
�x The flux density of x
�ρ The flux density of mass
�ρv The flux density of momentum
�ρσσ The flux density of velocity dispersion
ψ [n](r ) 3D projection basis of the potential
φ[n](r ) 6D projection basis of the source term
a(t) Expansion coefficients of the potential/density response
b(t) Expansion coefficients of the external potential perturbation
c(t) Expansion coefficients of the source perturbation
Ω Angular position on the virial sphere (two angles)
Γ Angular orientation of the velocity vector on the virial sphere (two angles)
v Velocity’s amplitude
X̄ Angular average of X
X Temporal average of X
〈X〉 Statistical expectation (or average value) of X
〈〈X〉〉 Most probable value (or mode) of X
δ[X](Ω) Contrast density of X measured on the virial sphere
m = (�, m) Harmonic coefficients related to 0
m′ = (�′, m′) Harmonic coefficients related to Γ
a�,m (t) Harmonic expansion coefficients of δ[�ρ ]

b�,m (t) Harmonic expansion coefficients of δ[ψe]

C�(t) Angular power spectrum
T�(t, t + �t) Angular-temporal power spectrum
w(θ , t, t + �t) Angulo-temporal correlation function measured on the sphere for an angulo-temporal separation θ and �t
�M (t) Accretion rate measured at the virial radius (averaged over all directions)
ϑ(�1, t) PDF of the velocity’s incidence angle
b Impact parameter
ϕ(v, t) PDF of the velocity’s amplitude
℘(v, t) Joint PDF of the velocity’s incidence angle and amplitude

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT
We measure the anisotropy of dark matter flows on small scales (∼500 kpc) in the near
environment of haloes using a large set of simulations. We rely on two different approaches
to quantify the anisotropy of the cosmic infall: we measure the flows at the virial radius of
the haloes while describing the infalling matter via fluxes through a spherical shell; and we
measure the spatial and kinematical distributions of satellites and substructures around haloes
detected by the subclump finder ADAPTAHOP described for the first time in the appendix. The
two methods are found to be in agreement both qualitatively and quantitatively via one- and
two-point statistics.

The peripheral and advected momenta are correlated with the spin of the embedded halo at
levels of 30 and 50 per cent. The infall takes place preferentially in the plane perpendicular to
the direction defined by the spin of the halo. We computed the excess of equatorial accretion
both through rings and via a harmonic expansion of the infall.

The level of anisotropy of infalling matter is found to be ∼15 per cent. The substructures
have their spin orthogonal to their velocity vector in the rest frame of the halo at a level of
about 5 per cent, suggestive of an image of a flow along filamentary structures, which provides
an explanation for the measured anisotropy. Using a ‘synthetic’ stacked halo, it is shown that
the positions and orientations of satellites relative to the direction of spin of the halo are not
random even in projection. The average ellipticity of stacked haloes is 10 per cent, while the
alignment excess in projection reaches 2 per cent. All measured correlations are fitted by a
simple three-parameter model.

We conclude that a halo does not see its environment as an isotropic perturbation, we
investigate how the anisotropy is propagated inwards using perturbation theory, and we discuss
briefly the implications for weak lensing, warps and the thickness of galactic discs.

Key words: galaxies: formation – galaxies: haloes – dark matter.

1 I N T RO D U C T I O N

Isotropy is one of the fundamental assumptions in modern cos-
mology and is widely verified on very large scales, both in large
galaxy surveys and in numerical simulations. However, on scales of
a few megaparsecs, the matter distribution is structured in clusters
and filaments. The issue of anisotropy down to galactic and clus-
ter scales has long been studied, as it is related to the search for
large-scale structure in the near environment of galaxies. For exam-
ple, both observational studies (e.g. West 1994; Plionis & Basilakos
2002; Kitzbichler & Saurer 2003) and numerical investigations (e.g.

�E-mail: aubert@astro.u-strasbg.fr

Faltenbacher et al. 2002) showed that galaxies tend to be aligned
with their neighbours and support the vision of anisotropic merg-
ers along filamentary structures. On smaller scales, simulations of
rich clusters showed that the shape and velocity ellipsoids of haloes
tend to be aligned with the distribution of infalling satellites, which
is strongly anisotropic (Tormen 1997). However, the point is still
moot and recent publications did not confirm such an anisotropy
using resimulated haloes; they proposed 20 per cent as a maximum
for the anisotropy level of the distribution of satellites (Vitvitska
et al. 2002).

When considering preferential directions within the large-scale
cosmic web, the picture that comes naturally to mind is one involv-
ing these long filamentary structures linking large clusters to one
other. The flow of haloes within these filaments can be responsible

C© 2004 RAS140
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for the emergence of preferential directions and alignments. Previ-
ous publications showed that the distributions of spin vectors are not
random. For example, haloes in simulations tend to have their spin
pointing orthogonally to the direction of the filaments (Faltenbacher
et al. 2002). Furthermore, down to galactic scales, the angular mo-
mentum remains mainly aligned within haloes (Bullock et al. 2001).
Combined with the results suggesting that the spins of haloes are
mostly sensitive to recent infall (van Haarlem & van de Weygaert
1993), these alignment properties fit well with accretion scenarios
along special directions: angular momentum can be considered as a
good marker to test this picture.

Most of these previous studies focused on the fact that alignments
and preferential directions are consequences of the formation pro-
cess of haloes. However, the effects of such preferential directions
on the inner properties of galaxies have been less addressed. It is
widely accepted that the properties of galaxies partly result from
their interactions with their environments. While the amplitude of
the interactions is an important parameter, some issues cannot be
studied without taking into account the spatial extension of these
interactions. For example, a warp may be generated by the torque
imposed by infalling matter on the disc (Ostriker & Binney 1989;
López-Corredoira, Betancort-Rijo & Beckman 2002): not only the
direction but also the amplitude of the warp are a direct consequence
of the spatial configuration of the perturbation. Similarly, it is likely
that disc thickening due to infall is not independent of the incom-
ing direction of satellites (e.g. Quinn, Hernquist & Fullagar 1993;
Huang & Carlberg 1997; Velazquez & White 1999).

Is it possible to observe the small-scale alignment? In particular,
weak lensing deals with effects as small as the level of detected
anisotropy (if not smaller) (e.g. Croft & Metzler 2000; Heavens,
Refregier & Heymans 2000; Hatton & Ninin 2001); hence it is im-
portant to put quantitative constraints on the existence of alignments
on small scales. Therefore, the present paper also addresses the is-
sue of detecting preferential projected orientations on the sky of
substructures within haloes.

Our main aim is to provide quantitative measurements to study
the consequences of the existence of preferential directions on the
dynamical properties of haloes and galaxies, and on the observation
of galaxy alignments. Hence our point of view is more galactocen-
tric (or cluster-centric) than previous studies. We search for local
alignment properties on scales of a few hundred kiloparsecs. Using a
large sample of low-resolution numerical simulations, we aim to ex-
tract quantitative results from a large number of halo environments.
We reach a higher level of statistical significance while reducing
the cosmic variance. We applied two complementary approaches to
study the anisotropy around haloes: the first one is particulate and
uses a new substructure detection tool ADAPTAHOP; the other one is
the spherical galactocentric fluid approach. Using two methods, we
can assess the self-consistency of our results.

After a brief description of our set of simulations (Section 2), we
describe the galactocentric point of view and study the properties
of angular momentum and infall anisotropy measured at the virial
radius (Section 3). In Section 4 we focus on anisotropy in the dis-
tribution of discrete satellites and substructures, and we study the
properties of the satellites’ proper spins, which provide an explana-
tion for the detected anisotropy. In Section 5 we discuss the level
of anisotropy as seen in projection on the plane of the sky. We then
investigate how the anisotropic infall is propagated inwards and dis-
cuss the possible implications of our results to weak lensing and to
the dynamics of the disc through warp generation and disc thicken-
ing (Section 6). Conclusions and prospects follow. The Appendix
describes the substructures detection tool ADAPTAHOP together with

the relevant aspects of one-point centred statistics on the sphere.
We also formally derive there the perturbative inward propagation
of infalling fluxes into a collisionless self-gravitating sphere.

2 S I M U L AT I O N S

In order to achieve a sufficient sample and ensure convergence of
the measurements, we produced a set of ∼500 simulations. Each
of them consists of a 50 h−1 Mpc3 box containing 1283 particles.
The mass resolution is 5 × 109 M�. A �CDM cosmogony (�m =
0.3, �� = 0.7, h = 0.7 and σ 8 = 0.928) is implemented with
different initial conditions. These initial conditions were produced
with GRAFIC (Bertschinger 2001), where we chose a BBKS (Bardeen
et al. 1986) transfer function to compute the initial power spectrum.
The initial conditions were used as inputs to the parallel version of
the tree code GADGET (Springel, Yoshida & White 2001b). We set the
softening length to 19 h−1 kpc. The halo detection was performed
using the halo finder HOP (Eisenstein & Hut 1998). We employed the
density thresholds suggested by the authors (�outer = 80, δ saddle =
2.5δouter, δpeak = 3δouter) As a check, we computed the halo mass
function at z = 0 defined as (Jenkins et al. 2001):

f (σ (M)) = M

ρ0

dn

d ln σ−1
. (1)

Here n(M) is the abundance of haloes with a mass less than M and
ρ 0 is the average density, while σ 2(M) is the variance of the density
field smoothed with a top-hat filter at a scale that encloses a mass M.
The simulations mass function is shown in Fig. 1 and compared to
the Press–Schechter model (see Press & Schechter 1974) and to the
fitting formula given by Jenkins et al. (2001). The Press–Schechter
model overestimates the number of small haloes by a factor of 1.7
as already demonstrated by, for example, Gross et al. (1998). The
fitting formula seems to be in better agreement with the measured
mass function with an accuracy of ∼10 per cent for masses below
3 × 1014 M�.

As another means to check our simulations and to evaluate the
convergence ensured by our large set of haloes, we computed the
probability distribution of the spin parameter λ′, defined as (Bullock
et al. 2001)
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Figure 1. Top: the mass function f (σ (M)) of haloes (thin full line) com-
pared to the Press–Schechter model (thick dashed line) and to the fitting
formula of Jenkins et al. (2001) (thick full line). Bottom: relative residuals
between the fitting formula and the mass function.
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Figure 2. The distribution of the spin parameter λ′ defined as λ′ ≡
J/(

√
2MV R200) computed using 100 000 haloes with a mass greater than

5 × 1012 M�. The distribution can be fitted with a log-normal function with
parameters λ′

0 = 0.0347 ± 0.0006 and σ = 0.63 ± 0.02 (solid line). The
curve parametrized by λ′

0 = 0.035 and σ = 0.57 is also shown (dashed line).
The two results are almost coincident, indicating that the value of σ is not
so strongly constrained using a log-normal distribution.

λ′ ≡ J√
2MV R200

. (2)

Here J is the angular momentum contained in a sphere of virial radius
R200 with a mass M and V 2 = GM/R200. The measurement was
performed on 100 000 haloes with a mass larger than 5 × 1012 M�
as explained in the next section. The resulting distribution for λ′ is
shown in Fig. 2. The distribution P(λ′) is well fitted by a log-normal
distribution (e.g. Bullock et al. 2001):

P(λ′) dλ′ = 1

λ′√2πσ
exp

[
− ln2(λ′/λ′

0)

2σ 2

]
dλ′. (3)

We found λ′
0 = 0.0347 ± 0.0006 and σ = 0.63 ± 0.02 as best-fitting

values, consistent with the parameters (λ′ = 0.035 and σ = 0.57)
found by Peirani, Mohayaee & De Freitas Pacheco (2004), but our
value of σ is slightly larger. However, using σ = 0.57 does not lead
to a significantly different result. The value of σ is not strongly
constrained and no real disagreement exists between our and their
best-fitting values. The halo’s spin, on which some of the following
investigations are based, is computed accurately.

3 A G A L AC TO C E N T R I C P O I N T O F V I E W

The analysis of exchange processes between the haloes and the in-
tergalactic medium will be carried out using two methods. The first
one can be described as ‘discrete’. The accreted objects are explic-
itly counted as particles or particle groups. This approach will be
applied and discussed later in this paper. The other method relies on
measuring directly relevant quantities on a surface at the interface
between the halo and the intergalactic medium. In this approach,
the measured quantities are scalar, vector or tensor fluxes, and we
assign to them flux densities. The flux density representation allows
us to describe the angular distribution and temporal coherence of
infalling objects or quantities related to this infall. The formal rela-
tion between a flux density, �(Ω), and its associated total flux, ,

through a region S is

 ≡
∫

S

�(Ω) · dΩ, (4)

where Ω denotes the position on the surface where � is evaluated
and dΩ is the surface element normal to this surface. Examples of
flux densities are mass flux density, ρvr , or accreted angular mo-
mentum, ρvr ·L. In particular, this description in terms of a spherical
boundary condition is well suited to study the dynamical stability
and response of galactic systems. In this section, these fields are
used as probes of the environment of haloes.

3.1 Halo analysis

Once a halo is detected, we study its environment using a galac-
tocentric point of view. The relevant fields �(Ω) are measured on
the surface of a sphere centred on the halo’s centre of mass with
radius R200 [where 3M/(4πR3

200) ≡ 200ρ] (cf. Fig. 3). There is no
exact, nor unique, definition of the halo’s outer boundary and our
choice of R200 (also called the virial radius) is the result of a com-
promise between a large distance to the halo’s centre and a good
signal-to-noise ratio in the determination of spherical density fields.

We used 40 × 40 regularly sampled maps in spherical angles Ω =
(ϑ , φ), allowing for an angular resolution of 9◦. We take into ac-
count haloes with a minimum number of 1000 particles, which gives
a good representation of high-density regions on the sphere. This
minimum corresponds to 5 × 1012 M� for a halo, and allows us to
reach a total number of 10 000 haloes at z = 2 and 50 000 haloes at
z = 0. This range of mass corresponds to a somewhat high value for
a typical L � galaxy but results from our compromise between reso-
lution and sample size. Detailed analysis of the effects of resolution
is postponed to Aubert & Pichon (2004).

The density, ρ(Ω), on the sphere is computed using the particles
located in a shell with a radius of R200 and a thickness of R200/10
(this is quite similar in spirit to the counts-in-cells techniques widely
used in analysing large-scale structures, but in the context of a sphere
the cells are shell segments). Weighting the density with quantities
such as the radial velocity or the angular momentum of each particle
contained within the shell, the associated spherical fields, ρvr (Ω)
or ρL(Ω), can be calculated for each halo. Two examples of spher-
ical maps are given in Fig. 3. They illustrate a frequently observed
discrepancy between the two types of spherical fields, ρ(Ω) and
ρvr (Ω). The spherical density field, ρ(Ω), is strongly quadrupolar,
which is due to the intersection of the halo triaxial three-dimensional
density field by our two-dimensional virtual sphere. By contrast the
flux density of matter, ρvr (Ω), does not have such a quadrupolar
distribution. The contribution of halo particles to the net flux density
is small compared to the contribution of particles coming from the
outer intergalactic region.

3.2 Two-point statistics: advected
momentum and the halo’s spin

The influence of infalling matter on the dynamical state of a galaxy
depends on whether or not the infall occurs inside or outside the
galactic plane. If the infalling matter is orbiting in the galactic plane,
its angular momentum is aligned with the angular momentum of
the disc. Taking the halo’s spin as a reference for the direction of
the ‘galactic’ plane, we want to quantify the level of alignment
of the orbital angular momentum of peripheral structures (i.e. as
measured on the virial sphere) relative to that spin. The inner spin
S is calculated using the positions and velocities (r part, vpart) of the
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Figure 3. A galactocentric point of view of the density field, ρ(Ω) (top),
and of the flux density of mass, ρvr (Ω), surrounding the same halo (bot-
tom). This measurement was extracted from a �CDM cosmological simu-
lation. The considered halo contained about 1013 M� or 2000 particles. The
high-density zones are darker. The density’s spherical field shows a strong
quadrupolar component with high-density zones near the two poles while
this component is less important for the mass flux density field measured
on the sphere. This discrepancy between the two spherical fields is common
and reflects the shape of the halo as discussed in the main text.

particles inside the R200 sphere in the centre-of-mass rest frame
(r 0, v0):

S =
∑
part

(r part − r 0) × (vpart − v0). (5)

Here r 0 is the position of the halo centre of mass, while v0 stands
for the average velocity of the halo’s particles. This choice of rest
frame is not unique; another option would have been to take the most
bounded particle as a reference. Nevertheless, given the considered
mass range, no significant alteration of the results is to be expected.
The total angular momentum, LT (measured at the virial radius,
R200) is computed for each halo using the spherical field ρL(Ω):

LT =
∫

4π

ρL(Ω) · dΩ. (6)

The angle, θ , between the spin of the inner particles S and the
total orbital momentum LT of ‘peripheral’ particles is then easily
computed:

θ = cos−1

(
LT·S

|LT||S|

)
. (7)

Measuring this angle θ for all the haloes of our simulations al-
low us to derive a raw probability distribution of angle, d r(θ ). An

isotropic distribution corresponds to a non-uniform probability den-
sity d iso(θ ). Typically d iso is smaller near the poles (i.e. near the
region of alignment), leading to a larger correction for these angles
and to larger error bars in these regions (see Fig. 4): this is the con-
sequence of smaller solid angles in the polar regions (which scales
like ∼sin θ ) than in equatorial regions for a given θ aperture. The
true anisotropy is estimated by measuring the ratio:

dr(θ )/diso(θ ) ≡ 1 + ξL S(θ ), (8)

Here, 1 + ξ LS(θ ) measures the excess probability of finding S and
LT away from each other, while ξ LS(θ ) is the cross-correlation of the
angles of S and LT. Thus having ξ LS(θ )>0 (respectively, ξ LS(θ )<0)
implies an excess (respectively, a lack) of configurations with a θ

separation relative to an isotropic situation.
To take into account the error in the determination of θ , each count

(or Dirac distribution) is replaced with a Gaussian distribution and
contributes to several bins:

δ(θ − θ0) → N (θ0, σ0) = 1

σ0

√
2π

exp

[
− (θ − θ0)2

2σ 2
0

]
, (9)

where N stands for a normalized Gaussian distribution and where
the angle uncertainty is approximated by σ 0 ∼ (4π/N )1/2 using N
particles as suggested by Hatton & Ninin (2001). If N v is equal to
the number of particles used to compute ρL(Ω) on the virial sphere
and if N h is the number of particles used to compute the halo’s spin,
the error we associated to the angle between the angular momentum
at the virial sphere and the halo’s spin is

σ0 =
√

(4π/Nv) + (4π/Nh) ∼
√

(4π/Nv), (10)

because we have N v � N h. Note that this Gaussian correction
introduces a bias in mass: a large infall event (large N v, small σ 0)
is weighted more for a given θ 0 than a small infall (small N v, large
σ 0). All the distributions are added to give the final distribution:

dr(θ ) =
Np∑
p

N (θp, σp), (11)

where Np stands for the total number of measurements (i.e. the total
number of haloes in our set of simulations). The corresponding
isotropic angle distribution is derived using the same set of errors
randomly redistributed:

diso(θ ) =
Np∑
p

N
(
θ iso

p , σp

)
. (12)

Fig. 4 shows the excess probability, 1 + ξ LS(θ ), of the angle
between the total orbital momentum of particles at the virial radius
LT and the halo’s spin S. The solid line is the correlation deduced
from 40 000 haloes at redshift z = 0. The error bars were determined
using 50 subsamples of 10 000 haloes extracted from the whole set
of available data. An average Monte Carlo correlation and a Monte
Carlo dispersion σ is extracted. In Fig. 4, the symbols stand for the
average Monte Carlo correlation, while the vertical error bars stand
for the 3σ dispersion.

The correlation in Fig. 4 shows that all angles are not equivalent
since ξ LS(θ ) �= 0. It can be fitted with a Gaussian curve using the
following parametrization:

1 + ξL S(θ ) = a1√
2πa3

exp

(
− θ − a2

2

2a2
3

)
+ a4. (13)

The best-fitting parameters are a1 = 2.351 ± 0.006, a2 = −0.178 ±
0.002, a3 = 1.343 ± 0.002 and a4 = 0.6691 ± 0.0004. The
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Figure 4. Excess probability, 1 + ξ LS(θ ), of the angle, θ , between the
halo’s spin (S) and the angular momentum (LT for total, or LA for accreted)
measured on the virial sphere using the fluid located at the virial radius.
Here LT represents the total angular momentum measured on the virial
sphere (solid line and circles) and LA the total accreted angular momentum
measured on the sphere (dashed line and diamonds). The error bars represent
the 3σ dispersion measured on subsamples of 10 000 haloes. The correlation
takes into account the uncertainty on the angle determination due to the
small number of particles at the virial radius. Here ξ LS(θ ) ≡ 0 would be
expected for an isotropic distribution of angles between S and L while the
measured distributions indicate that the aligned configuration (θ ∼ 0) is
significantly more likely. The two excess probability distributions are well
fitted by Gaussian functions (almost coincident red curves in Synergy: see
main text).

maximum being located at small angles, the aligned configura-
tion, L̂T·S ∼ 0, is the most enhanced configuration (relative to
an isotropic distribution of angle θ ). The aligned configuration of
LT relative to S is 35 per cent [ξ LS(0) = 0.35], more frequent in
our measurements than for a random orientation of LT. As a conse-
quence, matter is preferentially located in the plane perpendicular
to the spin, which is hereafter referred to as the ‘equatorial’ plane.

The angles, (ϑ , φ), are measured relative to the z- and x-axes of the
simulation boxes and not relative to the direction of the spin. Thus
we do not expect artificial LT–S correlations due to the sampling
procedure. Nevertheless, it is expected on geometrical grounds that
the aligned configuration is more likely since the contribution of
recent infalling dark matter to the halo’s spin is important. As a
check, the same correlation was computed using the total advected
orbital momentum:

LA =
∫

4π

Lρvr (Ω) · dΩ. (14)

The resulting correlation (see Fig. 4) is similar to the previous one
but the slope towards small values of θ is even stronger and for
example the excess of aligned configuration reaches the level of
50 per cent [ξ LS(0) ∼ 0.5]. The correlation can be fitted following
equation (13) with a1 = 3.370 ± 0.099, a2 = −0.884 ± 0.037,
a3 = 1.285 ± 0.016 and a4 = 0.728 ± 0.001. This enhancement
confirms the relevance of advected momentum for the build-up of
the halo’s spin, though the increase in amplitude is limited to 0.2 for
θ = 0. The halo’s inner spin is dominated by the orbital momentum
of infalling clumps (given the larger lever arm of these virialized
clumps and their high radial velocities) that have just passed through
the virial sphere, as suggested by Vitvitska et al. (2002) (see also

Appendix D). It reflects a temporal coherence of the infall of matter
and thus of angular momentum, and a geometrical effect: a fluid
clump that is just being accreted can intersect the virtual virial
sphere, being in part both ‘inside’ and ‘outside’ the sphere. Finally
a small fraction of the accreted momentum may come from ma-
terial that has already passed once through the R200 sphere. This
component would be aware of the dynamical properties of the inner
halo. Thus it is expected that the halo’s spin S and the momenta
LT and LA at the virial radius are correlated since the halo’s spin
is dominantly set by the properties of the angular momentum in its
outer region. The anisotropy of the two fields LT and LA do not
have the same implication. The spatial distribution of advected an-
gular momentum, LA, contains stronger dynamical information. In
particular, the variation of the angular momentum of the halo plus
disc is induced by tidal torques but also by accreted momentum for
an open system. For example, the anisotropy of Lρvr should be
reflected in the statistical properties of warped discs as discussed
later in Sections 6.1 and 6.2.

3.3 One-point statistics: equatorial infall anisotropy

The previous measurement does not account for dark matter falling
into the halo with a very small angular momentum (radial orbits). We
therefore measured the excess of equatorial accretion, δm, defined
as follows. We can measure the average flow density of matter, r ,
in a ring centred on the equatorial plane:

r ≡ 1

Sr

∫
−π/8<θ−π/2<π/8

ρvr (Ω) · dΩ, (15)

where Sr = ∫
−π/8<θ−π/2<π/8

dΩ. The ring region is defined by
the area where the polar angle satisfies θ pol = π/2 ± π/8, which
corresponds to about 40 per cent of the total covered solid angle.
The larger this region is, the better the convergence of the average
value of r , but the lower the effects of anisotropy, since averaging
over a larger surface leads to a stronger smoothing of the field. This
value of ±π/8 is a compromise between these two contradictory
trends. In the next section and in the Appendix, we discuss more
general filtering involving spherical harmonics that are related to the
dynamical evolution of the inner component of the halo. We also
measure the flow averaged over all the directions :

 ≡ ρvr ≡ 1

4π

∫
4π

ρvr (Ω) · dΩ. (16)

Since we are interested in accretion, we computed r and  using
only the infalling part of the density flux of matter, where ρvr (Ω) ·
dΩ < 0, ignoring the outflows. The fraction of outflowing material
decreases from 20 per cent of the total integrated flux at z = 0 to
10 per cent at z = 2. We define δm as

δm ≡ r − 


. (17)

This number quantifies the anisotropy of the infall. It is positive
when infall is in excess in the galactic equatorial plane, while for
isotropic infall δm ≡ 0. The quantity δm can be regarded as being
the ‘flux density’ contrast of the infall of matter in the ring region
(formally it is the centred top-hat-filtered mass flux density contrast
as shown in Appendix C1). This measurement, in contrast to those of
the previous section, does not rely on some knowledge of the inner
region of the halo but only on the properties of the environment.

Fig. 5 displays the normalized distribution of δm measured for
50 000 haloes with a mass in excess of 5 × 1012 M� and for dif-
ferent redshifts (z = 1.8, 1.5, 0.9, 0.3, 0.0). The possible values for
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Figure 5. Top: normalized probability distributions (PDF) of the excess of
equatorial infall, δm, measured at the virial radius. The quantity 1+ δm stands
for the ratio between the flux of matter through the equatorial subregion of the
R200 sphere and the average flux of matter through the whole R200 sphere.
The equatorial subregion is defined as being perpendicular to the direction
of the halo’s spin. It formally corresponds to the top-hat-smoothed mass
flux density contrast. The value δm = 0 is expected for an isotropic infall of
matter through the virial sphere. The average value of δm is always greater
than zero, indicating that the infall of matter is, on average, more important
in the direction orthogonal to the halo’s spin vector than in other directions.
Bottom: the antisymmetric part of the δm distribution. Being positive for
positive values of δm, the antisymmetric part of the δm distributions shows
that accretion in the equatorial plane is in excess relative to that expected
from isotropic accretion of matter.

δm range between δm ∼ −1 and ∼1.5. The average value 〈δm〉 of
the distributions is statistically larger than zero (see also Fig. 6).
Here 〈〉 stands for the statistical expectation, which in this paper is
approximated by the arithmetic average over many haloes in our
simulations. The antisymmetric part of the distribution of δm is pos-
itive for positive δm. The probability distribution function (PDF) of
δm is skewed, indicating an excess of accretion through the equa-
torial ring. The median value for δm is δmed = 0.11, while the first
25 per cent haloes have δm < δ25 ≡ −0.11 and the first 75 per cent
haloes have δm < δ75 ≡ 0.37. Therefore we have (δ75 − δmed)/(δ25 −
δmed) = 1.13, which quantifies how the distribution of δm is posi-
tively skewed. The skewness S3 = 〈(δ− δ̄)3〉/〈(δ− δ̄)2〉3/2 is equal to
0.44. Combined with the fact that the average value 〈δm〉 is always

linear fit
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Figure 6. The redshift evolution of 〈δm〉. The average 〈〉 is performed on
a set of 40 000 haloes at z = 0 and 10 500 haloes at z = 1.8. The error bars
stand for the error on the estimation of 〈δm〉 with � = σ (δm)/

√
N , where

N is the number of haloes needed to compute 〈δm〉. The value of 〈δm〉 is
always positive and indicates an excess of accretion in the equatorial plane.
This redshift evolution can be fitted as 〈δm〉 (z) = 0.0161(± 0.0103)z +
0.147(± 0.005). This excess is detected for every redshift smaller than z =
2, which indicates an excess of accretion in the equatorial region. We applied
a mass threshold of 5 × 1012 M� to our haloes for every redshift. Then,
the halo population is different from one redshift to another. This selection
effect may dominate the observed time evolution.

positive, this shows that the infall of matter is larger in the equatorial
plane than in the other directions.

This result is robust with respect to time evolution (see Fig. 6). At
redshift z = 1.8, we have 〈δm〉 = 0.17, which falls to 〈δm〉 = 0.145
at redshift z = 0. This redshift evolution can be fitted as 〈δm〉 (z) =
0.0161(± 0.0103)z + 0.147(± 0.005). This trend should be taken
with caution. For every redshift z we take in account haloes with
a mass bigger than 5 × 1012 M�. Thus the population of haloes
studied at z = 0 is not exactly the same as the one studied at z = 2.
Actually, at z = 0, there is a strong contribution of small haloes (i.e.
with a mass close to 5 × 1012 M�) that have just crossed the mass
threshold. The accretion on small haloes is more isotropic as shown
in more details in Appendix D2. One possible explanation is that
they experienced less interactions with their environment and have
since had time to relax, which implies a smaller correlation with
the spatial distribution of the infall. Also bigger haloes tend to lie in
more coherent regions, corresponding to rare peaks, whereas smaller
haloes are more evenly distributed. The measured time evolution of
the anisotropy of the infall of matter therefore seems to result from a
competition between the trend for haloes to become more symmetric
and the bias corresponding to a fixed mass cut.

In short, the infall of matter measured at the virial radius in the
direction orthogonal to the halo’s spin is larger than expected for an
isotropic infall.

3.4 Harmonic expansion of anisotropic infall

As mentioned earlier (and demonstrated in Appendix A), the dynam-
ics of the inner halo and disc is partly governed by the statistical
properties of the flux densities at the boundary. Accounting for the
gravitational perturbation and the infalling mass or momentum re-
quires projecting the perturbation over a suitable basis such as the
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spherical harmonics:

� (Ω) =
∑
�,m

αm
� Y m

� (Ω). (18)

Here, � stands for the mass flux density, the advected momentum
flux density, or the potential perturbation, for example. The result-
ing αm

� coefficients correspond to the spherical harmonic decompo-
sition in an arbitrary reference frame. The different m correspond
to the different fundamental orientations for a given multipole �. A
spherical field with no particular orientation gives rise to a field av-
eraged over the different realizations that appear as a monopole, i.e.
〈α�m〉 = 0 for � �= 0. Having constructed our virial sphere in a refer-
ence frame attached to the simulation box, we effectively performed
a randomization of the orientation of the sphere. However, since the
direction of the halo’s spin is associated to a general preferred orien-
tation for the infall, it should be traced through the α�m coefficients.
Let us define the rotation matrix, R, which brings the z-axis of the
simulation box along the direction of the halo’s spin. The spherical
harmonic decomposition centred on the spin of the halo, am

�, is
given by (e.g. Varshalovich, Moskalev & Khersonskii 1988):

am
� = R

[
αm′

�′
] ≡

∑
�′m′

Rm,m′
�,�′ (ϑ, ϕ)αm′

�′ . (19)

If the direction of the spin defines a preferential plane of accretion,
the corresponding am

� will be systematically enhanced. We therefore
expect the equatorial direction (which corresponds to m = 0 for
every �) not to converge to zero.

We computed the spherical harmonic decomposition of ρvr(ϑ ,
ϕ) given by equation (18) for the mass flux density of 25 000 haloes
at z = 0, up to � = 15. For each spherical field of the mass density
flux, we performed the rotation that brings the halo’s spin along
the z-direction to obtain a set of ‘centred’ am

� coefficients. We also
computed the related angular power spectra C �:

C� ≡ 1

4π

1

2� + 1

�∑
m=−�

∣∣am
�

∣∣2 = 1

4π

1

2� + 1

�∑
m=−�

∣∣αm
�

∣∣2 . (20)

Let us define the normalized ãm
� (or harmonic contrast, see

Appendix C1),

ãm
� ≡

√
4π

am
�

a0
0

= am
�

sign
(

a0
0

)√
C0

. (21)

This compensates for the variations induced by our range of masses
for the halo. For each �, we present in Fig. 7 the median value,
|〈Re{ãm

� }〉| for � = 2, 4, 6, 8 computed for 25 000 haloes. All the
ãm

� have converged towards zero, except for the ã�0 coefficients.
The imaginary parts of ãm

� have the same behaviour, except for the
Im{ã�0} coefficients, which vanish by definition (not shown here).
The m = 0 coefficients are statistically non-zero. We find 〈ã0

2〉 =
−0.65 ± 0.04, 〈ã0

4〉 = 0.12 ± 0.02, 〈ã0
6〉 = −0.054 ± 0.015 and

〈ã0
8〉 = 0.0145 ± 0.014. Errors stand for the distance between the

5th and the 95th percentile. The typical pattern corresponding to
an m = 0 harmonic is a series of rings parallel to the equatorial
plane. This confirms that accretion occurs preferentially in a plane
perpendicular to the direction of the halo’s spin.

The spherical accretion contrast 〈δ[ρvr ](ϑ, φ)〉 can be recon-
structed using the 〈ãm

� 〉 coefficients (as shown in the Appendix):

δ[ρvr ](ϑ, ϕ) =
∑
�,m

ãm
� Y m

� (ϑ, ϕ) − 1. (22)

In Fig. 8, the polar profile〈
δ[ρvr ](ϑ)

〉 ≡
∑
�,m

〈
ãm

�

〉
Y m

� (ϑ, 0) − 1 (23)
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Figure 7. The convergence of the modulus of the real part of 〈ãm

�
〉, for

� = 2, 4, 6, 8. The ãm
�

decomposition was computed for 25 000 haloes, and
each coefficient has been normalized with the corresponding C 0 (see text
for details). Here, 〈〉 stands for the median while the error bars stand for the
distance between the 5th and 95th percentiles. The median value of 〈ãm

�
〉 is

zero except for the 〈ã0
�
〉 coefficient: this is a signature of a field invariant to

azimuthal rotations.
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Figure 8. An illustration of the convergence of ã�m presented in Fig. 7.
The solid line stands for the azimuthal average of the spherical contrast of
accretion computed using equation (23), the dotted line for the spherical field
reconstructed with � � 5. The insert represents the reconstructed spherical
field using the expansion of the ã�m of the mass flux measured at the virial
sphere. The sphere presents an excess of accretion in the equatorial region
because of the non-zero average value of ã�0 coefficients (for even values
of �).
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of this reconstructed spherical contrast is shown. This profile has
been obtained using the 〈ãm

� 〉 coefficients with � � 5 and � � 15.
The contrast is large and positive near ϑ = π/2 as expected for an
equatorial accretion. The profile reconstructed using � � 5 is quite
similar to the one using � � 15. This indicates that most of the
energy involved in the equatorial accretion is contained in a typical
angular scale of 36◦ (a scale that is significantly larger than π/20
corresponding to the cut-off frequency in our sampling of the sphere
as mentioned earlier).

Using a spherical harmonic expansion of the incoming mass flux
density (equation 8), we confirmed the excess of accretion in the
equatorial plane found above. This similarity was expected since
these two measurements (using a ring or using a spherical harmonic
expansion) can be considered as two different filterings of the spher-
ical accretion field as demonstrated in Appendix C. The main asset
of the harmonic filtering resides in its relevance for the description
of the inner dynamics as discussed in Section 6.

3.5 Summary

To sum up, the two measurements of Sections 3.2 and 3.3 (or 3.4)
are not sensitive to the same effects. The first measurement (in-
volving the angular momentum ρL at the virial radius) is mostly a
measure of the importance of infalling matter in building the halo’s
proper spin. The second and the third measurements (involving the
excess of accretion in the equatorial plane, δm, using rings and har-
monic expansion) are quantitative measures of coplanar accretion.
The equatorial plane of a halo is favoured relative to the accretion
of matter (compared to an isotropic accretion) to a level of ∼12 per
cent between z = 2 and z = 0. Down to the halo scale (∼500 kpc),
anisotropy is detected and is reflected in the spatial configuration of
infalling matter.

4 A N I S OT RO P I C I N FA L L
O F S U B S T RU C T U R E S

To confirm and assess the detected anisotropy of the matter infall on
haloes in our simulations, let us now move on to a discrete framework
and measure related quantities for satellites and substructures. In the
hierarchical scenario, haloes are built up by successive mergers of
smaller haloes. Thus if an anisotropy in the distribution of infalling
matter is to be detected, it seems reasonable that this anisotropy
should also be detected in the distribution of satellites. The previous
galactocentric approach for the mass flow does not discriminate be-
tween an infall of virialized objects and a diffuse material accretion,
and therefore is also sensitive to satellites merging: one would need
to consider, say, the energy flux density. However, it is not clear if
satellites are markers of the general infall and Vitvitska et al. (2002)
did not detect any anisotropy at a level greater than 20 per cent.

The detection of substructures and satellites is performed us-
ing the code ADAPTAHOP, which is described in detail in the Ap-
pendix. This code outputs trees of substructures in our simulations,
by analysing the properties of the local dark matter density in terms
of peaks and saddle points. For each detected halo we can extract the
whole hierarchy of subclumps or satellites and their characteristics.
Here we consider the leaves of the trees, i.e. the most elementary
substructures that the haloes contain. Each halo contains a ‘core’,
which is the largest substructure in terms of particle number, and
‘satellites’, corresponding to the smaller ones. We call the ensemble
of core plus satellites the ‘mother’ or the halo. Naturally the number
of substructures is correlated with the mother’s mass. The bigger
the number of substructures, the bigger the total mass. Because the

resolution in mass of our simulations is limited, smaller haloes tend
to have only one or two satellites. Thus in the following sections we
will discriminate cases where the core has less than four satellites.
A total of 50 000 haloes have been examined, leading to a total of
about 120 000 substructures.

4.1 Core spin–satellite orbital momentum correlations

In the mother–core–satellite picture, it is natural to regard the core
as the central galactic system, while satellites are expected to join
the halo from the intergalactic medium. One way to test the effect of
large-scale anisotropy is to compare directly the angle between the
core’s spin, Sc, and the satellites’ angular momentum, Ls, relative to
the core. These two angular momenta are chosen since they should
be less correlated with each other than, for example, the halo’s spin
and the angular momentum of its substructures. Furthermore, par-
ticles that belong to the cores are strictly distinct from those that
belong to satellites, thus preventing any ‘self-contamination’ effect.
As a final safeguard, we took into account only satellites with a dis-
tance relative to the core larger than the mother’s radius. The latter
quantity is computed using the mean square distance of the parti-
cles belonging to the mother, and thus we focus only on ‘external’
satellites. The core’s spin is

Sc =
∑

p

(r p − r c) × (vp − vc), (24)

where r p and vp (respectively r c and vc) stand for the particles’
positions and velocities (respectively the core’s centre-of-mass po-
sition and velocity) and where

rp < dc, (25)

where d c is the core’s radius. The angular momentum for a satellite is
computed likewise, with a different selection criterion on particles,
namely

|r p − r s| < ds, (26)

where r s stands for the satellite’s centre-of-mass position and d s is
its radius.

Fig. 9 displays the reduced distribution of the angle, θ cs, between
the core’s spin and the satellites’ orbital momentum, where θ cs is
defined by

θcs = cos−1

(
Ls·Sc

|Ls||Sc|

)
. (27)

The Gaussian correction was applied as described in Section 3.2, to
take into account the uncertainty on the determination of θ cs.

The correlation of θ cs indicates a preference for the aligned con-
figuration with an excess of ∼12 per cent of aligned configurations
relative to the isotropic distribution. We ran Monte Carlo realiza-
tions using 50 subsamples of 10 000 haloes extracted from our whole
set of substructures to constrain the error bars. We found a 3σ er-
ror of 6 per cent: the detected anisotropy exceeds our errors, i.e.
ξ cs(θ cs) is not uniform with a good confidence level. The variations
with the fragmentation level (i.e. the number of satellites per sys-
tem) remains within the error bars. The best-fitting parameters for
the measured distributions of systems with at least one satellite are
a1 = 0.3993 ± 0.0038, a2 = 0.0599 ± 0.0083, a3 = 0.8814 ±
0.0055 and a4 = 0.9389 ± 0.0002 (see equation 13 for parametriza-
tion). Not surprisingly, a less structured system shows a stronger
alignment of its satellites’ orbital momentum relative to the core’s
spin. In the extreme case of a binary system (one core plus a satel-
lite), it is common for the two bodies to have similar masses. Since
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Figure 9. Excess probability, 1 + ξcs(θcs), of the angle between the core’s
spin and the orbital momentum of satellites. Cores have at least one satel-
lite (solid line), four satellites (dashed line) and 10 satellites (dotted line).
These curves have been normalized by the expected isotropic distribution
and the Gaussian correction was applied to account for errors on the angle
determination. Here ξcs(θ ) = 0 is expected for an isotropic distribution of
angles between the core’s spin and the orbital momentum. All satellites are
external to the core, yet an excess of alignment is present. The triangles
represent the angle distribution, the error bars stand for the 3σ dispersion
for 50 subsamples of 10 000 satellites (out of 35 000) while the dash-dotted
curve (red in the online version of this article on Synergy) stands for the
best Gaussian fit of the distribution for systems with at least one satellite
(see equation 13 for parametrization). The best-fitting parameters are: a1 =
0.3993 ± 0.0038, a2 = 0.0599 ± 0.0083, a3 = 0.8814 ± 0.0055 and a4 =
0.9389 ± 0.0002. The isotropic case is excluded with a good confidence
level, even for systems with a large number of satellites.

the two bodies are revolving around each other, a natural preferen-
tial plane appears. The core’s spin will be likely to be orthogonal to
this plane. Increasing the number of satellites increases the isotropy
of the satellites’ spatial distribution (the distribution’s maxima are
lower and the slope towards low values of θ cs is gentler), but switch-
ing from at least four satellites to at least 10 satellites per system
does not change significantly the overall shape distribution. This
suggests that convergence, relative to the number of satellites, has
been reached for the θ cs distribution.

As the measurements of the anisotropy factor δm indirectly sug-
gested, satellites have an anisotropic distribution of their directions
around haloes. Furthermore the previous analysis of the statistical
properties of δ (Section 3.3) indicated an excess of aligned config-
uration of 15 per cent, which is consistent with the current method
using substructures. While the direction of the core’s spin should
not be influenced by the infall of matter, we still find the existence
of a preferential plane for this infall, namely the core’s equatorial
plane.

4.2 Satellite velocity–satellite spin correlation

The previous sections compared the properties of haloes with those
of satellites. In a galactocentric framework, the existence of this
preferential plane could only be local. In the extreme each halo
would then have its own preferential plane without any connection
to the preferential plane of the next halo. Taking the satellite itself as
a reference, we have analysed the correlation between the satellite’s

average velocity in the core’s rest frame and the structure’s spin.
Since part of the properties of these two quantities are consequences
of what happened outside the galactic system, the measurement of
their alignment should provide information on the structuration on
scales larger than the halo scale, while sticking to a galactocentric
point of view.

For each satellite, we extract the angle, θ vs, between the velocity
and the proper spin and derive its distribution using the Gaussian
correction (see Fig. 10). The satellite’s spin Ss is defined by

Ss =
∑

p

(r p − r s) × (vp − vs), (28)

where r s and vs stands for the satellite’s position and velocity in the
halo core’s rest frame. The angle θ vs between the satellite’s spin and
the satellite’s velocity is

θvs = cos−1

(
Ss·vs

|Ss||vs|

)
. (29)

Only satellites external to the mother’s radius are considered
while computing the distribution of angles. This leads to a sam-
ple of about 40 000 satellites, at redshift z = 0. The distribution
ξ (θ vs) was calculated as sketched in Section 2. An isotropic distri-
bution of θ vs would as usual lead to a uniform distribution ξ (θ vs) =
0. The result is shown in Fig. 10. The error bars were computed
using the same Monte Carlo simulations described before with
50 subsamples of 10 000 satellites.

We obtain a peaked distribution with a maximum for θ vs = π/2
corresponding to an excess of orthogonal configuration of 5 per cent
compared to a random distribution of satellite spins relative to their
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Figure 10. Excess probability, 1 + ξ vs, of the angle between the sub-
structures’ spin and their velocities in the mother’s rest frame. The Gaus-
sian correction was applied to take into account uncertainty on the angle
determination. The distribution was measured for all mothers (solid line),
mothers with at least four substructures (dotted line) and mothers with at
most three substructures (dashed line). The triangles represent the mean an-
gle distribution. The error bars represent the Monte Carlo 3σ dispersion for
50 subsamples of 10 000 haloes (out of 35 000). The dash-dotted curve (red
in the online version of this article on Synergy) stands for the best fit of the
distribution with a Gaussian function for systems with at least one satellite
(see equation 13 for parametrization). The best-fitting parameters are: a1 =
0.2953 ± 0.0040, a1 = 1.5447 ± 0.0015, a2 = 0.8045 ± 0.0059 and a3 =
0.9144 ± 0.0010. In the core’s rest frame, the satellites’ motion is orthogo-
nal to the direction of the satellites’ spin. This configuration would fit in a
picture where structures move along filamentary directions.
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velocities. The substructure’s motion is preferentially perpendicular
to their spin. This distribution of angles for systems with at least
one satellite can be fitted by a Gaussian function with the following
best-fitting parameters (see equation 13): a1 = 0.2953 ± 0.0040,
a1 = 1.5447 ± 0.0015, a2 = 0.8045 ± 0.0059 and a3 = 0.9144 ±
0.0010. The variation with the mother’s fragmentation level is within
the error bars. However, the effect of an accretion orthogonal to the
direction of the spin is stronger for satellites that belong to less
structured systems. This may again be related to the case where two
comparable bodies revolve around each other, but from a satellite
point of view. The satellite spin is likely to be orthogonal to the
revolution plane and consequently to the velocity’s direction.

This result was already known for haloes in filaments
(Faltenbacher et al. 2002), where their motion occurs along the fila-
ments with their spins pointing outwards. The current results show
that the same behaviour is measured down to the satellite’s scale.
However, this result should be taken with caution since Monte Carlo
tests suggest that the error (deduced from the 3σ dispersion) is about
4 per cent.

This configuration where the spins of haloes and satellites are
orthogonal to their motion fits with the image of a flow of structures
along the filaments. Larger structures are formed out of the merging
of smaller ones in a hierarchical scenario. Such small substructures
should have small relative velocities in order eventually to merge
while spiralling towards each other. The filaments correspond to
regions where most of the flow is laminar, hence the merging be-
tween satellites is more likely to occur when one satellite catches up
with another, while both satellites move along the filaments. During
such an encounter, shell crossing induces vorticity perpendicular to
the flow as was demonstrated in Pichon & Bernardeau (1999). This
vorticity is then converted to momentum, with a spin orthogonal to
the direction of the filament.

Finally, the flow of matter along the filaments may also provide
an explanation for the excess of accretion through the equatorial
regions of the virial sphere. If a sphere is embedded in a ‘laminar’
flow, the density flux detected near the poles should be smaller than
that detected near the ‘equator’ of the sphere. The flux measured
on the sphere is larger in regions where the normal to the surface
is collinear with the ‘laminar’ flow, i.e. the ‘equator’. On the other
hand, a nil flux is expected near the poles since the vector normal
to the surface is orthogonal to the direction of the flow. The same
effect is measured on Earth, which receives the Sun’s radiance: the
temperature is larger in the tropics than near the poles. Our observed
excess of accretion through the equatorial region supports the idea
of a filamentary flow orthogonal to the direction of the halo’s spin
down to scales �500 kpc.

5 P RO J E C T E D A N I S OT RO P Y

5.1 Projected satellite population

We looked directly into the spatial distributions of satellites sur-
rounding the cores of the haloes to confirm the existence of a pref-
erential plane for the satellite locations in projection. In Fig. 11,
we show the compilation of the projected positions of satellites in
the core’s rest frame. The result is a synthetic galactic system with
100 000 satellites in the same rest frame. We performed suitable ro-
tations to bring the spin axis collinear to the z-axis for each system
of satellites, and then we added all these systems to obtain the actual
synthetic halo with 100 000 satellites. The positions were normal-
ized using the mother’s radius (which is of the order of the virial
radius). A quick analysis of the isocontours of the satellite distri-
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Figure 11. The projected distribution of satellites around the core’s centre
of mass. We used the position of 40 000 satellites around their respective core
to produce a synthetic halo plus satellites (a ‘mother’) system. The projection
is performed along the x-axis. The y and z coordinates are given in units of
the mother’s radius. The z-axis is collinear to the direction of the core’s spin.
Top: the isocontours of the number density of satellites around the core’s
centre of mass present a flattened shape. The number of satellites is lower
in darker bins than in lighter bins. The flattened isocontours indicate that
satellites lie preferentially in the plane orthogonal to the direction of the spin.
Bottom: the excess number of satellites surrounding the core. We compared
the distribution of satellites measured in our simulations to an isotropic
distribution of satellites. Light zones stand for an excess of satellites in these
regions (compared to an isotropic distribution) while dark zones stand for a
lack of satellites. The satellites are more numerous in the equatorial region
than expected in an isotropic distribution of satellites around the core. Also,
there are fewer satellites along the spin’s axis than expected for an isotropic
distribution of satellites.

butions indicates that satellites are more likely to be found in the
equatorial plane, even in projection. The axial ratio measured at
one mother’s radius is ε(Rm) ≡ a/b − 1 = 0.1 with a > b. We
compared this distribution to an isotropic ‘reference’ distribution of
satellites surrounding the core. This reference distribution has the
same average radial profile as the measured satellite distributions
but with isotropically distributed directions. The result of the sub-
traction of the two profiles is also shown in Fig. 11. The equatorial
plane (perpendicular to the z-axis) presents an excess in the number
of satellites (light regions). Meanwhile, there is a lack of satellites
along the spin direction (dark regions). This confirms our earlier
results obtained using the alignment of orbital momentum of satel-
lites with the core’s spin, i.e. satellites lie more likely in the plane
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orthogonal to the halo’s spin direction. Qualitatively, these results
have already been obtained by Tormen (1997), where the major axis
of the ellipsoid defined by the satellites’ distribution is found to be
aligned with the cluster’s major axis. This synthetic halo is more di-
rectly comparable to observables since, unlike the dark matter halo
itself, the satellites should emit light. Even though �CDM predicts
too many satellites, its relative geometrical distribution might still
be correct. In the following sections, our intent is to quantify this
effect more precisely.

The propensity of satellites to lie in the plane orthogonal to the
direction of the core’s spin appears as an ‘anti-Holmberg’ effect.
Holmberg (1974) and more recently Zaritsky et al. (1997) have
found observationally that the distribution of satellites around discs
is biased towards the pole regions. Thus if the orbital momentum
vector of galaxies is aligned with the spin of their parent haloes, our
result seems to contradict these observations. One may argue that
satellites are easier to detect out of the galactic plane. Furthermore
our measurements are carried far from the disc while its influence
is not taken in account. Huang & Carlberg (1997) have shown that
the orbital decay and the disruption of satellites are more efficient
for coplanar orbits near the disc. This would explain the lack of
satellites in the disc plane. Thus our distribution of satellites can
still be made consistent with the ‘Holmberg effect’.

5.2 Projected satellite orientation and spin

In addition to the known alignment on large scales, we have shown
that the orientation of structures on smaller scales should be different
from that expected for a random distribution of orientations. Can
this phenomenon be observed? The previous measurements were
carried in 3D while this latter type of observation is performed in
projection on the sky. The projection ‘dilutes’ the anisotropy effects
detected using 3D information. Thus an effect of 15 per cent may be
lowered to a few per cent by projecting on the sky. However, even if
the deviation from isotropy is as important as a few per cent, as we
will suggest, this should be relevant for measurements involved in
extracting a signal just above the noise level, such as weak lensing.

To see the effect of projection on our previous measurements,
we proceed in two steps. First, every mother (halo core plus satel-
lites) is rotated to bring the direction of the core’s spin to the z-axis.
Secondly, every quantity is computed using only the y and z com-
ponents of the relevant vectors, corresponding to a projection along
the x-axis.

The first projected measurement involves the orientation of satel-
lites relative to their position in the core’s rest frame. The spin of a
halo is statistically orthogonal to the main axis of the distribution
of matter of that halo (Faltenbacher et al. 2002), and assuming that
this property is preserved for satellites, their spin Ss is an indica-
tor of their orientation. The angle, θ P (in projection), between the
satellites’ spin and their position vector (in the core’s rest frame) is
computed as follows:

θP = cos−1

(
Sy,z

s ·r y,z
sc∣∣Sy,z

s

∣∣∣∣r y,z
sc

∣∣
)

, (30)

with

r sc = r s − r c, (31)

where r s and r c stand respectively for the position vector of the
satellite and the core’s centre of mass. Two extreme situations can
be imagined. The ‘radial’ configuration corresponds to a case where
the satellite’s main axis is aligned with the radius joining the core’s
centre of mass to the satellite centre of mass (spin perpendicular
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Figure 12. Excess probability, 1 + ξ P, of the projected angles between the
direction of the spin of substructures and their position vector in the core’s
rest frame. The projection is made along the x-axis where the z-axis is co-
incident with the core’s spin direction. The solid line represents the average
distribution of projected angles of 50 subsamples of 50 000 substructures
(out of 100 000 available substructures). The error bars represents the 3σ

dispersion relative to these 50 subsamples. An isotropic distribution of ori-
entation would correspond to a value of 1 for 1 + ξ P. The projection plus
the reference to the position vector instead of the velocity’s direction lowers
the anisotropy effect. The dashed curve stands for the best Gaussian fit of the
excess probability (see equation 13 for parametrization). The best-fitting pa-
rameters are: a1 = 0.0999 ± 0.0030, a2 = 1.5488 ± 0.0031, a3 = 0.8259 ±
0.0131 and a4 = 0.9737 ± 0.0007. It seems that on average the projected
orientation of a substructure is orthogonal to its projected position vector.

to the radius, or θ P ∼ π/2). The ‘circular’ configuration is the case
where the satellite main axis is orthogonal to the radius (spin parallel
to the radius, θ P ∼ 0 [π]). These reference configurations will be
discussed in what follows.

The resulting distribution, 1 + ξ P(θ P), is shown in Fig. 12.
As before, an isotropic distribution of orientations would lead to
ξ P(θ P) = 0. The distribution is computed with 100 000 satellites,
without the cores, while the error bars result from Monte Carlo sim-
ulations on 50 subsamples of 50 000 satellites each. As compared
to the distribution expected for random orientations, the orthogonal
configuration is present in excess of ξ P(π/2) ∼ 0.02. If the spin of
satellites is orthogonal to their principal axis, the direction vector
in the core’s rest frame is more aligned with the satellites’ principal
axes than one would expect for an isotropic distribution of satellite
orientations. This configuration is ‘radial’. The peak of the distri-
bution is slightly above the error bars: �ξ P(θ P ∼ π/2) ∼ 0.02. The
distribution can be fitted by the Gaussian function given in equa-
tion (13) with the following parameters: a1 = 0.0999 ± 0.0030,
a2 = 1.5488 ± 0.0031, a3 = 0.8259 ± 0.0131 and a4 = 0.9737 ±
0.0007. The alignment seems to be difficult to detect in projection.
With 50 000 satellites, we barely detect the enhancement of the or-
thogonal configuration at the 3σ level, and thus we do not expect a
detection of this effect at the 1σ level for less than 6000 satellites.
Nevertheless, the distribution of the satellites’ orientation in projec-
tion seems to be ‘radial’ on dynamical grounds, without reference
to a lensing potential.

Our previous measurement was ‘global’ since it does not take
into account the possible change of orientation with the relative
position of the satellites in the core’s rest frame. In Fig. 13, we
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Figure 13. Radial and azimuthal grid of the excess probability, 1 + ξ P,
of the projected angles between the direction of the spin of substructures
and their direction relative to the central position of the core (as shown on
average in Fig. 12). The projection is made along the x-axis where the z-
axis is coincident with the direction of the core’s spin. Each row represents a
distance relative to the central core in the mother’s radius units (from bottom
to top): R ∈ [0, 0.4[, R ∈ [0.4, 0.8[, R ∈ [0.8, 1.2[, R ∈ [1.2, 1.6[ and R
∈ [1.6, 2[. Each column represents an angular distance (in degrees) relative
to the direction of the core’s spin (z-axis): φ s ∈ ]0, 36], φ s ∈ [36, 72[, φ s

∈ [72, 108[, φ s ∈ [108, 144[ and φ s ∈ [144, 180[. The isotropic orientation
distribution corresponds to a value of 1. Each sector presents a preferential
direction that depends on its position relative to the spin direction of the
central core. The distributions are computed using 50 samples of 50 000
satellites each. In each sector, the points represents the distribution averaged
over the 50 samples. The error bars represent the 3σ Monte Carlo dispersion
of the distribution over these 50 samples.

explore the evolution of 1 + ξ P with the radial distance relative to
the core’s centre of mass and with the angular distance relative to the
z-axis, i.e. relative to the direction of the core’s spin. The previous
synthetic halo was divided into sectors and, for each sector, 1 + ξ P

can be computed. The sectors are thus defined by their radius (in
the mother’s radius units): R � 0.4, 0.4 < R � 0.8, 0.8 < R � 1.2,
1.2 < R � 1.6 and 1.6 < R � 2; and by their polar angle relative to
the direction of the core’s spin (in degrees): φ s � 36, 36 < φ s � 72,
72 < φ s � 108, 108 < φ s � 144 and 144 < φ s � 180. Each of the
previous Monte Carlo subsamples can also be divided into sectors
in order to compute the dispersion σ for the distributions within the
subsamples. The error bars still represent the 3σ dispersions.

Fig. 14 is a qualitative representation of the results presented in
Fig. 13. Each sector with R � 1 in Fig. 13 is represented by an ellipse
at its actual position. The orientation of the ellipse is given by the
angle of the maximum of the corresponding 1 + ξ P(θ P) function. We
chose to represent the spin’s direction perpendicular to the ellipse’s
major axis. We also chose to scale the ellipse axial ratio with the
signal-to-noise ratio of 1 + ξ P(θ P). Indeed large errors lead to weak
constraints on the spin orientation and the galaxy would be seen as
circular on average. Conversely a strongly constrained orientation
leads to a typical axial ratio of 0.5.

R=0.2
R=0.6

R=1

Figure 14. Geometric configuration of mean satellites around their core
galaxy; each panel of Fig. 13 is represented by an ellipse at its log radius and
angle around the core galaxy. The axial ratio of the ellipses is proportional
to the peak-to-peak amplitude of the corresponding correlation (accounting
for the relative signal-to-noise ratio), while its orientation is given by the
orientation of the maximum of 1 + ξ P.

Two effects seem to emerge from this investigation. For some
sectors, the orthogonal configuration is in excess compared to an
isotropic distribution of satellites’ orientation relative to the radial
vector. This seems to be true especially for radii smaller than the
mother’s radius but the effect is still present at larger distances,
especially near φ s ∼ π/2. Switching from low values to high values
of φ s changes the slope of the 1 + ξ P(θ ) distribution. This may be a
marker of a ‘circular configuration’ of the orientation of satellites.

The existence of a ‘radial’ component in the orientation of the
satellites was expected, both from the unprojected measurements
made in the previous sections and from the global distribution ex-
tracted from the projected data. The fact that the ‘radial’ signature
is stronger around the equatorial plane (72 < φ s < 108 in Fig. 13)
may be further evidence for a filamentary flow of satellites, even in
projection. It seems that the existence of a ‘circular’ component was
mostly hidden in the previous measurements by the dominant sig-
nature of the ‘radial’ flow. Nevertheless, the dominance of ‘circular’
orientations near the poles fits with the picture of a halo surrounded
by satellites with their spin pointing orthogonally to the filament
directions.

The ‘circular’ flow may alternatively be related to the flow of
structures around clusters located at the connection between fila-
ments. There are observations of such configurations (Kitzbichler
& Saurer 2003), where galaxies have their spin pointing along their
direction of accretion, and these observations could be consistent
with our ‘circular’ component.

6 A P P L I C AT I O N S

Let us give here a quick overview of the implications of the previous
measurements for the inner dynamics of the halo down to galactic
scales. In particular, let us see how the self-consistent dynamical
response of the halo propagates anisotropic infall inwards, and then
briefly and qualitatively discuss the implications of anisotropy on
galactic warps, disc thickening and lensing.
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6.1 Linear response of galaxies

In the spirit of Kalnajs (1971) or Tremaine & Weinberg (1984),
for example, we show in Appendix A and elsewhere (Aubert &
Pichon 2004) how to propagate dynamically the perturbation from
the virial radius into the core of the galaxy using a self-consistent
combination of the linearized Boltzmann and Poisson eqnarrays
under the assumption that the mass of the perturbation is small
compared to the mass of the host galaxy. Formally, we have

r (x, t) = R[F,Ω, x, t − τ ](� (Ω, τ )), (32)

where R is a linear operator that depends on the equilibrium state of
the galactic halo (plus disc) characterized by its distribution function
F, and r(x, t) represents the self-consistent response of the inner halo
at time t due to a perturbation � (Ω, τ ) occurring at time τ . Here
� represents formally the perturbed potential on the virial sphere
and the flux density of advected momentum, mass and kinetic en-
ergy at R200. A ‘simple’ expression for R is given in Appendix A
for the self-consistent polarization of the halo. The linear operator,
R, follows from eqnarrays (A6), (A13) and (A16). These eqnarrays
generalize the work of Kalnajs (1971) in that it accounts for a con-
sistent infall of advected quantities at the outer edge of the halo. It
is shown in particular in Appendix A that self-consistency requires
the knowledge of all 10 (scalar, vector and symmetric tensor) fields
� ρ(Ω, τ ), � ρv(Ω, τ ) and �ρσi σ j (Ω, τ ).

When dealing with disc broadening, R could be the velocity or-
thogonal to the plane of the disc, or, for the warp, its amplitude, as a
function of position in the disc, x (or the orientation of each ring if
the warp is described as concentric rings). More generally, it could
correspond to the perturbed distribution function of the disc plus
halo. The whole statistics of R is relevant. The average response
〈r (x, t)〉 can be written as

〈r (x, t)〉 = R〈� (Ω, τ )〉 =
∑
�m

RY m
� (Ω)

〈
am

�

〉
. (33)

Since the accretion is anisotropic, 〈am
� 〉 do not converge towards

zero (see Section 3.4) inducing a non-zero average response. Most
importantly the two-point correlation of the response will tell us
qualitatively what the correlation length and the rms amplitude of the
response will be. For the purpose of this section, and to keep things
simple, we will ignore temporal issues (discussed in Appendix A)
altogether, for both the mean field and the cross-correlations. The
two-point correlation of r(x) then depends linearly on the two-point
correlation of � :

〈r (x) · rT(y)〉 = R〈� (Ω) · � T(Ω′)〉RT, (34)

where T stands for the transposition. Clearly, if the infall, � (Ω), is
anisotropic, the response will be anisotropic. As was discussed in
Section 3.4, when the infall is not isotropic, we have〈∣∣ãm

�

∣∣2〉 �= 〈∣∣α̃m
�

∣∣2〉 = 1

2� + 1

m=�∑
m=−�

〈∣∣α̃m
�

∣∣2〉. (35)

Let us therefore introduce

�R̃m
� ≡ 〈∣∣ãm

�

∣∣2〉− 〈∣∣α̃m
�

∣∣2〉, (36)

which would be identically zero if the field were stationary on the
sphere. Here �R̃m

� represents the anisotropic excess for each har-
monic correlation. In particular, the excess polarization of the re-
sponse induced by the anisotropy reads

�〈r (x) · rT(y)〉 =
∑
�m

RY m
� (Ω)�R̃m

� Y m
� (Ω′)RT. (37)
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Figure 15. The residual anisotropic harmonic power spectra, �R̃m
�

, intro-
duced in equation (36) as a function of m for � = 1, 2, 3, 4. These residuals
will serve as input to the computation of the dynamical response of the halo.

Fig. 15 displays �R̃m
� , for � = 1, 2, 3, 4. The different �R̃m

� clearly
converge towards different non-zero values. Consequently the re-
sponse should reflect the anisotropic nature of the external pertur-
bations.

It is beyond the scope of this paper to pursue the quantitative
exploration of the response of the inner halo to a given anisotropic
infall, since this would require an explicit expression of the response
operator, R, for each dynamical problem investigated.

6.2 Implication for warps, thick discs and lensing

In this paper, the main emphasis is on measured anisotropies. It turns
out that it never exceeds 15 per cent in accretion. For a whole class of
dynamical problems where anisotropy is not the dominant driving
force, it can be ignored at that level. Here we now discuss qual-
itatively the implication of the previous measurements to galactic
warps, thick discs and weak lensing where anisotropy is essential.

6.2.1 Galactic warps

The action of the torque applied on the disc of a galaxy is differ-
ent for different angular and radial positions of the perturbation.
Consequently the warp’s orientation and its amplitude are functions
of the spatial configuration of the external potential. For example,
López-Corredoira et al. (2002) found that the warp’s amplitude due
to an intergalactic flow is dependent on the direction of the incoming
‘beam’ of matter. Having modelled the intergalactic flow applied to
the Milky Way, they found that the warp amplitude rises steeply as
the beam leaves the region coplanar to the disc and this warp am-
plitude reaches a maximum for an inclination of 30 degrees relative
to the disc’s plane. As the beam direction becomes perpendicular
to the galactic plane, the warp amplitude decreases slowly. In this
context, the existence of a typical spatial configuration for the in-
coming intergalactic matter or infalling satellites may induce a kind
of ‘typical’ warp in the disc of galaxies.

The existence of a preferential plane for the accretion of angular
momentum also implies that the recent evolution of the halo’s spin
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has been rather smooth. Bullock et al. (2001) have shown that the
angular momentum tends to remain aligned within haloes. Further-
more, the accretion of matter by haloes is preferentially performed
on plunging radial orbits; thus the inner parts of haloes are aware of
the properties of the recently accreted angular momentum. There-
fore, a disc embedded in the halo would also ‘feel’ this anisotropic
accretion. Ostriker & Binney (1989) have shown that the misalign-
ment of the accreted angular momentum and the disc’s spin forces
the latter to slew the symmetry axis of its inner parts. The warp
line of nodes is also found to be aligned with the axis of the torque
applied to the disc. As stressed by Binney (1992), a non-straight
line of nodes can be associated with changes in the direction of the
accreted angular momentum. Using a sample of 12 galaxies, Briggs
(1990) established rules of thumb for galactic warps, one of them
being that the line of nodes is straight in the inner region of a disc
while it is wound in the outer parts. If the angular momentum is
accreted along a stationary preferential direction, as we suggest,
the warp line of nodes should remain mostly straight. However, if
the accretion plane differs slightly from the disc plane, more than
one direction of accretion become possible (by symmetry around
the vector defining the disc plane) and, as a consequence, different
directions are possible for the torque induced by accreted matter. We
may then consider a varying torque along accretion history, with an
accreted angular momentum ‘precessing’ around the halo’s spin but
close to its direction. In this scenario, the difference in the behaviour
of the warp line of nodes between the inner and outer regions of the
galaxies may be explained.

6.2.2 Galactic disc thickening

Thin galactic discs put serious constraints on merging scenarios,
since their presence implies a fine tuning between the cooling mech-
anisms (e.g. coplanar infall of gas) and the heating processes (merg-
ing of small virialized objects, deflection of spirals on molecular
clouds). It has been shown that small mergers can produce a thick
disc (e.g. Quinn, Hernquist & Fullagar 1993; Walker, Mihos &
Hernquist 1996). However, the presence of old stars within the thin
disc cannot be explained in the framework of the merging scenario
unless a fraction of the accretion took place within the equatorial
plane of the galaxy. Furthermore, the geometric characteristic of
the infall is essential in the formation process of a thick disc. In
Velazquez & White (1999), numerical simulations of interactions
between galactic discs and infalling satellites show that the heat-
ing and thickening is more efficient for coplanar satellites. They
also stressed the differences between the effect of prograde or ret-
rograde orbits of infalling satellites (relative to the rotation of the
disc): prograde orbits induce disc heating while retrograde orbits in-
duce disc tilting. Our results indicate that the infall is preferentially
prograde and coplanar relative to the halo’s spin: if we consider an
alignment between the halo’s spin and the galaxy’s angular momen-
tum, the thickening process may be more efficient than that expected
in an isotropic configuration of infalling matter. Furthermore, our
estimate of the fraction of coplanar accretion at the virial scale may
be considered as a lower bound near the disc since the presence of a
disc will focus the infall closer to the galactic plane. In fact, Huang
& Carlberg (1997) found that the disc tends to tilt towards the orbital
plane of infalling prograde low-density satellites. This effect would
also contribute to enhance the excess of coplanar accretion down to
galactic scales.

However, the nature of infalling virialized objects was shown to
affect their ability to heat or destroy the disc. Huang & Carlberg

(1997) found that the presence of low-density satellites should in-
duce preferentially a tilting of the disc instead of a thickening: one
needs to enhance the relative mass of the satellite (∼30 per cent of
the disc mass) to produce an observable thickening in the inner parts
of the galaxy. Unfortunately such a massive satellite has a destruc-
tive impact on the outer parts of the disc. The relationship between
the excess of accretion and the satellite mass should be constrained
but our limited mass resolution prevents us from performing such a
quantitative analysis. We should therefore aim at achieving higher
angular resolution of the virial sphere and higher mass resolution in
order to describe rather compact virialized objects.

6.2.3 Gravitational lensing

The first detection of cosmic shear was reported by four different
groups in 2000 (Bacon, Refregier & Ellis 2000; Kaiser, Wilson &
Luppino 2000; Van Waerbeke et al. 2000; Wittman et al. 2000). One
of the basic assumptions made by cosmic shear studies is that the
intrinsic ellipticities of galaxies are expected to be uncorrelated, and
that the observed correlations are the results of gravitational lensing
induced by the large-scale structures between those galaxies and
the observer. Hence, the detection of a weak lensing signal assumes
a gravitationally induced departure from a random distribution of
galactic shapes. Consequently, if there exists intrinsic alignments or
preferential patterns in galactic orientations, this would potentially
affect the interpretation from weak lensing measurements. Several
papers have already considered the ‘contamination’ of the weak
lensing signal by intrinsic galactic alignment. Using analytic argu-
ments, Catelan, Kamionkowski & Blandford (2001) have shown
that such alignments should exist. The issue of the amplitude of
the intrinsic correlations compared to the correlation induced by the
cosmic shear has also been explored by Croft & Metzler (2000) and
Heavens et al. (2000). The ‘intrinsic’ correlations may overcome
the shear-induced signal in surveys with a narrow redshift range.
We have shown that the orientation of satellites around haloes is
not randomly distributed, which is a clear indication of intrinsic
correlations for our considered scales (∼500 kpc). Taking zm = 1
as a typical median redshift for large lensing surveys, the corre-
sponding angular scale is 1 arcmin in the cosmogony of our simula-
tions. Furthermore, the prospect of studying the redshift evolution
of gravitational clustering via shear measurements will require the
investigation of narrower redshift bins and, as such, small-scale
dynamically induced polarization might become an issue. As rec-
ommended by Catelan et al. (2001), our measurement may also be
used as a ‘numerical’ calibration of the relation between elliptic-
ity and tidal fields. Interestingly, they suggested to compensate for
the finite number of galaxies around clusters by ‘stacking’ several
clusters, which is precisely the procedure we followed to extract sig-
nal from our simulations. Finally, weak lensing predicts no ‘curl’
component in the shear field (e.g. Pen, Lee & Seljak 2000) and such
‘curl’ configurations would serve to extract the intrinsic signal. Even
though satellites exhibit both ‘circular’ and ‘radial’ configurations
in our simulations, we do not observe a clear signature of a ‘curl’
component of orientations at our level of detection.

7 C O N C L U S I O N A N D P RO S P E C T S

7.1 Conclusion

Using a set of 500 �CDM simulations, we investigated the proper-
ties of the spatial configuration of the cosmic infall of dark matter
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around galactic ≈L� haloes. The aim of the present work was to find
out if the existence of preferential directions existing on large scales
(such as filaments) is reflected in the behaviour of matter accreted
by haloes, and the answer is a clear quantitative yes.

Two important assumptions were made in the present paper. We
did not consider different classes of halo mass (except for Fig. D2),
but instead applied normalizations to includes all haloes in our mea-
surements (considering, for example, the statistical average of con-
trasts). We also did not take into account outflows and focused on
accreted quantities.

First we looked at the angular distribution of matter at the interface
between the intergalactic medium and the inner regions of the haloes.
We measured the accreted mass and the accreted angular momentum
at the virial radius, describing these quantities as spherical fields.

(i) The total (respectively, advected) angular momentum mea-
sured at the virial radius is strongly aligned with the inner spin of
the halo with a proportion of aligned configuration 30 per cent (re-
spectively, 50 per cent) more frequent than expected in an isotropic
distribution of accreted angular momentum [1 + ξ LS(0) ∼ 1.5]. This
result reflects the importance of accreted angular momentum in the
building of the inner spin of the haloes.

(ii) The accretion of mass measured at the virial radius in the
ring-like region perpendicular to the direction of the halo’s spin is
∼15 per cent larger than the one expected in the case of an isotropic
infall of matter. We also detected the excess of accretion at the same
level in the equatorial plane using a spherical harmonic expansion
of the mass density flux.

(iii) In the spin’s frame, the average of the harmonic a�0 coef-
ficients does not converge towards zero, indicating that there is a
systematic accretion structured in rings parallel to the equatorial
plane. Using the substructure detection code ADAPTAHOP, we con-
firmed that the existence of a preferential plane for the infalling mass
is reflected in the distribution of satellites around haloes.

(iv) Investigating the degree of alignment between the orbital
momentum of satellites and the central spin of the halo, it is shown
that the aligned configuration is present in excess of ∼12 per cent.
Satellites tend to revolve in the plane orthogonal to the direction of
the halo’s spin. The two methods (using spherical fields and detec-
tion of satellites) yield consistent results and suggest that the image
of a spherical infall on haloes should be reconsidered at the quoted
level. We studied the distribution of the angle between the direction
of accretion of satellites and their own spin.

(v) An orthogonal configuration is 5 per cent more frequent than
would be expected for an isotropic distribution of spin and directions
of accretion. Satellites tend to be accreted in the direction orthog-
onal to their own spin. These findings are interpreted as the results
of the filamentary flows of structures, where satellites and haloes
are accreted along the main direction of filaments with their spins
orthogonal to this preferential direction. The flow along filaments
also explains why matter is accreted preferentially in the equatorial
plane at the virial radius. The halo points its spin perpendicular to
the flow and sees a larger flux in the regions normal to the flow
direction, i.e. near the equator. Thus, it appears that the existence
of preferential directions on large scales is still relevant on galac-
tic scales and should have consequences for the inner dynamics of
the halo. We addressed the issue of observing these alignments in
projection.

(vi) The distribution of satellites projected on to the sky is flat-
tened, with an axial ratio of 1.1 at the virial radius.

(vii) It seems that the orientation of satellites around their haloes
is not random, even if the 2D representation dilutes the effects of

Table 1. Summary of the fitting parametersa for the angular correlations.

Angle a1 a2 a3 a4

θ ρL 2.351 ± 0.006 −0.178 ± 0.002 1.343 ± 0.002 0.669 ± 0.000
θ ρvrL 3.370 ± 0.099 −0.884 ± 0.037 1.285 ± 0.016 0.728 ± 0.001
θ cs 0.399 ± 0.003 0.059 ± 0.008 0.881 ± 0.005 0.938 ± 0.000
θ vs 0.295 ± 0.004 1.544 ± 0.001 0.804 ± 0.005 0.914 ± 0.001
θ P 0.099 ± 0.003 1.548 ± 0.003 0.825 ± 0.013 0.973 ± 0.000

Note. aHere θ ρL is the angle between the halo’s spin and the angular
momentum measured on the virial sphere; θ ρvrL is the angle between the
halo’s spin and the accreted angular momentum measured on the virial
sphere; θ cs is the angle between the core’s spin and the satellite’s orbital
momentum; θ vs is the angle between the satellite’s velocity in the core’s
rest frame and the satellite’s spin; θ P is the projected angle between the
satellite’s spin and its direction relative to the core’s position. The fitting
model we used is 1 + ξ (θ ) = [a1/(

√
2πa3)] exp[−(θ − a2)2/(2a2

3 )] + a4.

Table 2. Summary of other quantitiesa related to anisotropic
accretion.

〈δm〉(z) 0.0161(± 0.0103)z + 0.147(± 0.005)
S3(δm) 0.44
ε(Rm) 0.1
ã20 −0.65 ± 0.04
ã40 0.12 ± 0.02
ã60 −0.054 ± 0.015
ã80 0.0145 ± 0.0014

Note. aHere 〈δm〉(z) is the redshift evolution of the average
excess of accretion in the plane orthogonal to the direction
of the spin; S3(δm) is the skewness of the distribution of
excess of accretion; ε(Rm) is the axial ratio a/b − 1 with
a > b of the projected satellite distribution; and ã20, ã40, ã60

and ã80 are the normalized harmonic coefficients of the
‘equatorial’ modes.

alignments. The ‘radial’ orientation, where the satellites main axis is
aligned with the line joining the satellite to the halo centre, is ∼5 per
cent more frequent than the one expected in a completely random
distribution of orientation. The ‘circular’ configuration, where the
satellites main axis is perpendicular to the line joining the satellite
to the halo centre, is also present in excess compared to a random
distribution near the pole of the host galaxy.

All corresponding fits are summarized in Tables 1 and 2, while
Fig. 16 gives a schematic view of the measurements we carried out.

We investigated how the self-consistent dynamical response of
the halo would propagate anisotropic infall down to galactic scales.
In particular, we gave the corresponding polarization operator in
the context of an open system. We have shown in Appendix A that
accounting for dark matter infall required knowledge of the first
three moments of the flux densities, � ρ(Ω, τ ), � ρv(Ω, τ ) and
�ρσi σ j (Ω, τ ).

It is suggested that the existence of a preferential plane of ac-
cretion of matter, and thus of angular momentum, should have an
influence on warp generation and disc thickening. If the anisotropic
properties of infalling matter measured in the outer parts of haloes
are conserved in the inner region of galaxies, there may exist a ‘typ-
ical’ warp amplitude and this anisotropic accretion of matter may
explain the properties of warp line of nodes. In the same spirit, the
efficiency of the thickening of the disc may be enhanced or reduced
by equatorial accretion. Finally, our finding of intrinsic alignments
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Figure 16. A schematic representation of all estimates of anisotropic accretion considered in this paper. (1) We measured the distribution of the angle between
the orbital momentum on the virial sphere and the halo’s spin. The average orbital momentum measured on the virial sphere is mostly aligned with the spin
of the halo embedded in the virial sphere (discussed in Section 3.2). (2) We compared the accretion in the plane orthogonal to the direction of the halo’s spin
with the average accretion on the sphere. On the virial sphere, we detected an excess of ring-like or harmonic accretion in the equatorial plane (discussed in
Sections 3.3 and 3.4). (3) In projection, we used a ‘synthetic’ halo to look at the distribution of satellites detected with ADAPTAHOP and at the orientation of their
spin around the direction of the spin. In projection, satellites lie preferentially in the projected equatorial plane (discussed in Section 5.1). (4) We measured
the angle between the halo’s spin and the orbital momentum of each satellite. The orbital momentum of satellites is preferentially aligned with the spin of
their hosting core (discussed in Section 4.1). (5) We compared the orientation of each satellite velocity vector (in the core’s rest frame) with the orientation
of their own spin. The velocity vector of satellites (in the core’s rest frame) is orthogonal to the direction of their spin (discussed in Section 4.2). (6) In the
equatorial plane, the projected orientation of satellites is more ‘radial’, while near the direction of the spin a ‘circular’ configuration of orientation seems to
emerge (discussed in Section 5.2).

on small scales as well as specific orientations of structures should
be relevant for cosmic shear studies on wide and shallow surveys.

7.2 Prospects

The main purpose of our investigation was to provide quantitative
measurements of the level of anisotropy involved in the infall on
scales ∼500 kpc. The next step should clearly involve working out
quantitatively their implications for warp, disc heating, etc., as dis-
cussed in Section 6.

Our measurements were carried out at R200, which on galactic
scales is a long way from the inner region of the galaxy. One should
clearly propagate the infall (and its anisotropy) towards the centre
of the galaxy, and more radial infalling components will play a more
important role and should be weighted accordingly. It should also
be stressed that we did not take into account the extra polarization
induced by the presence of an embedded disc, which will undoubt-
edly reinforce the polarization and the anisotropy of the infall. We
also concentrated on mass accretion, as the lowest-order moment
of the underlying ‘fluid’ dynamics. Clearly higher moments involv-
ing the anisotropically accreted momentum, the kinetic energy, etc.,
are dynamically relevant for the evolution of the central object as
is discussed in Section 6 and in the Appendix. The time evolution

of the statistics of these flux densities is also essential for the in-
ner dynamics of the halo and should be addressed systematically
as well. It will be worth while to explore different cosmologies and
their implications on small-scale dynamics, and on the characteris-
tics of infalling clumps, though we hope that the qualitative results
sketched here should persist.

It should be emphasized that some aspects of the present work
are exploratory only, in that the resolution achieved (M halo > 5 ×
1012 M�) is somewhat high for L � galaxies. In fact, it would be
interesting to see if the properties of infall changes for lower mass
(M halo < 5 × 1010 M�) together with the intrinsic properties of
galaxies. In addition, a systematic study of biases induced by the es-
timators of angular correlations should be conducted, e.g. the mass-
weighted errors we introduced in Section 3.2.

Observationally, the synthetic halo described in Section 5.1 could
be compared to stacked satellite distributions relying on galactic
surveys such as the SDSS. Once the anisotropy has been propa-
gated to the inner regions of the galactic halo following the method
sketched in Section 6, we should be in a position to compile a syn-
thetic edge-on galactic disc and compare the flaring of the disc with
the corresponding predictions. The residual preferred orientation of
galactic discs around more massive objects discussed in Section 5.2
should be observed on the scales �500 kpc.
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Using larger simulations will allow us to combine high resolu-
tion with the statistics required to detect the anisotropic accretion of
mass and angular momentum. A wide range of halo masses will be-
come accessible and the halo mass dependence of our findings will
be constrained without suffering from the lack of statistics. Better
angle determinations will naturally follow from a better resolution
and will improve the accuracy of our quantitative results. Resimu-
lations (zoom simulations) should give access to a larger range of
satellite masses, while we were here mostly sensitive to the biggest
substructures. Large infalling objects are likely to feel differently the
effects of tidal forces or dynamical friction than smaller satellites.
Resimulated haloes allow us to investigate the dependence on the
spatial distribution of satellites with their masses corresponding to
a given cosmological environment. However, using only a few res-
imulations may not be sufficient to overcome cosmic variance and,
given the difficulty to produce a large number of high-resolution
haloes, such a project remains challenging.

The inclusion of gas physics in these simulations and their im-
pact on the results is the natural following step. For example, gas
filaments are known to be narrower than dark matter filaments, thus
we would expect to see a higher level of anisotropy in the distri-
bution of gas accreted by the haloes. Furthermore, the transmission
of angular momentum from one parcel of gas to another (or to the
underlying dark matter) may be highly effective and would lead
to higher homogeneity of the properties of the accreted angular
momentum direction, enhancing the effect of spin alignments. The
loss of angular momentum from the gas to the halo will lead to a
modification of our pure dark matter findings. Yet, the inclusion of
gas physics in simulations would force us to address issues such as
overcooling, and the requirement to take star formation and related
feedback processes into account. It remains that, in the longer term,
the inclusion of gas physics cannot be avoided and will give new
insights into the anisotropic accretion of matter by haloes.
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López-Corredoira M., Betancort-Rijo J., Beckman J. E., 2002, A&A, 386,

169
Monaghan J. J., 1992, ARA&A, 30, 543
Murali C., 1999, ApJ, 519, 580
Ostriker E. C., Binney J. J., 1989, MNRAS, 237, 785
Peirani S., Mohayaee R., De Freitas Pacheco J. A., 2004, MNRAS, 348, 921
Pen U., Lee J., Seljak U., 2000, ApJ, 543, L107
Pichon C., Bernardeau F., 1999, A&A, 343, 663
Plionis M., Basilakos S., 2002, MNRAS, 329, L47
Press W. H., Schechter P., 1974, ApJ, 187, 425
Quinn P. J., Hernquist L., Fullagar D. P., 1993, ApJ, 403, 74
Springel V., 1999, PhD thesis Ludwig-Maximilians Univ.
Springel V., White S. D. M., Tormen G., Kauffmann G., 2001a, MNRAS,

328, 726
Springel V., Yoshida N., White S. D. M., 2001b, New Astron., 6, 79
Tormen G., 1997, MNRAS, 290, 411
Tremaine S., Weinberg M. D., 1984, MNRAS, 209, 729
van Haarlem M., van de Weygaert R., 1993, ApJ, 418, 544
Van Waerbeke L. et al., 2000, A&A, 358, 30
Varshalovich D. A., Moskalev A. N., Khersonskii V. K., 1988, Quantum

Theory of Angular Momentum. World Scientific, Singapore
Velazquez H., White S. D. M., 1999, MNRAS, 304, 254
Vitvitska M., Klypin A. A., Kravtsov A. V., Wechsler R. H., Primack J. R.,

Bullock J. S., 2002, ApJ, 581, 799
Walker I. R., Mihos J. C., Hernquist L., 1996, ApJ, 460, 121
West M. J., 1994, MNRAS, 268, 79
Wittman D. M., Tyson J. A., Kirkman D., Dell’Antonio I., Bernstein G.,

2000, Nat, 405, 143
Zaritsky D., Smith R., Frenk C. S., White S. D. M., 1997, ApJ, 478, L53

A P P E N D I X A : L I N E A R R E S P O N S E O F A
S P H E R I C A L H A L O TO I N FA L L I N G DA R K
M AT T E R F L U X E S

In the following section, we extend to open spherical stellar sys-
tems the formalism developed by Tremaine & Weinberg (1984) and
Murali (1999) by adding a source term to the collisionless
Boltzmann eqnarray.2 For an open system, the dark matter dynamics
within the R200 sphere is governed by the collisionless Boltzmann
equation coupled with the Poisson eqnarray:

dF

dt
≡ ∂F

∂t
+ {F, H} = se(r ,v, t), and

∇2� = 4πG

∫
d3vF(v), (A1)

2 This is formally equivalent to summing the response of the halo to a point-
like particle for all entering particles.
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where { } is the standard Poisson bracket, F(r, v, t) is the system’s
distribution function (DF) submitted to �(r, t), the total gravita-
tional potential (self-gravity plus external perturbation). The right-
hand side of (A1) is non-zero because of infalling fluxes from the
environment, which require adding a source term, se(r , v, t), to the
Vlazov eqnarray. We may now discriminate between a stationary
part corresponding to the unperturbed state from a weak time-
dependent perturbation induced by the environment. Thus the DF
can be written as F = F 0 + f . Provided the mass of the incoming
flux of dark matter is small compared to the mass of the halo, we may
assume that f is small compared to F 0. Similarly, the Hamiltonian
H of the system can be expanded as H 0 + �H , with �H = ψ e +
ψ where ψ e and ψ stand respectively for the external perturbative
potential and for the small response in potential of the open system.

A1 The Boltzmann equation in action–angle

Given the periodicity of the system, the most adequate represen-
tation of a spherical halo corresponds to action–angle variables
(Goldstein 1950). The linearized Boltzmann equation in such a rep-
resentation is
∂ fk(I, t)

∂t
+ ik · ω fk(I, t) = ik · dF0

dI
�Hk(I, t) + se

k (I, t). (A2)

The new variables are the actions I and the angles w together with
the angular rates ω ≡ d w/dt . In equation (A2) we have Fourier-
expanded the linearized equation (A1) over the periodic angles:

X (r ,v, t) =
∑

k

Xk(I, t) exp (ik · w), with

Xk(I, t) = 1

(2π)3

∫
d3w exp(−ik · w)X (r ,v, t), (A3)

where X is any function of (r, v, t) with k being the Fourier triple
index corresponding to the three degrees of freedom on the sphere.
The equilibrium state F 0 does not depend on time or angles since it
is assumed to be stationary. Then the solution to (A2) can be written
as

fk(I, t) =
∫ t

−∞
dτ exp[ik · Ω(τ − t)]

×
[

ik · dF0

dI

[
ψk(I, τ ) + ψe

k (I, τ )
]+ se

k (I, τ )

]
, (A4)

where we have written �H k(I, τ ) = ψ k(I, τ ) + ψ e
k(I, τ ). We can

integrate (A4) over velocities and sum over k to recover the density
perturbation:

ρ(r , t) =
∑

k

∫ t

−∞
dτ

∫
d3v

{
exp[ik · ω(τ − t) + ik·w]

×
[

ik · dF0

dI

[
ψk(I, τ ) + ψe

k (I, τ )
]+ se

k (I, τ )

]}
.

(A5)

Let us expand the potential and the density over a biorthogonal
complete basis function {ψ [n], ρ[n]} such that

ψ(r , t) =
∑

n

an(t)ψ [n](r );

ρ(r , t) =
∑

n

an(t)ρ[n](r );

∇2ψ [n] = 4πGρ[n];∫
d3rψ [n]∗(r )ρ[p](r ) = δn

p. (A6)

The external potential can be expanded along the same basis as

ψe(r , t) =
∑

n

bn(t)ψ [n](r ). (A7)

Note that in equation (A6) the expansion runs over a triple index
n ≡ (n, �, m) corresponding to the radial, azimuthal and altazimuthal
degrees of freedom, while in equation (A6) the three coefficients are
not independent since the radial variation of the external potential
is fixed by its boundary value on the sphere R200. Making use of the
biorthogonality, multiplying (A5) by ψ [p]∗(r ) for some given p and
integrating over R yields

ap(t) =
∑

k

∫ t

−∞
dτ

∫ ∫
d3vd3r exp[ik · ω(τ − t) + ik·w]ψ [p]∗(r )

×
[∑

n

ik · dF0

dI
[an(τ ) + bn(τ )] ψ

[n]
k (I) + se

k (I, τ )

]
.

(A8)

A2 Self-consistency of the response

We may now swap from position–velocity to angle–action variables
since d3v d3r = d3w d3 I. In (A8) only ψ [p](r ) depends on w so we
may carry the w integration over ψ [p]∗, yielding ψ [p]∗k(I), which
leads to

ap(t) =
∑

k

∫ t

−∞
dτ

∫
d3 I exp[ik · ω(τ − t)]

×
[∑

n

ik · dF0

dI
[an(τ ) + bn(τ )] ψ

[p]∗
k (I)ψ [n]

k (I)

+ se
k (I, τ )ψ [p]∗

k (I)

]
.

(A9)

Note that the last term of equation (A9) corresponds to the modu-
lated potential along the unperturbed trajectories weighted by the
number of particles entering with (v, Ω) at time τ . This is expected
since it just reflects the fact that we could have linearly summed over
all incoming individual particles (since the interaction between par-
ticles in a collisionless fluid is purely gravitational). In this sense,
this term corresponds to a ray tracing problem in a variable index
medium. Note also that equation (A9) does not account for dynam-
ical friction since we integrate over the unperturbed trajectories. At
this point, we expand the source term over a complete basis; this
basis should also describe (known) velocity space variations. We
assume that such a basis φ[n](r , v) exists. We write

se(r ,v, t) =
∑

n

cn(t)φ[n](r ,v) so se
k(I, τ )

=
∑

n

cn(τ )σ [n]e
k (I) where σ

[n]e
k (I)

≡ 1

(2π)3

∫
d3wexp(−ik·w)φ[n](r ,v). (A10)

Calling a(τ ) = [a1(τ ), . . . , an(τ )], b(τ ) = [b1(τ ), . . . , bn(τ )], c(τ ) =
[c1(τ ), . . . , cn(τ )] and �(τ ) the Heaviside function, we define two
tensors:

K pn(τ ) = [1 − �(τ )]

×
∑

k

∫
d3 I exp(ik · ωτ )ik · dF0

dI
ψ

[p]∗
k (I)ψ [n]

k (I),

(A11)
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which depends only on the halo equilibrium state via F 0, and

Hpn(τ ) = [1 − �(τ )]

×
∑

k

∫
d3 I exp(ik · ωτ )σ [n]e

k (I)ψ [p]∗
k (I), (A12)

which depends only on the expansion basis. Then equation (A9)
becomes

a(t) =
∫ ∞

−∞
dτ {K (τ − t) · [a(τ ) + b(τ )] + H(τ − t) ·c (τ )}.

(A13)

We now perform a Fourier transform with respect to time. Hence
convolutions become multiplications and we get

â(p) = [I − K̂ (p)]−1 · [K̂ (p) · b̂(p) + Ĥ(p) · ĉ(p)], (A14)

where p stands for the frequency conjugate to time. The computation
of the variance–covariance matrix is straightforward:

〈â · â∗T〉 =
〈(I − K̂ )−1 · [K̂ · b̂ + Ĥ · ĉ] · [K̂ · b̂ + Ĥ · ĉ]T∗ · (I − K̂ )−1∗T〉,

(A15)

where I is the identity matrix. Note that 〈â · â∗T〉 involves autocorre-
lation like 〈b̂ · b̂

∗T〉 and 〈ĉ · ĉ∗T〉 but also cross-correlation terms such
as 〈b̂ · ĉ∗T〉. In other words, recalling that b and c stand respectively
for the expansion coefficients of the external potential, equation
(A7), and the parametrized velocity distribution, equation (A10),
their cross-correlation will modify the correlation of the response
of the inner halo. Two-point statistics are sufficient to characterize
stationary perturbations and therefore the induced response. Nev-
ertheless, higher statistics of the response can be easily expressed
in terms of higher-order correlations of the perturbation if needed.
For example, it can be shown that the three-point correlation func-
tion of the response’s coefficients can be written as a function of
the two- and three-point correlation of the perturbation coefficients.
There are still quite a few caveats involved; for instance, it is not
completely clear today that we have a good understanding of what
the unperturbed distribution function of a halo plus disc should be.

A3 The source term

A possible choice3 for the source term consistent with the first
two velocity moments of the entering matter involves constructing
se(r , v, t) in the following manner:

se(r ,v, t) =
∑

m

Ym(Ω)
δD(r − R200)�̂ρ,m(t)(2π)−3/2

det|�̂ρσi σ j ,m(t)/�̂ρ,m(t)|

× exp

[
−1

2

(
v− �̂ρv,m(t)

�̂ρ,m(t)

)T

×
(
�̂ρσi σ j ,m(t)

�̂ρ,m(t)

)−1(
v− �̂ρv,m(t)

�̂ρ,m(t)

)]
≡
∑

m

Ym(Ω)δD(r − R200)Cm(v, t), (A16)

where m stands for the two harmonic numbers, (�, m) and Y m(Ω) ≡
Y m

� (Ω). Here the Dirac function δD(r − R200) is introduced since
we measure the source terms at the virial radius. The global form is
Gaussian and is constructed using �̂ρ,m, �̂ρv,m, �̂ρσi σ j ,m, the har-

3 An alternative choice is made in Aubert & Pichon (2004) to account for
the bimodality of the velocity distribution.

monic components of respectively the mass flux density field, ve-
locity flux density vector field and the specific kinetic energy flux
density tensor field measured on the R200 sphere. When taking the
successive moments of this flux distribution over velocity, we get∫

d3vse(r ,v) = �ρ(r ),∫
d3vvse(r ,v) = �ρv(r ), (A17)

while∫
d3v

(
vi − �ρv,i

�ρ

)(
v j − �ρv, j

�ρ

)
se(r ,v)

= �ρσi σ j (r ) +
[∑

m

Ym(Ω)δ(r − R200)
�̂ρv,m(t)2

�̂ρ,m(t)
− �ρv(r )2

�ρ(r )

]
≈ �ρσi σ j (r ), (A18)

so that the Ansatz, equation (A16), satisfies the first two moments,
and approximately the third moment of the fluid eqnarrays. Let us
now expand Cm(v, t) over a linear complete basis, say b-splines
covering the radial velocity component and spherical harmonics for
the angle distribution of the velocity vector:

Cm(v, t) =
∑

α

Cm,α(t)bα(v). (A19)

The particular choice of equation (A16) has led to the parametriza-
tion

cn(t) = Cm,α(t) and

φ[n](r ,v) = bα(v)Ym(Ω)δD(r − R200), (A20)

while equation (A10) becomes

σ
[n]e
k (I) = 1

(2π)3

∫
d3wexp(−ik · w)Ym[Ω(I,w)]bα

×(v[I,w])δD(r (I,w) − R200). (A21)

Note that we can make use of the δD function occurring in equa-
tion (A21) since wr ≡ w̃r (r , I). Therefore equation (A21) reads:

σ
[n]e
k (I) =

∫
d2w

(2π)3

∫
dwr exp(−ik · w)Ym[Ω(I,w)]bα

× (v[I,w])
1

|∂w̃r/∂r |−1
δD(wr − w̃r [R200, I]),

=
∫

d2w

(2π)3
exp(−ik · w)Ym[Ω(I,w, w̃r [R200, I])]bα

× (v[I,w, w̃r (R200, I)])
ωr (I)

|ṙ (R200, I)|
× exp(−ikr · w̃r [R200, I]). (A22)

In equation (A22) we sum over all intersections of the orbit I with
the R200 sphere, at the radial phase corresponding to that intersection
(with a weight corresponding to ωr/|ṙ |).

Given eqnarrays (A6), (A16) and (A22), equation (A13) can be
recast formally as

ρ(r , t) = R{F0, t, τ,Ω}
× [ψe(Ω, τ ), �ρ(Ω, τ ), �ρv(Ω, τ ), �ρσi σ j (Ω, τ )],

(A23)

which corresponds to the form given in the main text in equa-
tion (32). It should be emphasized once again that the splitting of
the gravitational field into two components, one outside of R200, and
one inside, via point particles obeying the distribution s e(r , v, t) is
completely arbitrary from the point of view of the dynamics. In fact,
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one should account that ψ e(Ω, t) should be switched on long before
any particles enter R200 since no particle is created at the boundary.
This last constraint is clearly satisfied by our simulations.

A P P E N D I X B : A D A P TA H O P : A
S U B S T RU C T U R E F I N D E R BA S E D O N
S A D D L E P O I N T H A N D L I N G

Dark matter haloes can contain a hierarchy of subhaloes, which
can be viewed as a tree of structures and substructures. Given a
mass resolution (a finite number of particles such as in our N-body
simulations), there is a limit to this hierarchy, which can be formal-
ized as an ensemble of leaves in a tree. The goal here is to draw
this tree by applying the simplest principles of Morse theory (e.g.
Jost 2002). Morse theory basically involves relating the topology of
an excursion, e.g. the regions of space with density above a given
threshold, ρ >ρ t, to the set of critical points it contains, {x, ∇ρ(x) =
0}, and to the field lines connecting these points together, i.e. the
curves obtained by following the gradient of the density field. In
that approach, the smallest substructures, which are the leaves of
the tree, can be identified as peak patches, i.e. ensembles of field
lines converging to the same local maximum. The connectivity be-
tween substructures is ruled by the saddle points, which are local
maxima in the surfaces defining the contours of the peak patches:
from the knowledge of these saddle points and the local maxima they
connect, it is possible to extract the full tree of structures (haloes)
and substructures (subhaloes) in four steps:

(i) In order to eliminate, at least partly, the effects of Poisson noise
and to have an estimate of the local density as close as possible to
a Morse function,4 while conserving as much as possible details of
the distribution, we perform adaptive smoothing of this distribution
with the standard SPH technique (smooth particle hydrodynamics,
e.g. Monaghan 1992). This smoothing assumes that each particle is a
smooth spherical cloud of given radius R, e.g. a spline S(r). For each
particle, the list of its N SPH closest neighbours is found, typically
N SPH of a few tens (here we take N SPH = 64). The distance from the
furthest neighbour fixes R, while the SPH density at the particle of
interest is estimated by a summation over its neighbours with weight
S(r). To find rapidly the closest neighbours of each particle, we
use a standard Oct-tree algorithm, which decomposes hierarchically
space in subcells until they contain zero or one particle.

(ii) The leaves of the tree of structures and substructures are iden-
tified while associating each particle to the peak patch to which it
belongs. This is performed by a simple walk from particle to parti-
cle, while following the gradient until convergence: at each step of
the walk, the SPH density of the particle is compared to its N HOP

closest neighbours (which were stored during the SPH smoothing
step), the particle for the next step of the walk being the one with the
largest SPH density. We take N HOP = 16, as advocated by Eisenstein
& Hut (1998).

(iii) For each leaf of the tree, the connections with the other leaves
are created by searching the saddle points on the intersecting sur-
faces Si j between peak patches i and j. Each surface Si j is made of
particles belonging to one of the peak patches and having at least
one of their closest neighbours among N HOP in the other peak patch,
and vice versa. If the set Si j contains only particles belonging to i or
only particles belonging to j, the connection between i and j is con-
sidered as non-significant (because non-symmetric) and eliminated.

4 That is, a smooth function such that the ensemble of critical points is
discrete and the matrix of second derivatives in their neighbourhood is non-
degenerate.

Saddle points are local maxima in Si j . To establish the connectivity
as a function of a density threshold, only the highest saddle point
matters, when there are several. The search for this saddle point
involves finding the maximum of the SPH density among parti-
cles belonging to Sij. We proceed as follows to estimate accurately
the SPH density in Sij. For each particle A in Sij, say belonging to
peak patch i and with density ρ A, we consider the list of its closest
neighbours among N HOP belonging to peak patch j, with density ρ k ,
k = 1, . . . , Nj � N HOP. The density associated to this particle in
Si j is then given by ρ = min(ρ A, ρ k). By applying this procedure,
we locate accurately Sij and avoid slight overestimation of the SPH
density at the saddle point.

(iv) It is possible to build the tree of structures and substruc-
tures when the list of neighbouring leaves to which a given leaf
is connected is given, as well as the corresponding saddle points.
This is performed recursively by increasing progressively a thresh-
old parameter, ρ t, from an initial value, ρTH, corresponding to the
typical overdensity used to select galaxy haloes, here called struc-
tures. A typical choice for ρTH is ρTH = 81, which corresponds
approximately to friends-of-friends haloes selected with a linking
parameter b = 0.2 (e.g. Eisenstein & Hut 1998). Suppose we are at
step n of the process and let us compute step n + 1. At this point,
we are sitting on a branch of the tree – a structure or a substructure
– and we aim to draw the details of this branch. This (sub)structure
contains a number of peak patches connected by saddle points of
densities ρ s. For the considered value of ρ t, the connections inside
that (sub)structure are examined and destroyed when ρ s < ρ t. The
(sub)structure is then broken into as many components as neces-
sary. During the process, the particles above ρ t belonging to each
subcomponent are tagged, which allows us to determine at any time
various properties of a given (sub)structure, namely the number of
particles it contains, its mass, its average and maximum SPH den-
sity, for possible application to various morphological criteria of
selection. One such criterion is Poisson noise. In order to assess if
a given substructure containing N particles should be considered
as statistically significant compared to Poisson noise, its average
density must be sufficiently significant compared to ρ t:

〈ρ〉substructure > ρt

(
1 + fPoisson√

N

)
, (B1)

where f Poisson is a ‘ f Poissonσ ’ detection parameter, typically a few
units. A good choice is f Poisson = 4. If the substructure is below
this threshold, it disappears, i.e. it is not considered in the next
step of the recursion. At the end of the selection, two situations are
possible: (i) two substructures or more are detected and new nodes
are created in the tree; (ii) the (sub)structure was not broken into
multiple components and nothing happens at this step. The process
is then repeated on the new substructures by increasing locally the
threshold ρ t:

ρt → ρt

(
1 + fPoisson√

N

)
, (B2)

until there is only one peak patch in the (sub)structure. Note that the
Poisson noise selection, equation (B1) is not applied to the haloes
when ρ t = ρTH.

At the end of the process, one obtains a tree of structures and sub-
structures, each node of the tree corresponding to a (sub)structure,
with its position, its number of particles, its mean square radius,
its average and maximum SPH density, and the density ρ s of the
highest saddle point that connects it to another substructure. In ad-
dition, a flag is given to each particle. This flag is a pointer to the
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closest possible node to a leaf (if not a leaf), which allows one to
find recursively the list of particles belonging to any (sub)structure
and thus perform some more elaborate post-treatment, such as some
relying on dynamical prescriptions (boundedness). The difficulty in
that case is to estimate accurately the gravitational potential. Its
computation can be rather costly, since ‘peeling’ the (sub)haloes
requires iterating several forward and backward walks in the tree of
structures and substructures with corresponding calculations of the
gravitational potential. Our prescription is therefore at the present
time purely morphological and does not involve the estimate of the
gravitational potential. The current implementation is rather fast,
most of the CPU time being taken by the SPH smoothing, e.g. 1–3 h
on 16 million particles on current fast scalar processors.

Our algorithm is called ADAPTAHOP since we aim to improve HOP

Eisenstein & Hut (1998): the first two steps above are exactly the
same as in HOP, but the last two are different. Indeed, in HOP, the
idea is to combine information on the saddle point densities, ρ s,
on the local maxima, ρmax, inside a connected set of peak patches
to decide whether it has to be broken into multiple disjoint haloes.
The aim of HOP is indeed to improve standard friends-of-friends
methods in order to obtain more compact and spherical haloes. The
goal of ADAPTAHOP is quite different since it focuses on substructure
detection.

In spirit, ADAPTAHOP is in fact very similar to the substructure
finder of Springel (1999): SUBFIND (see also Springel et al. (2001a)).
Of course, there is a major difference, since SUBFIND has in addition
a sophisticated dynamical prescription involving exact calculation
of the gravitational potential. Springel uses also a slightly more
elegant method to construct the tree of structures and substructures
prior to dynamical post-treatment. After step one above, the idea
is to rank the particles by decreasing density and treat them in this
order. Investigating the distribution of particles in such a way is
equivalent to examining isocontours of decreasing density. It uses
(as in ADAPTAHOP) the closest neighbours of a particle to decide if the
particle examined during the process (i) creates a new (sub)structure
since it is isolated, (ii) belongs to an existing substructure or (iii)
connects two substructures, which makes the construction of the tree
of structures and substructures much simpler than in ADAPTAHOP and
more accurate, since there is no need to use the threshold parameter
ρ t. In SUBFIND, no treatment is made to account for the local Poisson
noise: it is not necessary because of the dynamical post-processing,
which destroys unbounded structures.

It is important to note that since ADAPTAHOP has no dynamical
post-treatment, it gives slightly different results compared to SUB-
FIND in its present form. In particular, for a given sufficiently mas-
sive dark matter halo, SUBFIND (Springel et al. 2001a) describes it in
terms of a large, smooth central component, and a bunch of much
less massive subhaloes. In ADAPTAHOP, the result is quite similar,
except that the central component is much less spatially extended
(it is extended up to the isocontour level corresponding to the saddle
point connecting it to a subhalo), and it is therefore less massive.

Fig. B1 illustrates how well ADAPTAHOP performs in one of the
simulations we realized for this work, for the most massive halo
detected in this realization.

A P P E N D I X C : S TAT I S T I C S O N T H E S P H E R E

When dealing with spherical fields, there are different ways to char-
acterize their angular structure. In the present paper, we essentially
deal with centred statistics, i.e. we describe the angular structuration
of scalar or vector fields relative to a specific direction, defined by
the halo or satellite’s spin S. Let us first formally introduce filtering

Figure B1. Illustration of the output of ADAPTAHOP for one of the simulations
of this work. A sphere of radius 5 Mpc centred on the most massive halo
is represented. In the upper panel, the dark matter density is shown using
a logarithmic scale. Darker regions correspond to higher density contrasts.
The lower panel displays the detected subhaloes (i.e. the most elementary
structures corresponding to the peak patches or the leaves of the tree). The
size of the circle scales with M1/3, where M is the mass of the subhalo. Most
of the subhaloes seen on the figure belong to the most massive halo. Clearly,
ADAPTAHOP is rather successful at detecting all the significant substructures.

on the sphere, statistical and angular averages, and present one-point
statistics (probability distribution functions) while postponing two-
point statistics (correlation functions, or excess probability of joint
events) to Aubert & Pichon (2004).

C1 One-point statistics

For any field, x, on the sphere, let us introduce the smoothed field,
(x)α (filtered on scale α), as

(x)α(Ω) ≡ 1∫
�α(Ω′) dΩ′

∫
�α(Ω′ − Ω)x(Ω′) dΩ′ (C1)

≡
∫

wα(Ω − Ω′)x(Ω′) dΩ′, (C2)
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where �αstands for the top-hat function,

�α(Ω) = 1 if |ϑ | � α, (C3)

and wα is defined by equation (C7), the standard top-hat filter on
the sphere.

Consider now the centred top-hat-filtered (on scale α) field, [x]α ,
defined by

[x]α ≡ (x)α(π/2), (C4)

≡ 1∫
�α(Ω′) dΩ′

∫
�α(ϑ ′ − π/2)x(Ω′) dΩ′, (C5)

≡
∫

Wα(Ω′)x(Ω′) dΩ′. (C6)

Note that equation (C6) defines W α . Our filtering is now centred,
in that the average is carried out on a window that is centred at
the equatorial plane (since in this paper we are interested in the
polarization of accretion processes with respect to that plane). Let
us also introduce the average of x on the sphere, as

x̄ ≡ (x)π/2 = 1∫
dΩ

∫
x(Ω) dΩ. (C7)

We may also for a given x define its contrast as

δx ≡ x

x̄
− 1. (C8)

Note that, in contrast to standard cosmology, we expect that x̄ �= 〈x〉,
(i.e. no ergodicity) since the angular average over one virial sphere
is not representative of the whole cosmological set, and since 〈x〉
depends on ϑ whereas x̄ does not. As a consequence,

〈δx 〉 =
〈

x

x̄

〉
− 1 �= 〈x〉

〈x̄〉 − 1.

Consider now the top-hat-filtered centred flux density contrast,
[δ� ]α , defined by

[δ� ]α ≡ (δ� )α(π/2) = 1

�̄

∫
Wα(Ω)� dΩ − 1. (C9)

Since, by construction, [δ� ]α is a filtered version of δ� , it inherits
some of it statistical properties. In particular, the PDFs of δ� (π/2)
and [δ� ]α should be quite similar provided α is small enough.

In the main text, we consider the anisotropic parameter, δm ≡
[δρvr ]π/8, which therefore corresponds formally to the centred top-
hat-smoothed (on scales of π/8) mass flux density contrast. Fol-
lowing the same spirit, we could also consider quantities such as
[δρvr v2 ]π/8, which would measure the anisotropy in the accreted ki-
netic energy: the excess of accreted kinetic energy should allow us
to track the excess of incoming virialized objects in the equatorial
plane without performing their explicit identification. One should
also consider [δρvr L ]π/8, the anisotropy in the accreted momentum,
since this quantity is directly related to the torque applied to the sys-
tem by the infall. More generally still we could investigate (δ� )α(ϑ),
the flux density contrast top-hat-smoothed on a ring of size α centred
on ϑ .

Note that we can think of the harmonic coefficients, am
� , intro-

duced in Section 3.4, as a specific type of filtering, where the window
function, W α , is replaced by an axisymmetric spherical harmonic,
Y 0

� (Ω):

[δ� ]� = 1

�̄

∫
Y 0∗

� (Ω)� (Ω) dΩ = a0
�

�̄
. (C10)

We can also write �̄ in terms of spherical harmonics:

�̄ ≡ 1

4π

∫
� dΩ = 1√

4π

∫
Y 0∗

0 (Ω)� dΩ = a0
0√
4π

. (C11)

Therefore we obtain

[δ� ]� = a0
�

sign
(

a0
0

)√
C0

, (C12)

where C 0 = |a0
0|2/4π is the � = 0 component of the angular power

spectrum C �.
Since a step function can be expanded along spherical harmonics

as

�α(ϑ − π/2) =
∑

�

b�Y 0
� (ϑ, 0), (C13)

then [δ� ]α defined by equation (C9) obeys

[δ� ]α =
∑

�

b�[δ� ]� − 1. (C14)

Taking x = ρvr for example, we have

δ[ρvr ](ϑ, ϕ) =
∑
�,m

dm
� Y m

� (ϑ, ϕ) = ρvr (ϑ, ϕ)

ρvr
− 1, (C15)

where

ρvr = 1

4π

∫
dϑ dϕρvr (ϑ, ϕ) sin ϑ = a0

0√
4π

. (C16)

Since∫
dϑ dϕY m

� (ϑ, ϕ) sin ϑ =
√

4πδl0δm0

(e.g. Varshalovich et al. 1988), we find

dm
� = ãm

� −
√

4πδl0δm0. (C17)

We finally obtain

δ[ρvr ](ϑ, ϕ) =
∑
�,m

ãm
� Y m

� (ϑ, ϕ) − 1. (C18)

A P P E N D I X D : C O N V E R G E N C E I S S U E S

D1 Substructures and spins of haloes

For each tree of substructure satellites, we computed the total spin
inside the mother structure, SM, and the momentum of each sub-
structure inside the mother structure, Ls. Then we compared the
inner satellites and the contribution of the core to the mother’s spin.
The comparison is only made on the components of the substruc-
tures’ momentum parallel to SM. The results are shown in Fig. D1.
We plotted the total contribution of satellites to the mother’s spin
versus the core’s contribution. From the barycentre of the distribu-
tion shown in Fig. D1, it appears that substructures contain about
80 per cent of the total host’s spin, with a satellites’ contribution of
50 per cent and about 30 per cent for the core. The bottom panel
shows the total contribution of substructures to the mother’s mass
versus the contribution of the core. As expected, given the definition
of the core, we found that the relative proportions are almost reversed
compared to the previous plot. A core contains about half of the total
mass while satellites represent about 40 per cent of the total mass.
Clearly the specific angular momentum is larger in satellites than
in the core. The distance of satellites relative to the mother’s centre
and their velocities induce a ‘lever arm’ effect. Even if satellite rem-
nants are light in terms of mass they are important if not dominant
for the spin of the galactic system. This effect also suggests that
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Figure D1. Comparison of the substructure’s and the core’s contributions
to the amplitude of the mother’s spin and to the mother’s mass. Top: Com-
parison of the core’s contribution to the mother’s spin compared to the con-
tribution of all the satellites for each mother detected in our simulations.
Bottom: Same comparison but for the core’s and satellites’ mass relative to
the mother’s total mass. In both figures, the open square symbol indicates
the barycentre of the cloud of points while the thick line’s slope is unity.
While the total mass is dominated by the core’s contribution, the mother’s
spin is dominated by satellites, showing that their specific orbital momentum
is more important than that of the core.
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Figure D2. Comparison of 〈δm〉 for different classes of halo mass at z = 0.
The error bars stand for the 3σ error. The thin lines separate the three classes
of mass: 5 × 1012 M� < m < 1.25 × 1013 M�, 1.25 × 1013 M� < m <

2.5 × 1013 M� and m > 2.5 × 1013 M�. Each class contains 16 500 haloes.

the mother’s spin is aligned with the orbital momentum of infalling
satellites because they determine the direction of the halo’s spin.

D2 Mass dependence of 〈δm〉
We measured the average excess of accretion 〈δm〉 (see Section 3.3)
for three different class of masses at redshift z = 0: 5 × 1012 M�
< m < 1.25 × 1013 M�, 1.25 × 1013 M� < m < 2.5 × 1013

M� and m > 2.5 × 1013 M�. Each class contains approximately
16 500 haloes. The results are shown in Fig. D2. It is found that
〈δm〉 increases with mass but does not change significantly even if
the three classes cover different mass magnitudes. Consequently, no
class of mass dominates when all the haloes are being used in the
computation of 〈δm〉.

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2004 RAS, MNRAS 352, 376–398162



ar
X

iv
:0

80
4.

35
36

v1
  [

as
tr

o-
ph

] 
 2

2 
A

pr
 2

00
8

Draft version April 22, 2008
Preprint typeset using LATEX style emulateapj v. 03/07/07

INITIAL CONDITIONS FOR LARGE COSMOLOGICAL SIMULATIONS

S. Prunet,1 C. Pichon,1,4 D. Aubert,2,1 D. Pogosyan3, R. Teyssier,4 & S. Gottloeber5

Draft version April 22, 2008

ABSTRACT

This technical paper describes a software package that was designed to produce initial conditions for
large cosmological simulations in the context of the Horizon collaboration. These tools generalize E.
Bertschinger’s Grafic1 software to distributed parallel architectures and offer a flexible alternative to
the Grafic2 software for “zoom” initial conditions, at the price of large cumulated cpu and memory
usage. The codes have been validated up to resolutions of 40963 and were used to generate the initial
conditions of large hydrodynamical and dark matter simulations. They also provide means to generate
constrained realisations for the purpose of generating initial conditions compatible with, e.g. the local
group, or the SDSS catalog.
Subject headings: Cosmology: numerical methods

1. INTRODUCTION

Numerical simulations have proved to be valuable
tools in the field of cosmology and galaxy formation.
They provide a mean to test theoretical assumptions,
to predict the properties of large scale structures (and
galaxies within) and give access to synthetic observa-
tions without sacrifying the whole complexity that arise
from non-linearities. Thanks to the recent progresses in
terms of numerical techniques and available hardware,
numerical cosmology has become one of the most im-
portant (and CPU consumming) field among the scien-
tific topics that require extreme computing. Over the
last few years, a series of large simulations have been
produced by, among others, Cen and Ostriker (2000),
the Virgo Consortium (Frenk et al. 2000, the Millenium:
Springel et al. 2005), Weinberg et al. (2002), the Gaso-
line team (Wadsley et al. 2004). Following the same
route, the purpose of the Horizon Project6 is to fed-
erate numerical simulations activities within the french
comunity on topics such as : the large scale structure
formation in a cosmological framework, the formation
of galaxies and the prediction of its observational signa-
tures. The collaboration studies the influence on the pre-
dictions of the resolution, the numerical codes, the self-
consistent treatment of the baryons and of the physics
included.

These investigations are performed on initial con-
ditions (ICs thereafter) that share the same phases
and their production is described in the current pa-
per. The large Horizon ICs involves two boxes of
50 and 2000 Mpc/h comoving size with respectively
10243 and 40963 initial resolution elements (particles
or grid points), following a ΛCDM concordance cos-
mogony. They were generated from an existing set

1 Institut d’Astrophysique de Paris, UMR 7095, 98bis Boulevard
Arago, 75014 Paris, France

2 Observatoire Astronomique de Strasbourg, UMR 7550, 11 rue
de l’Universite, 67000 Strasbourg, France

3 Department of Physics, University of Alberta, Edmonton, Al-
berta, T6G 2G7, Canada

4 CEA/DAPNIA/SAP, l’Orme des Merisiers, 91170, Gif sur
Yvette, France

5 AIP, An der Sternwarte 16, 14 482, Potsdam, Germany
6 http://www.projet-horizon.fr

of initial conditions created for the ’Mare Nostrum’
simulation (Gottlöber and Yepes 2007): they share the
same phases but with different box sizes and resolu-
tions. The (50h−1Mpc,10243) ICs were used as inputs
to the AMR code RAMSES (Teyssier 2002) in a sim-
ulation that included dark matter dynamics, hydrody-
namics, star formation, metal enrichment of the gas and
feedback. This simulation directly compares to the Mare-
Nostrum simulation in terms of cosmology and physics
and it will be refered as the Horizon-MareNostrum
simulation hereafter(Ocvirk, Pichon and Teyssier 2008).
The (2000h−1Mpc,40963) ICs served as a starting point
for the Horizon-4Π simulation(Teyssier et al. 2007,
http://www.projet-horizon.fr): it is a pure dark
matter simulation and assumes a cosmology constrained
by WMAP3. It is currently used to investigate the full-
sky gravitational lensing signal that could be observed
by the DUNE experiment (hence the 4Π).

The paper is organised as follows: first, we briefly ex-
plain the principle of the ICs’ generation. Then we de-
scribe how the phases were extracted from the MareNos-
trum ICs in order to make the Horizon ICs consistent
with this reference. We describe next the features of a
series of codes used to generate and process the different
Horizon ICs:

• mpgrafic: ICs generation with optional low-
frequency constraints

• constrfield: Low-frequency ICs generation with
point-like constraints.

• degraf: Low-pass filtering and resampling of ICs

• powergrid: ICs empirical power spectrum estima-
tion.

• splitgrafic: Estimation of matter density on a
grid from a set of particle positions, and Peano-
Hilbert domain decomposition.

Finally we illustrate how these codes were implemented
on the two Horizon simulations.

2. RANDOM FIELD FOR COSMOLOGICAL
INITIAL CONDITIONS
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2.1. Grid-based initial conditions

For completeness, we quickly review the principle of
ICs generation. Most of the following has been strongly
inspired from articles by Pen (1997) and Bertschinger
(2001). Let us consider the initial 3D gaussian random
field δ(x), representing the density or the displacements,
and let us define its Fourier transform δ(k). If we con-
sider zero-mean fields, they are completely defined by
their correlation function or, equivalently, by their power
spectra, P (k):

P (k)δD(k − k
′) = 〈δ(k)δ∗(k′)〉. (1)

All the statistical information in a gaussian homogeneous
and isotropic realization is contained in this quantity and
the difficulty of generating initial conditions resides in ob-
taining a field which has the correct power spectrum.
We chose to follow the convolution-based method de-
scribed by e.g Pen (1997) and define the correlation ker-
nel in Fourier space as:

A(k) =
√

P (k). (2)

To reproduce the correlation function accurately one may
need to first convolve the power spectrum with the win-
dow that describes the simulation box, as advocated by
Pen (1997). The influence of the box size on rms density
in spheres of given radius (which are relevant for mass
function estimates of collapsed objects), is negligible for
sphere radii much smaller than the box length, even for
simulations designed to study galaxy cluster scales.

Then the ICs generation is a two-step procedure. First
a normal, uncorrelated random field of unit variance is
generated in position space7. This white noise n1(x) has
a constant power spectrum, e.g.:

〈|n1(k)|2〉 = 1. (3)

The second step involves convolving the white noise with
the correlation kernel in order to obtain the initial fluc-
tuation field:

δ(x) = n1(x) ∗ A(x), (4)

or in Fourier space

δ(k) = n1(k)A(k). (5)

It can be easily seen that 〈|δ(k)2|〉 = P (k) and the initial
field automatically has the correct power spectrum.

One of the main virtue of the method resides in the
possibility of using the same white noise for different
power spectra. In other words, it decouples explicitely
the phases (which contain the specificities of a given re-
alization in terms of relative positions) from the ampli-
tudes of the fluctuations (corresponding to one’s favorite
choice of cosmological model). A change in the physics
or in the box size results in a change of the convolu-
tion kernel, but the underlying structure of the field will
remain globally the same for a given white noise realiza-
tion. Conversely, Eq. 5 implies that the initial phases
can be recovered from a set of ICs, provided that the
convolution operation can be inverted. In other words,
it is possible to generate a new set of ICs from an old
one (see Section 4) and such a set would share the same
overall structures with e.g. a modified cosmology or box
size.

7 We could have directly generated the real and imaginary part
of each δ(k) following a N (0, 1/

√
2) law, saving the cost of an

extra Fourier transform, but we chose to remain compatible with
the Grafic code.

2.2. Grid-based versus particle-based initial conditions

In numerical simulations, the dark matter distribution
is almost exclusively described in terms of particles and
this discretized description is also applied to the gas in
SPH-like hydrodynamical codes. Consequently, dealing
with ’particle-type’ data is the most frequent case while
the current procedure naturally deals with densities and
velocities sampled on a grid. This can be easily tackled
by recalling the density-velocity relation that is valid in
the linear regime :

1

aH
∇xu = −f(Ωm, ΩΛ)δ(x). (6)

Here u stands for the comoving peculiar velocity, x for
the comoving position, H for the Hubble constant, a for
the scale factor and f is defined as the logarithmic time
derivative of the growth factor:

f(Ωm, ΩΛ) ≡ d log D+

d log a
. (7)

Functional fits for f can be found in the literature
(e.g. Lahav et al. 1991) or be directly computed for
a given cosmology. Hence, assuming that particles were
displaced from a regular grid and knowing their veloc-
ities, the initial density field can be directly recovered
from Eq. (6). One can see that the (eulerian) positions
of particles are not directly involved in this procedure;
however, their lagrangian coordinates are used to remap
the particle velocities to grid cells.

3. GRID-BASED ICS: TECHNICAL
IMPLEMENTATION

Once the “phases” (the white noise) are chosen on a
grid of a given size, it is possible to use them to generate
initial density and velocity realizations with the desired
cosmology and power spectrum, at resolutions that can
differ from the initial white noise realization.

According to linear theory, which applies for initial
conditions 8, density and velocity divergence are related
through Eq. (6), so that a single white noise realization
determines both density and velocities on a grid of equal
size (see e.g. Bertschinger 2001).
A first numerical implementation of this algorithm was
made by E. Bertschinger in the package Grafic1. We
extend here his code using the Message Passing Inter-
face (MPI) library to deal with large simulation cubes
on distributed memory platforms. Another implemen-
tation of MPI-based Initial Conditions generator in the
context of the GRACOS code is described in Shirokov
(2007), http://www.gracos.org.
We also develop a few tools (low-pass filtering and resam-
pling, power spectrum estimation, estimation of matter
density on a grid from a set of particle positions) that
work as well in parallel environments. We describe these
tools and their usage in the following subsections.

3.1. Mpgrafic: a parallel version of Grafic1

Generating initial conditions for cosmological simula-
tions on a grid from an initial white noise realization

8 actually, the validity of the linear theory is enforced by chosing
the starting redshift in such a way that the resulting variance of
the discrete density field is significantly less than unity
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Fig. 1.— The left image shows a slice of a density field realization of size 2563. The middle and right images show respectively slices
of the cubes of size 1283and 643obtained from the first density field by lowpass filtering and subsampling. The images have been rescaled
to the same size to ease their comparison. The initial density field was obtained using mpgrafic with the parameters of Table 2. The
low-frequency, resampled fields were obtained with the degraf utility.

is theoretically quite simple, as it involves a straightfor-
ward implementation of Equations (5) and (6) in Fourier
space. Indeed, the main issues in the Grafic1 code in-
volve getting the normalization right (in terms of σ8 or
Qrms, which are input parameters), and therefore in the
cosmology routines.

3.1.1. Description

Difficulties of a more technical nature appear as the
size of the desired cubes (and/or the number of particles)
grow and that a single cube does not fit into a computer’s
memory. An elegant answer to this problem, in the con-
text of multi-resolution (“zoom”) initial conditions was
designed by Bertschinger (2001) and implemented in the
Grafic2 package. This solution involves generating a low
resolution cube first, and successively adding higher fre-
quencies in nested sub-regions, constrained by the phases
of the already existing low frequency modes. Strictly
speaking, the exact solution to this problem is (naively)
as costly as the direct generation of the full cube at the
highest resolution, but approximate, less costly solutions
based on anti-aliasing kernels can be designed. This is
precisely what is done in the Grafic2 package.

The main advantage of this solution is to produce
multi-resolution initial conditions with a very reasonable
memory usage, but it also has drawbacks, namely its
complexity, and its built-in restrictions on the nested
cubes structure of a given maximum size. Given the
growing size of computer clusters, our “brute force” ap-
proach to the problem based on parallelism becomes pos-
sible, and it is also in some ways more flexible. First of
all, it allows for a direct generation of global initial con-
ditions for very large cosmological simulations. Secondly,
it also allows, together with associated tools for low-pass
filtering and resampling, to create multi-resolution simu-
lations of a more general structure by simply extracting
the desired sub-regions from the series of “downgraded”
cubes (obtained by low-pass filtering and resampling of
the initial large high-resolution cube).

There are two issues that arise when implementating
a parallel (MPI-based) version of the Grafic1 software.
The first involves performing efficient three-dimensional
fast fourier transforms (FFTs thereafter); this difficulty
is solved by using the parallel version of the FFTW 9

9 http://www.fftw.org

library, which uses a slab domain decomposition. The
second difficulty lies in the input/output. Indeed, we de-
cided to keep the binary (Fortran) structure of the files
in the Grafic1 format. In a parallel environment where
each MPI process is responsible for one chunk of data,
this lead us to write part of the I/O subroutines in C us-
ing reentrant read/write routines, wrapped in fortran90
to be callable from the main program.

Finally, apart from the parallelism of mpgrafic, we
have added a few new features to the original Grafic1
code. An implementation of the matter power spectrum
with baryon oscillations was introduced, as described in
Eisenstein and Hu (1998). Secondly, the possibility of
constraining the low frequency phases of the density and
velocity realizations was implemented, with the input of
a given white noise cube of lower resolution. This al-
lowed us to use the same set of initial condition phases for
cosmological simulations at different resolutions. Lastly,
we have implemented the possibility of constraining the
value of the density or velocity field values, as well as
their gradients and hessians at a chosen set of positions.
We will come back in more details on this last point in
a following section, as it is a non-trivial extension of the
code.

3.1.2. Code installation and parameter file structure

A prerequisite to use mpgrafic is to have (of
course) a valid MPI library installed, including a for-
tran90 compiler. A second prerequisite is to have the
fftw-2.1.5 library installed, with the --enable-mpi
--enable-type-prefix options at the configure step.
The first option builds the static and shared FFTW MPI-
based libraries, the second is for the type (float or double)
naming scheme of the libraries.

Note that the default build of FFTW corresponds to
double precision, whereas the default type in mpgrafic
is single precision. To change to single precision real-
izations, you need to make the single precision FFTW
MPI libraries by adding the --enable-float at con-
figure time. To compile mpgrafic in double precision
mode, you need to configure with the --enable-double
keyword.

The code usage has been kept as close as possible to
the Grafic1 code interface, except of course for the few
additional options to the code. In table 2 we show an
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example of parameter file of mpgrafic.
Compared to the original Grafic1 parameter files, the

only differences lie in the possibility of an input power
spectrum with baryonic oscillations (Eisenstein and Hu
1998), and in the optional input of a small noise file to
constrain the large scale phases. Otherwise, the code is
called in the following way:
mpirun -np < #proc> mpgrafic < parameter file
Like Grafic1, it produces seven data cubes (one density
file, three dark matter velocity files, and three baryon
velocity files). In the file grafic1.inc, the offsets of the
velocity fields is controlled by the parameters offvelb,
offvelc. The redshift of the realizations is controlled by
the variance of the density field on the grid, as specified
by sigstart. Finally, the size of the cubes is controlled
by the parameters np1,np2,np3, that can take different
values and are set in grafic1.inc. Note that when these
parameters are changed the code needs recompilation.

3.1.3. Illustration on a small example, power spectrum
estimate

In figure 1 we show a slice of a density file realization
with the parameter file displayed in Table 2, but with-
out large scale constraints, and for np1=np2=np3=256.
In the same figure, we show the density files of linear
grid size 128 and 64 obtained from this realization, by
low-pass filtering and subsampling. This operation has
been done using the utility called degraf, that makes use
of the FFTW parallel Fourier transform routines. Writ-
ten in fortran90, it takes as input a collection of files in
Grafic1 format, as well as some parameters in a namelist
file. These parameters include the list of the input file
names, the target resolution of the output files, as well
as an optional shift vector allowing a global translation
of the output files (with periodic initial conditions).

Finally, another utility, powergrid, uses the FFTW
parallel Fourier transform routines to compute the peri-
odogram estimate of a density field power spectrum. It
allows correction for nearest grid point (NGP) or cloud
in cell (CIC, linear) interpolation of a particles set to the
computation grid. Note that this resampling of a discrete
density field given by particles onto grid cells leads not
only to a smoothing of the grid Fourier modes (this can
be corrected by the code) but also to some power alias-
ing, that cannot be corrected, unless prior knowledge of
the density power spectrum is available. These points
will be illustrated in the next section, for the Horizon
simulations. Of course, none of these problems appear if
one is only interested in computing the periodogram of
the IC grid-sampled density fields. Figure 2 shows the
theoretical power spectrum corresponding to the density
field realization shown in Figure 1, together with its pe-
riodogram estimate, as well as the periodograms of its
low-passed, resampled versions.

3.2. Constrained initial conditions

Since mpgrafic opens the opportunity of generating
ICs which are consistent with a given low frequency cube,
it is interesting to build such a cube of phases so that the
overall cube satisfy (low frequency) point like constraints
on a given set of points. These constraints fix the mean
value of the density or velocity field, as well as their gradi-
ents and hessians, computed at a chosen set of positions,
for a given smoothing length Rp (see Equation 11 below).

Fig. 2.— Theoretical power spectrum (solid line, as output in
the file power.dat by mpgrafic), together with the periodogram
estimates (computed by powergrid), of the 2563density realization
(top thick line), and its downgraded versions produced by degraf
(middle and bottom lines for 1283and 643 respectively).

Once such a low-frequency cube has been generated, it is
then whitened, and set as an input to mpgrafic, which
is then used to add small scale power and to resample
the field according to the new Nyquist frequency 10.

This procedures allows for instance to generate initial
conditions which are consistant with, say a given merging
event, or the structure of the Local Group, the large scale
structures derived from large surveys such as the SDSS
(Adelman-McCarthy and for the SDSS Collaboration
2007), the 2dF (Percival et al. 2001), 2Mass
(Jarrett et al. 2003), the Local Group
(Mohayaee and Tully 2005), etc.

The ensemble of unconstrained gaussian random fields
is defined by all possible realizations of the field values
δ(x), or their Fourier amplitudes δ(k), for a given power
spectrum. If we impose the constraints on the field, the
statistical ensemble narrows down to a subset of realiza-
tions, those that have the constraints satisfied. In par-
ticular, for a discrete representation of the field on a grid
of size N3, this means that not all N3 values of δ(x) are
real degrees of freedom. Averaging over the constrained
ensemble 〈. . .〉c makes both the mean 〈δ(x)〉c and the
variance dependent on position x.

We shall be dealing with linear constraints each
of which, in general, sets a linear functional relation
Va[δ(x)] (we will use latin letters to index the constraints
where each constraint is defined by a grid position xa and
a constraint operator Ya, see below) between field values

to a given value, Va[δ(x)] = Ṽa.
Alternatively, we can take a point of view that such a

restricted ensemble defines a new (constrained) random

10 In principle, adding small scale power with mpgrafic, while
keeping the same low-frequency phases, violates the point-like con-
straints imposed by constrfield. However, if the smoothing kernel
W (kRp) and its associated smoothing length are chosen in such
a way that it cuts all modes with wave vectors above the initial
Nyquist frequency, the constraints are not violated by adding small
scale power.
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Fourier space Configuration space Physical meaning

Y (k) = 1 V [δ] = δ density value
Y (k) = −ıki/k2 V [δ] = −∇i∆−1δ linear displacement
Y (k) = kikj/k2 − 1

3
δij V [δ] = (∇i∇j∆−1 − 1

3
δij)δ flow shear

Y (k) = ıki V [δ] = ∇iδ density gradient
Y (k) = −kikj V [δ] = ∇i∇jδ density curvature

TABLE 1
Different type of point -like constraints

field δc(x) which is still gaussian (due to the linearity
of imposed relations) but is statistically inhomogeneous.
Under these conditions, the well known way to construct
a constrained field from unconstrained realizations is

δc(x) = δ(x)+
∑
ab

〈δ(x)Va[δ]〉〈Va[δ]Vb[δ]〉−1
(
Ṽb − Vb[δ]

)
.

(8)
(see e.g. Bardeen et al. 1986; Hoffman and Ribak 1991).
In this expression, the random quantities on the right-
hand side are unconstrained δ(x). Here Ṽb is a nu-
merical value of the constraint b, while 〈δ(x)Va[δ]〉 is
the covariance between the field and a constraint, and
Cab = 〈Va[δ]Vb[δ]〉 is the convariance matrix between the
constraint functionals.

Fig. 3.— Example of contrained realization generated using
constrfield and extended at a 10243resolution using mpgrafic.
Here a regular grid of 4 × 4 × 4 density peaks is imposed within
a ΛCDM cosmological simulation in a box of length 100h−1Mpc.
Here the constraints are of the density type, so that Y (k) = 1 for
each constraint; in such a case, Va(δ) = δ(xa), where delta(xa) is
the chosen constraint at position xa.

This recipe reproduces the mean (note, the averaging
is taken over all unconstrained realizations)

〈δc(x)〉 = 〈δ(x)Va〉〈VaVb〉−1Ṽb , (9)

and the correlation function

〈δc(x)δc(x
′)〉= ξ(x,x′) − 〈δ(x)Va〉〈VaVb〉−1〈δ(x′)Vb〉

+〈δc(x)〉〈δc(x
′)〉 , (10)

which define all statistical properties for the gaussian
case.

In cosmology the primary interest is to define con-
straints that describe the physical properties of a patch
(see e.g. Bond and Myers 1996; van de Weygaert 1996)
of the density field - density, density derivatives, shear
flow, averaged over the volume of the patch. Such con-
straints can be represented in Fourier space as

Va[δ] =

∫
d3kδ(k)Ya(k)W (kRp)e−ikxa , (11)

where xa is the position of the patch, W (kRp) is a av-
eraging filter over the patch size Rp, and Ya(k) is the
Fourier representation of the operator that specifies the
constraint functional. In particular, we use the con-
straint types given in Table 1. Using constrained field
formalism Bond et al. (1996) have demonstrated that the
observed filamentary Cosmic Web of matter distribution
in the Universe can be understood as dynamical enhance-
ment of the geometrical properties of intial density field.
The web is largely defined by the position and primor-
dial tidal fields of rare events in the medium, such as
precursors of large galaxies at high redshifts or clusters
of galaxies at present time, with the strongest filaments
between nearby clusters whose tidal tensors are nearly
aligned.

The code constrfield implements the same cosmol-
ogy as mpgrafic (including baryon wiggles) and offers
the possibility of whitening 11 the resulting field in or-
der to feed it to mpgrafic as a low frequency input. An
example of this procedure is illustrated in Fig. 3.

3.3. Splitting the ICs

Starting a parallel computation requires the initial con-
ditions to be dispatched over all the computing processes.
Two alternatives exist to perform this operation. The
first one involves having the initial conditions to be read
by a ‘master’ process and the data to be broadcasted
to all the other processes, and then keep or reject the
broadcasted data according to the topology of the com-
putation’s domain split. While simple to implement, this
option happens to be difficult to use in practice since
broadcasting over a large number of processes can be
technically problematic and time consuming.

We present an alternative option which involves having
the processes upload their own set of data only. Because
it is wasteful for each process to parse the whole set of ini-
tial conditions to get the relevant subset of data, this op-
tion implies that initial conditions are pre-split according
to the domain decomposition strategy of the integrator.

11 Here we understand by whitening the operation that trans-
forms an unconstrained field into a white noise, i.e. a collection
of independent indentically distributed random variables Ñ (0, 1).
Note that the presence of constraints breaks the independence of
the grid cells even after “whitening” (see Equation 10).
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This splitting is both a domain boundary assignment, a
procedure for distributing particles among the processes,
and a per process file dump.

It results in a faster procedure, since each process reads
its own set of data, instead of having one process read-
ing the full initial conditions. A possible drawback lies in
the fact that a splitting is defined a priori; changing the
number of processes dedicated to the computation there-
fore requires the production of a whole new set of split
initial conditions. However splitting can be performed on
a single process, prior to any parallel computation, and
exhibits a negligible cost in terms of CPU-time. Such
a procedure can thus be applied an arbitrary number of
times at almost no expense.

Horizon simulations were started from split initial con-
ditions, where each process uploaded its own set of data.
The splitting scheme followed the domain decomposi-
tion’s strategy of the cosmological calculations performed
with RAMSES. It relies on a 3D Peano-Hilbert space
filling curve (Salmon and Warren 1997; MacNeice et al.
2000) which provides a complete mapping between the
3D position of a grid point and a 1D coordinate on this
curve. A two-dimensionnal example of such a curve is
shown in figure 4. By using this piecewise linear rep-
resentation of the computation domain, each process is
being given a continuous portion of this curve and load
balancing is achieved by ‘sliding’ the limits of the lo-
cal data sets along the space-filling curve. In particular,
the initial conditions are by construction well-balanced,
therefore the splitting among all the processes involves
a set of even subdivisions of the Peano-Hilbert curve. A
(i, j, k) grid point maps to a single key q. A set of suc-
cessive (q1, q2, ..., qn) corresponds to a single process p.

Fig. 4.— Example of a ICs splitting following a Peano-Hilbert
domain decomposition in two dimensions.

Note that all sub-domains are simply connected, i.e.
within there are no isolated sub-regions owned by a pro-
cess in the middle of another region owned by another
process. For instance, in 3D, if the curve is split in 2r

sections, each section fits in a 3D rectangle of different
sizes and orientations (see figure 5). Moreover, if the
curve is split in 8r parts, all the sections fit in a cube of
the same volume. This type of domain decomposition is

known to be most efficient if we consider the ensemble of
all the refined grids configurations. It may be surpassed
by other strategies (e.g. layer splitting, angular splitting)
on specific situations, but Peano-Hilbert domain decom-
position remains the best strategy on average.

Fig. 5.— Example of a ICs splitting in 16 subvolumes following
a Peano-Hilbert domain decomposition as seen from four different
directions.

Here we implemented a fast and simple algorithm
which performs the splitting of initial conditions accord-
ing to the Peano-Hilbert domain decomposition. It relies
on a plane-by-plane investigation of the data cube which
limits the memory consumption. Let n3 be the number
of cells in the initial conditions data cube, F (i, j, k) the
value of the 3D field at grid indices 1 ≤ i, j, k ≤ n and f a
2D slice of F at index k. We assume that the number of
processes nproc is a power of two (even though this con-
straint can be lifted as explained below); it ensures that
each process domain is a 3D rectangle. Consequently
the extent of the sub-domain corresponding to a process
p is given by two triplets (im, jm, km)p and (iM , jM , kM )p

which correspond to the two extreme corners of the rect-
angle. The algorithm described below runs on one pro-
cess only, and involves two distinct steps:

• do k = 1, n : loop over data planes

– read f = F (1 : n, 1 : n, k) : the 2D data is
uploaded.

– initialisations:

∗ process(1 : nproc) =.false.,

∗ (im, jm, km)p = −1, (iM , jM , kM )p = −1,
∀p ∈ [1 : nproc]

– do j = 1, n , i = 1, n

∗ Peano-Curve mapping : (i,j,k) → q → p

∗ process p is found in the k plane: pro-
cess(p)=.true.

∗ if process p found for the 1st time set the
minimum position : if (im, jm, km)p = −1
then (im, jm, km)p = (i, j, k)
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∗ update the maximum position:
if (i, j, k) > (iM , jM , kM )p then
(iM , jM , kM )p = (i, j, k)

– do p = 1, nproc

∗ if process(p)=.false. skip : only processes
detected in the plane are taken in ac-
count.

∗ write f(ipm : ipM , jp
m : jp

M ) in the file of the
process p.

First, initial conditions fields are parsed plane by plane
and for each plane, the process map is achieved through
the space-filling curve mapping. Then for each process
found in the current plane the subset of data is writ-
ten in the relevant files. Because of the compacity of
the sub-domains, a significant speedup can be obtained
by parsing the i and j indexes of the second loop with
steps larger than 1 : this procedure is safe as long as
the step remains smaller than the smallest extent of the
sub-domains along one direction. We call this step the
speedup step. Finally the nproc= 2r constraint can be
lifted if a set of processes upload the same set of data.
Each process would load a small initial condition file
and would retain only its ‘sub-sub-domain’ within a sub-
domain. For instance the Horizon 4Π simulation ran on
6144 = 3 × 2048 processes: the splitting was performed
over 2048 sub-domains and each sub-file was uploaded
by three processes. Overall, this algorithm can be quite
effective and as an illustration, the 40963 initial condi-
tions fields of this simulation were split in 15 minutes on
a single process of the CCRT computing center using a
speedup step of 256. The code ran on Itanium2 proces-
sors (double-core, but only a single core has been used
here) with a 1.6 GHz frequency.

4. APPLICATION TO LARGE HORIZON
SIMULATIONS

Let us now illustrate on a couple of large scale simula-
tion how mpgrafic was used. We will consider in turn
a hydrodynamical and a dark matter only simulation.

4.1. Horizon-MareNostrum

The first major application of the mpgrafic code was
the generation of ICs for a simulation of a cosmological
hydrodynamical simulation of linear size 50h−1Mpc on a
grid of size 10243.

For the Mare Nostrum simulation, we started for tech-
nical reasons with external ICs (given as a set of particle
velocities), as one of the goals was to compare two n-
body plus hydro codes (namely the RAMSES and GAD-
GET2 codes) on similar ICS. The particle velocities were
therefore read from external ICs and we performed the
derivation of the density field samples on the grid from
the particle velocities in Fourier space, using the JMFFT
Fourier Transform package12. The f factor involved in
Eq. (7) was computed using routines provided in the
original Grafic1 package. Once the velocity divergence
and fare known, the initial density field is easily recov-
ered and ready to be used as an input for simulations
(especially for the hydrodynamical part of RAMSES), or
as a source for a specific set of initial phases.

12 http://www.idris.fr/data/publications/JMFFT/

Fig. 6.— The power spectrum P (k) of the ’Mare Nostrum’ ini-
tial conditions. Symbols stand for the measured power spectrum,
Pmes(k), while the dotted line stands for the theoretical power spec-
trum Pin(k). The dashed line, PHan(k) , stand for the theoretical
power spectra plus a Hanning filter contribution. The solid line,
Pfinal(k) stand for our best fit of the power spectrum. The bottom
panel represents a zoomed version of the top one where only the
small scales are shown.

4.1.1. Power Spectrum Extraction from Mare Nostrum
Initial Conditions

The master equation (Eq. (5)) can only be inverted
knowing the convolution kernel, i.e. the power spec-
trum P (k). In principle, the knowledge of the cosmology
and the included physics should be sufficient to derive
P (k) prior to the deconvolution. Let us call Pin(k), this
theoretical power spectrum constrained only by physics.
In practice, this theoretical power spectrum differs from
the effective power spectrum used to draw the (exter-
nal, particle based) ICs. Our goal in this section is to
define a power spectrum Pfinal(k) that should accurately
represent the ensemble averaged power spectrum of the
external ICs (so that 〈Pmes(k)〉 ≈ Pfinal(k))), based on
the available theoretical and measured power spectra.
Pfinal(k) will then be used in the deconvolution.

Using an inaccurate spectrum to deconvolve Eq. (5)
would lead to a ’colored’ noise for the initial phases, i.e.
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Fig. 7.— Comparison between the gas in the SPH MareNostrum simulation at redshift z = 5.7 (left) from which ICs the Horizon white
noise was extracted, and the Horizon-MareNostrum simulation (right) for which the initial conditions were generated with mpgrafic.
This figure demonstrates that on large scales the phases are indeed reproduced by the procedure. It also shows that on these scales, the
two code produce quite similar features.

with spurious characteristic length scales.
Let us illustrate the discrepancy between the theoret-

ical and the measured P (k) by describing the power
spectrum of the Mare Nostrum ICs. The measured
P (k) is shown in figure 6 as triangles. The theoretical
P (k) = Pin(k) (i.e. the one used to generate this set of
ICs) is also shown as a dotted line and unsurprisingly,
the two curves disagree.

At low k, the finite volume of the simulation implies
that the empirical power spectrum of large scale modes
has large sampling variance and thus departs from the
theoretical curve. The high k discrepancy is of different
nature: clearly the sampling variance is negligible, but
now the discreetness of the grid and anisotropy of very
high k mode representation play role. P (k) departs sig-
nificantly from Pin(k) as easily seen when zooming on
the large k regions, where P (k) lacks power compared to
the expected behavior. Therefore, Pin(k) cannot be used
without corrections to whiten the external IC set. In the
following, we rely on the fact that Gaussian initial con-
ditions are statistically characterized by power spectrum
only.

The exact set of corrections depends on how the field
have been generated. For Mare Nostrum IC’s we must
first include a Hanning filter defined in the Fourier space
by

WH(k) = cos(
πk

2kN

), (12)

Here the Nyquist frequency is given by kN = 2π/L×N/2,
where L = 50 Mpc/h is the size of the box of the Mare
Nostrum ICs and N stands for the (linear) number of
grid elements. Such a filtering is frequently encountered
when dealing with initial conditions: because Fourier
modes are sampled on a cartesian grid, the two condi-
tions k < πN

√
3/L and (kx, ky, kz) < πN/L imply that

anisotropies arise on the smallest scales along the diag-
onals. The Hanning filter damps high frequency modes,
and reduces the small scales contributions and conse-
quently the anisotropies. In Fig. 6, we display the PHan

curve as a dashed line, where:

PHan = WH(k)2Pin(k). (13)

Clearly, PHan(k) reproduces well the measured power
spectrum (except at high frequencies, see below), with
N = 2048, which corresponds to the original resolution
of the external ICs, prior to some (external) degrada-
tion procedure. This modification of the spectrum cor-
responds to the most favorable case where an analytic
expression is known or can be found for the filtering ap-
plied on the data.

Secondly, Fig. 6 shows that PHan(k) still lack some
power for k > 40 h/Mpc. This feature corresponds to
the external degradation procedure: one particle out of
eight was provided, out of the original 20483 particles,
resulting in power aliasing at high frequency. This part of
the power spectrum was fitted by a smoothed version of
the measured power spectrum. We call Pfinal(k) this final
power spectrum that includes the effect of the Hanning
Filter and corrects the high frequencies effects due to the
degradation:

Pfinal(k) = PHan(k) k ≤ 40h/Mpc, (14)

S[Pmes(k)] k > 40h/Mpc, (15)

where S[X ] stands for a smoothing operator. By using a
smoothed version of the spectrum, we avoid overfitting of
the fluctuations in the spectrum, which would artificially
reduce the variance at these scales.

To conclude, Pfinal(k) combines both an analytic ex-
pression of the filtered theoretical spectrum at low fre-
quencies and a numerical evaluation at high frequencies,
based on the measured power spectrum. We emphasize
that these choices are by no means unique but were found
to provide phases with the proper spectrum.

4.1.2. Whitening

The “whitening” operation (i.e. getting the white noise
n1(x) from δ(x) and Pfinal(k)) is then performed by de-
convolution as in Eq. (5). For the Horizon Mare Nostrum
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ICs, the power spectrum of the resulting white noise is
shown in Fig. 8. The whitened ICs are now ready to be
processed into new initial conditions: the whitened ICs
serve as low frequency constraints when generating the
refined ICs using mgrafic

Fig. 8.— The power spectrum of the phases contained in the
’Mare Nostrum’ initial conditions, with the expectation value of the
power of a white noise of unit variance substracted . As expected
from a white noise’s realisation, the spectrum fluctuates around an
overall flat line.

The code mpgrafic was then used to generate the
ICs of a ΛCDM hydrodynamical “full physics” simula-
tion (with star formation and metals) with a boxsize of
50h−1Mpc on a grid of 10243 using the Horizon ref-
erence white noise. The comparison between the input
phases and the reproduced phases with mpgrafic is il-
lustrated in Figure 7 which shows both simulations at
redshift 5.7.

4.2. Horizon 4Π

As mentionned earlier, the code mpgrafic was also
used to generate the ICs of Horizon-4Π a ΛCDM dark
matter only simulation based on cosmological parame-
ters inferred by the WMAP three-years results, with a
boxsize of 2h−1Gpc on a grid of size 40963. The purpose
of this simulation is to investigate full sky weak lens-
ing and baryonic accoustic oscillations. The 70 billions
particles were evolved using the Particle Mesh scheme of
the RAMSES code on an adaptively refined grid (AMR)
with about 140 billions cells. Each of the 70 billions cells
of the base grid was recursively refined up to 6 addi-
tional levels of refinement, reaching a formal resolution
of 262144 cells in each direction (roughly 7 kpc/h comov-
ing).

The corresponding power spectrum was measured us-
ing powergrid, and is shown in Figure 11. Since the
simulation snapshots involves a collection of particles, we
had to resample them on a grid using a convolution ker-
nel before estimating the power spectrum. The resulting
(analytical) bias in the power spectrum was corrected;
however, this resampling procedure leads to some power
aliasing close to the Nyquist frequency that cannot be
corrected without additional information. Finally, note

Fig. 9.— A multi resolution view of HORIZON 4Π. The outer re-
gion corresponds to a view of the universe on scales of 16h−1Gpc:
it is generated by unfolding the simulation while cuting a slice
obliquely through the cube in order to preserve the continuity of
the field thanks to the periodicity. The intermediate region cor-
responds to a slice of 2h−1Gpc, while the inner region is at the
original resolution the initial conditions. RAMSES has refined 6
times over the course of the run from that resolution.

Fig. 10.— The measured baryon wiggles at z = 0 together with
the corresponding fit (scaling like exp(−[k/0.1]1.4) sin(2πk/kA)
plus some linear drift in k), which finds that 2π/kA = 113h−1Mpc.

that the AMR structure of the RAMSES code leaves
the opportunity of measuring the power spectrum at
frequencies beyond the Nyquist frequency of the 40963

grid. Such measurements are outside the scope of this
paper, and the power spectrum tool powergrid should
be viewed primarily as a diagnosis tool. Here, as a check
of both the initial condition generation algorithm, includ-
ing the implementation of the baryon wiggles, a novelty
of this implementation, figure 10 displays the measured
baryon wiggles in the z = 0 snapshot, together with the
corresponding fit.
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Parameters Description

4 Power spectrum parametrization: 4 is Eisenstein & Hu
0.24, 0.76, 73.0 Ωm,ΩΛ, H0

0.042 Ωb

0.96 nS

−0.92 Normalization: −σ8 if negative, Qrms if positive
0.01, 100.0 kmin and kmax in h−1Mpc for analytical PS output
−50.0 Box length in h−1Mpc if negative, mesh length in Mpc if positive
1 Grafic1 mode: no choice here
0 Grafic1 mode: no choice here

1 1: Generate noise file and save it / 2: Read from noise file
1234 Initial seed (useful if 1 is set above)
white-256.dat Noise file name
1 1: Constraint of large scale phases with small noise file / 2: No padding
white-128.dat Small (constraint) noise file name

TABLE 2
mpgrafic parameter file example.

5. CONCLUSION

A series of tools to construct and validate initial con-
ditions for large (n ≥ 10243) cosmological simulations in
parallel were presented and illustrated. These tools in-
volve ICs generation with optional constraints, low-pass
filtering and resampling, power spectrum estimation, es-
timation of matter density on a grid from a set of parti-
cle positions and Peano-Hilbert domain decomposition.
As illustrated in section 4, they allowed us to produce
very large cosmological simulations. From these high-
resolution ICs, one can then create at will, zoom-like ini-
tial conditions and constrained ICs with the help of the
resampling tool. Let us emphasize that mprafic pro-
vides an alternative route to initial condition generation
such as Grafic2. It is more versatile as it does not im-
pose any relationship between resolution and boundaries
for the refined sub volumes. The remaining limitation
is the total amount of memory available on distributed
architectures. A logical extension of this work will be
to generate initial conditions corresponding to the local

group. Note finally that with simple amendments, the
above mentionned code could be used in the context of
vector field generation (magnetic field with a given he-
licity), or turbulence.

We warmly thank the Barcelona Supercomputing Cen-
ter and the CCRT staff for their help in producing
the Horizon-MareNostrum and the Horizon-4Π sim-
ulations. We also thank the referee for his care-
ful reading of the manuscript, G. Yepes for his help
with the MareNostrum initial conditions, Stephane
Colombi, Karim Benabed, Julien Devriendt, Thierry
Sousbie for advices, and D. Munro for freely distribut-
ing his Yorick programming language and opengl inter-
face (available at http://yorick.sourceforge.net).
This work was carried within the framework of the
horizon project: http://www.projet-horizon.fr.
All codes described in this paper are available at
ftp://ftp.iap.fr/pub/from users/prunet/.

APPENDIX

MPGRAFICS PARAMETER FILE
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12

Fig. 11.— A Measure of the power spectrum with powergrid of
the Horizon-4Π in the mpgrafic generated initial condition (bot-
tom curve) and at redshift zero for different samplings (top curves
for resp. 5123, 10243and 40963 as labeled), with the modes k in
units of h−1Mpc. Here the density is resampled on the grids using
the nearest grid point kernel (NGP) whose bias is corrected. How-
ever, the shot noise bias was not corrected in this figure, and no
attempt was made to correct the power aliased by the resampling
procedure. Both measurements are compared to resp. the linear
theory and the theoretical predictions of Smith et al. (2003). Note
that the agreement between the linear theory and the generated
initial conditions is excellent for all measured scales.
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ABSTRACT

We have performed a 70 billion dark matter particles N–body simulation in a 2h−1 Gpc periodic box, using the concordance cosmo-
logical model as favored by the latest WMAP3 results. We have computed a full sky convergence map with a resolution of∆θ ≃ 0.74
arcmin2, spanning 4 orders of magnitude in angular dynamical range. Using various high-order statistics on a realistic cut sky, we
have characterized the transition from the linear to the non–linear regime atℓ ≃ 1000 and shown that realistic galactic masking only
affect high–order moments belowℓ < 200. Each domain (Gaussian and non–Gaussian) spans 2 decades in angular scale. This map is
therefore an ideal tool to test map–making algorithms on the sphere. As a first step in addressing the full map reconstruction problem,
we have benchmarked in this paper two denoising methods: 1) Wiener filtering applied on the Spherical Harmonics decomposition of
the map and 2) a new method, called MRLens, based on the modification of the Maximum Entropy Method on a Wavelet decomposi-
tion. While the latter is optimal on large scales, where the signal is Gaussian, MRLens outperforms Wiener on small scales, where the
signal is highly non–Gaussian. The simulated Full-Sky convergence map is freely available to the community to help the development
of new map–making algorithms dedicated to the next generation weak–lensing surveys.

Key words. Methods: N–body simulations; Cosmology: observations; Techniques: image processing

1. Introduction

Weak gravitational lensing, or ’cosmic shear’, provides a unique
tool for mapping the matter density distribution in the Universe
(for reviews, see Refregier 2003; Hoekstra 2003; Munshi et al.
2006). Current weak lensing surveys together cover about 100
square degrees and have been used to measure the amplitude of
the matter power spectrum and other cosmological parameters
(see Benjamin et al. 2007, and references therein). A number of
new instruments are being planned to carry out these surveys
over larger sky fractions (PanSTARRS, DES, SNAP and LSST)1

or even over the full extra-galactic sky (DUNE2). Such wide
field surveys will yield cosmic shear measurements on both large
scales, where gravitational dynamics is in the linear regime, and
small scales, where the dynamics is highly non-linear. The com-
parison of these measurements with theoretical predictions of
the evolution of the density field will place strong constraints
on the cosmological parameters including dark energy parame-
ters (eg. Hu & Tegmark 1999; Huterer 2002; Amara & Refregier
2006; Albrecht & Bernstein 2007). On small scales, the highly
non-linear nature of the density field makes predictions based on
analytic calculations prohibitively difficult and requires the use
of numerical simulations. N-body simulations have thus been
used to simulate weak lensing maps on small patches using the
flat sky approximation (eg. Jain et al. 2000; Hamana et al. 2001;
White & Vale 2004). The simulation of full-sky maps required
for future surveys involve a wide dynamical range in both mass

Send offprint requests to: romain.teyssier@cea.fr
1 http://pan-starrs.ifa.hawaii.edu, https://www.darkenergysurvey.org,

http://snap.lbl.gov and http://www.lsst.org
2 http://www.dune-mission.net

and length scales and is quite challenging for current N body
simulations. The range of scales involved also requires the de-
velopment of efficient algorithms for deriving a mass map from
real noisy data sets. These algorithms need to be well–suited to
both the large–scale signal, essentially a Gaussian random field,
and that at small–scales, where it is highly non–Gaussian and
exhibits localized features.

In this paper, we use a high resolution N-body simulation
to construct, for the first time, a full sky weak lensing map and
test a new map reconstruction method based on the multireso-
lution technique. For this purpose, we use the Horizon simula-
tion, a 70 billion particles N–body simulation, featuring more
than 140 billion cells in the AMR grid of the RAMSES code
(Teyssier 2002). The simulation covers a sufficiently large vol-
ume (Lbox = 2h−1Gpc) to compute a full sky convergence map,
while resolving Milky-Way size halos with more than 100 par-
ticles, and exploring small scales deeply into the non–linear
regime (see Section 2). This unprecedented computational ef-
fort allows us, for the first time, to close the gap between scales
close to the cosmological horizon and scales deep inside virial-
ized dark matter haloes.

The dark matter distribution in the simulation was integrated
in a light cone out to redshift 1, around an observer located at
the center of the simulation box (see Section 3). This light cone
was then used to calculate the corresponding Full Sky lensing
convergence field, which we map using the Healpix pixelisation
scheme (Górski et al. 2005) with a pixel resolution of∆θ ≃ 0.74
arcmin2 (nside = 4096), and add “instrumental” noise for a typi-
cal all–sky survey with 40 galaxies per arcmin2, as expected for
example for the DUNE mission (Réfrégier et al. 2006). Using
an Undecimated Isotropic Wavelet Decomposition of this real-
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2 Teyssieret al.: Full-sky weak-lensing simulation with 70 billion particles

Fig. 1. Full-sky simulated convergence map derived from the Horizon Simulation. Its resolution of 200 million pixels has been
downgraded to fit the page. The various inserts display a zoom sequence into smaller and smaller areas of the sky. The pixel size is
0.74 arcmin2.

istic simulated weak-lensing map on the sphere, we analyze the
statistics of each wavelet plane using second, third and fourth or-
der moments estimator (Section 4). We then apply, in Section 5,
a multiresolution algorithm to filter a fictitious simulatedκ data
set based on an extension of the wavelet filtering technique of
Starck et al. (2006b). We characterise the quality of the recon-
struction using the power spectrum of the error map and com-
pare this to the result of standard Wiener filtering on the sphere.
Our results, summarised in Section 6, illustrate the virtue of high
resolution simulations such as the one reported here to prepare
for future weak lensing surveys and to design new map–making
technics.

2. The Horizon N Body Simulation

This large N body simulation was carried out using the
RAMSES code (Teyssier 2002) for two months on the
6144 Itanium2 processors of the CEA supercomputer BULL
Novascale 3045 hosted in France by CCRT3. RAMSES is a
parallel hydro and N body code based on the Adaptive Mesh
Refinement (AMR) technics. Using a parallel version of the
grafic package (Bertschinger 2001), we generated the initial
displacement field on a 40963 grid for the cosmological pa-
rameters from the WMAP 3rd year results (Spergel et al. 2007),
namelyΩm = 0.24,ΩΛ = 0.76,Ωb = 0.042,n = 0.958,H0 = 73
km/s/Mpc andσ8 = 0.77. We used the Eisenstein & Hu (1999)
transfer function, which includes baryon oscillations. The box
size was set to 2 Gpc/h, which corresponds roughly to a comov-
ing distance to an object atz ≃ 0.8. We use 68.7 billion particles
to sample the dark matter density field, yielding a particle mass
of 7.7 × 109 M⊙ and 130 particles per Milky Way halo. This
large particle distribution was split across 6144 individual files,
one for each processor, according to the RAMSES code domain
decomposition strategy (Prunet et al. 2007). Starting with a base

3 Centre de Calcul Recherche et Technologie

(or coarse) grid with 40963 grid points, each AMR cell is in-
dividually refined if the number of particles in the cell exceeds
40. In this way, the number of particles per cell varies between
5 and 40, so that the particle shot noise is ensured to remain
at an acceptable level. This refinement strategy was applied re-
cursively, with a factor of 2 in linear size between each level
of refinement. At the end of the simulation, we reached 6 lev-
els of refinement with a total of 140 billion AMR cells. This
corresponds to a formal resolution of 2621443 or 7.6h−1 kpc co-
moving spatial resolution. Parallel computing is perfomed using
the MPI message passing library, with a domain decomposition
based on the Peano–Hilbert space–filling curve. The work and
memory load was dynamically adjusted by reshuffling particles
and grid points from each processor to its neighbors. The sim-
ulation required 737 main (or coarse) time steps and more than
104 fine time steps for completion.

3. Light Cone and Convergence Map

We constructed a light cone by storing, at each main time step,
the positions of all the particles lying within the boundaries of
a photon plane moving at the speed of light towards an ob-
server located at the center of the box, based on technics pre-
sented in Hamana et al. (2001). This lead to 348 slices in the
light cone, spanning the redshift range [0,1]. Thanks to the large
size of the simulated volume, the effect of periodic replications
of the computational box are minimised. Each slice was then
converted into a full-sky Healpix map (nside = 4096) of the
average overdensity using a simple “Nearest Grid Point” mass
projection scheme. We assumed that the background galaxies
are on a single source plane located at redshiftzs = 1. The final
convergence map has been finally computed using a new ray-
tracing scheme described in Appendix A and based on a multiple
lens plane approach (see Jain et al. 2000; Hamana et al. 2001;
White & Vale 2004, for other approaches). Using Born approx-
imation for all neighboring light rays is a good approximation
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Fig. 2. Moments of the convergence as a function of the average
multipole moment for each wavelet scale. The variance, skew-
ness and kurtosis are shown as black, blue and red lines, respec-
tively. Solid lines are for a full sky analysis while symbols cor-
respond to our realistic sky cut analysis.

in the linear regime of structure formation, but certainly fails in
the non-linear regime. Consequently, distortion effects of lensing
beyond the first order cannot be reliably simulated. Moreover, as
shown by Van Waerbeke et al. (2001), the Born approximation
introduces a relative error in the skewness of the signal of the
order of 10% on large scales where the convergence is Gaussian,
and around 1% on small scales in the non–linear regime.

The resulting full sky Healpix map, with a pixel size of∆θ ≃
0.74 arcmin2 is shown in Figure 1, with small inserts to high-
light the large dynamical range achieved. Higher resolution im-
ages are available athttp://www.projet-horizon.fr. The
shot noise corresponding to our 70 billion particles has a small
impact on the map. As shown in Figure 3, the shot noise is well
below the expected instrumental noise, and even low enough to
be negligeable in the spectral analysis of the signal.

4. High–Order Moments and Realistic Sky Cut

In Figure 1 the signal appears as a typical Gaussian random field
on large scales, similar to the Cosmic Microwave Background
map seen by the WMAP satellite (Spergel et al. 2007). On small
scales, the signal is clearly dominated by clumpy structures (dark
matter halos) and is therefore highly non-Gaussian. To charac-
terize this quantitatively, we have performed a wavelet decom-
position of our map using the Undecimated Isotropic Wavelet
Transform on the sphere (Starck et al. 2006a), and, for each
wavelet scale, we have computed its second-, third- and fourth-
order moment. We used 11 wavelet scales with central multipole
ℓ0 = 9000, 4500, 2250, 1125, 562, 282, 141, 71, 35, 18. For
each of these maps, we have computed the varianceσ2 =<κ2>,
the normalized skewnessS =<κ3> /σ3 and the normalized kur-
tosis K =< κ4 > /σ4. Results are plotted in Figure 2 as solid
lines with various colors. We see that the variance of the signal

Fig. 3. Angular power spectrum of the simulated convergence
map(black solid line), compared to a fit based on the Smith et
al. (2001) analytical model with error bars corresponding to our
noise model (pink area). Also shown is the prediction from linear
theory (pink dashed curve). The noise power spectrum is plotted
as the dashed black line. The green solid line is the power spec-
trum of the error map obtained with the Wiener filter method,
while the blue solid line are that for the MRLens method.

steadily rises for higher and higher multipoles, and saturates at a
fraction of 10−4, corresponding to the value predicted from the
non–linear gravitational clustering forℓ ≥ 6000. The variance of
each wavelet plane can be considered as a band power estimate
of the angular power spectrum, as can be checked using Figure 3.
In the same figure, we have also plotted for comparison thelin-
ear power spectrum, in order to highlight the scale below which
non–linear clustering contributes significantly, i.e. forℓ > 750 or
equivalentlyθ < 15

′

, as first pointed out by Jain & Seljak (1997).
The skewness and the kurtosis are more direct estimators of the
non–Gaussianity of the signal: departure from Gaussianity oc-
curs aroundℓ ≃ 750− 1500, where both statistics cross unity.
Thanks to the large dynamical range of the Horizon simulation,
we have computed a map spanning two decades in angular scales
in the linear, Gaussian regime and two additional decades in an-
gular scales deep into the non–linear, non–Gaussian regime.

It is clear from Figure 2 that at smallℓ, the skewness and
the kurtosis of the map are strongly affected by cosmic vari-
ance. Moreover, the statistics of the convergence field cannot be
measured in practice over the entire sky because of sky cuts im-
posed by the presence of saturated stars and by absorption in
the galactic plane. We have estimated the impact of this sky cut
on the accuracy of our multiresolution statistical analysis. For
this purpose, we have computed the expected number of bright
stars that would typically saturate the CCD’s of a wide field sur-
vey (B-magnitude< 20) , and removed from our analysis each
pixel contaminated by at least 3 bright stars, based on a random
Poisson realization of bright stars in our Galaxy (according to the
model of Bahcall & Soneira (1980), Appendix B). We obtain a
mask with 40% of the sky removed, corresponding roughly to a
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Fig. 4. Reconstruction of convergence maps with our 2 filtering techniques. The top panels show the 2.5o × 2.5o square map cor-
responding to first zoom sequence of Figure 1. The bottom panels are subset of the corresponding top images with linear size 45

′

.
From left to right, we show the original signal, the noisy image, the Wiener-filtered image and the the MRLens-filtered image.

±20o Galaxy cut. The resulting statistics are overplotted as lines
with symbols in Figure 2. The transition scale, for which the
departure from Gaussianity is significant, can still be reliabily
estimated aroundℓ ≃ 750− 1500. We conclude that the cosmic
variance of the cut sky affects high–order moments only below
ℓ ≃ 200.

5. Map–Making using Multiresolution Filtering

The full-sky simulated convergence maps described above can
be used to analyze and compare denoising (or map–making)
methods on the sphere. For this purpose, we have considered
a purely white instrumental noise, typical of the next generation
all–sky surveys, with root mean square per pixel of areaAp given
by σN = 0.3/

√

ngalAp with ngal = 40 background galaxies per
arcmin2. Recovering the best convergence map from noisy data
will be an important step in future surveys. The reconstructed
map can indeed be used to construct a mass selected halo cata-
log, measure its statistical properties to constrain cosmological
parameters, as well as to compare it to cluster catalogues de-
tected via other techniques (X-ray, galaxy counts or SZ). Note
that we restrict ourselves to the full sky denoising of a conver-
gence map already reconstructed from the shear derived from
galaxy ellipticities.

A straightforward filtering method is the Wiener filtering
scheme, which is optimal for Gaussian random fields, and is
thus expected to work effectively at large scales. DefiningS ℓ
as the power spectrum of the input signal (see Figure 3) and
Nℓ the power spectrum of the noise, this method involves con-
volving the noisy map by the Wiener filter defined asWℓ =
S ℓ/(S ℓ + Nℓ). The results of the Wiener filtering approach are
shown in Figure 4. Comparing with the input signal map, we
conclude that, although the agreement is satisfactory on large

scales, the dense clumps clearly visible in the image are poorly
recovered as they have been over-smoothed.

A dedicated weak lensing wavelet restoration method, called
MRLens, has recently been presented (Starck et al. 2006b). It
can be seen as an extension of the Maximum Entropy Method
(MEM), but with a different concept of information. In MRLens,
the entropy constraint is not applied on the pixels of the solution,
but rather on its wavelet coefficients. This allows us to take into
account more efficiently the multi-scale behavior of the infor-
mation. MRLens was however designed for weak lensing maps
with smaller surface on the sky, for which the non–Gaussian sig-
nal is stronger. MRLens has been extended here to the sphere
by considering independently each of the 12 Healpix base pixels
covering the sphere as 12 independent Cartesian maps, on which
we applied the MRLens algorithm of Starck et al. (2006b). Full
sky denoising performed with MRLens is shown in Figure 4. It
performs much better than Wiener on small scales, with dense
clumps more accurately estimated, but less efficient than Wiener
at large scale when recovering low frequency waves in the map.
We have also computed the angular power spectrum of the error
map (see Figure 3) for both cases (Wiener and MRLens). We see
that Wiener filtering outperforms MRLens on large scales.

Interestingly, the MRLens errors decrease significantly
above the transition scale we have identified in the last sec-
tion aroundℓ ≃ 1000 (see Fig. 3). This strongly suggests
that new methods should be developed using a multiresolution
formulation; for instance using spherical harmonics on large
scales, while exploiting wavelets coefficients on small scales.
The methodology of such a combined approach could be based
on the idea of Combined Filtering introduced by Starck et al.
(2006a).
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6. Conclusion

Using the 70 billion particles of the Horizon N–body Simulation,
we have computed for the first time a realistic full sky conver-
gence map with a pixel resolution of∆θ ≃ 0.74 arcmin2. We
have analyzed the resulting map using multiresolution statistics
(variance, skewness and kurtosis) and angular power spectrum
analysis. We have shown that this simulated map spans 4 decades
of usefull signal in angular scale, with 2 decades within the lin-
ear, Gaussian regime and 2 decades well into the non–linear,
non–Gaussian regime. We have shown that, when considering a
realistic sky cut, we can reliabily estimate high–order moments
of the map aboveℓ ≃ 200. Using even higher resolution maps,
angular scales smaller thanθ ≃ 1

′

could be explored in future
works, although the mass ditribution at these scales might be af-
fected by baryons physics (Jing et al. 2006), so that the present
map might already cover all cosmologically relevant scales.

As a first step towards a realistic map–making procedure,
we have tested two denoising schemes on a simplified ficti-
tious dataset derived from the full sky map, namely Wiener fil-
tering and the MRLens method (Starck et al. 2006b). We have
shown quantitatively that Wiener filtering is the best method on
large scales, but some signal is lost at small scales. MRLens
performs better on small scales and recovers the dense clumps
associated to dark matter halos, but deals less accurately with
low frequency waves in the map. Hence this work demon-
strates the need for an hybrid multiresolution approach, e.g. by
combining spherical harmonics and wavelet coefficients. The
present analysis will be extended in future works to map–
making algorithms dealing directly with galaxy shears. The
simulated convergence map is freely available for download at
http://www.projet-horizon.fr. It may prove to be an ef-
fective tool for the design of new map–making methods and for
the preparation of the next generation weak–lensing surveys.
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Appendix A: Computing the convergence maps
from simulations

We first recall how to compute the convergence in the Born ap-
proximation, and then we present our new ray-tracing scheme.

A.1. Born approximation

We start from the convergence formula relating it to the density
contrast:

κ(n̂) =
3
2
Ωm

∫ zs

0

dz
E(z)
D(z)D(z, zs)
D(zs)

1
a(z)
δ(

c
H0
D(z)n̂, z)

which is valid for sources at a single redshiftzs, andD(z) =
H0
c χ(z)is the adimensional comobile radial coordinate (dD =

dz/E(z)). We will now rewrite this formula in a form that is more
suited to integration over redshift slices in a simulation.

κ(θpix) ≈
3
2
Ωm

∑

b

Wb
H0

c

∫

∆zb

cdz
H0E(z)

δ(
c

H0
D(z)n̂pix, z)

where

Wb =

(
∫

∆zb

dz
E(z)
D(z)D(z, zs)
D(zs)

1
a(z)

)

/

(
∫

∆zb

dz
E(z)

)

is a slice-related weight, and the integral over the density con-
trast reads

I =
∫

∆zb

cdz
H0E(z)

δ(
c

H0
D(z)n̂pix, z)

=

∫

∆χb

dχδ(χn̂pix, χ)

≈
V(simu)

Npart(simu)

(

Npart(θpix, zb)

S pix(zb)
− ∆χb

)

where

S pix(zb) =
4π

Npix

c2

H2
0

D2(zb)

is the comoving surface of the spherical pixel. Putting all to-
gether, we get the following formula for the convergence map
(forgetting the∆χb term that leads to a constant term):

κ(θpix) =
3
2
Ωm

Npix

4π

(H0

c

)3 V(simu)
Npart(simu)

∑

b

Wb
Npart(θpix, zb)

D2(zb)
(A.1)

This is the equation used to get the convergence map in the Born
approximation.

A.2. Ray–tracig using multiple planes

We will discuss here the formulae needed for the multi-plane
computations, where we consider the lensing by a number of
thin lenses located at{zb}. Let us define

κ f ac =
3
2
Ωm

Npix

4π

(H0

c

)3 V(simu)
Npart(simu)

and

ζ(zb, θ) = κ f acω(zb)
Npart(θ, zb)

D2(zb)
(A.2)

with

ω(zb) =

(
∫

∆zb

dz
E(z)
D(z)
a(z)

)

/

(
∫

∆zb

dz
E(z)

)

To follow the light rays, we are interested in computing the an-
gular displacement field for each rayi due to a slice atzb. We
then define

αb
i =

(

−2∇∆−1 (ζ(zb))
)

(θi) (A.3)

where the gradient and Laplacien are computed using angular
covariant derivatives on the (unit) sphere, andθiis the current di-
rection of light rayi when it hits the sliceb. Now, let us start
from light rays being back-propagated from the observer at z=0
towards the source (here at z=1). Let us denote by{θ1} the lo-
cation of the Healpix centers, which corresponds to the initial
directions of the back-propagated rays emanating from the ob-
server. The tangent vectors to each light ray will be modified by
the deflection field at each lens plane, defined by equation A.3.
Then, computing the displacement of the rays at sliceb reads

αb
i =

(

−2∇∆−1(ζ(zb)
)

(θbi )

We then update the directionβb
i of the rays according to

βb
i = R(nb

i × α
b
i , ‖α

b
i ‖)β

b−1
i (A.4)
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whereβ0
i = n1

i (light rays are shot from observer, thus perpen-
dicularly to the first slice), andnb

i is the vector normal to slice
b at the intersection of light-rayi on sliceb. Equation A.4 can
be simplified by noting thatα is naturally expressed in the local
(eθ,eφ) basis of the tangent plane at position (θ, φ):

α = ‖α‖(cosδeθ + sinδeφ)

Once the new value ofβ has been calculated, one needs to com-
pute the intersection of the light rays with the next shell. Let us
call xb

i the cartesian position of the intersection of light rayi with
sliceb, then the next intersection will be given by

xb+1
i = xb

i + λβ
b
i

λ2 + 2λ(xb
i .β

b
i ) + R2

b − R2
b+1 = 0 , λ > 0

assuming thatβ is kept strictly unitary, andRb is the comov-
ing radius of sliceb. Oncexb+1

i is known, it is easy to compute
the newθb+1

i positions. The contributions toκ are then calculated
following Equation A.1, but where the slice contributions are in-
terpolated at the displaced positions:

κ(θi=pix) =
3
2
Ωm

Npix

4π

(H0

c

)3 V(simu)
Npart(simu)

∑

b

Wb
Npart(θbi , zb)

D2(zb)
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ABSTRACT

The physics of diffuse gas accretion and the properties of the cold and hot modes of
accretion onto proto-galaxies between z=2 and z=5.4 are investigated using the large
cosmological simulation performed with the RAMSES code on the MareNostrum su-
percomputing facility. Galactic winds, chemical enrichment, UV background heating
and radiative cooling are taken into account in this very high resolution simulation.
Using accretion–weighted temperature histograms, we have perfomed two different mea-
surements of the thermal state of the gas accreted towards the central galaxy.
The first measurement, performed using accretion–weighted histograms on a spherical
surface of radius 0.2Rvir centred on the densest gas structure in the vicinity of the
halo centre of mass, is a good indicator of the presence of an accretion shock in the
vicinity of the galactic disc. We define the hot shock mass, Mshock, as the typical halo
mass separating cold dominated from hot dominated accretion in the vicinity of the
galaxy.
The second measurement is performed by radially averaging histograms between
0.2Rvir and Rvir, in order to detect radially extended structures such as gas fila-
ments: this is a good proxy for detecting cold streams feeding the central galaxy. We
define Mstream as the transition mass separating cold dominated from hot dominated
accretion in the outer halo, marking the disappearance of these cold streams.
We find a hot shock transition mass of Mshock = 1011.6M⊙, with no significant evolu-
tion with redshift. Conversely, we find that Mstream increases sharply with z. This is
in striking agreement with the analytical predictions of Birnboim & Dekel (2003) and
Dekel & Birnboim (2006), if we correct their metallicity assumptions to those we mea-
sure when computing radiative cooling rates. We therefore find that metal enrichment
of the intergalactic medium (IGM) is a key ingredient in determining the transition
mass from cold to hot dominated diffuse gas accretion.
We find that the diffuse cold gas supply at the inner halo stops at z=2 for objects with
stellar masses of about 1011.1M⊙, which is close to the quenching mass determined
observationally by Bundy et al. (2006). However, its evolution with z is not well con-
strained, making it difficult to rule out or confirm the need for an additional feedback
process such as AGN.

Key words: methods: Numerical simulations, N-body, hydrodynamical, adaptive
mesh refinement galaxies: formation

1 INTRODUCTION

It is currently accepted that the ΛCDM theory provides
a framework with which a large number of observed
galaxy properties can be interpreted. This framework is
referred to as the “hierarchical scenario of galaxy forma-
tion”. Most importantly, this framework explains why many

of these properties (physical sizes, black hole mass, bulge
mass...) are found to correlate simply with galaxy mass
(Kauffmann & Haehnelt 2000). Amidst this apparently sim-
ple scaling of galaxy properties with mass, the discovery
of a bimodality in the colour distribution of Sloan Dig-
ital Sky Survey (SDSS) galaxies (Kauffmann et al. 2003)
stood unexpected and at odds with the predictions of hi-
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erarchical galaxy formation. Galaxy bimodality can indeed
appear to be anti-hierarchical, as can be grasped from the
following simple argument. Under the assumption (com-
mon in early semi-anlytical models, hereinafter SAMs) that
the star formation rate (hereafter SFR) is proportional to
the gas accretion rate, the latter being proportional to
the halo mass to some power (van den Bosch 2002), one
expects that, at all times, objects with the highest SFR
should be the largest galaxies. In this framework, massive
elliptical galaxies would still be blue and forming stars at
z = 0. The fact that observed elliptical galaxies do not
obey this fundamental prediction of the hierarchical sce-
nario is the origin of the so-called “anti-hierarchical” be-
haviour of massive red galaxies (Rasera & Teyssier 2006).
This observation is further supported by the analysis of
spectroscopic data, using star formation history reconstruc-
tion methods (Reichardt et al. 2001; Panter et al. 2003;
Cid Fernandes et al. 2004; Ocvirk et al. 2006b,a). Since
these giant galaxies are in the form of apparently “dead”
(i.e. no ongoing star formation) red elliptical galaxies, the
quest has been ongoing for several years to find the origin
of this halt in the star formation process (also refered to as
“star formation quenching”).

A substantial part of astrophysical research nowadays
is devoted to searching for new physical mechanisms able
to prevent cold gas accreted at Rvir from falling into the
galactic disc, condensing into molecular clouds and forming
stars. The heating of the infalling gas from virialization and
feedback from supernovae and hot stars has been considered
as a serious candidate for more than a decade but seems
insufficient to explain the drop in star formation of massive
systems in recent times (Rasera & Teyssier 2006), leading
the authors to suggest a superwind phase for the high mass
end of the galaxy population.

Active Galactic Nuclei (AGN) feedback has been pro-
posed by several authors (Bower et al. 2006; Hopkins et al.
2007) as the origin of this quenching, and has the additional
desirable propery of preventing cooling flows in the core
of the most massive cluster galaxies (De Lucia et al. 2006;
Cattaneo & Teyssier 2007). However, AGN physics are still
poorly understood, both theoretically (because of the intrin-
sic complexity of relativistic magnetohydrodynamic flows
around black holes, see for instance Proga (2007)), and ob-
servationally (because of the small physical extent of the
region of interest). Moreover, the mechanism involved in
transferring the energy from the black hole accretion flow to
the surroundings remains elusive. Jets have been proposed,
and have the advantage of being supported by observations,
but shock waves arising from the interaction of the jet with
the interstellar medium would tend to push away the hot
gas while leaving surrounding clumps of cold gas rather un-
changed (Slyz et al. 2005). However, this would depend on
the position of the clumps with respect to the jet origin and
the violence of the shock, and for instance, with a Mach
number ≈ 10 and density contrast ≈ 10, Nakamura et al.
(2006) do indeed predict cloud destruction.

A jet-driven turbulence is another alternative, and to
assess its relevance one has to repeat experiments such as
those of Banerjee et al. (2007) and cattaneo07 at the galac-
tic scale. The balance between the mechanical power out-
put of bubble-carving jets (estimated from radio luminos-
ity at 1.4 GHz) and the radiative losses of the hot gas

halo of galaxy clusters has been proposed as a signature
of the global control of gas cooling by interaction with a
central black hole jet (Best et al. 2006). However, a neces-
sary requirement for this scenario to work for galaxies is
that the energy available in the jet remains in the galaxy,
while observations show that radio sources have linear sizes
significantly larger than their host galaxies. It is thus not
clear how jets can prevent star formation to happening, and
it has also been argued that they might actually enhance

star formation (Silk 2005). More generally, the causal rela-
tion between AGNs and star formation is unclear: does the
starburst trigger AGN activity and a subsequent quench-
ing or does the AGN activity trigger the starburst ? As
a matter of fact, strong AGN activity is seen in galax-
ies with intense star formation activity (Wild et al. 2007;
Cid Fernandes et al. 2001), demonstrating that AGN and
star formation co-exist, although this could be just a short-
lived phase (Kauffmann et al. 2003; Schawinski et al. 2007;
Ciotti & Ostriker 2007). Finally, purely radiative feedback
from the accretion disc around the black hole might be an
alternative (Fabian et al. 2006, 2008), but the mechanical
coupling through which the dust phase being blown away
drags the cold gas along is uncertain. Hence, it is worth in-
vestigating possible quenching mechanisms other than AGN
feedback. In this respect, the detailed analysis of diffuse gas
accretion around star forming galaxies is of great interest
because it can provide a form of self-regulation. The sem-
inal paper of Birnboim & Dekel (2003) (hereinafter BD03)
investigates the stability of hot accretion shocks around disc
galaxies, showing that such shocks can exist only for haloes
more massive than ≈ 1011.5M⊙. In an ideal spherical flow,
this hot shock would prevent cold gas from reaching the
disc (or at least slow it down) and thus is likely to af-
fect star formation. Dekel & Birnboim (2006) (hereinafter
DB06) extended this approach to the study of the stability
of cold streams (“filaments”) within the shock–heated halo
gas. They showed that the observed transition mass from
blue to red galaxies at z ≃ 0 could be matched to the crit-
ical mass at which a stable accretion shock can exist and
that stable filaments would disappear around z=1.5. These
findings were also driven and further confirmed by numer-
ical simulations of high redshift galaxy formation based on
adaptive mesh refinement techniques (AMR) as in Kravtsov
(2003), or smoothed particle hydrodynamics (SPH), as in
Kereš et al. (2005). DB06 actually presented the rise of sta-
ble hot shocks not as the origin of the quenching but only
as a necessary condition for an efficient AGN feedback.

However, it is too early to discard the existence of sta-
ble hot shocks or the destruction of the gas filaments as the
origin of the galaxy bimodality. Indeed, no numerical study
has considered the influence of chemical enrichment, which
was shown in DB03 and DB06 to have a crucial impact on
shock stability, since metallicity, along with gas density, de-
termines the cooling rate (Sutherland & Dopita 1993). More
recently, Cattaneo et al. (2007) checked the good behaviour
of SAMs with respect to hot and cold accretion modes
by comparing GalICS (Hatton et al. 2003) results to the
Kereš et al. (2005) simulation, which does not take into ac-
count chemical enrichment.

In this paper, we address these very issues using the
results of a very large cosmological simulation performed
on the MareNostrum supercomputer at the Barcelona Su-
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percomputer Centre. It was performed within the Horizon
collaboration (http://www.projet-horizon.fr) using the
RAMSES code (Teyssier 2002), which now includes a de-
tailed treatment of metal–dependent gas cooling, UV heat-
ing, star formation, supernovae feedback and metal enrich-
ment.

The simulation parameters (Lbox = 50 h−1Mpc, 10243

dark matter particles and a spatial resolution of about 1
h−1kpc) are optimal to capture the most important proper-
ties of gas accretion around typical Milky Way–like galaxies.
The large box size allows us to have a large (more than 100)
sample of L⋆ galaxies at z > 2 and above, with a strong sta-
tistical significance. For this mass scale, the main transitions
in the accretion regime (appearance of hot accretion shocks,
disappearance of cold filaments) effectively takes place be-
tween 2 6 z 6 6. Moreover, the AMR method adopted in
RAMSES allows us to investigate the flow in an Eulerian
framework, in contrast to the Lagrangian approach adopted
by Kereš et al. (2005). Finally, it was recently observed that
the apparent bimodality mass scale might increase with red-
shift (Juneau et al. 2005; Bundy et al. 2006; Hopkins et al.
2007), an intriguing behaviour that has yet to be checked
against models.

The outline of this paper is as follows: first we describe
in Sec. 2 our methodology, in terms of numerical techniques
and statistical measurements. We specifically introduce a
new estimator to analyse the thermodynamical properties
of accretion, namely accretion–weighted histograms. We then
present in Sec. 3 our main results concerning the physical
properties of the accreted gas. Our findings are then dis-
cussed in the framework of earlier theoretical modelling in
Sec. 4, and recent observations in Sec. 5.

2 METHODOLOGY

In this section, we first describe the MareNostrum simula-
tion: a cosmological N body and hydrodynamics simulation
of unprecedented scale with most of the physical processes
involved in galaxy formation theory. We then describe our
dark matter halo catalogue and its corresponding proper-
ties, present our statistical tool – accretion–weighted tem-
perature histograms, and discuss our criterion for separating
diffuse gas accretion from satellite merging.

2.1 The MareNostrum simulation

We have performed a cosmological simulation of unprece-
dented scale, using 2048 processors of the MareNostrum
computer installed at the Barcelona Supercomputing Centre
in Spain. We have used intensively the AMR code RAM-
SES (Teyssier 2002) for 4 weeks dispatched over one full
year. This effort is part of a consortium between the Hori-
zon project in France (http://www.projet-horizon.fr)
and the MareNostrum galaxy formation project in Spain
(http://astro.ft.uam.es/∼marenostrum). The main as-
set of this project relies on using a quasi exhaustive num-
ber of physical ingredients that are part of the current
theory of galaxy formation, and at the same time cov-
ering a large enough volume to provide a fair sample of
the universe, especially at redshifts above one. Specifi-
cally, we have considered metal-dependent cooling and UV

heating using the Hardt and Madau background model.
We have incorporated a simple model of supernovae feed-
back and metal enrichment using the implementation de-
cribed in Dubois & Teyssier (2008). For high–density re-
gions, we have considered a polytropic equation of state
to model the complex, multi-phase and turbulent structure
of the ISM (Yepes et al. 1997; Springel & Hernquist 2003)
in a simplified form (see Schaye & Dalla Vecchia (2007);
Dubois & Teyssier (2008)): the ISM is defined as gas with
a density greater than n0 ≃ 0.1 H/cm3. Star formation has
also been included, for ISM gas only (nH > n0), by spawn-
ing star particles at a rate consistent with the Kennicutt
law derived from local observations of star forming galaxies.
Technically, we have ρ̇∗ = ρgas/t∗ where t∗ = t0(nH/n0)

−1/2

and t0 = 8 Gyr. Recast in units of the local free-fall time,
this corresponds to a star formation efficiency of 5%. The
simulation was started with a base grid of 10243 cells and
the same number of dark matter particles, and the grid was
progressively refined, on a cell–by–cell basis, when the local
number of particles exceeded 10. A similar citerion was used
for the gas, implementing what is called a Quasi-Lagrangian
refinement strategy. Five additional levels of refinement were
considered, but the maximum level of refinement was ad-
justed so that the minimum cell size in physical units never
exceeded one kpc. In this way, our spatial resolution is con-
sistent with the angular resolution used to derived the Ken-
nicutt law from observations. On the other hand, we are not
in a position to resolve the scale height of thin cold discs so
the detailed galactic dynamics are likely to be be affected
by resolution effects.

The simulation was run for a ΛCDM universe with
ΩM = 0.3, ΩΛ = 0.7, ΩB = 0.045, H0 = 70 km/s/Mpc,
σ8 = 0.9 in a periodic box of 50 h−1Mpc. Our dark matter
particle mass (mpart. ≃ 8 × 106 M⊙), our spatial resolution
(1 kpc physical) and our box size make this simulation ide-
ally suited to study the formation of galaxies within dark
matter haloes, from dwarf– to Milky Way–sized objects at
high redshift. For large galaxies, we can nicely resolve the
radial extent of the disc, but not its vertical extent, while for
small galaxies, we can resolve the gravitational contraction
of the cooling gas, but barely the final disc. The simulation
was stopped at redhift z ≃ 1.5 the allocated time ran out.
The total number of star particles at the end of the simula-
tion was more than 2 × 105, and the total number of AMR
cells was greater than 5 × 109.

2.2 Virial spheres at rest

In order to analyse the physical properties around high red-
shift galaxies, we have built from our simulation data a
Friend–Of–Friend (FOF) halo catalogue (Efstathiou et al.
1988). For each snapshot and for each halo, we compute
its mass and its centre of mass. The Virial radius is defined
here as R200b, the radius at which the average mass density
in the halo is 200 times the background matter density. We
then define the Bright Central Galaxy (BCG) of the halo
as the highest gas density peak in a sphere centred on the
halo centre of mass and of radius 0.5Rvir. This position will
serve as our reference point for computing radial accretion
rates. We checked a posteriori that this position also also
to the most massive substucture in the halo. We subtract
from the gas velocity the mass-averaged velocity of the gas
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inside the Virial radius in order to put the system at rest.
The basic physical properties of the gas are then mapped
onto concentric shells centred on the BCG position.

2.3 A new tool: accretion–weighted histograms

It is quite common in cosmological simulations including gas
physics to analyse the thermodynamical state of baryons
using so–called “phase space diagrams”1 (Cen & Ostriker
1993; Katz et al. 1996; Rasera & Teyssier 2006), for which
the total mass fraction in a given gas density and tempera-
ture range is given as 2D histograms. This sort of diagram
yields only a static view and does not include any reference
to mass or energy fluxes. Instead, we propose to gain insight
into the accretion regimes of cosmological haloes by using a
new tool: accretion–weighted phase space diagrams. We still
use temperature and density probability distribution func-
tions, but we weight the contribution to each temperature
and density bin by the local accretion rate. In this way, static
regions will be discarded from the analysis, while large radial
velocity regions will dominate the signal. Since the accretion
is towards the BCG in the halo centre, we define concentric
shells where the temperature, density, velocity and metal-
licity are computed by smoothing the underlying 3D fields
with a window function of scale R:

TR(r, θ, φ) =

Z

T (x′)WR(x− x
′)d3

x
′ . (1)

We then sample this 3D field on various spherical surfaces
of radius 0.2Rvir < r < Rvir, with an angular resolution
∆θ ≃ R/r. In the current analysis, we fix R ≃ 2kpc, twice
our spatial resolution, so that for our largest haloes, the
sphere was sampled with 400 × 400 pixels. We obtained for
each halo angular maps of each smoothed gas variables (den-
sity, velocity, temperature, metallicity). We then define the
local accretion rate ṁR as (see e.g. Aubert et al. (2004),
Aubert & Pichon (2007))

ṁR(r, Ω) =
∂Ṁ

∂Ω
= ρR vR · n r2 , (2)

where the solid angle is defined by dΩ = sin θdθdφ in the
direction Ω = (θ, φ) and the total accretion rate across the
sphere is recovered using Ṁ =

R

ṁR dΩ. For most of this pa-
per, we will omit the density variable, ρ, to focus on the ther-
mal and chemical properties of the accretion flow, described
here by T and Z. At a given radius, r, we can marginalize
Eq. (2) over all cells which have a given temperature, T , and
obtain the accretion rate per unit temperature as

ṁR(r, T ) =

Z

δD(T − T (Ω)) ṁR dΩ =
∂Ṁ

∂T
, (3)

where δD is the Dirac function. The total accretion rate
across the sphere is recovered using Ṁ =

R

ṁdT . Simi-
larly, while marginalizing over all angles which have a given
temperature, T , and a given metallicity, Z, we may intro-
duce our main tool, the accretion-weighted temperature–
metallicity two-dimensional probability density function

1 as in different physical phases, not position-velocity phase space

(hereinafter PDF)

ṁR(r, T, Z)=

Z

δD(T −T (Ω))δD(Z −Z(Ω))ṁRdΩ =
∂2Ṁ

∂T∂Z
.

(4)
From now on, we drop the subscript R, since in the present
analysis it is fixed to the physical resolution of the simula-
tion.

2.4 Diffuse accretion versus clumpy satellites

In this paper, we are interested in characterizing the ac-
cretion of diffuse intergalactic gas rather than the accre-
tion of galaxy satellites. We therefore need to separate the
contribution of infalling gaseous discs from the smooth ac-
cretion through filaments or other diffuse components. In
our model, the star–forming dense ISM is defined as nH >
0.1H/cm3. We remove from our spherical analysis all pixels
whose density exceeds this theshold. Although this trun-
cation may seem brutal, infalling satellites are frequently
embedded in diffuse filaments. As such, the filament is the
natural surrounding of the infalling satellite, and deciding
where the boundary lies is difficult yet critical. In this con-
text, a density criterion is still the most straightforward sep-
aration method. In the future, a possible alternative could
be to use a segmentation algorithm to separate the filament
from the satellites on topological grounds, in the spirit of
the skeleton reconstructions of Sousbie et al. (2008).

2.5 Entire halo versus galaxy vicinity

We use two distinct estimators, ṁ and 〈ṁ〉, to characterize
the diffuse gas accretion around the central galaxy.
The first one, ṁ is directly related to the gas properties close
to the galactic disc: we compute the accretion-weighted T-
Z histogram, Eq. (4), at radius r = 0.2Rvir, which turned
out to be close enough to, but not intersecting, the neutral
HI disc. This region defines the disc vicinity, for which we
would like to analyse the thermal properties of the accreted
gas. We easily detect the presence of an accretion shock up-
wind of the disc if the accreted gas is predominantly in a
hot phase. On the other hand, if the accreted gas is predom-
inantly in a cold phase, it means that no accretion shock is
present above 0.2Rvir.
The second estimator, 〈ṁ〉, is based on averaging the
accretion-weighted histograms measured at different radii
between 0.2Rvir and Rvir.

〈ṁ〉(T, Z) =

Z Rvir

0.2Rvir

ṁ(r, T, Z)
dr

∆r
, (5)

where ∆r ≡ 0.8Rvir and ṁ(r, T, Z) is given by Eq. (4).
Coadding different histograms at different radii increases
the weight of coherent radial structures such as filaments
or cold streams that eventually extend out to (or beyond)
the Virial radius. Indeed, if the velocity flow is chemo-
thermodynamically similar between two neighbouring shells,
the corresponding histograms will add up consistently. Note
that under the assumption of a steady spherically symmetric
flow, the accretion rate does not depend on radius. As we will
see later on, even in the presence of an accretion shock, cold
streams can persist in the halo and directly feed the central
galaxy with fresh cold gas. This phenomenon will appear in
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our histograms as a dominant cold phase. If on the other
hand these filaments are destroyed, the histograms will be
dominated by the hot phase out to the halo Virial radius.

3 PROPERTIES OF DIFFUSE GAS

ACCRETION

We computed the accretion-weighted PDFs for several hun-
dred haloes spanning dark matter masses between 1010M⊙

and 4 × 1012M⊙ between 2 6 z 6 5. We then co-added
(stacked) these histograms for haloes of the same mass range
in order to produce an “average” PDF for a given mass scale.
We use these to study the typical temperature and metal-
licity distribution of the accretion flow, and the transition
mass between the hot dominated and the cold dominated
accretion regimes.

3.1 Bimodality in the temperature distribution

The top panels of Fig. 1 shows several radially–averaged
accretion–weighted stacked–histograms (following Eq. (5))
for haloes of mass MDM = 2×1010, 2×1011 and 2×1012M⊙

taken from the z = 4 snapshot of the simulation. We see
that the accretion pattern involves two main distinct com-
ponents:

(i) A cold, metal-rich component associated with the close
vicinity of galaxy satellites

(ii) A hot, metal-poor component, the temperature and
contribution of which increases sharply with halo mass

As such, accretion itself is clearly bimodal in temperature.
Indeed, at any halo mass, little mass is ever accreted around
T ≈ 2.5 × 105 K. Instead, most of the mass is accreted ei-
ther below or above this temperature. As already noted by
BD03 and Kereš et al. (2005), this involves a link with the
physics of cooling: little mass will be accreted at tempera-
tures where the cooling is efficient, since gas cannot remain
at this temperature for very long. This provides a natural
temperature threshold that allows us to separate the cold
and the hot accretion modes, associated with low and high
mass haloes respectively. The middle and bottom rows of
Fig. 1 show that this bimodality in temperature is also seen
at z = 2.5, in the whole halo as well as the inner halo.

A third component is seen as the low-metallicity tail
of the cold metal-rich component. It is very prominent at
z = 4 and disappears at z = 2.5 in the inner and outer halo.
It can be identified with the dense, cold, metal poor gas fil-
aments seen in Fig. 5. This is best seen at z = 4, where the
filaments are better defined. Their density is somehow inter-
mediate between the galaxy discs and the background. The
left bottom panel clearly shows a cold metal-poor filament
tunneling down all the way from almost 2Rvir to the central
galaxy’s disc. On the other hand, the cold metal-rich denser
phase makes up the galaxy discs. The hot phase, with in-
termediate density and metallicity, is distributed in a large
bubble, of radius smaller than Rvir at z = 4 but significantly
larger than Rvir at later times.

The accretion-weighted PDFs can be normalized using
the total diffuse gas accretion at the Virial radius. Fig-
ure 2 shows that the accretion rate decreases with cos-
mic time for all masses and increases with mass at fixed
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Figure 2. Diffuse gas accretion rate measured at Rvir versus mass
at various epochs between redshift 2 and 5.4

redshift. This evolution is very similar to that reported in
Kereš et al. (2005); Rasera & Teyssier (2006); Guo & White
(2007); Neistein & Dekel (2008), in trend and normalization.

3.2 Metallicity of the hot mode

The top panels of Fig. 1 show that the metallicity of the
hot and cold phase can differ by up to 3 decades. This gap
involves a huge difference in the ability for the gas to cool
down radiatively, further aggravated by the relative densi-
ties of the two phases. This bimodal metallicity distribution
is also seen at the inner halo radius. This has important
consequences for semi-analytical models, and highlights the
necessity of treating the gas as being composed of two phases
with widely different metallicities. Moreover, at a given tem-
perature, the large spread of the PDF in metallicity shows
that the gas is not well mixed. Indeed, a perfectly well mixed
accreted gas would show up as a narrow peak in metallic-
ity. This suggests that for cooling modelling purposes, the
metallicity of the maximum of the PDF of the hot accreted
gas may be more relevant than the accretion-weighted aver-
age of the metallicity. Hence, in the following, we define Zhot

as the metallicity of the maximum of the accretion–weighted
PDF of the hot gas.

A good criterion for establishing the existence of a well-
developed hot phase is to require the existence of a sad-
dle point in the accretion–weighted PDFs of Fig. 1, as a
local minimum in temperature and a local maximum in
metallicity. According to this criterion, the hot phase of the
MDM = 2×1010M⊙ haloes is not well-developed at any red-
shift between z = 2–4. However, for the 2 other mass bins,
when the hot phase is well-developped, its metallicity Zhot

does not depend on halo mass. Moreover, comparing the
highest mass bins at z = 2 and z = 4 in Fig. 1, shows that it
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Figure 1. Accretion–weighted PDFs for 3 mass bins [2 × 1010M⊙, 2 × 1011M⊙, 2 × 1012M⊙] (from left to right). Top: z=4, radially
averaged. middle: z=2.5, radially averaged. bottom: z=2.5, 0.2Rvir. The numbered labels on the contours give the log10 value of the PDF.
When the hot phase is well developed, there is a clear bimodality in temperature and metallicity.

also does not evolve with redshift. On the other hand, Zhot

does depend on the distance to the halo centre. Fig. 3 shows
the evolution with radius of Zhot, computed as:

Zhot(r) =

Z ∞

T0

ṁ(r, T, Z) log10(Z) dT

Z ∞

T0

ṁ(r, T, Z) dT

(6)

We find that the dependency of Zhot with radius is well fit
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Figure 3. Metallicity of the hot accreted gas as a function of the
normalized radius R/Rvir at z=2 for halo mass between 5 1010 −
3 1012M⊙. The thick line shows the analytical fit of equation 7.
The dependence with respect to radius is very strong, while no
clear trend in mass is seen.

by the following law:

Z/Z⊙ = −4 − 2.7 log10

„

R

Rvir

«

, (7)

where Rvir is the Virial radius as defined in Sec. 2. This
fit is mainly independent of mass and redshift in the 2 ×
1010 - 2 × 1012M⊙ range and between redshift 2 6 z 6
5. The dependence with respect to mass is only implicit
through Rvir. This fit can be useful for analytical approaches
performed in this context (see Sec. 4) or for semi-analytical
models of galaxy formation.

3.3 Two critical masses for diffuse gas accretion

To allow for comparison with previous work (Kereš et al.
2005) we set the temperature threshold between the hot and
cold modes at T0 = 250 000 K. Marginalizing the accretion
rate over metallicity and integrating over temperature on the
hot and cold temperature domains yields the hot and cold
accretion rate respectively. Dividing by the total accretion
rate at the chosen radius gives the contributions of the hot
and cold mode to the total accretion rate:

fcold(r) =
1

Ṁ(r)

Z T=T0

T=0

Z Z=∞

Z=0

ṁ(r, T, Z)dTdZ , (8)

fhot(r) =
1

Ṁ(r)

Z ∞

T=T0

Z Z=∞

Z=0

ṁ(r, T, Z)dTdZ (9)

where ṁ(r, T, Z) is given by Eq. (4). A similar definition
involving 〈ṁ(T, Z)〉 and Eq. (5) allow us to define 〈fcold〉
and 〈fhot〉. The top panel of Fig. 4 displays the fractions
computed from the accretion-weighted histograms averaged
over the entire halo (between 0.2Rvir and Rvir). The bottom
panel of Fig. 4 shows these fractions measured at radius
0.2Rvir (galaxy vicinity) as a function of mass for various
redshifts. A common feature of these plots is the increasing

z=2
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z=5.4

0.2 Rvir
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f

Figure 4. Evolution of the hot and cold accreted mass fractions
versus MDM for z ∈ [5.4, 2]. Top: 〈fcold〉 and 〈fhot〉 (integrated
inwards down to 0.2Rvir). Bottom: fcold and fhot on the 0.2Rvir

sphere.

importance of the hot accretion mode with increasing mass,
and the corresponding decreasing contribution of the cold
mode, as could be foreseen from the top panels of Fig. 1.
The mass at which 〈fcold〉 = 〈fhot〉 defines the critical mass
marking the transition between the two accretion regimes.

This critical mass seems to increase sharply with red-
shift, if the entire halo is considered (radially averaged case,
top panel of Fig. 4). Note that at redshift 5.4, it can only be
guessed since no halo in the simulation is massive enough
to have 〈fhot〉 > 0.5. This evolution is the signature of a
gradual disappearance of cold radially extended features,
like filaments, in the massive haloes between z = 5.4 and
z = 2. To illustrate this point, we show in Fig. 5 maps of
a typical halo of mass MDM = 2 × 1012M⊙ at z = 4 (left)
and another halo of the same mass at redshift z =2 (right).
While the former features clear filaments streaming into the
inner halo, the latter lies at the centre of a hot bubble, with
no apparent filaments inside the Virial radius (large black
circle). The critical mass defined by the accretion transition
in the entire halo marks the disappearance of cold streams.
It is therefore called here Mstream.

On the contrary, the critical mass defined using
accretion–weighted histograms in the vicinity of the cen-
tral galaxy for which fhot > 0.5 shows only a slow variation
with redshift, if any. It indicates that accretion in the in-
ner parts of the halo switches to the hot mode as soon as
MDM > 1011.5−12M⊙, while the outer part of the halo can
still be dominated by the cold mode. Again, this is well il-
lustrated by Fig. 5. The inner part of the halo (inner circle)
has been shock heated in both case, although the radius of
the accretion shock is much larger in the low redhift case. At
high redshift, the accretion shock coexists with cold streams
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coming from the outer parts of the halo. The critical mass
defined in the galaxy vicinity marks the appearance of an
accretion shock around the galaxy. It is therefore called here
Mshock.

An important parameter in our approach is the density
threshold we used to remove clumpy satellites from the anal-
ysis. We checked that our conclusions in terms of transition
masses and average metallicity of the hot phase are robust
to changes of this parameter by repeating our measurements
with a lower density threshold. The main effect of this extra
gas removal is to reduce the fraction of high metallicity, cold
gas in the vicinity of galaxy satellites, without any notice-
able effect on the metallicity of the hot phase and on the
critical masses.

4 COMPARISON TO EARLIER

THEORETICAL MODELLING

The physics of accretion has been investigated by several
authors in the past. It is insightful to review their results
in light of our measurements. Fig. 4 shows the evolution of
Mstream for several redshifts. For z = 2 it is approximately
1011.5M⊙ and it increases sharply with redshift. Indeed, at
z > 4 and above, even the most massive haloes in the sim-
ulation are still dominated by cold accretion. However, a
rough extrapolation of the z = 4 curves yields a transition
mass of about ≈ 1012.7M⊙. Qualitatively, this behaviour is
in agreement with the evolution of Mstream with redshift as
derived by DB06. According to their study, filaments exist
only in M 6 Mstream haloes. However, their figure 7 shows
that MstreamDB06(z = 2) = 1012.4M⊙, which is significantly
larger than what we find. We will now show that correct-
ing the metallicity assumptions of DB06 to the metallicity
we measure in the simulation can reconcile these discrepant
values. Taking the log of their equation (40), we see that
Mstream is defined with respect to a critical mass for shock
stability, Mshock,

log(Mstream) = 2 log(Mshock) − log(M⋆) − log(3) , (10)

where M⋆ is the typical dark matter halo mass at a given
redshift as computed using the formalisms of Lahav et al.
(1991); Carroll et al. (1992); Mo & White (2002) and fol-
lowing Appendix 3 of DB06. Mshock in turn is calculated at
0.1 Rvir. However, it is clear from Fig. 5 that for steady cold
streams to be stable in a hot gas bubble they need to be
stable all the way up to Rvir. Moreover, Mshock strongly
depends on metallicity via the cooling function, as also
shown by Fig. 10 of BD03 and Fig. 2 of DB06. Although
the lowest metallicity assumed by the authors is 0.03 Z⊙

at Rvir, the fit we provide in equation (7) at z = 2.5
gives log(Z(Rvir, z = 2.5)/Z⊙) = −4, which translates to
log(Z(Rvir, z = 0)/Z⊙) = −3.6 assuming an average chemi-
cal enrichment rate s = 0.17 as in DB06 and De Lucia et al.
(2004). Analysing the dependence of Mshock with respect to
the problem parameters in equation (34) of DB06, we can
isolate the dependence in metallicity as:

Mshock(R, Z0, z) = 0.7 log(Z0) + A(R, z) , (11)

where Z0 = Z/Z⊙ at z=0, and A(R, z) can be tabulated
from Fig. 2 of DB06. On the one hand, using our value
Z0 = 10−3.5, we get MstreamDB06 shown in Fig. 6, which

agrees well with our measurements. On the other hand, they
rule out the Z0 = 0.1 hypothesis, as shows Fig. 6. This dif-
ference can be entirely attributed to a lower efficiency of
the radiative cooling with decreasing metallicity. The value
given for Mstream at z=5.4 is an extrapolation and is given
only as a lower limit (indicated by the arrow). On the other
hand, the metallicity assumption of DB06 Z0 = 0.1 is quite
close to the metallicity we measure at the inner halo: our fit
from equation (7) gives log(Z(0.1Rvir, z = 2.5)/Z⊙) = −1.3,
which translates into log(Z(0.1Rvir, z = 2.5)/Z⊙) = −0.9
assuming the same chemical enrichment rate s = 0.17. As a
consequence, we expect the critical hot shock masses Mshock

computed by DB06 to match our measurements well, pro-
vided that we compute and measure Mshock at the same
depth in the halo, i.e. at 0.2 Rvir. Equation (7) and the
chemical enrichment rate yields Z0 = 0.02 at 0.2Rvir. Fig.
6 shows that a good agreement is indeed achieved. We also
agree with a quasi constant Mshock as found by Kereš et al.
(2005); Birnboim et al. (2007) in SPH simulations, although
the absolute normalization seems to differ. However, their
methodology is quite different (they analyse the temper-
ature history of their gas particles) and their metallicity
was uniform and constant throughout the whole simulation.
We conclude that while the high metallicity assumption of
DB06 at the inner halo is reasonable, a hundredfold lower
metallicity must nonetheless be assumed when investigat-
ing the stability of the gas filaments in order to reconcile
this with our measurements. Once the importance and the
effect of these assumptions has been accounted for, the con-
sistency between the MareNostrum measurements and the
theory of DB06 is remarkably good, and shows that their
analytical approach indeed seems to capture the essence of
our (nonetheless limited) understanding of the processes in-
volved in gas accretion physics as modelled by this simula-
tion.

The agreement on Mstream also suggests that the main
process driving the stability of cold filaments in a hot halo is
the competition between a compressive increase of temper-
ature in the filament on the one hand, and radiative cooling
on the other hand. This is an important point since sev-
eral other hydrodynamical processes are expected to be at
work, such as Kelvin-Helmholtz instabilites, which are not
modelled in DB06. However, this simulation is not tailored
to resolve them. Klein et al. (1994) showed that at least 100
cells per cloud radius are needed to resolve interface instabil-
ities involved in cloud destruction by shock waves. However,
it has been argued that the gas filaments can be stabilized
by the underlying dark matter stream, and could totally
prevent Kelvin-Helmholtz instability from appearing. The
density contrast of the cold gas stream and the average den-
sity at the Virial radius is also an important parameter, and
DB06 note that it could range from 1 to 10. In the calcula-
tions shown here it is ≈ 3. Increasing this ratio could have
a similar effect to decreasing the metallicity, in making the
cold filaments disappear earlier.

Finally, in DB06, the metallicity of the cold streams is
linked to the metallicity of the gas as a whole. While this
simplification makes the problem analytically more tractable
(it allows the authors to circumvent mixing issues, together
with the fact that the mass rate in the cold and hot phase
may differ significantly), it is in strong disagreement with
the results shown in Fig. 1. Allowing the two gas phases
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Figure 5. Maps of the physical properties of the gas for a typical M = 2 × 1012M⊙. Left: z = 4, right: z = 2.5. Top: Projected density,
middle: temperature slice, bottom: metallicity slice. The large (small) black circle shows the location of Rvir (0.2Rvir) for the central
galaxy. Note the disappearance of filaments at low redshift.
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Figure 6. Evolution of Mshock and Mstream with redshift, from
our measurements and comparison to analytical modelling. The
solid line shows DB06 prediction for Mshock(0.2Rvir) with a
metallicity assumption Z0 = 0.02, while the dotted line shows
their prediction for Mstream with a metallicity assumption Z0 =
0.0003. Finally, the dash dotted line shows the constant transi-
tion mass reported by Kereš et al. (2005). The error bars on our
measurements are equal to the widths of the mass bins used. The
arrow pointing to the Mstream(z = 5.4) indicates that this point
is given as a lower limit only, as can be estimated from Fig. 4.

to have different metallicities could lead to a significant im-
provement of the DB06 model.

5 COMPARISON TO OBSERVATIONS

It is difficult to find observables to compare our measure-
ments to since our measurements “only” reach down to
z = 2 while observational studies of the galaxy bimodal-
ity are generally restricted to z 6 1.5, and the bimodality
becomes clear only at later times. Also, the definition of the
critical masses constrained by theoreticians and observers
have little in common: theoreticians have access to quanti-
ties that are in general impossible to measure with existing
or even future observing facilities (for instance the mass ac-
cretion rate of cold gas at Rvir), while observers have access
to enormous volumes of the universe and events which would
be impossible to simulate with the sufficiently high spatial
and temporal resolution required for imposing useful con-
straints. Hence, shortcuts are taken. They always involve
external assumptions, and the relevance of the quantities
being compared must be carefully examined. Here we dis-
cuss our results in the light of the observed transition and
quenching masses measured by Bundy et al. (2006), here-
inafter B06.
The M⋆/MDM ratio used to estimate the observed stel-
lar mass from the halo mass and its evolution with red-

shift is subject to large uncertainties and is a hotly debated
topic. It is linked to the evolution of the Tully-Fisher rela-
tion (Tully & Fisher 1977; Bell & de Jong 2001). It seems
reasonable to expect that the ratio increases with decreas-
ing redshift (Rettura et al. 2006; Kannappan & Gawiser
2007), as more gas is turned into stars. However, a
non-evolving stellar-to-total mass ratio could also be in
agreement with both observations (Bamford et al. 2006;
Böhm & Ziegler 2007; Atkinson et al. 2007) and numerical
studies (Portinari & Sommer-Larsen 2007). In our simula-
tion a stellar to dark matter halo mass ratio of about ≈ 50
seems reasonable at z = 2 for structures in the mass range
considered here.
B06 measured the evolution with redshift of the transitional
mass Mtr marking the transition from the blue to red se-
quence of galaxies. This study is based on a sample of 8000
DEEP2 galaxies between 0.4 66 1.4. The galaxies are di-
vided into two groups (star forming and passive), ideally
according to their SFR, with a limiting SFR=0.2M⊙/yr.
However, the [OII] emission line generally used to derive the
SFR (Kewley et al. 2004) falls in the DEEP2 survey wave-
length range only for z > 0.75. As a consequence, the colour
index (U-B) is also used as a proxy for the SFR as measured
from [OII], and an absolute magnitude-dependent colour cut
is made as an alternative to the SFR cut (van Dokkum et al.
2000). The authors show that indeed, very few galaxies with
(U-B)> 0.2 are forming stars. However, there is a large frac-
tion (≈ 30%) of galaxies with (U-B)6 0.2 which are passive.
This means that the sample of passive galaxies will suffer
only limited pollution from star-forming galaxies, while the
star-forming sample contains a significant fraction of passive
galaxies (≈ 30% at z = [0.75 − 1] as can be seen from their
Fig. 1). Once the red and blue galaxy groups are defined
(through the colour or SFR criterion), the authors compute
the mass functions of the blue and red groups and the con-
tribution of blue and red galaxies to the total mass function.
They show that the massive end of the mass function is dom-
inated by red galaxies while the fainter end is dominated by
blue galaxies. They then define two transition masses:

(i) Mtr is the mass for which the mass function of red
galaxies equals that of the blue galaxies, i.e. both groups
contribute equally to the total mass function. Mtr shows only
a moderate dependence on the red/blue separation criterion.
It is found to increase from 1010.5M⊙ to 1010.8M⊙ between
0.4 6 z 6 1.4.

(ii) MquenchB06 is the mass for which the fraction of blue
galaxies drops below 1/3 (which means the contribution of
blue galaxies is half the contribution of the red galaxies to
the total mass function). The authors claim it represents the
mass at which star formation “quenches”. It increases from
1010.73M⊙ to 1011.23M⊙ between 0.4 6 z 6 1.4.

Various other investigations consider different photomet-
ric filters, colour cuts, SFR estimates or mass estimates,
but relie on similar methodology (Arnouts et al. 2007;
Hopkins et al. 2007). Given the complexity of the method
and the number of steps and assumptions involved, it is
clear that the physical meaning of the observed transition
masses can be quite far from that of the transition masses
we compute from our gas accretion measurements. However,
it is admitted that they correspond to a real change in the
evolution of SFR or specific SFR with galaxy mass. The
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details are difficult to assess, for instance, does the tran-
sition mass signify a total shutdown of star formation or
a smooth decline. Such details are bound to be fuzzy be-
cause we are looking at populations whose properties have
an intrinsic dispersion, as they have different histories, en-
vironment etc... Having recalled these difficulties, we now
proceed to make a number of remarks:

(i) Using a stellar to dark matter mass ratio of
M⋆/MDM = 50 we get M⋆

shock ≈ 109.9M⊙ at z = 2, which
is significantly smaller than Mtr found in B06 at any epoch.
Moreover, since Mtr increases with z, the disagreement is
bound to be stronger if we were to observe Mtr(z = 2). A
similar disagreement is seen for Mstream.

(ii) On the other hand, we can define a mass Mquench

where the cold gas accretion rate on the central galaxy drops
to zero, also corresponding to the mass where fcold = 0 at
the inner halo, instead of fcold = 0.5 as for Mshock. We find
Mquench = 1012.8M⊙, which translates to ≈ 1011.1M⊙ in
stellar mass. Although MquenchB06 is expected to increase
between z = 1.4 and z = 2, the agreement is remarkable. It
is also roughly consistent with the results of Pozzetti et al.
(2003); Fontana et al. (2004), based on the K20 survey.

(iii) This raises the question as to what we should adopt
as threshold in fcold. Indeed we see that moving this thresh-
old can results in a shift of more than a decade in the
masses obtained. There is actually little reason for expect-
ing fcold = 0.5 haloes to match observed transition masses
precisely.

(iv) We find a difference between Mshock and Mquench of
about 1.2−1.3 dex. This is actually a measure of the sharp-
ness of the transition from cold to hot accreting haloes. This
contrasts with the finding of B06 where Mtr −MquenchB06 ≈
0.2 − 0.4, which suggests a much sharper transition. In fu-
ture modelling works and observational studies, computing
the sharpness in mass of the transition from blue to red
galaxies could help constraining the mechanism responsible
for the transition.

(v) We find a quasi-constant Mshock, with only very slight
evolution with z, compatible with the findings of earlier the-
oretical works, both numerical and analytical. In contrast,
both Mtr and MquenchB06 evolve strongly with z. On the
other hand, it is difficult to check the evolution of Mquench

with redshift, since the only epoch where fcold ≈ 0 haloes
exist in the simulation is z = 2. A naive linear extrapolation
of the evolution of fcold at larger redshifts suggests a quasi-
constant Mquench, but this is simply impossible to check and
would require simulating a larger box in order to get haloes
massive enough to reach fcold = 0 earlier in the life of the
universe.

(vi) If we believe that Mquench has a physical meaning
similar to MquenchB06 this apparent difference in their evolu-
tion with redshift is problematic. Moreover, a stellar to dark
matter ratio M⋆/MDM evolving with z would make this is-
sue even worse. Indeed, a constant Mquench combined with
a decreasing M⋆/MDM with z would lead to a decreasing

Mquench(z), which would then be in even stronger disagree-
ment with observations.

(vii) On the other hand, Mstream does evolve with z, with
a slope similar to that of Mtr and MquenchB06. It would be
interesting to compute the mass at which the cold fraction
fcold drops to zero at the outer halo because such a mass

may be comparable in absolute normalisation and in slope
to MquenchB06. However, this is difficult to even estimate
from the current simulation, and the corresponding masses
are clearly out of reach as can be seen on Fig. 4.

Finally, it becomes clear that in order to compare our
theoretical transition masses to observed ones, one should
use the same mass definitions in the simulation as in the
observations. This involves building catalogues of galaxies
(rather than dark matter haloes), computing their luminosi-
ties and colours according to the age and metallicity distri-
butions of their stars using stellar population models such
as Bruzual & Charlot (2003); Fioc & Rocca-Volmerange
(1997); Le Borgne et al. (2004); Coelho et al. (2007). The
resulting colour-magnitude diagrams of the galaxy popula-
tion could then be compared directly to observations such
as the SDSS Mr/(u − r) distribution (Baldry et al. 2004).
This is the approach adopted in SAMs such as those of
Cattaneo et al. (2006). The same colour cuts as in the ob-
servations (Arnouts et al. 2007; van Dokkum et al. 2000)
could then be applied and the corresponding red and blue
galaxy mass functions constructed, along with the desired
transition masses. Since the colour bimodality of galaxies
falls into place only after z 6 1.5 (the last redshift bin of
Arnouts et al. (2007) shows no bimodality in (NUV-r’)/K
at all), it should not be expected that the bimodality can
be clearly seen in a colour-magnitude diagram even at the
lowest redshift of the simulation. Moreover, since the AGN
feedback now often proposed as the origin of the galaxy bi-
modality has not been implemented in the MareNostrum
simulation, it might never appear even if we could continue
the simulation down to lower redshifts. In any case, the
above colour-magnitude diagram synthesis and the corre-
sponding colour cuts have to be carried out quantitatively
to check for the presence/absence of a galaxy bimodality in
the MareNostrum simulation.

6 CONCLUSIONS

We used the MareNostrum galaxy formation simulation to
study the processes involved in gas accretion on galaxies.
We introduced mass accretion rate weighted statistics that
allow us to quantify the mass accretion rates as a function
of gas temperature and metallicity.

Gas accretion is bimodal both in temperature and
in metallicity, defining a hot and a cold accretion mode.
The cold accretion mode is associated with a combina-
tion of metal poor filamentary accretion and dense metal-
rich galaxy disc surroundings, while the hot accretion mode
is mostly metal-poor but features strongly heterogeneous
metallicity.

The cooling properties of the hot gas are affected by
this inhomogeneity and deviate strongly from those of a gas
having the average metallicity of the hot accreted phase.
We give an analytical fit to the metallicity of the maximum
hot mass accretion rate as a function of radius, which will
hopefully be relevant for future SAMs.

We define Mshock and Mstream, the halo masses for which
cold and hot accretion contribute equally, at the inner halo
and within the whole halo, respectively. Haloes more mas-
sive than Mshock develop stable hot shocks, but may still
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possess cold gas filaments nourishing the galaxy disc. For
halo masses larger than Mstream, these filaments disappear.

Mshock is found to be quasi-constant with z, while on
the other hand, Mstream increases sharply. These results are
in good agreement with the analytical stability calculations
of DB06, provided that their metallicity assumption for the
outer halo is adjusted to the metallicity measured in the sim-
ulation. This agreement suggests that, as long as the stabil-
ity of hot shocks and cold streams is assumed to be mainly
driven by a competition between compression and radia-
tive cooling, their analytical modelling is accurate within
this model; it then depends critically on assumptions made
about the metallicity, via the cooling function. In this re-
spect the fit to the metallicity of the hot phase given here
could be an important input to such analytical models.

We propose that in addition to the transition masses,
two other observables should always be considered by future
SAMs or numerical investigations of the origin of the galaxy
bimodality:

(i) the sharpness of the transition log10(Mquench/Mshock),
whose observable counterpart could for instance be the log
ratio of the quenching mass to the transition mass as defined
in B06.

(ii) The evolution of transition/quenching masses with
redshift.

Modelling these two quantities should be helpful to pinpoint
the nature of star formation quenching in galaxies.

Comparing the transition masses we obtain to ob-
served transition masses is a difficult task, and we found
only marginal agreement. The diffuse cold gas supply drops
to zero at the inner halo for an estimated stellar mass
M⋆

quench ≈ 1011.1M⊙ at z = 2, which is remarkably close
to the quenching masses observed by B06. Unfortunately,
we are not able to constrain the evolution of Mquench. How-
ever, we note that the evolution of the observed quenching
mass is similar to the evolution of Mstream. In this respect,
the agreement between measured and observed quenching
masses suggests that one does not necessarily require more
ingredients to simulate galaxy populations than the physics
already modelled in the MareNostrum simulations. We re-
call here that no AGN feedback has been taken into account
in this work. To be more conclusive, one will need to bet-
ter constrain Mquench and its evolution. One therefore needs
to zoom-simulate smaller boxes centred on massive haloes
to lower z. Since Mquench is determined mostly by the few
most massive haloes of the simulation, one would also need
a larger box or more realizations of a box of the same size
to improve the statistics.

Conversely, one may need additional ingredients in or-
der to prevent clumpy gas accretion from reaching the galaxy
centre when it is significant (a study of the contribution of
clumpy gas accretion will be carried out in a forthcoming pa-
per). But they need not be in the form of AGN feedback. Al-
though stripping of the hot halo of infalling satellite galaxies
is properly resolved in the MareNostrum simulation, the in-
terface instabilities cold disc/hot gas and cold filaments/hot
gas are not. These could be the missing physics.

Similarly, some energy input into the hot component
might be required to maintain its temperature and avoid
cooling flows at later stages. Dekel & Birnboim (2008) pro-
posed that “gravitational quenching” could be a solution. It

involves keeping the inner halo gas hot through interactions
with cold dense gas clumps (drag), allowing to transfer the
potential energy of these infalling clouds to the inner halo. A
crucial step arising from our study is that of the interplay be-
tween the hot gas bubble and cold streams/clouds. Are hot
gas bubbles able to disrupt filaments connected to the disc
via electronic conduction, turbulence, Kelvin-Helmhotz in-
stability ? Are cold streams immune to disruption thanks to
increased pressure (feeling pressure of the hot gas) and thus
higher density and consequently higher radiative cooling effi-
ciency or the underlying dark matter stream ? Can electronic
conduction be impeded by local magnetic fields of suitable
intensity ? Is there a pressure/temperature/halo mass for
which a given cold stream of given density/velocity/DM flux
will be disrupted by these instabilities ? It will be decades
before cosmological simulations with the same size as the
MareNostrum simulation will have the resolution required
to resolve interface instabilities. Hence, as a first step, more
restricted, idealised experiments are needed in order to in-
vestigate these phenomena.
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ABSTRACT
The skeleton formalism, which aims at extracting and quantifying the filamentary structure of

our Universe, is generalized to 3D density fields. A numerical method for computing a local

approximation of the skeleton is presented and validated here on Gaussian random fields. It

involves solving equation (H∇ρ × ∇ρ) = 0, where ∇ρ and H are the gradient and Hessian

matrix of the field. This method traces well the filamentary structure in 3D fields such as

those produced by numerical simulations of the dark matter distribution on large scales, and

is insensitive to monotonic biasing.

Two of its characteristics, namely its length and differential length, are analysed for Gaus-

sian random fields. Its differential length per unit normalized density contrast scales like

the probability distribution function of the underlying density contrast times the total length

times a quadratic Edgeworth correction involving the square of the spectral parameter. The

total length-scales like the inverse square smoothing length, with a scaling factor given by

0.21 (5.28 + n) where n is the power index of the underlying field. This dependency implies

that the total length can be used to constrain the shape of the underlying power spectrum, hence

the cosmology.

Possible applications of the skeleton to galaxy formation and cosmology are discussed. As

an illustration, the orientation of the spin of dark haloes and the orientation of the flow near

the skeleton is computed for cosmological dark matter simulations. The flow is laminar along

the filaments, while spins of dark haloes within 500 kpc of the skeleton are preferentially

orthogonal to the direction of the flow at a level of 25 per cent.

Key words: cosmology: theory – dark matter – large-scale structure of Universe.

1 I N T RO D U C T I O N

Recent galaxy surveys like 2dF (Colless et al. 2003) or Sloan Digital

Sky Survey (SDSS) (Gott et al. 2005) emphasized the complexity

of the matter distribution in the Universe which presents large-scale

structures such as filaments, clusters or walls on the boundaries of

low-density bubbles (voids). On the theoretical side, the currently

favoured scenario suggests that the Universe evolved from Gaussian

initial conditions to form the structures that are observed nowadays.

Numerical simulations have successfully captured the main features

of the observed filamentary distribution, both statistically and visu-

ally. The skeleton formalism in 2D was introduced in (Novikov,

Colombi & Doré 2006) (NCD) and aims at making possible the

extraction and analysis of these filamentary structures. This paper

�E-mail: sousbie@iap.fr (TS); pichon@iap.fr (CP); colombi@iap.fr (SC);

novikov@astro.ox.ac.uk (DN); pogosyan@phys.ualberta.ca (DP)

extends it to three dimensions in order to describe the Universe’s

large-scale matter distribution and its dynamical environment.

In the literature, various steps towards a quantitative descrip-

tion of the large structures have been suggested. Statistical tools

such as correlation functions (e.g. Peebles 1980) and power spectra

(e.g. Peacock 1998) have been widely used and have been success-

ful in describing matter distribution and constraining cosmological

parameter. Recently, fast algorithms have been designed for first and

second order (Szapudi et al. 2005), as well as higher order statistics

(counts in cells etc.) as in Croton et al. (2004) or Kulkarni et al.

(2007). The Minkowski functionals have also been very popular

since their first applications to matter density field topology (see

e.g. Gott, Melott & Dickinson 1986). By studying the average prop-

erties of excursion sets, they allow the extraction of characteristic

numbers that reflect the topology of the field such as the genus, com-

puted from the mean curvature of isodensity surfaces (see Hamilton,

Gott & Weinberg 1986). This approach is in fact very powerful and

has been used to test various properties of matter distribution such as

its Gaussianity in Doroshkevich (1970), Gott et al. (1986), Winitzki

C© 2007 The Authors. Journal compilation C© 2007 RAS 195
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Figure A1. Illustration of the different possible configurations of a grid cell used for marching cube algorithm. Given a field f and isocontour f = 0, a blue ball

represents a vertex where f > 0. It is then easy to build the isocontour by linearly interpolating the value of f along the edges. This picture was borrowed from

James Sharman’s web site, http://www.exaflop.org/docs/marchcubes/ind.html.

Figure A2. Illustration of a drawback of marching cubes algorithm. The green surface is an isosurface solution of equation (7) and the light blue line is the

resulting skeleton. The red diamond represent a field maximum. It is clear on this picture that the algorithm misses the part close to that maximum, thus creating

a spurious hole in the skeleton.

The next step involves solving the system of equations (8); the solution of this system corresponding to the intersection of two of the three

solutions of equations (7). This is done by computing the 3D meshes of the 2D surfaces that are solution to these equations: the skeleton is at

the intersection of two of them, depending on the value of the gradient at the point considered. Solving equation (7) is equivalent to finding

the null isocontour of field Si , which can be done using the marching cube algorithm (Lorensen & Harvey 1987). The basic idea is to consider

every cell of the grid as an individual cube. One can then compute the value of every Si for the eight vertices and it is easy to check whether

the isosurface intersects the cube or not. In fact, every vertex is above or below a threshold value (in this case 0), which gives a total of 28 =
256 types of intersections (only 15 of them being intrinsically different) that can be pre-computed as illustrated in Fig. A1. The exact positions

of the intersections are computed using quadratic interpolation. This yields the position of the intersections of the grid and the isocontour, and

defines triangles that smartly link those intersection vertices: one can then reconstruct a very good approximation of what the isocontour is.

Which surfaces should be used for each cell is decided by computing dk = det (ri , r j , ∇ρ), i �= j �= k ∈ {1, 2, 3} and selecting only the

two Sk for which dk is maximal. This gives two surfaces defined by triangles whose intersection can be efficiently computed: it amounts to

computing the intersection of triangle pairs only. It is then straightforward to compute the eigenvalue of the Hessian for every segment and

keep or reject them depending on the previously defined criteria (equation 10) in order to draw the local skeleton. The exact same method

was used for efficiently and consistently finding the extrema and saddle points of the field. Indeed, if one defines three fields f i = ∂ρ/∂ri ,

those critical points are the intersections of the three isocontour surfaces f i = 0. One can then decide if a critical point is a maximum,

minimum or saddle point by checking the value of eigenvalues of the Hessian (i.e. the curvature). Although marching cubes algorithms are

very efficient for computing isodensity contour, they present some drawbacks for ambiguous configurations. Indeed, as illustrated on Fig. A2,

some configurations are degenerate and one cannot decide where the isosurface should pass. This problem happens most of the time around

critical points where the value of the field can go above and below the threshold within one cell. It induces the loss of small skeleton segments.

In order to obtain a smooth skeleton that does not present holes and to retrieve the connectivity information (i.e. to be able to follow the

skeleton from one point to another), a three steps post-processing is applied. Here the algorithm is based on a weighted marking system to

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS196
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& Kosowsky (1998) or more recently in Hikage, Komatsu &

Matsubara (2006). They can also be used as so-called ‘shape finders’

(Sahni, Sathyaprakash & Shandarin 1998) and have been success-

fully applied to observed data sets (see e.g. Hikage et al. 2002;

Sheth & Sahni 2005; James, Lewis & Colless 2007 for application

to the SDSS and other galaxy distribution surveys). A large number

of good reviews on the subject can be found (e.g. Melott 1990 or

Kerscher 2000 and references therein).

These topological and statistical estimators analyse the distribu-

tion of observed galaxies globally and uniformly, and make little

attempt at recovering the precise geometry of the matter distribu-

tion, i.e. they do not focus on specific regions (such as clumps, voids

and filaments). Focusing on the identifiable regions of the Universe,

the peak patches theory (Bond & Myers 1996a) attempts to de-

scribe cosmic structures formation through the identification of the

collapse of the dense regions near the density peak and surrounding

patches. In this framework, the evolution of patches hierarchy can

be understood

from the measurement of only a few characteristics of the patches,

while assuming that their flow does not depend on their internal non-

linear dynamics.

This line of thought has been extended in the Cosmic Web

paradigm (Bond, Kofman & Pogosyan 1996), which has empha-

sized that the large-scale spatial distribution of galaxy clusters and

the filaments between them can be understood as mildly non-linear

enhancements of the high-density peaks and filamentary ridges al-

ready present in the initial Gaussian density field. Recently, Hanami

(2001) presented the so-called skeleton tree formalism: it analyses

the process of hierarchical merging and extends the language of the

peak patch through the analysis of the ridges of the density field

in an abstract space corresponding to the usual three dimensions

augmented by the smoothing length. The structure of voids in the

large-scale dark matter distribution also has an extended history of

theoretical modelling – see e.g. Hoffman & Shaham (1982), Icke

(1984) or Bertschinger (1985) – while various void identifiers have

been designed (see e.g. Platen, van de Weygaert & Jones 2007 and

references therein).

One of the first attempts to develop an algorithm to detect and

trace the filaments in the particle distribution has been the minimal

spanning tree technique proposed by Doroshkevich in Doroshke-

vich (1970) and Barrow, Bhavsar & Sonoda (1985). Starting from

a point distribution (a galaxy survey or a dark matter simulation),

this method constructs the graph that connects all the dots with the

property of never forming closed paths and being of minimal total

lengths. Interesting statistical features can be extracted from it like

the shape of the clusters or the length of the trunk (the longest path)

and branches which are characteristic of the filamentarity of the dis-

tribution (Pearson & Coles 1995). More recently, other techniques

with the same aim have been developed, such as Stoica et al. (2005),

which uses a marked point process in order to recover the filament

locations or Aragon-Calvo et al. (2007a) which provides an auto-

matic segmentation of the different galactic distribution components

using multiscale morphology filtering.

The 3D skeleton described in this paper focuses on the critical

lines of a distribution, i.e. the set of lines joining the critical points in

order to be able to compute the characteristic features of the underly-

ing field (such as the total length of the filaments in a cosmological

dark matter distribution). The skeleton provides a simple mathe-

matical definition of the filaments of a density field based on Morse

theory – see e.g. Milnor (1963), Colombi, Pogosyan & Souradeep

(2000), Jost (2002) or Novikov, Colombi & Doré (2006) – and thus

allows their extraction as well as their characterization.

Section 2 defines the local skeleton of large-scale structures.

Section 3 introduces the numerical algorithm for constructing the

local skeleton, and discusses its properties near the critical points

(Appendix A gives a more detailed description of the algorithm).

Section 4 investigates the evolution of its differential and total length

as a function of the properties of the underlying field. Appendix C

sketches the derivation of this differential length. Possible applica-

tions to cosmology and galaxy formation are discussed in Section 5,

where two illustrations regarding the nature of the dark matter flow

near the skeleton are given.

2 T H E L O C A L S K E L E TO N : T H E O RY

A comprehensive definition of the skeleton and how its local ap-

proximation in two dimensions is derived can be found in Novikov

et al. (2006). To sum up, the so-called ‘real’ skeleton is by defini-

tion the subset of critical lines joining the saddle points of a field to

its maxima while following the gradient’s direction (while critical

lines link all kinds of critical points together). It is easy to pic-

ture that applying this definition to a 2D field (an altitude map in a

mountainous region for instance) allows the extraction of the ridges

of that distribution. Although simple in appearance, this definition

presents the drawback that it is in essence non-local: the presence of

the skeleton in a given subregion may depend on the presence of a

saddle point in a different subregion. In order to enforce locality, an

approximation can in fact be derived using Taylor expansion in the

vicinity of the critical points (i.e. local maxima and saddle points),

leading to a second-order approximation of the skeleton: the local

skeleton.

2.1 The 2D local skeleton

Defining the local critical lines as the set of points where the gradient

of the field is an extremum along an isodensity contour, it can be

shown (Novikov et al. 2006) that this set of points obeys the equation

S ≡ ∂ρ

∂r1

∂ρ

∂r2

(
∂2ρ

∂r 2
1

− ∂2ρ

∂r 2
2

)

+ ∂2ρ

∂r1∂r2

([
∂ρ

∂r2

]2

−
[

∂ρ

∂r1

]2
)

= 0,
(1)

where r1 and r2 denote space coordinates and ρ(r1, r2) is the density

field. Equation (1) can be rewritten as

S = det (H∇ρ, ∇ρ ) = 0, (2)

where H ≡ ∂2ρ/∂r1∂r2 is the Hessian (second derivatives matrix)

of the field. The solution to equation (2) can be interpreted math-

ematically as the set of points where the gradient of the field is an

eigenvector of the Hessian (i.e. gradient and main curvature axis are

aligned), which is clearly a local property of the field.

The local skeleton is defined as the subset of the local critical

lines that is an approximation of the skeleton. Selecting this subset

can be achieved by enforcing an additional condition: the gradient

should be minimal [i.e. every point of the local skeleton of coordi-

nates r should also be a local minimum of the isodensity contour at

density ρ(r )]. That is, the second eigenvalue of the Hessian should

be negative:

λ2 < 0, and H∇ρ = λ1∇ρ, (3)

where λi are the eigenvalues of the Hessian and λ2 < λ1.
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2.2 The 3D local skeleton

Let us now derive the generalization of the notion of the local skele-

ton to a 3D space. The philosophy is essentially the same but minor

differences arise.

Starting from the same definition as in 2D, the local skeleton

should be the set of points where the density is an extremum along

an isodensity contour. Let (u, v) be a coordinate system along an

isocontour (r1(u, v), r2(u, v), r3(u, v)) where ri, i ∈ {1..3} are the

three space coordinates. The definition of an isocontour implies that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ρ

∂r1

dr1

du
+ ∂ρ

∂r2

dr2

du
+ ∂ρ

∂r3

dr3

du
= 0

∂ρ

∂r1

dr1

dv
+ ∂ρ

∂r2

dr2

dv
+ ∂ρ

∂r3

dr3

dv
= 0.

(4)

Moreover, as the gradient of the field ρ has to be an extremum:

d

du
(|∇ρ|2) = 0 and

d

dv
(|∇ρ|2) = 0. (5)

Using equations (4) and (5), let us derive the equation of the local

critical lines, which should only depend on the field and its first- and

second-order spatial derivatives, similarly to equation (1). To do so,

a coordinate system along the isocontour is needed but, as opposed

to the 2D case, any coordinate system defined on an isocontour will

be singular in some place as an isocontour is a closed surface. In

order to avoid this problem, we choose to define three coordinates

systems and swap from one to another when it becomes singular.

Defining three 1D coordinate systems si (see Fig. 1) so that for

different values of si , one remains in the plane (r j , rk) where i �= j �=
k and i, j, k ∈ {1..3}. The coordinate system si is singular wherever

∇ρ is proportional to ri . The 3D local critical lines satisfy equations

(4) and (5) for u ≡ si and v ≡ sj with i �= j. For any si , these read

d

dsi
(|∇ρ|2) = 0, and

∂ρ

∂r1

dr1

dsi
+ ∂ρ

∂r2

dr2

dsi
+ ∂ρ

∂r3

dr3

dsi
= 0. (6)

Choosing i �= j �= k ∈ {1. .3}, this system becomes after doing some

algebra

Si ≡ ∂2ρ

∂r j ∂rk

(
∂ρ

∂r j

2

− ∂ρ

∂rk

2
)

+ ∂ρ

∂r j

∂ρ

∂rk

(
∂2ρ

∂r 2
k

− ∂2ρ

∂r 2
j

)
− ∂ρ

∂ri

(
∂ρ

∂rk

∂2ρ

∂ri∂r j
− ∂ρ

∂r j

∂2ρ

∂ri∂rk

)
= 0. (7)

One can check that equation (7) reduces to equation (1) in the 2D

case, assuming that the field is constant in the third dimension [the

first two terms of equation (7) are the same as in equation (1)]. The

local critical lines are thus the set of points that satisfies

S ≡
(

Si

S j

)
= 0, i �= j ∈ {1, 2, 3}. (8)

It is interesting to note that, as in the 2D case, equation (8) defines

the local critical line as the set of points where the gradient of the

density is an eigenvector of its Hessian matrix (the gradient and the

principal curvature axis are collinear):

S = (H · ∇ρ × ∇ρ ) = 0. (9)

Once again, in order to require that the skeleton traces only the ridges

of the distribution (i.e. the filaments in 3D), retrieving the subset of

local critical lines that define the local skeleton can be achieved by

Figure 1. Definition of the coordinate system on an isocontour.

enforcing a negativity condition on the weakest eigenvalues of the

Hessian:

λ2 < 0, λ3 < 0, H∇ρ = λ1∇ρ. (10)

That is, the local skeleton is the subset of the local critical where the

norm of the 3D gradient is minimal along the 2D isodensity contours

(as opposed to simply extremal). Note that from equation (8) it is

straightforward to show that any monotonic function of the field

will have exactly the same skeleton as the field itself.

3 I M P L E M E N TAT I O N A N D F E AT U R E S

3.1 Implementation

Equation (8) is at the basis of the numerical implementation of the

local skeleton determination developed here. The details of the al-

gorithm are described in Appendix A, while the optimal choice of

resolution and smoothing is presented in Appendix B. All the com-

putations were performed using a specially developed C package:

SKELEX
1 (Skeleton Extractor). This package also includes a flexible

OpenGL visualization tool that was used for making the figures in

this paper.

Fig. 2 presents the skeleton obtained for a density field sam-

pled from a numerical simulation of dark matter distribution on a

50 h−1 Mpc box with 5123 particles using GADGET-2 (Springel 2005).

The lighter colours represent denser regions and the blue skeleton

appears to match quite well what one could identify as the filaments

by eye. Note that the skeleton is both a tracer of the topology (it

links a subset of the critical points) and the geometry of its under-

lying density. Hence it can be used to compare the geometrical and

topological properties of various fields, e.g. the temperature and the

dark matter distribution in hydrodynamical simulations. See also

Fig. A3 for a graphical description of how the local skeleton is

drawn.

3.2 The local skeleton branching properties

Let us now describe some global branching properties of the critical

lines and the local skeleton. Important ingredients of the skeleton

1 Available on request from the authors.
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Figure 2. The final 3D skeleton derived from a 50-Mpc standard �CDM simulation run with sc gadget-2 using 5123 particles. This result is obtained after

post treating the skeleton using the method described in Appendix A.

are the extrema of the field. Indeed, the ‘real skeleton’ is defined as

a set of critical lines that connect maxima to saddle points. Much of

the topological behaviour of the skeleton is related to the distribution

of such extremal points. For the local skeleton described this paper,

the role of the extrema is similar but the whole set of critical lines

encompass additional branches linking all kind of field extrema

together.

Since the local skeleton is based on a local second-order approx-

imation of the density field, ρ, its properties can be understood

through the properties of the gradient ∇ρ and Hessian matrix H(ρ)

only. The eigenvalues of H define the local curvature at any point,

thus separating space into distinct regions depending on the sign of

these eigenvalues λi . Within a 3D space, as by definition λj < λi if

j > i, there exist four of these regions. Let I be the number of nega-

tive eigenvalues, then the regions where I is equal to 0, 1, 2 and 3.

This classification applies to critical points of the field in particular,

where ∇ρ = 0, the maxima (I = 3) and minima (I = 0) existing

within local clumps and voids, respectively, while two types of sad-

dle points can be distinguished: the filaments type saddle points (for

I = 2) and the pancake type ones (for I = 1).

Fig. 3 illustrates a second-order approximation of the density

field in the vicinity of the field extrema. The total set of critical lines

form a fully connected path linking all the critical points together

and exactly six branches pass through each of them in the direction

of the three eigenvectors of the Hessian. Empirically, it is possible

to picture the typical behaviour of the whole set of critical lines.

Defining E = {0, 1, 2, 3} and considering a given critical point

where I = n, if i < j < k ∈ E − {n}, this critical point Cn is usually

linked to three other pairs of critical points Ci , Cj and Ck (where

I = i, j and k, respectively) by critical lines aligned with eigenvectors

associated with eigenvalues λ1, λ2 and λ3, respectively, at point Cn .

Most of the time, each of these branches connect to critical points Ci ,

Cj and Ck along the eigenvectors associated with eigenvalues λ1, λ2

Figure 3. Illustration of a second-order approximation of the density field

around a maximum (I = 0), filament (I = 1) and pancake (I = 2) saddle

point and a minimum (I = 3). The colour stands for the density, ranging from

purple in low-density regions to red in high-density regions. The axes are

the eigenvectors of the Hessian, and give the direction of the six branches

of the local critical lines going through these critical points (i.e. where the

gradient of the field and the eigenvectors of H are aligned). The skeleton is

the subset of these critical lines linking maxima (Fig. 3a) and filament saddle

points (Fig. 3b), in the direction of the eigenvector associated with λ1.

and λ3, respectively, evaluated at points Ci , Cj and Ck , respectively.

In this picture, the critical lines can be seen as a fully connected path

linking all the different regions defined by the sign of the eigenvalues

of H.
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The overdense filamentary structure correspond to the subset of

the critical lines that constitute an approximation of the ‘real’ skele-

ton (i.e. the ‘ridges’ of the distribution). This part is the one which

links maxima (I = 3) and filamentary saddle points (I = 2). The

typical behaviour of such lines is the following: in the immediate

vicinity of a non-degenerate maximum, two branches of the skele-

ton exist, stretching in the eigendirection that corresponds to λ1.

Following one of the branches, denoting as λ|| an eigenvalue whose

eigenvector is parallel to the skeleton and λ⊥,1,2 as two eigenvalues

associated to eigenvectors in the perpendicular directions. Near the

maximum, 0 > λ|| = λ1 > λ⊥,1 > λ⊥,2. As one follows a branch

one probable outcome is the change of sign of λ||, in which case

the branch will typically end in a saddle point of a filamentary

type along its λ1 direction. There is always another branch that

starts from this saddle point on the other side, thus this type of

branches have a fully connected structure. However, another pos-

sible outcome is that one of the orthogonal eigenvalues changes

faster than λ|| as one moves away from the maximum and becomes

positive before the saddle point is reached. In this case the branch

of the local skeleton formally terminates, which however in real-

ity often means that the skeleton splits at this point in two new

branches.

Such branching of the skeleton is especially frequent near the

maxima of the field, where it accounts for how multiple filamen-

tary sections can end up in a single dark matter halo. Studying how

skeleton segments merge is relevant for questions such as the multi-

pole structure of matter inflow on to dark haloes (Aubert, Pichon &

Colombi 2004; Pichon & Aubert 2006). This property of skeleton

segments to end outside of the critical points is specific to the local

definition of the skeleton, in contrast to the ‘real’ skeleton whose

segments are always connected on both ends.

4 T H E S K E L E TO N L E N G T H F O R
S C A L E - F R E E G AU S S I A N R A N D O M F I E L D S

Before considering general cosmological density fields, the local

skeleton of scale-free Gaussian random fields ρ with null average

value 〈ρ〉 = 0 will be investigated. For convenience, it is useful to

define some spectral parameters that depend on the spectral index

n and on the smoothing length. In the statistical description of the

skeleton of a random density field (Appendix C), the following

spectral parameters appear to play a role:

σ 2
0 = 〈ρ2〉, (11)

σ 2
1 = 〈(∇ρ)2〉, (12)

σ 2
2 = 〈(�ρ)2〉, (13)

σ 2
3 = 〈(∇�ρ)2〉. (14)

This introduces three linear scales into the skeleton theory

R0 = σ0

σ1

, R∗ = σ1

σ2

, R̃ = σ2

σ3

, (15)

where the first two have a well-known meaning of typical separation

between zero crossing of the field R0 and mean distance between

extrema, R∗ (Bardeen et al. 1986), while the third one, R̃ is, by

analogy, the typical distance between the inflection points.

Out of three scales two dimensionless ratios may be constructed

that are intrinsic parameters of the theory

γ ≡ R∗
R0

= σ 2
1

σ0σ2

, γ̃ ≡ R̃

R∗
= σ 2

2

σ3σ1

, (16)
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Figure 4. Total length L of the skeleton per unit box size for different

smoothing lengths σ = 0.020, 0.027, 0.035; measured over 25 realizations

of Gaussian random fields as a function of the spectral index n. While L
depends linearly on the spectral index n, it grows as a power of σ . The

dotted lines represent the fits obtained using the function: L ≈ 0.21(n +
5.28)σ−2.

where γ says how frequent encountering a maximum between two

zero crossings of the field is, while γ̃ describes, on average, how

many inflection points are between two extrema. For Gaussian fields,

these parameters can be easily calculated from the power spectrum.

Both γ and γ̃ range from 0 up to 1. For reference, for the power-law

spectra with index n >−3, smoothed at small scales with a Gaussian

window,

γ =
√

n + 3

n + 5
, γ̃ =

√
n + 5

n + 7
. (17)

Note that cosmologically relevant density power spectra have n >

−3 and thus, while γ can attain low values, γ̃ are always close to

unity.2

Appendix C introduces a statistical description of the skeleton for

the Gaussian and non-Gaussian random field. This section presents

the numerical measurements of the properties of the skeleton for

scale-free Gaussian fields.

The first quantity of interest is the total length of the skeleton, Ltot.

In the context of cosmology, Ltot can be linked to the total length

of the filaments linking clusters together and in that sense reflects

the history of matter accretion as well as the initial distribution of

matter (which is supposed to be similar to a Gaussian random field

with a scale-dependent effective spectral index similar to the ones

considered here). Fig. 4 presents the result of the measurement of

the total length Ltot of the skeleton per unit box size as a function

of the spectral index and for different smoothing lengths σ (within

the range of validity of the algorithm as described in Appendix B).

These measurements are carried over 25 realizations of scale-free

2563 Gaussian random fields as a function of the spectral index n.

The sensitivity of the skeleton to the value of the spectral index is

clear on this plot and, if Ltot appears to be a linear function of the

2 Cosmological density fields, therefore, have of order one inflection point

per extremum, unlike, e.g. a mountain range, where one encounters many

inflection points on a way from a mountain top to the bottom.
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Figure 5. Difference between the PDF of the density field and the normal-

ized differential length of the skeleton dL/dη as a function of the density

contrast η = ρ/σ 0. Each curve represents the average value and variance

of the measured value of dL/dη over 25 different realizations of scale-free

Gaussian fields, for different values of the spectral index n = 0, −1, −2.

The dotted curves represent the estimation obtained by fitting data using

equation (19) (see Table 1 for values of the parameters).

spectral index, it is also clear that it grows as a power law of the

smoothing length. The dotted lines on Fig. 4 shows the result of

such a fit of the data and seems to work very well. A very good

approximation of Ltot per unit box size is thus given by the function:

L tot = 0.21(n + 5.28)σ−2.00. (18)

As expected, the exponent of σ is measured to be exactly 2. It

can be proved with a simple argument that this should be the case

for scale-free Gaussian fields. In fact, for such fields, computing

the skeleton over a grid of volume l3 and smoothed on a scale σ

is equivalent to computing the skeleton on a grid of volume (α l)3

while smoothing on a scale (ασ ) and rescaling the result by a factor

of 1/α. Because of the scale invariance, we also have L(σ ) = α−3

L(ασ ) and so L(σ ) ∝ σ/σ 3 = σ−2.

Interestingly, the dependence on the spectral index n is close to

n + 5 which argues for filaments being relatively straight between

extrema, see Appendix C. A visual examination of the filaments

confirms this picture.

Now consider the differential length of the skeleton, dL/dη(η)

where η ≡ ρ/σ 0 is the normalized density contrast. This quantity

represents the expected length of skeleton that can be measured

in a given distribution between density contrasts η and η + dη.

Fig. 5 shows the normalized function dL/dη(η) as a function of

the normalized density contrast η from which was subtracted the

probability distribution function (PDF) of the field (which, within

the range of sampling and finite volume effects approximations,

is a Gaussian function). These values were also averaged over 25

realizations of Gaussian fields with spectral index n = 0, −1, −2

sampled on 2563 pixel grids and for a smoothing length σ = 0.027.

This value was chosen as a compromise between finite volume effect

and differentiability of the field on a grid discussed in Appendix B.

Considering the error bars, it is clear that the value of dL/dη(η) is

directly linked to the spectral index n.

It is shown in Appendix C that dL/dη (η) can be written using

an Edgeworth expansion (see also Novikov et al. 2005 for the cor-

Table 1. Measured values of the first three non-null terms in the Edgeworth

expansion, equation (19), for three different values of the spectral index n =
0, − 1, − 2. These results are obtained by fitting equation (19) on the data

presented in Fig. 5 on which the dotted lines represent the fitted function.

The measurements show very good agreement, whatever the value of n.

C2 C4 C6

n = 0 0.219 0.006 −0.001

n = −1 0.212 0.002 −0.002

n = −2 0.206 −0.005 −0.008

0.21 ± 0.005 0.001 ± 0.005 −0.004 ± 0.003

responding proof and fit in 2D):

dL

dη
(η) = L tot√

2π
exp(−η2/2)

(∑
n�0

C2nγ
2n H2n

(
η/

√
2
))

, (19)

where Ltot is the total length of the skeleton, C0 = 1 and H2n are

Hermite polynomials (using the Probabilist’s convention). Fig. 4

demonstrates that this expansion also works very well in the 3D case.

Remarkably, equation (19) does not depend on γ̃ which again argues

for the picture of a stiff behaviour of the skeleton for cosmological

scale-invariant density fields (see Appendix C). Table 1 presents

the values of the first three coefficients C2n obtained by fitting the

measurements presented in Fig. 5 (the dotted line of Fig. 5 are the

result of these fits). Not only does equation (19) allows a very good fit

of the measured data, but it also appears that only the first-order term

is non-null and the differential length of the skeleton of a Gaussian

random field with spectral parameter γ is thus given by

dL

dη
(η) = L tot√

2π
exp(−η2/2)

[
1 + 0.21γ 2(η2 − 1)

]
. (20)

The only non-null coefficients in the expansion are thus C0 = 1 and

C2 =0.21, to be contrasted to C2 =0.17 in the 2D case. Equation (20)

can be used as a test of non-Gaussianity like any other topological

estimator, such as the genus, the PDF, etc. as discussed in Novikov

et al. (2006), since departure from the shape of equation (20) must

appear when the skeleton’s differential length is computed while the

underlying field is not Gaussian.3

For the matter distribution in the Universe, the filaments are over-

dense regions along which matter flows. In that sense, they are less

subject to numerical or observational noise and contain most of

the information about the underlying matter distribution. The skele-

ton length can thus be seen as a method for measuring the power

spectrum which naturally weights information in different regions

according to their importance.

5 I L L U S T R AT I O N : DY NA M I C A L
E N V I RO N M E N T O F F I L A M E N T S

Drawing the skeleton allows us to pin down the nature of the flow

around the filaments. Indeed one may roughly define three dynam-

ically distinct regions in large-scale structures: voids, clusters and

filaments. The first two have been investigated in some detail. The

filaments represent a fairly unexplored venue. Beyond the kinemat-

ics (velocity distribution, spin, etc.), the photometric and spectro-

scopic properties of galaxies (colour, age, metallicity, etc.), their

morphology (ellipticals versus spirals, Gini number, asymmetry) or

3 Of course, given the properties of the skeleton, this will not apply if the

non-Gaussianity involves only a (monotonic) bias.
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Figure 6. Top panels: PDF of the velocity field V of the dark matter along the skeleton as a function of its angle θ with the skeleton and its norm. The

measurements were achieved on a 100 h−1 Mpc and 1000 h−1 Mpc dark matter simulation featuring 5123 particles and a standard �CDM model, smoothed

over a scale s = 1.2 and 12 h−1 Mpc (left- and right-hand panels, respectively). The skeleton is oriented in the direction of increasing density. Dark matter

appears to be flowing along the filaments in the direction of higher density regions (i.e. haloes). Bottom panels: PDF of main eigenvector of the velocity

dispersion tensor �Vi j as a function of its angle θ with the skeleton and its eigenvalue amplitude. The peak of the PDF corresponds to high velocity dispersion

orthogonal to the filaments, which is coherent with the picture of dark matter being accreted orthogonally by the filaments before flowing along them. Note the

increase in velocity dispersion with scale (left- and right-hand panels) as well as the larger angular dispersion in the dark matter flow. This trend is also found

while considering the same simulation at higher z.

the IGM (gas temperature, WHIM detection, fraction of gas/metals

in the filaments, etc.), could also be investigated as a function of the

distance to, and along the filaments.

In this section, two examples simply illustrate how the skeleton

can be used to explore the environment of filaments in cosmological

simulations.

5.1 Dark matter flow near the skeleton

Fig. 6 displays PDF of different characteristics of the dark matter

flow along the skeleton. In order to understand the correlations be-

tween the filaments and the velocity field, we computed the PDF of

its angle relative to the skeleton as a function of its intensity (top

panels), and the PDF of the angle between its largest eigenvector

and the skeleton as a function of the norm of the corresponding

eigenvalue (bottom panels). These measurements were achieved by

first sampling the field characteristics on a grid, averaging particles

velocities V ≡ 〈v〉 and dispersion tensor, �V2
ij ≡ 〈(vi − 〈vi〉)(vj

− 〈vj〉)〉 over each cell, and then computing for each segment the

distance-weighted average of their PDF. Left- and right-hand panels

yield the resulting PDF computed in a 100 h−1 and 1000 h−1 Mpc

dark matter standard Lambda cold dark matter (�CDM) model sim-

ulation, respectively, at redshift z = 0 and using 5123 particles. In

both cases, the density and velocity fields where sampled on a 5123

pixels grid and smoothed over σ p = 6 pixels (i.e. s = 1.2 h−1 Mpc

and s = 12 h−1 Mpc, respectively). The skeleton segments being

oriented in the direction of increasing density, an angle of θ = 0

means that dark matter is flowing along the filament in the direction

of higher density regions.

The flows appears to be laminar and its amplitude increases with

scale: this is expected since on larger scales the clusters are more

massive, the potential difference is larger, hence the flow towards

them is faster. Most dark matter particles have a mean velocity

of about 300 (respectively 400) km s−1 along the filament and a

dispersion of about 100 (respectively 150) km s−1 orthogonal to the

filaments for the two scales considered here. The angular spread
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Figure 7. Excess probability of spin alignment with the local skeleton com-

puted from the average of three 5123 50 h−1 Mpc �CDM simulations at dif-

ferent distances: d ∈ [0, 500], [500, 1500], [1500, 2500] and [2500, 3500] h−1

kpc from the closest skeleton segments. This figure demonstrates that on av-

erage the spin of dark matter haloes tends to be orthogonal to the local

filaments at a level of 25 per cent for distances shorter than 500 kpc. The

simulation is analysed at redshift zero.

(panels 6a and b) also increases with scale, from about 30◦ to about

45◦, reflecting the larger internal heat of the filament, also seen in

Figs 6(c) and (d).

The qualitative shape of this PDF may be explained by the ad-

vection of new haloes on to the ‘highways’ corresponding to the

mean flow. The first eigenvector of the dispersion tensor is on av-

erage clearly orthogonal to the filament, reflecting the velocity of

dark matter falling on to the filaments. Note that the distribution

is decreasing monotonously with θ in Fig. 6(a): some dark matter

particles statistically even move downhill, and their relative frac-

tion decreases with scale. The filaments are collecting matter away

from the underdense regions. Smaller filaments empty smaller voids,

which tend to get depleted earlier than larger ones; hence this may

explain why the flow becomes more orderly at smaller scale as ac-

cretion diminishes.

Note that the redshift evolution (not shown here) of this distribu-

tion follows closely its scale evolution, the z = 15 PDF over 100 h−1

Mpc resembling the z = 0 PDF over 1000 h−1 Mpc (Sousbie 2006).

The detailed nature of the flow should eventually be investigated

in a smoothing scale-independent manner, in order to derive uni-

versal features which would only depend on the cosmology and

the initial power spectrum. Its evolution with redshift or with the

cosmology should also be systematically analysed.

5.2 Dark matter spin-skeleton connection

The geometric orientation of the spin of dark matter haloes corre-

sponds to another feature of the large-scale structure which can be

characterized using the skeleton. The spin of dark haloes was com-

puted using the classical friend-of-friend algorithm with 0.2 times

the interparticle distance as linking length and retaining only haloes

containing more than 100 particles. Fig. 7 displays the excess prob-

ability of alignment of the haloes’ spins with the closest skeleton

segment for different distances [0, 0.5], [0.5, 1.5], [1.5, 2.5] and [2.5,

3.5] h−1 Mpc. This probability reaches 25 per cent for an angle θ =
π/2 between the spin and the skeleton: the spin of dark matter haloes

is preferentially orthogonal to the filament they belong to. This trend

accounts for the fact that the filaments are the locus of laminar flow

where haloes coalesce along the direction of the filaments paral-

lel to the mean flow, hence acquiring momentum orthogonal to the

flow, as observed in Aubert et al. (2004) and Aragon-Calvo et al.

(2007b).

6 C O N C L U S I O N A N D P E R S P E C T I V E S

The 3D skeleton formalism is a well-defined framework for study-

ing the filamentary structure of a distribution. The ‘real’ skeleton

is defined as the set of critical lines joining saddle points to max-

ima of the field along the gradient. A local approximation of it

was introduced in Section 2 along with a numerical method al-

lowing a fast retrieval of the locus of the filaments from a sam-

pled field (see also Appendix A). This method involves computing

the null isodensity surfaces of each component of a function S =
(H · ∇ρ × ∇ρ) of the gradient, ∇ρ, and Hessian matrix, H of this

field.

The ability to localize and characterize the filamentary structure

of matter distribution in the Universe opens the prospect of many

applications for the skeleton as discussed in Sections 4 and 5. It

has been shown in Section 4 that for a Gaussian random field, the

total length of the skeleton per unit volume depended only of the

chosen smoothing length σ and spectral index n, with a specific

functional from which was both fitted from simulations and moti-

vated in Appendix C. In this sense, the local skeleton provides a

direct measurement of the local shape of the power spectrum, P(k),

on various scales depending on the smoothing applied to the un-

derlying field. Though there exist other ways to measure the power

spectrum of a given distribution, the skeleton length is promising as

it relies only on the filamentary structure of the distribution. A forth-

coming paper will investigate in more details the expected scalings

on the shape of the power spectrum. The analysis of the length of

the skeleton of the galaxy distribution in the SDSS as a measure-

ment of cosmological parameter �m can be found in Sousbie et al.

(2007). This paper addresses the issue of implementing the present

algorithm on observational data sets and mock catalogues. In par-

ticular, it is shown there that the effect of redshift distortion is well

accounted for by comparing data from large-scale surveys to such

catalogues.

The skeleton may also be used as an isotropy probe. It corresponds

in fact to a good candidate for the Alcock–Paczynski (Alcock &

Paczynski 1979) test, since the apparent longitudinal to transverse

length of skeleton segments should directly constrain the curvature

of space in a manner which is bias independent. This test will be

presented in a forthcoming paper.

It was demonstrated in Section 4 that the dark matter flow in the

vicinity of filaments was dominantly laminar along the filaments

and shows signs of orthogonal accretion corresponding to the infall

of dark matter collected from the voids. It was also shown that

the spin of dark matter haloes were preferentially orthogonal to

the filament’s direction, a feature which can be understood as a

consequence of merger events taking place along these filaments.

A clear virtue of the local skeleton is that since it relies on a local

expansion of the field, it can deal with truncated/masked fields,

segmented or vanishing ridges or isolated structures. Note finally
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The 3D skeleton 9

that the fit, equation (20), opens the prospect of using the local

skeleton to estimate the bias in observed surveys. The idea is to

compute the PDF of galaxies on the one hand, which depends on

the mass to light ratio of the sample, and the differential length

(equation 20) on the other hand. Since the former depends on the

bias, whereas the later does not, comparing the two should give an

estimate of the bias. On the other hand, the local formulation of the

skeleton presents some limitations. Mainly, it is not fully connected:

it has by construction (since it is drawn from a second-order Taylor

expansion of the field) only two segments per maxima whereas full

connection would require three or more. A consequence is that it

cannot represent merging filaments.

One could also use the curvature and torsion of filaments as cos-

mological probes, since the acceleration of the Universe induced

by the cosmological constant is likely to straighten the filaments,

though the fact that the local skeleton has only two segments near its

maxima (the other segments must branch out) is likely to introduce

some artefacts. The topology and geometry of the skeleton near

the density peaks and the redshift evolution of the skeleton of the

large-scale structures may prove of interest, for instance to study

the frequency of reconnection, though again the local skeleton is

not ideal in this respect. It would also be interesting to construct the

skeleton in higher dimensions, for instance in space–time, to trace

the events lines, but again connection is critical. In a forthcoming

paper, an alternative algorithm for the identification of the skeleton,

loosely based on a least action formulation, will be presented. It

is complementary to the solution presented in this paper and will

allow us to tackle those points for which the local skeleton is less

efficient. Finally, the 3D skeleton algorithm could possibly be ap-

plied to other fields of research, such as neurology, in order to trace

the neural network.
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A P P E N D I X A : N U M E R I C A L I M P L E M E N TAT I O N

All the computations were performed using a specially developed C package: SKELEX
4 (Skeleton Extractor). This package also includes a

flexible OpenGL visualization tool that was used for making the figures in this paper.

The first step before computing the skeleton requires obtaining a density field from a discrete point-like distribution. This is achieved by

smoothing appropriately the density field on a grid so that it is not singular (i.e. is sufficiently differentiable) but still contains all the topological

information. The density field is computed using cloud-in-cell interpolation and convolving the result with Gaussian windows of different

widths. As was shown in section B, the grid size and smoothing length are decisive parameters. It is then necessary to compute first and second

derivatives of the field on the grid, which can be done using finite difference or Fourier transform method. Choosing one method or the other

does not seem to have any influence on the resulting skeleton if the field is smooth enough (which is anyway a necessary condition).
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The 3D skeleton 11

(a) The three fields isosurfaces the intersection of which con-

stitutes the critical lines

(b) The resulting critical lines made of all the intersection of

any two of the three isosurfaces shown in 3(a).

(c) The local critical lines obtained by selecting only the two

least degenerate fields depending on the value of the gradient.

(d) The skeleton obtained after enforcing condition 10 on the

local critical lines: λ1 > 0 and λ2, λ3 < 0.

Figure A3. Illustration of the process of the skeleton computation. White points are dark matter particles extracted from a standard �CDM simulation run

using sc gadget-2. The skeleton is defined as the intersection of two (among three) isosurfaces (Fig. 3a). Defining the curvature as λi with H∇ρ = λi ∇ρ and

∀ j > i, λj < λi (ρ being the density and H its Hessian), it is possible to select only some parts of the skeleton depending on the value of λi and retrieve only

the filaments (Fig. 3d). Using a simple post treatment, it is then possible to remove insignificant pieces and obtain the precise locus of the filaments (Fig. 2).

achieve this result (where the weights are assigned depending on the relative importance of the selection criteria). (i) The branches that were

missed around the extrema are regenerated using the fact that the skeleton around an extremum is along the main curvature axis (i.e. along

the first eigenvector of the Hessian). So for each extremum, marks are given to all skeleton segment, favouring those at small distances and

with similar orientation as the main eigenvector of H. Each extremum is eventually connected to the segment with the highest mark. (ii)

The gaps between segments in the sequence of skeleton branches are filled. Starting from segments connected to extrema, all segments are

visited iteratively: for the running segment, a mark is now assigned to all other unprocessed segments, based upon their relative distance, their

relative angle and relative orientation. Note that the corresponding cost functions are non-linear: for instance segments with too large a relative

angle are given an exponentially negative mark. (iii) Finally, all segments which have not been considered during step (ii) are dropped. The

process is illustrated on Fig. A3, and the resulting skeleton is shown on Fig. 2. A detailed accounting of all stages of the skeleton extraction,

including the post treatment is given in Sousbie (2006) (which gives the exact marking scheme described above), while the code is available

upon request from the authors.

From a performance point of view, this method presents the advantage of being both fast and robust. The computational cost in fact mainly

scales as the number of pixels in grid N3
g; the cost of computing the isosurfaces intersections is negligible given the possibility of computing

only the intersections of faces belonging to the same pixel. It is moreover memory efficient and can be trivially parallelized: the computation

can be done on subgrid regions and then merged. On a modern computer, the memory requirement corresponds to the requirement to store

one subgrid and its three isosurface, which can be arbitrarily small, and the computational time for a 1283 pixel grid is of the order of a few

seconds on a modern desktop computer while only a few tens of minutes is necessary for a grid of 10243 pixel.

A P P E N D I X B : S M O OT H I N G L E N G T H A N D R E S O L U T I O N

One aspect of the numerical implementation that deserves special attention is the issue of smoothing. In the main text, we consider the

total skeleton of Gaussian random fields, focusing mainly on two of its properties: its length L and differential length dL/dη. The algorithm
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Figure B1. Top: evolution of the measured spectral parameter γ (see equation 16) for 25 realizations of Gaussian random fields with spectral index n = 0

(red crosses), n = −1 (green triangles) and n = −1 (blue discs) as a function of the smoothing scale σ expressed in box size units. The three continuous lines

represent the expected theoretical values, measured by integrating the power spectrum truncated to grid limit frequencies. The dotted lines are the theoretical

expectations (equation 17) without accounting for finite volume effects. For higher values of σ , the finite box size effects have more influence and the measured

value of γ tends to differ from the correct one, thus limiting the maximal smoothing scale Bottom: evolution of the measured length of the total skeleton in box

size units as a function of the smoothing length in pixels σ p, for different values of the spectral index n and while keeping the smoothing scale to a constant

fraction of the box size σ ≈ 0.031. The measurements are obtained by resampling one initial realization of a Gaussian random field (generated over a 2563 pixel

grid) on smaller resolution grids and smoothing the resulting fields over the appropriate number of pixels. The measured length of the total skeleton appears to

become stable for values of σ p above a limit of 4 to 5 pixels at least, which corresponds to σ > 0.19 for a field sampled on a 2563 pixels grid.

presented in this paper deals with the numerical computation of the skeleton of a discretized realization of a given field. It is thus important in

the first instance to be able to deal with the influence of this discretization on the measured skeleton properties (see e.g. Colombi et al. 2000).

The statistical properties of a scale-free Gaussian random field can be described using only two numbers: its spectral index n and the

amplitude A of its power spectrum P(k) = Akn , where k is the wavenumber. The skeleton formalism is totally independent of the amplitude of

the field, so only the value of n is of interest to us. Consider a realization of a 3D scale-free Gaussian random field with spectral index n on a

N3
g pixel grid. In order to ensure sufficient differentiability, this field is convolved to a Gaussian kernel whose scale σ is expressed per unit box

size. The value of σ limits the size of the smallest scale that can be considered, while the finite size of the grid imposes an upper limit. Fig. B1

presents the measured value of the spectral parameter γ 2 = (n + 3)/(n + 5) as a function of σ , for 25 realizations of Gaussian random fields

with spectral index n ∈ {0, −1, −2}, together with the theoretical value, measured by integrating the power spectrum truncated to grid limit

frequencies. As expected, a departure from theory is observed for higher values of σ , especially for fields with lower spectral index where

most of the power is concentrated on small values of k (i.e. on large scales). This sets an upper limit on the value of the smoothing scale and

so we will only be considering fields smoothed on scales σ � 0.035.

The other constraint on the value of σ arises from the fact that the skeleton computation algorithm requires a field that is continuously

differentiable twice in the finite difference scheme sense. This means that the smoothing length should be large enough for the computational
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errors on field derivatives to be negligible. These considerations imply a lower limit on the smoothing length value expressed in number

of pixels σ p = σ Ng. In order to estimate this limit, we again generated Gaussian random fields with different spectral indices over a 2563

(Ng = 256) pixels grid and downsampled them on grids with eight different values of Ng ranging from Ng = 64 up to Ng = 224. Fig. B1

presents the evolution of the measured skeleton length for these realizations, each of them being computed for a smoothing scale corresponding

to a constant fraction of the box size σ ≈ 0.031 but to different values of σ p ranging from σ p = 1 up to σ p = 7. One would clearly expect the

length of the skeleton to depend only on the value of σ as long as the numerical approximations are negligible, which seems to be the case

only for values of σ p at least of order 5 pixels. For a given sampling Ng, this limits the possible smoothing scale to σ > 5/Ng. As was noted

previously, this exact value depends on the considered spectral index, so we chose to consider the worst case, n = 1, where the fluctuations

of the field do not dampen on small scales thus making the field naturally not smooth on any scale.

In this paper, all fields considered are sampled over Ng = 256 cubic grids, so in order to respect the constraints described above, the fields

are smoothed on scales in the range 0.02 < σ < 0.035.

A P P E N D I X C : T H E T H E O R E T I C A L D I F F E R E N T I A L L E N G T H O F T H E S K E L E TO N

C1 Average length of the skeleton per unit volume

To find the average length per unit volume, L(ρth), of the critical lines5 that are above the threshold ρ th consider the vicinity of the points

through which the local critical line passes, Si = 0, Sj = 0. (Since the sets of conditions (Si ,S j ) = (0, 0), i �= j is degenerate, without loss of

generality one can assume a particular choice for i and j). Define the set of points, E , in the excursion ρ > ρ th near the critical line solutions

that satisfy −�Si/2 � Si � �Si/2 and −�S j/2 � Sj � �S j/2 where �Si and �Sj are sufficiently small so that the linear expansion �Si

≈ ∇Si · d r , �Sj ≈ ∇Sj · d r holds.6 The fraction of the total volume the set E occupies (the filling factor) is

V(ρth, �Si , �S j ) =
∫

ρ>ρth

dρ

∫ �Si /2

−�Si /2

dSi

∫ �S j /2

−�S j /2

dS j

∫
d3(∇Si ) d3(∇S j )P(ρ,Si ,S j , ∇Si , ∇S j ), (C1)

where P(ρ,Si ,S j , ∇Si , ∇S j ) is the joint PDF of the quantities (ρ,Si ,S j , ∇Si , ∇S j ). Here the seemingly redundant distribution of the

gradients ∇Si and ∇Sj was introduced to have the expression for the fraction of the total volume occupied by a differential subset of E that

has specific values of the gradients ∇Si , ∇Sj [within d3(∇Si ) and d3(∇S j )]:

dV(ρth, �Si , �S j , ∇Si , ∇S j ) = d3(∇Si ) d3(∇S j )

∫
ρ>ρth

dρ

∫ �Si /2

−�Si /2

dSi

∫ �S j /2

−�S j /2

dS jP(ρ,Si ,S j , ∇Si , ∇S j ). (C2)

Since the area, , of a section locally orthogonal to the such subset, is simply (modulo some trigonometry) given by

(�Si , �S j , ∇Si , ∇S j ) = �Si�S j/|∇Si × ∇S j |,
dividing dV by , integrating over all possible gradients ∇Si , ∇Sj and then taking the limit (�Si , �S j ) → (0, 0) yields the length per unit

volume of the skeleton that is above the threshold ρ th:

L(ρth) = lim
(�Si ,�S j )→(0,0)

∫
dV(ρth, �Si , �S j , ∇Si , ∇S j )

(�Si , �S j , ∇Si , ∇S j )

=
∫

ρ>ρth

dρ

∫
d3(∇Si ) d3(∇S j ) |∇Si × ∇S j |P(ρ,Si = 0,S j = 0, ∇Si , ∇S j ).

(C3)

This generalizes the calculation of NCD to three dimensions: the length of the local skeleton is defined by the properties of the density field

and its partial derivatives up to third order, as expected.

In order to understand the scalings involved in the computation of L, let us rewrite this equation in terms of dimensionless quantities

σ0η ≡ ρth, σ0x ≡ ρ, σ1xi ≡ ∂ρ

∂ri
, σ2xi j ≡ ∂2ρ

∂ri∂r j
, σ3xi jk ≡ ∂3ρ

∂ri∂r j∂rk
, σ2σ

2
1 si ≡ Si , σ3σ

2
1 ∇si ≡ ∇Si , (C4)

with, following Bardeen et al. (1986),

σ 2
n ≡

∫
k2dk

2π2
P(k)k2n, (C5)

where P(k) is the power spectrum of ρ. Equation (9) and its gradient can be written more conveniently using the totally antisymmetric tensor,

εi jk , as

si =
∑

jkl

εi jk x jl xl xk, and ∇msi ≡ ∇ ŝi (xk, xkl , xklm) =
∑

jkl

εi jk
(

x jlm xl xk + γ̃ [x jl xlm xk + x jl xkm xl ]
)

. (C6)

5 the distinction is made here between the theoretical expectation, L(ρth), in this section and the estimator, L, in the main text.
6 In such small neighbourhood of a critical line there are no other critical lines since the solution for linearized skeleton equations is unique. Note that the linear

expansion of Si breaks near the extrema of the field, where ∇Si = 0, which allows several critical lines to intersect at such points. However, extremal points are

of measure zero as far as the computation of the length of the skeleton is concerned.
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The variances of all the random quantities defined in equation (C4) do not depend on spectral parameters (they are pure numbers) except for

∇si . Keeping that in mind, in this new notation, equation (C3) becomes

L(η) =
(

σ3

σ2

)2 ∫
x>η

dx

∫
d3(∇si ) d3(∇s j ) |∇si × ∇s j |P(x, si = 0, s j = 0, ∇si , ∇s j ). (C7)

Equation (C7) is the formal expression for the length per unit volume of the total set of critical lines above the threshold η.

Let us express the joint distribution function P(η, si , s j , ∇si , ∇s j ) in terms of the joint distribution function of the underlying field and its

derivatives P(x, xk , xkm , xklm). Expressions (C6) for si and ∇si involve up to third derivatives of the field x, thus, accounting for the symmetries

in the derivative tensors of the second and third order is, one deals with a set of 20 independent variables (x, xk , xkl , xklm). P is obtained as a

marginalization over the field distribution

P(η, si , s j , ∇si , ∇s j ) =
∫

dxd3xkd6xkld
10xklm P(x, xk, xkl , xklm)δD(x − η)δD(ŝi (xk, xkl ) − si )δD(ŝ j (xk, xkl ) − s j )

×δD(∇ ŝi (xk, xkl , xklm) − ∇si )δD(∇ ŝ j (xk, xkl , xklm) − ∇s j ), (C8)

which yields the appropriate 9D probability density. Substituting the expression (C8) into equation (C7), differentiating with respect to η, and

accounting for two delta functions in ∇si and ∇sj yields

∂L
∂η

=
(

1

R̃

)2 ∫
d3xkd6xkld

10xklm |∇ ŝi × ∇ ŝ j |P(η, xk, xkl , xklm) δD(ŝi (xk, xkl ))δD(ŝ j (xk, xkl )), (C9)

where σ 3/σ 2 is rewritten in terms R̃ with the help of equation (16).

Expression (C9) gives the differential length per unit volume of the total set of critical lines. Note that ∇ ŝi and ∇ ŝ j are now functions of

(xk , xkl , xklm) and ŝi and ŝ j are function of (xk , xkl ) given by equation (C6). The two delta functions couple the different xk , xkl , accounting for

the fact that the integral should be restricted to the intersection of the two isosurfaces, i.e. along the critical lines. The modulus in |∇ ŝi × ∇ ŝ j |
makes the summation of skeleton segments non-algebraic, which complicates the further reduction of equation (C9). For the set of local

critical lines, there are no restriction to the region of integration. If one is interested in the local skeleton, the integration should be restricted

to regions where the condition given by equation (10) holds.

The total length of the critical lines per unit volume is

Ltot =
∫ ∞

−∞
dη

∂L
∂η

=
(

1

R̃

)2 ∫
d3xkd6xkld

10xklm |∇ ŝi × ∇ ŝ j |P(xk, xkl , xklm)δD(ŝi (xk, xkl ))δD(ŝ j (xk, xkl )). (C10)

C2 ∂L/∂η for a Gaussian random field

Since at a point the value of a Gaussian field does not correlate with its derivatives of odd orders (this is easy to understand using symmetries

in Fourier space), the joint distribution function P(x, xk , xkl , xklm) can be factorized as

P(x, xk, xkl , xklm) = P0(x, xkl )P1(xk, xklm). (C11)

In P0, the only dependence on the power spectrum of the underlying field is in the parameter γ (cf. equation 16) that describes the correlation

between the field and its second derivatives. Similarly, P1(xi , xi jk) only involves γ̃ which describes the correlation between the gradient of the

field and its third derivatives. Therefore ∂L/∂η depends only on η, R̃, γ and γ̃ , as argued in the main text. Note that, by symmetry, ∂L/∂η

for the total set of critical lines should be an even function of η. The total length of the skeleton, Ltot, which follows from marginalization of

the equation (C9) over η may depend only on γ̃ and R̃ since the integration of P0(η, xkl ) over all η cancels the dependency on γ .

C2.1 The ‘stiff’ filament approximation

The 1/R̃2 scaling in equation (C9) reflects the basic fact that, by definition, the local skeleton lines are almost straight within a volume, ∼ R̃3,

that contains one inflection point. A straight segment through such volume has the length ∼ R̃, thus, the expected length per unit volume is

∼1/R̃2. The dependence on the spectral index is then 1/R̃2 ∝ (n + 7)/σ 2, where σ is the smoothing length. Is this the scaling with n that one

should expect in the simulations? Let us write formally

∇si × ∇s j = A(xk, xkl , xklm) + γ̃ B(xk, xkl , xklm) + γ̃ 2C(xk,xkl ). (C12)

Suppose the last term dominates statistically.7 Then, since γ̃ /R̃ = 1/R∗, and given that C(xk, xlm) does not depend on the third derivative of

the field (which can then be integrated out), equation (C12) becomes

∂L
∂η

≈
(

1

R∗

)2 ∫
d3xkd6xkl |C(xk,xlm)| P0(η, xkl ) P1(xk)δD(ŝi (xk, xkl ))δD(ŝ j (xk, xkl )). (C13)

It is easy to foresee when this regime is valid. The same argument as before implies that the 1/R2
∗ scaling arises when the skeleton is almost

straight within a volume that contains one extremum, ∼ R3
∗, rather than one inflection point. This is supported by the fact that the integral

7 Or equivalently assume that the magnitude of derivative of the Hessian is negligible relative to the magnitude of the Hessian.
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does not depend on the third derivatives, thus inflection points play no role, and no dependence on γ̃ remains. This picture corresponds to a

skeleton connecting extrema with relatively straight segments. The scaling is then 1/R2
∗ ∝ (n + 5)/σ 2. We call this regime and the expression

(C13) that describes it ‘the stiff approximation’.

For the total length of the critical lines, integration over η gives

Ltot ≈
(

1

R∗

)2 ∫
d3xkd6xkl |C(xk,xlm)| P0(xkl )P1(xk)δD(ŝi (xk, xkl ))δD(ŝ j (xk, xkl )) ∝ (n + 5)σ−2 (C14)

strictly, since the integral is just a pure number. This is very close to the scaling with n that was found in the numerical fit, equation (18). The

differential length in the stiff regime is then only the function of γ times Ltot. This demonstrates theoretical consistency between the scaling

∼ (n + 5) σ−2 of Ltot and insensitivity of ∂L/∂η to γ̃ for scale-free Gaussian random fields that was observed in the simulations.

C2.2 Joint distribution of the field and its derivatives for a Gaussian random field

The full expression P0(x, xkl ) is given in Bardeen et al. (1986). Introducing variables

u ≡ −�x = −(x11 + x22 + x33), v ≡ 1

2
(x33 − x11), w ≡

√
1

12
(2x22 − x11 − x33), (C15)

in place of diagonal elements of the Hessian (x11, x22, x33) one finds that u, v, w, x12, x13, x23 are uncorrelated. Importantly, the field, x is only

correlated with u = �x and

〈xu〉 = γ, 〈xv〉 = 0, 〈xw〉 = 0, 〈xxkl〉 = 0, k �= l, (C16)

where γ is the same quantity as in equation (16). The full expression of P0(x, xkl ) is then

P0(x, xkl ) dx d6xkl = (15)5/2

(2π)7/2(1 − γ 2)1/2
exp

[
− (x − γ u)2

2(1 − γ 2)
− u2

2

]
exp

[
−15

2
(v2 + w2 + x2

12 + x2
13 + x2

23)

]
dx du dv dw dx12 dx13 dx23,

and is described by only one correlation parameter γ .

A similar procedure can be performed for the joint probability of the first and third derivatives of the fields, P1(xi , xi jk), by defining the

following nine parameters (see also Hanami 99):

ui ≡ ∇i u, vi ≡ 1

2
εi jk∇i (∇ j∇ j − ∇k∇k)x, with j < k, and wi ≡

√
5

12
∇i

(
∇i∇i − 3

5
�

)
x, (C17)

and replacing the variables (xi11, xi22, xi33) with (ui, vi, wi). In that case, the only cross-correlations in the vector (x1, x2, x3, u1, v1, w1, u2, v2,

w2, u3, v3, w3, x123) which do not vanish are between the same components of the gradient and the gradient of the Laplacian of the field:

〈xi ui 〉 = γ̃ /3, i = 1, 2, 3, (C18)

where γ̃ is the same quantity as in equation (16).

This allows us to write

P1(xi , xi jk)d3xi d10xi jk = 1057/233d3wi d3vi dx123

(2π)13/2(1 − γ̃ 2)3/2
exp

[
−105

2

(
x2

123 +
3∑

i=1

(v2
i + w2

i )

)]
3∏

i=1

dui dxi exp

[
−3(ui − γ̃ xi )

2

2(1 − γ̃ 2)
− 3x2

i

2

]
.

C2.3 Dependence of the differential length on threshold and spectral parameters

What is the dependence of the skeleton differential length on the parameter γ and the threshold η? Let us look at the structure of the integrals

involved with respect to the variable u. Importantly, the arguments of the delta functions Si �= Si (u) and ∇Si × ∇Sj , given by equation (C12),

is ∼ √
Q4(u) where Q4(u) is a positive quartic in u. Inserting the expressions for P1 and P0 into equation (C9) one sees that the integral over

u in ∂L/∂η has the form

I(γ, η) =
∞∫

−∞

√
Q4(u) exp

(−u2/2
)

(2π)1/2(1 − γ 2)1/2
exp

[
− (η − γ u)2

2(1 − γ 2)

]
du, (C19)

where Q4(u), of course, also depends on v, w, uk, vk, wk, x123, xk<l and possibly γ̃ , but not on γ .

In the trivial limit γ → 0 the coupling between u and the field value η vanishes and the differential length is reduced to the PDF of η:

dL/dη ∝ exp

[
−η2

2

]
= Ltot

(2π)1/2
exp

[
−η2

2

]
. (C20)

For non-vanishing γ , following NCD, the differentiation of equation (C19) shows that I(γ, η) obeys the equation

γ
∂I
∂γ

= − ∂

∂η

[
ηI(γ, η) + ∂I

∂η

]
,
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whose solution involve even Hermite polynomials (retaining only the convergent solution at large η):

I(γ, η) =
∞∑

n=0

c2nγ
2n H2n(η/

√
2) exp

[
−η2

2

]
. (C21)

Due to the orthogonality property of Hermite polynomials, c2n is given by

c2n = lim
γ→1

∫
dx H2n(x/

√
2) exp(−x2/2)I(x, γ ) =

∫
dx H2n(x/

√
2) exp(−x2/2)

√
Q4(x) = c2n(v, w, ui , ui , wi , x123, xi j ). (C22)

The integration of equation (C21) over v, w, uk, uk, wk, x123, xk<l (while accounting for the rest of the integrant corresponding to P0 and P1

together with the two delta functions) yields the functional form of dL/dη, equation (19), where C2n is a pure number in the stiff approximation,

but may depend on γ̃ in general.

In the stiff approximation, equation (C13) can be investigated semi-analytically. This analysis is the subject of a subsequent paper.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT

The length of the three-dimensional filaments observed in the fourth public data release of the SDSS is measured
using the “local skeleton” method. This consists of defining a set of points where the gradient of the smoothed
density field is extremal along its isocontours, with some additional constraints on local curvature to probe actual
ridges in the galaxy distribution. A good fit to the mean filament length per unit volume, , in the SDSS surveyL
is found to be for 8.2 Mpc≤ L ≤ 16.4 Mpc, whereL�1.75�0.06 3L p (52500� 6500) (L/Mpc) Mpc/(100 Mpc)
is the smoothing length in Mpc. This result, which deviates only slightly, as expected, from the trivial behavior

, is in excellent agreement with aLCDM cosmology, as long as the matter density parameter remains�2L ∝ L
in the range at the 1j confidence level, considering the universe is flat. These measurements,0.25! Q ! 0.4matter

which are in fact dominated by linear dynamics, are not significantly sensitive to observational artifacts such as
redshift distortion, edge effects, incompleteness, and biasing. Hence it is argued that the local skeleton is a rather
promising and discriminating tool for the analysis of filamentary structures in three-dimensional galaxy surveys.

Subject headings: large-scale structure of universe — methods: data analysis — methods: statistical

Online material: color figures, mpeg animation

1. INTRODUCTION

From the Great Wall of CFA1 (Geller & Huchra 1989) to
the very long filaments seen in the SDSS (Gott et al. 2005)
and the 2DF (Colless et al. 2001), the ever growing size of the
largest structures observed in the three-dimensional galaxy dis-
tribution has often been considered a challenge to models of
large-scale structure formation. It is therefore of prime impor-
tance to find a robust way to identify filaments in the universe
and to characterize them, e.g., through their length, thickness,
and/or average density. To achieve that, one usually relies on
the analysis of the morphological properties—e.g., through
structure functions (Babul & Starkman 1992), Minkowski func-
tionals (Mecke et al. 1994), shape finders (Sahni et al. 1998)—
of an excursion’s connected components in overdense regions
of the catalog, which can be obtained using friends-of-friends
algorithms (Zel’dovich et al. 1982), the minimum spanning tree
technique (Barrow et al. 1985; Doroshkevich et al. 2004), or
percolation on a grid where the density field has been smoothly
interpolated (Gott et al. 1986; Dominik & Shandarin 1992).

This Letter works instead in the framework of Morse theory
(Milnor 1963; Jost 2002), which establishes a rigorous although
simple relationship between the number and distribution of
critical points of a field and its general topology (Colombi et
al. 2000). It uses the approach proposed recently by Novikov
et al. (2006) and Sousbie et al. (2008b), where filaments are
seen as a set of special field lines, departing from saddle points
and converging to local maxima while following the gradient
of the density field, . However, the “skeleton”∇r { �r/�x { ri i

thus defined remains nonlocal, which makes analytical calcu-
lations challenging and edge effects difficult to cope with in
real catalogs. In fact, its detection at a given location depends

1 CRAL, Observatoire de Lyon, 69561 Saint Genis Laval Cedex, France;
sousbie@obs.univ-lyon1.fr.

2 Institut d’Astrophysique de Paris, UMR 7595, UPMC, 98 bis boulevard
d’Arago, 75014 Paris, France.

3 IFA, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822.
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on the detection of an arbitrarily distant maximum or saddle
point of the field. To solve these issues, a local approximation
of the skeleton was proposed by Novikov et al. (2006) in the
2D case, and generalized to 3D by Sousbie et al. (2008b). Given
the Hessian, , and its eigenvalues, ,2H { � r/�x �x { r li j ij i

ranked in decreasing order, the “local skeleton” is defined as
the set of points where and , to ensureH · �r p l �r l , l ! 01 2 3

that ridges of the density field are probed.
In this Letter, the local skeleton is extracted from the SDSS

DR4 galaxy catalog. Its total length per unit volume is measured
and compared to that obtained inLCDM cosmologies. Relying
on realistic mock catalogs, various effects such as incomplete-
ness, survey geometry, cosmic variance, redshift distortions,
biasing, and nonlinear dynamics are extensively tested.

2. OBSERVATIONAL AND MOCK DATA SAMPLES

A complete description of the Fourth Data Release of the
Sloan Digital Sky Survey (DR4 SDSS) can be found in Adel-
man-McCarthy et al. (2006). The main sample used in this
Letter is extracted from the Catalog Archive Server facility. To
ensure proper spectral identification of galaxies, objects with
specclass p 2 andzconf 1 0.35 are selected in thespecphoto
table. This yields a main sample containing 459,408 galaxies.
The completeness in apparent magnitude was investigated and
is achieved for . Two subsamples were extracted: aU ! 19SDSS

sample cut at distance Mpc containing 148,012 gal-d ! 350
axies (hereafter DR4-350), and a homogeneous, volume-limited
sample (hereafter DR4-VL350) containing 25,843 galaxies se-
lected on the basis of their absolute magnitudeM ! �17absU

and Mpc. The distance of the cut was chosen as itd ! 350
empirically represent a good compromise between the level of
completeness, which ensures that different populations of gal-
axies are fairly represented, and the total number of galaxies
in the sample.

To test the robustness of the measurements and compare
observational results to theoretical predictions, a largeLCDM
simulation was performed, using the publicly available tree
code GADGET-2 (Springel 2005), involving particles in3512
a box, and with the following cosmological�11024 h Mpc211
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Fig. 1.—Derived 3D skeleton in a slice of the SDSS for a smoothing length
Mpc. This animation still frame shows how well structures are cap-L p 16.4

tured, notably the SLOAN Great Wall. [This figure is available as an mpeg
animation in the electronic edition of the Journal.]

parameters: km s�1 Mpc�1, ,H p 70 Q p 0.050 baryons

, and normalization . VariousQ p 0.3,Q p 0.7 j p 0.92matter L 8

mock catalogs were extracted from this simulation, using
MoLUSC (Sousbie et al. 2008a). This tool is designed to build
realistic mock galaxy catalogs from dark matter simulations of
large volume but poor mass resolution, by reprojecting, as func-
tions of local phase-space density, the statistical properties of
the galaxy distribution (type, spectral features, number density,
etc.) derived from semianalytic models applied to simulations
of higher mass resolution. Here, the results calculated by
GalICS (Hatton et al. 2003) on a tree code simulation with
2563 particles in a cube of 150 Mpc on a side are used as inputs
of MoLUSC. According to the analyses of Blaizot et al. (2006),
this simulation should provide sufficient mass resolution to
describe realistically the statistical properties of SDSS galaxies
with . The advantage of using MoLUSC is that itU ! 19SDSS

allows one to probe a realistic volume of the universe without
worrying about finite volume or replication effects in the re-
alization of mock catalogs themselves (Blaizot et al. 2005).

For the purpose of testing the skeleton properties, three dif-
ferent kinds of mock catalogs were built, all cut at a distance
of 350 Mpc: (1) the main catalog is called MOCK and attempts
to reproduce all the characteristics of DR4-350 (redshift space
distortion, incompleteness, survey geometry, etc.); (2) MOCK-
PS is identical to MOCK but uses the exact positions of the
galaxies to test the effect of redshift distortion; (3) MOCK-AS
is an all-sky version of MOCK aimed to test the influence of
survey geometry; and finally, (4) MOCK-NB is identical to
MOCK but with dark matter particles (without density biasing).
The volume of our simulation is approximately 30 times that
covered by DR4-350, which yields an error bar reflecting cos-
mic variance from the dispersion among 25 random realizations
of MOCK. Note finally that measurements were also performed
directly on the dark matter distribution simulation boxes and
on the initial conditions of the simulation, to test the effects
of nonlinear clustering.

3. THE 3D SKELETON: ALGORITHM

The details of the algorithm used to draw the local skeleton
defined in § 1 are given in Sousbie et al. (2008b), so only a
brief sketch of it is given here:

1. Interpolation and smoothing.—The first step consists of
performing cloud-in-cell interpolation (Hockney & Eastwood
1981) on a grid covering a 700 Mpc cube embedding the3512
survey. To avoid extra degeneracies while drawing the skeleton,
the empty regions of the cube are filled with a random distri-
bution of galaxies with 1000 times smaller average density
than inside the survey. At the end of the process, only the parts
of the skeleton belonging to the original survey are kept. To
warrant sufficient differentiability, convolution with a Gaussian
window of sizeL is performed prior to computing the gradient
and the Hessian using a finite difference method. As argued in
Novikov et al. (2006), in order to avoid contamination by the
grid, discreteness, and finite volume effects, respectively, the
smoothing scale should verify , andL/D � 4, L/l � 1

, whereD is the grid step,l is the mean interparticle1/3L/V � 20
distance, andV is the survey volume. As a result, the following
conservative scale range, 8.2 Mpc≤ L ≤ 16.4 Mpc, will be
used for the measurements performed in this Letter.

2. Surface intersection modeling.—The second step of the
algorithm consists of drawing the skeleton, noting that it is
embedded in the set of points verifying . ThisH · �r � �r p 0
leads to three conditions, , that define threeS (x , x , x ) p 0i 1 2 3

surfaces intersecting along a common line. The actual method
used to compute the surfaces as an assemblage of tri-S p 0i

angles and their intersections as a set of connected lines relies
on the classical marching cube algorithm (Lorensen & Cline
1987), as detailed further in Sousbie et al. (2008b). Additional
conditions, namely that the gradient should be aligned with the
major axis of curvature—in practice, F�r · u F 11

, where are the eigenvectors of —max (F�r · u F, F�r · u F) u H2 3 i

and are enforced locally after diagonalizing thel , l ! 02 3

Hessian.
3. Cleaning.—Some additional treatment has to be per-

formed in regions where the field becomes degenerate (e.g., in
the vicinity of critical points, ), as explained in detail∇r p 0
in Sousbie et al. (2008b). Finally, the parts of the local skeleton
which do not pass through any critical point are removed. As
argued in Sousbie et al. (2008b), these parts are mostly irrel-
evant as they do not, in general, correspond to real filaments.
The derived 3D skeleton is shown in Figure 1.

4. MEASUREMENTS AND ROBUSTNESS VERSUS
OBSERVATIONAL BIASES

Figure 2 shows the skeleton measured in DR4-350 for three
smoothing scales , 10.9, and 8.2 Mpc (top left andL p 16.4
bottom left and right panels; note that each panel comprises
the two hemispheres), while the measurements of its length

as a function ofL are summarized in Table 1.L
As expected, the skeleton matches the intuitive visual def-

inition of what a filament is, and its length and complexity
increase with the inverse ofL. Note in Figure 2 that the prom-
inent features of the skeleton remain mostly independent of
smoothing: decreasingL essentially adds new branches to the
skeleton, corresponding to finer structures in the galaxy dis-
tribution. In other words, the skeleton grows like a tree, while
L decreases. The overall scale dependence of the measured
length, �1.75�0.06L p (52500� 6500) (L/Mpc) Mpc/(100

, is in good qualitative agreement with the expected triv-3Mpc)
ial power law in the scale-free case, (Sousbie et al.�2L ∝ L
2008b).

These results match very well the predictions of the standard
LCDM model (compare MOCK to DR4-350). This allows one
to use the mock catalogs as a solid baseline to test possible212
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Fig. 2.—Skeleton of the SDSS compared to the corresponding galaxy distribution. Each panel comprises the two hemispheres.Top left and right panels: The
galaxy distribution, respectively in DR4-350 and its volume-limited counterpart, DR4-VL350, with the superimposed skeleton measured for a smoothing scale

Mpc. Bottom left and right panels: The skeleton measured in DR4-350, for and 8.2 Mpc, respectively. The difference in appearance betweenL p 16.4 L p 10.9
the northern and southern hemispheres reflects the geometry of the survey: while the northern part is made of one large slice, the southern part is composed of
three thin slices, making it almost two-dimensional. The corresponding bias on the skeleton length is taken into account as we reproduce this exact same geometry
in the mock catalogs. See the Fig. 1 legend regarding our mpeg movie, where the skeleton is measured on the full SDSS-DR4 data for Mpc. [See theL p 16.4
electronic edition of the Journal for a color version of this figure.]

observational and dynamical effects on the skeleton, as dis-
cussed now, using Table 1 as a guideline.Incompleteness and
discreteness effects can simultaneously be tested by comparing
DR4-350 to its volume-limited counterpart, DR4-VL350,
which probes only 15% of the galaxies available in DR4-350
(see Fig. 2,top panels). They have little impact on the skeleton,
changing its length by at most 3%.Edge effects arise from the
particular geometry of the SDSS. They can be probed by com-
paring MOCK to MOCK-AS. They have a small but systematic
impact on the measured length of the skeleton, which is in-
creasingly overestimated with scale, from about 1% forL p

Mpc to 8% for Mpc. In terms of scaling behavior,8.2 L p 16.4
is therefore slightly underestimated, which explains�aL ∝ L , a

partly the slight deviation from the expectation , in ad-a p 2
dition to the scale dependence of the power spectrum of the
density fluctuations.Cosmic variance should be small: when
estimated from the dispersion among 25 realizations of MOCK,
it increases with smoothing scale, as expected, from a 2% error
for and to a 5% error for .RedshiftL p 8.2 L p 10.9 L p 16.4
distortion effects, discussed at length in Sousbie et al. (2008b),
can be tested by comparing MOCK to MOCK-PS. They have
negligible impact on the measurements, well within the cosmic
variance. Finally, since the skeleton probes overdense regions
of the universe and large smoothing scales are considered, the
measurements are expected to be rather insensitive to effects
of biasing and to be dominated by the predictions oflinear

dynamics. This has been fully confirmed when comparing the
skeleton of simulations at and in the initial conditions,z p 0
at least in theLCDM cosmogony framework. Moreover, the
small amplitude of the change of length of the skeleton when
nonlinear biasing is applied can be checked in Table 1 (compare
MOCK-NB and MOCK).

5. DISCUSSION: A TEST OF LARGE-SCALE STRUCTURE
FORMATION MODELS

In this Letter a method to probe the filamentary structure in
the galaxy distribution, involving the extraction of the local
skeleton from the data and measuring its length per unit volume,

, was tested on the SDSS and mock catalogs. The length ofL
the skeleton was found to be a robust statistic in the scaling
regime 8.2 Mpc≤ L ≤ 16.4 Mpc, rather insensitive to nonlin-
earities, biasing, redshift distortion, incompleteness, and cosmic
variance. The results were, however, slightly affected by edge
effects due to the geometry of the SDSS (see Table 1, col. [6]).
Still, one observes a good agreement with theLCDM con-
cordant model, which pleads in favor of consistency (within
the quoted error bars) between this model and observed large-
scale structures (see Fig. 3,top panel).

One question remains: is the length of the skeleton a dis-
criminant measure of large-scale structure? In theory, the an-
swer is positive: for a Gaussian field, depends on the shapeL213
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TABLE 1
Length per Unit Volume of the Skeleton for Different SDSS and Mock Samples

Length Density [Mpc/(100 Mpc)3]

L
(1)

DR4-350
(2)

DR4-VL350
(3)

MOCK
(4)

MOCK-PS
(5)

MOCK-AS
(6)

MOCK-NB
(7)

16.4 . . . . . . 372 363 390� 19 395� 16 362 403� 17
10.9 . . . . . . 795 772 796� 18 815� 19 740 790� 24
8.2 . . . . . . . 1271 1299 1272� 25 1308� 27 1285 1204� 25

Fig. 3.—Top: Skeleton length per unit volume [in Mpc/(100 Mpc)3] as a
function of smoothing length for mock catalogs and SDSS showing the very
good agreement (as explained in the text). The error bars correspond to the
cosmic variance, which is estimated via 25 realizations of the mock.Bottom:

corresponding to the squared difference between the total length per unit2x
volume of the mock catalog and that of the SDSS, in units of the rms of the
mock; these curves yield a confidence interval for (for a flat universe)2x Qmatter

of [0.25, 0.4] at the 1j level and [0.15, 0.75] at the 2j level. The simulations
are dark matter particles of a given km s�1 Mpc�1 using an Eke3256 H p 700

prescription (Eke et al. 1996) for the normalization of the spectrum. [See the
electronic edition of the Journal for a color version of this figure.]

of the power spectrum of density fluctuations, , throughP(k)
its moments of order , up to2m�2 2 22m, k P(k) exp (�k L )dk∫

, leading to the approximate scaling �2m p 3 L ∝ (5.2� n)L
for (Sousbie et al. 2008b). To demonstrate that thisnP(k) ∝ k
spectral dependence can be used to constrain models of large-
scale structure in practice, nine flat-universe simulations were
carried out with GADGET-2, involving 2563 particles and with
the same cosmological parameters as previously used except
that was left as a free variable in the rangeQ 0.1≤matter

. From each of the simulations, 25 mock catalogsQ ≤ 0.9matter

were extracted, in which was estimated. These measurementsL
were used to perform standard analysis to find the best2x
matching value of for the SDSS, using MOCK as theQmatter

reference. The final 1j constraint is (see0.25! Q ! 0.4matter

Fig. 3).
This clearly demonstrates that the length of the skeleton is

a discriminant estimator, which might prove to be a real al-
ternative to traditional two-point statistics estimators which are
extremely sensitive to the bias in the nonlinear stage of grav-
itational instability. The local skeleton extraction also opens
new paths of investigation for the structure analysis of galactic
or dark matter distribution, with the prospect of defining quan-
titatively the locus of filaments. In particular, it will allow as-
tronomers to carry measurements (velocity, pressure, etc.)
along the main motorways of galactic infall (Aubert et al.
2004).

This work was carried out within the Horizon Project, http:
//www.projet-horizon.fr. We thank the SDSS Collaboration,
http://www.sdss.org, for publicly releasing the DR4 data. The
computational means used to perform the simulation (IBM3512
POWER4) were made available to us by IDRIS. We thank S.
Prunet, D. Aubert, J. Devriendt, and D. Pogosyan for useful
comments. We thank the referee for constructive comments.
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Sahni, V., Sathyaprakash, B. S., & Shandarin, S. 1998, ApJ, 495, L5
Sousbie, T., Bryan, G., Devriendt, J., & Courtois, H. 2008a, ApJ, in press
Sousbie, T., et al. 2008b, MNRAS, in press
Springel, V. 2005, MNRAS, 364, 1105
Zel’dovich, Ya. B., Einasto, J., & Shandarin, S. F. 1982, Nature, 300, 407

214



Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 19 November 2008 (MN LATEX style file v2.2)

The local theory of the cosmic skeleton

D. Pogosyan1, C. Pichon2,3, C. Gay2,
S. Prunet2, J.F. Cardoso4,2, T. Sousbie2 & S. Colombi2
1 Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta, T6G 2G7, Canada
2 Institut d’Astrophysique de Paris & UPMC, 98 bis boulevard Arago, 75014 Paris, France
3 Service d’Astrophysique, IRFU, CEA-CNRS, L’orme des merisiers, 91 470, Gif sur Yvette, France,
4 Laboratoire de Traitement et Communication de l’Information, LTCI/CNRS 46, rue Barrault, 75013 Paris, France.

19 November 2008

ABSTRACT

The local theory of the critical lines of 2D and 3D Gaussian fields that underline
the cosmic structures is presented. In the context of cosmological matter distribution
the subset of critical lines of the 3D density field serves to delineate the skeleton
of the observed filamentary structure at large scales. A stiff approximation used to
quantitatively describe the filamentary skeleton shows that the flux of the skeleton
lines is related to the average Gaussian curvature of the (N-1)D sections of the field,
much in the same way as the density of the peaks. The distribution of the length of the
critical lines with threshold is analyzed in detail, while the extended descriptors of the
skeleton - its curvature and its singular points, are introduced and briefly described.
Theoretical predictions are compared to measurements of the skeleton in realizations of
Gaussian random fields in 2D and 3D. It is found that the stiff approximation predicts
accurately the shape of the differential length, allows for analytical insight, and explicit
closed form solutions. Finally, it provides a simple classification of the singular points
of the critical lines: i) critical points; ii) bifurcation points; iii) slopping plateaux.

1 INTRODUCTION

The concept of random fields is central to cosmology. Random fields both provide initial conditions for the evolution of the
matter distribution in the Universe, and represent how the observed signals manifest themselves in 3D, (e.g., in the galaxy or
matter density inhomogeneities that form the Large Scale Structure (LSS)), or on the 2D sky (e.g. for the Cosmic Microwave
Background (CMB) temperature and polarization, the convergence or shear in weak lensing maps). In the modern cosmological
theories where initial seeds for inhomogeneities observed as cosmic structures have quantum origin, the fields of initial density
fluctuations (and velocities) are Gaussian. Subsequent evolution retains Gaussianity for the observables that evolve linearly
(CMB, very Large Scale Structure) while developing non-Gaussian signature if non-linear effects are involved (e.g. lensing
and LSS at smaller scales).

While comparing the observational data to cosmological theory, in particular in order to estimate parameters of cosmo-
logical models, the emphasis is traditionally placed on the statistical descriptors of the random fields. For Gaussian fields
the two-point correlation function or the power spectrum provide full statistical information, while non-Gaussian properties
may be reflected in multi-point correlations. The understanding and the description of the morphology of structures in our
Universe, on the other hand, calls for the studies of the geometry and topology of random fields. This subject has an extensive
history from the early description of the one-dimensional radio signal time-streams in 1940’s, to the study of the 2D ocean
wave patterns in 1960’s (Longuet-Higgins 1957) to 3D dimensional fields (Adler 1981) that found the most fruitful application
in cosmology (Arnol’d et al. 1981; Bardeen et al. 1986). The most prominent geometrical objects in a typical realization of a
random field are rear events - regions of unusually high or low values of the field. The rare events are usually related to the
most spectacular observed objects – clusters of galaxies at low z, large protogalaxies at high-z or extensive voids. They are
associated with the neighbourhoods of extrema – maxima or minima – making studies of such critical points the first step in
understanding typical geometry of a field (Kaiser 1984; Bardeen et al. 1986; Regos & Szalay 1995; Scannapieco et al. 2006).
The behaviour of the field in the neighbourhood of a rare peak is highly correlated with the peak properties, which allows to
describe not only extrema but the extended peak-patch region (Bond & Myers 1996a) as a point process that involves the
field and its successive derivatives. Including the shear flow into consideration gives a compelling application of the geometry
of rare events to the description of cluster formation through the peak-patch collapse (Bond & Myers 1996b).
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2 Pogosyan, Pichon, Gay, Prunet, Cardoso, Sousbie, Colombi

The rare events reflect the organization of the field around them and by and large determine the way the high (low) field
regions are interconnected by the bridges of enhanced field values. In application to cosmology, the “Cosmic Web” picture
emerges, which relates the observed clusters of galaxies, and filaments that link them, to the geometrical properties of the
initial density field that are enhanced but not yet destroyed by the still mildly non-linear evolution on supercluster scales
(Bond et al. 1996). The study of the connectivity of filamentary structures reveal the role of the remaining type of critical
points, the saddle extrema, in establishing, in particular, the percolation properties of the Web (Colombi et al. 2000). The next
step naturally involves describing the statistical properties of these filamentary structures (Pogosyan et al. 1998; Schmalzing
et al. 1999) and developing techniques for mapping the filaments in the simulation and data. Novikov et al. (2006) presented
a 2D algorithm to trace the filaments of a density field while introducing the skeleton as the set of locally defined critical lines
emanating from the critical points. Sousbie et al. (2008) (hereafter SPCNP) extended the local theory and algorithm to three
dimensions and provided the foundation for this work while introducing the “stiff” approximation. Recently, Sousbie et al.
(2008) presented an algorithm to map out a fully connected version of the skeleton that is defined according to the global
properties as the lines of intersections of the patches (see also Aragón-Calvo et al. (2007), Platen et al. (2007) for alternative
algorithms). This approach connects the study of the filamentary structure to the geometrical and topological aspects of the
theory of gradient flows (Jost 2008) and returns the focus to the notions of peak and void patches.

This paper presents a consistent local theory for the cosmic skeleton, while focusing on the stiff approximation to compute
the differential length of the skeleton as a function of the contrast and modulus of the gradient of the field. It allows us to
define precisely how the properties of the skeleton depend analytically on the underlying spectral parameters, and understand
what type of line prevails where. The crucial advantage of the local approach to the critical lines is that it allows to cast
the statistical treatment of the linear objects as a point process that involves the field and its derivatives, which allows for
analytical insight, and explicit closed form solutions. Our purpose is to construct the theory of critical lines of a given field
corresponding to an intermediate representation of the field, which is more extended than the knowledge of the critical points.

The organization of the paper is the following. Section 2 classifies the various critical lines in 2D and 3D, connects the
average length in a unit volume to the flux of the skeleton lines and, within the stiff approximation, to the average Gaussian
curvature of the field in transverse sections. It also discusses the meaning of this approximation. Section 3 calculates the
differential length of all sets of critical lines in 2D, while Section 4 investigates the corresponding 3D set of critical lines.
More generally, the expression for the differential length of the N dimensional skeleton is sketched in Appendix A. Section 5
introduces the extended descriptors of the skeleton, Section 5.3 describes their singular points, while Section 6 provides the
discussion and the summary. Appendix D gives the general method for obtaining in close form the joint distribution of the field
and any combination of its derivative tensors in arbitrary dimensions. In particular, it exhibits all the statistical invariants
and their dependence on the spectral parameters.

2 THE CRITICAL LINES AND THE SKELETON OF A 3D RANDOM FIELD

2.1 Local definition and classification

The subject of our investigation is a random field, ρ(r), that in a cosmological setting describes, for example, the density
of the matter in the Universe, or the projected distribution of Cosmic Microwave light on the celestial sphere. Our focus is
on the geometrical properties of the critical lines, that connect extrema of the field mapping out the filamentary ridges and
valleys of the field. SPCNP have introduced the definition of the local critical lines as the set of points where the gradient of
the density, ∇ρ, is an eigenvector of its Hessian matrix, H, H ·∇ρ = λ∇ρ i.e, the gradient and one of the principal curvature
axes are collinear. Formally, this can be specified by a set of equations

S ≡ (∇ρ · H) · ε · (∇ρ) = 0 , (1)

where ε is the fully antisymmetric (Levi-Civita) tensor of rank N . In general S is an antisymmetric N − 2 tensor.
In 3D, the function S is vector-valued, Si =

P
klm ε

ikl(∇mρ)Hmk(∇lρ). However, zeroes of S determine a set of lines
rather than isolated points. Let us consider the behaviour of S function in the neighbourhood of a point r = 0 that satisfies
criticality condition S(0) = 0:

S(δr) ≈ 0 +
X
k

(∇kS) δrk . (2)

In our case, under the condition Si = 0, the matrix ∇kSi by definition possesses the left null-vector, furnished by the
density gradient,

P
i∇iρ

`
∇kSi

´
= 0; hence the gradients ∇Si are not linearly independent. Consequently, there is a non-

trivial solution for the right null-vector
P
k

`
∇kSi

´
δrk = 0, which determines the local direction of the line along which the

criticality condition is maintained, S(δr) = 0. The critical lines intersect where ∇kSi admits more than one independent right
null-vector.

When we take the eigenvalues of the Hessian to be sorted, λ1 > λ2 > λ3, the gradient of the field at the critical line may
be found aligned with the first, second, or third eigenvector. This gives rise to the classification of the critical lines based on the
choice of the eigenvector aligned with the gradient, that becomes more fine grained when the magnitudes of the eigenvalues
are taken into account. Namely, we distinguish primary critical lines, which correspond to ∇ρ being aligned with the direction
in which the field is the least curved, i.e where the eigenvalue is the smallest in magnitude, and secondary critical lines at
which ∇ρ is aligned with the eigenvalues of larger magnitude. The primary type consists of
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Type Alignment Condition

Primary Skeleton: H · ∇ρ = λ1∇ρ λ1 + λ2 6 0

Inter-skeleton: H · ∇ρ = λ2∇ρ λ1 + λ2 > 0 and λ3 + λ2 < 0
Anti-skeleton: H · ∇ρ = λ3∇ρ λ3 + λ2 > 0

Secondary H · ∇ρ = λ2∇ρ λ1 + λ2 6 0
H · ∇ρ = λ3∇ρ λ1 + λ2 6 0

H · ∇ρ = λ1∇ρ λ1 + λ2 > 0 and λ3 + λ2 < 0

H · ∇ρ = λ3∇ρ λ1 + λ2 > 0 and λ3 + λ2 < 0
H · ∇ρ = λ1∇ρ λ3 + λ2 > 0

H · ∇ρ = λ2∇ρ λ3 + λ2 > 0

Table 1. the classification of the critical lines in 3D.

(i) The skeleton, that has the gradient in the λ1 direction and is limited to the region |λ1| 6 |λ2|, which translates to the
condition λ1 + λ2 6 0. The skeleton has always eigenvalues in the directions transverse to ∇ρ negative, λ3 6 λ2 6 0 and
corresponds to the filamentary ridges spreading from the maxima in the direction of the slowest descent.

(ii) The anti-skeleton, that has the gradient in the λ3 direction and is restricted to the region |λ3| 6 |λ2|, i.e λ3 +λ2 > 0. In
the directions transverse to ∇ρ the anti-skeleton has always positive curvature λ1 > λ2 > 0. It corresponds to the filamentary
valleys spreading from the minima in the direction of the slowest ascent. Anti-skeleton can be viewed as a skeleton of the −ρ
field.

(iii) The intermediate skeleton along which the gradient is aligned with the middle eigen-direction of the Hessian where
this direction is the shallowest |λ2| < |λ1|, |λ3|, i.e −λ1 < λ2 < −λ3. This conditions is only possible in saddle-like regions
where λ1 > 0 and λ3 < 0.

The formal classification of the critical lines is summarized in Table 1.

2.2 The average flux (length per unit volume) of the critical lines

As the average number density is the fundamental quantity that describes point events, e.g. extrema of a field, conversely
the most important characterization of the critical lines or skeleton is their flux, i.e. the number of critical lines intersecting
a given oriented surface1. This flux is equivalent to the length of the lines per unit volume. Following NCD and SPCNP we
shall preferentially use the latter terminology as it highlights that we deal with the first geometrical parameter, the length,
of the lines. The subsequent parameters of these linear objects are the curvature, and, in 3D, the torsion.

In this paper we consider ρ to be a homogeneous and isotropic Gaussian random field of zero mean, described by the
power spectrum P (k). In the statistical description of the skeleton of the field ρ, several linear scales are involved

R0 =
σ0

σ1
, R∗ =

σ1

σ2
, R̃ =

σ2

σ3
, R̂ =

σ3

σ4
, (3)

where σ2
0 = 〈ρ2〉, σ2

1 = 〈(∇ρ)2〉, σ2
2 = 〈(∆ρ)2〉, σ2

3 = 〈(∇∆ρ)2〉 , and generally σ2
p =

2πD/2

Γ[D/2]

Z ∞
0

k2pP (k)kD−1dk .

(4)
These scales are ordered R0 > R∗ > R̃ > . . .. The first two have well-known meanings of typical separation between zero-
crossing of the field R0 and mean distance between extrema, R∗ (Bardeen & al. 1986), and the third one, R̃ is, by analogy, the
typical distance between the inflection points. These three are the only ones that are involved in determination of the length
of the critical lines. The higher order scale R̂ appear only in computation of the curvature and the torsion (see Section 5).

Let us define a set of spectral parameters that depend on the shape of the underlying power spectrum. Out of these five
scales four dimensionless ratios may be constructed that are intrinsic parameters of the theory

γ ≡ R∗
R0

=
σ2

1

σ0σ2
, γ̃ ≡ R̃

R∗
=

σ2
2

σ3σ1
, γ̂ ≡ R̂

R̃
=

σ2
3

σ4σ2
, and generally γp,q =

σ2
(p+q)/2

σpσq
. (5)

From the geometrical point of view γ specifies how frequently one encounters a maximum between two zero crossings of the
field, while γ̃ describes, on average, how many inflection points are between two extrema. From a statistical perspective, γ’s
are the cross-correlation coefficients between the field and its derivatives at the same point (see Appendix D).

γ =
〈ρ∆ρ〉
σ0σ2

, γ̃ =
〈∇ρ · ∇∆ρ〉

σ1σ3
, . . . (6)

1 For M dimensional objects in N dimensional space, in general, one counts the average number of intersections between objects M and
N-M dimensional surfaces, per unit N-M volume. From a statistical point of view this constitutes a point process that can be evaluated

knowing the distribution of the field and some of its derivatives at one arbitrary point only.
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For Gaussian fields, these parameters can be easily calculated from the power spectrum. All γ’s range from zero to one. For ref-
erence, for the power-law spectra with index n > −3, smoothed at small scales with a Gaussian window, γ =

p
(n+ 3)/(n+ 5),

γ̃ =
p

(n+ 5)/(n+ 7). Note that cosmologically relevant density power spectra have n > −3 and, thus, while γ can attain
low values, γ̃ are always close to unity2 .

Let us introduce the dimensionless quantities for the field and its derivatives as well as for the functions Si and their
gradients ∇Si:

σ0x ≡ ρ, σ1xk ≡ ∇kρ, σ2xkl ≡ ∇k∇lρ, σ3xklm ≡ ∇m∇l∇kρ, σ2σ
2
1s
i ≡ Si, σ2

2σ1∇si ≡ ∇Si, σ4σ
2
1∇∇si ≡ ∇∇Si, (7)

giving

si =
X
klm

εimkxmlxlxk , and ∇msi =
X
kln

εink
`
γ̃−1xnlmxlxk + [xnlxlmxk + xnlxkmxl]

´
. (8)

Note the specific choice of scaling for ∇S which is convenient in view of the subsequent development of the so-called “stiff”
approximation. SPCNP has shown that in terms of these dimensionless quantities, the cumulative length per unit volume of
the total set of critical lines below the threshold η is given by

L(η) =

„
1

R∗

«2 Z η

−∞
dx

Z
d3xkd

6xkld
10xklm |∇si ×∇sj |P (x, xk, xkl, xklm)δD

“
si(xk, xkl, xklm)

”
δD
“
sj(xk, xkl, xklm)

”
, (9)

where a pair ∇si,∇sj can be chosen arbitrarily as long as it is linearly independent. In this equation |∇si ×∇sj | reflects the
inverse characteristic area orthogonal to a critical line per one such line while the two δD-functions account for the critical line
condition (1). For the complete set of critical lines, there are no restriction to the region of integration. If one is interested in a
particular type of the critical lines, the integration should be restricted to the regions consistent with Table 1. The differential
length (per unit volume) is simply given by the derivative of equation (9) with respect to η:

∂L
∂η

=

„
1

R∗

«2 Z
d3xkd

6xkld
10xklm |∇si ×∇sj |P (η, xk, xkl, xklm)δD

“
si(xk, xkl, xklm)

”
δD
“
sj(xk, xkl, xklm)

”
, (10)

while the total length of critical lines is

L ≡ L(∞) =

Z ∞
−∞

dη
∂L
∂η

. (11)

Since for Gaussian field, the derivatives of even order are uncorrelated with the odd orders, the joint distribution function
P (x, xk, xkl, xklm) entering equation (9) is factorized as

P (x, xk, xkl, xklm) = P0(x, xkl)P1(xk, xklm). (12)

In P0, the only dependence on the power spectrum of the field is through the parameter γ (c.f. equation (5)) that describes the
correlation between the field and its second derivatives. Similarly P1(xk, xklm) only involves γ̃ which describes the correlation
between the gradient of the field and its third derivatives. Therefore, ∂L/∂η depends only on η, R̃ γ and γ̃. The integrated
length, L may depend only on γ̃ and R̃ since the marginalization of P0(η, xkl) over η eliminates the dependency over γ.

2.3 The “stiff” filament approximation

Let us look at the dependence of the length of the critical lines on characteristic scales of the field in more detail. The R−2
∗

factor that appeared in equation (10) reflect our choice of dimensionless variables (8) and is suggestive but not yet conclusive
since |∇si ×∇sj | that includes third derivative terms, depends also on the other scale, R̃. Let us write formally

∇si ×∇sj = γ̃−2A(xk, xkl, xklm) + γ̃−1B(xk, xkl, xklm) + C(xk,xkl) . (13)

If the third derivatives are important and the first term dominates, then the length scaling L ∝ γ̃−2R−2
∗ = R̃−2 would reflect

the mean separation between the inflection points, R̃. Indeed, by definition the local skeleton is almost straight within a
volume that has one inflection point ∼ R̃3. A straight segment through such volume has length ∼ R̃, thus the expected length
per unit volume is ∼ 1/R̃2. But if the last term dominates statistically, the length per unit volume of the skeleton will scale as
L ∝ R−2

∗ that can be interpreted that the critical lines are almost straight within a large volume volume ∼ R3
∗ containing one

extremum. This is consistent with observation that the integral term does not depend on the third derivatives, thus inflection
points play no role, and any dependence on γ̃ drops out.

Which regime holds can be established by measuring the dependence of the critical lines length in the simulations as a
function of smoothing length for different spectral indexes. For the power-law spectra with Gaussian smoothing at the radial
scale σ, in 3D, R∗ =

√
2σ/
√
n+ 5, while R̃ =

√
2σ/
√
n+ 7. The measurements in SPCNP found that L ∝ (n+ 5.5)σ−2 over

the range of spectral indexes relevant to cosmology, which points at the subdominant nature played by the third derivatives.
In the “stiff” approximation we omit the third derivative, effectively assuming that the Hessian can be treated as constant

2 Cosmological density fields, therefore, have of order one inflection point per extremum, unlike, for, example, a mountain range, where

one encounters many inflection points on a way from a mountain top to the bottom; see also Section 4.4.
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Figure 1. The neighbourhood of a local critical line (thick blue line). This is a zoomed section of the wide patch shown in Figure 3. Thin

lines are isocontours of the field. Three sample points are investigated in detail. The signature, orientation and the magnitude of the local
Hessian are represented by the golden shapes. Near the maximum on the right edge, the signature of the eigenvalues of the Hessian is

(-1,-1), which is shown by ellipses oriented according to eigen-directions with longer semi-axis along the direction of the least curvature.

At the leftmost point the eigenvalue signature is “saddle-like”, (1,-1), which is represented by a pair of hyperbolae, also oriented with
respect to eigen-directions. By definition, on the critical line the gradient of the field ∇ρ, shown by red arrows, is aligned with one of the

eigen-directions (i.e the axis of the ellipse or hyperbola in the graph). The light cyan arrows are the tangent vectors to the critical line

∝ ε · ∇S, while stiff approximation to them would be parallel to the gradient. The direction of the critical line is close to the gradient
when it follows the ridge near the maximum, but slides at an angle in the “saddle-like” region, before joining the saddle extremal point

beyond the left edge of the plot (see Figure 3). Note that the gradient line that takes us to the same saddle as a segment of the global

skeleton (dashed green) does not follow the ridge too closely in this instance.

during the evaluation of ∇s. This picture corresponds to a skeleton connecting extrema with relatively straight segments. In
the “stiff” approximation, equation (10) becomes

∂L
∂η
≈
„

1

R∗

«2 Z
d3xkd

6xkl |C(xk,xlm)| P0(η, xkl) P1(xk)δD
“
si(xk, xkl)

”
δD
“
sj(xk, xkl)

”
. (14)

The differential length is then only the function of γ times L.

The “stiff” approximation can be looked at from another perspective. By definition at a point on a local critical line,
two of the characteristic directions defined for the field, namely, the direction of the gradient, ∇ρ, and one chosen eigen
direction of the Hessian, H, must coincide. But the direction of the critical line itself, given by ∇Si × ∇Sj , is not, in
general, aligned with the gradient of the field. Local critical lines are not the gradient lines, and in this sense they differ from
the skeleton lines defined globally as void-patch intersections (Sousbie et al. 2008). In the “stiff” approximation, however,`
∇msi

´
stiff
≈
P
kln ε

ink [xnlxlmxk + xnlxkmxl] and
ˆ`
∇si

´
stiff
×
`
∇sj

´
stiff

˜
× ∇ρ = 0, i.e. it is parallel to the gradient.

Figure ?? shows the details of the calculations for the high-resolution segment of the 2D field. Thus, the essence of the stiff
approximation lies in the assumption that the mismatch between the critical lines and gradient directions is statistically small.
As Figure 3, which contains an extended view of the same field, illustrates, this assumption holds particularly well for the
primary critical lines which more closely correspond to the intuitive picture of sharp ridges and deep valleys. Indeed, at a
primary line the gradient points to the least curved direction, i.e, in some sense in the direction in which the changes of the
field properties are the slowest. Therefore one can expect that this is the direction in which the condition of criticality will
be maintained, i.e which the critical line itself will follow. Figure 3 shows that the primary lines start to deviate from the
gradient flow mostly towards their end points when the curvature of the field along the line becomes comparable in magnitude
to the transverse one. Secondary critical lines are much less certain to follow the gradient, sometimes exhibiting a “sliding”
behaviour, on occasion almost orthogonal to the gradient, as a loop-like secondary line near the right saddle in Figure 3
exhibits. So the stiff approximation for the secondary lines should be taken with more caution, although we include them for
completeness.

The stiff approximation provides a framework to compute the total differential length of the critical lines and the local
skeleton almost completely analytically. In the next two sections we will carry this calculation in two and three dimensions
and argue that it can straightforwardly be extended in N dimensions (see Appendix A). In what follows we shall omit in the
derivation for brevity the 1/R∗ (in 2D) and 1/R2

∗ (in 3D) factors, but keep in mind that all the length quantities below scale
accordingly. In section 4.4, after the computational machinery is developed, we return to the role the third derivative may
play in description of the critical lines.
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6 Pogosyan, Pichon, Gay, Prunet, Cardoso, Sousbie, Colombi

Figure 2. An example of a generic patch of a 2D field. The underlying isocontours correspond to the density field. The thin gold lines

are the gradients lines of the field. The blue lines is the local set of critical lines, given by the solution of S ≡ (H · ∇ρ) × ∇ρ = 0.

Primary lines are shown in solid and the secondary lines are dashed. The green lines correspond to global critical lines: the skeleton and
the anti skeleton, which delineate a special bundle of gradient lines (Jost 2008) at the intersection of a peak patch and a void patch.

The primary local lines follow fairly well the gradient lines, noticeably near the extrema, where the “stiff” approximation holds best.

In contrast, the approximation worsens for the secondary critical lines. The main distinction between the global and local skeletons is
that the global one follows the everywhere smooth gradient line that uniquely connects a maximum to a saddle, at the cost of deviating

from being exactly on the ridge (see how in the vicinity of the minimum at the bottom, the right green line does not follow the trough)

The local skeleton tries to delineate the ridges as far from extrema as possible, but then the lines that follow this local procedure from
different extrema do not meet and have to rather suddenly reconnect. A particularly striking example is the loop on the right hand side.

A zoomed view of the area left to the top maximum is shown in Figure ??.

Type Alignment Condition

Primary Skeleton: H · ∇ρ = λ1∇ρ λ1 + λ2 6 0
Anti-skeleton: H · ∇ρ = λ2∇ρ λ1 + λ2 > 0

Secondary H · ∇ρ = λ2∇ρ λ1 + λ2 6 0
H · ∇ρ = λ1∇ρ λ1 + λ2 > 0

Table 2. the classification of the critical lines in 2D.

3 CRITICAL LINES OF 2D FIELDS

Even though the large scale structures of the universe are three dimensional, other important observed data sets involve 2D
maps such as the cosmic microwave background or lensing convergence maps. Hence analyzing the local statistical properties
of filaments in two dimensions is astrophysically well motivated. The 2D case is also a convenient starting point to introduce
the details of the calculations that can be generalized to 3D and higher dimensions.

The 2D case affords several simplifications over the 3D case. In 2D, S is a (pseudo) scalar function and its zero level,
orthogonal to ∇S, determines the critical lines. The expression for the differential length simplifies to

∂L
∂η

=
1

R∗

Z
d2xkd

3xkld
4xklm |∇s|P (η, xk, xkl, xklm)δD (s(xk, xkl)) . (15)

There are just four types of critical lines: two primary, the skeleton and the anti-skeleton, and two corresponding secondary
ones. The classification of the 2D critical lines is summarized in Table 2. We shall focus on the most interesting primary lines
in the main text, leaving the secondaries to the Appendix B. In Figure 3 the critical lines of different types are shown for an
example generic patch of a 2D field.
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3.1 The differential length of the critical lines of 2D fields

For 2D Gaussian fields, the calculation of the length of the critical lines can be carried almost completely analytically in the
stiff approximation.

3.1.1 Direct derivation in the field’s frame

Let us first proceed in the original coordinate frame. Defining

s = x1x2 (x11 − x22) + x12

`
x2

2 − x2
1

´
= 2wx1x2 + x12

`
x2

2 − x2
1

´
, (16)

the stiff approximation to ∇s involves only up to second derivatives of the field

|∇s|2 =
`
x2

1 + x2
2

´ `
w2 + x2

12

´ 
u2 + 4

`
w2 + x2

12

´
− 4

2x1x2x12 + w
`
x2

1 − x2
2

´
x2

1 + x2
2

u

!
, (17)

and equation (15) becomes explicitly

∂L
∂η

=
16

(2π)3
p

1− γ2
exp

»
−η

2

2

– ZZZZZ
dudwdx12dx1dx2 |∇s| δD(s) exp

»
− (u− γη)2

2(1− γ2)
− 4w2 − 4x2

12 − x2
1 − x2

2

–
, (18)

where the second derivatives are described using u = −(x11 +x22), w = (x11−x22)/2 and x12. Let us integrate over x12 using
the δD-function, which leads to a substitution x12 → (2x1x2w)/(x2

1 − x2
2) with the Jacobian |1/(x2

1−x2
2)|. Then equation (18)

becomes

∂L
∂η

=
16

(2π)3
p

1− γ2
exp

»
−η

2

2

– ZZZZ
dudwdx1dx2

|∇s|
|x2

1 − x2
2|

exp

»
− (u− γη)2

2(1− γ2)
− 4w2 (x2

1 + x2
2)2

(x2
1 − x2

2)2
− x2

1 − x2
2

–
, (19)

where

|∇s|2 = w2 (x2
1 + x2

2)3

(x2
1 − x2

2)2

„
u+ 2w

(x2
1 + x2

2)

(x2
1 − x2

2)

«2

. (20)

Let us now substitute3

w̃ = w
(x2

1 + x2
2)

(x2
1 − x2

2)
, noting that w̃2 = (w2 + x2

12) , (21)

to obtain

∂L
∂η

=
16

(2π)3
p

1− γ2
exp

»
−η

2

2

– ZZZZ
dudw̃dx1dx2

|w̃(u+ 2w̃)|p
x2

1 + x2
2

exp

»
− (u− γη)2

2(1− γ2)
− 4w̃2 − x2

1 − x2
2

–
. (22)

The integration over the first derivatives is now easily performed in the polar coordinates of the x1, x2 plane to give

∂L
∂η

=
2

π3/2
p

1− γ2
exp

»
−η

2

2

– Z ∞
−∞

Z ∞
−∞

dudw̃ |w̃(u+ 2w̃)| exp

»
− (u− γη)2

2(1− γ2)
− 4w̃2

–
. (23)

This is the final integral form which can be easily investigated in the u, w̃ plane.

3.1.2 Derivation in the Hessian eigenframe

To generalize the derivation to higher dimensions we note that one can just perform all the calculations in the Hessian
eigenframe. We shall denote all quantities evaluated in the eigenframe with tilde, e.g., x̃11(= λ1), x̃22(= λ2), ũ, w̃, x̃1, x̃2. What
must be taken into account is that, in general, these quantities are not Gaussian random variables (while the corresponding
ones in the fixed frame are), since the transformation from the fixed to eigenframe is non-linear. The Gaussian nature is only
preserved for ũ, x̃1, x̃2. In the Hessian eigenframe x̃12 = 0. From equations (16-17)

s̃ = x̃1x̃2(x̃11 − x̃22) = x̃1x̃2(λ1 − λ2) = 2x̃1x̃2w̃ ,
˛̨̨
∇̃s
˛̨̨

= |w̃|
q

(ũ+ 2w̃)2x̃2
1 + (ũ− 2w̃)2x̃2

2 . (24)

In equation (15) the averaging is now carried over the distribution of the eigenvalues with the measure π(λ1−λ2) (Doroshkevich
1970) that accounts for eigenvalues being sorted, λ1 > λ2:

∂L
∂η

=
8 · 2 · π

(2π)3
p

1− γ2
exp

ˆ
−η2/2

˜ ZZZZ
(λ1 − λ2)dλ1dλ2dx̃1dx̃2

˛̨̨
∇̃s
˛̨̨
δD(s̃) exp

»
− (ũ− γη)2

2(1− γ2)
− 4w̃2 − x̃2

1 − x̃2
2

–
, (25)

3 here we made a choice of sign. Now in the coordinate frame that has the first direction aligned with the gradient of the field, i.e.

x2 = 0, w̃ = (x11 − x22)/2, while in the frame that has gradient aligned with the second direction, x1 = 0, w̃ = (x22 − x11)/2
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or in terms of ũ, w̃

∂L
∂η

=
16

(2π)2
p

1− γ2
exp

ˆ
−η2/2

˜ ZZZZ
|w̃|dũdw̃dx̃1dx̃2

˛̨̨
∇̃s
˛̨̨
δD(s̃) exp

»
− (ũ− γη)2

2(1− γ2)
− 4w̃2 − x̃2

1 − x̃2
2

–
. (26)

In the argument of the delta-function in equation (26) w̃ can be zero only at special field points , not at a generic point
on a skeleton. So vanishing s̃ requires either x̃1 = 0 or x̃2 = 0 which describes, as expected, that in the Hessian eigenframe
one of the component of the gradient vanishes on the critical line. Since we have already chosen the coordinates so that the
direction “1” is aligned with the largest eigenvalue and the critical lines can go in both eigen-directions, these two possibilities
add up:4

∂L
∂η

=
4
√

2

(2π)3/2
p

1− γ2
exp

ˆ
−η2/2

˜ Z ∞
0

dw̃w̃

Z ∞
−∞
dũ (|2w̃ + ũ|+ |2w̃ − ũ|) exp

»
− (ũ− γη)2

2(1− γ2)
− 4w̃2

–
. (27)

Note that |w̃ − ũ/2| = |λ1| = |x̃11| and |ũ/2 + w̃| = |λ2| = |x̃22|. That is, the length of the critical lines per unit volume is
given by the average absolute value of the Gaussian curvature of the field in the space orthogonal to the skeleton, given that
in stiff approximation the direction of the skeleton is assumed to coincide with the gradient of the field. The reason for this
is clear - the higher the curvature, the closer the next neighbouring segment of the skeleton can be, thus increasing the flux
i.e. the length per unit volume. If we replace w̃ → −w̃ in the second integral, we return to the formula (23) with integration
over both positive and negative w̃. The integrated length of the critical lines is reduced to

L =
2
√

2

π

Z ∞
0

w̃dw̃

Z ∞
−∞
dũ (|2w̃ + ũ|+ |2w̃ − ũ|) exp

»
− ũ

2

2
− 4w̃2

–
. (28)

equations (27) and (28) are the results of the stiff approximation for the threshold dependent differential and the integrated
lengths of the critical lines in 2D respectively.

3.2 Primary critical lines in 2D: Skeleton and anti-Skeleton.

The local skeleton is the subset of all the critical lines, which includes the parts that appear as the ridges in the field profile,
rather than the valleys. This subset is described by the constraints that the skeleton lines should go along the largest eigenvalue
λ1 and, in addition, that this direction has the smallest curvature, |λ1| 6 |λ2|. The anti-skeleton is a mirror structure describing
the valley of the field and in all the results can be obtained by replacing η → −η in the formulae for the skeleton.

To derive the expression for the skeleton differential length let us return to equation (27). The critical lines with∇ρ aligned
with the largest eigenvalue direction have x̃2 = 0. Thus, only one term is selected by the δD-function: it is ∝ 2|λ2| = |2w̃ + ũ|.
The magnitude restrictions translates into ũ > 0, thus

∂Lskel

∂η
=

4
√

2

(2π)3/2
p

1− γ2
exp

ˆ
−η2/2

˜ Z ∞
0

dw̃w̃

Z ∞
0

dũ (2w̃ + ũ) exp

»
− (ũ− γη)2

2(1− γ2)
− 4w̃2

–
. (29)

This result should not be confused with equation (28), where w̃ is integrated over full range of negative and positive values and
which is strictly equivalent to equation (27), counting critical lines aligned both with the lowest and the largest eigen-directions.
Performing the last two integrals one obtains for the differential length in closed form

∂Lskel

∂η
=

1√
2π

exp

»
−η

2

2

– "
1

8

„
1 +

2√
π
γη

« 
1 + Erf

"
γη√

2
p

1− γ2

#!
+

p
1− γ2

2
√

2π
exp

„
− γ2η2

2(1− γ2)

«#
, (30)

and for the integrated skeleton length5

Lskel =
1

8
+

√
2

4π
= 0.23754 (×R−1

∗ ) . (31)

Note that modulo the stiff approximation, equation (31) gives a universal, spectral parameter independent, scaling. Figure 4
demonstrates the threshold behaviour of the differential lengths for several values of the spectral parameter γ.

The most important and robust result of our theory is the behaviour of the differential length at high density thresholds

∂Lskel

∂η

γη→∞∼ 1√
2π

exp

»
−η

2

2

–
× 1

4

„
1 +

2√
π
γη

«
, (32)

It represents a bias similar to the one found in Kaiser (1984) for the clustering of high critical points - maxima. According to
the latter, the number density of peaks in regions above high thresholds is higher than on average. Similarly, the length density
of critical lines above high threshold is enhanced relative to the mean. From the point of view of measurements, perhaps a

4 If we do not sort the eigenvalues and, thus, do not restrict the w̃ to be non-negative, then the notions of first and second direction are

undefined, and we could choose now that the skeleton goes in, say, the first direction and x̃2 = 0. We will loose here factor of two which
is recovered by having to extend w̃ integration to negative values
5 In other words, one expect to find one segment of skeleton per linear section of ≈ (4.2R∗).
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Figure 3. left: ∂Lskel/∂η/P (η) (dashed) and ∂Lskel+antiskel/∂η/P (η) (solid) in 2D for the spectral parameter values γ = 0.3, 0.6, 0.95.

Right: ∂L/∂η/P (η) (solid) and its asymptotic behaviour (dashed) in 2D for the same spectral parameter values

more interesting quantity than the differential length is the length per unit volume within the regions of high excursions of
the field L(> η). In terms of the cumulative length given by equation (9), L(> η) = L − L(η). Its asymptotic behaviour at
high η for the skeleton is found by direct integration of equation (32)

Lskel(> η) ∼ 1

2
Erfc

„
η√
2

«
× 1

4

„
1 +

2√
π
γη

«
. (33)

The first factor here is the fractional volume occupied by these high excursions of the field. Note that, at large η the differential
length divided by the PDF scales like ηγ/R∗ = η/R0 once the proper scaling with 1/R∗ is introduced. Hence the differential
length as a function of η together with the total length give access to two characteristic scales R0 and R∗. See Appendix A
for a general proof of this result in N dimensions.

The threshold dependence of the statistics of critical lines in the stiff approximation is determined solely by the spectral
parameter γ. In the limit γ = 0, when the distribution of the second derivatives of the field ρ is completely independent on the
threshold, the length of the skeleton per unit volume within the regions with ρ/σ0 in the interval η, η+dη is just proportional
to the fraction of the unit volume that these regions occupy. Completely generally, for any type of critical line,

∂L
∂η

(γ = 0) =
L√
2π

exp

»
−η

2

2

–
. (34)

When γ → 1 the trace of the Hessian u becomes uniquely determined by the field level η (recall equation (6)). For over-dense
regions with positive η equation (32) is exact for γ = 1, while no skeleton exists in under-dense regions in this limit.

Near zero (mean density) threshold the dependence of ∂Lskel/∂η is

∂Lskel

∂η

η→0∼ 1√
2π

exp

»
−η

2

2

–
× 1

4

 
1

2
+

√
2
p

1− γ2

π
+

1√
π

1 +
p

1− γ2p
1− γ2

γη

!
. (35)

Its details, in particular a step-like cutoff at negative η when γ → 1, are sensitive to the definition of the primary lines. In
under-dense regions with large negative densities the skeleton is exponentially suppressed.

Starting from equation (30) with η → −η for anti-skeleton, we obtain for the union of both primary critical lines

∂Lskel+antiskel

∂η
=

1√
2π

exp

»
−η

2

2

– "
1

4
+

1

2
√
π

Erf

 
γη√

2
p

1− γ2

!
γη +

p
1− γ2

√
2π

exp

„
− γ2η2

2(1− γ2)

«#
, (36)

with twice the integrated length

Lskel+antiskel =
1

4
+

1√
2π

= 0.47508 (×R−1
∗ ) . (37)

This function is now symmetric in η with the skeleton providing the dominant contribution described by equation (32) in
over-dense regions of space, and the anti-skeleton dominating the under-dense regions. Near the mean, zero, threshold of the
field, both critical lines are present

∂Lskel+antiskel

∂η

η→0∼ 1√
2π

exp

»
−η

2

2

– 
1

4
+

p
1− γ2

√
2π

+
γ2η2

2
√

2π
p

1− γ2

!
. (38)

3.3 Secondary critical lines in 2D

Secondary critical lines do not allow for a full analytical treatment and are investigated in Appendix B. They are particularly
important near zero threshold, since at this transitional regime the exact behaviour of primary or secondary lines depends
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significantly on our somewhat arbitrary separation of the critical lines in types. In this paper we are tracking the skeleton
— density ridges — as primary lines emanating from the maxima, until the largest eigenvalue ceases to be the shallowest.
Alternative definition may, for example, somewhat extend the skeleton at the expense of secondary lines at lower densities
as long as all the eigenvalues transverse to the gradient are negative, i.e until λ2 becomes positive. As an advantage, the
differential length of the skeleton and the corresponding secondary lines defined this way would not exhibit inflections at low
densities that can be seen in Figures 4 and B1 for high γ’s. But the downside is that then one looses the ability to describe
the primary lines analytically in a closed form. At the high density excursions the properties of the skeleton remain robust
with respect to the variations in their exact definition.

However the important advantage of the definition of the primary lines adopted in this paper lies deeper. The magnitude
of the eigenvalue along the direction transverse to the gradient is connected to the stability of these trajectories near the
critical lines and to their possible bifurcations. This is discussed in part in Section 5.3.

Let us summarize the results for the total set of critical lines, primary and secondary combined, which are, of course,
universal whatever the definition of the separate types. Summing up the results of this Section with the corresponding ones
in Appendix B

L =

√
2 + acot(

√
2)

π
= 0.646071 (×R−1

∗ ) . (39)

∂L
∂η

η→∞∼ 1√
2π

exp

»
−η

2

2

–
× γη√

π
, (40)

∂L
∂η

η→0∼ 1√
2π

exp

»
−η

2

2

–
×

0@p2(1− γ2) + acot
“p

2(1− γ2)
”

π
+

p
2(1− γ2)

π(3− 2γ2)
(γη)2

1A . (41)

The full behaviour of the total differential length is presented in Figure 4. One should note the linear asymptotic behaviour
at high density levels and the regular quadratic behaviour near zero density threshold6. Finally recall that in the section 3 we
have omitted almost everywhere a 1/R∗ factor for the quoted lengths and differential lengths.

4 CRITICAL LINES OF 3D FIELDS

In three dimensions, we carry the computations directly in the eigenframe of the Hessian, following closely the derivation of
Sections 3.1 and 3.2. We present the formalism first for all the critical lines and then narrow our focus to the primary ones.

4.1 The length of the critical lines of 3D fields

In 3D, let us use the variables ũ = −(λ1 + λ2 + λ3), w̃ = (λ1 − λ3)/2, ṽ = (2λ2 − λ1 − λ3)/2. In the Hessian eigenframe

s̃1 = (λ2 − λ3)x̃2x̃3 = (w̃ + ṽ)x̃2x̃3 , s̃2 = (λ3 − λ1)x̃1x̃3 = −2w̃x̃1x̃3 , s̃3 = (λ1 − λ2)x̃1x̃2 = (w̃ − ṽ)x̃1x̃2 , (43)

and

f∇s1
= {0, λ2(λ2 − λ3)x̃3, λ3(λ2 − λ3)x̃2} =


0, − 1

3
(ũ− 2ṽ)(w̃ + ṽ)x̃3, −

1

3
(ũ+ ṽ + 3w̃)(w̃ + ṽ)x̃2

ff
,

f∇s2
= {λ1(λ3 − λ1)x̃3, 0, λ3(λ3 − λ1)x̃1} =


2

3
(ũ+ ṽ − 3w̃)w̃x̃3, 0,

2

3
(ũ+ ṽ + 3w̃)w̃x̃1

ff
,

f∇s3
= {λ1(λ1 − λ2)x̃2, λ2(λ1 − λ2)x̃1, 0} =


− 1

3
(ũ+ ṽ − 3w̃)(w̃ − ṽ)x̃2, −

1

3
(ũ− 2ṽ)(w̃ − ṽ)x̃3, 0

ff
. (44)

In the eigenvalue space the measure is 2π2|(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)| and the eigenvalues are considered sorted. For sorted
eigenvalues the choice of the directions has been fixed and the (s2, s3), (s1, s3) and (s1, s2) pairs of surfaces describe different
possibilities for the critical line. Those choices add together in the average integrated length. Using the variable w̃, ṽ the
condition of eigenvalues being sorted is w̃ > 0, −w̃ 6 ṽ 6 w̃.

Let us consider the critical lines that are the intersections of (s2, s3). Their differential length is given by

∂L
∂η

= 2π2 · 3

2
· 33/215251/2

(2π)5
p

1− γ2
exp

»
−1

2
η2

– Z
|(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)| dλ1dλ2dλ3dx̃1dx̃2dx̃3

˛̨̨f∇s2
× f∇s3

˛̨̨
δD(s̃2)δD(s̃3)

× exp

»
− (ũ− γη)2

2(1− γ2)
− 15

2
w̃2 − 5

2
ṽ2 − 3

2
x̃2

1 −
3

2
x̃2

2 −
3

2
x̃2

3

–
. (45)

6 For all γ but γ = 1, for which

∂L
∂η

(γ → 1, η → 0) ∼
1
√

2π
exp

ˆ
−η2/2

˜„1

2
+

1

3
√
π
|η|3 −

1

10
√
π
|η|5 . . .

«
. (42)
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Figure 4. Left: The skeleton ∂Lskel/∂η/P (η) (solid) and its asymptotic behaviour at high density thresholds (dashed) in 3D. The

anti-skeleton is described by the curves symmetric with respect to a reflection of η. Right: ∂L/∂η/P (η) its asymptotic behaviour for the
total set of critical lines. The spectral parameter values are (from bottom to top at high η) γ = 0.3, 0.6, 0.95.

Integration over δD(s̃2) and δD(s̃3) leads to the only possibility x̃2 = 0, x̃3 = 0. That is, the choice of the surface S2 and S3 in
the Hessian eigenframe describes the skeleton along which the gradient is aligned with the direction 1, correspondent to the
largest eigenvalue, while in the directions 2 and 3 the components of the gradient of the field vanish. With x̃2 = x̃3 = 0 we
get a simple expression for˛̨̨f∇s2 × f∇s3

˛̨̨
= |λ2λ3(λ3 − λ1)(λ1 − λ2)| x̃2

1 =
2

9
|(ũ− 2ṽ)(ũ+ ṽ + 3w̃)(w̃ − ṽ)w̃| x̃2

1 , (46)

while the subsequent integration over x̃2 and x̃3 using δD-functions and afterwards over x̃1 gives

∂L1

∂η
=

3455/2

16π2
p

2π(1− γ2)
exp

»
−1

2
η2

–Z
dλ1dλ2dλ3(λ1−λ2)(λ2−λ3)(λ3−λ1)|λ2λ3| exp

»
− (ũ− γη)2

2(1− γ2)
− 15

2
w̃2 − 5

2
ṽ2

–
. (47)

Notice again that what the integrand involves the Gaussian curvature in the direction orthogonal to the gradient, which in
stiff approximation is the direction of the filament itself. The contributions of the critical lines directed along the second and
third eigen-direction is given by similar considerations and are added together when all critical lines are considered. Changing
variables one finally obtains

∂L
∂η

=
3355/2 exp

ˆ
η2/2

˜
4π2
p

2π(1− γ2)

Z
dũdw̃dṽ w̃(w̃2 − ṽ2) (|λ2λ3|+ |λ1λ3|+ |λ1λ2|) exp

»
− (ũ− γη)2

2(1− γ2)
− 15

2
w̃2 − 5

2
ṽ2

–
, (48)

while the integrated length is

L =
3355/2

4π2

Z
dũdw̃dṽ w̃(w̃2 − ṽ2) (|λ2λ3|+ |λ1λ3|+ |λ1λ2|) exp

»
−1

2
ũ2 − 15

2
w̃2 − 5

2
ṽ2

–
, (49)

with 7

|λ2λ3|+ |λ1λ3|+ |λ1λ2| =
1

9
[|(ũ− 2ṽ)(ũ+ ṽ + 3w̃)|+ |(ũ+ ṽ + 3w̃)(ũ+ ṽ − 3w̃)|+ |(ũ− 2ṽ)(ũ+ ṽ − 3w̃)|] . (50)

The equations (48) and (49) account for all the critical lines. In Figure 5 (right panel) the results for 3D critical lines are
plotted while the discussion of the corresponding asymptotics is given in the Appendix C. We shall now turn our attention
to the study of the primary lines and, in particular, the 3D skeleton that delineates the over dense filamentary structure and
is of more direct observational interest.

4.2 Primary critical lines of 3D fields: Skeleton and Anti-Skeleton

The subset of critical lines identified with the skeleton correspond to the lines with the gradient aligned with the largest
eigenvalue λ1 while having λ1 + λ2 6 0. In equation (48) such lines are described by the first term ∼ |λ2λ3|. The differential

7 One should note the correspondence with the well-known result for the number density of extrema of the field (Bardeen et al. 1986)

Next ∝
Z
dũdw̃dṽ w̃(w̃2 − ṽ2)|λ1λ2λ3| exp

»
−

1

2
ũ2 −

15

2
w̃2 −

5

2
ṽ2

–
.

which is determined by the mean three-dimensional Gaussian curvature |λ1λ2λ3|.
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Figure 5. Left: Integration zones in the ṽ, ũ plane for the 3D skeleton analysis. Variables are given in units of w̃. ṽ varies from −w̃ to
+w̃, while ũ must be greater than 1

2
(ṽ + 3w̃). In the allowed shaded region 0 > λ2 > λ3 everywhere. Horizontal lines mark the further

subdivision of the integration space if the order of integration is changed according to equation (53). Right: Integration zones in the

(ṽ, w̃) plane after ũ has been mapped to the [0−∞] interval. Variables are given in the units of ũ. The lower triangular zone corresponds
to the semi-open rectangular band above the red dashed line in the left panel. In this region the integrand is given by the first term of

equation (53). It dominates the high η asymptotics.

length of the skeleton is then

∂Lskel

∂η
=

3355/2 exp
ˆ
−η2/2

˜
4π2
p

2π(1− γ2)

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z ∞
1
2 (ṽ+3w̃)

dũ w̃(w̃2 − ṽ2)λ2λ3 exp

»
− (ũ− γη)2

2(1− γ2)
− 15

2
w̃2 − 5

2
ṽ2

–
, (51)

=
3 · 55/2 exp

ˆ
−η2/2

˜
4π2
p

2π(1− γ2)

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z ∞
1
2 (ṽ+3w̃)

dũ w̃(w̃2 − ṽ2)(ũ− 2ṽ)(ũ+ ṽ + 3w̃) exp

»
− (ũ− γη)2

2(1− γ2)
− 15

2
w̃2 − 5

2
ṽ2

–
.

The integration in ṽ–ũ plane is limited to the region ũ > 1
2
(ṽ + 3w̃), as shown in the left panel of Figure 6. The integrated

length of the skeleton is

Lskel = 0.046186 (×R−2
∗ ) , (52)

that is, one expect on average one skeleton line crossing a random ≈ (5R∗)
2 surface element. The results of integration of

equation (51) are presented in the left panel of Figure 5.

4.2.1 Asymptotic behaviour at γη →∞

To study high η asymptotes it is useful to change the order of integration to have the ũ integral as the outmost one. The
inner integration in ṽ–w̃ plane is then carried out over the region shown in the right panel of Figure 6.Z ∞

0

dw̃

Z w̃

−w̃
dṽ

Z ∞
1
2 (ṽ+3w̃)

dũ →
Z ∞

0

dũ

Z ũ/2

0

dw̃

Z w̃

−w̃
dṽ +

Z ∞
0

dũ

Z ũ

ũ/2

dw̃

Z 2ũ−3w̃

−w̃
dṽ (53)

The last term is exponentially suppressed as η →∞ while the first one gives

∂Lskel

∂η

γη→∞∼
3 · 55/2 exp

ˆ
−η2/2

˜
4π2
p

2π(1− γ2)

Z ∞
0

dũ

Z ∞
0

dw̃

Z w̃

−w̃
dṽ w̃(w̃2 − ṽ2)(ũ− 2ṽ)(ũ+ ṽ + 3w̃) exp

»
− (ũ− γη)2

2(1− γ2)
− 15

2
w̃2 − 5

2
ṽ2

–
γη→∞∼ 1√

2π
exp

»
−1

2
η2

–
(γη)2 + 9(γη)/

√
10π + (9/10− γ2)

6π
. (54)

The leading quadratic and the next linear terms can be recovered found by replacing ũ → γη in the pre-exponential factor
and treating the exponent as the δD-function. A more detailed asymptotic study of this Laplace-type integral is required to
recover the third-order constant term, that also contributes to the accuracy of the expansion at the level demonstrated in
Figure 5.

One finds that in the leading order in η the skeleton has the differential length growing as (γη)2 (see also Appendix A) and
involves, as expected, a third of all the critical lines (compare with Appendix C) in the regions of high excursions concentrated
around the maxima of the field. However, at intermediated thresholds, the skeleton constitutes more than a half of all critical
lines, highlighting enhanced importance of the filamentary dense ridges among other critical lines. 8

8 Note the appearance of the linear in γη term in the next to leading order for the skeleton, that canceled out for the critical lines.
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Figure 6. First coefficients of low-η power expansion (A0 – blue, A2 – yellow, A4 – green) of the differential lengths of the 3D skeleton
(left), inter-skeleton (middle) and total set of primary critical lines (right). The odd terms (e.g. A1 – dashed) are present only for the

asymmetric case of the primary lines.

4.2.2 Power series at η → 0 and Hermite expansion

Using two alternative series representations of the shifted Gaussian form that encodes the dependence of the skeleton on the
threshold η

1p
2π(1− γ2)

exp

»
− (u− γη)2

2(1− γ2)

–
=

1√
2π

exp

»
−u

2

2

– ∞X
k=0

γkHk(η)Hk(u) , (55)

=
1p

2π(1− γ2)
exp

»
− u2

2(1− γ2)

– ∞X
k=0

1√
k!

 
γp

1− γ2
η

!k
Hk

 
up

1− γ2

!
, (56)

we obtain either power series or Hermite9 (Novikov et al. 2006) expansion of the differential length

∂Lskel

∂η
=

1√
2π

exp
ˆ
−η2/2

˜
×

8<:
P∞
k=0 Ak(γ)(γη)k ,P∞
k=0 Bkγ

kHk(η) ,
(57)

where

Ak(γ) ≡ 3 · 55/2

4π2
√
k!(1− γ2)

k+1
2

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z ∞
1
2 (ṽ+3w̃)

dũ w̃(w̃2 − ṽ2)(ũ− 2ṽ)(ũ+ ṽ + 3w̃)

× exp

»
− ũ2

2(1− γ2)
− 15

2
w̃2 − 5

2
ṽ2

–
Hk

 
ũp

1− γ2

!
, (58)

and

Bk ≡
3 · 55/2

4π2

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z ∞
1
2 (ṽ+3w̃)

dũ w̃(w̃2 − ṽ2)(ũ− 2ṽ)(ũ+ ṽ + 3w̃) exp

»
− ũ

2

2
− 15

2
w̃2 − 5

2
ṽ2

–
Hk (ũ) . (59)

These two expansions are similar but distinct. The power-law expansion is suitable for an accurate analysis of the differential
length near zero threshold for all γ < 1. On the other hand, the expansion in orthogonal Hermite polynomials is useful as an
approximation over an extended range of thresholds. Both series are improper for γ = 1.

Although these coefficients can be computed analytically, their expressions are too cumbersome. Instead, we plot several
leading ones in Figure 7. Remarkably, the power in Hermite expansion is concentrated in a few low order terms, in particular,
k = 0, 1, 2, 3 for the skeleton, with subsequent terms forming a slowly decaying oscillating series. This finding confirms in
3D the conjecture of Novikov et al. (2006). The contribution of the first three most dominant terms,

P2
k=0 BkHk(η) =

0.0462 + 0.0751γη+ 0.0464γ2(η2 − 1) has the same structure and remarkably similar coefficients as the high η asymptotics of
equation (54) which evaluates to 0.0477 + 0.0852γη + 0.0531γ2(η2 − 1). This explains why the high η asymptotics provides a
visually good fit through all thresholds when γ is not too high. At γ → 1, the oscillatory tail of Hermite series provides the
correction that reflects the irregular nature of the expansion in this limit.

The power series expansion reflects the features of the Hermite expansion. Starting, by definition, at A0(0) = B0 =
Lskel

tot = 0.0462, A0 behaves as A0(γ) ≈ Ltot(1 − γ2) over most of the γ range. Coupled with A2(γ) ≈ const = Ltot and
A1(γ) ≈ 0.0751

p
1− γ2 we get for the first three orders

P2
k=0 Ak(γ)(γη)k ≈ 0.0462 + 0.0751

p
1− γ2γη + 0.0462γ2(η2 − 1),

close both to the Hermite expansion and to the high η law for moderate γ. On the other hand, the power series expansion
explicitly demonstrates the increasing importance of higher-order terms for γ > 0.8.

9 we use here the normalized Hermite polynomials following probabilistic definition, 1/
√

2π
R∞
−∞ du exp

ˆ
− 1

2
u2
˜
Hk(u)Hm(u) = δmk
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Figure 7. Differential length ∂L/∂η/P (η) of the intermediate (left panel) and combined primary lines (right panel) as function of the

threshold η in 3D. Different curves from blue to yellow correspond to the spectral parameter values γ = 0.3, 0.6, 0.95. The dashed curves,
drawn only for positive η, correspond to high-η asymptotic solutions.

4.3 Primary critical lines of 3D fields: Inter-Skeleton and the overall behaviour

The intermediate primary critical lines are associated with saddle-like regions where the largest eigenvalues in magnitude are
λ1 > 0 and λ3 6 0, and have opposite signs, and the shallowest direction aligned with the gradient is the second one with
−λ1 < λ2 < −λ3. Their appearance reflects the complexity of critical lines in space of more than two dimensions.

The differential length of the intra-skeleton computed in the stiff approximation is presented in Figure 8. The conditions
for intermediate lines are prevalent for the regions of the field of moderate values - within 2σ (|η| < 2 of the zero mean for
γ > 0.6. Although the occurrence of the intra-skeleton within these regions is never large (∂L/∂η/P (η) is relatively small),
the regions corresponding to a near mean density occupy large fractions of the total volume, and as the result the total length
of the intermediate skeleton is almost twice that of the skeleton or the anti-skeleton:

Linter = 0.087533 (×R−2
∗ ) . (60)

It constitutes nearly a half of the total length of the primary critical lines

Lprim = Lskel + Lantiskel + Linter = 0.179905 (×R−2
∗ ) . (61)

At high |η| thresholds, in very dense regions near maxima or under-dense regions near minima of the field, the intermediate
skeleton is rare.

The total set of the primary critical line is even more than the skeleton dominated by the low order terms in Hermite
expansion. Indeed, Figure 7 demonstrates that just the first two terms (odd orders are absent due to symmetry) in Hermite
series are dominant,

P∞
k=0 BkHk(η) ≈ Lprim

tot

`
1 + 0.340γ2(η2 − 1)

´
.

4.4 Validity of the stiff approximation

Let us consider the opposite to “stiff” regime, when the derivatives of the Hessian dominate the ∇s,

(∇msi)lax ≈ γ̃−1
X
jkl

εijkxjlmxlxk . (62)

Although not natural for cosmology-inspired spectra, such a situation arises when the power spectrum has an extended short
wave tail with spectral index10 n between −9 and −5. Such spectra have small γ̃, R̃ � R∗ and there are many inflection
points of the field per extremum. Interestingly, this regime also automatically means that the correlation between the gradient
and third derivatives of the field is small.

Using the Hessian eigenframe formalism, we can obtain the important results without explicit computation of the differ-
ential length. Let us focus on the critical lines corresponding to the first eigenvalue. Equations (43) for S-surfaces gives rise
to two δD-functions, δD(2w̃x̃1x̃3)δD((w̃ − ṽ)x̃1x̃2) that after integration over the transverse gradient components x̃2 and x̃3

enforce x̃2 = x̃3 = 0, with the Jacobian factor 1/|2w̃(w̃ − ṽ)x̃2
1|. The length element in this frame obeys

|∇s2 ×∇s3|lax ≈ γ̃−2x4
1

˛̨̨̨
˛X
ijmn

εkmnε
2i1ε3j1xi1mxj1n

˛̨̨̨
˛ ≡ γ̃−2x4

1ψ(xklm) , (63)

10 In a cosmological framework this takes place when the density field with n < −1 spectrum is smoothed with a top-hat window.
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where the last expression defines the ψ(xklm) function. The differential length is now given by

∂L
∂η

lax

=
1

R̃2

(
3355/2

8π3
p

1− γ2
exp

»
−1

2
η2

– Z
dũdw̃dṽ (w̃ + ṽ) exp

»
− (ũ− γη)2

2(1− γ2)
− 15

2
w̃2 − 5

2
ṽ2

–)
×

×
Z

x2
1dx1d

10xklmψ(xklm)P1(x1, x2 = x3 = 0, xklm)

ff
(64)

The last integral, with P1 given by equation (D6), is a function of γ̃ only. The first term shows that, since the integrand
prefactor is independent on ũ, the differential length does not depend on the threshold η at large η (it does at small η only
because of non-trivial integration boundaries dependent on the exact type of critical lines). This is not surprising, since in
this limit, there is little link between the skeleton length and the second derivatives, the only ones that are correlated with
the field value. Such threshold independent behaviour is not observed in simulations with cosmological spectra, which argues
once again for the statistical validity of the “stiff” approximation.

4.5 Measurements

In this section we compare the predictions of the local theory in stiff approximation with the measurements of the statistical
properties of the critical lines done on realizations of the Gaussian fields with different power spectra.

We perform the measurements on critical lines found according to the global definition. The measurements are carried as
follows: a set (typically ∼ 100) of scale-invariant Gaussian random field of a N-D maps (typically 10242) or cubes (typically
2563) is generated with a given power index of n = 0, −1 or −2. The N-D cube is then smoothed via convolution with a
Gaussian kernel of width 6 pixels. The spectral parameters, γ, γ̃ etc... are computed through the second moments of the
derivative of the smoothed field. The set of critical lines is then extracted as the intersection of the peak patches and void
patches (see Sousbie et al. (2008) for details). In Figure 2 an example realization of the primary critical lines in 3D cube is
shown. Since the algorithm produces a set of segments describing those critical lines tagged by the underlying (smoothed)
density field, it is straightforward to compute the total and differential length per unit volume of the whole set. The differential
length per unit modulus gradient is extracted by tagging the critical lines with this modulus (obtained via Fourier transform
differentiation) and proceeding as before. Finally, the curvature of the skeleton is measured by computing the local curvature
of a set of adjacent segments via finite difference.

Let us emphasize that these measurements correspond to properties of the global skeleton, whereas the theory developed in
this paper is focused on the local skeleton. Hence even more remarkable is the match between the measured and the theoretical
differential lengths for all values of γ, that is exhibited in Figure 9. This accuracy should be considered as indicative of the
correspondence between the stiff approximation to the local theory and the global set of critical lines.

5 OTHER STATISTICS AND SPECTRAL PARAMETERS

In the previous sections, the emphasis has been on the differential length of the critical lines as a function of the excursion in
density. As argued in Sousbie et al. (2008) and demonstrated here, it provides means of constraining the shape parameter, γ.
Let us now explore other statistics which will allow us to constraint other shape parameters. In particular, let us demonstrate
that the differential length as a function of the excursion in the modulus of the gradient of the density and the differential
curvature depend on the second shape parameter, γ̃. Finally, we investigate the number density of singular points on the
critical lines.

5.1 Differential length versus the gradient modulus

The differential length of the skeleton with respect to the threshold η carries information on the spectral parameter γ thanks
to the correlation between the value η and the Hessian of the field. In the stiff approximation the Hessian curvature completely
determines the length of the critical lines. For the exact formulation, the length also depends on the third derivatives, that are
correlated with the first derivatives via the parameter γ̃. Thus, measuring length as a function of the modulus of the gradient
should carry information on γ̃ and provide an estimate of an impact the third derivatives have on the length statistics of the
critical lines.

To demonstrate the dependence of the skeleton length on the gradient of the field in “stiff” approximation let us return to
equation (45) which we take integrated over all density thresholds. As before, we perform the integration over the δ-functions
that enforces alignment of the gradient with the first eigen-direction, x2 = x3 = 0, however this time we do not integrate over
but rather take the differential of the result with respect to x1. Noting that |x1| = X ≡

p
x2

1 + x2
2 + x2

3. we obtain in place of
equation (47)

∂L
∂X

=
3

2
· 33/215251/2

(2π)5/2
exp

»
−3

2
X2

– Z
|(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)| dλ1dλ2dλ3|λ2λ3| exp

»
−1

2
ũ2 − 15

2
w̃2 − 5

2
ṽ2

–
, (65)

where the last integral does not depend on X. Dividing by the integrated length, L =
R∞

0
∂L/∂XdX, and generalizing the
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Figure 8. An example of set of primary critical lines (resp. skeleton in blue, intermediate in magenta and anti skeleton in gold) for a

scale invariant power spectrum with γ = 0.6 in a 2563 box smoothed over 5 pixels.
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Figure 9. The relative differential length, ∂L/∂η/PDF, measured in simulation of 2D (left) and 3D (right) Gaussian random fields with

scale invariant power-law spectra versus predictions of the local theory in stiff approximation (solid curves). The spectral parameter
γ = 0.71, 0.59, 0.39 for the 2D and γ = 0.77, 0.70, 0.60 for the 3D simulations.

result to fields in arbitrary N dimensions we conclude that„
1

L

∂L
∂X

«stiff

=

r
2N

π
exp

»
−N

2
X2

–
. (66)

The exact dependence of the differential lengths will deviate from this form in a γ̃ -dependent way. It is natural to
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Figure 10. left: measured ∂L/∂X/L as a function of X ≡ |∇ρ| for γ̃ = 0.71, 0.58 and 0.38 using the set of 25 2D simulations of 10242

Gaussian random fields with scale invariant spectra smoothed over 7 pixels. Right: value of the fit parameters ck (see equation (67)).

Note that c0 = 1.

parameterize such deviation expanding the true statistics in Hermite series around the stiff approximation

1

L

∂L
∂X

=

r
2N

π
exp

»
−N

2
X2

– ∞X
k=0

c2k(γ̃)p
(2k)!

H2k(
√
NX)

!
. (67)

This choice of expansion is dictated by the orthogonality of the Hermite polynomials with the weight ∝ exp[−
√
NX2/2] on

the interval X > 0. Thus, c0 = 1. If the deviation from the stiff approximation is small, one expects the expansion to be
dominated by the n = 0 term, while the subsequent terms should quickly fall in a orderly fashion.

To gain understanding on how the coefficients c2k(γ̃) behave with γ̃, let us consider again the lax situation, opposite to
the stiff case, when the third derivatives of the field dominate the length statistics. Our starting point is equation (64) which
has the following structure when we consider the differential length with respect to the |x1| = X

∂L
∂X

lax

∝ X2 exp

»
−3

2
X2

– Z
du1

8>><>>:
exp

»
−3

2

(u1 − γ̃X)2

1− γ̃2

–
+ exp

»
−3

2

(u1 + γ̃X)2

1− γ̃2

–
p

2π(1− γ̃2)

9>>=>>;
Z
d9xijkψ(xijk)P̄1(x2 = x3 = 0, xijk/u1)

(68)
where P̄1 is given by equation (D6) with the dependence on u1 factored out. The difference with the stiff approximation is
large even for γ̃ = 0 as the gradient’s dependence becomes ∝ X2 exp[−3/2X2] in place of the stiff scaling ∝ exp[−3/2X2].
Using now this factor as the weight, for γ̃ 6= 0 we expand the expression in the brackets in generalized Laguerre polynomials.
The expansion coefficients are of the form γ̃2k exp[−3u2

1/2]
Pk
m=0 dmγ̃

2mH2m(
√

3u1); denoting the result of the integration of
the expansion coefficients and all of the residual factors over the third derivatives by Ψk(γ̃) we obtain

1

L

∂L
∂X

lax

= 3

r
6

π
X2 exp

»
−3

2
X2

– ∞X
k=0

2kk!

(2k + 1)!!
γ̃2kL

(1/2)
k

`
3X2/2

´
Ψk(γ̃) , (69)

where, again, Ψ0(γ̃) = 1. With the help of the relation between the Laguerre and Hermite polynomials

3X2k!L
(1/2)
k

`
3/2X2´ = (−1)k2−k

“
H2k+2(

√
3X) + (2k + 1)H2k(

√
3X)

”
,

we can cast equation (69) in the form of equation (67)

1

L

∂L
∂X

lax

=

r
6

π
exp

»
−3

2
X2

– ∞X
k=0

(−1)k

(2k + 1)!!
γ̃2k

“
H2k+2(

√
3X) + (2k + 1)H2k(

√
3X)

”
Ψk(γ̃) ,

=

r
6

π
exp

»
−3

2
X2

– "
1 +

∞X
k=1

(−1)k−1

(2k − 1)!!

h
γ̃2k−2Ψk−1(γ̃)− γ̃2kΨk(γ̃)

i
H2k(

√
3X)

#
. (70)

The coefficients c2k(γ̃) are

c0 = 1 , c2 =
√

2
`
1− γ̃2Ψ1(γ̃)

´
, c2k =

“
(−1)k−1

p
(2k)!/(2k − 1)!!

”
γ̃2k−2 `Ψk−1(γ̃)− γ̃2Ψk(γ̃)

´
. (71)

In particular, in the limit γ̃ → 0 the first two coefficients remain finite and of equally significant magnitude c0 = 1, c2 =
√

2,
while all the other ones vanish.

Figure 10 and Figure 11 present the measurements of ∂L/∂X/L in 2 and 3D respectively, together with the corresponding
coefficients given by equation (67). It is found that these coefficients are significantly smaller in two dimensions, a clear
indication that the stiff approximation holds better in 2D.
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Figure 11. left: measured ∂L/∂X/L as a function of X ≡ |∇ρ| for γ̃ = 0.86, 0.83 and 0.79 using the set of 3D simulation of 1283 Gaussian

random fields with scale invariant spectra smoothed over 7 pixels. Right: value of the fit parameters ck, Note its faster convergence

combined with a larger amplitude relative to the 2D case.

5.2 Statistics of the curvature of the critical lines

The local curvature, κ, at a point on a curve specified by the tangent vector u = dr/dt is determined by the acceleration of
the tangent vector u̇ ≡ du/dt = u · (∂u/∂r) transverse to the curve direction:

κ =
|u× u̇|
|u|3 =

|u× ((∇u) · u) |
|u|3 . (72)

Importantly, the curvature does not depend on parameterization t, nor on normalization of the tangent vector u. In the local
theory, the tangent vector to a critical line is orthogonal to ∇si(xk, xkl) and can be taken to be

u = ε · ∇s (2D) , u = ∇si · ε · ∇sj = ∇si ×∇sj (3D) ; (73)

so the curvature κ is the random quantity which involves the derivatives of the field up to fourth order,

(2D) κ = |∇s · (∇∇s) · ∇s|
‹
|∇s|3 , (74)

(3D) κ =
˛̨̨“
∇si ×∇sj

”
×
h“
∇si ×∇sj

”
· ∇
“
∇si ×∇sj

”i˛̨̨ ‹ ˛̨̨
∇si ×∇sj

˛̨̨3
. (75)

The curvature of the critical lines fundamentally reflects the derivatives of the field higher than the second. If they are
neglected, the curvature is identically zero. Explicitly, the contributions that do not involve higher derivatives, in 2D

(2D) (u× u̇)2 = 4x2
1x

2
2λ

4
1 (λ1 − λ2)6 λ4

2 + . . . , (76)

(3D) (u× u̇)2 =
`
x2

2λ
2
3 + x2

3λ
2
2

´
(λ1 − λ2)4 (λ1 − λ3)4 λ2

1

`
3x2

1λ
2
2λ

2
3 +

`
x2

2λ
2
3 + x2

3λ
2
2

´
λ2

1

´2
+ . . . , (77)

vanish when the correspondent critical line conditions x2 = 0 or x2 = x3 = 0 are applied11.
The integrated curvature over the length of the line, C =

R
κdL is a useful dimensionless characteristics of the overall

extend a line is curved. We have seen that the critical line length in volume dV is dL ∝ |∇s|δD(s)dV and dL ∝ |∇si ×
∇sj |δD(si)δD(sj)dV in 2D and 3D respectively. Averaging over statistical distribution in regions above threshold η we obtain
the mean density of the integrated critical line curvature C = 〈dC/dV 〉

(2D) C(η>) =
1

R∗R̃

Z
η>x

dxd2xkd
3xkld

4xklmd
5xklmn κ(xk, xkl, · · · )|∇s|δD(s)P (x, xk, xkl, · · · ) , (78)

(3D) C(η>) =
1

R2
∗R̃

Z
η>x

dxd3xkd
6xkld

10xklmd
15xklmn κ(xk, xkl, · · · )

˛̨̨
∇si ×∇sj

˛̨̨
δD(si)δD(sj)P (x, xk, xkl · · · ) , (79)

where the integration is carried over all the derivatives up to the fourth order. The required joint probability function is given
in equations (D19) and (D21).

Let us consider 2D case and estimate the curvature by using stiff approximation for the tangent vector u while following
its local variation which involve higher derivatives of the underlying field. In the Hessian eigenframe, assuming the skeleton
lies along 1, if u is approximated by its stiff counterpart we have:„

|u× u̇|
|u|2

«stiff

= |x1| |(λ1 + λ2)x112| , (80)

11 Note that by construction, the torsion: τ = |u · (u̇× ü)|/|u× u̇|2 contains only the terms proportional to at least the third derivatives
of the field.
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Figure 12. 1/(R∗〈κ〉), the mean curvature radius in units of R∗ as a function of η measured in simulation of 2D (left) and 3D (right)

Gaussian random fields with scale invariant power-law spectra. The top curves correspond to spectra with more power at small scales

and higher γ and γ̃ spectral parameters.

so that (taking into account the measure in the eigenframe and the δD function of S in x2):

∂Cstiff

∂η
= π

Z
dλ1dλ2d

4xijk |(λ1 + λ2)x112|P0(η, xkl)P1(xijk)

=

p
2− γ̃2

4πR∗R̃

 p
2(1− γ2) exp

»
− γ2η2

2(1− γ2)

–
+
√
πErf

"
γηp

2(1− γ2)

#
γη

!
1√
2π

exp

»
−η

2

2

–
, (81)

the last evaluation being done for the primary critical lines.
We have measured the mean curvature of the skeleton lines at the threshold η,

〈κ〉 ≡ ∂C/∂η
∂L/∂η , (82)

in simulations of the Gaussian random fields of different spectra, using the global skeleton techniques. Figure (12) displays
the 2D (left panel) and 3D (right panel) results in terms of the curvature radius, Rcurv = 1/〈κ〉. The measurements show
that for the spectra we consider, the averaged curvature is insensitive to the density threshold for low-to-moderate threshold
values showing a plateau in the interval −2 < η < 2. This indicates that in this regime the curvature of the skeleton does not
depend on γ, but rather on γ̃ and perhaps γ̂. It follows that in 3D the critical lines are relatively more wiggly than in 2D.
If we use the lower value of R3D

curv as a guidance, it seems the stiff approximation is less accurate in 3D that in 2D, as could
be expected. The stiff estimate (81) gives the threshold-averaged mean density of the integrated curvature Cstiff and, using
equation (37), the mean curvature radius, Rstiff

curv, as

Cstiff =

p
1− γ̃2/2

2πR∗R̃
, Rstiff

curv ≡
L

C =

√
2 + π/2p
1− γ̃2/2

R̃ ≈ 2.985
γ̃p

1− γ̃2/2
R∗ . (83)

This result captures the qualitative dependence on γ̃ observed in simulations, but is a factor of three smaller in the magnitude
of the curvature radius. This shows that the global skeleton, used in the numerical measurement, is notably straighter than
the local critical lines, although the dependence of curvature on the spectral parameters seems similar.

Note in closing that in 2D, (resp. 3D) the knowledge of the differential length, curvature (resp. length, curvature and
torsion) corresponds to an exhaustive global statistical description of the critical lines.

5.3 Singular points of critical lines

Let us now ask ourselves the following question: are there any special points along the skeleton? The obvious ones are the
extrema of the field itself where critical lines intersect. Beyond this, one can anticipate two other types of singular points.
The first type corresponds to points where the curvature transverse to the direction of the critical line vanishes along at
least one axis: typically, in 2D, they mark regions where a crest becomes a trough, or vanish into a plateau. The second type
correspond to points where the critical lines would split, even though the field does not go through an extremum: a bifurcation
of the lines occurs along the slope; the occasional skier or mountaineer will be familiar with a crest line splitting in two, even
though the gradient of the field has not vanished. From the point of view of the theory of random fields, the frequency of
such points is an interesting venue: indeed we expect that steep power spectrum present relatively more bifurcation points
as R̃, the distance between inflection points (see Sec. 2.2), becomes much shorter than R∗, the distance between extrema. In
an astrophysical context, the statistical properties of the first type of points, and in particular their clustering properties are
of interest for understanding the geometry of galactic infall, which in turn is believed to play an important role in defining
the morphological properties of galaxies. The multiplicity of the maxima (i.e. the number of connected skeleton segments) is
also of interest in the context of galaxy formation and feedback. In more abstract spaces, such as position-time, identifying
bifurcations is important to pin down merging events (see e.g. Hanami (2001) and Appendix A).
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5.3.1 Defining the skeleton singular points

Formally a singular condition along the skeleton occurs when at some point the determination of the critical line direction
fails. It means that at this point the matrix ∇kSi of equation (2) has more than one distinct right null-vector, or, equivalently,
all Mk defined by equation (A7) are zero. The only case when it happens exactly is at the extremal points of the field ∇ρ = 0.
There are no other formal singularities on the local critical lines, since when ∇ρ 6= 0, the requirement Mk = 0 sets N relations
between the field gradient, second and third derivatives which have vanishing probability to be simultaneously satisfied along
a line in a random field.

The failure of the formal definition to identify all the physically interesting situations primarily reflects the inadequacy
of the local skeleton construction, which only utilizes locally quadratic approximation to the field, to map the field near the
singular points. 12 Figure 13 gives a 2D example. In 2D, the critical lines are zero levels of the scalar S-function, while ∇S = 0
at the extrema of S field. In Figure 13 the region where a ridge splits into two is shown. One expect two critical lines cross
there, with three branches following the ridges, and one following the through between two of the split branches. Instead, the
locally defined critical lines are not allowed two join at the bifurcation point since the formal condition ∇S = 0 is satisfied
just off S = 0 contour, rather they artificially reconnect near the bifurcation point into two non-intersecting segments.

We conjecture that the critical lines experience a qualitative change in behaviour in the vicinity of the points where either
the Hessian eigenvalue of the orthogonal to the gradient direction vanish, or becomes equal to the one along the gradient.
Namely, if, for definiteness, ∇ρ is taken to be along the first eigen-direction, λ2 = 0, or λ2 = λ1. We call the first case the
“sloping plateau” as it designates the entering of a flat region, and the second, tentatively, the “bifurcation” as it designates
the places of possible reconnection of critical lines. In particular, at the λ2 = λ1 points most of the transitions from primary
to secondary behaviour take place. Remarkably, these special points on the critical lines are recovered by the formal singular
condition |Mk| = 0 if ∇kSi is evaluated in the stiff approximation. As given in equation (A12), along the ND critical line
defined by x2 = . . . = xN = 0, |M stiff | = xN−1

1

Q
i>1 λi (λ1 − λi) = 0 gives rise to three classes of situations: (i) x1 = 0

corresponding to extremal points; (ii) one of λi = 0 corresponding to slopping flattened tubes; and (iii) one of λi = λ1,
corresponding to an isotropic bifurcation.

Since it is beyond the scope of this paper to develop the full theory of these special points, we will focus here on their
number density for isotropic 2D Gaussian random fields, leaving more detailed investigation to future work.

5.3.2 Number density of the singular points of the 2D critical lines

In 2D, the skeleton’s singular points correspond to points where Sk ≡ ∇kS = 0. The number density, nB(η) of singular points
below the threshold η is equal to

nB(η) =

Z
η>x

dxd2xkd
3xkld

4xklmd
5xklmnP (x, xk, xkl, · · · )|det (∇k∇ls) |δD(s1)δD(s2) . (84)

The simplest case of the skeleton singular points ∇S = 0 are, according to equation (8), the extrema of the field itself,
x1 = x2 = 0. Indeed when both x1 and x2 vanish

|det (∇k∇ls) |δD(s1)δD(s2) = |xkl|δD(x1)δD(x2) , (85)

which is exactly the integrand involved in the number density of extrema of the field. The extrema number densities, for
reference, are given in 2D by (Longuet-Higgins 1957)

∂nsaddle

∂η
=

1

R∗
2

1

4
√

3

"
1√

2π
p

1− 2γ2/3
exp

„
− η2

2(1− 2γ2/3)

«#
, (86)

∂nmin+max

∂η
=

∂nsaddle

∂η
+

1

4R2
∗
γ2(−1 + η2)

1√
2π

exp

„
−η

2

2

«
. (87)

The singularity of the extrema from the points of view of the critical line theory is manifest in the fact that at extrema several
critical lines intersect.

The gradient of S, evaluated in the stiff approximation, in the Hessian eigenframe has the components

sstiff
1 = x2λ1 (λ1 − λ2) , and sstiff

2 = x1λ2 (λ1 − λ2) . (88)

and involves only second derivatives of the field. Remarkably, within this approximation, there are new singular points that
lie on the (local) critical lines. The reason is that among two conditions needed for ∇S to vanish, one is already automatically
satisfied by being on a critical line.

To be specific, let us consider the critical line that corresponds to the x2 = 0 condition in the Hessian eigenframe. Then
sstiff

1 vanishes everywhere along this line. The requirement sstiff
2 = 0 has a solution at the extremal points, x1 = 0, but also in

two other cases, namely λ2 = 0 or λ2 = λ1, that we conjectured to be of interest.

12 Similarly, the bifurcation points for the global fully-connected skeleton (Sousbie et al. 2008) also formally merge with critical points

in the strict sense due to sharp topological theorems (Jost 2008). However they appear if the skeleton is viewed with a finite resolution.
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Figure 13. Left: the three types of singular point on the critical lines (in solid blue: primary; dashed: secondary; green: gradient lines of
the global skeleton): an extremum (open circle), a “bifurcation” (white square), and “slopping plateaux” (black squares). The thin lines

are the isocontours of the field. Right: Detailed view of the bifurcation region: The pink and purple lines mark the conditions x11 = x22

and x12 = 0, which when intersect give the point where λ1 = λ2. This point is a singular point of the critical line (white square). The
gold line is the condition λ2 = 0 that marks the “sloping plateau” on the critical lines. The red and blue dashed lines are zero isocontours

of two components of ∇Sstiff . The ∇Sstiff = 0 criterium pin-points exactly all types of the singular points on the critical lines. The black

cross marks the position of the point ∇S = 0.

The first situation, the sloping plateau with a flat transverse gradient, only occurs on secondary critical lines since it
implies λ1 > 0, and corresponds to˛̨̨

det
“
∇(ks

stiff
l)

”˛̨̨
δD(s1)δD(s2) =

˛̨̨̨
x1x112x222

(λ1 − λ2)

˛̨̨̨
δD(λ2)δD(x2) , (89)

hence

∂nF
B

∂η
=

1

R̃2

Z
dλ1P0(η, λ1, λ2 = 0)×

Z
dx1d

4xklmP1(x1, x2 = 0, xklm)|x1x112x222| + (1→ 2, η → −η) ,

=
1

√
3π2R̃

2

"
1√

2π
p

1− 2γ2/3
exp

„
− η2

2(1− 2γ2/3)

«#"p
1− γ̃2 +

1

4
(2− 3γ̃2)atan

 
2− 3γ̃2

4
p

1− γ̃2

!#
,

≡ 4

γ̃2π2
GFB (γ̃)

∂nsaddle

∂η
. (90)

The second situation (isotropic Hessian) corresponds to

˛̨̨
det
“
∇(ks

stiff
l)

”˛̨̨
δD(s1)δD(s2) =

1

4

˛̨̨̨
x1(u2

2 − 16(w2
1 + w2

2))

(λ1 − λ2)

˛̨̨̨
δD(λ1 − λ2)δD(x2) ,

therefore

∂nI
B

∂η
=

1

R̃2

Z
dλ1P0(η, λ1, λ2 = λ1)×

Z
dx1d

4xklmP1(x1, x2 = 0, xklm)
˛̨
x1(u2

2/4− 4(w2
1 + w2

2))
˛̨

+ (1→ 2, η → −η) ,

=
1

πR̃
2

»
1√
2π

exp

„
−η

2

2

«–"
2p

2− γ̃2
− 1

2
(1 + γ̃2)

#
≡ 1

γ̃2πR2
∗
GIB(γ̃)P (η) . (91)

Both GFB (γ̃) and GIB(γ̃) are weak functions of γ̃ of order unity. The main γ̃ dependence ∝ γ̃−2 reflects R̃ as the fundamental
scale for the singular points.

We note that the number density of the “sloping plateaux” is proportional to the density of the saddle points, hence
this type of singular points is predominantly concentrated near mean field values (small η). In contrast, the number density
of “bifurcation” points is proportional just to the PDF of the field and, hence, the bifurcation points are as frequent in the
regions of high field values as in the low ones. This may provide explanation for the observed insensitivity of the curvature of
the skeleton to the threshold, if we conjecture that most of the curvature accumulates near the “bifurcation” points.
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2D 3D

Skeleton 4.21R∗ Skeleton: (4.65R∗)2

Anti-skeleton 4.21R∗ Anti-skeleton: (4.65R∗)2

Inter-skeleton: (3.38R∗)2

All primary 2.11R∗ All primary (2.36R∗)2

All secondary 5.54R∗ All secondary (3.02R∗)2

Total 1.55R∗ Total (1.86R∗)2

Table 3. Inverse average integrated flux (the characteristic area (3D) or length (2D) per critical line) of the critical lines of different
types.

6 CONCLUSION & PERSPECTIVES

The filamentary structure is a dramatic feature of the observed or simulated Cosmic Web. This paper investigated how
the set of critical lines of a given field corresponds to an intermediate representation of the field, which is more extended
than the knowledge of the critical points, but nevertheless much more compact than the field itself. It introduced the stiff
approximation, which states that the tangent vector to the critical lines only involves up to the the second derivative of the
fields. Within its framework it has been demonstrated that, for stationary Gaussian random fields, ergodicity allows one to
recast the description of the ND critical lines into a point process, which only involve the first spectral parameter, γ, when
considering the differential length as a function of the contrast, and the second spectral parameter, γ̃, when considering it as
a function of the modulus of the gradient. The former probability distribution was shown to involve the average flux of the
Gaussian curvature of the 1D sections. In turn, these averages can be carried out analytically almost to the last integral in
2D and 3D, and provide simple asymptotics at large and small contrast. The detailed contribution of all types of critical lines
as a function of thresholding was described. The main results of this investigation corresponds to equations (27) and (28)
for the differential length of the skeleton and the total set of critical lines in 2D and equations (48) and (51) in 3D. Their
generalization to N dimensions is given by equation (A18) in Appendix A. Table 3 summarizes the average integrated fluxes
(i.e length per unit volume) of the critical lines. For instance in 3D one expect on average one skeleton line crossing a random
≈ (5R∗)

2 surface element.
These findings were illustrated on scale free power spectra with spectral parameters which are relevant to cosmology13.

The prediction of the stiff approximation was checked against measurements for global skeletons (Sousbie et al. 2008) on
realizations of these fields in two and three dimensions and was found to be in good qualitative agreement. The differential
curvature of the corresponding lines was also measured (section 5.2) and the corresponding radii were found to be ≈ 8R∗ and
≈ 2.5R∗ near η = 0 in two and three dimensions respectively. Hence an access to both the curvature and the length of the
skeleton provides the means of constraining two shape parameters, γ and γ̃. The stiff approximation is also implemented to
compute the differential curvature in 2D. Finally (section 5.3), the stiff theory of the singular points of the critical lines was
laid out in general, identifying generically three types of points: critical points of the underlying field, bifurcation points and
slopping plateaux. Again, the stiff approximation provide means of computing the number density of these points. Appendix D
derived the general joint probability of the field and its successive derivative in arbitrary dimensions, which come into play
when computing these higher order statistics.

Clearly the formalism developed in this paper will be useful in the context of the upcoming surveys such as the LSST, or
the SDSS-3 BAO surveys since it yields access to the shape of the power-spectrum without artifacts related to varying light
to mass ratio. For instance, Sousbie et al. (2008) first applied the corresponding theory to the SDSS-DR4 catalogue in order
to constraint the global dark matter content of the universe, since the cosmological parameters are directly a function of the
spectral parameter, γ. Its application to CMB related full sky data, such as WMAP or Planck should provide insight into,
e.g. the level of non-Gaussianity in these maps (see SPCNP for a discussion). Similarly, upcoming large scale weak lensing
surveys could be analyzed in terms of these tools (Pichon et al. 2009).

A natural extension of the theoretical component of this work would be to investigate the properties of the bifurcation
points in anisotropic settings and extend beyond the stiff approximation the preliminary results of Section 5.3. This will be
the topic of a forthcoming paper. Another natural venue would be to also investigate the statistical properties of, e.g. the
peak patch walls (surface, curvature) defined as x3 = 0 in the eigenframe of the Hessian. Eventually, a global theory of the
critical manifolds beyond the local approximation should also be developed to provide a framework to study the connectivity
of the critical lines.
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APPENDIX A: THE STIFF SKELETONS OF ND FIELDS

The emphasis in this paper is on developing the analytical theory of the critical lines of a given GRF in two and three
dimensions. Yet the critical lines in higher dimensions are of interest in more abstract spaces such as space-time or space-
smoothing etc. . In 3+1 Dimensions, corresponding to 3D space+time, the 4D critical lines are the dynamical tracks of
critical points in 3D. An alternative view is to think of the 4D skeleton as event lines of over densities, while the critical
points correspond to the position and time of merging events. In fact Hanami (2001) explored sloping saddles (i.e. points in
position-smoothing space corresponding degenerate saddle points) as a mean of identifying merging events, and argued that
the ridges (the path of the maxima in position-smoothing space as a function of smoothing) form a 4D skeleton. Clearly these
higher dimensional spaces would typically not be strictly isotropic, stationary nor Gaussian. As a first step, let us nonetheless
investigate these N dimensional lines.

A1 Critical Lines in ND

The local critical lines in N dimensions are defined as the points where the condition

H · ∇ρ = λi∇ρ , (A1)

is satisfied. This can be expressed as the condition of the vanishing of the N − 2 antisymmetric tensor

S = Si1,i2,...,iN−2 ≡
X
klm

∇kρHk
lε
i1,...,iN−2,l,m∇mρ = 0 (A2)

as defined in equation (1). In spaces of dimension N > 4 it is more compact to consider the Hodge-dual rank 2 tensor

(∗S) = (∗S)ij =
1

(N − 2)!

X
i1,...,iN−2

Si1,i2,...,iN−2εi1,...,iN−2,i,j = 0 . (A3)
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Local direction of the filament corresponds to the right null-vector δrk of the N − 2 + 1-rank tensor of the derivatives of SX
k

“
∇kSi1,i2,...,iN−2

”
δrk = 0 . (A4)

A non-trivial solution of this set of C2
N homogeneous equations generally exists, since the existence of the left null-vectorP

i1
∇i1ρ

`
∇kSi1,i2,...,iN−2

´
= 0 imposes C2

N−1 linear relations leaving exactly C2
N − C2

N−1 = N − 1 independent equations
to define a line.

The notion of primary skeleton lines is automatically generalized for N D as the subset of critical lines obeying

H · ∇ρ = λ1∇ρ , and λ1 + λ2 6 0 , (A5)

where λ1 is the largest and λ2 is the second largest of the sorted eigenvalues.
Let us derive the general expression for the statistical average of the flux of the lines arbitrarily defined over the properties

of the ND random field by N − 1 equations Si = 0, i = 1 · · ·N − 1, where Si(x, xk, xkl, . . .) are functions of the field and it’s
derivatives. We can shortcut the procedure of flux evaluation by marking each line with one intersection point with a fiducial
surface Σ, orthogonal to it, and finding the N-1 number density of the intersection points on the surface Σ = 0. The average
number density of the points defined as the intersection of n non degenerate hypersurfaces σi, . . . , σN is given by

n =

Z
dxdNxk · · ·P (x, xk, · · · )δD(σ1) · · · δD(σn)|det(∇σ1, · · ·∇σn)| . (A6)

Let us choose S1 · · ·SN−1 as σ2 · · ·σn and Σ to be σN . Expanding the determinant |det(∇S1, · · · ,∇SN−1,∇Σ)| along its last
row we obtain

n =

Z
dxdNxk · · ·P (x, xk, · · · )δD(S1) · · · δD(SN−1)δD(Σ)

˛̨̨̨
˛X
k

Mk ∇kΣ

˛̨̨̨
˛ , (A7)

where

Mk = (−1)k+1det
“
∇lSi

”i=1,...,N−1

l=1,...,k−1,k+1,...,N
=

X
l1,...,lN−1

εk,l1,...,lN−1∇l1S
1 . . .∇lN−1S

N−1 (A8)

are the corresponding minors. By design the Σ = 0 surface is to be orthogonal to the line and therefore its normal ∇Σ and
the “vector” M ≡ (Mk) are parallel, ˛̨̨̨

˛X
k

Mk ∇kΣ

˛̨̨̨
˛ = |M| |∇Σ| .

Without loss of generality, we can consider the intersection point to be at r = 0 and take Σ = eΣ · r where eΣ is the unit
vector in the local direction of the filament, hence |∇Σ| = 1. The average (N-1)D number density of intersection points on Σ
surface that gives us the average flux L is obtained by integrating the volume number density over the coordinate along eΣ,
z = eΣ · r, with δD(Σ) in equation (A7) properly counting exactly one intersection per line

L ≡
Z
n d(eΣ · r) =

Z
dxdNxk · · ·P (x, xk, · · · )δD(S1) · · · δD(SN−1) |M| . (A9)

To apply this general formula to the critical lines one must choose an arbitrary subset of N − 1 linearly independent
∇Si1,i2,...,iN−2 from the set of all C2

N of them.
Note that one can also think of L as the average length of lines per unit volume, which is the interpretation we focus on

in the main text.

A2 Stiff critical lines in ND

In the theory of ND critical lines, the N-1 independent functions Si that define the critical condition (A2) acquire the following
simple form in the eigenframe of the Hessian of the field

si = xaxi (λa − λi) = 0, i 6= a . (A10)

Here a is the index of the Hessian eigenvector that the gradient is aligned with, as is obvious from the solution xi = 0, i 6= a.
In the stiff approximation, the gradients sik ≡ ∇si have just two non-zero components, sia = xiλa(λa − λi) (which

vanishes on the critical line) and sii = xaλi(λa − λi). The vector that determines the direction of the critical line becomes

Mk = xN−2
a xk

Y
i6=k

λi
Y
i6=a

(λa − λi) . (A11)

On the critical line, it has just one non-vanishing component

Ma = xN−1
a

Y
i6=a

λi (λa − λi) = |M| , (A12)
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Figure A1. ∂L/∂η/P (η)/L in 2D, 3D and 4D as labeled for the spectral parameter values γ = 0.57, 0.65, 0.70 (from bottom to top).

These quantities are derived here by direct numerical integration of equation (A18). The different bundles corresponding to different

dimensions have been shifted down (by 0.3 for 2D and 0.15 for 3D) for clarity. Note the change in the power of the asymptotic curves.

which shows that in the stiff approximation we equate the direction of the line with the gradient of the field. Substituting this
expression into equation (A9) and integrating over δD(si) = δD(xi)/(xa(λa − λi)) we obtain a simple expression for the flux
of the critical lines in the stiff approximation

L =

Z
dxdxklP (x, 0, xkl)

˛̨̨̨
˛̨Y
i6=a

λi

˛̨̨̨
˛̨ . (A13)

i.e the flux of critical lines (or the length per unit volume) is given by the average absolute value of the Gaussian curvature
of the field in the space orthogonal to the skeleton.

Let us write the probability of measuring the set {λi} asY
i6N

dλi
Y
i<j

(λi − λj) exp

„
−1

2
Qγ(η, {λi})

«
, (A14)

where Qγ is a quadratic form in λi and η which functional form is

Qγ(η, {λi}) = η2 +

`P
i λi + γη

´2
(1− γ2)

+QN ({λi}) , (A15)

and
Q
i<j(λi−λj) is the Jacobian of the transformation to the Hessian eigenframe. Here QN involves polynomial combinations

of the eigenvalues of the traceless part of the Hessian (see Appendix D):

QN ({xij}) =
N(N + 2)

2

X
ij

xijxij , with xij = xij − δij
1

N

X
i

xii , (A16)

which can be rearranged explicitly in terms of λs as:

QN ({λi}) = (N + 2)

241

2
(N − 1)

X
i

λ2
i −

X
i6=j

λiλj

35 . (A17)

It now follows that the differential length of the ND-critical lines is for the stiff approximation:

∂LND

∂η
∝
„

1

R∗

«N−1
1p

1− γ2

Z
· · ·
Z Y

i6n

dλi
Y
i<j

(λi − λj)

˛̨̨̨
˛Y
i>1

λi

˛̨̨̨
˛ exp

„
−1

2
Qγ(η, {λi})

«
. (A18)

Equation (A18) is the formal generalization of equations (30) and (49). For the ND-skeleton, equation (A18) also holds but
the integration region should be restricted to the corresponding condition on the sign of the eigenvalues. Since the argument
of Qγ is extremal as a function of η when γη ∼

P
i λi, the largest contribution at large γη in the integral should arise when

λi ∝ γη since near the maximum at high contrast all eigen values are equal (Pichon & Bernardeau 1999). Hence given thatQ
i<j(λi − λj) is the measure, the only remaining contribution in the integrand comes from

˛̨Q
i>1 λi

˛̨
∝ (λη)N−1, and the

dominant term at large η is given by

∂LND

∂η

γη→∞∼ 1√
2π

exp

»
−1

2
η2

–„
η

R0

«N−1

,

where R0 = R∗/γ is defined in equation (3).
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APPENDIX B: SECONDARY CRITICAL LINES IN 2D

In this Appendix we present a study of asymptotic behaviour of the lengths statistics of secondary critical lines for 2D
Gaussian field. Secondary critical lines are the ones that have a gradient of the field aligned with the Hessian eigenvector that
corresponds to the largest by magnitude eigenvalue, i.e with the direction of maximum curvature of the field. In 2D, this is
the direction of λ2 in the skeleton region, |λ1| < |λ2|, and is the direction of λ1 in the anti-skeleton region. We shall explicitly
consider the first type, realizing that the second type is a mirror case with η → −η.

Our starting point is the part of expression (27) that corresponds to the lines where the gradient is aligned with the
second eigen-direction, in the region when they are secondary, ũ > 0

∂Lsec

∂η
=

4
√

2

(2π)3/2
p

1− γ2
exp

ˆ
−η2/2

˜ Z ∞
0

dw̃w̃

Z ∞
0

dũ |2w̃ − ũ| exp

»
− (ũ− γη)2

2(1− γ2)
− 4w̃2

–
. (B1)

The absolute value of the transverse to the gradient curvature 2λ1 = 2w̃ − ũ is evaluated differently for ũ 6 2w̃ and ũ > 2w̃.
It is convenient to make the inner integration to be over w̃, since it can be carried out analytically. The integral splits into
two terms

∂Lsec

∂η
=

4
√

2

(2π)3/2
p

1− γ2
exp

ˆ
−η2/2

˜
(I1 + I2) , (B2)

where

I1 =

Z ∞
0

dũ exp

»
− (ũ− γη)2

2(1− γ2)

– Z ∞
ũ/2

w̃(2w̃ − ũ)dw̃e−4w̃2
=

√
π

16

Z ∞
0

dũ exp

»
− (ũ− γη)2

2(1− γ2)

–
Erfc(ũ) , (B3)

I2 =

Z ∞
0

dũ exp

»
− (ũ− γη)2

2(1− γ2)

– Z ũ/2

0

w̃(ũ− 2w̃)dw̃e−4w̃2
=

√
π

16

Z ∞
0

dũ exp

»
− (ũ− γη)2

2(1− γ2)

– »
2√
π
ũ− Erf(ũ)

–
. (B4)

so that finally

∂Lsec

∂η
=

1

4π3/2
p

1− γ2
exp

ˆ
−η2/2

˜ Z ∞
0

dũ exp

»
− (ũ− γη)2

2(1− γ2)

– »
ũ−

r
π

4
Erf(ũ) +

r
π

4
Erfc(ũ)

–
. (B5)

The integrated length of critical lines Lsec is obtained by marginalization over all threshold values η. Performing this
integration first

Lsec =
1

2
√

2π

Z ∞
0

dũ exp

»
− ũ

2

2

– »
ũ−

r
π

4
Erf(ũ) +

r
π

4
Erfc(ũ)

–
=

√
2−ArcCot(2

√
2)

4π
= 0.08550 (B6)

Thus secondary critical lines are on average almost three times rarer that the primary ones.

B1 Special cases: η →∞

At high density thresholds the leading asymptotic behaviour for γη � 1 is obtained by using 1√
2π(1−γ2)

exp
h
− (ũ−γη)2

2(1−γ2)

i
η→∞→

δD(ũ− γη). Therefore

∂Lsec

∂η

η→∞∼ 1√
2π

exp
ˆ
−η2/2

˜ 1

4

„
2√
π
γη − 1

«
. (B7)

B2 Special cases: η → 0

At small threshold η series representation

exp

»
− (ũ− γη)2

2(1− γ2)

–
= exp

»
− ũ2

2(1− γ2)

– ∞X
n=0

1

n!(1− γ2)n/2
Hn

 
ũp

1− γ2

!
(γη)n , (B8)

where Hermite polynomials H2n are taken in probabilistic notation, gives

∂Lsec

∂η
(η → 0) =

1√
2π

exp
ˆ
−η2/2

˜ ∞X
n=0

An(γη)n where

An ≡ 1

2
√

2πn!(1− γ2)n/2

Z ∞
0

dū exp
ˆ
−ū2/2

˜
Hn(ū)

„p
1− γ2ū−

r
π

4
Erf

hp
1− γ2ū

i
+

r
π

4
Erfc

hp
1− γ2ū

i«
.(B9)
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Figure B1. Differential length of the secondary critical lines ∂L/∂η/PDF in 2D for the complete set (solid) and the ones with ∇ρ
aligned with λ2 direction in the skeleton |λ1| 6 |λ2| region (dashed). Different curves from purple to green correspond to the spectral

parameter values γ = 0.3, 0.6, 0.95.

The first three coefficients are

A0 =

p
2(1− γ2) + acot[

p
2(1− γ2)]− atan[

p
2(1− γ2)]

4π
,

A1 =
1

4
√
π

 
1 +

1p
2(1− γ2)

− 2p
(3− 2γ2)

!
,

A2 =

√
2

8π

1− 2γ2

3− 2γ2
(1− γ2)−

1
2 , (B10)

If we add all secondary critical lines, the odd power terms of the expansion (B8) cancel, while the even double recovering
symmetrical behaviour of the differential length with the threshold. In Figure B1 this behaviour is illustrated.

Under our definition of the secondary critical lines, for γ > 1/
√

2 there is an excess of critical lines near zero threshold.
The curvature at η = 0 is positive and diverges in the limit γ → 1 when our series expansion formally fails. This divergence
in the second derivative of the differential length is exactly opposite the one the primary lines demonstrate in this limit. We
should emphasize, that near η = 0 the behaviour of critical lines of individual type depend significantly on how exactly they
are defined.

APPENDIX C: ASYMPTOTIC BEHAVIOUR OF CRITICAL LINES IN 3D

There are four regions with the different signs of sorted eigenvalues in 3D: I — (0 > λ1 > λ2 > λ3), II — (λ1 > 0, 0 > λ2 > λ3),
III — (λ1 > λ2 > 0, 0 > λ3) and IV — (λ1 > λ2 > λ3 > 0). Since w̃ is non-negative, the correspondent zones of integration for
equations (48) and (49) are easy to visualize in (ṽ, ũ) plane (see Figure C1). The integration limits and the integrand acquire
the following form

I :

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z ∞
−ṽ+3w̃

dũ

»
1

3
ũ2 − 1

3
ṽ2 − w̃2

–
II :

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z −ṽ+3w̃

2ṽ

dũ

»
w̃2 − 1

9
(ũ+ ṽ)2 +

2

3
w̃(ũ− 2ṽ)

–
III :

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z 2ṽ

−ṽ−3w̃

dũ

»
w̃2 − 1

9
(ũ+ ṽ)2 − 2

3
w̃(ũ− 2ṽ)

–
IV :

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z −ṽ−3w̃

−∞
dũ

»
1

3
ũ2 − 1

3
ṽ2 − w̃2

–

9>>>>>>>>>>>=>>>>>>>>>>>;
× w̃

`
w̃2 − ṽ2´ exp

»
− (ũ− γη)2

2(1− γ2)
− 15

2
w̃2 − 5

2
ṽ2

–
.

(C1)
Changing variables ũ→ −ũ, ṽ → −ṽ in III and IV one can combine the last two cases with the first two

I + IV :

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z ∞
3w̃−ṽ

dũ

»
1

3
ũ2 − 1

3
ṽ2 − w̃2

–
II + III :

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z 3w̃−ṽ

2ṽ

dũ

»
w̃2 − 1

9
(ũ+ ṽ)2 +

2

3
w̃(ũ− 2ṽ)

–
9>>=>>;× w̃

`
w̃2 − ṽ2´ exp

»
−15

2
w̃2 − 5

2
ṽ2

–
Φγ(ũ, η) .

(C2)
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Figure C1. Left: Integration zones in ṽ, ũ plane based on the signs of the eigenvalues. Variables are given in units of w̃. Here ṽ varies from

−w̃ to +w̃, while ũ is unrestricted. Three inclined lines are (from top to bottom) a) λ1 = 0⇒ ũ = −ṽ + 3w̃, b) λ2 = 0⇒ ũ = 2ṽ and c)
λ3 = 0⇒ ũ = −ṽ−3w̃. In the upper sector I (that stretches to infinity in ũ) (0 > λ1 > λ2 > λ3), next is the zone II (λ1 > 0, 0 > λ2 > λ3),

then III (λ1 > λ2 > 0, 0 > λ3), and, finally extending to minus infinity in ũ is the sector IV where (λ1 > λ2 > λ3 > 0). Centre: two zones

of integration after variable change leading to equation (C2). Horizontal dashed lines mark the further subdivision of the integration
space if the order of integration is changed according to equation (C5). Right: Integration zones in the (ṽ, w̃) plane after ũ has been

mapped to the [0−∞] interval. Variables are given in units of ũ. The lower triangular zone corresponds to semi-open upper band in ṽ− ũ
of the centre panel. In this region, the integrand is given by the terms I+III of equation (C2). Vice-versa, the open upper band in the

(ṽ, w̃) plane corresponds to the II+IV integration over the lower triangular zone in the ṽ− ũ space. The right-most sector of this region,

however, corresponds to negative ũ, so the integrand in this sector has coordinate change ũ → −ũ, ṽ → −ṽ The dashed lines show the
subdivided integrals given in equation (C5), which corresponds to subdivisions in the centre panel.

where

Φγ(ũ, η) = exp

»
− (ũ− γη)2

2(1− γ2)

–
+ exp

»
− (ũ+ γη)2

2(1− γ2)

–
.

Direct evaluation of the integrated length gives

L = 0.289627 (×R−2
∗ ) . (C3)

To study high threshold regime it is advantageous to make the ũ integration the outmost one, since it depends on the
variable threshold

I + IV :

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z ∞
3w̃−ṽ
dũ→

Z ∞
0

dũ

Z ũ/4

0

dw̃

Z w̃

−w̃
dṽ +

Z ∞
0

dũ

Z ũ/2

ũ/4

dw̃

Z w̃

3w̃−ũ
dṽ (C4)

II + III :

Z ∞
0

dw̃

Z w̃

−w̃
dṽ

Z 3w̃−ṽ

2ṽ

dũ→
Z ∞

0

dũ

Z ũ/2

ũ/4

dw̃

Z 3w̃−ũ

−w̃
dṽ +

Z ∞
0

dũ

Z ∞
ũ/2

dw̃

Z ũ/2

−w̃
dṽ +

Z ∞
0

dũ

Z ∞
ũ/2

dw̃

Z w̃

ũ/2

dṽ(ũ, ṽ → −ũ,−ṽ) .

The parenthesis in the last term indicate the substitution that must be performed in the integrand. Right panel in Figure C1
illustrates the integration zones now in the (ṽ, w̃) plane.

Although one can perform the ṽ integral analytically and reduce the problem to two-dimensional integration, the resulting
expression is too cumbersome. We can obtain useful limits already from unreduced formulae. In particular, at high density
threshold, γη → ∞, only the first integral in the term (C4), which contains w̃, ṽ ∼ 0 neighbourhood, is not exponentially
small. Moreover, in the leading order the upper limit of the integral over w̃ can be set to infinity.

∂L
∂η

γη→∞∼ 3255/2

4π2
p

2π(1− γ2)
exp

»
−1

2
η2

– Z ∞
0

dũ

Z ∞
0

dw̃

Z w̃

−w̃
dṽw̃(w̃2 − ṽ2)

ˆ
ũ2 − ṽ2 − 3w̃2˜ exp

»
− (ũ− γη)2

2(1− γ2)
− 15

2
w̃2 − 5

2
ṽ2

–
γη→∞∼ 1√

2π
exp

»
−1

2
η2

–
(γη)2 − γ2

2π
. (C5)

APPENDIX D: JOINT DISTRIBUTION OF THE FIELD AND ITS DERIVATIVES FOR A GRF

The joint point distribution functions that are needed for the study of the critical lines in this paper are P0(x, xkl) and
P1(xi, xijk), taking into account that for Gaussian random field there is no cross-correlation between odd order derivatives
and the field itself or even order derivatives. When considering the curvature of the critical lines, fourth order derivatives,
and, thus, more general P0(x, xkl, xklmn) have to be considered. Some well known results in 2D and 3D are first summarized
in section D1. More general results can be obtained by resorting to a general framework which is sketched in section D2 and
applied in section D3 for the various cases of interest.
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D1 Lower order joint distributions

Distribution of the Gaussian field and its second derivative in 3D. The full expression for P0(x, xkl) for the Gaussian
field is given in Bardeen et al. (1986). Introducing the variables

u ≡ −∆x = −(x11 + x22 + x33) , w ≡ 1

2
(x11 − x33) , v ≡ 1

2
(2x22 − x11 − x33) , (D1)

in place of diagonal elements of the Hessian (x11, x22, x33) one finds that u, v, w, x12, x13, x23 are uncorrelated. Importantly,
the field, x is only correlated with u = ∆x and

〈xu〉 = γ, 〈xv〉 = 0, 〈xw〉 = 0, 〈xxkl〉 = 0, k 6= l, (D2)

where γ is the same quantity as in equation (5). The full expression of P0(x, xkl) is then

P0(x, xkl)dxd
6xkl =

51/2152

(2π)7/2(1− γ2)1/2
exp

„
−1

2
[Q0(x, u) +Q2(v, w, x12, x13, x23)]

«
dx du dv dw dx12 dx13 dx23 ,

with the quadratic forms Q0 and Q2 given by

Q0 = x2 +
(u− γx)2

(1− γ2)
Q2 = 5v2 + 15(w2 + x2

12 + x2
13 + x2

23). (D3)

It depends only one a single correlation parameter: γ.

First and third derivatives of the Gaussian field in 3D. A similar procedure can be performed for the joint probability
of the first and third derivatives of the fields, P1(xi, xijk) by defining the following nine parameters (see also (Hanami 2001)):

ui ≡ ∇iu, vi ≡
1

2
εijk∇i (∇j∇j −∇k∇k)x , with j < k , and wi ≡

r
5

12
∇i
„
∇i∇i −

3

5
∆

«
x , (D4)

and replacing the variables (xi11, xi22, xi33) with (ui, vi, wj). In that case, the only cross-correlations in the vector
(x1, x2, x3, u1, v1, w1, u2, v2, w2, u3, v3, w3, x123) which do not vanish are between the same components of the gradient and the
gradient of the Laplacian of the field:

〈xiui〉 = γ̃/3, i = 1, 2, 3, (D5)

where γ̃ is the same quantity as in equation (5). This allows us to write:

P1(xi, xijk)d3xi d
10xijk =

1057/233

(2π)13/2(1− γ̃2)3/2
exp

„
−1

2
(Q1 +Q3)

«
d3xi d

3ui d
3wi d

3vi dx123. (D6)

with the quadratic forms:

Q1 = 3
X
i

„
(ui − γ̃xi)2

(1− γ̃2)
+ x2

i

«
, Q3 = 105

 
x2

123 +

3X
i=1

(v2
i + w2

i )

!
. (D7)

The Gaussian field and its second derivative in 2D. Introducing the variables

u ≡ −∆x = −(x11 + x22) , w ≡ 1

2
(x11 − x22) , (D8)

one finds again that u,w, x12 are uncorrelated. The expression for P0(x, xkl) is then

P0(x, xkl)dxd
3xkl =

8

(2π)2(1− γ2)1/2
exp

„
−1

2
[Q0(x, u) +Q2(w, x12)]

«
dx du dw dx12 ,

where the quadratic forms Q0 and Q2 are

Q0 = x2 +
(u− γx)2

(1− γ2)
, Q2 = 8(w2 + x2

12). (D9)

First and third derivatives of the Gaussian field in 2D. Defining the following 4 uncorrelated parameters:

ui ≡ ∇iu, wi ≡ ∇i
„
∇i∇i −

3

4
∆

«
x , (D10)

yields

P1(xi, xijk)d2xi d
4xijk =

128

(2π)3(1− γ̃2)
exp

„
−1

2
(Q1 +Q3)

«
d2xi d

2uid
2wi . (D11)
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with the quadratic forms:

Q1 = 2

2X
i=1

„
(ui − γ̃xi)2

(1− γ̃2)
+ x2

i

«
, Q3 = 32

2X
i=1

w2
i . (D12)

It is the purpose of the next section to elucidate the nature of these quadratic forms and to show how similar expressions can
be obtained for any combination of derivatives in a space of any dimension.

D2 Theory

To proceed further, a more systematic way of computing the correlations between the field derivatives is needed. This can
be provided by the harmonic decomposition of symmetric tensors (such as derivative tensors). The main results are outlined
hereafter, the reader being referred to Cardoso (2009) for a detailed exposition.

Harmonic decomposition of symmetric tensors. The harmonic decomposition of symmetric tensors amounts to projection onto
the irreducible representations of SO(n). It is obtained in close form as follows. A symmetric tensor T of rank n is associated
with a set {T (`) | 0 6 ` 6 n, n− ` even} of “harmonic components” where each T (`) is a symmetric trace-free tensor of rank
`. Index ` can be understood as an angular frequency. We refer to it as the “frequency” of the component. The harmonic
component at frequency ` = n− 2k of a rank n tensor is obtained as

T (n−2k) = trk T ,

where (trk · ) means applying k times the trace operator (contraction over any pair of indices) and where T denotes the
traceless part of tensor T . In indexed notations, the first (ranks 0, . . . , 5) de-traced tensors on R3 are given by t = t, ti = ti,
tij = tij − 1

3
taaδij ,

tijk = tijk−
3

5
taa(jδkl), tijkl = tijkl−

6

7
taa(ijδkl)+

3

35
taabbδ(ijδkl), tijklm = tijklm−

10

9
taa(ijkδlm)+

5

21
taabb(iδjkδlm) , (D13)

with an implicit summation over repeated indices and symmetrization between parenthesized indices (for instance: taa(jδkl) =
[taajδkl + taakδlj + taalδjk]/3 and so on).

Invariant statistics. Let T = {T0, T1, . . .} be a set of symmetric tensors which are jointly isotropically distributed. A conse-

quence of isotropy is frequency decoupling: T
(`)
a is uncorrelated with T

(`′)
b if ` 6= `′. Further, at any frequency `, the scalar

product
˙
T

(`)
a | T (`)

b

¸
is invariant under rotations. It is convenient to arrange these products at frequency ` into a m` ×m`

Gram matrix bR` where m` denotes the number of tensors in T having an harmonic component at frequency ` (this occurs
whenever rank(T )− ` is a non-negative even integer):

[ bR`]ab =
˙
T (`)
a | T (`)

b

¸
,

where indices a and b run only over the m` relevant values (the specific ordering does not matter). A further consequence
of isotropy is that, in the Gaussian case, these matrices form a set of sufficient statistics: the joint distribution of T can be
expressed as a function of those matrices and nothing else, as seen next.

Spectral matrices. The ‘spectral matrix’ R` at frequency ` is defined as the expected value of bR`, that is, R` = E
` bR`´. For a

set T of symmetric random tensors with a rotationally invariant joint distribution, one finds

T † Cov(T )−1T =
X
`

w` tr
` bR`R−1

`

´
,

where w` is a positive scalar, which is equal to 2`+ 1 for tensors in R3.

Spectral matrices for a GRF. Now, we consider the case when in T = {T0, . . . , TQ}, the q-th tensor Tq is the q-th derivative at
a given point: ti1···in = ∂nρ/∂ri1 · · · ∂rin of a stationary random field ρ with spectrum P (ν). Then T is a set of isotropically
distributed symmetric tensors and each spectral matrix R` can be expressed as a function of the spectrum. Indeed, if ` − q
and `− q′ are non negative even integers, matrix R` has an entry [R`]qq′ related to the derivatives of orders q and q′ given by

[R`]qq′ = (−1)
q−q′

2 g` σ
2
q+q′

2
,

with the spectral moments σ2
p defined at eq. (4). The geometric factor g` is the squared ratio g` = (‖ξ`‖/‖ξ`‖)2 by which the

norm of the `-th tensor product ξ` of any vector ξ is decreased upon detracing. It is equal to g` = `!/(2`− 1)!! in dimension
D = 3. We do not provide explicit expressions for wl and g` in arbitrary dimension since only their ratio w`/g` is needed and
turns out to have a simpler expression than either w` or g`:

w`
g`

=
(2`+D − 2)!!

`! (D − 2)!!
. (D14)

Some precomputed values are listed in Table D1.
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` = 0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5

D=2 1 2 4 8 16 32
D=3 1 3 15/2 35/2 315/8 693/8

D=4 1 4 12 32 80 192

D=5 1 5 35/2 105/2 1155/8 3003/8

Table D1. Values of w`/g` = (2`+D − 2)!!/(`! (D − 2)!!) in dimensions D = 2, 3, 4, 5 for 0 6 ` 6 5.

Summary and rescaled forms. We collect all previous results into a normalized form. Using the normalized spectral shape
parameters of def. (5) and normalized derivative tensors Xn defined as:

Xn =
1

σn
∇nρ , i.e. xi1···in = σ−1

n
∂nρ

∂ri1 · · · ∂rin
,

one finds that

X † Cov(X )−1X =
X
`

(2`+D − 2)!!

`! (D − 2)!!
tr
`bΓ`Γ−1

`

´
, with [bΓ`]pq =

˙
X(`)
p | X(`)

q

¸
and [Γ`]pq = (−1)

p−q
2 γp,q . (D15)

Note that the diagonal entries of Γ` are always equal to 1.

Special cases and smaller statistics. Our approach compresses a set of derivative tensors into a set bΓ` of symmetric matrices
of size m`×m`, yielding

P
`m`(m`+1)/2 invariant scalars. There are two special cases where even smaller invariant sufficient

statistics can be found.
First, at angular frequency ` = 0, the detraced tensors are just scalars so that, for ` = 0, one has [bΓ0]pq =

˙
X

(0)
p | X(0)

q

¸
=

X
(0)
p X

(0)
q . Therefore bΓ0 actually is a rank-one matrix: bΓ0 = vv† where the entries of vector v are vp = X

(0)
p . Hence, at the

null frequency, we can further compress the m0(m0 + 1)/2 statistics (the non-redundant entries of bΓ0) into m0 scalars (the
entries of v). Of course, the ` = 0 term in the quadratic form also reads:

tr
`bΓ0Γ−1

0

´
= v†Γ−1

0 v. (D16)

Second, there are several cases of interest where m` = 2. This happens for instance at ` = 0 with derivative orders 0 and 2,
at ` = 1 when considering derivatives of order 1 and 3, at ` = 2 with derivatives of orders 0,2 and 4, etc. Then, for such an `,

tr
`bΓ`Γ−1

`

´
= tr

“»˙a | a¸ ˙
a | b

¸˙
b | a

¸ ˙
b | b

¸– » 1 −γ
−γ 1

–−1”
where a and b are rank-` tensors and γ is a scalar. Simple algebra yields

tr
`bΓ`Γ−1

`

´
= ‖a‖2 +

‖b+ γa‖2

1− γ2
, (D17)

that is, a form ubiquitous in this paper. However, an equivalent, more regular form is

tr
`bΓ`Γ−1

`

´
=

1

1− γ2

`
‖a‖2 + ‖b‖2

´
+

2γ

1− γ2

˙
a | b

¸
,

which has the benefit of stressing that, at such `, a sufficient statistic is only made of two invariant scalars, namely ‖a‖2 +‖b‖2

and
˙
a | b

¸
. In the limit of weak correlation γ → 0, one has, of course, tr

`bΓ`Γ−1
`

´
= ‖a‖2 + ‖b‖2. An even more symmetric

form, which stresses the decorrelation between a+ b and a− b is

tr
`bΓ`Γ−1

`

´
=
‖a+ b‖2

2(1− γ)
+
‖a− b‖2

2(1 + γ)
.

D3 Some applications

We now work out these expressions in some cases of interest.

Derivative of orders 0+2 in 3D. The case X = {X0, X2} is the simplest non-trivial case. The theory sketched at sec. D2
applies straightforwardly. In the notations of section D2], we are concerned with frequencies ` = 0 and ` = 2 for which, in 3D,

w0/g0 = 1, w2/g2 = 15/2 (see table D1). The quadratic form (D15) then reduces to tr
`bΓ0Γ−1

0

´
+ 15

2
tr
`bΓ2Γ−1

2

´
. For ` = 0,

we have here m0 = 2 and we can use the specific form (D17) to work out tr
`bΓ0Γ−1

0

´
with [a, b] = [X

(0)
0 , X

(0)
2 ] = [x, xaa],

that is the (normalized) field and the trace of its Hessian. For ` = 2, we have here m2 = 1: we need only scalars. Following

expressions (D15) again, we have bΓ2 = ‖X(2)
2 ‖2 = ‖X̄2‖2 = x̄abx̄ab and Γ2 = (−)(2−2)/2γ2,2 = 1. In summary:

Q0 +Q2 = tr
`bΓ0Γ−1

0

´
+

15

2
tr
`bΓ2Γ−1

2

´
= x2 +

(xaa + γx)2

1− γ2
+

15

2
xabxab , (D18)
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This is, of course, identical to equation (D3) using the local definitions there. It also shows that the complicated expression
for Q2 in (D3) is nothing but the the squared Euclidean norm of the detraced Hessian (with a 15/2 prefactor).

Result for orders 1+3 in 3D. We take X = {X1, X3}, that is, the first and third order derivatives of the field. The rescaled
harmonic components areh

σ−1
1 X

(1)
1

i
i

= xi ,
h
σ−1

3 X
(1)
3

i
i

= xiaa ,
h
σ−1

3 X
(3)
3

i
ijk

= xijk −
3

5
xaa(iδjk) = xijk.

We need frequencies ` = 1 and ` = 3 for which, in 3D, w1/g1 = 3, w3/g3 = 35/2 (see table D1). For frequency ` = 1, we
have m` = 2; matrix Γ1 is 2 × 2 with entries given by equation (D15), that is, diagonal entries equal to 1 (as always) and
off-diagonal entries given by (−1)(1−3)/2γ1,3 = −γ̃. Since Γ1 is 2 × 2, we can still use equation (D17) and finally obtain In
summary:

w1

g1
tr
`bΓ1Γ−1

1

´
+
w3

g3
tr
`bΓ3Γ−1

3

´
= 3 tr

»
1 −γ̃
−γ̃ 1

–−1 »
xixi xixiaa
xixibb xiccxidd

–ff
+

35

2
xijkxijk (D19)

= 3

„
xixi +

(xiaa − γ̃xi)(xibb − γ̃xi)
1− γ̃2

«
+

35

2
xijkxijk . (D20)

This is consistent with equation (D6) and reveals the meaning of x2
123 +

P3
i=1(v2

i +w2
i ) as equal to 1

6
xijkxijk i.e. the squared

norm of the detraced third derivative tensor (with a prefactor 1/6).

The results for other combinations of derivatives can be derived in the same way. A few results are listed below without
going into much detail.

Result for orders 0+2+4 in 3D. We consider X = {X0, X2, X4}. Hoping to improve clarity, we denote yij = [σ−1
4 X

(2)
4 ]ij , that

is, the de-traced contraction of the 4th-order derivative tensor. Explicitly, in 3D:

yij = xijaa −
1

3
xaabbδij ,

With this notation and recalling that xijkl denotes the traceless part of xijkl (the rescaled 4th-order derivative tensor)
computed according to the prescription (D13), the quadratic form is24 x

xaa
xaabb

35† 24 1 −γ γ̆
−γ 1 −γ̂
γ̆ −γ̂ 1

35−1 24 x
xaa
xaabb

35+
15

2
tr

»
1 −γ̂
−γ̂ 1

–−1 »
x̄ij x̄ij x̄ijyij
x̄ijyij yijyij

–ff
+

315

8
xijklxijkl , (D21)

where yet another spectral shape parameter has to be defined:

γ̆ =
σ2

2

σ0σ4
=

R̃R̂

R0R?
=
γγ̃2

γ̂
,

Needless to say that expression (D18) obtained for X = {X0, X2} is recovered by cutting the irrelevant terms from equation
(D21).

Result for orders 1+3+5 in 3D. To simplify the notations, we introduce local definitions for the derivative tensors and their
contractions:

ya = xabb , za = xabbcc , tabc = xabcdd ,

and, proceeding as above, we obtain the quadratic form:

3 tr

(24 1 −γ1,3 γ1,5

−γ1,3 1 −γ3,5

γ1,5 −γ3,5 1

35−1 24xaxa xaya xaza
yaxa yaya yaza
zaxa zaya zaza

35)+
35

2
tr

»
1 −γ3,5

−γ3,5 1

–−1 »
x̄ijkx̄ijk x̄ijk t̄ijk
t̄ijkx̄ijk t̄ijk t̄ijk

–ff
+

693

8
xijklmxijklm

(D22)

The 2D case. The theory applies to isotropic fields in any dimension. We have already provided expressions for the spectral
moments (4) and the coefficients w`/g` of equation (D14). It remains to find detracing coefficients. In the 2D case, the first
(ranks 0, . . . , 5) de-traced tensors on R2 are given by y = y, yi = yi, yij = yij − 1

2
yaaδij ,

yijk = yijk−
3

4
yaa(iδjk), yijkl = yijkl− yaa(ijδkl)+

1

8
yaabbδ(ijδkl), yijklm = yijklm−

5

4
yaa(ijkδlm)+

5

16
yaabb(iδjkδlm) . (D23)

For the correlation between the field and its Hessian, we proceed as above in 3D with w0/g0 = 1 and w2/g2 = 4 given in
table D1. Therefore the quadratic form is

Q0 +Q2 = tr
`bΓ0Γ−1

0

´
+ 4 tr

`bΓ2Γ−1
2

´
= x2 +

(xaa + γx)2

1− γ2
+ 4 xabxab ,
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in agreement with equation (D9). For the case of first and third order derivatives, we read w1/g1 = 2 and w3/g3 = 8 from
table D1 so that, similar to equation (D19), one finds

w1

g1
tr
`bΓ1Γ−1

1

´
+
w3

g3
tr
`bΓ3Γ−1

3

´
= 2 tr

»
1 −γ̃
−γ̃ 1

–−1 »
xixi xixiaa
xixibb xiccxidd

–ff
+ 8 xijkxijk , (D24)

= 2

„
xixi +

(xiaa − γ̃xi)(xibb − γ̃xi)
1− γ̃2

«
+ 8 xijkxijk , (D25)

with xijk = xijk − 3
4
xaa(iδjk) so that 8xijkxijk can be checked to equal Q3 in equation (D12).

The d-dimensional case. We outline some results in the d-dimensional case. The de-tracing formulae can be extended to the
d-dimensional case but, in this paper, we will content ourselves with the correlations between the field and its Hessian:
X = {X0, X2}. Therefore, we need only ` = 0 and ` = 2 so that de-tracing remains trivial: the normalized de-traced Hessian
given by x̄ij = xij − 1

d
δij xaa. Hence for the correlation between the field and its Hessian, we obtain the quadratic form»

x
xaa

–† »
1 −γ
−γ 1

–−1 »
x
xaa

–
+

d(d+ 2)

2
xabxab , (D26)

which is a straightforward extension of the 3D case of equation (D18). Just recall that γ is now defined in terms of the spectral
moments (5) and that de-tracing the Hessian requires a factor 1/d instead of 1/3.
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ABSTRACT

A method to compute the full hierarchy of critical subsets from a density field
within spaces of arbitrary dimensions and geometry is presented. It is based on an
improved watershed technique and uses a probability propagation scheme which
improves the quality of the segmentation by circumventing the discreteness of the
sampling. This recursive segmentation of space yields, for a d-dimensional space, a
succession of d − 1 n-dimensional subspaces that characterize the topology of the
density field. The method applies whatever the pixelisation provided a distance to
neighbours can be computed. The final 1D manifold of the hierarchy is the fully
connected network of the primary critical lines of the field. The skeleton, which cor-
respond to the subset of lines linking maxima to saddle points, provides a definition
of the cosmic web as a precise physical object, which makes it possible to compute
any of its properties such as its length, curvature, connectivity etc...
When the skeleton extraction is applied to initial conditions of cosmological N-body
simulations and their present day non linear counterparts, it is shown that the time
evolution of the cosmic web, as traced by the skeleton, is well accounted for by the
Zel’dovich approximation, provided the initial field is smoothed over a scale given
by Lcor =

√
1.00 − 0.16 (a − ai) in units of the non linear scale, and then distorted

before the skeleton is computed (a is the expansion factor). Comparing this skeleton
to the initial skeleton undergoing the Zel’dovich mapping shows that two effects are
competing during the formation of the cosmic web: a general dilation of the larger
filaments that is captured by a simple deformation of the skeleton of the initial
conditions on the one hand, and the shrinking, fusion and disappearance of the
more numerous smaller filaments on the other hand. The net result corresponds to a
decrease of the cosmic skeleton’s length with time.
Other applications of the N dimensional skeleton and its peak patch hierarchy are
discussed.

Key words: Cosmology: simulations, statistics,observations Galaxies: formation,
dynamics.

1 INTRODUCTION

The web-like pattern certainly is the most striking feature
of matter distribution on megaparsecs scale in the Universe.
The existence of the “cosmic web” (Zel’Dovich 1970) (Bond
& Myers 1996) has been confirmed more than twenty years
ago by the first CfA catalog (de Lapparent et al. 1986) and
the more recent catalogs such as SDSS (Adelman-McCarthy
et al. 2008) or 2dFGRS (Colless et al. 2003). These observa-

tions, together with the dramatic improvement of computer
simulations (e.g. Teyssier et al. (2008) Ocvirk et al. (2008))
have largely improved the picture of a Universe formed by
an intricate network of voids (i.e. globular under-dense re-
gions) embedded in a complex filamentary web which nodes
are the location of denser halos. The traditional way of un-
derstanding large scale structures (LSS) formation and evo-
lution relies on Friedman equations and assumes that LSS
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are the outcome of the growth of very small primordial quan-
tum fluctuations by gravitational instability (see e.g. Peebles
(1980) or Peebles (1993) and references therein). In this the-
ory, the solution for structure formation is described in terms
of a mass distribution that one needs to grasp (i.e. by fol-
lowing the evolution of its most important features) and
compare these to observations. Comprehending the mass
distribution as a whole, especially at non-linear stages, is
a very difficult task. A possible solution therefore consists
in extracting and studying simple characteristic features of
matter distribution such as voids, halos and filaments as
individual physical objects. So far, mainly because of the
relatively higher complexity of the filaments, most theoreti-
cal and computational researches have focused on the voids
and halos.

The dark matter halos have arguably been the most
studied component of the cosmic web. Their density pro-
files for instance are very well described by so-called NFW
profiles (Navarro et al. 1997) and non-parametric models
are still under investigation (Merritt et al. 2006). The de-
pendence of these density profiles on the halos mass (e.g.
Bond & Myers (1996), Lacey & Cole (1993)) has also been
investigated thoroughly and its relationship with redshift
and environmental properties are a very active topics (e.g.
Harker et al. (2006), Aubert & Pichon (2006), Wang et al.
(2007), Aragón-Calvo et al. (2007), Sousbie et al. (2008) or
Hahn et al. (2007)). From a computational point of view,
much effort has been put into the development of various
algorithms to identify halos in simulations and galaxies in
spectroscopic redshift galaxy surveys. The friend-of-friend
algorithm (Huchra & Geller 1982) is now widely spread, as
well as more complex hierarchical sub-structures identifiers
such as HFOF (Gottloeber 1998), SUBFIND (Springel et
al. 2001), VOBOZ (Neyrinck et al. 2005) or ADAPTAHOP
(Aubert et al. 2004).

Voids are another feature of cosmological matter dis-
tribution that also have a long history of theoretical and
computational modeling. The first voids were observed by
Kirshner et al. (1981) and are in some sense the counter-
part of halos: the initial quantum perturbations collaps-
ing into halos at non-linear stages leave room to voids in
the under-dense regions. The first theoretical voids models
where developed by Hoffman & Shaham (1982), Icke (1984)
or Bertschinger (1985) among others, while numerical void
finders exist, such as the one described in El-Ad & Piran
(1997), ZOBOV (Neyrinck 2008), based on Voronoi tessella-
tion, or the recent Watershed Void Finder, based on the
Watershed transform (e.g. Beucher & Lantuejoul (1979),
Beucher & Meyer (1993)), by Platen et al. (2007) (see the in-
troduction and references therein for a more complete review
of the subject). The improvements in our understanding of
voids and halos properties led to the formulation of power-
ful theories such as the patches theory (Bond & Myers 1996)
the extended Press-Schechter theory (e.g. Bond et al. (1991)
and Sheth (1998)) or the skeleton-tree formalism (Hanami
2001).

But our investigation of the filaments as individual ob-
jects is not yet as thorough as for the halos and voids: the
definition of a well established mathematical framework for
their study could therefore lead to significant improvements
in our understanding of matter distribution in the Universe.
The first attempts date from Barrow et al. (1985), who

used a graph-theory construction: the minimal spanning tree
(MST). This method defines the cosmic web as the network
linking galaxies (or particles from a numerical simulation),
having the property of being loop-free and of minimal total
length. This technique was later developed in order to try
quantifying in an objective way the properties of the cosmic
web (see e.g. Graham et al. (1995), Colberg (2007) and a re-
view on the subject can be found in Martinez & Saar (2002)).
Another method, based on the CANDY model, commonly
used to detect road networks, uses a marked point process
and a simulated annealing algorithm to trace the filaments
(Stoica et al. 2005). More recently, the skeleton formalism
and its local approximation, that describe the filaments as
particular field lines of the density field, was introduced by
Novikov et al. (2006) and Sousbie et al. (2008) with the
advantage of framing a well-defined mathematical ground
for theoretical predictions of the filaments properties as well
as an efficient numerical identification algorithm. Finally,
an interesting first attempt to unify halos, voids and fila-
ments identification using the Multiscale Morphology Filter
(MMF) technique was also proposed by Aragón-Calvo et al.
(2007).

In this paper, we introduce a framework and algorithm
to identify the full hierarchy of critical lines, surfaces,
volumes... of density distribution in the general case of
d-dimensional spaces. For 3D space, these critical subspaces
can be identified to the void and peak patches, as well as
filaments and other primary critical lines of the distribution.
The algorithm extracts the filaments as a differentiable
and, by definition, fully connected networks that traces
the backbone of the cosmic web. This method is closely
related to the skeleton formalism presented in Novikov et
al. (2006) and Sousbie et al. (2008) and is also based on
both Morse theory (see e.g. Milnor (1963) or Jost (1995))
and an improved Watershed segmentation algorithm that
uses a probability propagation scheme.

This paper is organized as follows. In section 2, we
present a general definition of the critical sub-spaces that
we use as well as a method to extract them from sampled
density field with a sub-pixel precision (focusing more specif-
ically on the filaments in the 2D and 3D case). In section
3, we use this formalism to study the time evolution of the
cosmic web, and understand the change of its properties
as a specific object via the truncated Zel’dovich approxi-
mation (Zel’Dovich 1970). Finally, in section 4, we summa-
rize our findings and discuss a few possible applications to
N-body simulations and observational spectroscopic galaxy
surveys. The details of a general simplex minimization algo-
rithm used in section 2 are presented in Appendix A while
the general behavior of the inter-skeleton pseudo-distance as
defined in section 3 is given in appendix B.

2 METHOD

The main goal of the algorithm presented here is to allow
a robust extraction of the non-local primary critical lines
(among which the skeleton) as introduced in Novikov et al.
(2006) and Sousbie et al. (2008). In these papers, the skele-
ton was defined as the set of points that can be reached by
following the gradient of the field, starting from the filament
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The fully connected N-D Skeleton & its peakpatches 3

type saddle points (i.e. those where only one eigenvalue of
the Hessian is positive). Let ρ(x) be the density field, and
∇ρ its gradient at position x, the skeleton can be retrieved
by solving the following differential Equation:

dx

dt
≡ v = ∇ρ , (1)

using the “filament” type saddle points as initial boundary
conditions. Because of the difficulty of designing a robust
algorithm to solve this equation, it was achieved only
in 2D in Novikov et al. (2006) and a solution to a local
approximation in 3D was proposed in Sousbie et al. (2008).
This local approximation allowed the extraction of a more
general set of critical lines linking critical points together,
the subset of this lines linking saddle points and maxima
together corresponding to the skeleton (i.e. the “filaments”
in the large scale distribution of matter in the universe). See
Pogosyan et al. (in prep.) for a discussion of these various
sets.

This method works in a very general framework
and allows the extraction of a fully connected non-local

skeleton as well as an extension of the primary critical
lines introduced in Novikov et al. (2006) and Sousbie et al.
(2008) to a hierarchy of critical surface. Following the idea,
already present in Equation (1), that the topology of a field
can be expressed in terms of the properties its field lines,
it takes ground in Morse theory (Jost 1995) and is roughly
based on an extension of the patches theory (Bond & Myers
1996). For any C2 scalar field of dimension d, the peak
patches – PP hereafter – (resp. void patches – VP hereafter)
are defined as the set of points from which the field lines
solution of Equation (1) all converge to the same maximum
(resp. minimum) of the field. Within this framework, we
show that in a d-dimensional space, the skeleton can be
thought of as the result of d − 1 successive identifications
of VPs or, equivalently, as the one dimensional interface
between at least d VPs. Using this definition, extracting the
skeleton of a distribution thus simply amounts to finding a
way of robustly and consistently identifying the patches.

Whether considering a particle distribution obtained
from a numerical simulation or a density field sampled on
a grid, the major difficulty arises from the discrete nature
of the data. In fact, even if the underlying density field is
supposedly smooth and continuous, the discreteness of the
sampling implies a relatively large uncertainty on the pre-
cise location of the patches boundaries, as sampling is lim-
ited by computational power, which is even more true when
considering higher dimensions space. The algorithm we use
is an improved version of the Watershed transform method
(Beucher & Lantuejoul 1979), based on a probability prop-
agation scheme and aims at attributing a probability of be-
longing to a given patch to every sampled point of the den-
sity field. This scheme is very general and efficient as it al-
lows dealing with discrete dataset in a naturally continuous
fashion and on manifolds of arbitrary dimensions.

2.1 Probabilistic patches extraction

The initial idea beyond our patches identification algorithm
is that a patch can be defined as the set of field lines (i.e.

curves that follow the gradient of a field) that originate
from a given minimum (VP) or maximum (PP) of a field.
Considering a sampled field, being able to identify the
patches thus amounts to being able to decide, for any given
pixel p, from which extremum all field lines that cross
p originate. It is therefore easy to understand that the
discrete nature of the sampling rapidly plagues such a task:
for each pixel, considering the measured gradient, one has
to decide from which, in the fixed number of neighbouring
pixels, the field line comes from. Within a d-dimensional
space, having to select between only 3d possibly different
direction for field lines is a crude approximation that leads,
because of accumulation, to a largely wrong answer for
pixels located far away from the extrema.

Although we present the algorithm in the general case
here, the reader can refer to figure 1 and its legend for a
simpler and more visual explanation of the algorithm in the
2D case. More generally, our algorithm involves considering
each pixel of a sampled field in the order of their increasing
(resp. decreasing) value, depending on whether we want to
compute the VPs or PPs and, for each of them, computing
the probability that it belongs to a given VP (resp. PP).
This probability map is simply computed by scanning the
probability distribution of its 3d − 1 neighbours (within a
d-dimensional space, here d = 2) and deducing the current
pixel patch probability distribution from it. Two cases are
possible:

(i) none of the neighbours has already been considered
(i.e their respective densities are all higher -resp. lower- than
that of the current pixel). This means that the pixel is a local
minimum (resp. maximum) of the field: a new VP (resp. PP)
index is created and the probability that the current pixel
belongs to it is set to 100%.

(ii) At least one neighbour has already been considered
(i.e its density is lower -resp. higher- than that of the cur-
rent pixel). The current pixel probability distribution is com-
puted as an inverse gradient weighted average of its lower
-resp. higher- density neighbours’ probability distributions.

Once all pixels have been visited, a number N of
patches have thus been created and a list of N prob-
abilities P k

i ,k ∈ {1, .., N}, has been computed for each
pixel, i. These probabilities quantify the odds that a given
pixel i belongs to a given patch k. Figure 2 illustrates
the advantages of our probability list scheme compared
to the naive approach: without it, the patches borders
have a strong tendency to be aligned with the sam-
pling grid and the problem tend to get much worse when
considering lower sampling and of course higher dimensions.

Figure 3(c) presents the results obtained by apply-
ing this algorithm to the 2D Gaussian random field of
Figure 3(a). On this picture, each patch is assigned a dif-
ferent shade, and the colour of each pixel is the probability
weighted average colour of its possible patches. As expected,
a majority of pixels seems to belong to a definite void patch
with high probability (close to 100%). In fact, considering
two neighbouring void patches A and B, all the pixels
that belong to one of these patches and have a value lower
than that of the first kind saddle point(s) on their border
(i.e. where the Hessian only has one positive eigenvalue)
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p(1)=0.95

p(2)=0.05

p(1)=1

p(2)=0

p(1)=0.2

p(2)=0.8
p(1)=0

p(2)=1

Figure 1. The different steps of the probabilistic algorithm for finding the patches. The height of the histograms is proportional to the

density at each pixel of a 2D random field. Top-left: the pixel with lowest density is identified and tagged as belonging to the void-patch

number 1 (blue colour) with probability P (1) = 1. Top-right: the pixels are then considered in ascending order and are tagged according

to the tag of their already visited surrounding pixels. This is repeated until the level of the minimum with second lowest density is

reached. As this pixel does not have any tagged neighbour, a new void-patch index is added and the pixel is tagged as belonging to

it (green colour) with probability P (2) = 1. Middle-left and middle-right: the process is repeated until one reaches the saddle point

with lowest density, located at the border of two patches (middle-left). Above this threshold, a pixel can have several neighbours, each

tagged with different patch indexes (middle-right). A list of probabilities associated to the different patch index of the neighbouring

pixels is attributed to the current pixel by computing the density difference weighted average of the respective patches probabilities of

the surrounding pixels. Bottom-left: repeating the process until all pixels have been visited, one obtains for each pixel a list of possible

patches index together with their respective probabilities (hence the blurred borders between patches on the picture). Bottom-right: a

clean border between the patches can be found by defining the index of the patch a pixel belongs to as the one with highest probability.

It is very straightforward to extend this method to spaces with arbitrary number of dimensions.
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The fully connected N-D Skeleton & its peakpatches 5

Figure 2. Illustration of the virtue of the probabilistic algorithm.

These three curves represent the borders of the void patches ob-

tained with the probabilistic algorithm, by limiting the maximum

number of probabilities recorded for each pixel. The black line was

derived without any limitation, while for the red one two proba-

bilities were kept and only one for the green one. This last case

is equivalent to not using any probability list, as only the values

of neighbouring pixels is taken into account. Also note the ten-

dency of the borders to be aligned with the sampling grid when

not taking advantage of the probabilistic algorithm.

have a 100% probability of belonging to either A or B.
Hence, the probabilities of belonging to different patches
only starts mixing above first kind saddle points. This
can be seen on the top right zoomed panel of Figure 3(c)
where probabilities only start blending mildly for densities
above this threshold (the saddle point are represented by
the probability “nodes” on the picture). This results in a
complex distribution of patch index probabilities in the
vicinity of higher density borders (see upper left panel of
Figure 3(c)), and thus a higher uncertainty of the location
of the void patches border. This uncertainty on the precise
patch index is directly linked to the location of the skeleton.
In fact, as explained in the next section, the skeleton can
also be defined as the set of field lines that do not belong
to any patch, or in other terms, where sampled pixels have
an equal probability of belonging to several distinct patches.

2.2 The d-dimensional skeleton

As one can easily see, the major strengths of this simple
patch extraction algorithm are that it is robust and can
be trivially extended to spaces of any dimensions and
topology, the only requirement being that one needs to be
able to define neighbouring relationships between pixels
and measure distances between them. So we now have a
robust algorithm for extracting the VP and PP of arbitrary
scalar fields. In this subsection, we show that it is possible
to generalize the definition of the skeleton (Novikov et al.
2006) to spaces of arbitrary dimension and present a simple
method to compute the skeleton, as well as critical lines

and surfaces, based on our patches extraction algorithm.

2.2.1 Definition

Let us first present important results of the Morse theory
without demonstrating them. The more thorough reader
can refer to Jost (1995) for a mathematical demonstration.

Let us consider the general case of a d-dimensional C2

scalar field Φd(x), with x ∈ Md and Md a manifold (i.e R
d,

the sphere S2, ...)1. Following Jost (1995), the field lines of
Φd(x) fill Md and a VP can be defined as the set of points
that can be reached by following the field lines originating
from a given minimum of Φd(x). The VPs of Φd(x) thus
segment a set of d-dimensional volumes that completely fill
Md, each of them encompassing exactly one minimum of
Φd(x). The interface of the VPs, Md−1, defines a (d − 1)-
surface (i.e. a surface of dimension d − 1 embedded in Md).
It is therefore possible to apply our probabilistic algorithm
to Φd−1(x), the restriction of Φd(x) to Md−1, in order to
extract the VPs on this interface. For clarity, we will call the
VPs of Φd−1(x) the first order VPs of Φd(x), noted 1-VPs
hereafter. Recursively, the 1-VPs define (d− 1)-dimensional
volumes that pave Md−1, each of them encompassing,
by definition of a VP, exactly one minimum of Φd−1(x),
with coordinates m ∈ Md−1 ⊂ Md, and the reasoning can
be applied to the whole hierarchy of α-VPs, α ∈ {0, .., d−1}.

Starting from a d-dimensional C2 scalar field Φd(x), it
is thus possible to define a complete hierarchy of sets of α-
VPs, α ∈ {0, .., d−1}. These α-VPs are (d−α)-dimensional
volumes that partition Md−α, where Md−α is defined as
the (d−α)-dimensional interface of the (d−α + 1)-patches.
Each set of α-VPs is defined as the set of void patches
of Φd−α(x), the restriction of Φd(x) to Md−α. Let us call
a critical point,x, of kind n a critical point with Morse
index µ (x) = n (i.e. where the Hessian H (x) has exactly n
positive eigenvalues). Then, Md−α encompasses the whole
set of saddle points of kind n 6 d−α, of Φd(x), the minima
of Φd−α(x) associated to each α-patch being the saddle
points of Φd(x) of kind d − α. The interface M1 is thus
a curve embedded in Md that links the maxima of Φd(x)
to its saddle points of kind 1: the skeleton of Φd(x). It is
interesting to note that this approach also allows a rigorous
definition of the whole set of critical lines similar to the one
introduced with the local approximation of the skeleton in
Sousbie et al. (2008), as well as their extension to critical
hyper-surfaces of any number of dimensions.

Although we have only addressed the α-VPs case so
far, the exact same argumentation holds for the whole hi-
erarchy of α-PPs, which leads to Md being the skeleton of
the voids that links minima to saddle points of kind d − 1.
Moreover, alternating a selection of nv αv-VPs and np αp-
VPs, nv + np = d, leads to Md being the curve that links

1
It will be assumed throughout this paper that the field satisfy

the Morse condition (Jost 1995) in the lose sense, so that it does

not contain extended singular regions (i.e. the critical points are

isolated and non-degenerate).

c© 0000 RAS, MNRAS 000, 000–000

252



6 T. Sousbie, C. Pichon & S. Colombi

(a) density field (b) skeleton presence probability

(c) void patches (d) peak patches

Figure 3. Figure 3(a) represents a 2D density field together with its anti-skeleton (black curve) and skeleton (thick coloured curve).

The skeleton is coloured according to the value of the index of the underlying void patch, which allows the detection of the saddle points

(intersection of the skeleton and void patch borders). A skeleton branch starts from a field maximum (large dots) and goes through one

saddle point before reaching another maximum. Figure 3(b) represents, for each pixel, the value of the probability that it belongs to

its most probable patch. By definition, the skeleton is the set of points that do not belong to any patch so the lowest this value, the

more probable the pixel belongs to the skeleton. Figure 3(c) was obtained by attributing a given random colour to each patch index and

representing each field with the colour resulting of the probability weighted blend of all patches colours. The zoomed parts show patches

borders where the uncertainty on the index of the most probable patch index is maximal. The skeleton is represented in white, together

with its smoothed counterpart (black). Figure 3(d) represent the peak patches of the same field.
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The fully connected N-D Skeleton & its peakpatches 7

saddle points of kind np to saddle points of kind np + 1: a
peculiar set of critical lines of the field. One can note that, as
rigorously demonstrated in Morse theory (Jost 1995), criti-
cal lines defined in such a way can only link critical points
whose Morse index only differ by unity.

2.2.2 Implementation

The representation of the critical lines of a given scalar
field as a peculiar limit of a peak or void patches hierarchy
certainly has some mathematical appeal. From a practical
point of view, although apparently straightforward, its
direct numerical implementation can nevertheless to be
somewhat problematic. Let G be an initial sampling grid
and Ḡ its reciprocal (i.e. G shifted by half the size of the
pixels in every direction). Using our patch computation
algorithm on a scalar field Φd(x) sampled over G, we obtain
for every pixel, i, of G a probability P k

i that it belongs to
a given patch, k. Those sets of probability distributions
could be used to define a border between the patches and
thus to compute the 1-PPs and 1-VPs. Nevertheless, this is
in general not an easy task: one in fact first needs a very
precise localization of the 1-PPs and 1-VPs (those living
on the (hyper-)surface of the initial VPs or PPs) to be able
to compute the following segmentation of the hierarchy (as
opposed to a density probability). In order to overcome this
issue, we chose first to base our implementation on a subset
only of the different patches probabilities and only keep for
every pixel the index of its most probable patch. This way,
we are able to simply define the borders between patches
as the set of pixels of Ḡ that overlap at least 2 pixels of
G with different most probable patch index. The patches
extraction algorithm can then be applied again over that
border, restraining pixels examination to the ones that lie
on its surface. Identifying pixels of G that overlap at least
2 pixels of Ḡ with different most probable patch index,
one can thus identify the 2-PP or 2-VP and, repeating this
procedure, all orders of the patches hierarchy.

For 2D Gaussian random fields, as pictured on fig-
ure 3(d) and 3(c), the skeleton (resp. anti-skeleton) are
identical to the VP (resp. PP) borders and the direct
implementation of this algorithm leads to a very precise
and smooth skeleton. But the implementation in spaces of
higher dimensions raises a critical issue with this simplified
method, due to the fact that the borders of the α-PPs
and α-VPs are only defined by the index of the pixels
they cross: thus they are jagged and considered locally flat
(on the scale of one pixel and its direct neighbourhood).
Figure 4(a) presents the 1-VPs obtained by applying this
algorithm to a 3D Gaussian random field, each colour
corresponding to a different 1-VP index. The 1-VPs live
on the 2D surface which is the border between the cells
formed by the void patches of the field, each of this cell en-
compassing exactly one minimum of the field. This surface
is complex: it can be multiply connected at the interface
of more than two different void patches and its curvature
is locally significant. Although neighbouring relationships
between pixels are easily obtained even where the surface
is multiply connected, only a rough approximation of the
actual distances along the surface can be computed, as the
local curvature is not taken into account. Figure 4(b) shows

the corresponding skeleton, computed as the border of the
1-VPs of Figure 4(a). This skeleton is clearly not very well
defined, the uncertainty in distance computation leading to
errors in the probability propagation algorithm. This bias
results in multiple skeleton branches that seem to oscillate
and cross each other along the true skeleton location.

In the end, it appears that dropping the full probability
distribution and approximating borders between patches is
too coarse an approximation. One solution would involve
trying to compute the precise location of the α-VPs and
α-PPs using the full set of probabilities, but, as it will be
discussed in section 2.3, this raises complex issues. As it is
the patches interface computation that seems to be difficult,
the alternative we chose to implement involves computing
directly the skeleton from the 0−VPs and 0−PPs of the
field, without having to consider the full hierarchy of α-
VPs and α-VPs. A close examination of Figure 4(a) led us
to formulate the conjecture that the (d−1)-VPs or (d−1)-
PPs interface corresponds in fact to the subspace of Md−1

where the manifold is sufficiently multiply connected (i.e.
where the (d−1)-surface defined by Md−1 folds onto itself).
Equivalently, this locus can be defined in 3D as the interface
of at least 3 different PPs or VPs (see Figure 4(a)). This is
formally demonstrated in Jost (1995). In the general case of
Md>3, the skeleton should thus be the 1D interface between
at least d VPs or PPs of Φd(x). Figure 4(c) presents the
skeleton obtained using this method on the same Gaussian
random field as the one used for Figures 4(a) and 4(b). As
expected, as there is no need to recursively compute the
full hierarchy of VPs, the resulting skeleton is much more
precise and well defined. Moreover, a quick comparison to
Figure 4(b) confirms that it is in fact the approximation of
the α-patches interfaces by individual pixels that plagues
the algorithm, each recursive step exponentially increasing
the error.

2.2.3 The skeleton as a set of individual filaments

The concepts introduced above allow the definition and
extraction of the skeleton as a fully connected network that
continuously link maxima and saddle-points of a scalar field
together. It is certainly of interest to try understanding
the topological and geometrical properties of this scalar
field through the connectivity and hierarchy relationship
that it introduces between the critical points. Applied to
cosmology, it also allows a formal definition of the concept
of individual filaments. Considering matter distribution
on large scales in the Universe, a natural definition of a
single filament would be a subset of the cosmic web that
directly links two halos together. The transposition of such
a definition to the skeleton would allow the introduction of
useful concepts such as neighbouring relationship between
halos in the cosmic web sense. It would also make possible
the study of filaments as individual physical objects,
similarly to what has been done for years in the literature
with the halos and voids.

On Figure 3(a), the skeleton (coloured thick network,
where the colour corresponds to the underlying PP index)
and anti-skeleton (black network) are superimposed on the
density field from which they where extracted. Let us define
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8 T. Sousbie, C. Pichon & S. Colombi

(a) The 1-VPs of a 3D Gaussian random field

(b) Recursive algorithm (c) Direct algorithm

Figure 4. Illustration of the computation of the skeleton as the 1D interface of the 1-VPs for a 3D field, Φ3(x). Figure 4(a) presents the

1-VPs of Φ3(x). The 2D surface, M2, is computed as the interface of the VPs of Φ3(x). The 1-VPs are the void patches of the restriction,

Φ2(x), of Φ3(x) to M2. Similarly to picture 3, each colour corresponds to a given 1-VP of Φ2(x), associated to a given minimum of

Φ2(x) (which is also a saddle point of kind 1 of Φ3(x)). The rough appearance of M2 is due to the fact that it is approximated by the

set of pixels of the sampling grid crossed by the interface of the VPs. The skeleton of Figure 4(b) is defined as the interface of the 1-VPs

of Figure 4(a): its location is not very precise and it seems to oscillate around its “true” location, mainly because only a locally flat

approximation of M2 is computed. Conversely, the skeleton of picture 4(c) is computed as the border between at least 3 PPs of Φ3(x)

or equivalently as the set of points of the surface M2 (pictured on Figure 4(a)) which are multiply connected (i.e. where M2 folds onto

itself). This algorithmically simpler definition leads to a much better defined skeleton.
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The fully connected N-D Skeleton & its peakpatches 9

a filament as a subset of the skeleton continuously linking
two maxima together while going through one - and only one
- first kind saddle point. These saddle points can be easily
extracted as they are located on the skeleton, at the border
between the peak (resp. void) patches (i.e where the patch
index along the skeleton changes, this definition being valid
for any number of dimensions). This way, all the filaments
of an N-dimensional distribution can be extracted individu-
ally by starting from each maximum of the field, following
all the branches of the skeleton, and storing only the paths
that cross one saddle point before reaching another maxi-
mum. This algorithm thus allows the individual extraction
of filaments as well as a continuous wander of the filamen-
tary structure of a distribution, which should be very useful
in a wide range of applications in cosmology.

2.3 Sub-pixel resolution and skeleton smoothing

Let us first consider for simplicity a Cartesian sampling grid
(even though this sub pixel smoothing does not critically
depend on this geometry, see below). The implementation
of the procedure of Section 2.2 naturally leads to a skeleton
that lives along pixel edges and is thus jagged at the pixels
scale. The differentiability of the skeleton is nonetheless a
feature which may be critical for a number of its character-
istics: its length, curvature, general connectivity ... In order
to enforce this differentiability, we developed two smoothing
methods which we use in practice in turn. The first one is
based on a multi-linear interpolation of the patches probabil-
ity distribution which flows naturally from the original algo-
rithm used to create the skeleton. It provides sub-pixel res-
olution consistently with the probabilistic framework, thus
allowing a precise extraction of the skeleton even when the
sampling is low. The other is used to control the level of
smoothness away from fixed points (the maxima or the bi-
furcation points) and can be used to enforce sufficient dif-
ferentiability.

2.3.1 Multi-linear sub-pixel skeleton

Let us first find a way to obtain a sub-pixel resolution on the
skeleton position based on the patches probability distribu-
tion of each pixel. The raw skeleton is made of individual
segments located on the edges of the pixels of a Cartesian
grid G. Each segment is defined by its two end points, and
each of them is surrounded by 2d pixels with a full list of
possible patches index, together with their respective proba-
bilities. Recall that the probabilistic algorithm we use works
on individual pixels so the resulting skeleton position, de-
fined as the position of the border between several patches,
is computed with a precision of one pixel. This implies that
the smoothing procedures may not move the skeleton on
more than half the size of a pixel. In other words, if we con-
sider the dual sampling grid, Ḡ, of G, the skeleton can be
freely moved within the pixels of Ḡ that its jagged approx-
imation crosses. So it is sufficient to consider individually
each of these pixels. Let p̄ be one of these pixels. We then
know for each of its vertices, pi with i ∈ 1..2d, the proba-
bility distribution of the different VPs, P k

i , where k is the
index of a VP. In order to obtain sub-pixel resolution, these
probabilities can be interpolated within p̄.

For simplicity, we will only use a multi-linear interpola-
tion and define P k(x), the probability distribution of patch
k, interpolated at point x = (x1, .., xd) ∈ [0, 1]d within p̄ as:

P k(x) =
2

d

X

i=1

P k
i

d
Y

j=1

ǫi
j(xj), (2)

where ǫi
j(x) = x if the jth coordinate of pi within p̄ is 1 and

ǫi
j(x) = (1 − x) if it is 0. Ideally, the skeleton should not

belong to any VP, so it should be located where all the non
null values of P k(x) are equal. Let us define the arithmetic
mean of the probability (over the VPs with index k) over
the pixel

〈P (x)〉 = 1/N
N

X

k

P k(x), (3)

and its root mean square,

P̃ (x) =

v

u

u

t

N
X

k

(P k(x) − 〈P (x)〉)2, (4)

where the sum is over all the N subscripts k such that there
exist a pixel pi where ∀l 6= k, P k

i > P l
i . Clearly, all patches

with dominating probabilities P k(x) in p̄ are equal when

P̃ (x) = 0. (5)

Equation (5) is of fourth order and is thus difficult to solve
in general.

2.3.2 Approximate quadrics sub-pixel smoothing

Insights into the solution of Equation (5) can be found while
considering the intersection sets of points where pairs of
probabilities are equal instead of equating them all at the
same time. These sets are solution of the set of equations

P k(x) = P k′(x), k 6= k′ (6)

where k and k′ are subscripts of the patches that dominate
on at least one vertex of p̄.

For clarity, let us consider the d = 2 case first. With a
proper indexing of the four pixels pi,

P k(x) = P k
1 (1 − x1)(1 − x2) + P k

2 (x1)(1 − x2)

+P k
3 (1 − x1)(x2) + P k

4 (x1)(x2), (7)

Equation (6) writes in this case:

Ax1x2 + B x1 + C x2 + D = 0 , (8)

where A, B, C and D only depend on the values of P k
i .

Equation (8) is quadratic and its solutions are well known
curves of dimension d − 1 = 1 called quadrics. Figure 5 il-
lustrates solutions of Equation (8) when p̄ is located at the
intersection of Np = 2, Np = 3 or Np = 4 different VPs.
In the most frequent configuration where p̄ is at the inter-
section of 2 VPs, Equation (8) directly gives the first order
approximation of the intersection of the skeleton and p̄, and
we may approximate it by a straight segment. Finding the
end points of this segment is easily achieved by computing
the location of equal probability along the two sides of p̄
that link vertices with different patches (Figure 5(a)). The
Np = 3 configuration is rarer, and concerns only the maxima
of the field as well as all bifurcation points of the skeleton. In
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10 T. Sousbie, C. Pichon & S. Colombi

(a) Intersection of 2 patches (b) Intersection of 3 patches (c) Intersection of 4 patches

Figure 5. Illustration of the computation of the sub-pixel skeleton in the case of a 2D bi-linearly interpolated pixel located at the border

of 2, 3 and 4 different patches. The colour of the pixels vertices represent the index of the dominant patch, while the two-coloured dotted

lines are the quadrics, solutions of Equation (6). These lines are the regions where the probabilities corresponding to the patches with

similar colours are equal. The underlying blue gradient corresponds to the value of P̃ (x) (Equation (4)), light colours encoding lower

value. Finally, the black lines represent our approximation of the smoothed intersection of the skeleton with the pixel.

this case, we know that three different branches of the skele-
ton merge within the pixel, at a point where all probabilities
are equal. So, we may set the bifurcation point as the locus
where all the C3

2 = 3 quadrics of Equation (6) intersect (note
that the three of them always intersect in a single point as
P 1(x) = P 2(x) and P 1(x) = P 3(x) implies P 2(x) = P 3(x)).
The three branches of the skeleton in p̄ are thus obtained
by linking the bifurcation point to the iso-probability along
the three sides of p̄ that link vertices associated to differ-
ent patches (Figure 5(b)). Finally, the Np = 4 configuration
is very rare2 and also more problematic. As previously, we
know that there exist a bifurcation point within p̄, but this
time with 4 different skeleton branches. Since there are now
C3

2 = 6 different Equations (6), and given that the solution
of each of them is a 1D quadric, this system is clearly over
constrained to find the precise location of the bifurcation
point. A solution may well be to use a higher order inter-
polation, allowing more complex curves than quadrics for
equal probabilities regions, or to try solving directly Equa-
tion (5). As this case is clearly rare, it would also be possible
to approximate the bifurcation point as the barycenter of the
three points of intersection of the subsets of Equations (6)
taken in pairs. Again, the smoothed skeleton would there-
fore be derived by linking the bifurcation point to the four
iso-probability points along the four sides of p̄ (Figure 5(c)).

2.3.3 Actual recursive implementation

Having discussed the underlying geometry of the sub-pixel
multi linear interpolation, let us now turn to our actual
sub-pixel smoothing algorithm. Indeed, in d-dimensions,
Equation (6) is of order d and is linear in each of the

2
note that the scarcity of these points is directly related to res-

olution, i.e. whether or not the skeleton is featureless at the sub-

pixel scale. Hence these points may occur more often in higher

dimensions, which for computational reasons may be relatively

under-sampled.

d space coordinates xi. Its solutions are thus d − 1 di-
mensional quadrics whose intersections, as in 2D, can be
used to recover the skeleton position down to a sub-pixel
precision. Finding intersections of quadrics in general
remains nonetheless a highly difficult (or even untractable!)
problem and even state-of-the-art solvers can only achieve
such a performance for d = 3 at most. To circumvent this
difficulty, we thus opted in practice for a different solution
that consists in a recursive numerical minimization of the
value of P̃ (x) over the hierarchy of n-cubes (i.e hypercubes
of dimension n), n ∈ {1, .., d}, that are the faces of each
cell of the sampling grid. The trick is to always reduce the
problem to a 1D minimization of a polynomial of order d
(see appendix A). Figure 6 illustrates the full process in
3D. Let us consider the grid cell of Figure 6(a), located at
the interface of 4 different patches. The skeleton extraction
algorithm produces the jagged skeleton represented in red.
In order to improve its resolution, we first consider each of
the 12 edges individually (see Figure 6(b)) and determine
for each of them the point of equal probability for the two
patches that dominate at the end points of segment. Of
course this point only exists if different patches dominate
at the end points of a segment and we thus obtain at most
12 new points (7 in this instance, represented by the red
crosses). The edges of a cube can be considered as its “one
dimensional faces” or 1-faces. The following step consists
in examining the configuration of its 2-faces, usually called
faces for a 3D cube. Figure 6(c) illustrates the configuration
of these 6 faces together with the iso-probability points
computed over their edges. We know that at least 3 different
patches have to dominate on at least one of the 4 vertices
of each face for a skeleton branch to enter the cell through
this face. Using the minimization algorithm presented in
Appendix A and the iso-probability points on the edges, it
is thus possible to compute, over these faces, the location
of the minimum of P̃ (x) (represented as blue crosses on
Figure 6(c)). Finally, considering the 3-face of the cell (i.e.
the cube itself), one can determine the point of minimal
value of P̃ (x) over the cube, which is the point where the
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The fully connected N-D Skeleton & its peakpatches 11

(a) (b) (c) (d)

Figure 6. Illustration of different steps of the recursive algorithm used to obtain sub-pixel resolution for the skeleton, in 3D. The colour

of the balls represent the index of the patch with maximal probability while the intersection of the skeleton and the cell is displayed in

red. The algorithm consists in recursively considering the n-dimensional faces of the sampling unit volume (here an hypercube). For a

3D Cartesian sampling grid, one starts equating dominant probabilities on the vertices of edges, then faces and finally the cube.

skeleton branches connect (see figure 6(d)).

The generalization of this algorithm is relatively
straightforward. Let us again consider a cell that is a hy-
percube of dimension d. We know that the skeleton inter-
sects this cell if at least d of its vertices have different max-
imal probability patches index. In that case, the sub-pixel
resolved skeleton can be recovered by considering all the n-
faces of the hypercube, n ∈ {1, .., d − 1}, in ascending order
of their dimension n. When considering a p-face, we mini-
mize the value of P̃ (x) in order to obtain the point where its
vertices respective patches have equal probability, using the
points obtained from the (p− 1)-faces. This point only exist
for a p-face if at least (p + 1) vertices most probably belong
to different patches. In the end, one thus obtains a number
of points from the (d−1)-faces that are the points where the
skeleton enters the cell and one point for the d-face (i.e. the
cell itself), which gives the location where different branches
of the skeleton connect. Figure 7 illustrates the result of ap-
plying this algorithm in the 2D case.

2.3.4 Artifacts correction and differentiability

Though the method presented above to obtain sub-pixel
resolution works most of the time, there nonetheless exist
situations where it can fail due to sampling effects. Figure 8
illustrates such a situation, which can sometimes occur
when the sampling grid pixel size is not totally negligible
compared to the average extension of the patches. When
the thickness of a peak or void patch is smaller than a pixel
size, it can in fact lead to mistakingly isolated subregions of
size one pixel, implying the creation of spurious loops in the
skeleton (in red). This phenomenon, although rare, occurs
in spaces of arbitrary dimension and triggers artifacts when
applying our sub-pixel resolution algorithm. The green
skeleton on Figure 8 presents such an example of a spurious
skeleton loop.

In order to fix these anomalous segments, we chose to
post-treat the skeletons by opening-up all one-pixel sized
loops (i.e. of at most 2d segments) and smooth the resulting
skeleton to enforce a desired level of differentiability in the
skeleton trajectory (see the blue skeleton of Figure 8). The
smoothing method that we use presents the advantage of

Figure 7. Illustration of the skeleton with a sub-pixel resolution

in 2D. The background pixels colour represent the sampled den-

sity field while the black skeleton was obtained using our proba-

bilistic algorithm. The purple skeleton is the post-treated version

of the black one. Note how any sampling grid influence disap-

peared, especially in the originally vertical segment located in

the upper-left corner of the image.

being quite robust, and involve fixing some specific points
of the skeleton, and averaging the position of each non-fixed
segments end points with the position of its closest neigh-
bouring end points a number of times. Let xi

j be the jth

coordinates of the ith sampled skeleton location (among N)
between two fixed points. Before smoothing, all xi

j are lo-
cated on the edges of G and we can define their smoothed
counterparts as yi

j , computed as:

yi
k = Aijxj

k, (9)

with

Aij =

8

>

>

<

>

>

:

3/4 if i = j = 0 or i = j = N,
1/2 if i = j,
1/4 if i = j + 1 or i = j − 1,
0 elsewhere,

(10)

where Equation (9) is applied s times in order to smooth
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12 T. Sousbie, C. Pichon & S. Colombi

Figure 8. A failure of the skeleton sub-pixel algorithm due to the

lack of sampling resolution. The dotted grid represents the recip-

rocal sampling grid, Ḡ, while the pixels colour represents their

dominating patches and the initial raw skeleton is represented in

red. The green skeleton is the result of applying the sub-pixel res-

olution algorithm while the blue one was obtained from the green

one, after removing one pixel sized loops and smoothing.

over s segments. Basically, Equation (9) is used to compute
smoothed coordinates yi

j as a weighted average of the orig-
inal coordinates xi

j together with the coordinates of its 2
direct neighbours, xi−1

j and xi+1

j . Applying this scheme s

times thus produces the final smoothed coordinates yi
j to be

a weighted average of xi
j and its s closest neighbours along

the skeleton.

This smoothing technique introduces two parameters
of importance: the skeleton smoothing length s, and the
type of fixed points. In order to determine the optimal
value of s, it is possible to minimize the reduced χ2 cor-
responding to the discrepancy between yi

j and xi
j supple-

mented by a penalty corresponding to the total length of
the skeleton (over-smoothing will increases the discrepancy,
under-smoothing will increase the total length). In practice,
though, as a post treatment to an already smooth skeleton
(using the sub pixel probabilities), this choice is not critical.

The choice of the skeleton points that should be fixed
before smoothing depends of the planned application; in
practice, we implemented two possibilities: (i) fixing the field
extrema, or (ii) the bifurcation points of the skeleton (i.e the
points of the skeleton where two filaments merge into one).
Figure 9 illustrates the influence of this choice on the shape
of the smoothed skeleton. By fixing the extrema of the field,
one ensures that the skeleton subsets that link these ex-
trema are treated independently: this is the solution used
to study the properties of individual filaments in the dark
matter distribution on cosmological scales. One should note
that, in this case, the parts of the skeleton that belong to
several individual filaments are duplicated (see the red skele-
ton on Figure 9), affecting global properties of the skeleton
such as its total skeleton length. In contrast, fixing bifurca-
tion points enforces the differentiability of the skeleton while
conserving its global properties.

Figure 9. Influence of the choice of fixed points on the shape

of the smoothed skeleton. The original skeleton is represented

in green, while the red and blue skeletons are smoothed s = 6

times, while fixing the field maxima and the bifurcation (i.e mul-

tiply connected) points respectively. In both cases, the smoothed

versions always stay within half the size of a pixel distance

from the original non-smoothed skeleton. On this illustration, the

smoothed skeleton was computed directly from its raw jagged ver-

sion to emphasize the effect of the choice of different fixed points.

This discrepancy between the two options is considerably weak-

ened if the skeleton is previously post-treated. The background

colour corresponds to the weighted probability each pixel has to

belong to a definite patch.

2.4 Summary

Let us finally recap the main steps involved in the extraction
of the fully connected skeleton in a d-dimensional space.

(i) The density field is sampled and smoothed in order
to ensure sufficient differentiability. A smoothing scale of at
least 5 pixels is recommended when using a Cartesian grid.

(ii) All pixels are considered in the order of their ascend-
ing (or descending) density. Depending on their neighbours,
they are labelled as minima (or maxima), or assigned a list
of probability to belong to a given VP (or PP) following the
algorithm of section 2.1.

(iii) Considering only the patch index with highest prob-
ability for each pixel, skeleton segments are created on pixel
edges when at least d surrounding pixels among 2d have a
different most probable patch index.

(iv) Calling a vertex connected to more than two seg-
ments a node of the skeleton and considering each node, the
sets of connected segments that link them to other nodes
are recorded in order to later recover the information on the
skeleton connectivity (and allow a continuous wander along
the fully connected skeleton).

(v) The sub-pixel smoothing procedure of Sec. 2.3.3 is
implemented. All the vertices of the skeleton segments are
considered one by one together with the value of the prob-
ability distribution in the center of the surrounding pixels.
According to the sub-pixel algorithm, the extremities are
moved in order to obtain a differentiable skeleton.

(vi) Configurations that are identified as problematic are
corrected for following the method described in section 2.3.4,
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The fully connected N-D Skeleton & its peakpatches 13

Figure 10. the 3D peakpatch colour coded probability function: warm colours correspond to equiprobability regions, dark colours to

regions where one probability dominates (see also Figure 3(b)). This supplementary map complements the peakpatch map in the present

algorithm and allow for a precise sub pixel segmentation and skeleton extraction. Note the extended equiprobability sheets corresponding

to places where the exact position of the filament will be more uncertain.

and the resulting skeleton is smoothed over a few pixels (usu-
ally d of them) while fixing either bifurcation points or max-
ima/minima.

(vii) Eventually, individual filaments can be extracted
(and tagged) following the method of section 2.2.3.

Figures 11 and 12 show a 3D skeleton computed from a
simulated density field at z = 0, sampled over only 1283

pixels.

Note that in this paper, we did not address the issue
of shot noise that has for long been known to be a problem
for most segmentation algorithms, and in particular for
Watershed techniques (see e.g. Roerdink (1995) for a
review on the subject). In fact, shot noise often leads to
over segmentation, and numerous complex techniques have
been developed to try and compensate for it. Instead, we
chose here to follow the approach used in Novikov et al.
(2006), Sousbie et al. (2008) and Sousbie et al. (2008),
that involve simply filtering the sampled fields using a
Gaussian kernel on large enough scales (in terms of number
of sampled pixels) so that it is possible to consider that
the sampled field is a smooth enough representation of the
underlying field. A clear disadvantage of this method is
that it introduces a particular smoothing scale and thus
adds one parameter (the smoothing scale) to take into
account when considering sets of critical lines an surfaces

computed on a field. Improvements over this shortcoming
are postponed to further investigations.

Regarding performance, the computing time and mem-
ory consumption for the extraction of the skeleton mainly
depends on three parameters: the number of pixels Np, the
smoothing length L in units of pixel size and the number of
dimensions Nd. Most of the computational power is spent
during the first step of the process: the propagation of the
probabilities to compute the patches. For a constant value
of L and Nd, the algorithm speed is linear in Np, and so
is the memory consumption. A smaller value of L implies
more smaller patches, which therefore have proportionally
more borders with each other thus increasing the number of
different probabilities to propagate. Indeed, for very small
values of L, memory consumption is largely increased as
well as the computational time; it seems reasonable to keep
L above a minimal threshold of L > 5 pixels (which in any
case is also necessary to ensure sufficient differentiability of
the sampled field). Finally, the value of Nd is most critical
to memory consumption and speed, not only because Np

should increase with Nd to keep a constant sampling reso-
lution, but also because the number of neighbours for each
pixels scales as 3Nd for a Cartesian grid. The computational
time and the memory consumption follows, as the number
of different probabilities to keep track of is also much in-
creased (each pixels having many more neighbours, the ra-
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14 T. Sousbie, C. Pichon & S. Colombi

Figure 12. The 3D skeleton of the simulation of the cosmological density density field in a 50h

−1
Mpc box with gadget-2 (see also

Figure 11). This skeleton was computed from a 128
3

pixels sampling grid smoothed over 5 pixels (≈ 2h

−1
Mpc). The skeleton colour

represents the index of the peak patch. which provide by construction the natural segmentation of filaments attached to the different

clusters.

tio of patches interface surface to their volume increases and
so does the number of different probabilities to propagate,
on larger distances). For the different skeletons presented
in this paper, to give and order of magnitude, for a single
modern CPU, 2D skeletons of 10242 pixels smoothed over
l ≈ 10 pixels are computed in a matter of few seconds and
the memory needed is of order ≈ 10 MBytes. Computing a
3D skeleton on a 1283 pixels grid with L ≈ 6 takes approx-
imately 1 minute and a hundred of MegaBytes of memory,
while for a 5123 grid, it takes about an hour and around
14 GBytes of memory are used. While 4D skeletons are still
tractable at a descent resolution (see for instance Figure C2),
higher dimensionality seems difficult to reach with present
facilities without implementing a fully parallel version of the
code.

3 AN APPLICATION: VALIDATING THE

ZEL’DOVICH MAPPING

The scope of application of the algorithm presented in Sec. 2
is vast (see Sec. 4 for a discussion). Here we shall focus on a
simple example which makes use of one of the clear virtues of
the above implementation: it allows us to identify as physical
objects the filaments present in the matter distribution on

cosmological scales, and see how these objects evolve with
time.

Specifically, we intend to show, using the skeleton as a
diagnostic tool, that a relatively simple but powerful model,
namely the truncated Zel’dovich approximation mapping
(Zel’Dovich 1970), can capture the main features of the cos-

mic evolution of the web. Indeed predicting the evolution of
matter distribution from the point of view of the topology
and the geometry of the cosmic web has been a recurrent
issue in cosmology (e.g. Bond & Myers (1996)) and is be-
coming critical as the geometry of the cosmic environment
is now believed to play a key role in shaping galaxies (see,
e.g. Ocvirk et al. (2008)).

Being able to carry such an extrapolation from the ini-
tial condition to the present day distribution of filaments
should lead to a simplified and broader understanding of
large scale structures in the Universe, in the same way the
concept of clusters as important physical objects gave birth
to the hierarchical model of structure formation. The fully
connected skeleton encompasses both the geometry and the
topology of the cosmic web: it is therefore the ideal tool
to validate this mapping between the initial condition and
the present day distribution of filaments. Understanding and
partially correcting for the distorsion induced by the proper
motions of the structures is also of prime importance when
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The fully connected N-D Skeleton & its peakpatches 15

Figure 11. The 2D projection of a 3D skeleton computed on a

simulation of the cosmological density density field in a 50h

−1

Mpc box with gadget-2. This 20h

−1
Mpc thick section of skele-

ton was computed from a 128
3

pixels sampling grid smoothed

over 5 pixels (≈ 2h

−1
Mpc). The skeleton colour represents the

index of the peak patch. Note that the 2D projection of a 3D

skeleton differs from the skeleton of the 2D projection, hence the

discrepancy between the skeleton and apparent filaments.

dealing with observationnal data sets (see e.g. Pichon et al.
(2001)).

The principle of the Zel’dovich approximation (ZA here-
after) is to make a first order approximation, in Lagrangian
coordinates, of the motion of the collisionless dark matter
(DM) particles. The motion of these particles from the ini-
tial mass distribution in Lagrangian coordinates q to their
Eulerian coordinates x can therefore be described as:

x (z, t) = q + D (z) /D (zi)Ψi (q) , (11)

where z is the redshift, D (z) the growth factor, and Ψi (q)
the displacement field, computed in the initial matter dis-
tribution as:

Ψi (q) = ∇∆−1δ (zi) , (12)

where δ (zi) = (ρ − ρ̄)/ρ̄ is the density contrast in the
initial conditions. The truncated Zel’dovich approximation
simply consists in filtering short scale modes of the initial
power spectrum before computing the displacement field in
order to prevent shell crossing effects. It has been shown
to improve the precision of the approximation (Coles
et al. 1993). As we are mainly interested in the large
scale behavior of the cosmic web, the smoothing scale,
L = LNL ≈ 3.94 Mpc, that we use hereafter to compute
Ψi roughly corresponds to the scale of non linearity at
z = 0, as the truncated Zel’dovich approximation has
been shown to work best above this scale (Kofman et
al. 1992). It was computed as the scale at which, in the
simulation, the smoothed density field, ρ(L), is such that
σ2(LNL) =

˙

(ρ(LNL) − ρ̄(LNL))2
¸

= 1 at z = 0.

3.1 Simulation and skeletons

The numerical simulation that we use in this section was
computed with the publicly available N-body code GAD-
GET2 (Springel 2005). It corresponds to a dark mat-
ter only cosmological simulation of 5123 particles within
a 250h−1 Mpc cubic box, considering a ΛCDM concor-
dant model (H0 = 70, Ωb = 0.05, σ8 = 0.92, ΩΛ =
0.7 & Ω0 = 0.3). In order to study the evolution of
the cosmic web, a set of reference skeletons, Ssimu(z, L),
were computed from different snapshots, at redshift z =
{0, 0.15, 0.3, 0.5, 0.66, 1.15, 3, 5, 10}, where z = zi = 10 cor-
responds to the redshift of the initial conditions of the sim-
ulation. These skeletons were computed on density fields
generated by sampling the particle distribution of the re-
spective snapshots on a 5123 grid and after smoothing with
a Gaussian kernel of size L = LNL ≈ 3.94. In order to under-
stand if the truncated Zel’dovich approximation is able to
capture the essential features of cosmic web, these skeleton
are compared to different sets of skeletons, generated using
the truncated Zel’dovich approximation in different ways:

• SZA(z,LNL): This set of skeletons is generated by
applying the Zel’dovich approximation to the DM particles
of the simulation in the initial conditions. The displacement
field is computed after smoothing over the scale LNL and
the resulting distribution is sampled and smoothed over the
same scale to generate the skeletons.

• SSZA(z, LNL): these skeletons are generated by apply-
ing the Zel’dovich approximation directly to the skeleton
of the initial conditions. The initial condition simulation
(zi = 10) is sampled and smoothed over the scale LNL to
compute its skeleton. The displacement field is computed
on the same field, but smoothed over a scale Ll ≈ 8.81
Mpc (such that σ2(Ll) = 0.5 at z = 0) and the Zel’dovich
approximation is applied to each segment of the initial
condition skeleton. We use a larger truncation scale
for the Zel’dovich approximation here in order to pre-
vent shell crossing, which can be tolerated when applied to
particles but would result in a very fuzzy displaced skeleton.

• SZAL(z, LNL): same as SZA(z, LNL), but with a dis-
placement field smoothed over the scale Ll, in order to
check the influence of this choice on SSZA(z, LNL).

• SZA(z,Lcor): same as SZA(z, LNL), but the sampled
field is smoothed on a scale Lcor instead of LNL to take
into account that the Zel’dovich approximation introduces
an artificial additional smoothing scale (see below).

3.2 Skeleton length

There exist many different ways to compare one dimensional
sets of lines within a 3D space, but one of the simplest cer-
tainly involves comparing their lengths. Figure 13 presents
the measured length per unit volume of the different sets of
skeletons (described above) as a function of redshift. Let us
first consider the length of Ssimu(z, LNL) (purple curve with

discs symbols). It was shown in Sousbie et al. (2008) and
Sousbie et al. (2008) that, whereas for scale invariant fields
such as the initial conditions of the simulation, the length of
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Figure 13. Measured length of the skeleton per unit volume as

a function of redshift z. The length density was measured on the

simulation (purple discs), its truncated Zel’dovich approximation

whose displacement field was computed using a smoothing length

L ≈ 3.94 such that σ(L, z = 0) = 1 (red squares), or Ll ≈ 8.81

such that σ(L, z = 0) = 0.5 (green crosses), and finally using the

displacement field of the Zel’dovich approximation at scale Ll,

applied directly to the skeleton of the initial condition, at z = 10

(blue triangles). The black dashed line stands for the length of the

skeleton in the initial conditions (at z = 10), while the dotted line

represents the length measured using the Zel’dovich approxima-

tion on the initial condition while taking into account the effec-

tive smoothing introduced by using the Zel’dovich approximation.

This recipe yields the best match with the simulation. Except for

this last case, the skeletons where computed after smoothing the

density field with a Gaussian kernel of width L.

the skeleton is expected to grow as L2 (L being the smooth-
ing length), it grows in fact as ≈ L−1.75 around z = 0 for
ΛCDM simulation. This implies that the proportion of large
scale filaments increases with time. The fact that the length
of Ssimu(z, LNL) decreases with time is consistent with this
observation: while the long filaments detected on large scales
grow (especially for z < 1 when the cosmological constant ef-
fect starts to dominate and expansion accelerates), the more
numerous small filaments on smaller scales shrink and melt
into each other as dark matter halos merge: the net result
is a total length decrease.

This process seems to be well captured by the
Zel’dovich approximation as the length of SZA(z, LNL) (red
curve, square markers) exhibits the same time evolution
as the length of Ssimu(z, L). The discrepancy between the
measured length in the simulation and with Zel’dovich’s
approximation is nonetheless of the order of ≈ 10% at z = 0.
This disagreement should be explained in part by the fact
that the Zel’dovich approximation uses a displacement field
computed from a smoothed version of the initial condition
density field, thus introducing an additional smoothing that
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Figure 14. Ratio of the length of the skeleton measured in the

simulation to the length of the skeleton of the Zel’dovich approx-

imation as a function of time, a. The dashed line represents the

best fit of the data (red squares).

one should take into account when computing SZA.

The measure of the ratio, r, of the length of
Ssimu(z, LNL) to the length of SZA(z, LNL) as a function of
time, a, is displayed on Figure 14. It appears that r is a
linear function of time, a, and can thus be fitted as

r = 1.00 + 0.14 (a − ai) , (13)

where ai = 1/ (1 + zi) ≈ 0.09 is the time of the initial con-
ditions from which the Zel’dovich approximation was com-
puted. Moreover, the fact that the value of r is relatively
close to unity confirms that the artificial smoothing intro-
duced by the Zel’dovich approximation is small; we chose
to model it as a convolution with a Gaussian kernel of size
LZA. The effective Gaussian smoothing used on Zel’dovich’s
approximation has scale Leff and is thus the result of the
composition of two Gaussian smoothing of scale LZA and
LNL:

Leff =
p

LZA
2 + LNL

2. (14)

Using equations (13) and (14), and the fact that the skeleton
length grows with smoothing scale as ≈ L1.75 (Sousbie et al.
2008), the value of LZA one should chose to get the best
match with ΛCDM simulations is thus

LZA ≈ LNL

„

2 · 0.14

1.75
(a − ai)

«1/2

= 0.4LNL

√
a − ai. (15)

In order to compute a skeleton that is comparable to
Ssimu(z, LNL), one should therefore smooth the distribution
obtained using the Zel’dovich approximation on a scale Lcor

such that

Lcor =
p

LNL
2 − LZA

2 = LNL

p

1.00 − 0.16 (a − ai). (16)

On Figure 13, the dotted black curve represents the measure
of the length of SZA(z, Lcor), when the effective smoothing
introduced by the Zel’dovich approximation is taken into
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The fully connected N-D Skeleton & its peakpatches 17

account. The agreement with the measurements in the sim-
ulation is significantly improved compared to the naive ap-
proach; this suggest that the Zel’dovich approximation can
be used to predict the shape of the evolved cosmic web from
the initial conditions distribution only.

Of course, the length is only a global characteristic
of the skeleton and it certainly does not fully constraint
its shape. Higher order estimators that can compare the
relative position and shapes of skeletons are needed to
quantify how good an approximation the skeleton obtained
by Zel’dovich’s approximation is.

Before doing so, let us consider an alternative form of
the Zel’dovich approximation, where, instead of displacing
the particles from the initial conditions of the simulation
to derive the evolved density field, we directly use the dis-
placement field to evolve the skeleton of the initial condi-
tions. This method will be called here the skeleton Zel’dovich
approximation (SZA hereafter), and the resulting skeleton
SSZA. Studying the properties of SSZA is interesting as it
should make it possible to distinguish between two differ-
ent processes that affect the properties of the cosmic web:
the simple deformation of the initial cosmic web on the
one hand and the creation or annihilation of filaments on
the other hand. Indeed, SSZA reflects only the modifica-
tion of the skeleton due to its deformation while SZA also
takes into account the merging and annihilation of filaments.
Note nonetheless that by definition, the locus of the skele-
ton for the SZA is biased toward higher density regions; in
these regions, non-linear effects inducing shell-crossings in
the Zel’dovich approximation are more likely. To be con-
servative, we thus use a larger smoothing length than LNL

to compute the displacement field. This smoothing length,
Ll ≈ 8.81h−1 Mpc, was chosen such that σ(Ll, z = 0) = 0.5;
the green curve (cross markers) of Figure 13 shows that us-
ing Ll or LNL does not make any difference regarding the
length of the skeleton. On this figure, the blue curve (triangle

markers) depicts the evolution of the length of SSZA(z, LNL):
its behavior is clearly opposite to the SZA case, as the length
rises with time. Although surprising at first sight, this result
only confirms our previous interpretation of the evolution of
the cosmic web. In fact, if the SZA can nicely capture the
large scale evolution of long filaments, the smaller ones can-
not melt into each other, which induces several small scale
filaments to be located at the same loci, where only one piece
of filaments should have been measured. The disappearance
of the smaller scale filaments does not compensate anymore
for the expansion of large scale filament: the net result is
thus an increase of the total measured length of SSZA with
time.

3.3 Inter-skeleton pseudo-distance

Let us now define a way to compute a pseudo-distance be-
tween two different skeletons (see also Caucci et al. (2008)).
In practice, a skeleton S is always computed from a sampled
density and thus has a maximal resolution Rs. It can there-
fore be described, without loss of information, as the union
of a set of N straight segments Si of size Rs. We define a
pseudo-distance from a skeleton Sa to a skeleton Sb, D(a, b),
as the probability distribution function (PDF) of the min-
imal distance from the Na segments Si

a to any of the Nb

segments Sj
b . In practice, our algorithm applied to a density

field sampled on a Cartesian grid naturally leads to a skele-
ton described as a set of segments of size the order of the
sampling resolution. Hence we directly use these segments
to compute inter-skeleton distances.

Note that there is no reason, in general, for D(a, b)
to be identical to D(b, a); this discrepancy, together with
the value of the different modes of the PDFs, do in fact
quantify the differences between Sa and Sb (see appendix
B for details on how to interpret pseudo-distances PDFs).
The upper and lower panels of Figure 15 present the
pseudo distance measurements obtained by comparing
Ssimu to SZA and SSZA respectively. A close examination of
Figure 15(a) confirms the hypothesis we made in previous
subsection. First, the high correlation of SZA and Ssimu

(bold curves) for any redshift, is demonstrated by the
localization of the mode around d ≈ 600h−1 kpc, well
below the smoothing length LNL = 3.94 Mpc. Second,
the asymmetry between the PDFs of D(ZA, simu) and
D(simu, ZA) follows from the fact that Ssimu has smaller
scale filaments that have no counterpart in SZA (the mode
intensity is higher for D(ZA, simu) than D(simu, ZA)).
This is exactly what should happen if SZA was effectively
smoothed on a scale larger than Ssimu. The thin curves,
for which the effective Zel’dovich approximation smoothing
was taken into account, confirms this, as the asymmetry is
completely removed in that case.

It is also interesting to look at the distance PDFs be-
tween SSZA and Ssimu (see Figure 15(b)). Except for high
redshifts (z = 5), the general intensity of the modes are lower
for D(SZA, simu) than for D(ZA, simu), suggesting that the
Zel’dovich approximation is a better description of the evo-
lution of the filaments on large scales, and that filaments
mergers and creation are important processes. The general
position of the modes is still comparable, which means that
SZA is nonetheless successful in describing the evolution of
the general shape of the cosmic web. Also, the asymme-
try between D(SZA, simu) and D(simu, SZA) suggests that
SSZA has more small scale filaments than Ssimu. These obser-
vations confirm our previous assumption that although the
cosmic web evolves in a simple inertial way on larger scales
(a process captured by SZA), the shrinking and fusion of
the more numerous smaller scale filaments is the cause of
the general length decrease of the cosmic web (as suggested
by a simple visual examination of a (50h−1)3 Mpc3 subre-
gion of Ssimu, SSZA and SZA on Figure 16).

The above investigation opens the prospect of correct-
ing for the peculiar velocities of galaxies induced by gravita-
tional clustering, and carry an Alcock-Paczynski (AP) test
(Alcock & Paczynski 1979) on the skeleton of the large scale
structures of the universe. In short, the AP test compares
observed transverse and longitudinal distances to constrain
the global geometry of the universe. Galaxy positions are
usually observed in redshift space which induces an impor-
tant distortion between the distances measured along and
orthogonally to the line of sight, which plagues the regular
AP-test. Our analysis suggests that it is in fact possible to
correct through the Zel’dovich approximation for the dis-
tortions induced on the cosmic web. Having carried such a
correction, we expect that the measure of the anisotropy of
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(b) ZA applied to the skeleton (SZA) and simulation

Figure 15. The inter-skeleton distance as defined in the main text and appendix B, applied to the skeletons of the simulation and the

Zel’dovich approximation (Figure 15(a)) and the skeletons of the simulation and displaced initial conditions skeleton, SZA (Figure 15(b)).

The displacement fields and skeletons are computed after smoothing the field on a scale L ≈ 3.94 such that σ(L, z = 0) = 1, except

for SZA, where the displacement field was obtained after smoothing over Ll ≈ 8.81 Mpc, such that σ(L, z = 0) = 0.5. The full lines

represent the distance from the simulation’s skeleton to the other, while the dotted lines represent the reciprocal distance. The thin lines

on Figure 15(a) stand for the case where the effective smoothing introduced by the Zel’dovich approximation is taken into account. Note

that SZA PDF is more skewed as the merging/annihilation of filaments is then not taken into account.

the observed skeleton length ratio could yield a good con-
straint on the value of the cosmological parameters.

The Zel’dovich mapping smoothed with Lcor (see Equa-
tion (16)) can be used to generate synthetically sets of ex-
tremely large cosmic skeletons probing exotic cosmologies
using codes such as mpgrafic (Prunet et al. 2008) to gener-
ate the initial conditions and their Zel’dovich displacement.
This construction could then be populated with halos and
substructure using semi analytical models. Note finally that
the total length and the skeleton’s distance are two probes
amongst many on how to characterize the difference between
two skeleton. Moreover, there are other means to quantify
the evolution of the cosmic web. For instance, an interesting
statistics would be to find out how often does the reconnec-
tion of the skeleton occur as a function of redshift ?

4 DISCUSSION AND PROSPECTS

We have presented a method, based on an improved
watershed technique, to efficicently compute the full
hierarchy of critical subsets from a density field within
spaces of arbitrary dimensions. Our algorithm uses a fast
one pass probability propagation scheme that is able to
improve significantly the quality of the segmentation by
circumventing the discreteness of the sampling. We showed
that, following Morse theory, a recursive segmentation of
space yields, for a d-dimensional space, a succession of d− 1
n-dimensional subspaces that characterize the topology of
the density field. In 3D for cosmological matter density
distribution, we particularly focused on the 3D subspaces
which are the peak and void patches of the field (i.e. the
attraction/repulsion pools) and the 1D critical lines which

trace the filaments as well as the whole primary cosmic
web structure (i.e. a fully-connected, non-local skeleton as
defined in Novikov et al. (2006)). For the primary critical
lines, we also demonstrated that it is possible to use the
probabilities distribution from our algorithm to derive a
smooth and differentiable skeleton with a sub-pixel level
resolution. Thus this method allows us to consider the
cosmic web as a precise physical object and makes it
possible to compute any of its properties such as length,
curvature, halos connectivity etc...

As an application, we used our algorithm to study
the evolution of the cosmic web, while comparing the time
evolution of the skeleton (a proxy to the cosmic web) of a
simulation, to those corresponding to different versions of its
Zel’dovich approximation. We first compared the evolution
of the respective lengths of the different skeletons and then
introduced a method to compute pseudo-distances between
different skeletons. This pseudo distance makes it possible
to compare different features of the skeleton such as the size
of their filaments and the similarity of their locations. Using
these measurements, we showed that two effects where
competing, with net result a decrease of the cosmic length
with time: a general dilation of the larger scales filaments
that could be captured by a simple deformation of the
skeleton of the initial conditions on the one hand, and the
shrinking, fusion and disappearance of the more numerous
smaller scales filaments on the other hand. We also showed
that a simple Zel’dovich approximation could accurately
capture most features of the evolution of the cosmic web
for all scales larger than a few megaparsecs (provided an
effective smoothing introduced by the approximation is
taken into account). Hence in this context, the skeleton
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Figure 16. A (50h

−1
)
3

Mpc
3

section of the 512
3

particles simulation of a 250h

−1
Mpc large box (only 1 particle every 8 is displayed). The

purple skeleton is Ssimu(z, L) (computed from the simulation), the green one SZA(z, Lcor) (computed on the Zel’dovich approximation

using an effective smoothing length) and the blue one SSZA(z, LNL) (computed by displacing the skeleton of the initial conditions). The

simulation and corrected Zel’dovich approximation skeletons appear to be relatively close to each other and every individual filament has a

counterpart in the other skeleton. The blue skeleton, computed from the skeleton Zel’dovich approximation, is more wiggly which reflects

the small scale perturbation of the displacement field. Moreover, while many of its filaments have counterpart in the two other skeletons,

others do not, as displacing the initial skeleton prevents the merging or disappearance of filaments. This results can be quantitatively

measured, as shown on Figure 15 and explained in appendix B.

has proven to be a useful tool both for insight and as a
quantitative probe and diagnostic. Conversely, the match
between the simulated and the mapped skeleton confirms
and extends geometrically the (point process elliptical)
peak patch theory (Bond & Myers 1996) since both the
peaks and their frontiers (the skeleton in 2D and the peak
patch volumes in 3D) are well mapped by the Zel’dovich
approximation.

The domain of interest of the skeleton is quite vast and
offer the prospect of a number of applications.

From a theoretical point of view, using the points de-

veloped in this paper and in Sousbie et al. (2008), we are
presently developing a general theory of the skeleton and its
statistical properties (Pogosyan et al. in prep.) that aims to
understand the properties of the critical lines of scale invari-
ant Gaussian random fields as mathematical objects. In par-
ticular, this companion paper provides quantitative analytic
predictions for the length per unit volume (resp. curvature)
of the critical lines and its scaling with the shape parameter
of the field, and checks successfully the current algorithm
against these. In this paper we focussed on the skeleton.
One could clearly investigate on the rest of the peak patch
hierarchy and measure, say, the surface or volume of the
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(hyper)-surfaces of the recursion (whose last intersection is
given by the primary critical lines). Another interesting is-
sue would be to estimate the fraction of special (degenerate)
points which do not satisfy the Morse condition, where the
fields behaves pathologically (Pogosyan et al. in prep.). For
instance, one of the shortcoming of the present algorithm
concerns special fields where critical lines disappear, a situ-
ation which occurs, say, in the context of tracing dendrites
in a neural network, or blood vessels within a liver. Note
also that the present network does not recover secondary
critical lines, corresponding to say, lines of steepest ascent
connecting directly minima to maxima. Indeed, neither set
of lines are generically at the intersection of peak patches
In contrast, the algorithm is well suited to identify bifur-
cation points, and the connectivity of the network. In par-
ticular, in an astrophysical context, it would be worthwhile
to make use of this feature and study statistically how the
skeleton connects onto dark matter halos as a function of,
say, they mass or spin, and investigate the details of local
spin accretion in the context of the cosmic web superhigh-
ways, hence completing the spin alignment measurements of
Sousbie et al. (2008) on smaller scales. More generally, the
algorithm provides a neat bridge, via the provided connec-
tivity, between the theory of continuous fields on the one
hand, and graph theory for discrete networks on the other.
This could prove to be of importance in the context of per-
colation theory. For instance, the percolation threshold can
be explained in terms of the properties of the connectivity
of the relevant nodes.
Here, as argued in section 2.4 we deliberately chose not to
consider the issue of shot noise and its consequences on
segmentation, for which no definitive solution yet exists,
though many improvements have been proposed in the lit-
erature (see e.g. Roerdink (1995)). Instead, we followed the
approach of Sousbie et al. (2008), that simply involves con-
volving the sampled density field with a large enough (in
terms of sampling scale) Gaussian kernel so that the field
can be considered smooth and differentiable; the probabilis-
tic algorithm allows for the removal of sampling effects and
small intensity residual shot noise. In appendix C we show
that the corresponding fully connected skeleton is nonethe-
less quite robust (the core of the network remains quasi
unchanged), so long as the SNR is above one. A possible
drawback of this method is that it introduces a smooth-
ing scale attached to the skeleton. This is not necessarily a
problem in cosmology as the scaling of the skeleton prop-
erties with scale yields information on the distribution over
these scales. Moreover, one is usually interested by the prop-
erties of the skeleton on a given scale (typically larger than
the halo scale, a few megaparsecs). Nonetheless, there ex-
ist more complex multi-scale sampling and smoothing tech-
niques such as the one presented in Platen et al. (2007) or
Colberg (2007) that could straightforwardly be adapted to
our implementation. All the algorithm requires is a struc-
tured sampling grid where one can recover a one to one pixel
neighbourhood (i.e. one needs to be able to find the neigh-
bouring pixels of any pixel and these pixels must have the
former as neighbour as well). For instance, we already im-
plemented the algorithm for an Healpix (Górski et al. 2005)
pixelisation of the sphere (see Figure 17), while a direct im-
plementation on a delaunay tesselation network is clearly an

option3.
A natural extension of the theoretical component of this
work would be to investigate numerically the properties of
the bifurcation points in abstract space or anisotropic set-
tings (see Pogosyan et al. (in prep.) for a theoretical discus-
sion for isotropic Gaussian random fields). For instance, in
the context of cosmic structure formation, Hanami (2001),
relied on the parallel between the skeleton of the density field
in position-time 4D space and in position-scale 4D space to
relate the two. In the former, the skeleton is a natural way of
computing what is known as a halos merger tree, commonly
used in semi-analytical galaxy formation models (see Hat-
ton et al. (2003) for instance): the skeleton traces the evo-
lution of the critical points of the density field in time. The
peak theory (Bond & Myers 1996) tells us that the smooth-
ing scale can be linked to time evolution on scales where
gravitational effects remain weakly non-linear. A worthwhile
goal is to establish the parallel between the properties of 4D
skeleton in this position-smoothing scale space (which can
be computed from the Gaussian initial conditions only) and
the halo merger tree (see also Figure C2). Finally, note that
classical bifurcation theory is concerned with the evolution
of a critical point as a function of a control parameter. In
the language of the skeleton, this evolution may correspond
to the skeleton in the extended “phase space”.

From the physical and observational point of view,
beyond the above mentioned AP-test, an interesting venue
would be to apply the skeleton to actual galaxy catalogs
such as the SDSS (Adelman-McCarthy et al. 2008) to char-
acterize the (universal) statistics of filaments as physical
objects, like halos or voids, and describe them in terms of
their thickness, length, curvature and environmental prop-
erties (galaxies types, halo proximity, color and morphology
gradient...), both in virtual and observed catalogs. It could
also be used as a diagnosis tool for inverse methods which
aim at reconstructing the three dimensional distribution
of the IGM from say QSO bundles (Caucci et al. 2008) or
upcoming radio surveys (LOFAR, SKA etc...) Clearly the
peak patch segmentation developed in this paper will also
be useful in the context of the upcoming surveys such as
the LSST, or the the SDSS-3 BAO surveys, for instance
to identify rare events such as large walls or voids and
study their shape. Its application to CMB related full sky
data, such as WMAP or Planck should provide insight into,
e.g. the level of non Gaussianity in these maps. Similarly,
upcoming large scale weak lensing surveys (Dune, SNAP...)
could be analysed in terms of these tools (see Pichon et al.
(in prep.) for the validation of a reconstruction method in
this context). Using the skeleton, the geometry of cold gas
accretion that fuel stellar formation in the core of galaxies
could be probed. The properties of the distribution of
metals on smaller scales could be also investigated using
peak patches, to see how they influence galactic proper-
ties; one could compare these statistical results to those
obtained through WHIM detection by Oxygen emission
lines (Aracil et al. (2004) Caucci et al. (2008)). Indeed
it has been claimed (see e.g. Ocvirk et al. (2008) Dekel
et al. (2008)) that the geometry of the cosmic inflow on a
galaxy (its mass, temperature and entropy distribution, the

3
for instance to segment regions on the surface of skull
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The fully connected N-D Skeleton & its peakpatches 21

connectivity of the local filaments network etc. ) is strongly
correlated to its history and nature.

In closing, let us emphasize again that the scope of ap-
plication of the algorithm presented in this paper extends
well beyond the context of the large scale structure of the
universe: it could be used in any scientific of engineering
context (medical tomography, geophysics, drilling ...) where
the geometrical structure of a given field needs to be char-
acterized.
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Figure 17. from left to right: the 5 year WMAP release of the CMB temperature map, the corresponding peak patches and the peak

patches of the same field smoothed over a FHWM of 420 arcmin. Different colours represent different patches. The algorithm described

in section 2 is implemented here on the healpix pixelisation.
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APPENDIX A: A GENERIC MINIMIZATION

ALGORITHM

In this appendix, we present a generic algorithm that aims
at minimizing a multi-linear scalar function f(x1, .., xd) of
d variables within a polygonal volume, in a d-dimensional
space, by reducing the problem to finding the respective
minima of a set of polynomials of order d. It takes as input
the location of the minima, M0

i , of f(x1, .., xd) on the edges
of the square and simply consists in recursively minimizing
the value of f(x1, .., xd) along the lines joining them.

Let us first consider the 2D case illustrated by Fig-
ure A1, where the cell is a square. In this case, three minima,
M0

1 , M0
2 and M0

3 (represented by red crosses) can be easily
found on the edges of the square from the linearly inter-
polated value of f along them. One can then compute the
location of the minima along the three lines linking them
(the red triangle), noting that because of the multi-linearity
of f , its value along a line can be expressed as a second
order polynomial. One thus obtains 3 new points, M1

1 , M1
2

and M1
3 , and the process can be repeated, as represented

by the blue and black sets of lines, until convergence to the
solution, represented by the blue cross (i.e. when the three
points are close enough to each other).

This algorithm can be generalized to the case of the p-
face of an n-cubic cell, p 6 n, thus providing the solution
over the p-face from the k solutions, M0

i i ∈ {1, .., k} , over
the sets of (p − 1)-faces that are its edges. As explained
in section 2.3.3, this algorithm is thus recursively applied
to the edges of the cell, starting from the 1-faces, in the

Figure A1. Illustration in the 2D case of the recursive minimiza-

tion algorithm, applied to the case of Figure 5(b). The reader can

refer to the legend of Figure 5 for more details. The scalar field

to minimize is represented by the blue shading in the background

while its minimum is located at the intersection of the 3 quadrics.

The red crosses locate the field minima along the edges while the

red, blue and black sets of lines result from the first three recur-

sion steps.

order of their increasing dimensionality. The jth step of the
algorithm thus goes as follows:

(i) Compute the equations of the (k)(k−1)/2 lines joining
pairs of M j−1

i .
(ii) Evaluate the value of f(x1, .., xd) at p+1 points along

these lines using multi-linear interpolation, and fit a poly-
nomial of order p.

(iii) Find the minima of these polynomials that belong to
the cell and keep the k lowest among them, with coordinates
M j

i .
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(iv) If these points are all contained in a sphere of radius
a given fraction of the cell, stop, else start over.

Note that although only the case of a Cartesian sam-
pling grid was presented here, the algorithm is easily trans-
posable to any type of grid, such as the one produced by
Voronoi tessellation on a manifold, which is composed of
simplex shape cells.

APPENDIX B: INTER-SKELETON

PSEUDO-DISTANCE

The inter-skeleton pseudo-distance from one skeleton Sa to
another skeleton Sb was defined in the main text by the
probability distribution function (PDF) of the minimum of
the distance from each segment of Sa to any segments of Sb.
In this appendix, we show how this measure can be inter-
preted using realizations of scale invariant Gaussian random
fields (GRFs) with different power spectrum index n (such
that P (k) ∝ k−n) and different smoothing lengths L. All
the skeletons that we use were computed from 5123 pixels
realizations of GRFs, smoothed over a scale L = 8 pixels or
LL = 16 pixels. These scales are defined as the width of the
Gaussian kernel that we used to smooth the fields and the
value of L roughly corresponds, in number of pixels, to the
smoothing scale we used in the main text, LNL. A total of
six different skeletons were computed:

• SGRF0 and SGRF0′ : skeletons computed from two
realizations (GRF0 and GRF0′) of GRFs with spectral
index n = 0, smoothed over a scale L = 8 pixels.

• SGRF3 and SGRF3′ : skeletons computed from two
realizations (GRF3 and GRF3′) of GRFs with spectral
index n = 3, smoothed over a scale L = 8 pixels.

• SGRF0T
: this skeleton was computed from the field

GRF0, smoothed on scale L. The resulting skeleton was
then translated by v = (L/2, 0, 0).

• SGRF0L
: this skeleton was computed from the field

GRF0, smoothed on scale LL = 2L = 16 pixels.

Figure B1 presents the different pseudo-distances
between these skeletons, D(a, b). Figures 1(a) and 1(b)
present the results obtained when comparing uncorrelated
fields (i.e. different realizations of GRFs). As expected
in that case, D(GRF0, GRF0′) = D(GRF0′, GRF0) and
D(GRF3, GRF3′) = D(GRF3′, GRF3) and the position
of the mode is about the smoothing length. One should
also note that the mode intensity differs between n = 0
and n = 3, which can be explained by the fact that in the
latter case, small scale fluctuations are suppressed together
with smaller scale filaments, thus making it less probable
for a segment of one realization to be very close to one of
the other realization. Figure 1(c) shows that these pseudo
distance measurements make it possible to distinguish the
different nature of two skeletons. In fact, whereas SGRF0 has
filaments on any scales, only the larger scales are present
in SGRF3, which translates into an asymmetry between
D(GRF0, GRF3) and D(GRF3, GRF0). Whereas in the
first case, there is no reason why every segment of SGRF0

Figure C1. The evolution of the PDF of distances at the mode

as a function of the SNR of a noisy field. Here the distance is

computed between the reference skeleton and its noisy counter

part. For SNR above one, only small differences between weak

filaments account for the difference between the two distances.

Conversely, for more noisy fields, the fraction of match between

the two skeleton drops.

should be close to a segment of SGRF3, the reciprocal is
not true : SGRF0 spreads on all scales and every segment
of SGRF3 should be as close as any other from a segment
of SGRF0 (hence the higher intensity of the mode for
D(GRF3, GRF0)). When comparing a skeleton Sa with less
filaments to a skeleton Sb with more filaments, the intensity
of the mode is thus expected to be higher for D(a, b) than
for D(b, a).

This observation is confirmed by Figure 1(e) where
SGRF0L

is compared to SGRF0, which has small scale fila-
ments that SGRF0L

does not have. But in that case, the
two skeletons are correlated as only the smoothing length
changes. This results in a higher intensity of the mode of
D(GRF0L, GRF0): the larger scale filaments are present in
both skeletons. It also results in a shift in the position of
the mode, located at a distance smaller than the smoothing
length. Figure 1(d) illustrates the case of a simple trans-
lation of length half the smoothing length L: in that case,
both PDFs are identical and a very asymmetric and high
intensity mode is present at distance L/2. Finally, it is also
interesting to note that the comparison of SGRF0L

to SGRF0T

almost gives the exact same result as the one for SGRF0L
to

SGRF0 and it is difficult to distinguish one from the other.

APPENDIX C: ROBUSTNESS OF FULLY

CONNECTED SKELETON

In order to investigate the robustness of the fully connected
skeleton with respect to small change in the underlying field,
the following experiment is carried. A given 2D white ran-
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Figure B1. Measures of the inter-skeleton pseudo distances for Gaussian random fields with different power spectrum index n and

smoothing length L. These plots show how the pseudo-distances measurements can be used to assess the discrepancies between two

skeletons.

dom field of size 40962 is generated. It is then smoothed
over 10 pixels, and its reference skeleton, Sref is computed.
A white random field of amplitude SNR is added to the ref-
erence field, and the corresponding skeleton, SSNR, is com-
puted after smoothing over 10 pixels. The PDF of the dis-
tances D(Sref ,SSNR) and D(SSNR,Sref) is then calculated
(see Appendix B). The distance at the maximum (its mode)
of both PDF remains unchanged for all the SNR considered
(1/8, 1/4, 1/2, 1, 2, 4), which demonstrates that the core of
the skeleton is quite robust: the reference skeleton is always
shadowed by its noisy counter part. The amplitude of the
PDF at its maximum is plotted in Figure C1. This amplitude
is sensitive to the high distance tail of mismatch between the
two skeleton since the PDF is normalized. In short, within
the network there is a small subset of filaments which are
sensitive to any small variation of the field. For the vast ma-
jority of the network, the skeleton is globally only weakly
affected by changes of the underlying field so long as the
amplitude of the change has a SNR above one. When the
SNR drops bellow one, spurious filaments occur more and
more. The discrepancy between the two plateaux at larger
SNR reflects the fact that weaker filaments will occur some-
what randomly from one realisation to another, depending
on very small details in the field.
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Figure C2. four consecutive thin slices of a 4D gaussian random field skeleton of width 1/8
th

of the box size, colour coded according to

the fourth dimension. The underlying field has 32
4

pixels. Note that for these sections, the skeleton is spitted into unconnected filaments.

One could think of these short filaments as the traces of quantum particles corresponding to the maxima of their probability amplitude

(which could randomly move forward and backwards in time, the fourth dimension).
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Abstract. A fundamental hypothesis for the interpretation of
the measured large-scale line-of-sight peculiar velocities of
galaxies is that the large-scale cosmic flows are irrotational.
In order to assess the validity of this assumption, we estimate,
within the frame of the gravitational instability scenario, the
amount of vorticity generated after the first shell crossings in
large-scale caustics. In the Zel’dovich approximation the first
emerging singularities form sheet like structures. Here we com-
pute the expectation profile of an initial overdensity under the
constraint that it goes through its first shell crossing at the present
time. We find that this profile corresponds to rather oblate struc-
tures in Lagrangian space. Assuming the Zel’dovich approxima-
tion is still adequate not only at the first stages of the evolution
but also slightly after the first shell crossing, we calculate the
size and shape of those caustics and their vorticity content as a
function of time and for different cosmologies.

The average vorticity created in these caustics is small: of
the order of one (in units of the Hubble constant). To illustrate
this point we compute the contribution of such caustics to the
probability distribution function of the filtered vorticity at large
scales. We find that this contribution that this yields a negligible
contribution at the 10 to 15h−1Mpc scales. It becomes signifi-
cant only at the scales of 3 to 4h−1Mpc, that is, slightly above
the galaxy cluster scales.

Key words: galaxies: formation – cosmology: theory – cosmol-
ogy: dark matter – cosmology: large-scale structure of Universe

1. Introduction

The analysis of large-scale cosmic flows has become a very
active field in cosmology (see Dekel 1994 for a recent review
on the subject). The main reason is that it can in principle give
access to direct dynamical measurements of various quantities
of cosmological interest. There are now a very large number of
methods and results for the comparison of the measured large–
scale flows with the measured density fluctuations as observed
in the galaxy catalogues. Most of these methods are sensitive
to a combination of the density of the universe in units of the

Send offprint requests to: C. Pichon (pichon@astro.unibas.ch)

critical density,Ω, and the linear bias,b, associated to the mass
tracers adopted to estimate the density fluctuations. The esti-
mated values ofβ = Ω0.6/b are about0.3 to 1 depending on
the method or on the tracers that are used. There are other lines
of activities that aim to estimateΩ from only theintrinsic prop-
erties of the velocity field, (i.e., without comparison with the
observed galaxy density fluctuations). All these methods ex-
ploit non-Gaussian features expected to appear in the velocity
field, either the maximum expansion rate of the voids (Dekel
& Rees 1994), non-Gaussian general features as expected from
the Zel’dovich approximation (Nusser & Dekel 1993), or the
skewness of the velocity divergence distribution (Bernardeau
et al. 1995). Yet they all also assume that the velocity field is
potential. This is indeed a necessary requirement for building
the whole 3D velocity out of the line-of-sight informations in
reconstruction schemes such as Potent (Bertschinger et al. 1990,
Dekel et al. 1994). This is also a required assumption for car-
rying calculations in the framework of perturbation theory. It
is therefore interesting to check the rotational content of the
cosmic flows at scales at which they are considered in galaxy
catalogues, that is at about 10 to 15h−1Mpc. This investigation
ought to be carried in the frame of the gravitational instabil-
ity scenario with Gaussian initial conditions. It is known that
in the single stream régime, primordial vorticity is diluted by
the expansion and that the higher order terms in a perturba-
tion expansion cannot create “new” vorticity. Hence it is natural
to assume that the vorticity on larger scales originate from the
(rare) regions where multi-streaming occurs. During the forma-
tion of large scale structures this happens first when the largest
caustics cross the first singularity, creating a three-flow region
where vorticity can be generated. As we argue in Sect. 2, analyt-
ical calculations of constrained random Gaussian fields suggest
that the largest caustics that are created are sheet-like structures,
in rough agreement with what is found in numerical simula-
tions or in galaxy catalogues. It is therefore reasonable to use
Zel’dovich’s approximation to describe the subsequent evolu-
tion of those objects.

In order to estimate the large scales vorticity distribution
we therefore proceed in five steps: first we evaluate the mean
constrained random field corresponding to a local asymmetry
of the deformation tensor on a given scale,RL; secondly we

273



664 C. Pichon & F. Bernardeau: Vorticity generation in large-scale structure caustics

solve for the multi-flow ŕegime within the generated caustic,
using Zel’dovich’s approximation throughout, even slightly be-
yond this first singularity. We then evaluate the vorticity field
in that caustic. The next step involves modelling the variation
of the characteristics of typical caustics as a function of time
for different power spectra. Finally, we estimate the amount of
vorticity expected at large scales arising from large scale flow
caustics.

For the sake of simplicity and because is pedagologically
more appealing, we present calculations carried out in two di-
mensions as well as in three dimensions. The former case is in
particular easier to handle numerically.

The second section of this paper evaluates the characteris-
tics of the typical caustics expected at large–scale in a 2D or 3D
density field. The third section is devoted to the explicit calcu-
lation of the vorticity for the most typical caustics. The fourth
section provides an estimate for the shape of the tail of the prob-
ability distribution function of the modulus of the vorticity in a
sphere of a given radius. It is followed by a discussion on the
validity and implications of these results.

2. Asymmetric constrained random fields

Since it is not our ambition to solve the problem of deriving the
vorticity statistics in its whole generality the vorticity will be
estimated only within specific but typical caustics in the frame-
work of the Zel’dovich approximation.

The first step involves building an initial density field in
which a caustic will eventually appear. The initial fluctuations
are assumed to be Gaussian with a given power spectrumP (k),
characterizing the amplitude and shape of the initial fluctuations.
No a priori assumptions about the values ofΩ andΛ are made.
It will be shown that the statistics has very straightforward de-
pendences upon these parameters. The expectation values of the
random variables,δ(k), corresponding to the Fourier transforms
of the local density field,

δ(x) =
∫

d3k δ(k) exp[ik · x], (1)

are calculated once a local constraint has been imposed. This
constraint will be chosen so that the caustic-to-be will have
just gone through first shell crossing at the present time. It is ex-
pressed in terms of thelocaldeformation matrix of thesmoothed
density field. The components of the local deformation tensor
at the positionx0 are given by

Φi,j(x0) =
∫

d3k δ(k) WD(k RL) exp[ik · x0]
kikj

k2 , (2)

whereWD is the adopted window function. In what follows, we
will use the top-hat window function for which

W2(k) = 2
J1(k)
k1/2 in 2D,

W3(k) = 3
√

π/2
J3/2(k)

k3/2 in 3D, (3)

whereJν is the Bessel function of indexν. The scaleRL is the
scale of the caustic in Lagrangian space. Hereσ0 stands for the
rmsdensity fluctuation at this scale:

σ2
0 =

∫
d3k P (k) W 2

2 (k RL). (4)

For the sake of simplicity a typical caustic is chosen to be char-
acterized by the average local perturbation over a sphere of
radiusRL for which the deformation tensor at its centre given
point is fixed. We are aware that this is a somewhat drastic ap-
proximation but consider that, at large scales, the behaviour of
caustics having the mean initial profile will be representative of
the average behaviour. This is certainly not true at small scales
where the complex interactions of structures at different scales
and positions are expected to affect the global behaviour of any
given caustic. For some rare enough objects however we expect
the fluctuations around the mean profile to be small enough to
affect only weakly the global properties of the caustics. This has
been shown to be true in the early stages of the dynamics for
spherically symmetric perturbations (Bernardeau 1994a). In the
following we will, however, encounter properties (see Sect. 3.3)
that we think are not robust against small scale fluctuations. Such
properties will be ignored in the subsequent applications of our
results.

Within the frame of this calculation, the values ofδ(k) hence
correspond to the expectation values ofδ(k) for the power spec-
trum P (k) when the constraints on the deformation tensor are
satisfied. These solutions can be written as a linear combination
of the values of the deformation tensor:

δ(k) =
D∑

i=1

−
(
C−1

)
0,i

(C−1)0,0
λi ≡

D∑
i=1

αi λi , (5)

where the coefficientsC is the matrix of the cross-correlations
between the random Gaussian variablesΦij andδ(k) as shown
in Appendix A. In Eq. (5) the summation is made only on the
diagonal elements of the deformation tensor since it is always
possible to choose the axis in such a way that the other elements
are zero. In this instance, the diagonal elements are identified
with the eigenvaluesλi, of the matrix.

2.1. The 2D field

In 2D geometry, the two coefficientsα1 and α2 defined by
Eq. (5) are given by

α1 = (3I1 − I2)/σ2
0 , α2 = (3I2 − I1)/σ2

0 , where

Ii =
〈
δk Φii

〉
= P (k) W2(kRL)

k2
i

k2 . (6)

The brackets,
〈
.
〉
, denote ensemble averages over the initial

(unconstrained) random density field. As a result, Eq. (5) reads

δ(k) =
P (k) W2(kRL)

σ2
0

× [2 (λ1 + λ2) + 4 (λ1 − λ2) cos(2θ)] ; (7)

λ1 andλ2 are the eigenvalues of the deformation tensor and
whereθ is the angle betweenk and the eigenvector associated
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with the first eigenvalue (see Appendix A for details). Consider
the parametera defined by

a =
2(λ1 − λ2)
λ1 + λ2

. (8)

The coefficienta represents the amount of asymmetry in the
fluctuation (thusa = 0 corresponds to a spherically symmetric
perturbation). This parameter is similar to the eccentricity,e,
that was used by Bardeen et al. (1986) and more specifically by
Bond & Efstathiou (1987) for 2D fields. In these studies however
investigations were made for the shape of the peaks around the
maximum (i.e. eigenvalues of the second order derivatives of the
local density), soa ande cannot be straightforwardly identified.

The formation time of the first singularity is determined by
the maximum value of the eigenvalues,λmax. It is therefore rel-
evant to calculate the distribution function ofλmax, and the dis-
tribution function ofa onceλmax is known. From the statistical
properties of the matrix elementsΦij we derive the distribution
function of the eigenvaluesλmin andλmax (see Appendix B),
which reads

P (λmin, λmax) =
23/2

π1/2 σ3
0

(λmax − λmin)

× exp
[
− 1

σ2
0

(
3
2
J2

1 − 4 J2

)]
, (9)

with

J1 = λmin + λmax , J2 = λmin λmax. (10)

The distribution function ofλmax follows by numerical inte-
gration overλmin. Fig. (1) shows the distribution function of
λmax in units of the variance. The dashed line corresponds to
the approximation, valid atλmax/σ0 � 1:

pmax(λmax) dλmax

≈ 1.5
λmax

σ0
exp

[
−4

3

(
λmax

σ0

)2
]

dλmax

σ0
. (11)

The distribution function ofa for different values ofλmax/σ0 is
presented in Fig. (2). It turns out that the most significant value
corresponds toa ≈ 1. In the following this value is chosen as
the typical value for the asymmetry in two dimensions.

2.2. The 3D field

In three dimensions the geometry is slightly more complicated
and yields for the constrained density field (see Appendix B for
details)

δ(k) =
3 P (k) W3(k RL)

8σ2
0

(
λ1
[
1 + 5 cos(2φk)

−5 cos(2θk) − 5 cos(2φk) cos(2θk)
]

+λ2
[
1 + 5 cos(2φk) − 5 cos(2θk) − 5 cos(2φk)

× cos(2θk)
]
+ 2λ3

[
3 + 5 cos(2 θk)

])
, (12)

Fig. 1.The distribution function ofλmax/σ0 (solid line) in 2D dynam-
ics. The dashed line is given by (Eq. (11)):

Fig. 2. The distribution functions ofa for fixed values ofλmax/σ0 =
1, 2, 3, 4 (respectively the solid, long dashed, short dashed and long
dotted dashed lines).

whereθk andφk are polar angles of the vectork with respect
to the basis of the eigenvectors associated to the three eigen-
values,λ1, λ2, λ3. The asymmetry of the distribution is again
characterized by the values of

a = 5
2λ3 − λ1 − λ2

λ1 + λ2 + 6λ3
, and b = 5

λ1 − λ2

λ1 + λ2 + 6λ3
. (13)

Whenb only is zero Eq. (13) corresponds to a perturbation with
axial symmetry, and when botha andb are zero it is a spheri-
cally symmetric perturbation. In terms ofa andb Eq. (12) then
becomes

δ(k) =
3 P (k) W3(k RL)

8 σ2
0

(λ1 + λ2 + 6λ3) (14)

× (1 + a cos(2θk) + b cos(2φk)
[
1 + cos(2θk)

])
.

Let us now evaluate the distribution ofa andb from the distri-
bution function of the eigenvalues(λ1, λ2, λ3) in 3D (assuming
λ1 > λ2 > λ3) in order to identify the shape of the most sig-
nificant caustics. This distribution is given by (Doroshkevich
1970)

P (λ1, λ2, λ3) =
55/2 27
8 π σ6

0
(λ1 − λ2) (λ1 − λ3) (λ2 − λ3)

× exp
[
− 1

σ2
0

(
3J2

1 − 15
2

J2

)]
, (15)
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Fig. 3.The distribution function ofλmax/σ0 (solid line) in 3D dynam-
ics. The dashed line is the analytical fit (17).

Fig. 4.The contour plot for the distribution ofa andb for a fixed value
of λmax/σ0 = 2 (dashed lines) andλmax/σ0 = 3 (solid lines). The
lines are evenly distributed in a logarithmic scale.

with

J1 = λ1 + λ2 + λ3 , and J2 = λ1λ2 + λ2λ3 + λ3λ1. (16)

From this expression we compute numerically the distribu-
tion function of the maximum eigenvalue (Fig. (3)). An analyt-
ical fit of this distribution function is provided by its behaviour
at largeλmax

pmax(λmax) dλmax ≈ 6
(

λmax

σ0

)2

× exp

[
−5

2

(
λmax

σ0

)2
]

dλmax

σ0
. (17)

This fit is accurate for the rare event tail (as shown in Fig. (3)),
which will be relevant for the derivation of Sect. 4.4. For a given
value ofλmax we compute the distribution of the other eigen-
values, and thus the join distribution function ofa andb.

The resulting contour plot corresponding toλmax/σ0 = 2
andλmax/σ0 = 3 is illustrated on Fig. (4). As for the distri-
bution of a in the previous subsection in 2D it depends only
weakly upon the adopted value ofλmax (although the position
of the maximum varies a little), and it tends to be all the more
peaked on its maximum asλmax is large. This implies that a

typical caustic will be given bya ≈ 1 with a smallb. For further
simplifications we will assume thatb = 0. Such a caustic then
corresponds to a pancake-like structure with axial symmetry.
Note that this result seems to differ from the results of Bardeen
et al. (1986) who found that the shape of the rare peaks should
be somewhat spherically symmetric or filamentary (this picture
was recently sustained by Pogosyan et al. 1996, from the result
of N -body simulations). This apparent discrepancy is due to
the constraint under which the expectation values ofa andb are
calculated. In Bardeen et al.’s work the constraint is given by
the value of the local density, i.e. the sum of the three eigen-
values, whereas in this paper we put a constraint on the largest
eigenvalue. This is a natural assumption for this investigation
since the multi-streaming occurs as soon as a singularity has
been reached in one direction. Of course, this analysis assumes
that the Zel’dovich approximation holds in order to predict the
time at which this first singularity is reached. For oblate initial
structures such as the ones obtained for the most likely values
of a (see Figs. 5 and 6), we expect that this approximation is
sufficiently accurate.

3. The geometry and vorticity of large-scale caustics

In this section we investigate the properties of the caustics that
are induced by the initial density fluctuation profiles we found in
the previous section. All the calculations are performed within
the framework of the Zel’dovich approximation, even sightly
after the first shell crossing.

3.1. The linear displacement field

In the framework of the Zel’dovich approximation the displace-
ment field can be written

x = q + D(t)/D(t0) Ψ(q) ; (18)

whereD(t) accounts for the time dependency of the linear grow-
ing mode (it is proportional to the expansion factor in case of
an Einstein-de Sitter geometry only). An important simplifica-
tion is that, at the order of the Zel’dovich approximation, this
displacement field is separable in time and space, and its space
dependence,Ψ(q), is potential, i.e., there is a velocity potential
U(q) so that

Ψ(q) = ∇q · U(q) . (19)

This velocity potential is given by

U(q) =
∫

d3q δ(k)
1
k2 exp[ik · (q − q0)] . (20)

By construction the pointq0 in Lagrangian space corresponds
to the pointx0 in real space (central position of the caustic).
Both of them will be taken to be zero. For the calculation of the
explicit expressions ofδ(k) andU(q) we will assume that the
power spectrum follows a power law behaviour,

P (k) ∝ kn, (21)
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characterized by the power indexn. From Eq. (21) the expres-
sion of the linear variance as a function of scale follows

σ(RL) ∝ R
−(n+D)/2
L . (22)

This approximation is valid within a limited scale range as will
be discussed in Sect. 5. At the scales of interest the indexn is
expected to be the range ofn ≈ −1, −2 from the constraints
obtained with the large-scale galaxy catalogues, like the APM
survey (Peacock 1991) the IRAS galaxy survey (Fisher et al.
1993) or from X-ray cluster number counts (Henry & Arnaud
1991, Eke et al. 1996, Oukbir & Blanchard 1997). In two di-
mensions there are of course no such observationally motivated
values, but we will considern of the order of−1 as an illustrative
case.

3.1.1. The 2D potential

From the Eqs. (7),(20) it is possible to calculate the expression
of the potential

U(q) = G(0, n − 2, q) + a cos(2θq)
× [G(0, n − 2, q) − 2 G(1, n − 2, q)] , with

G(ν, n, q) =
∫

d2k kn Jν(k q)
(k q)ν

W2D(k). (23)

The latter expression is given by

G(ν, n, q) = 2F1(1 + n/2, n/2, 1 + ν, q2) ,

for q < 1 , and (24)

G(ν, n, q) =
Γ(1 + ν) Γ(1 − n/2)

qn+2 Γ(ν − n/2) 2F1(1 + n/2, 1

−ν + n/2, 2, q−2) , for q > 1. (25)

The expressions for the gradients of the potential involve similar
hyper-geometric functions.

3.1.2. The 3D potential

The expression of the potential following from Eqs. (12),(20)
becomes quite complicated, but involves here only “simple”
functions. It reads

U(q) = [V (q) − V (−q)]/q3, (26)

with

V (q) = |1 + q|2−n sign(1 + q)
(
A(q) − B(q)

[
b cos(2 φ)

× [1 − cos(2 θ)] + a cos(2 θ)
])

, (27)

A(q) = −10 q2 + 7 n q2 − n2 q2 + 5 q3 − n q3

+a
(−1 + 2 q − n q + 2 q2 − n q2 − q3) , (28)

B(q) = 3 − 6 q + 3 n q + 4 q2 − 4 n q2

+n2 q2 − 2 q3 + n q3 (29)

Note that the potentials in Eqs. (23) and (26) have discontinu-
ous derivative atq = 1, which is an artifact of using a top-hat
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Fig. 5. The shape of the caustic for the 2D dynamics,n = −1, and
λmax ≈ 1.3. The dashed line is the shape in Lagrangian space and the
solid line the shape in real space.
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Fig. 6. The shape of the caustic for the 3D dynamics,n = −1.5 and
λmax ≈ 1.5. The external shell is the Lagrangian position of the caus-
tic, the internal one its position in real space.

window function. Note also that the potentials given here have
arbitrary normalizations. This is of no consequence for the de-
rived results since the global normalization of the initial den-
sity profile is absorbed in the discussion for the value ofλmax
(Sect. 4.4).

3.2. The shape of the caustics

A multi-flow region forms as soon as Eq. (18) has more than one
solution. The corresponding region forms the so-called caustic.
These regions are illustrated in Figs. (5) and (6) in respectively
2 and 3 dimensions for typical values of the parameters. The
solid lines show in 2D the shape of the caustic in real space, and
the dashed lines their shape in the original Lagrangian space.

For the chosen values ofa andb and for the relevantλmax
the caustics form elongated structures. These figures are plotted
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668 C. Pichon & F. Bernardeau: Vorticity generation in large-scale structure caustics

in units of the smoothing scaleRL. They suggest that the largest
dimension of the caustics are roughly of the order of magnitude
of the initial Lagrangian scale. Note that the boundaries of the
caustics correspond to surfaces (or lines in 2D) where the Jaco-
bian of the transformation between Lagrangian space and real
space vanishes, i.e.

J(q) =
∣∣∂x
∂q

∣∣ = 0. (30)

The size and shape of these caustics are characterized, in 2D
and 3D (although only approximately), by two lengths, the half-
depth of the caustic,d, (that is the distance that has been cov-
ered by the shock front after the first singularity) and its half-
extensione. For instance in Fig. (5) the value ofd is about0.1
and the value ofe is about0.9 in units of the Lagrangian size
of the fluctuationRL. In the case of the 3D dynamicse corre-
sponds to the radius of the caustic since we restrict ourselves to
cylindrical symmetry.

The density in each flow “s” is given by the inverse of the
Jacobian of the transformation so that

ρ(qs) = 1/J(qs) . (31)

The total density within the caustic is then given by the summa-
tion over each flow of each of their densities,

ρ(x) =
∑

flow s

ρ(qs). (32)

3.3. The velocity field, and the generated vorticity

The velocity in each flow is given by

u(q) = Ḋ(t)/D(t0) Ψ(q). (33)

For a given Robertson Walker cosmology,Ḋ(t) obeys

Ḋ(t) = f(Ω) H0 D(t) ≈ Ω0.6 H0 D(t) . (34)

whereH0 is the Hubble constant at the present time andf(Ω)
is the logarithmic derivative of the growing factor with respect
to the expansion factor. Eq. (34) is the only place where the
Ω dependence (andΛ dependence though it is negligible) will
come into play.

In general the velocity field,u(x), is defined as the density
averaged velocities of each flow. Thus we have

u(x) =
∑

flow s ρ(qs)u(qs)∑
flow s ρ(qs)

, (35)

where the summation is carried on all the flows that have entered
the neighborhood ofx. The vorticity is then given by the anti-
symmetric derivatives of the total velocity with respect tox:

ωk(x) =
∑
i,j

εk,j,i ∂ui(x)
∂xj

=
∑
i,j

εk,j,i

([∑
flow s

∂ρ(qs)
∂qsl

(D−1)j,l ui(qs)

]

×
[∑

flow s

ρ(qs)

]
−
[∑

flow s

ρ(qs)ui(qs)

]

×
[∑

flow s

∂ρ(qs)
∂qsl

(D−1)j,l

])
/[∑

flow s

ρ(qs)ui(qs)

]2

, (36)

whereDi,j is the matrix of the transformation between the La-
grangian space and the Eulerian space,

Di,j =
∂xi

∂qj
, (37)

andεk,j,i the totally antisymmetric tensor. The numerical ex-
pression of the local vorticity follows from the roots of Eq. (18)
and the potentials Eqs. (23),(26).

3.3.1. The local vorticity

As illustrated in Fig. (7) (the 2D case) and (8) (the 3D case), the
vorticity is null outside the caustic. First note that the vorticity
sign changes from one quadrant to another, so that the global
vorticity is zero (as it should be), and note that within each quad-
rant the vorticity is rather smooth. Note also that the vorticity is
mainly located near the edges of the caustic. In fact the vorticity
at the edge is unbounded and the behaviour of the vorticity close
to the edges is easily estimated. Callingq0 andx0 the position
of a point on the edge in respectively the Lagrangian space and
the Eulerian space, we can expandx andq close tox0 andq0.
Since the linear term in the expansion is singular inq = q0 (by
definition of the caustic), there is one direction, orthogonal to
the edge and typeset with the subscript⊥, for which

(x − x0)⊥ ≈ −η (qi − q0)2⊥ , (38)

whereη is given by the second order expansion of the displace-
ment field along this direction. The minus sign accounts here
for the fact thatx0⊥ has been assumed to be larger thanx⊥.
This equation is valid for two different flows (say 1 and 2) cor-
responding to the two roots ofqi in Eq. (38). The Jacobian for
the first two flows is then

J(x) ≈ −2η (qi − q0)⊥ ≈ 2
√

η (x0 − x)⊥. (39)

Note that on the edge of the caustic,J(x)|∂ J(x)/∂x| has a
finite value,η. There is also a third flow in the vicinity ofx0
which is regular; let us callq3 the Lagrangian position ofx0 in
this flow. The velocity is then given by

u(x) ≈
(
(x0 − x)−1/2

⊥ /
√

η u(q0) + ρ(q3)u(q3)
)

/(
(x0 − x)−1/2

⊥ /
√

η + ρ(q3)
)

. (40)

As a result we have

u(x) ≈ u(q0) + ρ(q3)
√

η (x0 − x)1/2
⊥ (u(q3) − u(q0)), (41)

whenx is within the caustic and

u(x) = u(q3), (42)
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Fig. 7.The map of the vorticity in a typical 2D caus-
tic (n = −1). Left panel:the local vorticity is anti-
symmetric with respect to the centre of the caustic. It
points along the Z-axis, and is positive in the second
and fourth quadrant, and negative in the first and
third. Right panels:behavior of the local vorticity
along two different lines (thick dot-dashed line on
the left panel). The top panel shows that the vorticity
is singular near the edge of the caustic. It behaves as
described by Eq. (43) and there is a non zero lineic
vorticity located on the edges (represented here by
a vertical line) due to the discontinuity of the local
velocity field. The bottom panel shows that the local
vorticity goes continuously to zero towards the axes.

whenx has crossed the caustic boundary. The local velocity
is thus discontinuous at the caustic boundary and the induced
vorticity is consequently singular atx0 with

ω(x) ≈ −ρ(q3)
√

η (x0 − x)−1/2
⊥ (u(q3) − u(q0))‖/2. (43)

The direction‖ is a direction parallel to the caustic. There is
only one such direction in 2D, two in 3D. There is however
not only a surface (or volume) contribution within the caustic.
Because of the discontinuity of the velocity field at the edges
of the caustic, a vorticity field on the boundary of the caustic
is created (see Fig. 7 for the 2D case), whose linear or surface
density for respectively the 2D and 3D cases are given by

ωlin., surf = (u(q3) − u(q0))‖. (44)

It turns out that the two contributions tend to cancel each other.
Indeed, as we have noticed previously, the velocity increases
close to the edge of the caustic, and then has a discontinuity at
the edge. This creates a sharp peak in the vicinity of the edge of
the vorticity. The vorticity, which is obtained by differentiation
of the local velocity is then expected to be opposite on both
side of this peak. Realistically, the small scale perturbations are
going to wash out these features, and to smooth the velocity
peaks. As a result the quantities describing the behaviour of
the vorticity near the edge of the caustic are not robust and
should not be taken at face value. On the other hand, we expect
the integrated vorticity to be a more robust quantity, since it is
roughly independent of small scale fluctuations.

3.3.2. The integrated vorticity

In two dimensions, the integrated vorticity in each quadrant
can be easily obtained numerically by simple one dimensional
integrals which, from Stoke’s theorem, can be expressed as

ωquad. =
∫

quadran
d2xω(x) =

∫
edges

u · dl, (45)

wheredl describes the edge of the quadrant. One should bear
in mind that, in Eq. (45) the velocities on the edge of the caustic
are taken as the velocities of the third flow,u(q3), so that the
singular part of the vorticity is taken into account.

In three dimensions and for (almost) spherically symmetric
caustics the local vorticity is independent of the azimuthal angle,
θ. It is then convenient to calculate the integrated vorticity per
azimuthal angle in each quadrant,

ωquad. dθ =
(∫

quadran
dz r dr ω(x)

)
dθ

=
(∫

edges
r u · dl +

∫
quadran

d2xuz

)
dθ, (46)

wherer is the distance of the running point to the symmetry axis,
anduz is the velocity component along this axis. Compared to
the 2D case there is a further difficulty due to the surface integral
of one component of the velocity. Note nonetheless that this
contribution is not singular at the edge of the caustic as shown
by Eq. (41), and can thus be safely computed numerically. We
found that this second integral contributes typically to about
15% of the total for the relevant caustics.

3.3.3. Scaling laws

We now bring forward fits to describe the dependence of the
integrated vorticity with the spectral indexn andλmax. which
will allow us to characterize the most significant caustics that
contribute to the large–scales vorticity. We make explicit the de-
pendence of those quantities with respect to the size of the per-
turbationRL and the cosmological parameterΩ. Expressed in
units of the expansion factor, the displacement, in the Zel’dovich
approximation, is independent ofΩ. Thereforea andb are in-
dependent ofΩ, and are simply proportional toRL. The total
vorticity in each quadrant is on the other hand proportional to
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Fig. 9.ωquad. for 2D caustics as a function ofλmax and its correspond-
ing fit for an = −1.5 (circles, solid line),n = −1 (squares, long dash
line), andn = −0.5 (triangles, short dashed line) power spectrum.

H0 andf(Ω) (defined in Eq. (34)), given that it is proportional
to the local velocity, and is clearly proportional to the volume
of the perturbation. We thus have the following scalings,

d(RL) = RL d0 (λmax − 1)αd ,

e(RL) = RL e0 (λmax − 1)αe ,

ωquad(RL,Ω) = f(Ω) RD
L ω0 (λmax − 1)α H0, (47)

where the parametersα, αd, αe, ω0, d0 ande0 are given in Ta-
ble (1) and (2) for respectively the 2D and the 3D geometry.
The accuracy of these fits is illustrated on Figs. (9)–(10). These
functions yield estimates of the geometry and vorticity gener-
ated by these large-scale caustics. From these tables one can see
that the average vorticity (in units ofH0) is roughly one within
the caustic. The amount of vorticity which is generated in the
caustics is thus found to be somewhat limited. It is also inter-
esting to note thatωquad. presents no singular behaviour when
the caustic appears atλmax ≈ 1 (i.e.α > 1).

4. The vorticity distribution at large scales

As argued previously, the calculation of the global shape of the
vorticity distribution is beyond the scope of this paper. Indeed
the lowω behaviour of the vorticity distribution is dominated

Fig. 10.ωquad. for 3D caustics as a function ofλmax and its correspond-
ing fit for an = −2 (circles, solid line),n = −1.5 (squares, long dash
line), andn = −1 (triangles, short dashed line) power spectrum.

Table 1.Fitting parameters in Eq. (47) for the 2D caustics. The quality
of those fits forω0 andα are illustrated in Fig. (9).

n ω0 α d0 αd e0 αe

−1.5 3.94 1.95 0.8 1.3 2.7 0.6
−1 1.80 1.59 0.67 1.3 1.6 0.45
−0.5 1.63 1.43 0.75 1.3 1.3 0.32

Table 2.Fitting parameters in Eq. (47) for the 3D caustics. The quality
of those fits are illustrated in Fig. (10).

n ω0 α d0 αd e0 αe

−2 0.67 1.76 0.57 1.31 1.61 0.49
−1.5 0.46 1.55 0.52 1.30 1.25 0.37
−1 0.49 1.37 0.53 1.30 1.13 0.30

by the small caustics that are not rare, and therefore not well
described by the dynamical evolution of an isolated object. The
aim of this section is to estimatethe shape and position of the cut-
off in the probability distribution function of the local smoothed
vorticity. We will therefore estimatePRs

(> ωs), the probability
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that in a circular or spherical cell of radiusRs the mean vorticity
exceedsωs. This estimation requires

(i) identifying the caustics that contribute mostly for each case;
(ii) estimating the contribution of each of those caustics.

In each case various approximations are used. In the main text
we simply spell the major highlights of the derivation. A more
detailed and explicit calculation of the vorticity distribution is
presented in Appendix C.

4.1. Identification of the caustics

We assume in what follows thatωs is large enough for the con-
tribution toPRs(> ωs) to be dominated by large and rare caus-
tics. This assumption is the corner stone of the calculation: only
a small fraction of the caustics with specific characteristics at
some critical time will contribute.

The identification of the caustics contributing most results
of a trade off between the amount of vorticity a given caustic
can generate and its relative rarity: the higherλmax, the greater
the internal vorticity is, according to Eq. (47) and given thatα
is positive, but the rarer those caustics are (Eqs. (11) and (17)).
Obviouslyλmax should be larger than unity for any vorticity at
all to be generated. The calculation is slightly complicated by
the fact that the Eulerian size of the caustics also depends of the
value ofλmax. Let us assume here that the Eulerian size of the
caustics is substantially smaller than the smoothing length, so
that the entire integrated vorticity in a quadrant can contribute
(in Appendix C, this assumption is shown to be self-consistent).
This implies a scaling relation between the smoothing cell,ωs

andλmax,

ωs RD
s ∝ RD

L (λmax − 1)α. (48)

For a given smoothing length and a givenωs, Eq. (48) yields a
relation between the value ofλmax and the size of the caustic.
The caustics which contribute most to the vorticity are then
obtained by minimizing the ratioλ2

max/σ2(RL) which appears
in the exponential cutoff of the distribution function ofλmax

(Eqs. (11) and (17)). Given thatσ2(RL) behaves likeR−(n+D)
L

this minimization yields for the extremum value ofλmax,

λ(0)
max =

2D

2D − α(n + D)
. (49)

Note that for the values ofα we have found,λ(0)
max is always

finite and positive. This means that the filtered vorticity is indeed
expected to be dominated by caustics which have evolved for
a finite time. This provides an a posteriori justification of the
assumptions leading to this calculation.

The value ofλmax found in Eq. (49) is a robust result of
our calculations, although it cannot be excluded that this value
could be affected by the failure of the Zel’dovich approximation
after the first shell crossing.

4.2. Estimation of the caustic contribution to the vorticity PDF

In order to estimate the contribution of those caustics toPRs(>
ωs) two other fundamental quantities have to be estimated:

(i) the number density of caustics;
(ii) the volume for which each of them contributes toPRs(>

ωs).

These quantities have been estimated for the specific caustics
we have previously identified in Sect. 4.1.

4.2.1. The number density of caustics

Estimating the number density of caustics is, in general, a com-
plicated problem. In the case of Gaussian fields the correspond-
ing investigation was carried by Bardeen et al. (1986) for 3D
fields, and by Bond & Efstathiou (1987) for 2D fields. The num-
ber of caustics is simply determined by the number of points at
which the first derivatives of the local density vanishes. This
defines accordingly the extrema of the local density field. The
further requirements we have here on the second order deriva-
tives of the potential ensures that such points are in fact maxima
of density field. We refer here to Bardeen et al. (1986) for more
details on how to carry the investigation. A critical step involves
transforming theδDirac function in the value of the first deriva-
tives into aδDirac function in the position, thus introducing the
Jacobian of the second order derivatives of the density field.
After some algebra we find:

nRL
({λi}) dDλi = p

({
λi

σ(RL)

})

× dDλi

σD(RL)
|Jac2({λi})|
(2πσ2

1)D/2 , (50)

where the probabilityp is given either by Eq. (9) or (15) in re-
spectively 2D and 3D,Jac2({λi}) is the Jacobian of the second
order derivatives of the density field for given eigenvalues of
the deformation matrix andσ1 is the variance of the derivatives
of the local density field,

σ2
1(RL) =

∫
dDk P (k)

k2

2
W 2

D(RL). (51)

For a given geometry (i.e. given values ofa andb) Jac2 is pro-
portional toλ3

max, and it scales asR−2 D
L due to the derivatives

involved in the expression of the matrix elements. It is therefore
appropriate to re-express Eq. (50) as

nRL
({λi}) dDλi = p

({
λi

σ(RL)

})
dDλi

σD(RL)
n0({λi})

RD
L

×
(

λmax

σ(RL)

)D

where

n0({λi}) =
|Jac2({λi})|
λD

max (2π)D/2

[
σ

σ1

]D

RD
L . (52)

Note thatn0, thanks to the prefactorRD
L , is a dimensionless

quantity in Eq. (52). A further simplification is provided by the
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fact that for large enough values ofλmax, the distribution func-
tionp({λi}), at fixed λmax, allows only a small range of possible
values for the smaller eigenvalues. We therefore neglect the vari-
ations ofJac2({λi}) with respect to those variables: it is viewed
here as a function ofλmax only and calculated for fixed values
of the a-symmetry parametersa andb. The ratioσ/σ1 depends
only on the value of the power law index. Recall however (see
Bardeen et al. 1986) that this ratio is not well-defined for top-
hat window functions because of spurious divergences for some
values ofn. To avoid this problem, we used the Gaussian win-
dow function to compute this ratio. As a result, for fixed values
of a andb, n0 is a dimensionless quantity that can be explicitly
calculated in a straightforward manner. Relevant values ofn0
are given in tables in the Appendix C.

4.3. The contributing region

The region over which each caustic contributes is the surface (or
volume in 3D) of space in the vicinity of a given caustic where,
if one centers a cell in that location, the total vorticity induced
by the caustic within the cell is aboveωs.

In general the contributing surface or volume can be written,

Vcaus.(RL, Rs, {λi}, ωs)

=
∫

Θ [ωc (c, RL, Rs, {λi}) − ωs] dDc , (53)

whereΘ is the Heaviside step function,c stands for the vec-
tor pointing to the center of the sampling sphere, whileωC is
the vorticity found in that sphere intersecting the caustic with
characteristicsRs, {λi}. In its full generality,Vcaus. is a rather
complex function of the scalesRL andRs, and the eigenvalues
λi through the shape of the caustics and ofωs. Yet, since the
functional form of the rare event tail in the probability distribu-
tion function is basically fixed by the exponential in Eq. (11),
the only required ingredient for computingPRs(> ωs) is the
scaling behaviour ofVcaus. at its takeoff – when reaching the
critical time,λ(0)

max, at which a given caustic is large enough to
start contributing. The detailed geometry of the caustic and its
vorticity field accounts only for a correction in a multiplicative
factor. Consequently we make approximations describing the
distribution of the vorticity on the caustic in order to estimate
the scaling properties ofVcaus..

4.3.1. The 2D contributing surface

In two dimensions we make the radical assumption that the
vorticity is entirely concentrated on four discrete points, which
– consistently with the hypothesis of Sect. 3.3.2, have been taken
to bear either the vorticity+ωquad. or −ωquad., depending on
which quadrant is being considered. In practice the position of
the points is chosen somewhat arbitrarily at a third of the depth
and extension of the caustic. The corresponding areaVcaus. is
therefore identically null before a critical time corresponding
to the chosenωs andRs and then takes a constant value which
can be deduced geometrically from the area of the loci of the
center of the sampling disks. In Fig. (11) we show the shape of
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quad.−ω +ωquad.

−ωquad.+ωquad.

Fig. 11.Sketch showing the adopted simplification for describing a 2D
caustic. Vorticity is assumed to be localized on the black dots having
either+ωquad. or−ωquad.. The dashed area representsVcaus. for ωs >
|ωquad.|.

Caustic

height

radius

Ring

Fig. 12. Sketch showing the adopted simplification for describing a
3D caustic. Vorticity is assumed to be localized on two rings (that
appear as two horizontal black segments) having a lineic vorticity of
either either+3 ωquad./e or −3 ωquad./e. The shaded area represents
dVcaus./dωs.

this location on a particular example. Under this assumption,
the functionVcaus. takes the form,

Vcaus. = V0(RL/Rs) Θ(λmax − λ(0)
max) RL Rs , (54)

whereV0 can be calculated for the values of interest ofRL and
Rs.

4.3.2. The 3D contributing volume

In three dimensions, the vorticity will be assumed to be dis-
tributed uniformly along tworings which are taken to bear the
linear vorticity3ωquad./e – with respectively prograde and ret-
rograde orientation. In practice these rings are also positioned
at a third of the depth and extension of the caustic. The mean
vorticity to be expected in a sampling sphere of radiusRs is then
given by algebraic summation over the segments corresponding
to the intersection of that sphere with the two rings. Maps of the
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sampled vorticity as a function of the centers of the sphere are
derived to computeVcaus. which according to Eq. (53) corre-
sponds to the volume in space defined by these centers yielding
a vorticity larger thanωs. Fig. (12) gives the shape of this loca-
tion for a given caustic and sampling radius. The functionVcaus.
takes the form,

Vcaus. = V0(RL/Rs)RLR2
s (λmax − λ(0)

max)
γ , (55)

whereV0 andγ can be calculated for the values of interest of
RL andRs at this critical values (see Appendix D, where it is
in particular demonstrated that whenRL � Rs, V0 asymptotes
to a fixed value andγ = 1/2).

4.4. Estimation ofPRs
(> ωs)

The tail of the probability distribution for the vorticity is now
estimated while integrating over all the caustics that might con-
tribute, and assuming that, for a fixed caustic, the probability
distribution is given by the number density of caustics times the
volume associated with each caustic. There is however a further
difficulty. The distribution of causticsnRL

is well defined for
a fixed value ofRL only, but there are actually caustics of all
sizes. To circumvent this difficulty we simply chooseRL so that
the result we obtain is maximal, i.e.,

PRs
(> ωs) ' max

RL

[∫
dDλi nRL

({λi})

× Vcaus.(RL, Rs, {λi}, ωs)
]

. (56)

Furthermore, it is fair to neglect the dependence ofn0(λi) and
Vcaus on the initial asymmetry because the overall factorp(λi)
peaks in a narrow range of relevant values for the smaller eigen-
value(s). It is then possible to integrate over those variables in-
troducing the probability distribution ofλmax in the expression
of PRs

(> ωs),

PRs(> ωs) ' max
RL

[∫
dλmax pmax (λmax)

n0(λmax)
RD

L

×
(

λmax

σ(RL)

)D

Vcaus.(RL, Rs, λmax, ωs)

]
. (57)

We show in Appendix C that the maximum of Eq. (56) is
indeed given by caustics of size of the order ofRs at most. A
detailed account of how to perform the sum in Eq. (56) is also
given there for the two geometries. Repeated use of the rare event
approximation together with the geometrical assumptions on
the vorticity distribution sketched in Sect. 4.3.1 and Sect. 4.3.2
yields eventually an explicit expression for the tail of the prob-
ability distribution for the vorticity as a function ofωs andRs.

4.4.1. The two dimensional vorticity distribution

In two dimensions, the vorticity distribution is shown to obey
(Eq. (C9))

PRs
(> ωs) ' 0.56n0 V0

(
λ

(0)
max

σ(Rs)

)2

fn+1
s ω(n+1)/2

s

Fig. 13.PRs(> ωs) in two dimensions for scales characterized by a
σ(Rs) of 0.5 (thick lines) and1 (thin lines) and for an = −1.5 (solid
line), n = −1 (long dash line), andn = −0.5 (short dashed line)
power spectrum.

×exp


−4

3

(
λ

(0)
max

σ(Rs)

)2

fn+2
s ω(n+2)/2

s


 . (58)

In the rare event régime, the quantity that dominates Eq. (58)
arises from the exponential cutoff. Forn = −1 we find for
instance that

log [PRs
(> ωs)] ' 3.5

ω
1/2
s

σ2(Rs)
. (59)

Ther.h.s.of Eq. (59) is roughly0.5 whenωs ≈ 10−3, σ(Rs) ≈
0.5 or ωs ≈ 0.1, σ(Rs) ≈ 1.5, hence defining a thresh-
old corresponding to a one sigma damping forPRs

(> ωs).
Eq. p2Dfinalmt is illustrated on Fig. (13).

4.4.2. The three dimensional vorticity distribution

Similarly, the probability distribution is shown in the Ap-
pendix C (Eq. (C19)) to obey in 3D:

PRs
(> ωs) = 0.48n0 V0

(
λ

(0)
max

σ(Rs)

)7/2

f
(13+7n)

4
s ω

(13+7n)
12

s

×exp


−5

2

(
λ

(0)
max

σ(Rs)

)2

fn+3
s ω(n+3)/3

s


 , (60)

Forn = −1.5, Eq. (60) gives forlog [PRs
(> ωs)]

log [PRs
(> ωs)] ' 20.

ω
1/3
s

σ2(Rs)
. (61)
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yielding again at a one sigma level the range of relevant val-
ues forωs andσ(Rs): ωs ≈ 5 10−5, σ(Rs) ≈ 0.5 or ωs ≈
0.1, σ(Rs) ≈ 3.5. In both cases the caustics start to generate
significant vorticity only at rather small scales. Equation (60) is
also illustrated on Fig. (14). From this figure it is clear that the
amount of vorticity that we derived is below what has been mea-
sured inN -body simulations (open and filled circles). Numer-
ical measurements of this quantity are sparse, so we compared
our estimations to measurements carried out by Bernardeau &
Van de Weygaert (1996) in an adaptive P3M simulation with
CDM initial conditions (see Couchman 1991 for a description
of these simulations). The typical amount of vorticity at the10
to 15 h−1Mpc scale for which the rms of the density is below
0.5 was found to be about0.2 (in units of H0). This is well
above the values we have estimated in this paper. Though it is
quite possible that these numerical measurements are spoiled
by noise, we do not expect that it could account for all the dis-
crepancy between the measured and the predicted vorticities (as
suggested by the relative the scatter between the two methods
suggested in Bernardeau & Van de Weygaert, 1996).

There are various possible explanations for such discrepan-
cies. It could of course arise from the fact that the vorticity at
large-scales does not spring from the rare and large caustics but
from small scale multi-steaming events that cascade towards the
larger scales. Such a scenario cannot be excluded but is diffi-
cult to investigate by means of analytic calculations. It is also
possible that theN -body simulations do not address properly
the physics of the large scales multi-streaming. In particular
the two-body interactions should in principle be negligible, a
property which seems to be hardly satisfied in currentN -body
simulations. This shortcoming has been raised by Suisalu &
Saar (1995), Steinmetz & White (1997) and more specifically
by Splinter et al. (1998), where they examine the outcome of the
planar singularity in phase space. They have found in particular
that in classical algorithms the particle’s velocity dispersions are
incorrectly large in all directions. These could turn out to be a
major unphysical source of vorticity (since the Lagrangian time
derivative of the vorticity scales like the curl of the divergence
of the velocity anisotropies). Specific numerical experiments,
that follow for instance the initial density profiles given in this
paper, should be carried to address this problem more carefully.

5. Discussion and conclusions

We have estimated, within the framework of the gravitational in-
stability scenario, the amount of vorticity generated after the first
shell crossings in large-scales caustics. The calculations relied
on the Zel’dovich approximation which yields estimates of the
characteristics of the largest caustics and allows explicit calcu-
lation of their vorticity content. This analysis corresponds to one
of the first attempts to investigate the properties of cosmological
density perturbations beyond first shell-crossing. The previous
investigations (Fillmore & Goldreich 1984, Bertschinger 1985)
were carried out for spherically symmetric systems only, and ob-
viously do not address the physics of vorticity generation. The

Fig. 14.PRs(> ωs) in three dimensions for scales characterized by a
σ(Rs) of 0.5 (thick lines) and1 (thin lines) and for an = −2 (solid
line), n = −1.5 (long dash line), andn = −1 (short dashed line)
power spectrum. The filled and open circles correspond respectively
to the measured integrated PDF in a CDM simulation at15h−1Mpc
scale with the “Delaunay” or “Voronoi” methods (see Bernardeau &
Van de Weygaert 1996).

only other means of investigation for this régime is numerical
N -body simulations.

We found that large scales caustics can provide only an
extremely low contribution to the vorticity at scales of10 to
15h−1Mpc. This contribution could be significant only at rela-
tively small scales, when the variance reaches values of a few
units. This effect is even more important in three dimensions, the
difference arising mainly from the coefficient in the exponen-
tial cut-off. It is therefore unlikely that these caustics can have
produced a significant effect on the velocity at large scales. In
view of these results, it is amply justified to assume that the ve-
locity remains potential down to very small scales,i.e. typically
the cluster scale at which it is then more natural to expect the
multi-streaming ŕegime (not only three-flow régime) to play an
important role.

This result provides a complementary view to the picture
developed by Doroshkevich (1970) describing the emergence
of galaxy angular momentum from small-scale torque interac-
tions between protogalaxies (a prediction subsequently checked
by White (1984), and examined in more detail by Catelan & The-
uns, (1996 and 1997)). We rather explore here the large scale
coherence of the vorticity field that may emerge in a hierar-
chical scenario from scale much larger than the galactic size.
The effects we are exploring here does not originate from the
two-body interaction of haloes as in the picture developed by
Doroshkevich, but from the possible existence of large scale
coherent vorticity field. The conclusion of our work is however
that the efficiency with which the large-scale structure caustics
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generate vorticity is rather low. Therefore these results do not
really challenge the fact that the small scales interactions should
indeed be the dominant contribution to the actual galactic an-
gular momenta.

As a consequence, we do not expect either a significant cor-
relation of the angular momenta at large scale. In particular the
vorticity field generated in caustics does not seem to be able
to induce a significant large scale correlation of the galactic
shapes which would have been desastruous for weak lensing
measurements1.

Let us reframe this calculation in the context of perturbation
theory which has triggered some interest in the last few years as
a tool to investigate the quasi-linear growth of structures. One
key assumption in these techniques is that the velocity field is
assumed to form a single potential flow. The detailed descrip-
tion of the properties of the first singularities is by essence not
accessible to this theory: such singularities cannot be “seen”
through Taylor expansions of the initial fields. In this context it
was unclear whether the back reaction of the small scales multi-
streaming ŕegime on the larger scales (which were thought to
be adequately described by perturbation theory) could affect the
results on those scales. Such effects are partially explored here
where we find that the impact of the first multistreaming regions
is rather low on larger scales. Our results therefore support the
idea that the large scales velocity field can be accurately de-
scribed by potential flows and support our views on the validity
domain of perturbation theory calculations.

In the course of this derivation we have made various as-
sumptions. We followed in essence the approach pioneered by
Press & Schechter (1974) for the mass distribution of virialized
objects by trying to identify in the initial density field the density
fluctuations that contribute mostly to the large-scales vorticity.
The calculations have been designed to be as accurate as possi-
ble in the rare event limit, an approximation which turned out
to be crucial at various stages of the argument.

– The above estimation relies heavily on the assumption that
the caustics only contribute to large-scale vorticity indepen-
dently of each other. In other words it is assumed that the
caustics do not overlap. Moreover the dynamical evolution
of one caustic is taken to be well-described by the evolution
of the caustic having the mean profile. This can be approxi-
mately true only in the rare event limit since otherwise it is
likely that the substructures and its environment will change
the dynamical evolution of the caustics. Although it is clear
that, in the ŕegime we investigated, the caustics are rare
enough not to overlap, the effects of substructure are more
difficult to investigate. In particular we have outlined some
local features (3.3.1) of the vorticity maps that we think are
unlikely to survive the existence of substructures.

– The typical caustics are characterized in this rare event limit.
For instance the values ofa andb were found to be all the
more peaked to given values as the corresponding events

1 In these measurements background galaxy shapes are assumed to
be totally uncorrelated in the source plane, the observed correlation
being interpreted as entirely due to gravitational lens effects.

are rare. We have then estimated the vorticity such caustics
generate while assuming that slightly different geometries
are unlikely to produce very different results. This assump-
tion is somewhat suspicious, since it might turn out that
slightly different geometries could produce more vortici-
ties, and thus change the exact position of the cut-off. We
do not expect however that the conclusions we have reached
could be changed drastically in this manner.

– The contributions of each caustics toPRs
(> ωs) have also

been calculated in the rare event limit. This is in practice
a very useful approximation on large scales since it is then
natural to expect the entire distribution to be dominated by
a unique value ofλmax.

– We have finally deliberately simplified the spatial distribu-
tion of the vorticity within the caustics. Since in the rare
event limit it is natural to expect that the Lagrangian scales
of the caustics are much smaller than the smoothing scale
this detailed arrangement should be of little relevance. It cer-
tainly should not affect the scaling laws as only the value of
the overall factorV0 will change, and this has little bearing
on our conclusions.

On top of the rare event limit approximation, we have also
made a dramatic simplification by using the Zel’dovich approxi-
mation throughout. This is certainly a secure assumption before
the first shell-crossing since the geometries that we have in-
vestigated were rather sheet-like structures (and the Zel’dovich
approximation is exact in 1D dynamics). After the first shell-
crossing however, the back reaction of the large over-densities
that are created could possibly affect the velocity field. However
we do not expect that this effect should be very large so long as
λmax is moderately small (up to about 1.5), since before then the
initial inertial movement should dominate. Later on, matter is
expected to bounce back to the center of the caustics. Whether
the vorticity content is then amplified or reduced remains an
open question.

Acknowledgements.CP wishes to thank J.F. Sygnet, D. Pogosyan, S.
Colombi and J.R. Bond for useful conversations. Funding from the
Swiss NF is gratefully acknowledged.

Appendix A: average profile
of an a-spherical constrained random field

A.1. General formula

Let us evaluate here the average profile of an a-spherical con-
strained random field in both 2 and 3D. Similar calculations
as those presented in this Appendix have been investigated by
Bardeen et al. (1986) for the 3D field and by Bond & Efs-
tathiou (1987) for 2D fields. But, here, instead of the second
order derivative of the density field, we consider instead the de-
formation tensor corresponding to second order derivatives of
the potential. We also investigate the global properties that such
constraints induce on the density field.

Consider a random density field, in either 2D or 3D, having
fluctuations following a Gaussian statistics. It is then entirely
determined, in a statistical sense, by the shape of its power
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spectrum,P (k). Recall thatP (k) is defined from the Fourier
transform of the density field,

δ(k) =
∫

d3x exp(ik.x) δ(x) , with〈
δ(k) δ(k′)

〉
= δDirac(k + k′) P (k), (A1)

where the brackets
〈
.
〉

stands for the ensemble average of the
random variables. Let us calculate theexpectationvalue ofδ(k)
when a local constraint has been set in order to create ana-
sphericalperturbation. To set such a constraint, we have chosen
to consider the deformation tensor of the density field smoothed
at a given scaleRL. This tensor reads,

φi,j =
∫

d3k δ(k) WD(k RL)
kikj

k2 . (A2)

Note that the local smoothed density is given by the trace of
this tensor. The chosen window functionWD in Fourier space
corresponds to a top-hat filter in real space and it reads,

W2(k) = 2
J1(k)
k1/2 in 2D,

W3(k) = 3
√

π/2
J3/2(k)

k3/2 in 3D, (A3)

whereJν are the Bessel functions of indexν. The matrixφi,j is
now set to be equal to a given constraint. It is obviously possible
to choose the axis so that this constraint is a diagonal matrix with
eigenvalues(λi), i = 1, D. The elements of the matrixφi,j and
δ(k) form aGaussianrandom vector,

Vc = (δ(k), φ1,1, . . . , φD,D, φ1,2, . . . , φ1,D,

φ2,2, . . . , φD,D−1) , (A4)

and the desired expectation value ofδ(k) is directly related to
the cross-correlation matrix of the components of this vector.
Consider the matrixCa,b with a = 0, · · ·D(D + 1)/2 and
b = 0, · · ·D(D + 1)/2, so that

C0,0 =
〈
δ(k) δ(k)

〉
= P (k) , (A5)

Ca,0 =
〈
δ(k)φi,j

〉
= P (k) WD(k RL)

kikj

k2 , (A6)

Ca,b =
〈
φi,j φi′,j′

〉
=
∫

d3k P (k) W 2
D(k RL)

kikjki′kj′

k4 , (A7)

where the indicesi, j (respectivelyi′, j′) for the matrix elements
φij corresponds to the(a + 1)th (respectively(b + 1)th) com-
ponent ofVc. For a given spectrum these quantities are easily
calculated and are given in the following subsections for power
law spectrum in resp. 2 and 3 dimensions. The distribution func-
tion of the components of the vectorVc then reads in terms of
Eq. (A7),

p(Vc) dVc = exp


−1

2

∑
a,b

(
C−1)

a,b
V ca V cb




× dVc

[2πDet(C)]1/2+D(D+1)/4 . (A8)

The expectation value ofδ(k) is given by the ratio

δexpec.(k) =
∫

dδ(k) δ(k) p(V c)∫
dδ(k) p(V c)

, (A9)

A straightforward calculation shows that this quantity is given
by

δexpec.(k) =
D∑

i=1

−
(
C−1

)
0,i

(C−1)0,0
λi . (A10)

Note that the further constraint that the first derivative of the
density field should be zero (so that the pointx0 is actually
located on a maximum of the density field) would not change
the resulting expression ofδexpec.(k) since the cross correlation
of the first order derivatives with any other involved quantities
identically vanish.

A.2. The 2D profile

In 2 dimensions we have

Ca,b =




C0,0 C0,1 C0,2 C0,3
C0,1 3σ2

0/8 σ2
0/8 0

C0,2 σ2
0/8 3σ2

0/8 0
C0,2 0 0 σ2

0/8


 , (A11)

with the variance of the smoothed density field,σ0, given by

σ2
0 =

∫
d3k P (k) W 2

D(k RL). (A12)

The required elements of the inverse of this matrix are given by

(
C−1)

0,0 =
1
64

σ6
0/Det(C) , (A13)

(
C−1)

0,1 = −
∣∣∣∣∣∣

C0,1 C0,2 C0,3
σ2

0/8 3σ2
0/8 0

0 0 σ2
0/8

∣∣∣∣∣∣
1

64 Det(C)

=
(C0,2 − 3 C0,1)σ4

0

64 Det(C)
, (A14)

(
C−1)

0,2 =

∣∣∣∣∣∣
C0,1 C0,2 C0,3
σ2

0/8 σ2
0/8 0

0 0 σ2
0/8

∣∣∣∣∣∣
1

64 Det(C)

=
(C0,1 − 3 C0,2)σ4

0

64 Det(C)
. (A15)

As a result, Eq. (A10) becomes here

δexpec.(k) =
P (k) W2(k RL)

σ2
0

× (λ1 + λ2 + 2 cos(2θ)[λ1 − λ2]) , (A16)

where the angleθ were chosen so that

k1/k = cos(θ) , k2/k = sin(θ).

θ the angle between a given vector and the eigenvector associ-
ated to the first eigenvalue.
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A.3. The 3D profile

In 3 dimensions the matrixC reads,

C =




C0,0 . . . C0,6
... D

C0,6


 , with D=

σ2
0

15




3 1 1
1 3 1 0
1 1 3

1 0 0
0 0 1 0

0 0 1




.

(A17)

From this expression of the matrix of the cross correlations it is
quite straightforward to re-express Eq. (A10) as

δexpec.(k) =
3P (k) W3(k RL)

2
(
λ1[k2

2 + k2
3 − 4k2

1] (A18)

+ λ2[k2
1 + k2

3 − 4k2
2] + λ3[k2

1 + k2
2 − 4k2

3]
)
.

When the coordinates of the wave vector are expressed in terms
of the anglesθk andφk, defined by

k1 = k sin(θk) cos(φk) k2 = k sin(θk) sin(φk) and
k3 = k cos(θk) .

Eq. (A18) becomes

δexpec.(k) =
3 P (k) W3(k RL)

8 σ2
0

(λ1 + λ2 + 6λ3)

×(1 + a cos(2θk) + b cos(2φk)
×[1 + cos(2θk)]) , (A19)

wherea andb are specific combinations of the eigenvalues,

a = 5
2λ3 − λ1 − λ2

λ1 + λ2 + 6λ3
, and b = 5

λ1 − λ2

λ1 + λ2 + 6λ3
. (A20)

Appendix B: the DF of the eigenvalues
of the local deformation tensor

The derivation of the distribution function of the eigenvalues of
the local deformation tensor was carried in 3D by Doroshke-
vich (1970). We extend here the calculation to the 2D case (for
which the calculations are straightforward). Starting with equa-
tion (A11) – the cross-correlations between the elements of the
deformation tensors, one can easily get the expression of the
joint distribution function of the deformation tensor elements,

p(φ1,1, φ1,2, φ2,2) dφ1,1 dφ1,2 dφ2,2

=
8

(2π)3/2

dφ1,1 dφ1,2 dφ2,2

σ3
0

× exp
[
−1

2
(
3φ2

1,1 + 8φ2
1,2 + 3φ2

2,2 − 2φ1,2φ2,2
)]

(B1)

The change of variables,

λ+ =
φ1,1 + φ2,2

2
+

√
∆
2

, λ− =
φ1,1 + φ2,2

2
−

√
∆
2

, with

∆ = (φ1,1 − φ2,2)2 + 4φ2
1,2, (B2)

allows us to introduce the eigenvalues of the matrix. The Jaco-
bianJ of this transformation is given by

J−1 =

∣∣∣∣∣∣∣∣∣∣∣

1
2 + φ1,1−φ2,2

2
√

∆
∼ 1

2 − φ1,1−φ2,2

2
√

∆

1
2 − φ1,1−φ2,2

2
√

∆
∼ 1

2 − φ1,1+φ2,2

2
√

∆

0 1 0

∣∣∣∣∣∣∣∣∣∣∣
=
√

1 − 4 φ1,2/∆ . (B3)

As a result we have

p(λ+, λ−, φ1,2) dλ+ dλ− dφ1,2

=
8dλ+ dλ− dφ1,2

(2π)3/2σ3
0

1√
1 − 4 φ1,2/∆

× exp
[
− 1

σ2
0

(3
2
J2

1 − 4J2
)]

, (B4)

with

J1 = λ+ + λ− , , and J2 = λ+ λ−. (B5)

The integration overφ1,2 yields

p(λ+, λ−) dλ+ dλ− =

√
2
π

dλ+ dλ−
σ3

0
|λ+ − λ−|

× exp
[
− 1

σ2
0

(3
2
J2

1 − 4J2
)]

. (B6)

Note that ifλ+ is a priori assumed to be greater thanλ− the
distribution should be multiplied by 2.

Appendix C: estimation of PRs
(> ωs)

In this Appendix we estimate the probabilityPRs
(> ωs) that a

sphere of radiusRs contains an integrated vorticity larger than
ωs. In order to account for caustics of all sizes we argued in the
main text thatPRs(> ωs) was well approximated by

PRs
(> ωs) ' max

RL

[∫
dDλi nRL

(λi)

×Vcaus.(RL, Rs, {λi}, ωs)
]

. (C1)

We will now show that the maximum is indeed given by caustics
of size of the order ofRs and approximate this integral in 2 and
3D. To simplify further Eq. (C1), note first that the distribution
function of the eigenvalues is peaked in a given geometry (i.e.
a = 1, andb ' 0 in 3D) for rare caustics (large values ofλmax).
Therefore the integral in Eq. (C1) will be dominated by caustics
of this geometry and the factorVcaus. can be taken at this point
while carrying the integration over the other two eigenvalues.
As a result we have

PRs
(> ωs) ' max

RL

[∫ ∞

1
dλmax pmax(λmax)

(
λmax

σ(RL)

)D

×n0(λmax) Vcaus.(RL, Rs, λmax, ωs)
RD

L

]
. (C2)
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This integral runs from 1 to infinity since the caustics exist
only whenλmax is greater than 1. The evaluation of Eq. (C2)
requires insights into the functionVcaus.. Although there are no
real qualitative changes between the the 2D and 3D cases, we
now proceed with the computation of Eq. (C2) by distinguishing
the two geometries for the sake of clarity.

C.1. The 2D statistics

Recall that the integral Eq. (C1) will be dominated by the rare
even tail, and thus by the lowest value ofλmax that contributes
to the integral. In other words, when considering a given caustic
characterized by its Lagrangian scaleRL, one should wait long
enough so that it has grown sufficiently in order to contribute
after sampling a vorticity larger thanωs. For eachRL therefore
correspondsλ(0)

max(RL), the lowest value ofλmax for which
Vcaus. is non zero:

PRs(> ωs) ' max
RL

[∫ ∞

λ
(0)
max

dλmax pmax(λmax)
(

λmax

σ(RL)

)2

×n0(λmax) Vcaus.(RL, Rs, λmax, ωs)
R2

L

]
. (C3)

The lower boundλ(0)
max(RL) is reached as soon asωquad. is

larger thanπ R2
s ωs: the largest possible value of the integrated

vorticity in a cell of a given radius. It is therefore implicitly
defined by

ωs =
ωquad.

π R2
s

≡ ωM

= f(Ω)
R2

L

πR2
s

ω0 (λ(0)
max(ωs, RL) − 1)α . (C4)

Assuming thatVcaus. does not contain any exponential cutoff,
and assuming thatλmax is in the rare event tail, Eq. (C2) can be
approximatively re-expressed as

PRs
(> ωs) ' max

RL


0.56

(
λ

(0)
max

σ(RL)

)2

exp


−4

3

(
λ

(0)
max

σ(RL)

)2



×n0 Vcaus.(Rs, RL, λ
(0)
max, ωs)

R2
L

]
, (C5)

when using Eq. (11) for the distribution function ofλmax,
integrating by part and dropping the residual integral for
large enoughλ(0)

max/σ(RL) (see Appendix Appendix E: for
details). This maximum with respect toRL is then approx-
imated by the minimum of the argument of the exponential,
λ

(0)
max(RL)/σ(RL), where the minimum in the facto taken with

respect toλ(0)
max sinceσ(RL) can be thought of a function of

λ
(0)
max via Eqs. (22) and (C4). This minimum can de facto be

expressed independently ofRs. It reads

λ(0)
max =

4
4 − α(n + 2)

. (C6)

Table C1.Parameters of interest for the 2D caustics: the power index,
n, the critical timeλ(0)

max, the radial extensione(0), depthd(0) in units
of RL,scale factorf (0)

s as well as the values ofn0 andV0 for the critical
caustics.

n λ
(0)
max d(0) e(0) fs n0 V0

−1.5 1.31 0.17 1.34 0.30 0.018 0.9
−1 1.67 0.40 1.33 0.95 0.023 1.8
−0.5 2.15 0.90 1.36 1.25 0.009 3.4

Once λ
(0)
max is fixed the geometry of the caustic which will

contribute most toPRs(> ωs) is entirely specified. The con-
dition for the existence of a minimum definingλ(0)

max is that
α(n + 2) < 4, and it is satisfied for all considered cases (see
Table (1)). This implies that we are investigating a régime where
the integral Eq. (C2) is not dominated by arbitrarily rare caus-
tics – which would have been catastrophic given the assumptions
(note that whenn is too largeλ(0)

max tend to be quite large thus
challenging the validity of quantitative results based upon the
Zel’dovich approximation). The resulting value ofRL is

RL = Rs

√
πωs

ω0 f(Ω)

(
4 − α (n + 2)

α (n + 2)

)α/2

= fs Rs

(
ωs

f(Ω)

)1/2

. (C7)

The scale factorfs is given in Table (C1) for an Einstein-de Sitter
universe (f(Ω) = 1) and different values ofn. Completing the
calculation ofPRs(> ωs) involves relating the shape and size
of the caustic for the adopted value ofλ

(0)
max. These values are

derived from the fits (Eq. (47)) and are given in Table (C1).
Fig. (12) givesVcaus., in units of the square ofRL, as a function
of the smoothing radiusRs. From Fig. (12) it is easy to see that

Vcaus. ' V0 Rs RL , (C8)

for any values andn; the corresponding values ofV0 are given
in Table C1. Putting Eq. (C8) into Eq. (C3), using Eqs. (C6),
(C7) yields for the sought distribution

PRs(> ωs) ' 0.56n0 V0

(
λ

(0)
max

σ(Rs)

)2

fn+1
s ω(n+1)/2

s

×exp


−4

3

(
λ

(0)
max

σ(Rs)

)2

fn+2
s ω(n+2)/2

s


 , (C9)

Note that the power ofωs in the exponential is rather weak. The
cut-off is nonetheless strong in the régime of interest because of
the leading coefficient. Equation (C9) is illustrated on Fig. (13)
and discussed in the main text.

C.2. The 3D statistics

The threshold onλmax, from which the caustics start to con-
tribute at a given scaleRs depends on the adopted description for
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the local vorticity. We assume here as mentioned in Sect. 4.3.2
that the total vorticity is localized on two rings of radiuse/3
each, distant of2 d/3 of each other. They are assumed to bear
opposite lineic (and uniformly distributed) vorticities; in order
to get a consistent answer for the integrated vorticity in a quad-
rant, we should have

ωlin. =
3ωquad.

e
. (C10)

The maximum vorticity that can be encompassed in a sphere
then depends on its radiusRs. If Rs is larger than the radius
of the ringse/3, it is possible to have half of a ring in a sphere
(while the other ring does not intersect it at all), so that the values
of λmax (for which the maximum vorticity is sampled) is given
by

ωs =
2 e ωlin.

3
1

4π
3 R3

s

≡ ω+
M

=
3
2π

ω0 (λmax − 1)αf(Ω)
R3

L

R3
s

, if Rs > e/3. (C11)

If on the other handRs is smaller thane/3 then only a fraction
of the half ring can be put in the sphere and we have instead

ωs = 2Rs ωlin.
1

4π
3 R3

s

≡ ω−
M (C12)

=
9
2π

ω0

e0
(λmax − 1)α−αef(Ω)

R2
L

R2
s

, if Rs < e/3.

Now the local behaviour ofVcaus. near its takeoff value is well
represented (as argued below and demonstrated in Appendix D
for large enoughRs) as a function ofλmax by

Vcaus.(RL, Rs, λmax, ωs)

=
∫

Θ [ωc (c, RL, Rs, λmax) − ωs] d3c

' RLR2
sV0(λmax − λ(0)

max)
γ , (C13)

Using Eq. (17) and (52) for the distribution function
pmax(λmax), changing integration variable fromu = λmax/σ

to λ
(0)
max + u/λ

(0)
max and dropping the residual integral for large

enoughλ
(0)
max/σ(RL) (see Appendix Appendix E: for details)

yields for Eq. (C3):

PRs(> ωs) ' max
RL


6 n0 V0Γ(γ + 1)

5γ+1

(
λ

(0)
max

σ(RL)

)4−γ

× exp


−5

2

(
λ

(0)
max

σ(RL)

)2

 R2

s

R2
L


 , (C14)

From Eq. (22) and (C11), (C12), the minimum of the argument
of the exponential corresponds to:

λ+
max ≡ 6

6 − α(n + 3)
if Rs > e/3, and

λ−
max ≡ 4

4 − (α − αe)(n + 3)
if Rs < e/3, (C15)

Table C2.Parameters of interest for the 3D caustics: the power index,
n, the critical timesλ±

max, the scale factorf±
s in the two ŕegimes

(Rs < e/3 in parentheses) with radial extensione(0), depthd(0) in
units of RL as well as the values ofn0 and V0 that enter the final
expressions.

n λ+
max (λ−

max) f+
s (f−

s ) d(0) e(0) n0 V0

−2. 1.41 (1.47) 2.46 (2.09) 0.18 1.04 0.18 0.96
−1.5 1.63 (1.79) 2.10 (1.58) 0.28 1.05 0.14 1.84
−1. 1.84 (2.15) 1.78 (1.17) 0.42 1.07 0.064 3.18

Fig. C1.The functionVcaus., in units of the square ofRL, as a function
of the smoothing radius in 2D. The solid line corresponds to the case
n = −1.5, the dashed line ton = −1 and the long dashed line
to n = −0.5. In all cases the geometry of the caustic is fixed by
λmax = λ

(0)
max.

which assumes thatα(n+3) < 6 (resp.(α−αe)(n+3) < 4),
both conditions being satisfied for all values ofn considered.
The corresponding scaling relations betweenRL andRs are
given by

RL = f+
s Rs

(
ωs

f(Ω)

)1/3

if Rs > e/3 , or

RL = f−
s Rs

(
ωs

f(Ω)

)1/2

if Rs < e/3 . (C16)

The scale factorsf±
s – derived from the fits (Eq. (47)) – are given

in Table (C2) for an Einstein-de Sitter universe (f(Ω) = 1) and
different values ofn. Interestingly, as long asωs is not too
large the conditionRL > e/3 is always satisfied. In practice
at scales of about10 to 15h−1Mpc the measured vorticityωs

is expected to be indeed at most of a few tenth (Bernardeau &
van de Weygaert, 1996). It is therefore always fair to assume
that we are in the régime whereRs > e/3 which is the ŕegime
investigated hereafter.

Completing the calculation ofPRs
(> ωs) requires evaluat-

ing the correspondingn0, γ andV0. The value ofn0 is entirely
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Fig. C2.The loci of the centres of spheres contributingωs in the range
[ω+

M (1 − ε2/2), ω+
M [. The dashed arrow points to a centre of such a

sphere, and defines the running angle,θ, mentioned in Eq. (D2). The
two (cylindrically symmetric) shaded regions correspond to the loci of
the centre of spheres capturing almost half a ring and all or none of the
other. Two examples of such spheres are displayed for either case.

determined by the geometry of the caustics and is given in the
Tables 1 and 2. The behaviour ofVcaus. as it departs from zero
as a function ofωs for the critical ratios ofRs, e andd is locally
well fitted as a function ofωs by a power law of the form

Vcaus.(λmax, ωs) ' U0 RL R2
s

(
1 − ωs

ω+
M (λmax)

)γ

. (C17)

whereω+
M is the threshold value ofωs (Eq. (C11)). This ex-

pression is valid whenωs is close to its threshold value. On the
critical line, ωs = ω+

M , it is possible to relate the variation of
λmax to the variations ofωs. We can then rewrite Eq. (C17) as
a function of the difference betweenλmax and the critical value
λ

(0)
max, assuming this departure is small,

Vcaus.(λmax, ωs) ' RL R2
sV0 (λmax − λ(0)

max)
γ , with

V0 =
U0 αγ

(λ(0)
max − 1)γ

. (C18)

SinceRL/Rs is only a function ofn andωs, so are V0 andγ.
In practice we take the asymptotic values ofV0 andγ given
in Appendix D and corresponding to the limitRs � RL.
Putting Eq. (C18) into Eq. (C14), using Eq. (C15) –(C17) and
(D4) yields for the vorticity distribution

PRs
(> ωs) = 0.48n0V0

(
λ

(0)
max

σ(Rs)

)7/2

f
(13+7n)

4
s ω

(13+7n)
12

s

×exp


−5

2

(
λ

(0)
max

σ(Rs)

)2

fn+3
s ω(n+3)/3

s


 . (C19)

Equation (C19) is illustrated on Fig. (14) and discussed in the
main text.

Appendix D: asymptotic behaviour ofVCaust. in 3D

For large enoughRs we derive here an asymptotic analytic ex-
pression forVCaust.. Let us first estimate geometrically the vol-
ume in space contributing almostω+

M to VCaust.. The corre-
sponding contribution is the sum of two volumes given by the
shaded area in Fig. (C2), corresponding to the loci of the centers
of spheres which capture almost half a ring and not the other,
or which capture completely one ring and almost half of the
other. In the asymptotic limit, ase/Rs → 0, the element of
volume is an infinitely thin strip and both contributions become
equal sinceθ → −θ′. The area corresponding to these loci can
be evaluated algebraically as follow: let us callε the projected
ring segment by which a sampling sphere of radiusRs fails to
encompass a ring diameter2e/3; it follows that the ratio ofωs

to ω+
M , is given by

ωs

ω+
M

= (1 − ε2

2
) . (D1)

On the other hand, for a given direction for the sphere centre
given bycos(θ) ≡ µ, within the solid angle2πdµ, the volume
element (encompassed by the two shifted spheres capturingωs

in the range[ω+
M (1 − ε2/2), ω+

M [) is given by(
2e

3

)
4π R2

sε sin2 θdθ = 8π
e

3
R2

sε
√

1 − µ2 dµ . (D2)

Summing over all possible directions (i.e. before intersecting
the second ring) yields

8π
e

3
R2

sε

1∫
µ0

√
1 − µ2 dµ ≡ 8 π

e(0)

3
RL R2

s εJ ,

where µ0 =

[
1 +

4d(0)2

e(0)2

]−1/2

. (D3)

Accounting for the summation over the two configurations (half
a ring captured or a full + one half ring captured), using Eq. (D1)
to eliminateε, we finally get for large enoughRs

VCaust. = 16
√

2πRL R2
s

e(0)

3

(
1 − ωs

ω+
M

)1/2

,

therefore γ∞ =
1
2

and U∞
0 = 16

√
2π

e(0)

3
J . (D4)

Appendix E: rare event approximation

Consider an integral of the form

I =

∞∫
a

xβ(x − a)γ exp(−bx2) dx . (E1)

Changing variable tox = a + u/(2ab) Eq. (E1) reads

I =
1

2ab
exp(−ba2)

∞∫
0

( u

2ab

)γ

aβ

[(
1 +

u

2a2b

)β

× exp
(

− u2

2ba2

)]
exp(−u) du . (E2)
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For large enougha the square brace in Eq. (E2) is well approx-
imated by1 yielding for Eq. (E2)

I =
aβ−γ−1

(2b)γ+1 Γ(γ + 1) exp(−ba2) . (E3)

Eq. (C5) is a special case of Eq. (E1) withx = λmax/σ, a =
λ

(0)
max, γ = 0, β = 3 andb = 4/3, while Eq. (C14) corresponds

to β = 5, andb = 5/2. Note that theγ = 0 approximant can
be deduced directly by integration by parts.
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Lattice Melting and Rotation in Perpetually Pulsating Equilibria
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Systems whose potential energies consists of pieces that scale as r−2 together with pieces that scale
as r2, show no violent relaxation to Virial equilibrium but may pulsate at considerable amplitude for
ever. Despite this pulsation these systems form lattices when the non-pulsational “energy” is low,
and these disintegrate as that energy is increased. The “specific heats” show the expected halving
as the “solid” is gradually replaced by the “fluid” of independent particles. The forms of the lattices
are described here for N ≤ 20 and they become hexagonal close packed for large N . In the larger
N limit, a shell structure is formed. Their large N behaviour is analogous to a γ = 5/3 polytropic
fluid with a quasi-gravity such that every element of fluid attracts every other in proportion to
their separation. For such a fluid, we study the “rotating pulsating equilibria” and their relaxation
back to uniform but pulsating rotation. We also compare the rotating pulsating fluid to its discrete
counter part, and study the rate at which the rotating crystal redistributes angular momentum and
mixes as a function of extra heat content.

PACS numbers:

I. INTRODUCTION

Astrophysics has provided several new insights into
ways statistical mechanics may be extended to cover a
wider range of phenomena. Negative heat capacity, bod-
ies which get cooler when you heat them, were first en-
countered by [6] and when such bodies were treated ther-
modynamically by [1][13], what seemed natural to as-
tronomers was seen as an apparent contradiction in basic
physics to those from statistical mechanics background.
Even after a physicist [16] first resolved this paradox and
[8] gave an easily soluble example, there was consider-
able reluctance to accept the idea that micro canonical
ensembles could give such different results to canonical
ones. There was still some reluctance even in 1999 [9],
though to those working on simulations of small clusters
of atoms or molecules, the distinction was well under-
stood by the early 1990s, see e.g. [3]. However by 2005,
the broader statistical mechanics community had em-
braced these ideas, and emphasized this difference which
had been with us for 30 years (see Pichon & Lynden-Bell
2006, where an early account of this work is given). An-
other area to which statistical mechanics might extend
is that of collisionless systems which may be treated as
“Vlasov” fluids in phase space. While early attempts
at finding such equilibria gave interesting formulae rem-
iniscent of a Fermi-Dirac distribution [7], there is ample
evidence from astronomical simulations that these equi-
libria are not reached in gravitationnal systems. There
are also different ways of doing the counting that lead to
different results and recently, [2] gave an example that
demonstrates that the concept of a unique final state de-
termined by a few constants of motion found from the
initial state is not realized. Thus the statistical mechan-

ics of fluids in phase space remains poorly understood
with theory and at best losely correlated with simula-
tions and experiments (but see [4]).

This paper is concerned with a third area of non stan-
dard statistical mechanics which is restricted to very spe-
cial systems, those for which the oscillation of the scale of
the system separates off dynamically from the behaviour
of the rescaled variables that are now scale free. These
systems were found as a bi product of a study which
generalized Newton’s soluble N-body problem [10] [11]
(papers I and II). A one dimensional model with exact
solutions was found by [5] and the model considered here
is a three dimensional generalisation of his combined with
Newton’s. A first skirmish with the statistical dynamics
of the scale free variables despite the continuing oscil-
lation of the scale was given there. Since then, [12],
hereafter paper III, have showed that the peculiar ve-
locities of the particles do indeed relax, as predicted,
to a Maxwellian distribution, whose temperature con-
tinuously changes as (scale)−2. This occurs, whatever
the ratio of the relaxation time to the pulsation period.
The peculiar velocities are larger whenever the system is
smaller. When the system rotates at fixed angular mo-
mentum, the resulting statistical mechanics leads again
to Maxwell’s distribution function relative to the rotat-
ing and expanding frame (see paper III, equation 17).
It is then the distribution of the peculiar velocities after
the “Hubble expansion velocity” and the time dependent
rotation are removed that are distributed Maxwellianly;
when the system is fluid, the density distribution is a
Gaussian flattened according to the rotation that results
from the fixed angular momentum.

The interest of this problem for those versed in statis-
tical mechanics is that it is no longer an energy that is
shared between the different components of the motion.
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5 Two tetrahedra joined on a face

6 Two pyramids joined at their bases

7 Two pentagonal pyramids joined at their bases

8 A twisted cube

9 Three pyramids, each pair sharing the edge of a base

10 Skewed pyramid twisted

11 Two skewed pyramid twisted and one center

12 Icosahedron i.e. two skewed pentagonal pyramids

13 Icosahedron and one center

14 Hexagonal and pentagonal pyramids and one center

15 Two skewed hexagonal pyramids and one center

16 Pentagonal pyramid and an hexagon and a triangle and one center

17 Hexagonal pyramid over an hexagon over a triangle and one center

18 Two pentagonal pyramids and one twisted pentagon and one center

TABLE I: First 18 configurations of equilibria. A few of them are shown on Figure 1. Note that as the number of elements
increases, the final configurations need not be unique.

The interest for astronomers lies in part because these
systems suffer no violent relaxation to a size that obeys
the Virial theorem. Nevertheless, despite the continual
pulsation of such systems the rescaled variables within
them do relax to a definite equilibrium.

The form of interaction potential ensures that neither
the divergence of the potential energy at small separa-
tions nor the divergence of accessible volume at large
separations which so plague systems with normal grav-
ity occur for this model. Thus its interesting different
statistical mechanics is simpler and free of any contro-
versial divergences thanks to the small range repulsion
and the harmonic long range attraction which extends to
arbitrarily large separations.

Although the harmonic long range attraction is not re-
alised in nature (with the possible exception of quarks),
nevertheless, within homogeneous bodies of elipsoidal
shape ordinary inverse square gravity does lead to har-
monic forces analogous to those found here. Section 2.1.1
shows that only force laws with our particular scalings
give such exact results.

In this paper, we demonstrate that such systems can
form solids (albeit ones that pulsate in scale). We study
in Section III their behaviour in the large N limits and
show that they stratify into shells.

We show the phase transition as these structures melt
and the corresponding changes in “specific heat”. We
also discuss the analogous a γ = 5/3 fluid system (cor-
responding to a classical white dwarf with an odd grav-
ity, see below), we predict their equilibrium configuration
and investigate their properties when given some angular
momentum. Section II derives the basic formulae for the
N-body system and its fluid analog.

II. DERIVATION

A. The discrete system

We consider N particles of masses mi at ri, i = N and
set ∑

mi = M,

∑
miri = Mr , (1)

and half the trace of the intertial tensor as

I =
∑

mi(ri − r)2 ≡Ma
2
, (2)

which defines the scale a. In earlier work we showed
both classically (paper I) and quantum mechanically [11]
(paper II) that if the potential energy of the whole system
was of the form

V = W (a) + a
−2
W2(â) , (3)

where â is the 3N dimensional unit vector

â =
N

−1/2

a

(r1 − r, r2 − r .... , rN − r) , (4)

then the motion of the scaling variable a separates dy-
namically from the motions of both r and the r̂ so those
motions decouple. If we ask that V be made up of a sum
of pairwise interactions then the hyperspherical poten-
tial, W , (independent of direction in the 3N − 3 dimen-
sional space) has to be of the form:

W (a) =
1

2
ω

2
Ma

2 = V−2 , (5)

where ω2 is constant but depends linearly on M , and

W2(â) = a
2
V2 = a

2
∑∑

i<j

K2|ri − rj |−2
. (6)

Hence W2 is a function of â and is independent of the
scale a.
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FIG. 1: (Color online) A small set of remarkable equilibria for low N ; from left to right and top to bottom: N = [5] two
tetrahedra joined at their bases, [6] two pyramids joined at their bases, [8] a twisted cube (three pyramids each pair sharing
a base edge), [12] Icosahedron i.e. two skewed pentagonal pyramid, [13] Icosahedron+center, [14] hexagonal+ pentagonal
pyramids+center, [17] hexagonal pyramid over hexagon over triangle+center, [18] two pentagonal pyramids+twisted pentagon
center. Java animations describing theses oscillating crystals are found at http://www.iap.fr/users/pichon/nbody.html.

1. Relationship to the Virial Theorem

Let us now see why potentials of the for V2 + V−2 are
so special by looking at the Virial Theorem and the con-
dition of Energy conservation. Take the more general
potential energy to be a sum of pieces Vn where each Vn

scales as r−n on a uniform expansion. n can be positive
or negative. Then V =

∑
Vn. For such a system the

Virial Theorem reads:

1

2
Ï = 2T +

∑
nVn = 2E +

∑
(n− 2)Vn .

Now we already saw that V−2 ∝ I and V2 clearly drops
out of the final sum because n − 2 is zero. Thus for

potentials of the form V = V−2 + V2

1

2
Ï = 2E − 4V−2 = 2E − 4ω2

(
1

2
I

)
, (7)

so I vibrates harmonically with angular frequency 2ω
about a mean value E/ω2 and shows no Violent Relax-

ation (1). Multiplying by 4İ and integrating

İ
2 = 8EI − 4ω2

I
2 − 4M2L2

,

where the last term is the constant of integration chosen
in conformity with Eq. (8). Now recall from Eq. (2) that
I = Ma

2 so we find on division by 8M2
a
2 that

ȧ
2

2
+

L2

2a2
+

1

2
ω

2
a
2 =

E

M

, (8)
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FIG. 2: (Color online) An example of large N static spher-
ical equilibrium obeying Eq. (9); here only a given shell is
represented for clarity.

which we recognise as the specific energy of a particle
with specific “angular momentum” L moving in a simple
harmonic spherical potential of ‘frequency’ ω. In such a
potential a vibrates about its mean at ‘frequency’ 2ω.

Note here that the γ = 5/3 fluid also has a term 3(γ−
1)U = 2U in the virial theorem since its internal energy,
U , scales like r

−2 so it can be likewise absorbed into
the total energy term. Thus if every elementary mass of
such a fluid attracted every other with a force linearly
proportional to their separation, then that system too
would pulsate eternally, as described above in Eq. (7)
(see Section II B below).

The aim of this paper is to demonstrate the existence
of perpetually pulsating equilibrium lattices and to study
the changes as the non-pulsational ‘energy’ ML2

/2 is in-
creased. We show that the part of the potential left in
the equation of motion for the rescaled variables is the
purely repulsive V2. It is then not surprising that the lat-
tice disruption at higher non-pulsational energy occurs
quite smoothly and the solid phase appears to give way
to the “gaseous” phase of half the specific heat without
the appearance of a liquid with another phase transition.
The hard sphere solid has been well studied and behaves
rather similarly.

2. The Equations of Motion and their separation

Although the work of this section can be carried out
when the masses mi are different, (see paper I), we here
save writing by taking mi = m and so M = Nm. We
start with V of the form (3). The equations of motion

are

mr̈i = −∂V/∂ri . (9)

Now V is a mutual potential energy involving only ri−rj

so
∑
i

∂V/∂ri = 0 and summing the above equation for

all i we have

d
2
r/dt

2 = 0 , r = r0 + ut .

Henceforth we shall remove the centre of mass motion
and fix the centre of mass at the origin so r = 0. Now
the 3N -vector a can be rewritten in terms of its length a
and its direction â ≡ a/a (a unit vector). Equation (9)
takes the form

M ä = −∂V/∂a = −W ′
â + 2a−3

W2â − a
−3
∂W2/∂â ,

(10)
where we have used the form (3) for V . Notice that
when W2 is zero (or negligibly weak) all the hyperangular
momenta of the form m(rαṙβ − rβ ṙα) where α 6= β run
from 1 to 3N , are conserved!

Taking the dot product of (10) with a eliminates the
∂W2/∂â term which is purely transverse so we get the
Virial Theorem in the form:

1

2

d2

dt2
(Ma

2) = M ȧ
2−adW

da
− 2

a
2
W2 = 2E− 1

a

d

da
(a2

W ) .

(11)
Multiplying by d(a2)/dt/2 and integrating Eq. (11) yields

1

2
Ma

2
ȧ
2 = Ea

2 −Wa
2 − 1

2
ML2

,

where the final term is the constant of integration. On
division by a2

M

2

(
ȧ
2 +

L2

a
2

)
+W (a) = E , (12)

which is the energy equation of a particle of mass M
moving with angular momentum L and energy E in a
hyperspherical potential W (a). Now

ä =
d

dt
(ȧâ + a

˙̂a) = äâ +
1

a

d

dt
(a2 ˙̂a) (13)

and from (12)

ä =
L2

a
3
− 1

M

W
′(a) . (14)

Inserting these values for ä and ä into equation (10) we
obtain on simplification, multiplying by a3:

Ma
2 d

dt

(
a
2 dâ

dt

)
= 2W2â − ∂W2/∂â−ML2

â . (15)

On writing d/dτ = a
2d/dt this becomes an autonomous

equation for â(τ). Since (ȧ)2 = (a ˙̂a + ȧâ)2 = a
2 ˙̂a

2
+ ȧ

2

we may write the energy in the form

E =
1

2
M

[
1

a
2

(
dâ

dτ

)2

+ ȧ
2

]
+V =

1

2
M

(
ȧ
2 +

L2

a
2

)
+W ,
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so

1

2
M

(
dâ

dτ

)2

+W2 =
1

2
ML2

. (16)

This shows that the only ‘potential’ in the hyper angular
coordinates’ motion is W2(â) and that the effective hyper
angular energy in that motion is 1

2ML2 (which has the

dimension of a2 times an energy). In fact we showed
in papers I and III that it was this quantity that was
equally shared among the hyperangular momenta in the
statistical mechanics of perpetually pulsating systems.
(15) gives the equation of motion for â. In terms of the
true velocities v1, v2 etc

dâ

dτ
=

√
Na

2 d

dt

(
r1

a

,

r2

a

....

rN

a

)
=

a

(
v1 −

ȧ

a

r1,v2 −
ȧ

a

r2 ... etc

)
,

so it is the peculiar velocities after removal of the Hubble
flow ȧri/a and after multiplication by a that constitute
the kinetic components of the shared angular energy in
the angular potential W2(â).

When the m(dâ/dτ)2/2 are large enough to escape the
potential wells offered by W2/N we get an almost free
particle angular motion of these 3N−4 components. The
−4 accounts for the fixing of the centre of mass and the
removal of ȧ from the kinetic components. If we impose
also a prescribed total angular momentum, the number of
independent kinetic components would reduce by a fur-
ther three components to 3N − 7. However the peculiar
velocities are then measured relative to a frame rotat-
ing with angular velocity Ω where Ω = I−1 · J where J

is the angular momentum of the system. Here I is the
inertial tensor, not to be confused with I = trace(I)/2
introduced in Section II A 1. The constant Lagrange mul-
tiplier is no longer Ω, which is proportional to a−2 since
the inertial tensor, has that dependence in pulsating equi-
libria. The Lagrange multiplier is J̃ = Ωa

2 which is
constant during the pulsation and the peculiar velocity

is vpi = (vi − ui) where ui =
(
ȧri/a+ J̃ × ri/a

2
)

see

paper III equation (17).1 Hereafter we specialise to the
requirements given by Eq. (5) and (6).

B. The γ = 5/3 analogous fluid system

When particles attract with both a long range force
such as gravity or our linear law of attraction, and a
short rage repulsion, the latter acts like the pressure of

1
The above definition of u is correct. That given under equation

(18) of paper III has −Ω for Ω in error as may be seen from

equation (17).

a fluid. Indeed short range repulsion forces only extend
over a local region, and for large N their effect can be
considered as pressure since only the particles close to
any surface drawn through the configuration affect the
exchange of momentum across that surface. In our case,
the local r−3

ij forces come from the r−2
ij potential which

scales as r−2. A barotropic fluid with p = ρ
γ has an in-

ternal energy that behaves as ργ−1 scaling like r−3(γ−1).
The required r−2 scaling gives a γ of 5/3, i.e. a polytropic
index of n = 3/2, the same as a non relativistic degener-
ate white dwarf. Thus we may expect analogies between
a γ = 5/3 fluid with the linear long range attraction, and
our large N particle systems. However an r−3

ij repulsion
between particles is not of very short range so this fluid is
not the same as the large N limit of the particle system.
The particle equilibria have the inverse cubic repulsion
between particles balancing the long range linear attrac-
tion, which can be exactly replaced by a linear attraction
to the barycentre proportional to the total mass. For the
fluid, it is the pressure gradient that balances this long
range force.

1. Mass profile of the static polytropic fluid

The equilibrium of such a fluid in the presence of a
long range force, −G⋆

Mr, (where MG
⋆ ≡ ω

2) is given
by

1

ρ

dp

dr
= −G⋆

Mr . (17)

Setting p = κρ
5/3, with ξ ≡ r/rm, this yields

ρ = ρ0(1 − ξ
2)3/2

, (18)

where r is the 3D configuration space vector measured
from the centre of mass of the system and r its modulus,
with rm its value at the edge.

Integrating the density gives a mass profile, M(ξ),

M(ξ) =
2M

3π

(
3 arcsin(ξ) − ξ(8ξ4 − 14ξ2 + 3)

√
1 − ξ

2
)
,

(19)
and M is the total mass. In practice for the discrete sys-
tem of Section II A, there is a marked layering at equi-
librium, and the “pressure” and the mass profiles depart
from their predicted profiles as each monolayer of parti-
cles is crossed. See Section III and Fig. (3).

The relationship between the polytropic coefficient, κ,
and K2, the strength of the repulsion (entering W2 in
Eq. (6)) is found by identifying the internal energy of the
corresponding fluid to the potential energy of the 1/r2ij
coupling. In short, the former reads for a γ = 5/3 fluid
with density profile Eq. (17):

V2 = −
∫ rm

0

κγ

γ − 1
ρ
2/34πr2ρdr = −25π2

128
κρ

5/3
0 r

3
m , (20)
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while the latter reads:

−K2

2

∫∫∫ rm

0

8πr2ρ(r)πr
′2
ρ(r′)dµ dr dr′

r
2 + r

′2 − 2µ r r′
= −9π4

320
ρ
2
0r

4
mK2 .

(21)
Identifying Eq. (20) and (21) gives (using M =
π

2
ρ0r

3
m/8 consistant with the density profile, Eq. (18))

κ =
36

125
π

4/3
M

1/3
K2. (22)

Similarly, requiring that V2 and V−2 balance at static
equilibrium, where

V−2 =

∫
ρ(r)

ω
2
r
2

2
4πr2dr =

3π2

128
ω

2
ρ0r

5
m , (23)

yields

ρ0 =

(
5G⋆

3K2

)3/4
M

π
2
, and (24)

rm = 2

(
3K2

5G⋆

)1/4

. (25)

Eqs. (18)-(25) allow us to relate the properties of the
crystal to the properties of the analogous fluid system.
Notice that rm is independent ofM and ρ0 is proportional
to M .

2. Figure of rotating configurations

Equilibrium in the rotating frame with the angular
rate, Ω (not to be confused with ω, the strength of the
harmonic potential introduced in Eq. (5)), requires that:

1

ρ

∇p = ∇(ψ +
1

2
Ω2
R

2) , where ψ = −1

2
G

⋆
M r2 ,

(26)
where R is the distance off axis (r2 = R

2 + z
2). Since

p = κρ
5/3, it follows that, with Ω2

⋆ = Ω2
/(G⋆

M),

5

2
κρ

2/3 = −G
⋆
M

2
(z2 + (1 − Ω2

⋆)R
2) + const. (27)

Let ρ = 0 at z = z0 on axis, then

ρ

ρ0
=

(
1 − z

2

z
2
0

− (1 − Ω2
⋆)
R

2

z
2
0

)3/2

. (28)

From this we can derive the mass, M and the moment of
inertia, I as functions of the z0, ρ0

M =
π

2

8

ρ0z
3
0

1 − Ω2
⋆

, and I =
1

4
MR2

0 , (29)

where R2
0 = z

2
0/(1 − Ω2

⋆) and z
2
0 = 5κ/ρ

2/3
0 /L2. Eq. (28)

generalizes Eq. (18) when the γ = 5/3 fluid is given some
angular momentum. The ellipticity, ε, of the rotating
configuration is given by

ε
2 = 1/(1 − Ω2

⋆) = 1/(1 − Ω2
/ω

2) . (30)

Fig. (6) displays the corresponding configuration for N =
64.

3. Dynamics of the rotating oscillating γ = 5/3 fluid

The basic pulsation of the γ = 5/3 fluid in ro-
tation is given by a time dependent uniform expan-
sion/contraction plus a rotation at constant angular mo-
mentum. Thus

u =
ȧ

a

r +
1

a
2
J̃ × r , (31)

where a(t) is the “expansion factor” of Section II A and J̃

is the constant Lagrange multiplier associated with angu-
lar momentum conservation. The acceleration involved
in this motion are

Du

Dt
=
∂u

∂t

+u·∇u =
∂u

∂t

+∇
(

1

2
u

2

)
−u×(∇×u) . (32)

Given that ∇ × u = 2J̃/a2, putting Eq. (31) into (32)
yields

Du

Dt
= ∇

(
ä

a

r
2

2
− 1

2a4
(J̃ × r)2

)
. (33)

Differentiating Eq. (8) yields:

ä =
L2

a
3
− ω

2
a , (34)

while Euler’s equation reads:

Du

Dt
= −∇

(
5

2
κρ

2/3 +
1

2
ω

2
r
2

)
. (35)

Equating Eq. (35) and (33) together with Eq. (34) yields:

∇
(

5

2
κρ

2/3 +
1

2a4
L2
r
2 − 1

2a4

(
J̃ × r

)2
)

= 0 . (36)

Now in the rescaled space, ρ ≡ ρ̃/a
3, r ≡ r̃a and ∇ ≡

∇̃/a, Eq. (36) reads

∇̃
(

5

2
κρ̃

2/3 +
1

2
L2
r̃
2 − 1

2

(
J̃ × r̃

)2
)

= 0 . (37)

which is the equilibrium condition but with the time-
dependently rescaled variables replacing the original
ones. Hence it follows that in the comoving rotating
frame, the γ = 5/3 fluid will stratify in the same man-

ner as Eq. (28)2 but in the rescaled variables (R̃2
0 =

z̃
2
0/(1 − J̃

2
/L2) and z̃

2
0 = 5κ/ρ̃

2/3
0 /L2). This maintains

a constant ellipticity during the oscillation, since R̃0 and
z̃0 are independent of a(t).

2
which follows from integrating Eq. (37) while evaluating the in-

tegration constant at r̃ = 0; this integration constant could in

principle depend on time but because

∫
ρ̃d

3
r̃ ≡ M is indepen-

dent of time, 5κρ̃

2/3

0
is indeed constant
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III. APPLICATIONS: CRYSTALLINE FORMS

OF PULSATING EQUILIBRIA

Let us now study the discrete form of rotating pulsat-
ing equilibria that the systems described in Section II
follow. Let us first ask ourselves what would the final
state of equilibrium in which N particles obeying Eq. (9)
would collapse to, if one adds a small drag force in order
to damp the motions.

Numerical setup

A softening scale, s, of 0.05 was used3 so that The
effective interaction potential reads

ψ12 = G
⋆ r

2
12

2
+

K2

r
2
12 + s

2
. (38)

We may escale both the repulsive, K2 and the attractive
strength, G⋆ of the potential to one by choosing appro-
priately the time units and the scale units. As a check,
we compute the total energy of the cluster, together with
the invariant, mL2

/2 and check its conservation.

A. Static Equilibrium

The relaxation towards the equilibrium should be rela-
tively smooth in order to allow the system to collapse into
a state of minimal energy. We will consider here two dif-
ferent damping forces; first (in Section III A) an isotropic
force, proportional to −αv so that both the rotation and
the radial oscillations are damped; or, in Section III B 1,
a drag force so that the components of the velocity are
damped until centrifugal equilibrium is reached.

1. Few particle Equilibria

Figure 1 displays the first few static equilibria, while
Table I lists the first 18, which includes in particular the
regular Icosahedron for N = 12. Strikingly, roughly be-
yond this limit of about N = 20, there exists more than
one set of equilibria for a given value of N , and the con-
figuration of lowest energy is not necessarily the most
symmetric. The overall structure is not far from hexag-
onal close packed, but with a spherical layering at large
radii. Java animations describing the crystals are found
at http://www.iap.fr/users/pichon/nbody.html.

3
we also checked that our results remained the same with s = 0.01

2. Larger N limit

Figure 3 displays both the mean mass profile and the
corresponding section though 512 ≤ N ≤ 2048 lattices;
both the mass profile and the sections are derived while
stacking different realisations of the lattice and binning
the corresponding density. Note that the inner regions
are more blurry as N increases; indeed, the inner layers
are frozen early on by the infall of the outer layers.

Let us estimate the pressure profile in our crystal. In
static equilibrium, given Eq. (17), we should have ap-
proximately

p(r) =

∫
ω

2
ρ(r)rdr =

ω
2

4π

∫ rm

r

dm

r

≈ ω
2

4π

∑
r′>r

m

r
′
. (39)

Eq. (39) is compared to Eq. (17) in Fig. (4).

3. Mean density profile

Fig. (5) shows the mean density within rescaled radius,
ξ = r/rm as a function of ξ for three different simulations.
The shell structure is very obvious but at larger N val-
ues it is also clear that besides the oscillations due to
shells the mean density falls off somewhat towards the
outside. However such a fall off is far less pronounced
than that predicted by the polytropic model which gave
ρ̄(ξ) = M(ξ)/(4πr3mξ

3/3) with M(ξ) given by Eq. (19).
On further inspection, it transpired that this is due to the
longer range of the repulsion force which is not correctly
represented by the pressure analogy.

Consider a continuum density distribution with a re-
pulsive force between elements dm and dm̄ derived from
the potential K2dmdm̄/|r − r̄|2. Then, for a spherical
density distribution, ρ(r̄), the total potential reads

ψ(r) = K2

∫∫
2πr̄2ρ(r̄)dµdr̄

r
2 + r̄

2 − 2 rr̄µ
= 2πK2

∫
r̄ρ(r̄)

r

log

∣∣∣∣r + r̄

r − r̄

∣∣∣∣dr̄
The condition of equilibrium balances against the har-
monic attraction yields

−dψ

dr
= G

⋆
Mr , r ≤ rm . (40)

Note that all the mass, not just that inside radius r,
contributes to the attraction for the linear law. Eq. (40)
generates a linear integral equation for ρ(r̄). A numerical
solution to Eq. (40) shows that the mean density distri-
bution agrees well with the simulations, once the shell
structure is smoothed out (see Fig. (5)). The solution to
the integral equation is well approximated by

ρ(r) = ρ0

(
1 − r

2

6r2m

)3

, where r ≤ rm , (41)

and 0 beyond. The corresponding mean density within
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FIG. 3: top: (Color online) Mean mass profile and section (top) though a N = 512, N = 1024 and N = 2048 crystal; The
mass profile is derived while stacking about 20 realisations of the lattice and binning the corresponding density. The shell
structure (bottom) is clearly apparent on these sections. The number of shell, N , present is consistent with the prediction of
Section IIIA 2. The ordering of the inner regions is lower as N increases since the inner shells do not settle gently as they are
disturbed by the infall of the outer layers.

r, n̄, scaled to one at the centre, reads

n̄(ξ) =
3

ρ0ξ
3

∫ ξ

ρ(rmξ)ξ
2dξ =

(
1 − 3 ξ2

10
+
ξ
4

28
− ξ

6

648

)
,

(42)
with ξ ≡ r/rm, and n(r) ≡ ρ(r)/m, (see Fig. (5)) so that
at ξ = 1, n̄(1) ≡ X = 16 651/22 680. The simulations
have been scaled so that ξ is one at the outermost parti-
cle. That will not be at the point at which the theoretical
smooth density falls to zero which we have called ξ = 1 in
our theoretical calculation. In practice this falls outside
the last particle, hence we have to rescale the theory’s ξ
by a factor f which is determined to make the theoretical
mean density profile, n̄, fit the profile of the simulations’
mean density. Once this scaling f has been determined
the predicted mean density is given in terms of the ob-
served ξ by the expression Xn̄(fξ)N/[4/3π(frm)3].

4. Stratification in spherical shells

In atoms, the main gradient of the potential is towards
the nucleus, so the shell structure is dominated by the
inner shells which have large changes in energy. In our

systems, the global potential gradient is proportional to r
so the largest potential differences are on the outside. As
a consequence, the system adjusts itself so that the out-
ermost shell is almost full, and the central region is no
longer shell dominated. Instead of counting shells out-
wards from the middle as in atoms, it is best to count
shells inwards from the outside where they are best de-
fined. For shells which are numbered from the outside,
given that dr/n−1/3(r) is the fractional increase in layer
number, we have (using Eq. (41))∫ 1

ri

dr

n(r)−1/3
=
n

1/3
0 rm

X

[
1 − ξi −

1

18
(1 − ξ

3
i )

]
= i ,

(43)
with n0 ≡ ρ0/m = 3N/(4πr3m). Conversely, the number
of particles, N(≤ i) within (and including) layer i is given
by

N(≤ i) =
N

X

ξ
3
i

[
1 − 3

10
ξ
2
i +

1

28
ξ
4
i − 1

648
ξ
6
i

]
. (44)

Solving the implicit Eq. (43) for the relative radius ξi of
layer i and putting it into Eq. (44) yields the number
of particles within layer i as a function its rank. The

300



9

FIG. 4: (Color online) Mass profile and Pressure of an N =
2048 simulation together with a fit of its analytic prediction
given by Eq. (18) and (19) (see Section IIIA 4 and Fig. (5)
for a discussion of the accuracy of this fit). The mass profile
is computed via the cumulative number of particles within a
given shell, while the pressure profile is estimated via Eq. (39).

radii of the layers, ξirm follows from inverting Eq. (43)
for ξi. Examples of such shells are shown in Fig. (2)
and (3), while the corresponding mass profile checked
against Eq. (19) in Fig. (4). The number of shell present
in Fig. (3) is consistent with the prediction of Eq. (44).

B. Rotating Perpetually Pulsating Equilibria

1. Rotating crystals

The rotating crystal is achieved in steps; first, for each
particle in the lattice, we added a velocity kick so that
v → v + Ω × r. We then rescale the z coordinate and
the vz (as defined along the momentum direction) of each
particule by a constant factor. The system has then the
ability to redistribute it momentum along the oscillating

FIG. 5: (Color online) shows the mean number density profile,
N n̄(ξ) for a set of about 10 N = 512, 1024 and 2048 simula-
tions as a function of rescaled radius. The wiggles correspond
to the shells seen in Fig. (3). The thin line corresponds to the
prediction of Eq. (19) for the fluid system, but with an outer
radius rescaled by the predicted radius, Eq. (25) divided by
the measured outer radius, rm; the dashed line corresponds
to a uniform density solid, while the dotted dashed line cor-
responds to the prediction of Eq. (42) (rescaled, see text).
Clearly, this last model gives the best fit to the mean pro-
file, which suggests that for those values of N , the crystal
does behave according to the equilibrium Eq. (40), and nei-
ther like a pure solid nor as a fluid. The stars correspond to
the predictions of the shell radii given by Eq. (43).

particles. We then add a drag force4 proportional to

−α
(
v − I−1 · J̃

)
, so that the components of the velocity

are damped until centrifugal equilibrium is reached. This
defines the rotating spheroid equilibrium. An example of
such a configuration is shown in Fig. (6) for N = 64. The
properties of the corresponding analogous fluid system
are described in Section II B 2.

2. Rotating pulsating crystals

In order to create a pulsating configuration which pre-
serves the shape of the rotating spheroid, we rescaled all
the positions by some factor, λ, and rescaled accordingly
all velocities by the factor 1/λ, so that angular momen-
tum is preserved. When this special condition is met, the

4
which can be shown to be truly dissipating energy

301



10

FIG. 6: (Color online) spheroidal crystal corresponding to
the final state of a run of N = 64 with a damping force
of the form −α

(
v − I−1 · J̃

)
. Half of the particles was

painted one color, while the other half was left some other
color. The shape preserving oscillation is achieved by rescal-
ing all position by some factor, λ, and rescaling all ve-
locities by the factor 1/λ. If the rescaling does not pre-
serve momentum of each particle, some of the excess energy
may go into heating the system and breaking its structure,
which will induce mixing of the two populations (see Sec-
tion IIIC 2 and paper III). Java animations corresponding to
the corresponding oscillating rotating crystals are found at
http://www.iap.fr/users/pichon/nbody.html.

FIG. 7: (Color online) Same as Fig. (3), but for a set of 20 ro-
tating configuration of N = 256 particles launched according
to the prescription given in Section IIIB 1. The shell struc-
ture is also clearly apparent on this section. The ellipticity of
the crystal is found to be in agreement with Eq. (30).

system oscillates and pulsates without any form of relax-
ation (cf. Section III C). Note that this situation differs
from normal modes of more classical systems, which do
preserve the shape of a given oscillation, but might not
involve the same particles at all times. Java animations
describing the pulsating and rotating crystals are found
at http://www.iap.fr/users/pichon/nbody.html.

FIG. 8: (Color online) quasi specific heat measured by in-
crease of quasi energy with quasi temperature in units of kN ;
the quasi temperature is a2 times the kinetic energy relative
to the time dependent “Hubble flow” divided by 3/2 Nk; the
quasi energy is the sum of the quasi kinetic energy plus W2;
W2 is a2 times the repulsive part of the potential energy.
During the large amplitude pulsation of the system, the quasi
energy is conserved. It is the quasi energy that is shared be-
tween the different components in the statistical equilibrium.
Since W2 is only repulsive, the system displays characteristics
similar to a hard sphere fluid. There is a continuous transi-
tion between the cold crystal lattice and the “free” fluid. Each
point is derived over a set of about 20 independent runs. The
initial condition is set up with some random motions above
the lattice equilibrium.

C. Thermodynamics of dissolving crystal

1. Specific heat & evaporation

How does the shell structure disappear as a function of
temperature increase ? Fig. 8 displays the quasi-specific
heat measured by the increase of quasi energy with quasi
temperature in units of kN ; Here the quasi temperature
is a2 times the kinetic energy relative to the time depen-
dent “Hubble flow” divided by 3/2Nk; while the quasi
energy is the sum of the quasi kinetic energy plus W2

given by Eq. (6). During the large amplitude pulsation
of the system, the quasi energy is shared between the
different components in the statistical equilibrium. Since
W2 is only repulsive, the system displays characteristics
similar to a hard sphere fluid. The quasi-heat capacity
changes from the solid’s 3Nk to the gaseous 3/2Nk as
expected.
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FIG. 9: (Color online) left panel: ∆nWB/n̄WB, the relative
dispersion in mixing as a function of time for a set of N = 64
particles in a situation where the inner fraction of particles
was rescaled along the rotation axis in order to induce some
momentum exchange. Here three scalings (1.2, 1.6 and 2)
were imposed (from top to bottom), corresponding to an in-
creasing heat content which induce a faster relaxation. The
initial condition corresponds to the prescription described in
Section IIIB 1 and Fig. (6). Right panel: Ωin(t)/Ω̄(t) and
Ωout(t)/Ω̄(t) as a function of time; again the hotter initial
configuration (rescaled by 1.8 compared to 1.2) (full symbol)
reaches a regime of uniform rotation more rapidly.

2. Relaxation of the rotating pulsating configuration

Let us split the particles within our spheroidal equi-
librium in two sets as a function of axial radius, R, one
corresponding to an inner ring, and one corresponding to
an outer ring (which should initially rotate at the same
angular rate) and rescale the z component of each inner
particle by a factor of 2 so that it does not satisfy the
equilibrium condition.

A measure of the thermalisation is given by the rate
at which the system will redistribute momentum in order
to achieve uniform rotation again. Fig. (9) (right panel)
represents Ωin(t)/Ω̄(t) and Ωout(t)/Ω̄(t) as a function of
time (with Ω̄(t) = [Ωin(t) + Ωout(t)]/2).

3. Mixing of the rotating pulsating configuration

A measure of mixing is given by the rate at which the
system becomes uniform, when it is started as two dis-
tinct phases. Let us start by a configuration where half
of the particles on one side of the spheroidal rotating
equilibrium are colored in WHITE, and the other half,
in BLACK, and rescale again the coordinate along the

rotation axis by a factor of two. The redistribution of
the excess energy in height will convert a fraction of it
into heat. Fig. (9) (left panel) represents ∆nWB/n̄WB ≡
RMS(nB(t) − nW(t))/RMS(nB(t) + nW(t)), with nR the
density of WHITE particles, and nB the density of
BLACK particles as a function of time. In practice, we
bin the x–y plane in the comoving coordinates and esti-
mate ∆nWB/n̄WB accordingly.

IV. CONCLUSION

In this paper, we have demonstrated that very special
systems, those for which the oscillation of the system sep-
arates off dynamically from the beheaviour of the rescaled
variables, can form (possibly spinning) solids (albeit ones
that pulsate in scale). We studied their phase transition
and the corresponding “specific heat” as these structures
melt. As expected, we found that the heat capacity halve
to that of a free fluid, but the phase transition appears to
occur gradually even at large N . Although we expected
a set or regular and semi regular solids, which we did find
for small N , and an hexagonal close packing of most of
the system at larger N , we did not foresee the strong
shell structure found. Nevertheless, we constructed a
theory that explained this shell structure once it had
been recognized. We also investigated the evolution of
the lattice, as some rotation was imposed on the struc-
ture and studied its relaxation under such circumstances,
both in terms of mixing and for the redistribution of an-
gular momentum. Another by-product of our study was
that the internal energy of the corresponding barotropic
fluid scales as ργ−1, i.e. as (scale)−3(γ−1) so that for
γ = 5/3, it scales like (scale)−2. Thus our investigation
applies equally to a γ5/3 fluid with a quasi gravity such
that every element of fluid attract every other in propor-
tion to their separation. It is well known, since Newton,
that such attractions are equivalent to every particle be-
ing attracted in proportion to its distance to the centre of
mass as though the total mass were concentrated there.
With such a law of interaction, we described the possi-
ble set of rotating pulsating equilibria it may reach, and
found them is qualitative agreement with our simulations
of the corresponding crystals, though the details of their
mass profile differed: this fluid model failed to give the
correct layering, while a more acurate model gives it cor-
rectly. Recently [14] used simulations of such systems to
test their smooth particle hydrodynamics codes.
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ABSTRACT
The onset of stochasticity is measured inΛCDM cosmological simulations using a set of clas-
sical observables. It is quantified as the local derivative of the logarithm of the dispersion of
a given observable (within a set of different simulations differing weakly through their initial
realization), with respect to the cosmic growth factor. In an Eulerian framework, it is shown
here that chaos appears at small scales, where dynamic is non-linear, while it vanishes at larger
scales, allowing the computation of a critical transition scale corresponding to∼ 3.5Mpc/h.
This picture is confirmed by Lagrangian measurements which show that the distribution of
substructures within clusters is partially sensitive to initial conditions, with a critical mass
upper bound scaling roughly like the perturbation’s amplitude to the power0.15. The cor-
responding characteristic mass,Mcrit = 2 1013

M⊙, is roughly of the order of the critical
mass of non linearities atz = 1 and accounts for the decoupling induced by the dark energy
triggered acceleration.

The sensitivity to detailed initial conditions spills to some of the overall physical prop-
erties of the host halo (spin and velocity dispersion tensor orientation) while other “global”
properties are quite robust and show no chaos (mass, spin parameter, connexity and center
of mass position). This apparent discrepancy may reflect the fact that quantities which are
integrals over particles rapidly average out details of difference in orbits, while the other
observables are more sensitive to the detailed environment of forming halos and reflect the
non-linear scale coupling characterizing the environments of halos.

Key words: Cosmology, Chaos, N-body, etc.

1 INTRODUCTION

Concerns regarding the predictability of cosmological measure-
ments in simulations have been with us for some time. In the neigh-
bouring field of secular galactic evolution, it has been known for
a while (Sellwood and Wilkinson (1993)) that the significant un-
dersampling of resonances could mislead the dynamical evolution
of N-body systems when the evolution time becomes large com-
pared to the local dynamical time. Over the course of the last
decade, various “universal” relationships (Navarro et al. (1997),
Zhang and Fall (1999), Richer et al. (1991)) have been extracted
numerically from cosmological N-body simulations. In this con-
text, significant efforts (Power et al. (2003)) have been invested
in comparing different numerical schemes and codes, but, with
the development of very high resolution “zoom” re-simulations
( Weil et al. (1998), Diemand et al. (2004), Hansen and Moore
(2006a) Sales et al. (2007), Strigari et al. (2007a)) one question re-
mains: how sensitive is a given run with respect to its initial con-
ditions? In particular, what set of observables is likely to be robust
with respect to a specific choice in the “phases” of the draw (the
whitened initial realization)? In the context of cosmology, the gen-
eral assumption has been that, even though the detailed orbits of

dark matter particles are likely to be poorly resolved by the numer-
ical schemes implemented, the properties of structures would nev-
ertheless be well representedstatistically. In other words, so long
as the simulated region was large enough to represent a fair sam-
ple of dynamically independent regions, the stochastic exponential
departure from the unperturbed trajectories was expected to aver-
age out when considering such a statistical sample. The question
remains for features specific to a given realization, such as the rel-
ative position of objects.

The sensitivity of the gravitational N-body problem to
small changes in initial conditions has been investigated in
details by Kandrup and collaborators in a series of papers
(Kandrup and Smith (1991, 1992); Kandrup et al. (1992, 1994)) in
the context of a Newtonian (time-independent) Hamiltonian. They
have shown in particular that the growth of small perturbations in
initial conditions is exponential, with a mean e-folding time that is
asymptotically independent of the number of particles at large N,
and a distribution of e-folding times that is reproducible from sim-
ulation to simulation for sufficiently large N. In the cosmological
context, the N-body description is an approximation of the colli-
sionless Boltzmann equation for the evolution of the dark matter,
so that another related question is in which sense a limit to the
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continuum can be established as the number of particles increases.
Indeed, it has been argued in the literature (Kandrup (1990);
Goodman et al. (1993)) that the discretization of smooth, and pos-
sibly integrable potentials invariably leads to strongly chaotic or-
bits in the N-body framework, independently of the number of par-
ticles; this has been confirmed numerically (Kandrup and Sideris
(2001); Sideris and Kandrup (2002)), both for integrable and non-
integrable underlying distributions by evolving orbits in “frozen-N
body” samplings of the smooth mass distributions. However, Kan-
drup and Sideris also showed that when one follows the deviation
of orbits evolved in the frozen-N and smooth potentials with identi-
cal initial conditions, and when the deviation amplitude is allowed
to reach large fractions of the system size (macroscopic view), a
continuum limit can be well defined in the sense that these macro-
scopic departures from the orbits of the smooth potentials (which
can be themselves either regular or chaotic) grow as a power law
with time, and that the characteristic divergence time is growing
with the number of particles. These results, together with the claim
of universality (halo profiles (Navarro et al. (1997)), their shape
(Hansen and Moore (2006b)), the mass functions (Zhang and Fall
(1999), Richer et al. (1991))) that is widely used in the cosmology
community, lead us to revisit the problem of the sensitivity of N-
body simulations to slight changes in the initial conditions at fixed
power spectrum in the cosmological context, and to numerically
investigate the presence (or absence) of “chaotic” behaviour of dif-
ferent statistical quantities derived from N body simulations. Our
focus will be on the transition between large scale linear dynam-
ics and small scale stochastic properties (Strigari et al. (2007b)). A
possible concern in this context is the development of stochastic-
ity induced by the ill-conditioning/non-linearity of the estimator of
the chosen set of observables. Another concern lies in the specifici-
ties of the numerical code used. Finally, numerical noise induced
by round-off errors should also be kept at bay, since they by them-
selves will lead to some level of stochasticity. Since the topic of
this paper is not optimal estimation, no attempt will be made to
argue that the set of estimators used here is superior or offers a bet-
ter trade-off in bias versus variance. Similarly, a standard integrator
(Springel et al. (2001)) is used to carry the simulations with a set of
conservative parameters. Round-off errors are assumed to be irrele-
vant. Specifically, this paper will investigate what scale and mass is
expected to play a role and will identify which quantities are found
to be robust with respect to such exponential divergence; it will also
find out if stochasticity breaks in as soon as non linearities occur or
if it is possible to identify two distinct time scales in the dynamics
of large scale structures.

This paper is organized as follows: in Section 2 the method
to characterize the statistical onset of stochasticity in numerical N-
body simulations is presented. In Section 3 the corresponding Lya-
punov exponents are computed for Eulerian quantities and (in Sec-
tion 4) for Lagrangian ones. Section 5 discusses other issues and
wraps up.

2 METHOD & SETTINGS

In this paper, we address the problem of the sensitivity of N-body
simulations to initial conditions. To do so, we choose to study how
slight changes in these initial conditions affect the evolution of the
dispersion of a number of statistical quantities with time. This is
achieved by generating several realizations of identical simulations
where a small amount of random noise has been added to the initial
realisation. The generic procedure goes as follows:

(i) Generate a cosmological simulation usinggrafic
(Bertschinger (1995)) and gadget (Springel et al. (2001)).

(ii) Start with the same noise file (i.e. the “phases”), but add a
Gaussian white noise with RMS 1/30th of the previous white noise
(except in Sections 3.2 and 4.4, where this amplitude is varied).
This only affects the relative positions of clumps, not their spec-
tral distribution (the expectation of the power spectrum remains
unchanged).

(iii) Rerun the simulation with the new white noise;
(iv) Iterate the above two steps ~50 times;
(v) Compute a set of observables in each simulation;
(vi) Compute the RMS (or the relative RMS) of the distribution

of observables for various expansion factors.
(vii) Fit the corresponding evolution of thelog RMS vs the ex-

pansion factor.
(viii) Possibly find the scaling of its corresponding Lyapunov

exponent (see below), with the smoothing scale associated with the
observable (see Sec.3.2), or the corresponding mass (see Sec.4.4).

Let us define the “Lyapunov exponent”,λX , as the rate of change
of the logarithm of the fluctuation of the relevant quantity,X, as a
function of the scale factor,a:

λX ≡ d ln σX

da
. (1)

This stochasticity parameter is not strictly speaking a Lyapunov
exponent since it corresponds neither to an asymptotic limit at
large time, nor to an asymptotic limit at small fluctuation. It is
closer in spirit to the short time Lyapunov exponent defined by
Kandrup et al. (1997).

In practice two distinct sets of simulations are considered in
this paper, one composed of 65 realisations of1283 particles each
(S1 hereafter) and the other of 27 realisations with2563 particles
each (S2 hereafter). The box size is100h−1Mpc, the cosmology
a standardΛCDM model (Ωm = 0.3, ΩΛ = 0.7, H0 = 70),
the softening parameter is39.5h−1kpc and the expansion factor
ranges from 0.05 up to 1 forS1 and from 0.05 up to 0.4 forS2 .
These two sets allow us to check the robustness of our finding with
respect to resolution. Lyapunov exponents will also be expressed
as characteristic timescales,τ , using the relationship between time
and expansion factor in a CDM model (or equivalently in aΛCDM
model belowa 6 0.5), a ∝ τ 2/3. Note that the resolution in mass
of FOF halos containing more than 100 particles corresponds here
to 4 1012 M⊙ for the setS1 and5 1011 M⊙ for the setS2 .

3 EULERIAN EXPONENTS

In this Section, we investigate the “global” chaos in the evolution
of the Eulerian properties of thedensity field with respect to the
expansion factora, as opposed to chaos in the Lagrangian proper-
ties of objects which are specific to the matter distribution in the
universe (such as halos and filaments). This will be addressed in
Section 4.

3.1 Chaos in density fluctuations

In order to study the density fluctuations, the density fields ofS1

andS2 are sampled on a643 grid using a simple NGP (nearest grid
point) method allowing the computation of statistical quantities on
the resulting grid, such as the average density or the density fluc-
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tuations.1 Within each set, for every pixel we compute the PDF of
the realisations of the density values at that pixel and then average
the individual pixel PDFs over all the pixels that have mean density
value across realisations above the given threshold. The evolution
of the width of this pixel-averaged PDF is then computed as a mea-
sure of the chaotic divergence amongst realisations with slightly
different initial conditions. Specifically, Figure 1 presents the evo-
lution of the mean relative dispersion of the density,δρ/ρ (where
ρ is the mean density of the pixel over all the realisations and not
the average density of the simulation), in identical pixels of the
different realisations ofS1 (middle panel) andS2 (bottom panel),
considering regions where density is greater than given thresholds.2

As expected, these measurements show that this dispersion in-
creases with time, as can easily be seen on thetop panelof figure 1,
where the PDF ofδρ/ρ is plotted for different values ofa. The fact
that the growth rate of the dispersion increases when considering
regions of higher densities may be explained by the higher level of
nonlinearity of the evolution of matter distribution in these regions.
In fact, in denser regions, the evolution becomes non-linear ear-
lier, which favors the development of chaos. But at later times, non
linearities have had time to develop at all considered overdensity
levels, which explains the asymptotic merging of the curves. The
exponential growth of the dispersions demonstrates that the evo-
lution is chaotic as defined in the introduction and allows for the
computation of Lyapunov exponents,λP , as the rate of change of
the logarithm of the average relative density fluctuation as a func-
tion of the scale factor.

The fact that the non-linearity in the evolution increases chaos
is illustrated by Figure 2, where maps of the average density
(top panel) and the corresponding Lyapunov exponentλP (bot-
tom panel) are plotted. Each map represents the projection of a
10h−1Mpc slice from a sample ofS2 ata = 0.35. The correlation
between the two maps confirms the dependence of chaos on over
density (see also the projections of different realisations of the same
halos on Figure 6, where substructures are clearly different even
though the shape of main halos remains mostly the same). These
results must nonetheless be interpreted with care as the use of a
finite sampling grid may bias the measurements. Indeed, consider-
ing higher density regions amounts to considering smaller scale re-
gions, of order the size of the grid pixels (≈ 1.5h−1 Mpc3), which
may affect the measured value ofλP .

3.2 Chaos transition scale

Transition to chaotic behaviour of the density field that started with
linear evolution is fundamentally linked to the development of the
nonlinearity. Since different scales enter nonlinear regime at dif-
ferent epochs, one expects that at a given time there exist a tran-
sition scale,Lc, below which variation of the density in pixels of
the sampled field is clearly chaotic. Figure 3 presents the behaviour
of the average value ofλP for different perturbation amplitudesA,
as a function of the scaleL. These measurements are derived by
computing the average Lyapunov exponents in pixels on the sam-
pled maps shown in figure 2, smoothed using a Gaussian kernel of

1 we also considered a1283 grid and found no difference in the measured
exponents.
2 note that the number of pixels above a given threshold is going to depend
on redshift, but for the contrasts considered here, the error on the dispersion
due to shot noise is always negligible, as we have at least8000 particles
above the highest threshold, at the highest redshift.
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Figure 1. top: Evolution of the pixel-averaged PDF of the density val-
ues while samplingS1 on a 643 grid for different values ofa ∈
[0.1(light), · · · 0.4(dark)] (only the pixels whereρ/ρ̄ > 2 were con-
sidered, wherēρ is the cosmic mean density). As expected the full width
half max (FWHM) of the distribution increases exponentially with the ex-
pansion factor reflecting the chaotic behaviour of the PDF of the density
field; middle: temporal evolution of the dispersion in the sampled density
field per unit of the mean density, for sub regions ofS1 corresponding to
thresholds in overdensityρ/ρ̄ of 0.5, 1, 1.5 and 2 respectively as labelled.
The asymptotic merging for different thresholds reflects the fact that at later
times, regions of different overdensity levels are all in the nonlinear regime;
bottom: same as middle frame but forS2.
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Figure 2. Logarithm of the projected density of the pixels (top frame)
and their associated Lyapunov exponent (bottom frame), for a projected
10h−1Mpc sliceS2 ata = 0.35. The comparison of the two maps empha-
sizes the correlation of the two fields: denser regions have larger Lyapunov
exponents. On closer inspection, one may argue that larger Lyapunov expo-
nents lie in the outskirts of the denser regions.

FWHM L, and considering only the overdense regions (ρ/ρ̄ > 1).
Density is computed by making a histogram of particles in the grid
using the NGP method, and by smoothing it with a Gaussian kernel
afterwards. The measurements are performed at the present time,
a = 1 in S1 simulation and ata = 0.4 for S2 set.

The plot demonstrates a rather sharp transition to chaotic be-
haviour at scales below the critical smoothing lengthLc ≃ 3.5h−1

Mpc with Lyapunov exponent increasing for ever smaller scales,
whereas on larger scales the Lyapunov exponent is small and con-
stant. This behaviour is indicative of theΛCDM background cos-
mology of the standard model. Indeed, in the pure CDM cosmology
with the critical density of the matter, the gravitational clustering
would have continued to escalate to present time and one expect
to see Lyapunov exponent falling smoothly toL ≃ 8h−1Mpc,
the present-day nonlinear scale3. In contrast, inΛCDM cosmol-

3 The nonlinear scale is usually defined with top-hat smoothing as
σ2(RTH) = 1. The FWHM of the Gaussian smoothing filterL that we
use gives similar variance to the top-hat filter atRTH ≈ 0.9L. Our simula-
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Figure 3. Evolution of the average Lyapunov exponent of the pixel den-
sity fluctuations,λP , as a function of the smoothing lengthL for regions
whereρ/ρ̄ > 1 and for different amplitudes of the initial perturbations,A
(expressed as a fraction of the initial dispersion amplitude) measured in the
setS1. The top dark dashed line corresponds to the setS2 for A = 1/30.
The sharp transition nearLsmooth ≈ 3.5Mpc/h is exhibited in both res-
olutions. The perturbation amplitude does not affect the result significantly.
The difference in time of measurement for theS2 curve (slightly earlier
than the freeze-out time aroundz ∼ 1) may explain small the difference
in the corresponding non linear scale. The bottom light dashed line corre-
sponds also toA = 1/30 in S1 but measured on a1283 grid; it shows that
the exponent is not sensitive to the sampling resolution.

ogy the hierarchical clustering saturates when the dark energy be-
gins to accelerate the expansion of the Universe. Numerical simula-
tions show that in the standardΛCDM model the clustering largely
ceases byz ∼ 1 ((Hatton et al. 2003)). The non-linear scale at this
redshift isL = 3.7h−1Mpc, which corresponds to the mass scale
M ≈ 2 × 1013M⊙. The halos of smaller mass collapse en masse
at earlier times passing byz = 1 through a period of hierarchi-
cal mergers with similar-mass halos as well as accretion that con-
tributes to the formation of the chaotic features. Whereas the larger
overdense patches, even the rare ones that turned around byz ∼ 1
and will collapse by the present time, evolve in a quiescent environ-
ment of frozen hierarchy (van den Bosch 2002; Aubert and Pichon
2007). This argues forL ≈ 3.7h−1Mpc providing the fixed critical
length between chaotic and regular regimes for allz < 1, which is
in general agreement with our measurements.

4 LAGRANGIAN EXPONENTS

In the previous section, we studied the development of chaos in the
density field of cosmological simulations. We measured the evolu-
tion of the variance of this density field on a grid (i.e. at peculiar
Eulerian locations) and showed that chaos tends to be more pro-
nounced in higher density regions as well as on smaller scales. Let
us now focus instead onLagrangian properties of peculiar objects
with a physical significance such as dark matter halos or filaments.

tions are normalized toσ(8h−1Mpc) = 0.92 which ata = 1 corresponds
to nonlinear scaleRTH ≈ 7.2h−1Mpc, i.eL ≈ 8h−1Mpc.
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4.1 Inter skeleton distance

Filaments correspond to a central feature of the large scale distri-
bution of matter: large void regions are surrounded by a filamen-
tary web linking haloes together. Studying the properties of the
filaments isn’t an easy thing and one first needs to find a way of
extracting their location from a simulation. The skeleton gives a
mathematical definition of the filaments as the locus where, start-
ing from the filament type saddle points (i.e. those where only one
eigenvalue of the Hessian is positive), one reaches a local maxi-
mum of the field by following the gradient. This is equivalent to
solving the equation:

dx

dt
≡ v = ∇ρ , (2)

for x, whereρ(x) is the density field,∇ρ its gradient, andx the
position. Although apparently simple, solving this equation is quite
difficult which is why a local approximation was introduced in
(Sousbie et al. (2006, 2007)): thelocal skeleton. One can show
that, up to a second order approximation, solving Equation (2) is
equivalent to finding the points in the field where the gradient is
an eigenvector of the Hessian matrix together with a constraint on
the sign of its eigenvalues. This approach leads to a system of two
differential equations, solved by finding the intersection of two iso-
density surfaces of some function of the density field and its first
and second derivatives. This procedure is very robust and allows
for a fair detection of the dark matter filaments. Figure 4 displays
the skeleton of different realisations ofS2 at a(t) = 0.1 (top) and
a(t) = 0.4 (bottom). Note that the dispersion of the skeleton lo-
cation has increased with the scale factor. Using the method de-
scribed in (Sousbie et al. (2006, 2007)), thelocal skeleton provides
a list of small segments. In order to measure the distance between
two skeletons, for each segment, the distance to the closest seg-
ment in the other skeleton is computed leading to the PDF of this
distribution. The mean distance between the two skeletons is set
to the position of the first mode of their inter-distance PDF (See
also Caucci et al. (2008)). We then define a mean inter-skeleton
distance among all the realisations within a set as the arithmetic
average of their pairwise distances. This means that the normal-
ized inter-skeleton distance,〈D〉 /L0, is our measure of the dis-
persion in the skeleton location. It is a Lagrangian property since
it follows the flow. Its evolution as a function of the scale factor
is plotted on Figure 5 for different smoothing lengthsL0, for S2

(top) and S1 (bottom). The smoothing operation is achieved, as
previously, by convolving the density field with a Gaussian ker-
nel of FWHML0, ranging fromL0 = 1.2 h−1Mpc (3 pixels) up to
L0 = 3.5 h−1Mpc (9 pixels). It is clear that whatever the smooth-
ing scale or the resolution used, the evolution of the dispersion is
linear with the scale factor. A shift in the skeleton of the initial
conditions will evolve linearly with time and not exponentially: the
skeleton at present time won’t be affected very much. There is no
chaotic drift of the position of the skeleton and thus no chaos in
the evolution of the cosmic web. Note nonetheless that the smaller
the smoothing length, the stronger the increase of〈D〉 /L0. This
implies that smaller scales are more sensitive to initials conditions,
which is confirmed by the fact that〈D〉 /L0 is larger for lower val-
ues ofL0, whatever the value ofa.

4.2 Positions of halos

Turning to stochasticity on smaller scales in a Lagrangian frame-
work (i.e. ignoring the absolute shift in position relative to a fixed

Figure 4. The local skeletons of the different realisations ofS2, computed
at a(t) = 0.1 (top) anda(t) = 0.4 (bottom) and for a smoothing length
L0 = 1.2h−1Mpc. Each figure corresponds to the projection of a10h−1

Mpc thick slice. Each color represents a different realisation of the simula-
tion, the color coding is not consistant between the top and the bottom pan-
els. The dispersion in the position of the skeletons appears to have grown
from a(t) = 0.1 to a(t) = 0.4.
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Figure 5. The normalized mean distance,〈D〉 /L0, between the skeletons
of S2 (top) andS1 (bottom) as a function of the scale factor and for different
values of the smoothing length,L0 in h−1 Mpc. Because of the lack of
accuracy at smaller scales, only the larger smoothing lengths are represented
for S1. At these resolutions, the two sets agree. The cosmic web dispersion
clearly evolves linearly with time, confirming that chaos is linked to non-
linearities.

Figure 6. Heaviest cluster (in the X-Y plane in Mpc/h) of 9 realisations
of S2 at z = 1.5. The position and the global shape of the halo does
not change from one simulation to another, but the substructures are quite
different; this is confirmed via automated substructure identification using
ADAPTAHOP.

frame), let us define a matching procedure to identify structures in
different runs. haloes are first identified using the FOF algorithm
(Davis et al. (1985); Suginohara and Suto (1992)) with a percola-
tion length of0.25h−1Mpc for S1 and0.5h−1Mpc for S2 corre-
sponding to0.2× mean interparticular distance. In order to tag dif-
ferent FOF haloes in different realisations as counterparts, all par-
ticles of a given halo are matched in another realisation using their
initial index (Figure 6). The halo of the other simulation containing
most of these particles is tagged as its counterpart. The procedure is
carried over all pairs of simulations, allowing the measurement of
the variation in the halo properties like their spins, their positions,
their velocity dispersion tensors or their masses.

As shown on Figure 6, the haloes locations seem relatively
insensitive to small changes in the initial conditions. The evolu-
tion of the mean distance between a halo in a given simulation and
the same halo in another realisation is linear, as for the skeleton,
which confirms the first impressions: no chaos is observed at linear
scales and soλQ, the Lyapunov exponent of the inter halo distance,
is null. But the most interesting results involve the substructures.
The halo pictured in Figure 6 is a good example of the generic be-
haviour. The number of substructures changes from one realisation
to another (here, 1 or 2 substructure(s)) and their positions also dif-
fer. These results are confirmed by an automated detection of the
substructures usingADAPTAHOP (Aubert et al. (2004)). Both the
locations and the number of substructures are possibly subject to
chaos, but the lack of a cross identification procedure makes it dif-
ficult to quantify it and is somewhat beyond the resolution of these
sets of simulations (Section 4.3 addresses this problem for the FOF
halos). This trend confirms quantitatively the findings of section 3.1
from the point of view of Eulerian estimators which are sensitive
to the detailed extension of the distribution of matter within halos:
denser regions were found to be chaotic, and will be addressed in
more details in Section 4.4 in terms of halo density and velocity
moments.

4.3 Connexity and mass of clusters

The connexity of haloes can be defined as follows: considering
the pthhalo, Hr

p , in the rth realisation, its particles are spanned

amongstn haloes in ther′th realisation, and a fractionfrr′

pk (k ∈
1, .., n) of them belong to a halok amongn in ther′th realisation.
Hence, its relative connexityCrr′

p can be defined as:

Crr′

p =

n
X

i=1

i

0

@

i
Y

j=1

n
X

k=j

frr′

pk

1

A , (3)

where by constructionCrr′

p is equal to one if both haloes are iden-

tical in realisationsr andr′; Crr′

p is equal ton if the halop splits

into n haloes with equal fractionsfrr′

pk = 1/n in realisationr′,

while preserving continuity when the values offrr′

pk differ, see Ap-
pendix A. The mean connexity,C, is obtained by averaging over all
haloes containing more than100 particles in every possible com-
binations of realisations and is a measure of the dispersion of the
particles.

As shown on Figure 7,C increases with the scale factor, rang-
ing from 1.17 (i.e., statistically, 90% of the particles belong to a
unique halo in other realisations) to1.37 ( 85%) from a = 0.2 up
to a = 1.0. The connexity clearly does not vary exponentially with
the scale factor : there are statistically no halo fission during evo-
lution (thanks to the efficiency of dynamical friction). Moreover,
two haloes marginally linked by FOF would almost always end up
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Figure 7. The haloes average connexity computed over all the realisations
of S1 as a function of the scale factor. While the connexity is not subject to
chaos, its value increases with time. This result can be understood through
the difference in merging time of the haloes.

merging sooner or later. More and more haloes merge at different
times in different realisations which is in part due to the fact that
some threshold is involved in the FOF algorithm: a precise linking
length has to be chosen, inducing the possibility that small changes
in particles position can induce significant changes in halo merg-
ing time (according to the FOF definition of a halo). At later times
(a > 0.7), the connexity reaches a plateau, which suggests that
when haloes are massive enough (M > Mc, see Section 4.4 be-
low), they become insensitive to the merging of lighter ones, since
equal mass merging rarely occur belowz = 1. The analysis of the
masses of the haloes shows that there is no sweeping change and so,
no obvious evolution of the haloes mass distribution: the associated
Lyapunov exponent,λM , is null. The number of different particles
increases with time but the missing particles are replaced by new
particles. Thus, the mass stays quite constant even as the connex-
ity increases. It follows that the mass function extracted from the
N-body simulations are found to be quite robust with respect to
changes in the initial conditions. Although the masses of the haloes
are similar in different realisations, some of the particles which
compose them may be different, which may generate differences
in the physical properties of the haloes. The substructures are dif-
ferent (Fig. 6) in their numbers and positions, which is responsible
for the Eulerian chaos found in Section 3.2. Let us now re-explore
this in a Lagrangian framework.

4.4 Spin Orientation of clusters

The influence of chaos on the spin of haloes is estimated by com-
puting the cosine of the angle,θpq, between the spinsJp andJ q of
corresponding haloes in two different realisations p and q:

cos(θpq) =
Jp · Jq

‖Jp‖ ‖J q‖
. (4)

For every bin of mass, a measure of the dispersion,σ, of the orien-
tation is given by the average angle:4

σ = arccos

 

1

Nc

Nc
X

i=1

cos θpq

!

, (5)

where the sum is over all theNc possible pairwise combinations of
realisations. Note that only bins of masses containing more than 30
haloes have been retained.

Figure 8 displays the exponential growth of this dispersion
with time, and shows that the precise value of its associated Lya-
punov exponentλσ depends on the selected bin of mass. It also
shows that the exponent does not seem to be sensitive to shot noise,
as its value is left unchanged when resolution is increased between
S1 andS2.

Also, as it is seen in Fig.6, the detailed distribution of satellites
within a given cluster varies from one realisation to another; the an-
gular momentum orientation (in contrast to say, its modulus or the
halo mass) is quite sensitive to the outer region of the distribution.
Recall that the spin parameter (i.e. theΛ = J/(

√
2MV200R200)

(Bullock et al. (2001), Aubert et al. (2004)) of a halo displays no
chaotic behaviour. It stays quite constant from a simulation to an-
other and the evolution of its dispersion is not exponential.

The measured Lyapunov exponent ranges from 0 to 0.3. The
value of the mean dispersion of the orientation of the spin for heav-
ier haloes is about 35 degrees (= exp(3.55)). Globally this sug-
gests that the orientation of the spin varies with the tidal field,
which in turn depends on the relative position of structures within
the environment of the halo.

For lighter haloes, the measured value ofλσ is higher than
for heavier ones (Figure 8) which may be partly explained by the
fact that a slight change in a few clumps within the haloes has a
larger influence on its spin when they represent a significant frac-
tion of it. Faltenbacher & al. (Faltenbacher et al. (2005)) showed
that if the lightest halo has a mass less than10% of the mass of the
larger halo, the orientation of the resulting post merging halo will
remain statistically the same. In contrast, if its mass is greater than
20% of the more massive halo, the final orientation of the merged
halo depends on the speed vector of the two progenitors. Our re-
sults corroborate well their finding since the lightest haloes that
are formed by merging of two substructures of comparable masses
have chaotic spins (substructures being chaotic, see Section 3 and
Figure 6), while heavier ones have spin that are relatively stable
with time (they only merge with much smaller haloes). It emerges
from these measurements that there is a critical mass,Mc, above
which chaotic behaviour disappears. Haloes heavier than this mass
are too heavy to feel the influence of incoming clumps and their
spins are clearly defined. They are therefore not subject to chaos
and their Lyapunov exponents are null at the one sigma level, in
contrast to lighter ones whose spin are sensitive to the initial con-
ditions and whose Lyapunov exponents are positive.

As for the critical smoothing length (see Section 3), we can
study the evolution of this critical mass as a function of the ampli-
tude,A, of the perturbations. Figure 9 shows this evolution. A good
fit of this transition mass is given byMc = 21013 M⊙A0.15. The
higher the amplitude of the perturbations, the higher the required
time for haloes to have a spin clearly defined. Consequently, the
critical mass increases with the perturbation amplitude, and haloes
that can be considered stable are heavier. Note that it means that

4 the estimator of the dispersion, Eq. (5) is robust since weighting the sum
by the spin parameter yields the same results.
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Figure 8. Logarithm of the dispersion of the angle between the spin
of one halo ofS1 as a function of the scale factor. Results are com-
puted for different ranges of masses,5 1012M⊙<M<6 1012M⊙ (top) and
1.6 1013M⊙<M<2 1013M⊙ (bottom). For heavier halos the Lyapunov ex-
ponent vanishes. The triangles correspond to the first class of lighter mass,
but measured inS2; the exponent remains unchanged which suggests that
particle shot noise is not an issue.

the spin is constant with time but not very reliable since its final
orientation depends, in part, on the initial conditions.

4.5 Orientation of the velocity dispersion tensor

The orientation of the velocity dispersion tensor is also a quantity
of interest from the point of view of stochasticity since it is related
to the shape of the halo via the Virial theorem. The correspond-
ing estimator involves computing the orientation of the eigenvector
V associated to the largest eigenvalue of the velocity dispersion
tensor. As for the orientation of the spin, (Sec. 4.4) the angleθpq

between the eigenvectorV p of the halo in simulationp and its cor-
responding eigenvectorV q in a simulationq is computed as:

cos(θpq) =
V p.V q

‖V p‖ ‖V q‖
. (6)

For every bin of mass, a measure of the dispersion,σ, is also given
by Equation (5). Once again, only bins of masses containing more
than 30 haloes were considered. As shown in Figure 10 this esti-
mate is consistent with the exponents of the orientation of the spin:
only the lightest masses are sensitive to the initial conditions, while
the dispersion of the orientation for the heavier masses is constant
(about 40 degrees). The measured Lyapunov exponent,λT , ranges
from 0 up to 0.65 . These results corroborate well those for the spin
axis, given that its orientation follows the third eigenvector of the
dispersion matrix (i.e. the axis along which dispersion is the small-
est). Faltenbacher et al. (2005) showed that the orientation of the
principal axis of the halo is correlated with the vector linking the
two mergers (i.e. their relative positions) particularly in the case
where one of the mergers has a mass smaller than10% of the sec-
ond one. The chaos found at small scales (substructures scale) is
once again responsible for the chaos in these geometrical properties
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Figure 9. Critical mass,Mc, (in units of1010M⊙) for the spin orientation
as a function of the amplitude of the perturbations,A (in fraction of the
initial dispersion amplitude). It appears thatMc = 21013M⊙ A0.15. The
larger the amplitude of the perturbation, the heavier the haloes that can be
considered stable.

of haloes since changing the initial conditions amounts to changing
the relative positions of the substructures (see sec.3.1) and thus to
changing the orientation of the resulting halo’s dispersion tensor.
As for the spin, there is evidence of a critical mass above which
chaotic evolution disappears: more massive haloes only merge with
lighter ones that do not affect their global properties.

5 CONCLUSION AND DISCUSSION

Let us first emphasize here again that the term chaos is used in this
paper in the loose sense, as the age of the universe does not allow
for many e-foldings on larger scales. Table 1 summarizes the dif-
ferent Lyapunov exponents computed in this paper. As shown in
section 3.1 (Figure 3), chaos appears below a critical scale which
corresponds roughly to cluster scales. The higher the density, the
more chaotic is the corresponding region. We also found that both
Lagrangian and Eulerian measurements are consistent: super clus-
ters and filaments, whose dynamics is globally linear (large scale
structures), are not stochastic: a shift in the initial conditions will
increase linearly with the scale factor. By contrast, the distributions
of substructures within clusters, whose characteristic size is smaller
than∼ 3.5h−1Mpc, are governed by non-linear dynamics and may
undergo a stochastic evolution for some observables.

Nevertheless, this chaos at substructures scale does not occur
for all physical characteristics of the cluster’s halo. A main fraction
of particles remains in the same halo from one realisation to an-
other, while a difference arises (in part) from the delay in merging
times of the substructures. These timing effects are however aver-
aged out yielding, to first order, a constant halo mass. It follows
that the mass function derived from a simulation is quite consistent
from one realisation to another. Similarly, the dispersion of the am-
plitude of the total spin of haloes does not increase exponentially
with time.

The mass of a given halo is an integrated quantity which does
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Figure 10.Logarithm of the dispersion of the angle between the first eigen-
vector of the velocity dispersion tensor of the haloes ofS1, as a function
of the scale factor. Results are computed for different ranges of masses:
5 1012M⊙<M<6 1012M⊙ (top) and2.3 1013M⊙<M<2.8 1013M⊙ (bot-
tom). The less massive haloes are more sensitive to the initial conditions,
the average angle being constant for the heavier ones, about a value of40
degrees. The triangles correspond again to theS2 set and shows not differ-
ence. The Lyapunov exponent,λT ranges from0 to 0.65.

not trace which specific particle entered the FOF halo; similarly,
the spin parameter is also an adiabatic invariant, and the trace of the
dispersion tensor will relax rapidly to its virial expectation (which
is mass dependent) in a few short dynamical times; in contrast, the
spin orientation or the orientation of the dispersion tensor will de-
pend precisely on the orientation of velocities of the entering parti-
cles and has no direct relation to the mass of the halo; it also reflects
the initial environment of the proto halo. For instance it has been
shown in Sousbie et al. (2007), Aubert et al. (2004) that the halos
preferentially anti-align their spin with the axis of the filament in
which they are embedded, while we have shown in Section 4.1 that
the filament’s locus was not stochastic.

It is possible to recast these interpretations in the context of
the peak-patch (Bond and Myers (1996)) description of haloes. In
this framework, massive haloes correspond to large quasi spherical
patches around density peaks, which non-linear evolution will de-
couple from their neighbouring large patches thanks to the cosmic
acceleration belowz ∼ 1. Conversely, small haloes correspond
to small typically aspherical peak-patches, and will acquire tidal
torques early on which depend specifically on the detailed white
noise realisation (which fixes the shape of the peak-patches). In the
tidal torque theory, the mass and the spin parameter are essentially
integral functions over the volume of these patches, hence will not
depend on the initial perturbations, whereas the spin orientation it-
self is sensitive to these perturbations, at least at the lower end of the
mass spectrum. This is consistent with the low scatter relationship
between the spin parameter and the mass (Aubert et al. (2004)).

Thanks to angular momentum leverage, the orientation of
haloes is itself affected by stochasticity mostly at small scales, a
result which seems insensitive to shot noise as the lyuponov ex-

λ τ (Gyear)

Pixels PDF,λP 0-2.5 3.4-∞

Velocity dispersion tensor,λT 0-0.65 25-∞

Spin orientation,λσ 0.-0.31 75-∞

Inter skeleton distance,λS ∼ 0 ∞

Connexity,λC ∼ 0 ∞

Position of the halos and substructures,λQ ∼ 0 ∞

Mass of the halos,λM ∼ 0 ∞

Spin parameter,λΛ ∼ 0 ∞

Mean dispersion of velocity,λV ∼ 0 ∞

Table 1. Lyapunov exponents of the different observables studied. Inter-
estingly, many global properties of halos do not display chaotic behaviour.

ponents are consistent between setsS1 andS2. In fact, as long as
the haloes merging together have similar sizes (masses), the ori-
entation of both spin and velocity dispersion tensors is determined
by the relative positions and velocities of the two mergers, whose
dynamics is non-linear and whose characteristic size is below the
critical scale (Figure 3). These results seem robust with respect to
resolution.

When the halo is formed and well-isolated by cosmic accelera-
tion, it merges only with satellites/substructures whose masses rep-
resent a small fraction of the host’s mass. Consequently, their ori-
entations are globally preserved after merging, and thus, the chaotic
behaviour stops and the dispersion in the orientation remains at the
same level (i.e. the resulting average angle is unchanged). Hence,
a critical mass can be defined as the mass above which this chaotic
behaviour of the orientation stops. The measured value of this crit-
ical mass,Mc = 21013M⊙A0.15, is just below the scale of non-
linearity atz ∼ 1 and shows weak dependence on the amplitude
of the added perturbative noise:Mc = 21013M⊙A0.15. Although
some slow increase ofMc with A is expected since adding power
to inhomogeneities shifts the nonlinear scale to higher masses, the
details of the dependence require further investigation.

This paper has concentrated on a realisticΛCDM cosmology:
it would also be interesting to rerun this investigation on scale-free
power spectra to confirm that the dark energy is indeed responsible
for the saturation ofMc. A natural extension of this work, clearly
beyond its current scope, would also involve computing Lyapunov
exponents for the properties of substructures within halos (see for
instance Valluri et al. (2007)), and parameters corresponding to the
inner structure of halos, such as NFW concentration parameter, the
phase space densityQ = ρ0/σ3 (Peirani et al. (2006)), the Gini
index or the asymmetry (Conselice et al. (2007)) within the FOF.

In closing, the answer to our riddle is that chaos and non-
linearities are very strongly linked, and both occur at small scales
(substructures scales) though some non linear halo parameters
(spin, mass etc...) do not seem to be subject to chaos. While the
large scale structures in a simulation (filaments and haloes) are
quite robust both in their locus and properties, the distribution of
substructures is more sensitive to initial conditions since their num-
bers and positions vary when initial conditions vary. This in turn
may prove to be a concern when generating zoomed resimulations.
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APPENDIX A: CONNEXITY

Let us consider a halo,H , split into n parts,P n
i , i 6 n, with a

fraction, fi, of its particles in each of them, the indicesi being
sorted following the decreasing values offi (fi > fj if i < j).
A measureCn of the connexity ofH should indicate the number
of clumps into which it was split, this number does not necessarily
have to be an integer, depending on the fraction of the mass ofH
that went into eachP n

i . For instance, ifn = 2, we want to obtain
C2 = 2 whenf1 = f2 = 1/2 andC2 → 1 whenf1 → 1 and
f2 = 1 − f1 → 0; as the indices are sorted,0 < f2 < 1/2. So, in
this case, we could write the connexity ofH as:

C2 = 1 + 2f2. (A1)

Now, considering thatH was split into3 partsP 3

i , then0 <
(f2 + f3) < 2/3 and0 < f3 < 1/3. SoC′

3 = 2 + 3f3 → 2
if f3 → 0 andC′

3 → 3 whenf3 → 1/3. It follows thatC′′
3 =

(f2 + f3)C
′
3 → 2 whenf2 → 1/3 (which implies thatf3 → 1/3)

and thatC′′
3 → 0 whenf2 → 0 (which implies thatf3 → 0 also).

So

C3 = 1 + (f2 + f3)(2 + 3f3) (A2)

has the right properties to represent the connexity of a halo split
into 3 parts. Hence, by generalizing recursively this formula, we
obtain:

Cn = 1 + (f2 + · · · fn) [2 + (f3 + · · · fn) [· · · [n − 2+ (A3)

(fn−1 + fn) [(n − 1) + nfn]] · · ·]] , (A4)

which can be developed as:

Cn = 1 + 2(f2 + · · · fn) + 3(f2 + · · · fn)(f3 + · · · fn) + (A5)

· · · + n(f2 + · · · + fn)(f3 + · · · + fn) · · · (fn) , (A6)

=

n
X

i=1

i

0

@

i
Y

j=1

n
X

k=j

fk

1

A , (A7)

which corresponds to Eq. (3). Note that by construction, the braket
in Eq. (A7) is smaller than1/i, so thatCn is always smaller or
equal ton.
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A B S T R A C T

A general inversion technique for the recovery of the underlying distribution function for

observed galactic discs is presented and illustrated. Under the assumption that these discs

are axisymmetric and thin, the proposed method yields a unique distribution compatible

with all the observables available. The derivation may be carried out from the measurement

of the azimuthal velocity distribution arising from positioning the slit of a spectrograph

along the major axis of the galaxy. More generally, it may account for the simultaneous

measurements of velocity distributions corresponding to slits presenting arbitrary

orientations with respect to the major axis. The approach is non-parametric, i.e. it does

not rely on a particular algebraic model for the distribution function. Special care is taken

to account for the fraction of counter-rotating stars, which strongly affects the stability of

the disc.

An optimization algorithm is devised – generalizing the work of Skilling & Bryan – to carry

this truly two-dimensional ill-conditioned inversion efficiently. The performance of the overall

inversion technique with respect to the noise level and truncation in the data set is investigated

with simulated data. Reliable results are obtained up to a mean signal-to-noise ratio of 5, and

when measurements are available up to 4Re. A discussion of the residual biases involved in

non-parametric inversions is presented. The prospects of application of the algorithm to

observed galaxies and other inversion problems are discussed.

Key words: methods: data analysis – methods: numerical – galaxies: general – galaxies:

kinematics and dynamics.

1 I N T RO D U C T I O N

In years to come, accurate kinematical measurement of nearby disc

galaxies will be achievable with high-resolution spectroscopy.

Measurement of the observed line profiles will yield relevant data

with which to probe the underlying gravitational nature of the

interaction holding the galaxy together. Indeed the assumption that

the system is stationary relies on the existence of invariants, which

put severe constraints on the possible velocity distributions. This is

formally expressed by the existence of an underlying distribution

function which specifies the dynamics completely. The determina-

tion of realistic distribution functions which account for observed

line profiles is therefore required in order to understand of the

structure and dynamics of spiral galaxies.

Inversion methods have been implemented for spheroids

(globular clusters or elliptical galaxies) by Merrifield (1991),

Dejonghe (1993), Merritt (1996, 1997), Merritt & Tremblay

(1993, 1994), Emsellem, Monnet & Bacon (1994), Dehnen

(1995), Kuijken (1995) and Qian (1995). Indeed, for spheroids,

the surface density alone yields access to the even component of a

two-integral distribution function which may account for the inter-

nal dynamics (while the odd component can be recovered from the

mean azimuthal flow). However, the corresponding recovered

distribution might not be consistent with higher Jeans moments,

since the equilibria may involve three (possibly approximate)

integrals. The inversion problem corresponding to a flattened

spheroid which is assumed to have two or three (Stakel-based)

integrals has been addressed recently by Dejonghe et al. (1996) and

is illustrated by NGC 4697. Non-parametric approaches have in

particular been used with success by Merritt & Gebhardt (1994) and

Gebhardt et al. (1996) to solve the dynamical inverse problem for

the density in spherical geometry. If the spheroid is seen exactly

edge on, Merritt (1996) has devised a method which allows one to

recover simultaneously the underlying potential.
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Here the inversion problem for thin and round discs is addressed

for cases where symmetry ensures integrability. In this context, the

inversion problem is truly two-dimensional and requires special

attention for the treatment of quasi-radial orbits in the inner part of

the galaxy.

By Jeans’ theorem the steady-state mass-weighted distribution

function describing a flat galaxy must be of the form f ¼ f ð«; hÞ,

where the specific energy, «, and the specific angular momentum, h,

are given by

« ¼ 1
2
ðv

2
R þ v

2
fÞ ¹ w ; h ¼ R vf : ð1Þ

Here vR and vf are the star radial and angular velocities respectively

of stars confined to a plane and wðRÞ is the gravitational potential of

the disc. The azimuthal velocity distribution, FfðR; vfÞ, follows

from this distribution according to

FfðR; vfÞ ¼

�

f ð«; hÞ dvR ; ð2Þ

where the integral is over the region 1=2 × ðv
2
R þ v

2
fÞ < w

corresponding to bound orbits. Pichon & Lynden-Bell (1996)

demonstrated that, in the case of a thin round galactic disc, the

distribution can be analytically inverted to yield a unique f ð«; hÞ

provided the potential wðRÞ is known. The velocity distribution

FfðR; vfÞ can be estimated – within a multiplicative constant –

from line-of-sight velocity distribution (LOSVD) data obtained by

long-slit spectroscopy when the slit is aligned with the major axis of

the galactic disc projected on to the sky. Similarly, the rotation curve

observed in H I gives in principle access to the underlying potential.

More generally, simultaneous measurements of velocity distribu-

tions are derived with slits presenting arbitrary orientations with

respect to the major axis, as discussed in Appendix C.

The inversion of equation (2) is known to be ill-conditioned: a

small departure in the measured data (e.g. caused by noise) may

produce very different solutions since these are dominated by

artefacts corresponding to the amplification of noise. Some kind

of balance must therefore be found between the constraints imposed

on the solution, in order to deal with these artefacts on the one hand

and the degree of fluctuations consistent with the assumed informa-

tion content of the signal on the other hand (i.e. the worse the data

quality, the lower the informative content of the solution and the

greater the constraint on the restored distribution so as to avoid an

over-interpretation of the data). Finding such a balance is called the

‘regularization’ of the inversion problem (e.g. Wahba & Wendel-

berger 1979) and methods implementing adaptive level of regular-

ization are described as ‘non-parametric’.

Under the assumption that these discs are axisymmetric and thin,

the proposed non-parametric methods described in this paper yield

in principle a unique distribution: the smoothest solution consistent

with all the available observables, the knowledge of the level of

noise in each measurement and some objective physical constraints

that a satisfactory distribution should fulfil.

Section 2 presents all relevant theoretical aspects of regulariza-

tion and non-parametric inversion for galactic discs distributions.

Section 3 present the various algorithms and the corresponding

numerical techniques, which we implemented in steps to carry

efficiently this two-dimensional minimization. It corresponds in

essence to an extension of the work of Skilling & Bryan (1984) for

maximum entropy to other penalizing functions that are more

relevant in this context. All techniques are implemented in

Section 4 on simulated data arising when the slit of the spectrograph

is aligned with the long axis of the projected disc. A discussion

follows.

2 N O N - PA R A M E T R I C I N V E R S I O N F O R F L AT

A N D RO U N D D I S C S

The non-parametric inversion problem involves finding the best

solution to equation (2) for the distribution function when only

discretized and noisy measurements of FfðR; vfÞ are available.

A distinction between parametric and non-parametric descrip-

tions may seem artificial: it is only a function of how many

parameters are needed to describe the model with respect to the

number of independent measurements. In a parametric model there

is a small number of parameters compared with the number of data

samples. This makes the inversion for the parametric model some-

what regularized, i.e. well-conditioned. Once the model has been

chosen, however, there is no way to control the level of regulariza-

tion and the inversion will always produce a solution, whether the

parametric model and its implicit level of regularization is correct or

not. In a non-parametric model, as a result of the discretization,

there is also a finite number of parameters but it is comparable to

and usually larger than the number of data samples. In this case, the

amount of information extracted from the data is controlled

explicitely by the regularization. Here the latter non-parametric

method is therefore preferred, because no particular unknown

physical model for disc distributions is to be favoured.

2.1 The discretized kinematic integral equation

Since « is an even function of vR and since the relation between vR

and « is one-to-one on the interval vR [ ½0; ∞Þ and for given R and

vf, equation (2) can be rewritten explicitly as

FfðR; vfÞ ¼
���

2
p

�

0

¹YðR;vfÞ

f ð«; R vfÞ
�������������������������

« þ YðR; vfÞ
p d« ; ð3Þ

where the effective potential is given by

YðR; vfÞ ¼ wðRÞ ¹
1

2
v

2
f : ð4Þ

For a given angular momentum h the minimum specific energy is

«minðhÞ ¼ min
R[½0;∞Þ

n h
2

2R2
¹ wðRÞ

o

: ð5Þ

From equation (3), the generic ill-conditioning of equation (2)

appears clearly, since the integral relation connecting the azimuthal

velocity distribution and the underlying distribution is an Abel

transform (i.e. a half derivative).

Given the error level in the measurements and the finite number

of data points Ndata, f ð«; hÞ is derived by fitting the data with some

model. Since the number of physically relevant distributions f ð«; hÞ

is very large, a small number of parameters cannot describe the

solution without further assumptions (i.e. other than the assumption

that the disc is round and thin). A general approach must therefore

be adopted; for instance, the solution can be described by its

projection on to a basis of functions fekð«; hÞ; k ¼ 1; . . . ; Ng:

f ð«; hÞ ¼
X

N

k¼1

fk ekð«; hÞ : ð6Þ

The parameters to fit are the weights fk. In order to fit a wide variety

of functions, the basis must be very large; consequently the

description of f ð«; hÞ is no longer parametric but rather non-

parametric.

In order to account for the fact that the equilibrium should not

incorporate unbound stars it is best to define the functions ekð«; hÞ of
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equation (6) so that they are identically zero outside the interval

ð«; hÞ [ ½«minðhÞ; 0ÿ × R. It is convenient to rectify this interval

while replacing the integration over specific energy in equation (3)

by an integration with respect to

h ¼ 1 ¹
«

«minðhÞ
; ð7Þ

and to use a new basis of functions

êkðh; hÞ ; ek

�

ð1¹hÞ «min ðhÞ; h
�

;

which are zero outside the interval ðh; hÞ [ ½0; 1ÿ × R. Here h is

some measure of the eccentricity of the orbit. Using these new basis

functions, the distribution function becomes

f̂ ðh; hÞ ; f
�

ð1¹hÞ «minðhÞ; h
�

¼
X

N

k¼1

fk êkðh; hÞ : ð8Þ

Another important advantage of this reparametrization is that the

distributions f̂ ðh; hÞ can be assumed to be smoother functions along

h and h since these distributions correspond to the equilibria of

relaxed and cool systems which have gone through some level of

violent relaxation in their formation processes and where most

orbits are almost circular. Note nonetheless that this assumption is

somewhat subjective and introduces some level of bias correspond-

ing to what is considered to be a good distribution function, as will

be discussed in Section 5. Clearly the assumption that the distribu-

tion function should be smooth (i.e. without strong gradients) in the

variable h yields different constraints on the sought solution from

assuming that it should be smooth in the variable «.

Real data correspond to discrete measurements Ri and vf j of R

and vf respectively. Following the non-parametric expansion in

equation (8), equation (3) now becomes

Fi; j ; FfðRi; vf jÞ ¼
X

N

k¼1

ai; j;k fk ; ð9Þ

with

ai; j;k ¼
������������������

¹2«min i; j

p

�1

hc i; j

êkðh; Ri vf jÞ
�����������������

h ¹ hci; j

p
dh ; ð10Þ

where

«mini; j ; «minðRi vf jÞ ; hci; j ; 1 þ YðRi; vfjÞ=«mini; j : ð11Þ

The implementation of this linear transformation for linear

B-splines is given in Appendix A. Since the relations between

FfðR; vfÞ and f ðh; hÞ or f̂ ðh; hÞ are linear, equation (9) – the

discretized form of the integral equation (2) – can be written in a

matrix form by grouping index i with index j:

F ¼ a·f : ð12Þ

The problem of solving equation (2) then becomes a linear

inversion problem.

2.2 Maximum penalized likelihood

In order to model a wide range of distributions f̂ ðh; hÞ with good

accuracy, the basis fêkðh; hÞ; k ¼ 1; . . . ; Ng must be sufficiently

general (otherwise the solutions will be biased by the choice of

the basis just as a parametric approach is biased by the choice of the

model). The inversion should therefore be regularized and

performed so as to avoid physically irrelevant solutions. Indeed,

being a distribution, f̂ ðh; hÞ must for instance be positive and

normalized. Finally, the inversion should provide some level of

flexibility to account for the fact that the sought distribution might

have a critical behaviour for some fraction of phase space, such as

that corresponding to radial orbits. It should also cope with

incomplete data sets and should yield some means of extrapolation.

In order to address these specificities let us explore techniques

able to perform a reliable practical inversion of this ill-conditioned

problem, and put the method described in this paper into context.

The Bayesian description provides a suitable framework to discuss

how the practical inversion of equation (12) should be performed.

2.2.1 Bayesian approach

When dealing with real data, noise must be accounted for: instead of

the exact solution of equation (9), it is more robust to seek the best

solution compatible with the data and, possibly, additional con-

straints. A criterion allowing us to select such a solution is provided

by probability analysis. Indeed, given the measured data F̃, one

would like to recover the most probable underlying distribution f.
This is achieved by maximizing the probability of the distribution f
given the data F̃, Prðf j F̃Þ, with respect to f. According to Bayes’

theorem, Prðf j F̃Þ can be rewritten as

Prðf j F̃Þ ¼
PrðF̃ j fÞ PrðfÞ

PrðF̃Þ
; ð13Þ

where PrðF̃ j fÞ is the probability of the data F̃ given that it should

obey the distribution f, while PrðF̃Þ and PrðfÞ are respectively the

probability of the data F̃ and the probability of the distribution f.
Since PrðF̃Þ does not depend on f, maximizing Prðf j F̃Þ with respect

to f is equivalent to minimizing

QðfÞ ¼ LðfÞ þ mRðfÞ ; ð14Þ

with

LðfÞ ¼ ¹a log ½PrðF̃ j fÞÿ þ c ; ð15Þ

mRðfÞ ¼ ¹a log ½PrðfÞÿ þ c
0
; ð16Þ

with a > 0 and where c and c
0 are constants that account for any

contribution which does not depend on f. Minimizing the like-

lihood, LðfÞ, enforces consistency of the model with the data while

minimizing RðfÞ tends to give the ‘most probable solution’ when no

data is available, as discussed in Section 2.2.3.

2.2.2 Maximum likelihood

Minimization of LðfÞ alone in equation (14) yields the maximum

likelihood solution. The exact expression of ¹log ½PrðF̃ j fÞÿ can

usually be derived and depends on the noise statistics. For instance,

assuming that the noise in the measured data follows a normal law,

maximizing the likelihood of the data is obtained by minimizing the

x2 of the data:

¹log ½PrðF̃ j fÞÿ ¼
1

2
x2

þ c
00 with x2

;

X

i; j

ðFi; j ¹ F̃i; jÞ
2

Var ðF̃i; jÞ
;

where Fi; j is the model of Ff given by equation (9) and F̃i; j denotes

the values of Ff at (Ri; vi jÞ. Minimization of x2 is known as chi-

squared fitting. Throughout this paper and for the sake of clarity,

Gaussian noise is assumed, while defining the likelihood term by

LðfÞ ¼ x2
ðfÞ ¼

X

i; j

ðFi; j ¹ F̃i; jÞ
2

Var ðF̃i; jÞ
; ð17Þ

(which incidentally corresponds to the choice a ¼ 2 in equation 15).

In the limit of a large number of independent measurements, Ndata,

x2 follows a normal law with an expected value and a variance given

by

Expectðx2
Þ ¼ Ndata ; Var ðx2

Þ ¼ 2 Ndata : ð18Þ
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It follows that any distribution, f, yielding a value of x2
in the range

Ndata 6
�������������

2 Ndata

p

is perfectly consistent with the measured data:

none of these distributions can be said to be better than others on the

basis of the measured data alone.

For a parametric description and provided that the number of

parameters is small compared with Ndata, the region around the

minimum of x2 is usually very narrow. In this case, x2 fitting may be

sufficiently robust to produce a reliable solution (though this

conclusion depends on the noise level and assumes that the para-

metric model is correct).

In a non-parametric approach, given the functional freedom left

in the possible distributions, it is likely that the value of the x2 can

be made arbitrarily small, i.e. much smaller than Ndata. Conse-

quently, the solution that minimizes x2
is not reliable: it is too good

to be true! In other words, solely minimizing x2 in a non-parametric

description leads to an over-interpretation of the data: because of

the ill-conditioned nature of the problem, many features in the

solution are likely to be artefacts produced by amplification of noise

or numerical rounding errors.

2.2.3 Regularization

Minimizing the likelihood term forces the model to be consistent

with some objective information: the measured data. Nevertheless,

this approach provides no means of selecting a particular solution

from among all those which are consistent with the data [i.e.

those for which LðfÞ ¼ Ndata 6
�������������

2 Ndata

p

]. Taking into account

mRðfÞ ¼ ¹a log ½PrðfÞÿ þ c
00 in equation (14) yields a natural

procedure by which to choose between those solutions. At the

very least, there are some objective properties of the distribution

f̂ ðh; hÞ which are not enforced by x2 fitting (e.g. positivity) and

which could be accounted for by the fact that PrðfÞ must be zero

[i.e. RðfÞ → ∞] for physically irrelevant solutions.

Unfortunately, e.g. for noisy data, taking into account those

objective constraints alone is seldom sufficient: additional ad hoc

constraints are needed to regularize the inversion problem. To that

end, RðfÞ is generally defined as a so-called penalizing function

which increases with the discrepancy between f and those

subjective constraints.

To summarise, the solution of equation (2) is found by mini-

mizing the quantity QðfÞ ¼ LðfÞ þ m RðfÞ where LðfÞ and RðfÞ are

respectively the likelihood and regularization terms and where the

parameter m > 0 allows us to tune the level of regularization. The

introduction of the Lagrange multiplier m in equation (14) is

formally justified by the fact that QðfÞ should be minimized subject

to the constraint that LðfÞ should be equal to some value, say Ne. For

instance, with LðfÞ ¼ x2
ðfÞ one would choose

Ne [ ½Ndata ¹
�������������

2 Ndata

p

; Ndata þ
�������������

2 Ndata

p

ÿ :

2.2.4 Definitions of the penalizing function

When data consist of samples of a continuous physical signal,

uncorrelated noise will contribute to the roughness of the data.

Moreover, noise amplification by an ill-conditioned inversion is

likely to produce a forest of spikes or small-scale structures in the

solution. As discussed previously, assuming that the ‘probability’

PrðfÞ increases with the smoothness of f̂ ðh; hÞ, the penalizing

function should limit the effects of noise while not affecting (i.e.

biasing) too much the range of possible shape of f̂ ðh; hÞ. To that end,

the penalizing function RðfÞ should be defined so as to measure the

roughness of f.

Many different penalizing functions can be defined to measure

the roughness of f̂ ðh; hÞ, for instance by minimizing (Wahba 1990)

RðfÞ ¼

ZZ
�

=
n
f̂ ·=

n
f̂

�

dh dh ; with = ¼

�

∂f̂

∂h
;
∂f̂

∂h

�

ð19Þ

(where n > 1) will enforce the smoothness of f̂ ðh; hÞ. In the instance

of a discretized signal for equation (8), such quadratic penalizing

functions can be generalized by the use of a positive definite

operator K (Titterington, 1985):

RquadðfÞ ¼ f'
·K·f ; ð20Þ

where f' stands for the transpose of f.
Strict application of the Bayesian analysis implies that the

penalizing function RðfÞ is ¹log ½PrðfÞÿ (up to an additive constant

and the factor m) which is the negative of the entropy of f. This has

led to the family of maximum entropy methods (hereafter MEM)

which are widely used to solve ill-conditioned inverse problems. In

fact MEM only differs from other regularized methods by the

particular definition of the penalizing function, which provides

positivity ab initio. A possible definition of the negentropy is

(Skilling 1989)

RMEMðfÞ ¼
X

k

�

fk log
fk

pk

¹ fk þ pk

�

; ð21Þ

where p is the a priori solution: the entropy is maximized when

f ¼ p. Although there are arguments in favour of that particular

definition, there are many other possible options (Narayan &

Nityananda 1986) that lead to similar solutions. Penalizing func-

tions in MEM all share the property that they become infinite as f
reaches zero, thus enforcing positivity. In order to enforce the

smoothness of the solution further, Horne (1985) has suggested

the use of a floating prior, defining p to be f smoothed by some

operator S:

p ¼ S·f : ð22Þ

For instance, along each dimension of f̂ ðh; hÞ, the following

monodimensional smoothing operator is applied:

pi ¼

ð1 ¹ gÞ fi þ g fiþ1 ; if i ¼ 1 ;

g fi¹1 þ ð1 ¹ 2gÞ fi þ g fiþ1 ; if 1 < i < n ;

ð1 ¹ gÞ fi þ g fi¹1 ; if i ¼ n ;

8

>

>

<

>

>

:

with 0 # g # 1=2 (here g ¼ 1=4); here i ¼ 1; :::; n stands for the

index along the dimension considered. This operator conserves

energy, i.e.
P

p ¼
P

f .

The penalizing functions RquadðfÞ or RMEMðfÞ with a floating prior

p ¼ S·f are implemented in the simulations to enforce the smooth-

ness of the solution.

2.2.5 Adjusting the weight of the regularization

Thompson & Craig (1992) compared many different objective

methods to fix the actual value of m. Generally speaking, these

methods consist of minimizing QðfÞ given by equation (14) subject

to the constraints LðfÞ ¼ Ne where Ne is equivalent to the number of

degrees of freedom of the model. Among those methods, two

can be applied to non-quadratic penalizing functions (such as the

negentropy).

The most simple approach is to minimize QðfÞ subject to the

constraint that LðfÞ ¼ Expect½LðfÞÿ ¼ Ndata. This yields an over-

regularized solution (Gull 1989) since it is equivalent to assuming

that regularization controls no degrees of freedom.

A second method is that of Gull (1989) who demonstrated that
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the Lagrange parameter should be tuned so that QðfÞ ¼ Ndata, i.e.

Ne ¼ Ndata ¹ mRðfÞ. In other words, the sum of the number of

degrees of freedom controlled by the data and by the entropy is

equal to the number of measurements. This method is very simple to

implement but can lead to under-regularized solutions (Gull 1989;

Thompson & Craig 1992). Indeed if the subjective constraints pull f
too far from the true solution then RðfÞ takes a high value as soon as

any structure appears in f̂ ðh; hÞ. As a result, in order to meet

QðfÞ ¼ Ndata, the value of m is found to be very small by this

procedure. For instance, this occurs in MEM methods when

choosing a uniform prior p since a uniform distribution is very

far from the true distribution. Nevertheless, this kind of problem

was not encountered with a floating prior (Horne 1985). In the

algorithm described below this latter method (i.e. Gull plus Horne

methods) is implemented to obtain a sensible value for m.

Another potentially attractive way to find the value of m is the

cross-validation method (Wahba & Wendelberger 1979) since it

relies solely on the data. Let Ḟi; j be the value at ði; jÞ of the model

that fits the subset of data derived while excluding measurement

ði; jÞ (in other words, Ḟi; j predicts the value of the assumed missing

data point F̃i; j); since the fit is achieved by minimizing QðfÞ, the

total prediction error, given by

TPE ¼
X

i; j

½Ḟi; j ¹ F̃i; jÿ
2

VarðF̃i; jÞ

will depend on the sought value of m. The so-called cross-validation

method chooses the value of m that minimizes TPE. When the

number of data points is large this method becomes too

CPU-intensive. Nonetheless, Wahba (1990) and also Titterington

(1985) provide efficient means of choosing m when the model is

linear which involve constructing the so-called generalized cross-

validation estimator for the TPE.

3 N U M E R I C A L O P T I M I Z AT I O N

In the previous section it was shown that the inversion problem

reduces to the minimization of a multidimensional function

QðfÞ ¼ LðfÞ þ mRðfÞ with respect to a great number of parameters

(from a few 104 to 106) and subject to the constraints that (i) the

likelihood term keeps some target value: LðfÞ ¼ Ne, (ii) all para-

meters remain positive and (iii) special care is taken along some

physical boundaries. Unfortunately there exists no general black-

box algorithm able to perform this kind of optimization.

Let us therefore investigate in turn three techniques to carry the

minimization, of increasing efficiency and complexity: direct

methods, iterative minimization along a single direction (account-

ing for positivity at fixed regularization) and iterative minimization

with a floating regularization weight.

3.1 Linear solution

Using quadratic regularization, the problem is solved by minimiz-

ing

QquadðfÞ ¼ ðF̃ ¹ a·fÞ'
·W·ðF̃ ¹ a·fÞ þ m f'

·K·f ; ð23Þ

where W is the inverse of the covariance matrix of the data. The

solution fquad that minimizes Qquad is

fquad ¼ ða'
·W·a þ m KÞ

¹1
·a'

·W·F : ð24Þ

This solution, which is linear with respect to the data, is clearly not

constrained to be positive.

3.2 Non-linear optimization

Linear methods only provide raw, possibly locally negative, solu-

tions. At the very least, enforcing positivity of the solution – more

generally if the penalized function is not quadratic – requires non-

linear minimization. In that case, the minimization of QðfÞ must be

carried out by successive approximations.

At the n
th step, such iterative minimization methods usually

proceed by varying the current parameters f ðnÞ along a direction

df ðnÞ so as to minimize Q; the new estimate of the parameters reads

f ðnþ1Þ
¼ f ðnÞ

þ lðnÞ df ðnÞ
; ð25Þ

where the optimum step size lðnÞ is the scalar

lðnÞ
¼ argfmin

l
½Qðf ðnÞ

þ l df ðnÞ
Þÿg : ð26Þ

The problem is therefore to choose suitable successive directions of

minimization.

3.2.1 Optimum direction of minimization

In principle, the optimum direction of minimization df could be

derived from the Taylor expansion,

Qðf þ dfÞ . QðfÞ þ
X

k

dfk
∂Q

∂fk
þ

1

2

X

k;l

d fkd fl
∂2

Q

∂fk∂fl
; ð27Þ

that is minimized for the step

df ¼ ¹
ÿ

==Q
�¹1

·=Q ; ð28Þ

where =Q and ==Q are respectively the gradient vector and the

Hessian matrix of QðfÞ:

=Qk ¼
∂Q

∂fk
; ==Qk;l ¼

∂2
Q

∂fk∂fl
:

The whole difficulty of multidimensional minimization lies in

estimating the inverse of the Hessian matrix, which may typically

be too large to be computed and stored. A further difficulty

arises when QðfÞ is highly non-quadratic (e.g. in MEM) since the

behaviour of QðfÞ can significantly differ from that of its Taylor

expansion.

There exist a number of multidimensional minimization numer-

ical routines that avoid the direct computation of the inverse of the

Hessian matrix: e.g. steepest descent, conjugate gradient algorithm,

Powell’s method, etc. (Press et al. 1988). For the steepest descent

method, the direction of minimization is simply given by the

gradient: dfSD ¼ ¹=Q. Other more efficient multidimensional

minimization methods attempt to build information about the

Hessian while deriving a more optimal direction, i.e. a better

approximation of ¹ð==QÞ
¹1

·=Q. For instance, the conjugate-

gradient method builds a series of optimum conjugate directions

dfCG, each of which is a linear combination of the current gradient

and the previous direction (Press et al. 1988). Among those

improved methods and when the number of parameters is very

large, the choice of conjugate gradient is driven by efficiency both

in terms of convergence rate and memory allocation.

3.2.2 Accounting for positivity

Let us now examine the non-linear strategy leading to a minimiza-

tion of QðfÞ with the constraint that f̂ ðh; hÞ $ 0 everywhere. We will

assume that the basis of functions fêkðh; hÞg is chosen so that the

positivity constraint is equivalent to enforcing that fk $ 0; ∀k (see

Appendix A for an example of such a basis).
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When seeking the appropriate step size given by equation (26), it

is possible to account for positivity by limiting the range of lðnÞ:

f ðnþ1Þ
$ 0 ⇔ ¹ min

d f
ðnÞ

k
>0

f
ðnÞ
k

d f
ðnÞ
k

# lðnÞ
# ¹ max

d f
ðnÞ

k
<0

f
ðnÞ
k

d f
ðnÞ
k

:

In practice this procedure blocks the steepest descent method long

before the right solution is found. It is in fact better to truncate

negative values after each step:

f
ðnþ1Þ
k ¼ maxf0; f

ðnÞ
k þ lðnÞ df

ðnÞ
k g :

Also, any of these methods to enforce positivity breaks conjugate

gradient minimization because the latter assumes that the true

minimum of Qðf ðnÞ
þ lðnÞ df ðnÞ

Þ is reached while varying lðnÞ.

Thiébaut & Conan (1995) circumvent this difficulty thanks to a

reparametrization that enforces positivity. Following their argu-

ment, Q is minimized here with respect to a new set of parameters x,

such as

fk ¼ gðxkÞ ; with g : R ° Rþ : ð29Þ

The following various reparametrizations meet these requirements:

fk ¼ expðxkÞ ⇒ g
0
ðxkÞ

2
¼ f

2
k ;

fk ¼ x
2n
k (n positive integer) ⇒ g

0
ðxkÞ

2
~ f

2¹1=n
k :

When QðfÞ is quadratic, Qðf þ ldfÞ is a second-order polynomial

with respect to l, the minimization of which can trivially be

performed with a very limited number of matrix multiplications.

One drawback of the reparametrization is that, since gð·Þ is non-

linear, Q◦gðxÞ is necessarily non-quadratic. In that case the exact

minimization of Q◦gðx þ ldxÞ – mandatory in conjugate gradient

or Powell’s methods – requires many more matrix multiplications.

Another drawback is that the direction of investigation derived by

conjugate gradient or Powell’s methods may no longer be optimal,

requiring many more steps to obtain the overall solution. This latter

point follows from the fact that these methods collect information

about the Hessian while taking into account the previous steps,

whereas for a non-quadratic functional this information becomes

obsolete very soon since the Hessian (with respect to x) is no longer

constant (Skilling & Bryan 1984).

Consequently, instead of varying the parameters x, we propose to

derive a step df for varying f from the reparametrisation that

enforces positivity. Letting dx be the chosen direction of mini-

mization for x, the sought parameters reads gðxk þ l dxkÞ .

fk þ l dxk g
0
ðxkÞ. Identifying the right-hand side of this expression

with fk þ ldfk yields dfk ¼ dxk g
0
ðxkÞ. Using the steepest descent

direction,

dxk ¼ ¹
∂Q

∂xk

¼ ¹
∂Q

∂fk
g

0
ðxkÞ ;

yielding finally

dfk ¼ ¹
∂Q

∂fk
g

0
ðxkÞ

2
¼ ¹

∂Q

∂fk
f

n
k ; ð30Þ

with 1 # n # 2 depending on the particular choice of gð·Þ.

3.2.3 Algorithm for one-dimensional minimization: positivity at

fixed m

In Appendix B we show that other authors have derived a very

similar optimum direction of minimization but in the more restric-

tive case of a regularization by RMEM. Note that our approach is not

limited to this type of penalizing function since positivity is

enforced extrinsically. In short, the minimization step is derived

from the unifying expression:

dfk ¼ ¹qk=Qk ; ð31Þ

where the gradient is scaled by (see Appendix B)

qk ¼

f
n

k ; this work ðwith 1 # n # 2Þ ;

fk ; Richardson–Lucy ;

fk=m ; classical MEM ;

fk

m þ fk
P

i; j

a2
i; j;k

Var ðF̃i; jÞ

; Cornwell–Evans.

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

The scheme of the one-dimensional optimization algorithm is

illustrated in Fig. 1. Iterations are stopped when the decrement in

QðfÞ becomes negligible, i.e. when

Qðf þ ldfÞ ¹ QðfÞj j # e QðfÞj j ;

where e > 0 is a small number which should not be smaller than the

square root of the machine precision (Press et al. 1988). Lucy

(1994) has suggested another stop criterion based on the value of the

ratio

r ¼ dfj jj j = ð dfL

�

�

�

�

�

�

�

�þ dfR

�

�

�

�

�

�

�

�Þ ;

where dfL and dfR are the directions that minimize the likelihood

and the regularization terms

dfL ¼ ¹q × =L and dfR ¼ ¹mq × =R ;

where × denotes the element-wise product [in other words q stands

loosely for Diagðq1; . . . ; qnÞ]. In practice and regardless of the

particular choice for q, the algorithm makes no significant progress

when r becomes smaller than 10¹5.

3.2.4 Performance issues

During the tests, it was found that the conjugate gradient method

with reparametrization and the iterative method with direction

given by equation (31) require roughly the same number of steps

(one step involving minimization along a new direction of mini-

mization). However, the non-linear reparametrization required to

enforce positivity in the conjugate gradient method prevents inter-

polation and means that the method in effect spends much more

time (a factor of 10 to 20) performing line minimization. Also,

when the current estimate is far from the solution, the minimization

direction following our prescription (30) (or that of classical MEM

or Lucy) requires fewer steps than that of Cornwell & Evans to bring

f near the true solution. When the current estimate is sufficiently

close to the solution, Cornwell & Evans’ method requires half as

many steps as the other methods to reach the solution. The best

compromise is to start with dfk ~ ¹fk=Qk, then after some iterations

use df ¼ dfCE. As a rule of thumb, for low signal-to-noise ratios

(SNR , 5) about as many steps as the number of parameters are

required, while for high signal-to-noise ratios (SNR $ 30) fewer

steps are needed (up to 10 times less). The fact remains that with

these methods trial and error iterations are required to find the

appropriate value for m. The different implementations are

illustrated and compared in Figs 2 and 3, as described in Section 4.

Accounting for positivity in multidimensional optimization

therefore leads to a modified steepest descent algorithm for which

the current gradient is locally rescaled. A faster convergence is

achieved when some information from the Hessian is extracted

appropriately. However, the above-described algorithm assumes

that optimization is performed with a fixed value of the Lagrange

parameter m. Let us now turn to a more general minimization along
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several directions which allows m to be adjusted ‘on the fly’ during

the minimization.

3.3 Minimization along several directions

3.3.1 Skilling & Bryan method revisited

In the context of maximum entropy image restoration, Skilling &

Bryan (1984) (hereinafter SB) have proposed a powerful method

which is both efficient in optimizing a non-linear problem with a

great number of parameters and able to vary automatically the

weight of regularization so that the sought solution satisfies

LðfÞ ¼ Ne. Here their approach is further generalized to any

penalizing function. In short, SB derive their method from the

following remarks.

(i) To account for positivity, they suggest an appropriate

‘metric’ (or rescaling) which is equivalent to multiplying each

minimization direction by q ¼ f.
(ii) The regularization weight m is adjusted at each iteration to

meet the constraint LðfÞ ¼ Ne. Therefore, instead of minimizing

along the single direction ¹q × ð=L þ m=RÞ, at least two directions

are considered: ¹q × =L and ¹q × =R.

(iii) As the Hessian is not constant, for instance because m is

allowed to vary, no information is carried from the previous

iterations. This clearly excludes conjugate gradient or similar

optimization methods, but favours non-quadratic penalizing func-

tions for which the Hessian is not assumed to be constant.

(iv) If the whole Hessian cannot be computed, it can nevertheless

be applied to any vector e of the same size as f in a finite number of

operations, e.g. two matrix multiplications for the likelihood term:

==L·e ¼ 2 a'
·ða·eÞ (where, for the sake of simplicity, the diagonal

weighting matrix was omitted here). This illustrates how this

method provides a means to include some knowledge from the

local Hessian while seeking the optimum minimization direction.

3.3.2 Local minimization subspace

In order to adjust the regularization weight, at least two simul-

taneous directions of minimization should be used: ¹q × =L and
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Figure 1. Synopsis of the single-direction minimization algorithm. Here

e1 . 10¹8 and e2 . 10¹5.
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Figure 2. Fit of Ff (as described in Section 4) with various penalizing functions. From top left to bottom right: (1) original Ff and Ff restored by (2) MEM with

uniform prior, (3) MEM with floating smooth prior and (4) quadratic regularization, i.e. Rquad with n ¼ 1 as defined in equation (19). As expected, no significant

difference is to be found in the fits, though in panel (2), Ff is slightly rougher. The SNR is 50.
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¹q × =R. Furthermore, the local Hessian provides other directions

of minimization to increase the convergence rate. Using matrix

notation, the Taylor expansion of QðfÞ for two simultaneous direc-

tions df1 and df2 reads

Qðf þ df1 þ df2Þ . QðfÞ þ df'

1 ·=Q þ
1

2
df'

1 ·==Q·df1

þ df'

2 ·½=Q þ ==Q·df1ÿ þ
1

2
df'

2 ·==Q·df2 ;

where the Hessian and gradient are evaluated at f. Given a first

direction df1, the optimal choice for a second direction is

df2;opt ¼ ¹ð==QÞ
¹1

·ð=Q þ ==Q·df1Þ :

In MEM, recall that positivity is enforced explicitly by the regular-

ization penalty function while efficient minimization methods rely

on the approximation of ð==QÞ
¹1 by a scaling vector q. The

optimum first two directions then become in MEM

df1;opt . ¹q × =Q ; and df2;opt . ¹q × ð=Q þ ==Q·df1Þ :

Since the first term on the right-hand side of the expression for

df2;opt is df1;opt, the two near optimum directions sought are, finally,

df1 ¼ ¹q × =Q ; and df2 ¼ ¹q × ð==Q·df1Þ : ð32Þ

Similar considerations yield further possible directions:

dfn ¼ ¹q × ð==Q·dfn¹1Þ : ð33Þ

If the rescaling, q, provides too good an approximation of the

inverse of the Hessian, then df1 and df2 will be almost identical (i.e.

antiparallel); hence using only one is sufficient. In other words,

since the local Hessian is accounted for by the use of additional

directions of minimization, there is no need for DiagðqÞ to be an

accurate approximation of ð==QÞ
¹1. The crude rescaling given by

equation (B1) is therefore sufficient, i.e. taking q ¼ f. This defini-

tion of q has the further advantage of warranting positive values of f
and does not depend on the actual value of m (which is obviously not

the case for the Hessian).

If no term in QðfÞ enforced positivity, it was shown earlier that the

reparametrization (29) would. From the Taylor expansion of QðxÞ,

the first two steepest descent directions with respect to the para-

meters x are given by

dx1;k ¼ ¹
∂Q

∂xk

¼¹g
0
ðxkÞ=Qk ;

dx2;k ¼ ¹
X

l

∂2
Q

∂xk∂xl

∂Q

∂xl

¼¹g
0
ðxkÞ

X

l

==Qk;lg
0
ðxlÞdx1;l :

ð34Þ

Since dfk . g
0
ðxkÞdxk, the two optimum directions of minimization

for the parameters f are

df1;k ¼ ¹g
0
ðxkÞ

2
=Qk ; ð35Þ

df2;k ¼ ¹g
0
ðxkÞ

2
X

l

==Qk;ldf1;l ; ð36Þ

which are incidentally identical to those given by equation (32),

provided that qk ¼ g
0
ðxkÞ

2.

For all the regularization penalizing functions considered here,

clearly the best choice is to use directions given by the Hessian

applied to equation (34) when other directions of minimization than

those related to the gradient are considered. Since m can vary, the
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Figure 3. Restoration of f̂ ðh; hÞ from Fig. 2. From top left to bottom right: (1) true distribution and distributions restored by (2) MEM with uniform prior, (3)

MEM with smooth floating prior and (4) quadratic regularization, i.e. Rquad with n ¼ 1 as defined in equation (19). Note that MEM with a uniform prior yields a

rather unsmooth solution, which is expected since no penalty is imposed by this method for lack of smoothness.
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Hessians of L and R have to be applied separately. At each step,

the minimization is therefore performed in the n ¼ 3 × 2 ¼ 6

dimensional subspace defined by

df1 ¼ ¹q × =L ; df2 ¼ ¹q × =R ;

df3 ¼ ¹q × ð==L·df1Þ ; df4 ¼ ¹q × ð==L·df2Þ ;

df5 ¼ ¹q × ð==R·df1Þ ; df6 ¼ ¹q × ð==R·df2Þ ;

ð37Þ

where

qk ¼ f
n

k with 1 # n # 2 : ð38Þ

When n ¼ 1, q is the same metric as that introduced by SB while

relying on other arguments. Depending on the actual expression for

==R (and in particular in MEM with a constant prior), a smaller

number of directions need be explored (for instance, SB used only

n ¼ 3 simultaneous directions, because when q ¼ f, ==R ¼ 1=f so

df5 ¼ df1, df6 ¼ df2; they also use a linear combination of df3 and

df4). In this n-dimensional subspace, a simple second-order Taylor

expansion of Qðf þ
Pn

i¼1 lidfiÞ shows that the optimum set of

weights sought, fl1; :::; lng, is given by the solution of the n

linear equations parametrized by m and given by

X

n

j¼1

ljdf'

j·ð==L þ m==RÞ·dfi ¼ ¹df'

i·ð=L þ m=RÞ : ð39Þ

Now, in that subspace the optimization may be ill-conditioned (i.e.

the set of linear equations is linearly dependent in a numerical

sense). In order to deal with this degeneracy, truncated SVD

decomposition (Press et al. 1988) is used to find a set of numerically

independent directions. In practice, the rank of the six linear

equations varies from 2 (very far from the solution or when

convergence is almost reached) to typically 5 or 6. This method

turns out to be much easier to implement than the bidiagonalization

suggested by SB.

3.3.3 ‘On the fly’ derivation of the regularization weight

At each iteration a strategy similar to that of SB was adopted here to

update the value of m.

(i) Lmin and Lmax are the values of the likelihood term in

the subspace in the limits m → 0 and m → ∞ respectively. The

corresponding solutions give what we call the maximum like-

lihood solution and the maximum regularized solution in the

subspace.

(ii) If Lmax < Ne the maximum regularized solution correspond-

ing to Lmax is adopted to proceed to the next iteration. Otherwise, in

order to avoid relaxing the regularization and following SB, a

modest reachable goal is fixed:

Laim ¼ maxfNe; ð1 ¹ aÞLprev þ aLming;

where Lprev is the likelihood value at the end of the previous

iteration, while 0<a<1 (say a ¼ 2=3). A simple bisection

method is applied to seek the value of m for which the solution of

equation (39) yields L ¼ Laim.

Following this scheme, the algorithm varies the value of m so that at

each iteration the likelihood is reduced until it reaches its target

value; then the regularization term is minimized while the like-

lihood remains constant.

As a stop criterion, a measure of the statistical discrepancy

between two successive iterations,

X

k

f
ðnÞ
k f

ðnþ1Þ
k ¹ f

ðnÞ
k

�

�

�

�

.

X

k

f
ðnÞ
k ;

is computed. In practice, in order to avoid over-regularization, Ne is

taken to be Ndata ¹
������������

2Ndata

p

. The corresponding scheme of the n-

dimensional optimization algorithm is illustrated in Fig. 4.
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Figure 4. Synopsis of the multiple-direction multidimensional minimization algorithm with adjustment of the regularization weight. In this algorithm, fmin > 0 is

a small threshold used to avoid negative values, 0 # e p 1 is a small value used to check convergence.
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3.3.4 Performance and assessments

The optimization of QðfÞ in a multidimensional subspace yields

many practical advantages.

(i) It provides faster convergence rates (about 10 times fewer

overall iterations and even many fewer when accounting for the

number of inversions required to derive the regularization weight)

and less overall CPU time in spite of the numerous matrix multi-

plications involved in computing the n directions of minimization

and their images by the Hessians.

(ii) It yields a more robust algorithm because it is less sensitive to

local minima and also because the routine requires less tuning.

(iii) Since m varies between iterations and since the local Hessian

is always re-estimated, the solution can be modified ‘on the fly’, e.g.

rescaled, without perturbing the convergence. Hence the normal-

ization is no longer an issue.

This algorithm presents the following set of improvements over

that of Skilling & Bryan:

(i) A more general penalizing function than entropy is consid-

ered (e.g. entropy with floating prior or quadratic penalizing

function) which yields a different metric, derived heuristically.

This yields almost the same optimization subspace but from a

different approach.

(ii) Truncated SVD is implemented to avoid ill-conditioned

problems in this minimization subspace.

4 S I M U L AT I O N S

4.1 Specifics of stellar disc inversion

4.1.1 Models of azimuthal velocity distributions

Simulated azimuthal velocity distributions can be constructed via

the prescription described in Pichon & Lynden-Bell (1996). The

construction of Gaussian line profiles compatible with a given

temperature requires specifying the mean azimuthal velocity of

the flow, vf


 �

, on which the Gaussian should be centred, the surface

density SðRÞ and the azimuthal velocity dispersion jf. The line

profile F then reads

FfðR; vfÞ ¼
SðRÞ
������

2p

p

jf

exp ¹
vf ¹ vf


 �� �2

2j2
f

 !

: ð40Þ

Here the azimuthal velocity dispersion is related to the azimuthal

pressure, pf, by

j2
f ¼ pf=S ¹ vf


 �2
: ð41Þ

The azimuthal pressure pf follows from the equation of radial

support,

v
2
f


 �

¹ R
∂w

∂R
¼

∂ RSj2
R

ÿ �

S ∂R
; ð42Þ

and the kinematical ‘temperature’ of the disc with a given Toomre

number Q (Toomre 1964),

Q ¼ 0:298 jRk = S : ð43Þ

The expression of the average azimuthal velocity, hvfi, may be

taken to be that which leads to no asymmetric drift equation:

S vf


 �2
¼ pf ¹ pRðk R = 2vcÞ

2
; ð44Þ

where k is the epicyclic frequency and vc the velocity of circular

orbits. Equations (40)–(44) provide a prescription for the Gaussian

azimuthal line profile Ff. These azimuthal velocity distributions are

used throughout to generate simulated data corresponding to the

iso-Q Kuzmin disc.

4.1.2 The counter-rotating radial orbits

As shown in Fig. 2, the azimuthal distributions of our models have

Gaussian tails corresponding to stars on almost radial orbits with

small negative azimuthal velocity. These few stars play a strong

dynamical role in stabilizing the disc, and as such should not be

overlooked since they significantly increase the azimuthal disper-

sion of inner orbits, effectively holding the inner galaxy against its

self-gravity. Now this Gaussian tail translates in the momentum –

reduced energy space as a small group of counter-rotating orbits

introducing a cusp in the number of stars near h ¼ 0 (this cusp is

only apparent because the distribution is clearly continuous and

differentiable across this line). In practice the regularization con-

straint across h ¼ 0 is relaxed, in effect treating the two regions

independently.

4.2 Validation and efficiency

4.2.1 Quality estimation

Clearly the quality level for the reconstructed distribution will

depend upon the application in mind. For stability analysis, the

relevant information involves, for instance, the gradient of the

distribution function in action space. An acute quality estimator

would therefore involve such gradients, although their computation

requires some knowledge of the orbital structure of the disc, and is

beyond the scope of this paper. Here the quality of the reconstruc-

tion is estimated while computing the mean distribution-weighted

residual between the distribution sought and the model recovered. It

is defined by

errorðfÞ¼ j f ¹ ftruej

 �

.

P

i ftrue;i j fi ¹ ftrue;ij
P

i ftrue;i

; ð45Þ

and measures the restored distribution error with respect to the true

distribution f̂trueðh; hÞ averaged over the stars (i.e. weighted by the

distribution f̂true). A set of simulations displaying this estimate for

the quality of the reconstruction was carried while varying respec-

tively the outer sampled edge of the disc, the signal-to-noise ratio,

the sampling in the modelled distribution and the Q number of the

underlying data set, and is described below.

4.2.2 Validation: zero noise level inversion

An inversion without any noise is first carried out in order to assess

the accuracy of our inversion routine. This turned out to be more

difficult than performing the inversion with some knowledge of the

noise level since in this instance there is no simple assessment of a

good value for the Lagrange multiplier m. All the ill-conditioning

arises because of round-off errors alone. The original distribution

was eventually recovered in this manner with a mean distribution-

weighted residual, errorðfÞ, smaller than one part in 104. From now

on, the distribution f̂ ðh; hÞ derived from this noise-free inversion is

taken in our simulations as the ‘true’ underlying distribution.

4.2.3 Choice of the penalizing function

Let us now investigate the penalizing functions corresponding to

three methods of regularization, namely MEM with uniform prior

(as advocated by SB), MEM with smooth floating prior (given by

equations 21 and 22) and quadratic regularization (equation 20).
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The corresponding modelled and recovered distribution functions

are given in Figs 2 and 3. From these figures it is apparent that MEM

with uniform prior is unsuitable in this context (this failure is

expected, because here – in contrast to image reconstruction – no

cut-off frequency forbids the roughness of the solution), while

MEM with floating prior or quadratric penalizing function enforces

smoothness, provides similar results and yields a satisfactory level

of regularization. In particular, no qualitative difference occurs

owing to the penalizing function alone, which is a good indication

that the inversion is carried out adequately. Note that the apparent

cusp at h ¼ 0 is well accounted for by the inversion.

Regularization by negentropy with a floating smooth prior was

used in the following simulations.

4.2.4 Efficiency: the influence of the noise level

In the second part of the simulations, the performance of the

proposed algorithm with respect to noise level is investigated.

The noise is assumed to obey a normal distribution with standard

deviation given by

ji; j ¼
Fi; j

SNR
þ maxðFÞ jbg : ð46Þ

In other words, the intrinsic data noise has a constant signal-to-

noise ratio, SNR, and the detector adds a uniform readout noise.

Three sets of runs corresponding respectively to a constant signal-

to-noise ratio of SNR ¼ 5, 30, and 100 are presented in Figs 5

(mean recovered f), 6 (sample f) and 7 (standard deviation). In all

cases, the readout noise level is jbg ¼ 10¹4. The figures only

display the inner part of the distribution while the simulation carries

the inversion for h in the range ½¹2; 3½ and all possible energies.

The main conclusion to be drawn from these figures is that the

main features – both qualitatively and quantitatively given the noise

level – of the distribution are clearly recovered by this inversion

procedure. Note that near the peak of the distribution at h ¼ 0,

h ¼ 0, the recovered distribution is nonetheless slightly rounder

than its original counterpart for the noisier (SNR ¼ 5, panel 2)

simulation. This is a residual bias of the reparametrization: the

sought distribution is effectively undersampled in that region and

the regularization truncates the residual high frequency in the signal

while incorrectly assuming that it corresponds to noise. If the

sampling had been tighter in that region, say using regular sampling

in expð¹hÞ, the regularization would not have truncated the restored

distribution. Alternatively, in order to retain algebraic kernels,

uneven logarithmic sampling in the spline basis is an option.

This point illustrates the danger of non-parametric inversions,

which clearly provide the best approach to model fitting but leave

open some level of model-dependent tuning and consequently can

give rise to potential flaws when the wrong assumptions are made

about the nature of the sought solution for low signal-to-noise ratio.

For instance, the above-described procedure would inherently

ignore any central cusp in the disc if the sampling in parameter

space were too sparse in that region, even if the SNR level is

adequate to resolve the cusp. Since in practice systematic over-

sampling is computationally onerous, given the dimensionality of

the problem, special care should be taken in deciding what an

adequate sampling and parametrization involves.
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Figure 5. From top left to bottom right, (1) true distribution (approximately that of a disc with Toomre parameter Q ¼ 1:25) and mean restoration of f̂ ðh; hÞ out of

40 iterations for a SNR of (2) 5, (3) 30 and (4) 100. Abscissa is normalized specific energy h and ordinate is specific angular momentum h. Note that the

isocontours are not sampled uniformly in order to display counterrotating stars more acurately.
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Finally, Fig. 8 gives the evolution of the fit error signal-to-noise

ratio for various Toomre parameters Q. This figure illustrates that

the method is independent of the model disc, whether dynamically

cold or hot.

4.2.5 Efficiency: sampling in the model

The best sampling of the phase space of f must be derived

considering that two opposite criteria should be balanced: (i)

using too few basis functions would bias the solution, (ii) using

more basis functions consumes more CPU time. A simple and

intuitive way to check that the sampling rate is sufficient is to ensure

that the minimum likelihood reached without regularization is

much smaller than the target likelihood, i.e. limm→0 LðfÞ p Ne.

Unregularized inversions of noisy data with an increasing number

of basis functions and signal-to-noise ratios was therefore per-

formed. In practice, since completely omitting the regularization

leads to a difficult minimization problem because of the large

number of local minima, regularization was instead relaxed by

using a target likelihood somewhat lower than the number of

measurements (Ne . 0:1 × Ndata). The results of these simulations

are displayed in Fig. 9. It appears that ,150 × 150 basis functions

are sufficient to avoid the sampling bias. In all the other simulations,

150 × 150 or 200 × 200 basis functions are used.

4.2.6 Efficiency: truncation in the measurements

The inversion algorithm presented here makes no assumption about

completeness of the input data set. Therefore, the recovered solu-

tion f can in principle be used to predict missing values in Ff, in

contrast to direct inversion methods which assume that Ff is known

everywhere. Real data will always be truncated at some maximum

radius R # Rmax. There may also be missing measurements; caused

for instance by dust clouds which hide some parts of the disc, or

departure from axial symmetry corresponding to spiral structure. In

order to check how extrapolation proceeds, various truncated data

sets were simulated and the inversion was carried out. Fig. 10 shows

the departure of the recovered distributions from the true one as a

function of the outer radius Rmax up to which data is measured. This

figure also shows that our inversion allows some extrapolation,

because, for all signal-to-noise ratios considered, the error reaches

its minimum value as soon as Rmax $ 7 (i.e. 4 half-mass radii, Re,

compared with the true disc radius which was 10 half-mass radii in

our simulations). Note that interpolation is likely to be more reliable

than extrapolation; our method should therefore be much less

sensitive to data ‘holes’.

5 D I S C U S S I O N A N D C O N C L U S I O N

This paper presented a series of practical algorithms to obtain the

distribution function f from the measured distributions FfðR; vfÞ,

compared these algorithms with existing algorithms and described

in detail the best-suited algorithms to carry out efficient inver-

sion of such ill-conditioned problems. It was argued that non-

parametric modelling is best suited to describing the underlying

distribution functions when no particular physical model is to be

favoured. For these inversions, regularization is a crucial issue

and its weight should be tuned ‘on the fly’ according to the noise

level.

The mimimization algorithms described in Section 3 are fairly
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Figure 6. True distribution and one sample for each SNR out of the 40 restorations carried out, displayed as in Fig. 5. Abscissa is normalized specific energy h and
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general and could clearly be implemented for minimization prob-

lems corresponding to other geometries, such as that corresponding

to the recovery of distributions for spheroid or elliptical galaxies

explored by other authors (e.g. Merritt & Tremblay 1993). More

generally, they could be applied to any linear inversion problem

where positivity is an issue; this includes image reconstruction, all

Abel deprojection arising in astronomy, etc. Applying this algorithm

to simulated noisy data, it was found that the criteria of positivity

and smoothness alone are sufficiently selective to regularize the

inversion problem up to very low signal-to-noise ratios (SNR , 5)

as soon as data is available up to 4Re. The inversion method

described here is directly applicable to published measurements.

Here the inversion assumed that the H I rotation curve gives

access to an analytic (or spline) form for the potential. A more

general procedure should provide a simultaneous recovery of the

potential, although such a routine would be very CPU-intensive

since changing the potential requires us to recompute the matrix a.

Nevertheless, it would be straightforward to extend the scope of this

method to configurations corresponding to an arbitrary slit angle,

such as those sketched in Appendix C, or to data produced by
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Figure 8. Fit error versus SNR for various Toomre parameters Q. The fit

error approximatively decreases as: error . 1:0 × 10¹3
þ 3:4 × 10¹2

=SNR

(solid curve).

Figure 9. Minimum value of the normalized likelihood term x2
=Ndata that

can be reached as the number of basis functions varies and for different

signal-to-noise ratios. The abscissa is the number of samples along h and h,

which is the square root of the number of basis functions used. The number

of data measurements was 50 × 50 and the maximum disc radius was

Rmax ¼ 7. The curves are only here to clarify the figure: the simulation

results are plotted as symbols.
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integral field spectroscopy [such as TIGRE or OASIS (Bacon et al

1995)], where the redundancy in azimuth would lead to higher

signal-to-noise ratios if the disc were still assumed to be flat and

axisymmetric.

Once the distribution function has been characterized, it is

possible to study quantitatively all departures from the flat

axisymmetric stellar models. Indeed, axisymmetric distribution

functions are the building blocks of all sophisticated stability

analyses, and a good phase-space portrait of the unperturbed

configuration is clearly needed in order to asses the stability of a

given equilibrium state. Numerical N-body simulations require

sets of initial conditions which should reflect the nature of the

equilibrium. Linear stability analysis also relies on a detailed

knowledge of the underlying distribution (Pichon & Cannon

1997).
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A P P E N D I X A : B I L I N E A R I N T E R P O L AT I O N

In this non-parametric approach, the distribution f̂ ðh; hÞ is described

by its projection on to a basis of functions. If we choose a basis for

which the two variables h and h are separable then equation (8)

becomes

f̂ ðh; hÞ ¼
X

k

X

l

fk;l ukðhÞ vlðhÞ ; ðA1Þ

where ukðhÞ and vlðhÞ are the new basis functions. This description

of f̂ ðh; hÞ yields

F̃fðRi; vf jÞ ¼ F̃i; j ¼
X

k

X

l

ai; j;k;l fk;l ; ðA2Þ

where ai; j;k;l are coefficients which only depend on Ri, vfj and wi
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Figure 10. Evolution of the fit error as the data set is truncated in radius for different signal-to-noise ratios (in the simulations the disc outer edge was assumed to

be 10). The curves are only here to guide the eye: the results of simulation are plotted as symbols.
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[wðRÞ in fact]:

ai; j;k;l ¼ vlðRi vf jÞ
������������������

¹2«min i; j

p

�1

hc i; j

ukðhÞ
�����������������

h ¹ hc i; j

p
dh : ðA3Þ

Bilinear interpolation is implemented in the simulations described

in Section 4 to evaluate f̂ ðh; hÞ everywhere. In this case, the weights

fk;l are the values of the distribution at the sampling positions

fðhk ; hlÞ; k ¼ 1; . . . ; K; l ¼ 1; . . . ; Lg,

fk;l ¼ f̂ ðhk; hlÞ ;

and the basis functions are linear splines,

ukðhÞ ¼
1 ¹

h¹hk

Dh

�

�

�

�

�

� if hk¹1 # h # hkþ1;

0 otherwise,

8

<

:

vlðhÞ ¼
1 ¹

h¹hl

Dh

�

�

�

� if hl¹1 # h # hlþ1;

0 otherwise,

8

<

:

with hkþn ¼ hk þ n Dh and hlþn ¼ hl þ n Dh. The bilinear

interpolation is a particular case of the general non-parametric

description. It yields a very sparse matrix a which can significantly

speed up matrix multiplications. The coefficients ai; j;k;l can be

computed analytically, although since the basis functions are

defined piecewise, the integration can be performed piecewise:

�1

hc

ukðhÞ
�������������

h ¹ hc

p dh ¼

a00
k for k ¼ 1;

a0
k þ a00

k for k ¼ 2; . . . ; K ¹ 1;

a0
k for k ¼ K;

8

>

>

<

>

>

:

with:

a0
k ¼

�minfhk ;1g

maxfhk¹1 ;hcg

ukðhÞ
�������������

h ¹ hc

p dh

¼

( 0 if hk # hc;

2
��������

h¹hc

p

3Dh
ðh¹3hk¹1þ2hcÞ

� �h¼minfhk ;1g

h¼maxfhk¹1 ;hcg

otherwise;

and

a00
k ¼

�minfhkþ1 ;1g

maxfhk ;hcg

ukðhÞ
�������������

h ¹ hc

p dh

¼

( 0 if hkþ1#hc;

2
��������

h¹hc

p

3Dh
ð3hkþ1¹h¹2hcÞ

� �h¼minfhkþ1 ;1g

h¼maxfhk ;hcg

otherwise.

Another useful feature of bilinear interpolation is that the positivity

constraint is straightforward to implement:

f̂ ðh; hÞ ¼
X

k;l

fk;lukðhÞvlðhÞ $ 0; ∀ðh; hÞ ⇔ fk;l $ 0; ∀ðk; lÞ :

There is no such simple relation for higher order splines.

A P P E N D I X B : S P E C I F I C M I N I M I Z AT I O N

M E T H O D S F O R M E M

Several non-linear methods have been derived specifically to seek

the maximum entropy solution. Let us review those briefly so as to

compare them with our method (Section 3.2.2). In MEM, assuming

that (i) the prior p does not depend on the parameters and (ii) the

Hessian of the likelihood term can be neglected, the Hessian of Q is

then purely diagonal:

==Qk;l . m ==Rk;l ¼
mdk;l

fk
:

The direction of minimization is therefore

dfMEMk ¼ ¹
fk

m
=Qk : ðB1Þ

Skilling & Bryan (1984) discussed further refinements to speed up

convergence. Cornwell & Evans (1984) approximated the Hessian

==Q by neglecting all non-diagonal elements:

==Qk;l . dk;l

m

fk
þ dk;l

X

i; j

a
2
i; j;k

VarðF̃i; jÞ
;

which yields

dfCEk ¼ ¹
fk =Qk

m þ fk
P

i; j a2
i; j;k=VarðF̃i; jÞ

: ðB2Þ

In fact, dfCEk is equivalent to the steepest descent step in the

preferred Levenberg–Marquart method (Press et al. 1988), which

is the method to fit a parametric non-linear model. Extending the

Richardson–Lucy method to the maximum penalized likelihood

regime, Lucy (1994) suggests

dfLucyk ¼ ¹fk =Qk ¹

P

l fl=Ql
P

l fl

� �

; ðB3Þ

which is almost the same as in classical MEM but for the term
P

l fl=Ql=
P

l fl which accounts for the constraint that
P

k fk should

remain constant. Note that it is sufficient to replace =Qk in

equation (31) by =Qk ¹
P

l ql=Ql=
P

l ql to apply a further con-

straint of normalization.

With all these non-linear methods, it may also be advantageous to

seek the step size that minimizes Qðf þ ldfÞ (Cornwell & Evans

1984; Lucy 1994).

A P P E N D I X C : G E N E R A L M O D E L W I T H

A R B I T R A RY S L I T O R I E N TAT I O N

Long-slit spectroscopic observations of a galactic disc provide the

distribution

FaðR; v==Þ ¼

�

f ð«; hÞ dv' ; ðC1Þ

where v== and v' are the star velocities (at intrinsic radius r and

projected radius R) along and perpendicular to the line of sight

respectively, which are related to the radial and azimuthal velocities

by

vR ¼ c1 v== þ c2 v' ; vf ¼ c3 v== þ c4 v' and R ¼ c5 r :

Here the ck depend on the angle a between the slit and the major

axis of the disc as measured in the plane of the sky and on the

inclination i of the disc axis with respect to the line of sight (see

Fig. C1). The case where the slit is parallel to the major axis of the

disc, i.e. a ¼ 0, has been examined in the main text. When a Þ 0,
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the specific angular momentum h ¼ r vf can be used as the variable

of integration:

FaðR; v==Þ ¼
c5

R c4

�

hmax

¹hmax

f ð«; hÞ dh; ðC2Þ

where the specific energy and the integration bounds are

« ¼
1

2
v

2
== þ

1

2

h c5

R c4

¹
c3

c4

v==

� �2

¹w
R

c5

� �

;

hmax ¼
R

c5

c3

c4

v== þ

���������������������������

2w
R

c5

� �

¹ v2
==

s
 !

:

In practice, straightforward trigonometry yields

c1 ¼ sinðbÞ= sinðiÞ ; c2 ¼ cosðbÞ ;

c3 ¼ cosðbÞ= sinðiÞ ; c4 ¼ sinðbÞ ;

c5 ¼
�����������������������������������������������

cos2ðbÞ þ sin2ðbÞ sin2ðiÞ
p

;

where b is the angle of the slit as measured in the plane of the disc,

which obeys

tanðbÞ ¼ tanðaÞ= sinðiÞ :

This paper has been typeset from a TEX=LATEX file prepared by the author.
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ABSTRACT

Within the context of upcoming full-sky lensing surveys, the edge-preserving non-
linear algorithm Aski (All Sky κ Inversion) is presented. Using the framework of
Maximum A Posteriori inversion, it recovers the full-sky convergence map from noisy
surveys with masks. It proceeds in two steps: (i) CCD images of possibly crowded
galactic fields are deblurred using automated edge-preserving deconvolution; (ii) once
the reduced shear is estimated, the convergence map is also inverted via an edge-
preserving method. A feature of both components of the Aski algorithm is that the
penalty can be applied in model space (i.e. resp. the Fourier and the harmonic co-
efficients of the corresponding sky brightness distribution and κ maps), while the
optimization iterates back and forth between data space (i.e. resp. the pixels of the
image and of the ellipticity map) and model space. It uses the variable metric lim-
ited memory algorithm OptimPack, which allows both optimizations to scale. The
deblurring is implemented on Cartesian maps up to 16 3842 pixels while the inversion
is carried on the sphere for HEALPix resolutions up to nside = 4096.

For the deblurring, the quality of the deconvolution is measured using Sextrac-

tor to estimate the relative gain in the reduced shear achieved by the prior deblurring
of the images. Cross validation as a function of the number of stars removed yields an
automatic estimate of the optimal level of regularization for the deconvolution of the
galaxies. It is found that when the observed field is crowded, this gain can be quite
significant for realistic ground-based eight-metre class surveys. The most significant
improvement occurs when both positivity and edge-preserving ℓ1 − ℓ2 penalties are
imposed during the iterative deconvolution.

For the convergence inversion, the quality of the reconstruction is investigated
on noisy maps derived from the horizon-4π N-body simulation with SNR within
the range ℓcut = 500 − 2500, with and without Galactic cuts, and quantified using
one-point statistics (S3 and S4), power spectra, cluster counts, peak patches and the
skeleton. It is found that (i) the reconstruction is able to interpolate and extrapolate
within the Galactic cuts/non-uniform noise; (ii) its sharpness-preserving penalization
avoids strong biasing near the clusters of the map (iii) it reconstructs well the shape of
the PDF as traced by its skewness and kurtosis (iv) the geometry and topology of the
reconstructed map is close to the initial map as traced by the peak patch distribution
and the skeleton’s differential length (v) the two-points statistics of the recovered
map is consistent with the corresponding smoothed version of the initial map (vi) the
distribution of point sources is also consistent with the corresponding smoothing, with
a significant improvement when ℓ1−ℓ2 prior is applied. The contamination of B-modes
when realistic Galactic cuts are present is also investigated. Leakage mainly occurs on
large scales. The non-linearities involved in the model are significant on small scales
near the peaks in the field.

1 INTRODUCTION

In recent years, weak shear measurements have become a
major source of cosmological information. By measuring the

c© 0000 RAS
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bending of the rays of light emerging from distant galaxies,
one can gain some knowledge of the distribution of mat-
ter between the emitter and ourselves, and thus probe the
properties and evolution history of dark matter (Bartelmann
& Schneider 2001). This technique has led to significant
results in a broad spectrum of topics, from measurements
of the projected dark matter power spectrum (for the lat-
est results see Fu & et al. (2008)), 3D estimation of the
dark matter spectrum (Kitching et al. 2006), studies of the
higher order moments of the dark matter distribution, selec-
tion of source candidates for subsequent follow-ups (schirmer
et al. 2007), and reconstruction of the mass distribution from
small (Jee et al. 2007) to large scales (Massey et al. 2007). In
view of these successes, numerous surveys have been planned
specifically to use this probe either from ground-based fa-
cilities (eg VST-KIDS1, DES2 Pan-STARRS3, LSST4) or
space-based observatories (EUCLID/DUNE5, SNAP6 and
JDEM7). More generally, it is clear that weak lensing will
be a major player in the future, as it has been identified
by different European and US working groups as one of the
most efficient way of studying the properties of dark energy8.
Data processing is an important issue in the exploitation of
weak lensing of distant galaxies. The signal comes from the
excess alignment of the ellipticities of the observed galaxies.
Assuming one can ignore or deal with spurious alignments
due to intrinsic effects (Hirata & Seljak 2004; Aubert et al.
2004; Pichon & Bernardeau 1999), or due to spurious lensing
effects (Bridle & Abdalla 2007), the weak lensing signal will
thus come from a small statistically coherent ellipticity on
top of the random one of each object. Any result obtained
with weak lensing on distant galaxies is thus conditioned
by the quality with which shape parameters of the galax-
ies are recovered. This issue has of course been raised by
the weak lensing community and tackled by the SHear Test-
ing Program working group (Password 2007) whose effort
have allowed for a fair comparison of the existing techniques.
Schematically, the measurement of the shape parameters of
the galaxies can be seen as a two-step process. First, one
must correct for the non-idealities of the images due to at-
mospherical seeing (for ground-based telescopes), and tele-
scope and camera aberrations. Indeed, these effects translate
into an asymmetrical beam, which is varying between two
images, and even possibly in the field of one image. Typi-
cally, the asymmetry induced by the instrumental response
is much larger than the ellipticity to be measured. After this
preprocessing step, a shape determination algorithm can be
applied, and some estimation of the ellipticity of the ob-
ject recovered. Stars, defects in the images, and objects too
close to each other after deconvolution have to be removed
from the final catalogue so as to avoid contamination from
erroneous shape measurements.

1 http://www.astro-wise.org/projects/KIDS/
2 https://www.darkenergysurvey.org/
3 http://pan-starrs.ifa.hawaii.edu/
4 http://www.lsst.org/
5 http://www.dune-mission.net/
6 http://snap.lbl.gov/
7 http://universe.nasa.gov/program/probes/jdem.html
8

see, on the European side http://www.stecf.org/coordination/

and on the US side, http://www.nsf.gov/mps/ast/aaac.jsp

and http://www.nsf.gov/mps/ast/detf.asp

After these operations, one obtains a catalogue of posi-
tion and shape parameters. Many techniques exist for recov-
ering the weak shear signal from this catalogue. For exam-
ple, a lot of efforts have been devoted to the measurement of
the shear two-point functions. The most used method is the
measurement of the so called Mass Aperture averaged two-
point functions, which is the result of the convolution of the
shear two-point functions by a compensated filter (Schneider
et al. 2002). This scheme includes the separation between the
curl-free convergence-field two-point function, and the resid-
ual curl mode that can arise from incomplete PSF correction
or intrinsic galaxy alignment (Crittenden et al. 2002). For
three-point functions, different resummation schemes have
been proposed, either using direct measurement of the shear
(Bernardeau et al. 2002; Benabed & Scoccimarro 2005) or
using the Mass Aperture filter (Takada & Jain 2003; Kil-
binger & Schneider 2005).

Other applications (source detection and fit, some to-
mography algorithms) call for an estimation of the map of
the convergence field. A convergence map can also be used
to measure the two- and three-point functions as well, even
if, as we will see later this is not the best way to do so.
For this reason an important amount of work has already
been devoted to the reconstruction of the convergence map.
The problem in this reconstruction lies in the inversion of
the non-local equations linking the convergence field κ, and
the ellipticities of the galaxies, while controlling the noise
and avoiding pollution from the spurious curl mode. More-
over, even assuming that the ellipticity catalogue was a noise
free estimation of a curl-free underlying shear, the inversion
could only be exact up to a global translation due to the
form of the equation. Thus Bayesian techniques that use a

priori on the solution properties to regularize the inversion
problem are well suited to the reconstruction of κ. Previous
works on the topic have explored different sets of a priori

and regularization techniques (Starck et al. 2005; Marshall
et al. 2002; Seitz et al. 1998; Bridle et al. 1998). The pri-
mary goal of those works being the measurement of the
mass distribution in clusters, all of them are dealing only
with small regions of the sky. For the same reason those
works have been extended to include strong-lensing effects
that can be observed around the cluster whose mass is being
reconstructed using their lensing effect (Cacciato et al. 2006;
Bradac et al. 2005; Halkola et al. 2006; Jee et al. 2007).

In this paper, we will focus on the reconstruction of
the κ field from very large, and possibly full-sky maps, of
the sky. We will thus only be interested in the weak lens-
ing regime including the onset of the quasi-linear regime,
where the non-linearities of the relation linking the elliptic-
ities of the galaxies to the shear cannot be safely neglected.
We will propose a new regularization technique that can be
compared to multi resolution methods or wavelet approach
(Starck et al. (2005)) and use a ℓ1−ℓ2 regularization scheme
to perform a sharp feature preserving inversion. One of the
biggest issues we will have to cope with is the incomplete
coverage of the sky. We will show how our technique can
deal with irregular coverage and masked portions of the sky.

Specifically, Section 2 shows how non-parametric ℓ1−ℓ2
deblurring can improve the construction of reduced shear,
hence convergence maps. Section 3 describes the model for
the reduced shear, the corresponding inverse problem, and
the optimization procedure. Section 4 investigates the qual-

c© 0000 RAS, MNRAS 000, 000–000
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ity of the global reconstruction; in particular, it probes the
asymmetry/kurtosis of the recovered maps, its topology (to-
tal length and differential length of the skeleton), the re-
covered power spectra, the point source catalogue with and
without galactic star cut. The leaking of B-modes induced by
the Galactic cut is also investigated. Finally, Section 5 dis-
cusses implications for upcoming full-sky surveys and wraps
up.
Appendix A describes the star removal algorithm (imple-
mented for the cross validation estimation of the optimal
level of smoothing required to deconvolve the crowded im-
ages), Appendix B details the κ inverse problem on the
sphere while Appendix C derives the local plane correspond-
ing approximation. Appendix D describes the construction
of realistic κ maps.

2 DEBLURRING OF CROWDED FIELDS

The first step involved in reconstructing a full-sky map of
the convergence on the sky requires estimating ellipticity
and orientation maps from wide angle CCD images of large
patches of the sky. Whether the experiment is ground-based,
or space-born, it is advisable to correct for the effect of the
instrumental response, in particular when mapping more
crowded regions closer to the galactic plane. Indeed, the
PSF-induced partial overlapping of galaxies within the field
of view will bias the estimation of the reduced shear. As
a first step towards building a full-sky map maker, let us
therefore address the issue of deblurring crowded fields via
regularized non parametric model fitting, and assess its ef-
ficiency in the weak lensing context.

2.1 Deblurring as an inverse problem

2.1.1 Regularized solution

Since observed objects are incoherent sources, the observed
image depends linearly on the sky brightness distribution:

y(ω) =

Z

h(ω, ω′) x(ω′) dω
′ + e(ω) ,

where y(ω) is the observed distribution in the direction ω,
h(ω, ω′) is the atmospheric and instrumental point spread
function (PSF) which is the distribution of observed light in
the direction ω due to light coming from direction ω′, x(ω′)
is the true sky brightness distribution and e(ω) is the noise.
After discretization:

y = H · x + e , (1)

where y is the vector of pixel intensities in the observed
image (the data), H is the matrix which accounts for the
atmospheric and instrumental blurring, x is the (discretized
or projected onto a basis of functions) object brightness dis-
tribution and e accounts for the errors (pixel-wise noise and
modelisation approximations). Deblurring requires estimat-
ing the best sky brightness distribution given the data. Since
the atmospheric and instrumental PSF results in a smoother
distribution than the true one, it is well known that de-
blurring is an ill-conditioned problem ((Richardson 1972;
Skilling et al. 1979; Tarantola & Valette 1982; Pichon &
Thiébaut 1998; Pichon et al. 2001)). In other words, straight-
forward deblurring by applying H−1 to the data y would

result in uncontrolled amplification of noise: a small change
in the input data would yield unacceptably large artifacts
in the solution. Regularization must be used to overcome
ill-conditioning of this inverse problem. This is achieved by
using additional prior constraints such as requiring that the
solution be as smooth as possible, while being still in statis-
tical agreement with the data and while imposing that the
brightness distribution is positive. Following this prescrip-
tion, the Maximum A Posteriori (MAP) solution xµ is the
one which minimizes an objective function Q(x):

xµ = arg min
x>0

Q(x) , with: Q(x) = L(x) + µR(x) , (2)

where L(x) is a likelihood penalty which enforces agreement
of the model with the data, R(x) is a regularization penalty
which enforces prior constraints set on the model, and µ > 0
is a so-called hyper-parameter which allow the tuning of the
relative weight of the prior with respect to the data. Hence
the MAP solution is a compromise between what can be
inferred from the data alone and prior knowledge about the
parameters of interest. Assuming Gaussian statistics for the
errors e in equation (1), the likelihood penalty writes:

L(x) = (H · x − y)
T

· W · (H · x − y) , (3)

where the weighting matrix W is equal to the inverse of the
covariance matrix of the errors: W ≡ Cov(e)−1.

The most effective regularization for ill-conditioned
problems such as deconvolution of blurred images consists
in imposing a smoothness constraint (Thiébaut 2005). Then
the regularization penalty writes:

R(x) =
X

j

φ(∆xj) , (4)

where ∆xj is the local gradient of x and φ is some cost func-
tion. The local gradient of x can be approximated by finite
differences: ∆x = D · x where D is a linear finite difference
operator. For instance, in 1-D: ∆xj = (D · x)j = xj+1 − xj .
To enforce smoothness, the cost function φ must be an in-
creasing function of the magnitude of its argument. Very
common choices for φ are: the ℓ2 norm, the ℓ1 norm, or an
ℓ1 − ℓ2 norm. For our deblurring problem, we have consid-
ered different priors (quadratic or ℓ1 − ℓ2 smoothness) pos-
sibly with an additional positivity constraint. We have used
generalized cross validation (GCV,(Wahba 1990)) applied
to the circulant approximation of the quadratic problem to
estimate the optimal regularization level µ. These different
possibilities and their effects on the recovered images are
discussed in details in what follows.

Finally, to solve for the constrained optimization prob-
lem (2), we used the vmlmb algorithm from OptimPack

(Thiébaut 2002). Vmlmb (for Variable Metric, Limited

Memory, Bounded) makes use of a BFGS (Nocedal & Wright
2006) update of the approximation of the Hessian (matrix
of second partial derivatives) of Q(x) to derive a step to
improve the parameters at every iteration. This strategy
only requires computing the objective function, Q(x), and
its gradient (partial derivatives) ∇xQ(x) with respect to
the parameters x. The BFGS update is limited to a few
last steps so that the memory requirements remains mod-
est, that is a few times the number of sought parameters,
and the algorithm can be applied to solve very large prob-
lems (in our case, there are as many parameters as the num-
ber of pixels in the sought image). Finally, Vmlmb accounts
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4 C. Pichon, E. Thiébaut, S. Prunet, K. Benabed, S. Colombi, T. Sousbie, R. Teyssier

Figure 1. Hyper-parameter chosen by GCV as a function of

the number of stars removed by our star removal algorithm (Ap-

pendix A). Note that this curve reaches a maximum correspond-

ing to the moment when all the stars have been removed. Indeed

stars correspond to high frequency correlated signal, while the

wings of galaxies (for which the core has been erroneously re-

moved) also give rise to such signal. In between, when all stars

have been removed, while no galaxies has yet been deprived of

its core, the amount of correlated high frequency signal reaches a

minimum, or equivalently the GCV estimated value of µ reaches

a maximum.

nside 128 256 512 1024 2048

time for one step (s) 0.13 0.59 2.13 8.48 34.3

number of steps (s) 13 12 9 13 24

total time (s) 2.6 10.4 33.4 171.1 1129.3

Table 1. the performance of the optimization of the linearized

inversion problem nsideS
ℓcut

FS
as a function of nside for an octo

Opteron in OpenMP.

for bound constraints by means of gradient projections (No-
cedal & Wright 2006). For a convex penalty Q(x), Vmlmbis
guaranteed to converge to the unique feasible minimum of
Q(x) which satisfies the bound constraints; for a non-convex
penalty, Vmlmbbeing based on a descent strategy, it will find
a local minimum depending on the initial set of parameters.

2.1.2 Quadratic regularization and Wiener proxy

Using the finite difference operator D and an ℓ2 norm for
the regularization and ignoring for the moment the posi-
tivity constraint, the MAP solution is the minimum of a
quadratic penalty which simply involves solving a (huge)

linear problem:

xµ = arg min
x

n

(H · x − y)
T

· W · (H · x − y)

+µ (D · x)
T

· (D · x)
o

=
“

H
T · W · H + µ D

T · D
”−1

· HT · W · y , (5)

providing the Hessian matrix HT ·W ·H+ µDT ·D is non-
singular, which is generally the case for µ > 0. Owing to the
large size of the matrices involved in this equation (there
are as many unknown as the number of pixels), the linear
problem has to be iteratively solved (by a limited memory
algorithm such as vmlm) unless it can be diagonalized as
explained below. The solution, equation (5), involves at least
one parameter, µ, which needs to be set to the correct level of
regularization: too low would give a solution plagued by lots
of artifacts due to noise amplification, too high would result
in an oversmoothed solution with small details blurred. The
optimal level of smoothing can be computed by generalized
cross validation (GCV) by minimizing with respect to µ the
function (Golub et al. 1979; Wahba 1990):

GCV(µ) =
(Aµ · y − y)T · W · (Aµ · y − y)

[1 − tr(Aµ)/N ]2
, (6)

where N is the number of data (size of y) and Aµ = ∇y (H ·
xµ) is the so-called influence matrix, in our case:

Aµ = H ·
“

H
T · W · H + µD

T · D
”−1

· HT · W . (7)

Computing the value of GCV(µ) involves: (i) solving the
problem to find the regularized solution xµ and compute
Aµ ·y = H ·xµ; (ii) estimate the trace of Aµ perhaps by us-
ing Monte Carlo methods (Girard 1989) since the influence
matrix is very large. The computational cost of stages (i)
and (ii) is similar to that of a few solvings of the quadratic
problem. Since this has to be repeated for every different
value of the regularization level, finding the optimal value
of µ by means of GCV can be very time consuming unless
the problem can be approximated by a diagonal quadratic
problem (for which matrix inversions are both fast and triv-
ial).

For this purpose, we introduce the proxy problem cor-
responding to white noise and circulant approximations of
the operators H (convolution by the PSF) and D (finite
differences). Then the weighting matrix becomes:

Wi,j = δi,j/σ2 , where σ2 = Var(ni).

where σ2 = Var(ei) is the variance of the noise. In the special
case where the PSF is shift-invariant, H is a convolution
operator which can be approximated by a block Toeplitz
with Toeplitz block matrix that can be coputed very quickly
by means of FFT’s:

H · x ≃ F
−1 · diag(F · h) · (F · x) , (8)

where h is the PSF (the first row of H), F is the forward
DFT operator, and diag(v) is the diagonal matrix with
its diagonal given by the vector v. This discrete convolu-
tion equation assumes that Fu,j = exp(−2 i π

P

n un jn/Nn)
where Nn is the length of the nth dimension, jn =
0, . . . , Nn−1 and un = 0, . . . , Nn−1 are the indices of the po-
sition and discrete Fourier frequency along this dimension.
In this case, the inverse DFT is simply F−1 = FH/Ntot with
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ASKI: towards a full-sky lensing map making pipeline 5

Ntot the total number of elements in x and the H exponent
standing for the conjugate transpose. With these approx-
imations and definitions of the DFT, the likelihood term
writes:

L(x) =
1

σ2
‖H · x − y‖2 ≃ 1

Ntot σ2

X

u

|ĥu x̂u − ŷu|2 , (9)

where ĥu is the transfer function (the DFT of the point
spread function) and ŷu and x̂u respectively the DFT of the
data and of the sought image. Note that the exact normaliza-
tion factor, here 1/Ntot, depends on the particular definition
of the DFT.

Similarily, ignoring edges effects, the finite difference
operator D along nth direction can be approximated by:

Dn · x ≃ F
−1 · diag(d̂n) · (F · x) , (10)

where d̂n is the DFT of the first row of Dn; then the
quadratic regularization writes:

R(x) = ‖D·x‖2 =
X

n

‖Dn ·x‖2 ≃ 1

Ntot

X

u

ru |x̂u|2 , (11)

with:

ru =
X

n

|d̂n,u|2 = 4
X

n

sin2

„

π un

Nn

«

, (12)

for first order finite differences and our choice for the DFT.
Note that any ru > 0 and being an increasing function of the
length |u| of the spatial frequency could be used instead and
would result in imposong a smoothness constraint although
with a different behaviour. Finally putting all these circulant
approximations together, the quadratic problem to solve is
diagonalized in the DFT space and trivially solved to gives
the DFT of the MAP solution:

x̂µ,u =
ĥ⋆

u ŷu

|ĥu|2 + µ σ2 ru

, (13)

the asterisk exponent denoting the complex conjugate. Note
that this circulant approximation of the solution is very fast
to compute as it involves just a few FFT’s. This expres-
sion of the MAP solution is very similar to what would give
Wiener filter which would be exactly achieved by setting
the term µ ru equals to the reciprocal of the expected image
powerspectrum in equation (13). Since, in our case, the im-
age powerspectrum is unknown a priori, we have to choose
the regularization shape ru and derive the optimal level of
smoothing, for instance, by means of GCV. Thanks to the
circulant approximation made here, GCV criterion is now
very easy to compute as:

Aµ ≃ F
−1 · diag(âµ) · F , with: âµ,u =

|ĥu|2

|ĥu|2 + µ σ2 ru

,

and tr(Aµ) =
P

u âµ,u/Ntot, hence:

GCV(µ) =
Ntot

P

u t2µ,u |ŷu|2
σ2 [

P

u tµ,u]2
, (14)

with

tµ,u = 1 − âµ,u =
µ σ2 ru

|ĥu|2 + µ σ2 ru

. (15)

In practice, for the optimization of equation (2), equa-
tion (13) is taken as a starting point together with the choice

of µ given by the minimum of equation (14). Then the opti-
mization of equation (2) is carried with possibly non station-
ary weights, while iterating back and forth between model
and data space.

2.1.3 Crowded fields and star removal

Even though the estimation of the ellipticities does not re-
quire per se the deconvolution of the galaxies, it is shown
below that this estimation is significantly improved by de-
convolution when the fields of view are crowded and polluted
by foreground stars: indeed galaxies and stars overlap less
when deconvolved, which reduces the fraction of erroneous
measurements. Unfortunately, when these stars are present,
they significantly bias the estimation of the hyper parame-
ter, µ, since stars correspond to high frequency correlated
signal which leads to an underestimation of the optimal level
of smoothing (for the galaxies) by cross validation. This is
best seen in Figure 1 which displays the evolution of the
hyper-parameter which minimizes GCV as a function of the
number of stars removed by our star removal algorithm, see
Appendix A. Interestingly, it suggests that GCV could be
used as a classifier.

2.1.4 ℓ1 − ℓ2 penalty and positivity

The drawback of using a quadratic (ℓ2) norm in the regular-
ization is that it tends to over-smooth the regularized map
especially around sharp features as point-like sources (i.e.
stars) and the core of galaxies. This is because the regular-
ization prevents large intensity differences between neigh-
boring pixels and result in damped oscillations (Gibbs ef-
fect). Such ripples hide any faint details in the vicinity of
sharp structures. To avoid this, it would be better to use a
regularization which smoothes out small local fluctuations
of the sought distribution (here the deblurred image), pre-
sumably due to noise, but let larger local fluctuations arise
occasionally. This can be achieved by using a ℓ1 − ℓ2 cost
function φ in equation (4). A possible ℓ1 − ℓ2 cost function
is (Mugnier et al. 2004):

φ(r) ≡ 2 ε2

h˛

˛

˛

r

ε

˛

˛

˛
− log

“

1 +
˛

˛

˛

r

ε

˛

˛

˛

”i

. (16)

For a small, respectively large, pixel differences r, φ(r) has
the following behavior

φ(r) ∼


r2 when |r| ≪ ε ,
2 |ε r| when |r| ≫ ε ,

which shows that, as required, the ℓ1 − ℓ2 penalty behave
quadratically for small residuals r’s (in magnitude and w.r.t.
ε) and only linearly for large r’s. The derivative, needed for
the optimization algorithm, of the ℓ1 − ℓ2 penalty writes:

φ′(r) =
2 ε r

ε + |r| .

An additional possibility to improve the restitution of faint
details with level close to that of the background is to ap-
ply a strict positivity constraint. This is achieved by using
vmlmb, a modified limited memory variable metric method
(Thiébaut 2002), which imposes simple bound constraints
by means of gradient projection. This yields a reduction of
aliasing by bounding the allowed region of parameter space
which can be explored during the optimization.
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6 C. Pichon, E. Thiébaut, S. Prunet, K. Benabed, S. Colombi, T. Sousbie, R. Teyssier

Figure 2. An example of virtual fields generated with skymaker to be fed to sextractor before and after deconvolution using the

different regularizations described in the text. From top to bottom and left to right, a galaxy field image and the corresponding “true”

field, a galaxies field with stars and a crowded galaxy field with stars (10
6

stars/arcmin
2
). The exposure time is 10 seconds and the

seeing is 1” for the VLT with VIMOS. The background field corresponds to the actual size of the corresponding images.

2.2 Numerical experiments

The public package SkyMaker (Erben et al. 2001) was
used to generate galactic and stellar fields from ellipticity
and magnitude catalogues. Table 2 summarizes the main
parameter corresponding to the VLT with a VIMOS instru-
ment, a worse case situation compared to upcoming space
missions.

A regular grid of 12× 12 galaxies of magnitude 20 with
random orientation is produced twice (with the same ran-
dom seed), one corresponding to a fixed seeing and a given
exposure time, while the other assumes zero noise and zero
seeing for a set of 512 × 512 pixels images, see Figure 2.

The background level and the amplitude of the back-
ground noise is first estimated automatically from the his-
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ASKI: towards a full-sky lensing map making pipeline 7

Figure 4. Left panel : the relative error quality factor (see main text) as a function of the log exposure time for the three methods,

respectively Wiener filtering (diamonds), ℓ2 gradient penalty function with enforced positivity (triangles) and ℓ1 − ℓ2 gradient penalty

function with positivity (circles). Two seeing conditions are investigated, corresponding to a good (0.7”) and a fair (1.2”) seeing condition.

These simulations assume that no star are present in the field, and correspond to a set of non overlapping galactic disks with random

orientation and magnitude 20 in V (see Fig. 2). The telescope setting correspond to the VIMOS instrument on an 8 meter VLT. Right

panel : the quality factor as a function of the log exposure time, but this time while allowing for stars in the field. The star count is 10
5

stars per arcmin
2
. As discussed in the text, the penalty weight is estimated via generalized cross validation (GCV) on a temporary image

where all stars are automatically removed via blind cleaning as describedin Appendix A. Here the removal of stars is essential since the

GCV hyper-parameter (which sets the level of smoothing in the deconvolved image) varies by orders of magnitudes in the process (see

Fig 1 for a discussion) and would be otherwise underestimated.

togram of the pixel values and fed to Sextractor (Bertin

& Arnouts 1996) which then estimates the position, the
flux, the orientation and the ellipticity for all the galaxies
in the field. This procedure is reproduced 50 times with dif-
ferent realizations. The measured and the recovered elliptic-
ity are compared, together with flux and orientation for all
the galaxies in the field. In this set of simulations the prior
knowledge of the position of the galaxy is used to minimize
errors which might arise while using sextractor: the re-
covered galaxy is chosen to be that which is closest to the
known position. The median and interquartile of the error
(difference between the “true” and recovered) in ellipticity
versus the ellipticity is computed for a range of exposure
time; this procedure is iterated for the three deconvolution
techniques used in this paper (Wiener, ℓ2 with positivity,
ℓ1 − ℓ2 with positivity). An example of such a plot is shown
in Figure 3. Clearly the bias in the recovered ellipticity in-
creases with the ellipticity and the amount of noise in the
image (via poorer seeing or shorter exposure time). As ex-
pected, the Wiener deconvolution is the least efficient of the
three methods, since the linear penalty does not avoid some
level of Gibbs ringing. In contrast the ℓ2 penalty with posi-
tivity avoids partially such ringing, while the ℓ1−ℓ2 penalty
works best at recovering the input eccentricity with a con-
sistent level of bias below 10 % for an ellipticity in the range
[0.1, 0.8[. Interestingly, there is also a residual bias (even for
longer exposure times) for small ellipticity galaxies, which
arises because noise induced departure from sphericity is

amplified by the deconvolution. Note that the Wiener de-
convolution is significantly faster than the iterative decon-
volution with positivity (with ℓ2 or ℓ1 − ℓ2 penalties). Posi-
tivity improves significantly the deconvolution, but will de-
pend critically on the ability to estimate the background. In
the present simulations, the level of background is automat-
ically estimated while looking at the histogram of the pixels.
Finally the ℓ1 − ℓ2 regularization significantly improves the
restoration of fields of stars and galaxies, because the stars
and the cores of galaxies are very sharp. These non-linear
iterative methods are slower than the Wiener filtering, but
can account at no extra cost for non uniform noise, or satu-
ration and masking. Their convergence can be considerably
boosted when they are initiated by the Wiener solution.

For any such plot, two numbers are defined which sum-
marize the trend. The mean error (averaged over the various
ellipticities) ǭ, and the mean of the interquartile, ∆ǭ were
measured. The quality factor, QF is defined to be the ratio
of the sum of this mean error and the mean interquartile
for the image without deblurring, divided by the sum of the
mean error and the mean interquartile for the deconvolved
image for the three techniques (Wiener, ℓ2 and ℓ1−ℓ2). This
reads

QFmethod =
ǭimage + ∆ǭimage

ǭmethod + ∆ǭmethod

.

The evolution the quality of the ellipticity measurement is
traced versus seeing conditions and signal to noise (exposure
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8 C. Pichon, E. Thiébaut, S. Prunet, K. Benabed, S. Colombi, T. Sousbie, R. Teyssier

Figure 3. the error in ellipticity as a function of the elliptic-

ity (measured by sextractor) for a set of 50 images (such as

those shown on Figure 2) either directly on the image (medium

squares), deconvolved with ℓ2 gradient penalty function with en-

forced positivity (light diamonds) and ℓ1 − ℓ2 gradient penalty

function with positivity (dark circles). For each set, the elliptic-

ity is also measured directly on the raw image. Note that, as ex-

pected, the error on the bias is largest for circular galaxies, since

deconvolution will tend to over amplify departure from circular

symmetry.

time) in two regimes: a galaxy-only field, and a galactic field
with a crowded star content where the number of stars per
square degree reaches 105 stars/arcmin2. These two regime
represent high and low Galactic region respectively. Fig-
ure 4 displays the evolution of QFWiener (diamonds), QFℓ2

(squares), and QFℓ1−ℓ2 (circles), as a function the exposure
time of 1, 10, 100 and 1000 seconds respectively, and two
seeing conditions of 1.2” and 0.7”. No stars are present in
the field on the left panel of Figure 4, whereas its right panel
displays the three QF estimators for a field with a realistic
105 stars per square degree. Now that we have shown that
state of the art edge-preserving deconvolution of deep sky
images is mandatory to get good quality shear estimates, let
us conclude this section by a leap forward, and assume from
now on that we have access not only to discrete measure-
ments of ellipticities over a significant fraction of the sky,
but also that this point like process has been re-sampled.
Indeed, since it is beyond the scope of this paper to carry
out a full-sky deconvolution and reconstruction at the reso-
lution of 0.7” (This would amount to about 1012 pixels!), it
is assumed from now on that a full-sky catalogue of vector
reduced shear exists and that the interpolation/re-sampling
of the corresponding map on a uniform grid over the sphere
has been done, together with an estimate of the correspond-
ing shot noise. In this paper, we extract the virtual catalogue
from a state of the art simulation (see below) we make use of
the Healpix Pixelisation (Górski & et al. 1999), a hierarchi-

Object value

Gain (e-/ADU) 30.11

Full well capacity in e- 300000

Saturation level (ADU) 60000

Read-out noise (e-) 1.3

Magnitude zero-point (ADU per second) 21.254

Pixel size in arcsec. 0.2

Number of microscanning steps 1

SB (mag/arcsec
2
) at 1’ from a 0-mag star 16.0

Diameter of the primary mirror (in meters) 8.0

Obstruction diam. from 2nd mirror in m. 2.385

Number of spider arms (0 = none) 4

Thickness of the spider arms (in mm) 5.0

Pos. angle of the spider pattern 45.0

Average wavelength analyzed (microns) 0.80

Back. surface brightness (mag/arcsec
2
) 21.5

Nb of stars /
�

brighter than MAG LIMITS 1e5

Slope of differential star counts (dexp/mag) 0.3

Stellar magnitude range allowed 12.0,19.0

Table 2. SkyMaker parameters used to generate the VIMOS/

VLT images

cal equi-surface and iso-latitude pixelisation of the sphere,
which was developped to analyze polarized CMB type data.

3 A FULL-SKY MAP MAKER

3.1 The inverse problem

Our purpose is now to solve for the non-linear inverse prob-
lem of recovering the κ(n̂) map corresponding to a noisy
incomplete measurement of the 2-D field (g1(n̂), g2(n̂))T of
the ellipticity and orientation on the sphere (in the local
tangent plane):

gk(n̂) =
γk(n̂)

1 − κ(n̂)
+ ek(n̂) , for k = 1 or 2 , (17)

where n̂ is the sky direction, γ and κ are respectively the
shear and the convergence, while e is a tensor field of the
errors which accounts for the measurement noise (includ-
ing the shot noise induced by the finite number of galaxies
within that pixel) and model approximations.

3.1.1 Spherical formulation

On the sphere, the scalar field κ and the tensor field γ are
linear functions of the unknown complex field a = Y · κ

whose coefficient are the spherical harmonic coefficients of
κ. After discretization and using matrix notation, κ and γ
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ASKI: towards a full-sky lensing map making pipeline 9

Figure 5. Top panel : full-sky view of the mask; Bottom panel:

a zoom at coordinate (l, b) = (30
◦
, 30

◦
) showing the distribution

of stellar cuts. This cut corresponds to the inner central region of

the reconstruction shown in Figure 12.

write

κ ≡ K · a and γ ≡ G · a , (18)

where K = Y and G = pY ·J, denoting Y the scalar spher-
ical harmonics and pY = (EY,B Y) the parity eigenstates
based on spin 2 spherical harmonics. These eigenstates are
defined in such a way that

γ1 ± iγ2 = −
X

ℓm

(aℓ,m,E ± iaℓ,m,B)±2 Yℓm ,

so that we have

„

γ1

γ2

«

=
X

ℓ,m

„ −W+

ℓ,m

+iW−
ℓ,m

«

aℓ,m,E+
X

ℓ,m

„

−iW−
ℓ,m

−W+

ℓm

«

aℓ,m,B

with W±
ℓ,m = (2Yℓ,m ±−2Yℓ,m)/2. Here J operates on a as

(J · a)ℓ,m,E = −
s

(ℓ + 2)(ℓ − 1)

(ℓ + 1)ℓ
aℓ,m , (19)

(J · a)ℓ,m,B = 0 . (20)

Appendix B gives more explicit formulations of the opera-
tors K and G, using index notation on the sphere.

3.1.2 Flat sky formulation

The flat sky limits (corresponding to large ℓ’s) of equations.
(18)-(19) are (see Appendix C):

J ≈ (1,0) , and Y ≈ exp(iℓ · n̂) , (21)

while the parity eigenstates read locally, in the fixed copolar
basis ex, ey:

W
+ ≈ − cos(2 φℓ) exp(i ℓ · n̂) = − l2x − l2y

l2x + l2y
exp(i ℓ · n̂) ,

W
− ≈ −i sin(2φℓ) exp(i ℓ · n̂) = −i

2 lx ly
l2x + l2y

exp(i ℓ · n̂) .(22)

In this limit, the unknowns, a, represent the Fourier coeffi-
cients of the convergence field, κ. Note that our definition of
γ and κ warrants that they are consistent with the lens equa-
tion on the tangent plane — solving for κ in equation (18)
and plugging the solution into equations (22) — which reads
locally in real space:

∇2κ(n̂) =
`

∂2

x − ∂2

y

´

γ1(n̂) + 2 ∂x∂yγ2(n̂) , (23)

where γ1(x, y) and γ2(x, y) are the two components of the
E and B modes of the shear field. Also note that thanks to
equation (20) the recovered map will not have B modes by
construction. It can nevertheless be checked that the ampli-
tude of the B modes in the residuals is small compared to
the amplitude of the signal in the E modes, see Section 4.8.

3.1.3 Cost function

The considered problem can be stated as recovering a given
the data g according to the model in equation (17). In the
same way as what has been done for deblurring the images
(section 2), finding the solution of this inverse problem in the
Maximum a Posteriori (MAP) (Thiébaut (2005); Pichon &
Thiébaut (1998)) sense involves minimizing a two-term cost
function:

Q(a) = L(a) + µR(a) , (24)

with respect to the parameters a. In the right hand side
of equation (24), the term L(a) enforces agreement of the
model with the data, whereas R(a) is a regularization term
used to enforce our prior knowledge about the sought fields,
and µ > 0 is a Lagrange multiplier used to tune the relative
importance of the prior with respect to the data.

For errors with a centered Gaussian distribution, the
likelihood term writes:

L(a) =
X

j,k

Wj1,k1,j2,k2
ek1

(n̂j1) ek2
(n̂j2) ,

with ek(n̂j) = gk(n̂j) − γk(n̂j)/[1 − κ(n̂)] and W = C−1

with Cj1,k1,j2,k2
= 〈ek1

(n̂j1) ek2
(n̂j2)〉. If the errors are fur-

ther uncorrelated, the likelihood simplifies to:

L(a) =
X

j,k

wj,k

»

gk(n̂j) − γk(n̂j)

1 − κ(n̂j)

–2

, (25)

where the sum is carried over the index j of the sampled
sky directions n̂j (so called sky pixels) and index k of the
two components of, say, the Q and U polarization fields re-
spectively (see Appendix B for an explicit formulation with
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Figure 6. a zoom of the full-sky recovered κ maps of a simulation 2048S

ℓcut

FS
with ℓcut = 722, (top left panel) and 1569, (top right panel)

at coordinates (φ, θ) = (0, 0). ( the color table corresponds to a histogram equalization) bottom left panel: the corresponding data (the

hue color table codes the polarization orientation); bottom right panel the corresponding underlying κ map.

all the relevant indices) and the weights are related to the
variance of the noise:

wj,k = Var (ek(n̂j))
−1 . (26)

This allow us to account for non uniform noise on the sky
and also cuts (the galaxy, bright stars, etc.) for which the
variance can be considered as infinite and thus the corre-
sponding weights set to zero. Note that setting the weights
in this statistically consistent way yields no such biases as
those which would result from interpolation or inpainting
methods used to replace missing data (Pires et al. (2008)).

For this recovery problem, our prior is that the field κ

must be as smooth as possible in the limit that the model
remains compatible with observables within the error bars,
that is equation (17) must be valid. To that end, the regu-
larization is written as a penalty based on the second order
spatial derivatives (Laplacian) ∇2κ of the field κ:

R(a) = ‖∇2
κ‖ . (27)

Equation (B9) in Appendix B gives the expression of ∇2κ as
a function of the unknown a. In order to enforces smooth-
ness while preserving some sharp features in the κ map,

quadratic and non quadratic norms of the Laplacian have
been considered for the regularization, see Section B.

3.2 Generating the virtual data set

Let us first describe in turn the simulation used to model
the full sky κ map, and the generation of the corresponding
map.

3.2.1 The simulation

The Horizon 4Π (Teyssier et al. (2008), Prunet et al.
(2008)) simulation was used, a ΛCDM dark matter simu-
lation using the WMAP 3 cosmogony with a box size of
2h−1Gpc on a grid of 40963 cells. The 70 billions particles
were evolved using the Particle Mesh scheme of the RAM-

SES code (Teyssier (2002)) on an adaptively refined grid
(AMR) with about 140 billions cells, reaching a formal res-
olution of 262144 cells in each direction (roughly 7 kpc/h
comoving). The simulation covers a sufficiently large vol-
ume to compute a full-sky convergence map, while resolving
Milky-Way size halos with more than 100 particles, and ex-
ploring small scales deeply into the non-linear regime. The
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ASKI: towards a full-sky lensing map making pipeline 11

Figure 7. a zoom on the power spectra of the three reconstruc-

tions of 2048S

ℓcut

FS
for ℓcut = 722, 1083, and 1569, together with

the power spectra of the noise. Note that the level of smoothing

decreases with increasing signal to noise, in parallel to the bias in

the corresponding power spectrum.

dark matter distribution in the simulation was integrated in
a light cone out to redshift 1, around an observer located at
the center of the simulation box.

3.2.2 Mock data

This light cone was then used to calculate the corresponding
full sky lensing convergence field, which is mapped using the
Healpix pixelisation scheme with a pixel resolution of ∆θ ≃
0.74 arcmin2 (nside = 4096). Specifically, the convergence
κ(n̂) at the sky coordinate n̂ is computed from the density
contrast, δ(x, z) in the Born approximation using:

κ(n̂) =
3

2
Ωm

Z zs

0

dz

E(z)

D(z)D(z, zs)

D(zs)

1

a(z)
δ(

c

H0

D(z)n̂, z) ,

(28)
which is valid for sources at a single redshift zs = 1, and
D(z) = H0 χ(z)/c is the adimensional comoving radial co-
ordinate, hence dD = dz/E(z). The detailed procedure to
construct such maps from the simulation using equation (28)
is described in Appendix D1 (chosing the sampling strat-
egy) and D2 and in Teyssier et al. (2008). In practice, a
set of degraded maps of κ was generated from the full res-
olution, nside = 4096 down to nside = 128 in powers of 2,
together with the corresponding masks (see Figure 5). Differ-
ent levels of noise (corresponding to 700 6 ℓcut < 2500) and
maps with/without Galactic masks are considered. The cor-
responding simulations are labeled as nnside

Sℓcut

FS/GC
. Carte-

sian maps are also used, labeled as npixel
CSNR

NL/lin correspond-
ing to Cartesian sections of the full-sky maps, where for
commodity, the experiments involving high resolution where
calibrated. Here the flag NL/lin refers to whether or not the
non-linear model is accounted for.

3.2.3 Penalty weight

In this paper, the weight of the penalty, µ, in equation (24)
is chosen so that the ℓ2 cutoff corresponds to the scale, ℓcrit
at the intersection of the signal and the noise power spectra,
see e.g. Figure 7. Specifically

µ ∝ 1/ℓ2crit .

In a more realistic situation, when the power spectrum of the
signal is unknown, generalized cross validation could be used
to find this scale. When ℓ1 − ℓ2 penalty is implemented (see
Section 2.1.4), the ℓ1 parameter ǫ entering equation (16) is
chosen so that it cuts off the tail of the PDF of the Laplacian
of the recovered field at the 3-σ level.

3.3 Optimization & Performance

Let us now turn to the optimization procedure and the per-
formance of the algorithm.

3.3.1 Optimization

Recall that the procedure assumes here a sampling strat-
egy, since the noisy g field is given on a pixelisation of the
sphere. To solve the optimization problem, we used the al-
gorithm vmlm from OptimPack (Thiébaut 2002) which
only involves computing the objective function Q(a) and its
partial derivative with respect to the parameters a. Vmlm

is an unconstrained version of vmlmb which has been used
for the deblurring problem and which is described in some
details in section 2.1. The optimization of equation (24) is
carried by computing in turn equation (18) and Equations
(28) and (B3) using Healpix (Górski & et al. (1999))

in OpenMP or MPI.

3.3.2 Overall Performance

Each back and forth transform takes respectively 0.1, 0.5, 2,
8, 32 and 128 seconds on an octo opteron for nside equal
to 128, 256, 512, 1024, 2048 and 4096, see Table 1. The
linearized problem without mask converges typically in a
dozen iterations (which typically only involve a back and
forth transform, unless the convergence is poor). The lin-
earized mask problem takes a few hundred iterations, see
Table 3, and so does the non-linear problem (or the lin-
earized problem with a non-linear ℓ1 − ℓ2 penalty function).

4 VALIDATION

Let us first investigate a few striking features of the method
in turn: its ability to fill gaps, its ability to preserve the
sharpness of clusters, its ability to impose strong prior on
the two-points correlation.

4.1 Linear versus non-linear optimization

Figure 8 shows the effect of accounting for the non linear-
ity in equation (17). Here a set of Cartesian simulations
is used 256C

1

NL/lin. This map represents (a 100 times) the
difference between the recovered map while accounting for
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12 C. Pichon, E. Thiébaut, S. Prunet, K. Benabed, S. Colombi, T. Sousbie, R. Teyssier

Figure 8. Top panel : a map of the 100 times difference between

the recovered map with the non-linear model and ℓ1 − ℓ2 penalty,

and the recovered map without accounting for the non-linearity.

As expected the difference is largest at high frequencies near the

cluster and along the filaments. Bottom panel: the power spec-

trum of the relative difference as a function of ℓ.

1 − κ in equation (17) in the inversion, and the recovered
map while neglecting this factor. The difference is small in
amplitude, but shows as expected the strongest bias near
the clusters and the filaments, where κ is largest. The bot-
tom panel represents the corresponding relative power spec-
trum, Cℓ[NL − lin]/Cℓ[input] as a function of ℓ. Again the
larger discrepancy occurs at higher ℓ, corresponding to the
sharp peaks at the positions of the clusters. Hence the non-
linearity should be accounted for in the model if the shape
of the cluster is an issue. For all practical purposes, at scales
below ℓmax < 4096 solving the linearized problem is de facto
equivalent to the general non-linear problem when κ is ne-
glected at the denominator in equation (17).

4.2 Topology & geometry: skeleton extraction

Let us now compare the shape of the recovered map to the
initial map from the point of view of its topology and its ge-
ometry. For this purpose, the skeleton is used here (Novikov
et al. (2006); Sousbie et al. (2007)). It is defined in 2D as
the boundary of the void patches (See figure B1), which in
turn are a segmentation of the map. The skeleton of the ini-
tial field and the recovered fields for simulation 2048S

ℓcut

GC
is

Figure 9. The input skeleton differential length with its recov-

ered counterparts as a function of the normalized κ contrast,

ν ≡ (κ − κ̄)/σκ for the set 2048S

ℓcut

FS
with ℓcut = 722, 1083, and

1569. Here the PDF of the normalized κ contrast was subtracted

to the differential length for clarity; As expected, the agreement is

best at large convergence. This figure is complementary to Figure

12 which shows that the geometry of the field is well preserved

on average.

computed, and represented in Figure 12 The recovered skele-
tons are qualitatively fairly close to the original skeleton,
which demonstrates that the local topology and geometry
of the field is well recovered. Let us make this comparison
more quantitative. The differential length per unit area of
the recovered field (the set 2048S

ℓcut

FS
with ℓcut = 722, 1083,

and 1569 as labeled) over the initial κ map (thin line) as a
function of density threshold is also shown in Figure 9. The
agreement increases at larger density thresholds, which sug-
gests that the topology of dense regions is well recovered.
This quantity was shown (Sousbie et al. (2008), Pogosyan
et al. (2009)) to trace well the underlying shape parameter of
the powerspectrum and as been used in 3D to constaint the
dark matter content of the universe (Sousbie et al. (2006)).
An alternative to the differential length would be to measure
the relative distance between the recovered and the input
skeleton, see Caucci et al. (2008). Eventually, the skeleton
could also be used to characterize the connectivity of clusters
(i.e. the number of connected filaments), as it will depend
on the cosmic energy content (Pichon & al. (2009)).

4.3 Skewness and Kurtosis

The simplest statistics to explore this transition is the skew-
ness, S3 and the kurtosis, S4 of the PDF of the recovered
maps. Furthermore, it has been shown that these parameters
provide a powerful tool to measure the underlying cosmo-
logical parameter Bernardeau et al. (1997); Takada & Jain
(2002, 2004). Figure 10 displays the evolution of these num-
bers as a function of scale in the initial and recovered maps,
with and without galactic masking. Top hat filtering is used
here of width [2i, 2i+1], while the harmonic number of each
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ASKI: towards a full-sky lensing map making pipeline 13

Figure 10. left panel : skewness, S3 and kurtosis, S4 as a function of scale (using sharp top hat filtering) for the model (plane line)

and the recovered κ maps of a simulation 2048S

ℓcut

FS
(dotted, dot-dashed, dot-dot-dashed line for ℓcut = 722, 1083, and 1569); right panel :

same as top panel, but for the 2048S

ℓcut

GC
set. Note that the kurtosis of the cut is significantly different at small ℓ.

nside 128 256 512 1024 2048

time for one step (s) 0.121 0.121 0.502 1.88 8.53

number of steps (s) 252 313 315 377 325

total time (s) 40.1 50.3 200 989 3340

Table 3. same as Table 1 with Galactic masks.

band is the mean of its boundary: ī = (2i + 2i+1)/2. The
recovery of skewness and kurtosis is good in the case of un-
masked data. Of course it degrades with the scale as we
reach ℓcut. Using the reconstructed map is not the optimal
way of measuring the 3 and 4 point functions at small scale.
However, an optimal dedicated estimator can be built upon
the same regularization technique. The masked case is not
as good. There, a dedicated estimator, acting only on small,
clean, pieces of the sky will probably yield better results.

4.4 Point source extraction

A segmentation of both the initial and the recovered maps
is carried using peak patch on the sphere (Novikov et al.
(2006), Sousbie et al. (2008)). Within each peak patch (see
Figure B1), the brightest pixel is assigned a mass corre-
sponding to the enclosed mass within the peak patch. Figure
11 (left panel) displays the corresponding PDFs for resolu-
tions corresponding to nside = 256, 512, 1024 before and af-
ter reconstruction. As expected, the recovered point source
PDF has a shifted mode and is less skewed than the original
distribution.

4.5 Filling gaps within masks

Let us compare the shape of the recovered map to the initial
map from the point of view of masking. Figure 12 illustrates
a feature of the penalized reconstruction: it allows for some
level of interpolation which provides means to fill the gaps
corresponding to the galactic cuts. The smoothing penalty
also induces a level of extrapolation, best seen in the resid-
uals, see Figure 18. The masking (or more generally, non
uniform weights, wi) nevertheless biases the reconstructed
map, as seen on Figure 10 and 13. Note finally that when
masks are accounted for, it is straightforward to correct for
them when computing the powerspectrum as the harmonic
transform of the autocorrelation, which in turn is derived by
correcting for the autocorrelation of the masks (see Szapudi
et al. (2001) for details).

4.6 Optimal Wiener filtering

Throughout this paper the prior Cℓ ≡ ℓ−1(ℓ + 1)−1 for the
Laplacian prior is used in equation (B8). Let us briefly in-
vestigate how a customized prior for Cℓ improves the qual-
ity of the interpolation at frequencies beyond the cutoff
frequency. Figure 14 shows the corresponding power spec-
tra, and demonstrates that the match between the recov-
ered powerspectrum with the correct prior and the initial
powerspectrum is in this regime good, whereas the smooth-
ing prior, equation (27), yields a κ whose power spectrum
starts departing from the input power spectrum at the crit-
ical frequency, ℓcut at which the signal and the noise match.
Nevertheless in what follows, a smoothing prior which is not
customized to the specific problem is preferred.
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Figure 11. left panel : the PDFs of κmax at point sources before and after reconstruction of set of simulations 2048S

ℓcut

FS
(dashed, dotted,

dot-dashed line for ℓcut = 722, 1083, and 1569); right panel : the PDFs of the area of peak patches (see Figure B1) before and after

reconstruction for the same set of simulations. Note that, as expected, the recovered distribution of peaks is less skewed than the original,

whereas conversely, PDF of the area of the peak patches for the low SNR reconstruction is more skewed towards larger patches.
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Figure 12. left panel: the initial κ map in the region with bright stars masking shown in Figure5 at coordinates (l, b) = (30
◦
, 30

◦
);

middle panel: the corresponding recovered κ map of a simulation 2048S

2212

GC
Note that the gaps have been nicely filled up to the very

edge of the mask; right panel: the corresponding two skeletons (color coded by κ in purple: input skeleton; in orange: recovered skeleton)

for the inner region (marked as a square on the middle panel), when masking is present. Note the clear gradient away from the mask in

the quality of the match between the two skeletons; Recall that most of the field is partially shielded by stars, as seen in Figure 5.

4.7 Sharpness preserving penalization

One of the main assets of high resolution full-sky lensing
maps is to probe multiple scales: it then becomes possible
to sample the non linear transition scale and, e.g. study the
shape of clusters. Figure 15 illustrates this feature while
displaying the result of the inversion with ℓ2 and ℓ1 − ℓ2
penalties. For this experiment, a Cartesian subset at galac-
tic coordinates (l, b) = (0◦, 0◦) was extracted. The corre-
sponding non-linear shear field g was generated via Fourier
transform, and noised with a white additive noise of SNR
of 1. This set was then inverted while assuming ℓ2 (bottom

right) and ℓ1 − ℓ2 (top right) penalties. The choice for the
two penalty weights, µ and ǫ was made on the basis of least
square residual in the inverted κ maps. The improvement of
ℓ1− ℓ2 over ℓ2 penalty is significant. This statement is made
more quantitative in Figure 16 which displays the PDF of
the peaks within that image for the initial map (top left
panel of Figure 15) computed following the peak patch pre-
scription described in Section 4.4. The agreement between
the input and the recovered distribution is significantly en-
hanced by the optimal ℓ1 − ℓ2 (top right) penalty.
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Figure 13. the power spectra of three reconstructions corre-

sponding to Figure12 for ℓcut = 796, 1368, and 2212 together with

the power spectra of the noise. Note that the the recovered power

spectrum has extra power at large scales and less power at inter-

mediate scales, an artifact of the mask which can be corrected for

by accounting for the prior knowledge of the auto-correlation of

the mask.

4.8 Residual B modes

Let us investigate the effect of leaking of B modes with the
following experiment: the noise in the transform of the B
channel is boosted by some fixed amount over a map which
has Galactic cuts. This corresponds to the case where the B
is significantly larger than the noise, yet uncorrelated with
the E mode, corresponding to e.g. a systematic bias in the
ellipticity extraction for example. It is expected that, due
to masks, this B mode will leak in E. An example of such
leak, for B modes as large or up to 32 times larger than
the noise, is shown in Figure 18. The power spectrum of
the residuals in the corresponding κ map is computed while
masking in the residual the exact regions corresponding to
the cuts. When this boost is zero, (bottom curve in Figure
17) the power spectrum of these residuals is flat and corre-
sponds to the noise powerspectrum. In contrast, the stronger
the boost the larger the scale below which this power spec-
trum is colored. Note that it was checked that, as expected,
these coherent residuals disappear completely if the galactic
cuts are ignored. It would also be interesting to compare the
distribution of the shape of dark matter in input/recovered
clusters.

5 CONCLUSION & DISCUSSION

Weak lensing surveys require measuring statistical distri-
butions of the morphological parameters (ellipticity, orien-
tation, ...) of a very large number of galaxies. This paper
demonstrated that these parameters can be measured with
a better accuracy and strongly reduced bias if the deep
sky images are properly deblurred prior to the shape mea-

10.0 100.020. 200.5. 50. 500.

10−9

10−8

2

2

5

5

5

Inversion of γ: Cl/smoothing prior

l

C
l

inversion Cl prior

noise

data without noise

data 

inversion 
smoothing prior

Figure 14. The power spectrum of the input and recovered κ,

(with smoothing and Cℓ prior, see equation (B5)) as a function

of ℓ, together with the power spectrum of the noise and the noisy

equivalent κ using a simulation, 512S

224

FS
. Note that the recovered

power spectrum departs from the power spectrum of the input

field roughly at the cutoff frequency when a quadratic smoothing

penalty is applied. When the prior is constructed from the power

spectrum, Cℓ, of the sought field, a good extrapolation of the

recovered power spectrum is achieved at ℓs well above the noise

level.

surements. Using a relative figure of merit (the recovered
SExtractor ellipticity) we have shown that this deblur-
ring could in crowded fields improve more than tenfold the
accuracy of the recovered ellipticities. The deblurring is crit-
ical in crowded regions, where the overlapping of stars and
galaxies otherwise prevents accurate morphological estima-
tion. Henceforth dealing with such regions is important for a
full-sky survey. Since such surveys will require the processing
of a great number of large images, the calibration of these
techniques is automated on the images themselves. In par-
ticular the level of regularization, µ and the ℓ1−ℓ2 threshold
are automatically tuned in order to deal with the noise level
and the dynamics of the raw images. The gap-filling inter-
polation feature of the inversion would apply even more effi-
ciently in this regime than in the map reconstruction regime
described in Section 3. The algorithm described here scales
well since it only relies on DFTs: hence it could be applied
to very large images (say 16 3842) such as those produced
by modern surveys. Generalized cross validation was shown
to yield a quantitative threshold in order to remove accu-
rately the point sources within the field, hence imposing the
optimal level of smoothing for the galaxies only. In this pa-
per, the focus was put on blurred 8-meter ground-based ob-
servations, but the implementation for EUCLID-like space
missions should be straightforward.

This paper also demonstrated that optimization in the
context of Maximum A Posteriori provided a consistent
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Figure 15. top left panel: a zoom of the original map at coordi-

nates (l, b) = (0
◦
, 0

◦
); top right panel: reconstruction with ℓ1− ℓ2

penalty using the non-linear model. bottom left panel: input map

smoothed at a FHWM of 1.5 pixels. bottom right panel: recon-

struction with ℓ2 penalty using the non-linear model. The color

table is linear. The edge-preserving penalty appears qualitatively

to preserve much better the amplitude and the number of high

peaks in the κ map, as shown quantitatively in Figure16.

Figure 16. The PDF of point source as defined in Section 4.4

corresponding to the maps of Figure 15 recovered with ℓ1 − ℓ2

penalty, and ℓ2 penalty respectively. The improvement with an

edge-preserving penalty is significant.

Figure 17. Power spectrum of the mask weighted residual er-

ror on κ as a function of the harmonic number,ℓ. The different

curves correspond to boost of the B modes of increasing relative

strength. The low order modes are polluted by leaks from the

masks (see also Figure18); here lcut = 752.

framework for the reconstruction of κ maps on the sphere.
Providing such maps is critical both in its own right, as it
maps the dark matter distribution of our universe and gives
access to the underlying powerspectrum at large scale. Such
maps are also interesting when cross-correlated with other
surveys (optical surveys, CMB maps, lensing reconstruction
and distribution of SZ clusters from the Planck mission, X-
ray sources etc..) in order to explore the evolution of the
large-scale structure, and in the case of the surveys mapping
the baryonic matter, to better understand biasing as a func-
tion of scale. Finally, though not optimally, it can be used to
compute second and higher order statistics, and noticeably
the three-point statistics or cluster counts, which constrain
more efficiently the dark energy equation of state. It should
be stressed once more that while the reconstructed κ maps
yield biased estimates of the power-spectrum and higher or-
der statistics, the technique described in this paper can be
adapted to build dedicated optimal estimators for each of
those observables.

This paper sketched possible solutions to issues that
a full-sky weak-lensing pipeline will have to address, and
also presented an inverse method implementing the map
making step. Section 4 demonstrated the quality and limi-
tations of the reconstruction using various statistical tools
on a full-sky simulation of g with resolutions of up to
12 × 40962 = 201 326 592 pixels. In particular, it identi-
fied point sources of the fields and analyzed their PDF and
showed that ℓ1 − ℓ2 penalty was critical at small scales.
It also investigated the effect of leakage of B modes when
Galactic cuts are present. Section 4.2 presented a method to
probe the topology and geometry of a field on the sphere,

c© 0000 RAS, MNRAS 000, 000–000

368



ASKI: towards a full-sky lensing map making pipeline 17

Figure 18. shows an example of full-sky leak of the B modes

when masks are accounted for; top panel : the residuals corre-

sponding to σB = σ + σ; the inner box corresponds to a zoom

near the edge of the galactic cut at (b, l) = (30, 20); bottom panel :

same residual and box for σB = σ + 32σ. Note that for the latter

case, the extend of the leakage is much larger and coherent.

the peak patches and the skeleton, and applied it to com-
pare the recovered field to the initial field. The Cartesian
dual formulation of aski was also implemented and may
prove useful for surveys where sky coverage is sufficiently
small. Aski accounts for the possible building blocks that a
full-scale pipeline aiming at sampling the dark matter dis-
tribution over the whole sky should provide. Specifically it
allows for (i) automatically deblurring very large images us-
ing non-parametric self-calibrated edge-preserving ℓ1 − ℓ2
deconvolution with positivity; (ii) carrying the large non-

linear inverse problem of reconstructing the convergence κ
from the shear g using equation (17): the back and forth
iterations between model and data are consistent with con-
straints in both spaces, and allow for an accurate recovery of
cluster profiles and shapes; (iii) non-uniform weighting and
masking: consistent with realistic Galactic cuts (and bright
stars masking) and non-uniform sampling of the different re-
gions of the sky, dealing transparently with the issue of the
boundary; (iv) edge-preserving ℓ1−ℓ2 penalty yielding quasi
point-like cluster reconstruction. Finally (v) it introduced
peak patches and the skeleton on the sphere as diagnosis for
reconstruction, which acts as an efficient source extraction
algorithm. Indeed, the degeneracy between the cosmological
parameters (ΩM, σ8) is for instance best lifted with cluster
counts.

Possible improvements/investigation beyond the scope
of this paper involve: (i) deblurring the images with a vari-
able PSF within the field (ii) building optimal estimators
for the power spectrum Cκ

ℓ , or the asymmetry S3 (a pos-
sible option would be to rely on perturbation theory, and
invert the non-linear problem for both Cκ

ℓ and S3); (iii) in-
verting for γ and κ simultaneously and checking a posteriori
the amplitude of the B modes (an alternative to the model

described in equation (19); the issue of unicity of the solution
will be a challenge); (iv) carrying the deprojection while as-
suming prior knowledge of a complete distribution of source
planes in equation (28) (the corresponding inverse problem
remains linear, with an effective kernel which depends on
the optical configuration and the distribution of galaxies as
a function of redshift); (v) moving away from the Born ap-
proximation, which involves solving Poisson’s equation for
each slice, and ray-tracing back to the source while solving
for the lens equation though all the slices; (vi) implementing
a more realistic noise modeling (which amounts to changing
the cost function, equation (24)); (vii) studying the shape
of dark matter distribution in clusters and groups: typically
this would also involve cross-correlating the corresponding
distribution with the light at various wavelengths and fi-
nally (viii) propagating the analysis up to the cosmic figure
of merit for the dark energy parameters.
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APPENDIX A: EFFICIENT STAR REMOVAL

We have observed that for realistic deep field images, gen-
eralized cross validation (GCV) yields an hyper-parameter
value which is relevant to regularize the higher part of the
dynamic (mainly due to stars, i.e. point-like objects which
concentrate their luminous energy in a very small area) but
which is much too low to regularize the lower parts ot the
dynamic where galaxies remain. Indeed, when dealing with
images with a large dynamical range, GCV yields a value of
the regularization level µ which is necessarily a compromise
between not smoothing too much the sharp features and suf-
ficient smoothing of low contrasted structures to avoid noise
amplification. The solution to the problem of underestimat-
ing the regularization weight can be solved by applying the
GCV method onto the image with no stars. We want to find
structures of known shape s(x) but unknown position and
intensity in the image y. In our case, s(x) is the PSF since
we want to detect stars. This reasoning could however be
generalized to other kind of objects. If a single object of
this shape is present in the image, this could be achieved by
considering the objective function:

φfull(α, t) =
X

k

wk [α s(xk − t) − yk]2

to be minimized w.r.t. the weight α and the offset t, here
a 2-D vector. In fact, since y may be crowded with similar
structures (or with other fainter structures), a better strat-
egy is to limit the local fit to a small region of interest (ROI)
around the structure. This is achieved by minimizing:

φ(α, t) =
X

k

wk r(xk − t) [α s(xk − t) − yk]2

where r(δx) is equal to 1 within the region of interest (ROI)
and equal to 0 outside the ROI. Minimization of φ(α, t) w.r.t.
α yields the best intensity for a local fit around t:

∂φ

∂α
= 0 ⇐⇒ α⋆ =

P

k wk r(xk − t) s(xk − t) yk
P

k wk r(xk − t) s(xk − t)2
.

(A1)
Inserting α⋆ in the objective function yields:

φ⋆(t) , φ(α, t)|α=α⋆ ,

=
X

k

wk r(xk − t) y2

k ,

−
`
P

k wk r(xk − t) s(xk − t) yk

´2

P

k wk r(xk − t) s(xk − t)2
.

Since r(δx)2 = r(δx), by defining sROI(δx) ≡ r(δx) s(δx),
the local criterion and local best intensity can be rewritten
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as:

φ⋆(t) =
X

k

r(xk − t) wk y2

k −
`
P

k sROI(xk − t)wk yk

´2

P

k sROI(xk − t)2 wk
,

α⋆(t) =

P

k sROI(xk − t)wk yk
P

k sROI(xk − t)2 wk
.

These parameters can be computed for all shifts by an in-
teger number of pixels by means of FFT’s (cross-correlation
product). Unfortunately, the overall minimum of φ⋆(t) is not
the best choice for removing the brightest structures since
there is no warranty that this minimum corresponds to a
bright object. It is better to select the the location which
yields the brightest structure, i.e. the maximum of α⋆(t).
After removal of the contribution α⋆(t⋆) s(x − t⋆) from the
data, this technique can be repeated to detect the second
brightest source, and so on. The corresponding algorithm is
very similar to the cleanmethod (Högbom 1974; Schwarz
1978) with the further refinement of accounting for non-
stationary noise and missing data. It has been shown that
it achieves sub-pixel precision (Soulez et al. 2007) and that
it could be used to detect (and remove) out of field sources
(Soulez et al. 2007).

APPENDIX B: DETAILED MODEL ON THE

SPHERE

Let us describe in more details the model used for the in-
version of Section 3.1.

B1 Discretization and Sampling

After discretization and using explicit indices, the model in
equation (17) writes:

gj,k =
γj,k

1 − κj
+ ej,k ,

where the index j runs over the sky coordinates n̂j =
(xj , yj), index k corresponds to the two components U and
Q of the polarization, whereas ℓ and m are the harmonic
indices and p refers to the two components of the spinned
2-harmonic. In words, the discretization yields:

gj,k ≡ gk(n̂j), γj,k ≡ γk(n̂j), κ ≡ κ(n̂j), ej,k ≡ ek(n̂j) .

Here the fields κ and γ are linear functions of the complex
field a of the spherical harmonic coefficients of κ. Using the
matrix notation of the paper, κ and γ write:

κ = K · a , γ = G · a ,

where K = Y and G = pY ·J; with explicit index notations:

κj =
X

ℓ,m

Kj,ℓ,m aℓ,m =
X

ℓ,m

Yj,ℓ,m aℓ,m ,

and

γj,k =
X

ℓ,m

Gj,k,ℓ,m aℓ,m =
X

ℓ,m,p

pYj,k,ℓ,m,p (J · a)ℓ,m,p ,

with

(J · a)ℓ,m,1 = −
s

(ℓ + 2)(ℓ − 1)

(ℓ + 1)ℓ
aℓ,m , (B1)

(J · a)ℓ,m,2 = 0 . (B2)

B2 Likelihood

The data related term in the cost function is

L =
X

j,k

wj,k

„

γj,k

1 − κj
− gj,k

«2

.

The gradient of this term is needed to find the solution of
the inverse problem:

∂L(a)

∂aℓ,m
= 2

X

j,k

Hℓ,m,j,k
rj,k

1 − κj
+

2
X

j

Y
∗
ℓ,m,j

P

k γ∗
j,krj,k

(1 − κj)
2

, (B3)

where

rj,k = wj,k

„

γj,k

1 − κj
− gj,k

«

are the weighted residuals, and where

Hℓ,m,j,k = −
s

(ℓ + 2)(ℓ − 1)

(ℓ + 1)ℓ
pY

∗
ℓ,m,1,j,k . (B4)

B3 Regularization

The aim of the regularization is to avoid ill-conditioning
and noise amplification in the inversion. Following Bayesian
prescription, this can be achieved by requiring the field κ to
obey some known a priori statistics.

B3.1 Wiener filter and ℓ2 penalty

Assuming the field κ has Gaussian distribution with mean
κ̄ = 〈κ〉 and covariance Cκ = 〈(κ − κ̄)·(κ − κ̄)T〉, the prior
penalty should write:

R = (κ − κ̄)T · C−1

κ · (κ − κ̄) .

For a field with zero mean (κ̄ = 0) and stationary isotropic
statistics, the regularization can be expressed in terms of the
harmonic coefficients:

R(a) =
‚

‚

‚
C

−1/2 · a
‚

‚

‚

2

=
X

ℓ

P

m |aℓ,m|2
Cℓ

, (B5)

with

Cℓ = 〈|aℓ,m|〉2 , (B6)

where the angular brackets denote here the expected value
taken over the index m of the harmonic coefficients. The
gradient of the stationnary isotropic Gaussian regularization
in equation (B5) is:

∂R(a)

∂aℓ,m
= 2

aℓ,m

Cℓ
.

Note that the regularization in equation (B5) with a known
power spectrum Cℓ for the field κ yields the so-called Wiener
filter. When the power spectrum of κ is not exactly known,
a quadratic prior can be used. For instance:

R(a) = λ
‚

‚

‚
R

−1/2 · a
‚

‚

‚

2

= λ
X

ℓ

P

m |aℓ,m|2
Rℓ

, (B7)

where λ > 0 is a regularization parameter that must be
properly tuned. In our framework, effective regularization is
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Figure B1. Peak patch of the recovered κ map. The inner box zooms the central region. The color coding corresponds loosely to the

density of the different peak patches. The PDF of the area of these patches is described in Figure 11 while the maxima mentioned in

this figure are found within each patch.

achieved by requiring the field κ to be somewhat smooth.
In practice, this is obtained by requiring Rℓ to be some pos-
itive non-decreasing function of the index ℓ. Note that, from
a Bayesian viewpoint, the regularization in equation (B7)
corresponds to the prior thatκ is a stationary isotropic cen-
tered Gaussian field with mean power spectrum Cℓ = Rℓ/λ,
which is similar to the Wiener filter except that the exact
statistics is not known in advance (because some parameters
of the regularization have to be tuned). The gradient of R
in equation (B7) reads:

∂R(a)

∂aℓ,m
= 2λ

aℓ,m

Rℓ
.

The quadratic prior in equation (B7) can be expressed in
terms of κ:

R = λ
‚

‚

‚
R

−1/2 · a
‚

‚

‚

2

= λ ‖D · κ‖2

where D = R−1/2 · Y# is some finite difference operator
which gives some estimate of the local fluctuation of the
field, and Y#is the (pseudo-)inverse of the scalar spherical
harmonics matrix. In our framework, we choose to measure
the amplitude of the local fluctuations of the field κ by its
Laplacian ∇2κ and to express the regularization penalty as:

R(a) = λ
X

j

φ
“

`

∇2
κ

´

j

”

(B8)

where the cost function φ(r) is an increasing function of |r|.
When φ(r) = r2, our regulariztion is a quadratic penalty
similar to equation (B7). Using matrix notation, the Lapla-
cian of the field κ write :

∇2
κ = Y · L−1/2 · a , (B9)

with
“

L
−1/2 · a

”

ℓ,m
=

aℓ,m√
Lℓ

where Lℓ ≡ ℓ−2(ℓ+1)−2. In order to perform the minimiza-
tion, the gradient of the regularization must be computed.

By the chain rule:

∂R(a)

∂aℓ,m
= λ

X

j

φ′
“

`

∇2
κ

´

j

” ∂
`

∇2κ
´

j

∂aℓ,m
,

= λ
X

j

Y∗
ℓ,m,j√
Lℓ

φ′
“

`

∇2
κ

´

j

”

, (B10)

where φ′(r) is the derivative of φ(r).

B3.2 ℓ2 − ℓ1 penalty

As for the image restoration, quadratic regularization yields
spuriours ripples in the regularized κ map. To avoid them,
we propose to use a ℓ2 − ℓ1 cost function φ applied to the
Laplacian of κ. The details of the ℓ2 − ℓ1 cost function are

discussed in section 2.1.4.Taking R(a) =
P

j φ
“

`

∇2κ
´

j

”

,

with φ given in equation (16), yields:

∂R(a)

∂aℓ,m
=

X

j

2 ε
`

∇2κ
´

j

ε +
˛

˛

˛
(∇2κ)j

˛

˛

˛

∂
`

∇2κ
´

j

∂aℓ,m
,

= 2 ε
X

j

Y∗
ℓ,m,j√
Cℓ

`

∇2κ
´

j

ε +
˛

˛

˛
(∇2κ)j

˛

˛

˛

.

In practice, we use GCV to set the level of the regularization,
possibly after stars removal (as explained in Appendix A)
and the ℓ1−ℓ2 threshold is set to be ε = α σ where α ∼ 2−3
and σ is the standard deviation of the histogram of spatial
finite differences.

APPENDIX C: FROM THE SPHERE TO THE

PLANE

Following closely Hu (2000), let us start with a scalar field
on the sphere, and its decomposition on the usual spherical
harmonics:

X(n̂) =
X

lm

XlmY m
l , (C1)
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and let us define

X(l) =

r

4π

2l + 1

X

m

i−mXlmeimφl , (C2)

together with the inverse relation

Xlm =

r

2l + 1

4π
im

Z

dφl

2π
X(l)e−imφl ,

where φl is the polar angle of the l vector in Fourier space.
Let us show, that X(l) corresponds to the Fourier decompo-
sition of the field in the flat-sky limit (small angles near the
pole). Indeed, taking the asymptotic behavior of the spher-
ical harmonics

Y m
l ≈ Jm(lθ)

r

l

2π
eimφ ,

together with the plane-wave expansion in terms of Bessel
functions

eil.n̂ =
X

m

imJm(lθ)eim(φ−φl) ≈
r

2π

l

X

m

imY m
l eimφl .

(C3)
We get from equation (C1)

X(n̂) ≈
X

l

l

2π

Z

dφl

2π
X(l)

X

m

Jm(lθ)imeim(φ−φl) ,

≈
Z

d2l

(2π)2
X(l)eil.n̂ .

For a spin-2 field, let us proceed likewise. We start from the
all-sky definition of a spin-2 tensor field, and its decomposi-
tion in spin-2 spherical harmonics:

±X(n̂) =
X

lm

±X{lm}±2Y
m

l , (C4)

where ±X(n̂) is defined in the spherical tangent coordinates
eθ, eφ. We define, as in equation (C2), the Fourier modes of
the components of the spin-2 field as ±X(l). We have in the
flat-sky limit the following asymptotic form for the spin-2
spherical harmonics:

±2Y
m
l ≈ 1

l2
e∓2iφ(∂x ± i∂y)2Y m

l . (C5)

Plugging equation (C4) into equation (C5) yields:

±X(n̂) ≈
X

l

l

2π

Z

dφl

2π
X(l)e∓2iφ 1

l2
(∂x ± i∂y)2eil·n̂ ,

≈ −
Z

d2l

(2π)2
±X(l)e±2i(φl−φ)eil·n̂ .

Redefining the spin-2 field in the fixed coordinate system
such that the first axis (ex) is aligned with φ = 0, we obtain:

±X ′(n̂) ≈ −
Z

d2l

(2π)2
±X(l)e±2iφleil·n̂ , (C6)

where lx + ily = leiφl . Expanding ±X(l) = −(E(l)± iB(l)),
we can relate these rotationally invariant quantities to the
Fourier transforms of the spin-2 field individual components.

APPENDIX D: CONVERGENCE MAPS

The inversion technique described in the main text was val-
idated using the mocks extracted from the horizon-4π sim-
ulation (Prunet et al. 2008). Let us briefly describe here how
this simulation was used to generate mock slices and κ maps.

Figure D1. the expected maximum uncertainty on particle posi-

tions due to the method used to create the light cone as a function

of the expansion factor. It is computed according to equation (D1)

with a velocity v estimated to be 3 times the Virial velocity of

the largest cluster in the simulation.

D1 Light cone generation

The generation of a light cone during run time can be per-
formed easily at each coarse time step of the simulation.
Given a choice of the observer position in the simulation
box, that we suppose here for simplicity to be at the ori-
gin of coordinates, it is easy to select the particles that be-
long to the slice in between redshifts z2 < z1 corresponding
to two successive coarse time steps: if (x, y, z) are the co-
moving coordinates of a particle, and d =

p

x2 + y2 + z2

its comoving distance from the observer, we must have
ddist(z2) < d 6 ddist(z1) for the particle to be selected,
where ddist(z) is the comoving distance that a photon covers
between redshift z and present time in the simulation box:
ddist =

R

cdt/a(t), where c is the speed of light and a the ex-
pansion factor. The problem is that structures evolve during
a coarse time step, so there are necessarily some discontinu-
ities at the border between two successive light cone slices.
These discontinuities are due to large scale motions of par-
ticles plus their thermal velocity within dark matter halos.
Given the large size of the simulation considered here, ther-
mal motion within the largest cluster are expect to bring
the most significant effects of discontinuity. For a particle
with peculiar velocity v, the largest discontinuity to be ex-
pected, i.e. the largest possible difference between expected
and actual position of the particle is given by

∆ = (v/c)[ddist(z1) − ddist(z2)]. (D1)

In equation (D1), we performed a linear Lagrangian approxi-
mation, i.e. we neglected variations of the velocity of the par-
ticle during the coarse time step. Using Press & Schechter
formalism, or the improved formula of Sheth & Tormen
(1999), the mass of the largest cluster in the Horizon simu-
lation solves approximately the implicit equation

Ω0ρcL
3F [Mmax(z), z]/Mmax(z) = 1, (D2)

where ρc is the critical density of the Universe and F is the
fraction of mass in the Universe in objects of mass larger
than M . Basically, this equation states that the mass in
objects of mass larger than M is equal to M , which means
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that we are left with only one cluster of mass M , the largest
detectable cluster in our cube of size L. We can compute
F (M, z) with the usual formula, e.g.

F (M, z) =

Z

µ>ν(M,z)

f(µ)dµ, (D3)

with ν = 1.686/σ(M, z) where σ(M, z) is the linear vari-
ance at redshift z corresponding to mass scale M , and f(µ)
is given by equation (10) of Sheth & Tormen (1999). Per-
forming these calculations, we find that the largest cluster
at present time in a cube of size L = 2000h−1 Mpc should
have a typical mass of Mmax(z = 0) ≃ 1.47× 1015M⊙. With
a standard Friend-of-friend algorithm using a linking pa-
rameter b = 0.2, we find that the most massive halo de-
tected in the simulation presents a somewhat larger mass,
M = 5.4 × 1015M⊙. Yet, in that rare events regime, we
cannot expect our theoretical estimate to be more accurate.
What matters, though, is the thermal velocity rather than
the mass. Applying the Virial theorem, we have (e.g., Pea-
cock, 1999)

v2 ≃ GMmax

Rvir

, (D4)

with
4

3
πR3

virρvir = Mmax, ρvir ≃ 178Ω0ρc(1 + z)3/Ω(z)0.7,

(D5)
where Ω(z) is the density parameter as a function of red-
shift (Ω(0) ≡ Ω0). These expressions are given in phys-
ical coordinates hence the factor (1 + z)3 in the expres-
sion of ρvir. This reads, at z = 0, v ≃ 1570 km/s for
Mmax(z = 0) ≃ 1.47 × 1015M⊙. In the largest cluster of
the simulation, the overall velocity dispersion is of the order
of 2100 km/s, a slightly larger value that reflects the ac-
tual value of the mass. To be conservative, we estimate the
expected errors in equation (D1) with the Virial velocity
rescaled by a factor 2100/1570, and with a further multipli-
cation by a factor 3 to be in the 3σ regime. The correspond-
ing maximal expected discontinuity displacement is shown
in Mpc as a function of the expansion factor on Figure D1.
As expected from the dynamically self-consistent calculation
of the coarse time step (which is basically determined by a
Courant condition using the velocity field), the comoving er-
ror does not change significantly with redshift and remains
below the very conservative limit of 200 kpc. Obviously, we
expect in practice the errors brought by discontinuities to be
in general much smaller than that, as for z = 0 the present
errors corresponds to unrealistic velocities as large as about
6000 km/s!

D2 From slices to κ maps

In the main text, the expression for κ as a function of the
density contrast in the simulation is given in equation (28)
in the geometric optic approximation. Let us rearrange this
formula in a form that is more suited to integration over
redshift slices in a simulation.

κ(n̂pix) ≈ 3

2
Ωm

X

b

Wb
H0

c

Z

∆zb

cdz

H0E(z)
δ(

c

H0

D(z)n̂pix, z) ,

where

Wb =

„Z

∆zb

dz

E(z)

D(z)D(z, zs)

D(zs)

1

a(z)

«

/

„Z

∆zb

dz

E(z)

«

,

is a slice-related weight, and the integral over the density
contrast, δ, reads

I =

Z

∆zb

cdz

H0E(z)
δ(

c

H0

D(z)n̂pix, z) ,

=

Z

∆χb

dχδ(χn̂pix, χ) ,

≈ V (simu)

Npart(simu)

„

Npart(θpix, zb)

Spix(zb)
− 1

«

,

where

Spix(zb) =
4π

Npix

c2

H2
0

D2(zb)

is the comoving surface of the spherical pixel. Putting all
together, we get the following formula for the convergence
map:

κ(θpix) =
3

2
Ωm

Npix

4π

„

H0

c

«3
V (simu)

Npart(simu)
×

X

b

Wb
Npart(θpix, zb)

D2(zb)
. (D6)

Once the κ map is available it is straightforward to build
the corresponding g using equation (17).
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ABSTRACT

In this paper we describe STECMAP (STEllar Content via Maximum A Posteriori), a flexible,
non-parametric inversion method for the interpretation of the integrated light spectra of galax-
ies, based on synthetic spectra of single stellar populations (SSPs). We focus on the recovery of
a galaxy’s star formation history and stellar age–metallicity relation. We use the high-resolution
SSPs produced by PÉGASE-HR to quantify the informational content of the wavelength range
λλ = 4000–6800. Regularization of the inversion is achieved by requiring that the solutions
are relatively smooth functions of age. The smoothness parameter is set automatically via
generalized cross validation.

A detailed investigation of the properties of the corresponding simplified linear problem is
performed using singular value decomposition. It turns out to be a powerful tool for explaining
and predicting the behaviour of the inversion, and may help designing SSP models in the future.
We provide means of quantifying the fundamental limitations of the problem considering the
intrinsic properties of the SSPs in the spectral range of interest, as well as the noise in these
models and in the data. We demonstrate that the information relative to the stellar content is
relatively evenly distributed within the optical spectrum. We show that one should not attempt
to recover more than about eight characteristic episodes in the star formation history from the
wavelength domain we consider. STECMAP preserves optimal (in the cross validation sense)
freedom in the characterization of these episodes for each spectrum.

We performed a systematic simulation campaign and found that, when the time elapsed
between two bursts of star formation is larger than 0.8 dex, the properties of each episode
can be constrained with a precision of 0.02 dex in age and 0.04 dex in metallicity from high-
quality data [R = 10 000, signal-to-noise ratio (SNR) = 100 per pixel], not taking model
errors into account. We also found that the spectral resolution has little effect on popula-
tion separation provided low- and high-resolution experiments are performed with the same
SNR per Å. However, higher spectral resolution does improve the accuracy of metallicity and
age estimates in double-burst separation experiments. When the fluxes of the data are properly
calibrated, extinction can be estimated; otherwise the continuum can be discarded or used to
estimate flux correction factors.

The described methods and error estimates will be useful in the design and in the analysis
of extragalactic spectroscopic surveys.

Key words: methods: data analysis – methods: statistical – techniques: spectroscopic – galax-
ies: abundances – galaxies: evolution – galaxies: stellar content.

1 I N T RO D U C T I O N

The diversity of shapes and colours of galaxies illustrates the wealth
of physical mechanisms acting in these complex objects. Their

�E-mail: ocvirk@astro.u-strasbg.fr

formation history, including the building of their haloes, bulges,
discs and disc patterns, is still controversial. Empirical constraints
on the formation scenarios are engraved in the distribution of stellar
ages, metallicities and kinematics. Unless the galaxies can be re-
solved into stars, this crucial information must be extracted from in-
tegrated spectra. This spectral energy distribution (SED) is a record-
ing of the whole life of a galaxy: the condition of its birth, the
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formation and assembly of its first blocks, its passive evolution and
the recycling of its material, or its active evolution through merging,
all these determine the current stellar content. Yet, this information
is embedded in a non-trivial manner in the light we receive.

While a wealth of such data is currently being gathered from
spectroscopic surveys – for example, the Sloan Digital Sky Survey
(SDSS) or the 2dF Galaxy Redshift Survey (2dFGRS) – using these
to probe the general properties of stellar populations on a cosmo-
logical time-scale is an exciting perspective.

In the literature, the stellar content of a galaxy is often charac-
terized by a luminosity weighted age, a luminosity weighted metal-
licity, a global velocity dispersion, and a parameter characterizing
extinction. Since Worthey (1994), the Lick indices have been read-
ily used in order to describe the nature of the stellar populations.
Spectral indices are convenient because they are robust to a number
of observational perturbations, but they exploit only small wave-
length domains. The use of a larger fraction, and eventually of all
the information in a spectrum must, at least in principle, help sep-
arate, age-date and characterize coexisting stellar components, the
steps required to access the actual evolution of the galaxies under
study. Individual spectral features with specific sensitivities to age
or metallicity may add information to the Lick data points, and
the redundancy provided by many lines spread over a wide spec-
tral range reduces the sensitivity to noise. Recently, methods have
emerged that use the whole available spectral range, relying on com-
pression (Reichardt, Jimenez & Heavens 2001) or on non-negative
least squares (Mateu, Magris & Bruzual 2001; Cid Fernandes et al.
2005).

The introduction of these methods has given birth to a field of re-
search, whose goal is to measure the cosmic star formation history
by summing the individual star formation histories of a large num-
ber of galaxies. This results in an estimate of the mean history of star
formation (a so-called ‘Madau plot’) in principle free from the un-
certainties related to pure emission-line diagnostics (Dopita 2005).
Moreover, the distribution of individual star formation histories is
even more constraining than a Madau plot alone. If feasible, this
approach indeed constitutes a very powerful test for the current cos-
mological models. In fact, such techniques have been used recently
to support the idea of galactic downsizing, i.e. to argue the stellar
activity has shifted in the recent past towards less massive galax-
ies, something that some authors have presented as a problem for
hierarchical clustering. As more results of this kind are published,
it becomes clear that different authors have very different concep-
tions of what is a reasonable interpretation of a galactic spectrum
(Heavens et al. 2004; Cid Fernandes et al. 2005). Indeed, the prob-
lem of characterizing star formation histories based on a spectrum
is strongly ill-conditioned, as we will demonstrate extensively be-
low (see also Moultaka & Pelat 2000; Moultaka et al. 2004). This
remains true in the restrictive framework of evolutionary popula-
tion synthesis, although this approach incorporates the simplifying
assumption that the intrinsic spectra of monometallic, single-aged
single stellar populations (SSPs) are known. Overinterpretation of
the data is a common pitfall when ill-conditioning is misjudged or
overlooked. A useful approach to ill-conditioned inverse problems
is the maximum penalized likelihood, which is formally equivalent
to a maximum a posteriori likelihood (MAP). It has been applied in
the past in a variety of fields in astronomy such as light deprojection
(Kochanek & Rybicki 1996), stellar kinematics (Saha & Williams
1994; Merritt 1997; Pichon & Thiébaut 1998), image deblur-
ring (Thiébaut 2002, 2005) or the interpretation of low-resolution
energy distributions of galaxies (Vergely, Lançon & Mouhcine
2002).

In this paper we discuss the interpretation of high-resolution opti-
cal spectra of galaxies. A maximum resolving power R = 10 000 is
considered, which is adequate, in particular, for the studies of low-
mass galaxies or of massive star clusters in galaxy cores. We focus on
the object’s stellar content. The simultaneous extraction of the kine-
matical information with a direct extension of the adopted method
is the subject of a companion paper. Our work is positioned at the
interface between SSP models and observations. Its purpose is not
to question the particular ingredients and assumptions of a specific
population synthesis code, although some of the discussion will be
specific to the model package PÉGASE-HR of Le Borgne et al. (2004),
because it is the first package to have provided a similar spectral res-
olution (see Gonzalez Delgado et al. 2005 for a medium-resolution
package). Rather, we intend to clarify how the intrinsic properties
of a basis of SSP spectra can be used to infer consequences for the
study of composite stellar populations.

The general problem, where additional constraints such as pos-
itivity of the star formation history are included, is a non-linear
problem. Nevertheless, we give special importance to the linear
problem because it provides a firm footing to explain the processes
that determine the reliability of a recovered star formation history. It
also clearly displays many of the features found in the more realistic
inversions as well.

We also study the feasibility of the inversion in different observa-
tional regimes (in terms of spectral resolution and noise), and give
simple scaling laws and error estimates to predict the accuracy and
relevance of the results. The main characteristics of our approach
are as follows.

(i) It is non-parametric, and thus provides properties such as the
stellar age distribution with minimal constraints on their shape.

(ii) The ill-conditioning of the problem is taken into account
through explicit regularization.

(iii) Optimal interpretation of the data is achieved by the proper
setting of the smoothing parameter.

The organization of the paper is as follows. We start in Section 2 by
describing the inversion problems that will be tackled. In Section 3,
we provide a comprehensive investigation of the idealized linear
problem of finding the stellar age distribution of a monometallic,
reddening-free stellar population. In Section 4 we investigate the
performance of these inversions in a set of simulations in terms of
resolution and separability of bursts. In Section 5 we address the
problem of the simultaneous study of stellar ages and metallicities,
while allowing for extinction (or other transformations of the con-
tinuum). Conclusions are drawn in Section 6, while the paper closes
with a discussion for prospects.

2 N O N - PA R A M E T R I C M O D E L S O F S P E C T R A

The SED that we measure for each spatial pixel of an observed
galaxy results from light emitted by coexisting stellar populations of
various ages, metallicities and kinematics, and from the interactions
of the stellar light with the interstellar medium (ISM; reddening,
nebular emission). The example of the Milky Way tells us that any
given stellar population of a galaxy may consist of stars with non-
trivial distributions in age, metallicity, or even relative abundances
(Gratton et al. 2000; Prochaska et al. 2000; Feltzing, Holmberg &
Hurley 2001). In principle, age, abundances and velocity distribu-
tions should thus be treated as independent parameters in a galaxy
model meant for an exploration without preconceptions.

In the following, we restrict ourselves to simplified models
that balance, in our view, technical feasibility (in view of current
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models and data) and scientific interest. We assume that metallic-
ity describes the stellar abundances, mainly because our population
synthesis model does not allow for abundance variations (Thomas,
Maraston & Bender 2003 specifically address this issue). Except
for the discussion of a more general case in Section 5, we restrict
ourselves to the assumption of a one-to-one relationship between
stellar ages and metallicities. This allows us to search for significant
trends, as predicted by simple evolutionary scenarios for galaxies.
We adopt a simple parametrized formulation for extinction. Finally,
we deal with stellar populations at rest (or with known velocity
distributions).

Emission lines are outside the aim of this study. They may be
used in the future, in particular to obtain further constraints on the
youngest stars and on obscuration by dust, or to constrain properties
of the ISM.

2.1 Spectral basis

The basic building block to model the spectrum of an observed
galaxy is the SED S(λ, m, t , Z ) of a star of initial mass m, age t
and metallicity Z (mass fraction of metals at the formation of the
star). Integrating over stellar masses yields the intrinsic spectrum
B0(λ, t , Z ) of the SSP of age t, metallicity Z and unit mass:

B0(λ, t, Z )
�=
∫ Mmax

Mmin

IMF(m) S(λ, m, t, Z ) dm, (1)

where IMF(M) is the initial mass function and Mmin and M max are
the lower and upper mass cut-offs of this distribution, respectively.
Assuming that the metallicities of the stars can be described by a
single-valued age–metallicity relation (AMR) Z(t), it is possible to
derive the unobscured SED of the galaxy at rest:

Frest(λ) =
∫ tmax

tmin

SFR(t) B0 (λ, t, Z (t)) dt . (2)

Here, SFR(t) is the star formation rate (i.e. mass of new stars born
per unit of time, with the convention that t = 0 is today) and tmax is
an upper integration limit, for instance the Hubble time. Similarly,
tmin is a lower integration limit, ideally 0. Both tmin and tmax must
in practice be set according to the validity domain of the SSP basis
B0(λ, t , Z (t)).

The luminosity weighted stellar age distribution (LWSAD) �(t)
gives the contribution to the total emitted light of stars of age [t , t +
dt]. It is related to the SFR by

�(t) �= SFR(t)
�λ

∫ λmax

λmin

B0 (λ, t, Z (t)) dλ, (3)

where �λ = λmax − λmin is the width of the available wavelength
domain. In order to use the LWSAD, we define the flux-normalized
SSP basis B(λ, t , Z ) where each spectrum is normalized to a unitary
flux:

B(λ, t, Z ) = B0(λ, t, Z )

(1/�λ)
∫ λmax

λmin
B0(λ, t, Z ) dλ

. (4)

Using �(t), B(λ, t , Z ) and Z(t), the unobscured SED of any com-
posite population at rest reads:

Frest(λ) =
∫ tmax

tmin

�(t) B (λ, t, Z (t)) dt . (5)

For a given SSP basis, dealing with the star formation rate or the
LWSAD is apparently equivalent. Yet, because of the strong de-
pendence of the mass-to-light ratio of SSP fluxes on time, �(t) is

more directly related to observable quantities than SFR(t). We there-
fore prefer the formulation based on � (see also Section 4.1.2).

Many codes are available to construct B(λ, t , Z ). The SSP library
adopted here is computed with PÉGASE-HR (Le Borgne et al. 2004),
a version of PÉGASE1 that provides optical spectra at high resolu-
tion (R = 10 000), based on the ELODIE stellar library (Prugniel
& Soubiran 2001). It consists of SSPs generated by single instanta-
neous starbursts with a set of metallicities ZZ = [0.0001, 0.1]. The
wavelength range of the spectra is λλ = [4000, 6800], sampled in
δλ = 0.2-Å steps. Fig. 1 shows example spectra of such SSPs, at
fixed metallicity (Fig. 1a) and fixed age (Fig. 1b). The large number
of lines is supposed to improve the accuracy of stellar content anal-
ysis. The IMF used is described in Kroupa, Tout & Gilmore (1993)
and the stellar masses range from 0.1 to 120 M�. The IMF is an
input of PÉGASE-HR, which we do not attempt to constrain. On the
contrary, we assume it is universal and known a priori. The gen-
erated spectra are considered most reliable from t min = 10 Myr to
t max = 20 Gyr (Le Borgne et al. 2004). The spectra of the differ-
ent SSPs are computed for a set St of logarithmically spaced ages
between tmin and tmax. The set of monometallic SSPs obtained is
referred to as the ‘basis’ or ‘kernel’ in the rest of the paper.

2.2 Extinction models

In most cases, the intrinsic emission of the stars of a galaxy is af-
fected by dust. Both the composition and the spatial distribution
of the dust determine the extinction. The ISM of galaxies is rarely
homogeneous, and the stars may be seen through different amounts
of dust. One could therefore envisage an age-dependent extinction
law or extinction parameter. Indeed, there is evidence that the ob-
scuration of an ensemble of stars varies systematically with age over
the first ∼107 yr of their evolution, while these young stars leave
or destroy their parent molecular clouds (Charlot & Fall 2000, and
references therein). However, the early epochs relevant to starbursts
are currently slightly out of reach with PÉGASE-HR, although they
will become accessible with improvements of the stellar library.
Vergely et al. (2002) suggest that recovering such a trend with age
is possible with high-quality data ranging from the ultraviolet to the
infrared. In this paper, we have deliberately chosen not to search
for an age dependence of extinction. The main reason is that we are
considering only a limited section of the electromagnetic spectrum.
We postpone a systematic study to future work. In the following,
we adopt a unique extinction law f ext(E , λ) parametrized by the
colour excess E ≡ E(B–V ) and normalized to have a unit mean.
Accounting for extinction, the model SED then reads:

Frest(λ) = fext(E, λ)

∫ tmax

tmin

�(t)B (λ, t, Z (t)) dt . (6)

Note that f ext can be a function of more than one time-independent
parameter, and may, for example, be a more complex attenuation
law, a function of the distribution of dust in the galaxy and its mix-
ing with the stars, or a low-order polynomial accounting for the
instrumental spectrophotometric calibration error.

2.3 General properties and problems

with single stellar populations

Synthetic spectra of SSPs are the building blocks involved in the
interpretation of galaxy spectra. Their properties have a strong effect
on the behaviour of the inversion problem.

1 Projet d’Etude des GAlaxies par Synthèse Evolutive (see http://www.iap.fr/
pegase).
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(a) Solar metallicity SSP of age 50, 400, 2500, 15000 Myr
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(b) 1 Gyr SSP with metallicity Z=0.05, 0.02, 0.004, 0.0004

Figure 1. Example of high-resolution SSPs produced by PÉGASE-HR. (a) Solar metallicity SSPs of age 50, 400, 2500 and 15 000 Myr (from top to bottom).
(b) 1-Gyr SSP for several metallicities, Z = 0.05, 0.02, 0.004 and 0.0004 (from top to bottom). The spectra are normalized to a common mean flux and offset
for clarity.

Both the theory of stellar evolution and observations tell us that
SSP evolution with time is fundamentally smooth in the optical
except for a number of specific evolutionary transitions (e.g. helium
flash, carbon flash, supernova explosion, envelope expulsion at the

end of the asymptotic giant branch), and that it shows some linearity.
This means, for instance, that a 500-Myr-old population looks very
similar to the average between a 600- and 400-Myr-old one. Our
ability to identify the differences depends strongly on the signal-to-
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noise ratio (hereafter SNR) of the models and data. Section 3 shows
how to quantify this quasi-linearity and its consequences.

The synthetic spectra of SSPs are affected by uncertainties in the
stellar evolutionary tracks and in the stellar library used to construct
them. Despite permanent progress, some aspects of stellar evolution
remain difficult to model (e.g. the horizontal branch, the asymptotic
giant branch, the red supergiant phase; effects of convection, of ro-
tation, of a binary companion). The errors propagate to the SSPs,
resulting in unknown systematic errors in age and metallicity es-
timates. Some insight into the amplitude of these errors is given
by the direct comparison between results obtained using different
sets of tracks. Nevertheless, it is beyond the scope of this paper to
discuss the pros and cons of the different set of tracks and the reader
is referred to Charlot, Worthey & Bressan (1996) and Lejeune &
Fernandes (2002) for an extensive discussion.

The input library of stellar spectra can be either empirical or the-
oretical. The latter situation has the advantage of providing spectra
for any parameter set (T , g, Z ) with no observational noise. How-
ever, these are not free of intrinsic uncertainties, due for instance
to shortcomings of atomic and molecular data, to assumptions on
partial thermodynamical equilibrium, or to inappropriate abundance
ratios. Empirical spectra, on the other hand, are hampered by a num-
ber of issues, as follows.

(i) The library is discrete. Therefore, interpolation between ex-
isting stars is needed. This can be a tricky issue, especially on the
borders of the grid and in underpopulated regions of (T , g, Z ) space.
Moreover, when stars are interpolated, the noise patterns are also
carried along. We will see in Section 3.4 that this has noticeable
effects on the behaviour of the inverse problem.

(ii) The library generally consists only of Milky Way or even
Solar neighbourhood stars. Thus, the solar metallicity is the best
populated region of parameter space, while other regions may be
depleted, especially for extreme cases such as young metal-poor or
old metal-rich stars. We also know that outer galaxies may involve
abundance ratios that are not found within the Milky Way. One ex-
ample is found in the metal-rich andα-enhanced populations of large
elliptical galaxies. This difficulty is known as ‘template mismatch’
and results in biases that would be best studied using simulations
based on theoretical spectra with various sets of abundances. The li-
brary used in PÉGASE-HR is known to be deficient in high-metallicity,
high-α-element abundance red giants (Le Borgne et al. 2004), which
may lead to an overestimate of age or metallicity in observed
galaxies.2

(iii) Empirical stellar spectra have a finite SNR, and so do the
averaged or interpolated spectra involved in the synthesis of a galaxy
spectrum. It should then be considered useless to observe stellar
populations at SNRs larger than those of the library.

(iv) The fundamental parameters of each star in the library are
estimates, in the case of PÉGASE-HR based on a subset of standards
and the automated code TGMET (Katz et al. 1998). Even though error
bars on these parameters are provided, some glitches and outliers
occur. The final error resulting from interpolating between correct
and ill-parametered stars and summing is unknown.

Notwithstanding the above limitations of spectral synthesis, our pur-
pose here is to investigate the behaviour of the inverse method for a
given model. Hence, in this paper we will be restricted to one given
SSP model.

2 Work is being done to improve the underlying library.

3 A S I M P L I F I E D I N V E R S E P RO B L E M :

T H E AG E D I S T R I BU T I O N R E C OV E RY

In this section we discuss the inverse problem of recovering the
age distribution of a purely monometallic unobscured population at
rest. This simplification is deliberate and yields a linear relationship
between the observed SED F rest(λ) and the stellar age distribution
�(t). It allows us to address its fundamental properties and be-
haviour, characterized by simple quantities and criteria. These turn
out to be precious tools in the process of understanding and di-
agnosing the ill-conditioning and pathological behaviour of such
a problem and their non-linear generalization. It also allows us to
introduce the automated regularizing method required to solve the
problem in practice.

3.1 Linear inverse problem

Our idealized monometallic unobscured model stellar population is
characterized by its LWSAD �(t) and its constant AMR Z (t) = Z 0.
The SED of the emitted light F rest(λ) then reads

Frest(λ) =
∫ tmax

tmin

�(t) B (λ, t, Z (t)) dt, (7)

where B(λ, t , Z (t)) is the flux-normalized SSP basis (cf. equation
4), which is just a function of the wavelength and time as the AMR
Z(t) is supposed to be known. Solving equation (7), where B(λ, t ,
Z (t)) and F rest(λ) are given and �(t) is the unknown, is as we will
demonstrate, a classical example of a potentially ill-posed problem
(Hansen 1994), i.e. it can be shown that small perturbations of the
data can cause large perturbations of the solution. Hence, any noise
in the data, F rest(λ), or in the kernel, B(λ, t , Z (t)), can lead to a
solution very far from the true solution.

3.2 Discretization: the matrix form

Intuitively, after discretization of the wavelength and age ranges,
the linear integral equation (7) can be approximated by

si �

n∑
j=1

Bi, j x j , i ∈ {1, .., m}, (8)

with

si = 〈Frest(λ)〉λ ∈ �λi
,

Bi, j = 〈B (λ, t, Z (t))〉λ ∈ �λi ,t ∈ �t j
,

x j = 〈�(t)〉t∈�t j
,

(9)

where the notation, e.g. 〈Frest(λ)〉λ∈�λi , indicates some kind of
weighted averaging or sampling of the argument F rest(λ) over the
ith wavelength interval �λi and similarly for the age interval.

More rigorously, let {gi : [λmin, λmax] �→ R; i = 1, . . . , m} and
{h j : [tmin, tmax] �→ R; j = 1, . . . , n} be two orthonormalized bases
of functions spanning the wavelength and age intervals, respectively.
Then, the best approximation3 of �(t) is written

�(t) �

n∑
j=1

x j h j (t), with x j =
∫

�(t) h j (t) dt . (10)

3 In the sense of the �2 norm defined by the orthonormalized basis of
functions.

C© 2005 RAS, MNRAS 365, 46–73379



STEllar Content via Maximum A Posteriori 51

Similarly, the best approximation of F rest(λ) is written

Frest(λ) �

m∑
i=1

si gi (λ), with si =
∫

Frest(λ) gi (λ) dλ. (11)

It is straightforward to obtain the coefficients of the matrix B in
equation (8) by inserting these approximations in equation (7):

Bi, j =
∫ ∫

B (λ, t, Z (t)) gi (λ) h j (t) dt dλ. (12)

In practice, we adopt equally spaced λi and equally spaced log(tj)
to sample the wavelength range and the evolutionary time-scales of
SSPs. Then we simply use gate functions for gi and hj. In other
words, si is the average flux received in λi ± δλ and xj is the mean
flux contribution of the subpopulation of age [t j−1, tj]; hence, the
notation used in equation (9).

Note that if tj − t j−1 is too large, significantly different pop-
ulations are already entangled in the sampled basis Bj (λ) =
〈B(λ, t, Z (t))〉t∈�t j . For this reason, the number n of SSP elements
in the basis should not be too small. The signatures of the popula-
tions of each age should be expressed in the adopted basis. On the
other hand (see Section 3.4), we will sometimes want to use a small
n, i.e. a basis that is coarser in time, and we will see that the overall
adopted value strongly depends on the observational context (SNR,
spectral resolution and range, etc.).

Using matrix notation and accounting for data noise, the observed
SED reads

y = B ·x +e, (13)

where y = (y1, . . . , ym)
 is the observed spectrum (including
errors), i.e. yi is the measured flux in the range λi ± δλ, and
e = (e1, . . . , em)
 accounts for modelling errors and noise. The
vector of sought parameter x is the discretized stellar age distribu-
tion, i.e. xj is the luminosity contribution of the stars of age [t j−1,
tj] to the total luminosity, averaged over the available wavelengths.
The vector s = B·x is the model of the observed spectrum and B is
the discrete model matrix, sometimes also referred to as the kernel.

3.3 Maximum a posteriori

In a real astrophysical situation, the data y are always contaminated
by errors and noise. Following Bayes theorem, the a posteriori con-
ditional probability density f post(x|y) for the realization x given the
data y is written

fpost(x|y) ∝ fdata(y|x) fprior(x), (14)

where f prior(x) is the a priori probability density of the parame-
ters, and f data(y|x), sometimes referred to as the likelihood, is the
probability density of the data given the model. For Gaussian noise,
f data(y|x) ∝ exp[−(1/2)χ2(y|x)], with

χ2(y|x) = [y − s(x)]
·W· [y − s(x)] , (15)

where the weight matrix is the inverse of the covariance matrix of
the noise: W = Cov(e)−1. Maximizing the posterior probability
(14) is equivalent to minimizing the penalty:

Q(x) = χ2(y|x) − 2 log[ fprior(x)]. (16)

Without a priori information about the sought parameters, the prob-
ability density f prior is uniformly distributed and this term can be
dropped. In this case, Q(x) simplifies to χ2(y|x), the traditional
goodness-of-fit estimator for Gaussian noise.

When the errors are uncorrelated, the matrix W formally assigns

a weight 1/Var(yi) to each pixel i of data. Practically, one may want
to modify the variance–covariance matrix in order to use it as a
mask. For example, a dead pixel can be assigned null weight. In
the same way, we may also mask emission lines. Because of this
particular usage of the matrix W, it will often be called the weight
matrix. It need not be exactly a variance–covariance matrix, even
though it can be built upon one.

3.4 Ill-conditioning and noise amplification

As mentioned earlier, the linear problem corresponding to the re-
covery of the stellar age distribution x by maximizing the likelihood
term only, qualifies as a discrete ill-conditioned problem, i.e. it might
therefore be extremely sensitive to noise, both in the data and in the
kernel. It thus will require some form of regularization in order to
obtain physically meaningful solutions.

3.4.1 Noisy data

First, let us see how ill-conditioning arises, in the case of a noiseless
kernel but with noisy data. We solve for x by maximizing the like-
lihood of the data y given the model; this is the same as minimizing

χ2(y|x) = (y − B · x)
 · W · (y − B · x), (17)

with respect to x. The solution is the weighted least-squares solution:

xML = (B
 · W · B)−1 · B
 · W · y. (18)

For the sake of simplicity, we consider stationary noise in this sec-
tion. The results of this section, however, apply for non-stationary
noise by replacing the model matrix B by K·B and the data vector y

by K·y where K is the Choleski decomposition of the weight matrix,
i.e. W = K
·K. For stationary noise, the weight matrix factorizes
out

χ 2(y|x) ∝ (y − B · x)
(y − B · x), (19)

and the maximum-likelihood solution becomes the ordinary least-
squares solution:

xML = (B
 · B)−1 · B
 · y. (20)

In order to clarify the process of noise amplification, we introduce
the singular value decomposition (SVD) of B as

B = U · Σ · V
, (21)

where Σ = diag(σ1, σ2, . . . , σn) is a diagonal matrix carrying the
singular values, sorted in decreasing order, of B on its diagonal.
U contains the orthonormal data singular vectors ui (data-size vec-
tors), and V contains the orthonormal solution singular vectors vi

(solution-size vectors). Replacing B by its SVD in equation (20)
yields

xML = V · Σ−1 · U
 · y =
n∑

i=1

ui

 · y

σi
vi . (22)

The solution is obtained as the sum of n solution singular vectors
vi times the scalar ui


 ·y/σ i . For real data, we have y = y + e,
where the noiseless data y are related to the true parameter vector
x via y = B · x. Instead of x, the solution recovered from the noisy
data reads

xML =
n∑

i=1

u

i · y

σi
vi +

n∑
i=1

u

i · e

σi
vi ≡ x + xe. (23)

Thus, we recover the true unperturbed solution x plus a perturba-
tion, xe, related to the noise. Comparing x and xe is equivalent
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Figure 2. The decay of the singular values of the kernel (crosses) is the
origin of the bad behaviour of the problem, through the amplification of the
last singular vectors. In this example, the data y are perturbed by Gaussian
noise of constant SNRd = 100 per pixel. The unperturbed singular coef-
ficients (white squares) decay, while the noise singular coefficients (black
diamonds) remain spread around 1/SNRd for any i (we chose 〈y〉 = 1 in
this example). The perturbed singular coefficients u


i · y are thus noise-
dominated as soon as i � 7–9, and so are the terms of the SVD solution
(equation 22). The increasing difference between the true and noise singular
coefficients is worsened by the division by smaller σ i . The solution x is
dominated by the last few solution singular vectors, and its norm is purely
noise-dependent.

to comparing the unperturbed singular coefficients u

i · y and the

noise singular coefficients ui

 · e. Fig. 2 shows an example with

40 logarithmical age bins from 10 Myr to 20 Gyr, and where the
data are perturbed by Gaussian noise and have constant SNRd =
100 per pixel (the subscript ‘d’ denotes data). The figure shows that
the singular values decay very fast and span a large range, giving a
conditioning number, defined by CN = σ 1/σ n ≈ 108, characteristic
of an ill-conditioned problem. Note that B is the flux-normalized
SSP basis defined by equation (4), i.e. each spectrum of the basis has
unitary flux, and the xi are thus flux fractions and not mass fractions
(see Section 4.1.2 for more details). The noise singular coefficients
remain rather constant for any rank i. Indeed, u


i · e involves a nor-
malized vector times noise, and has a constant statistical expected
value of 〈y〉/SNRd. On the contrary, the unperturbed singular coef-
ficients decay. In this example, the model x is a Gaussian centred
on 1 Gyr, and we find that changing the mean age of the model does
not significantly affect the decay of u


i · y (see Appendix A). We
can thus define two regimes, with a transition for i 0 ≈ 7–9 in this
example:

(i) for i � i 0, we have u

i · y  u


i · y and the singular coeffi-
cients and modes are set by the unperturbed signal y;

(ii) for i > i 0, we have u

i · y  u


i · e  〈y〉/SNRd. The singu-
lar coefficients are set by the noise in the data and saturate.

The division by decreasing σ i makes the high rank terms in xe be-
come very large. The solution x is thus dominated by the last few
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Figure 3. Distance map of the SEDs involved in the flux-normalized kernel
B. The contours enclose a domain where the ith spectrum cannot be distin-
guished against the jth at a 90 per cent confidence level. The solid contour is
for SNR = 100 per pixel and the dash-dotted one is for SNR = 10 per pixel.
It is not possible to unambiguously disentangle two spectra in such regions,
i.e. the resolution in age of any inversion method cannot be finer than the
width of these regions (which is read on the axis), and it is not constant all
along the age range. This resolution in age in data space has a counter part
in the resolution defined in Section 4.2.

vi . Its norm is several orders of magnitude larger than the true solu-
tion. We see that, for such ill-conditioned problems, pure maximum-
likelihood estimation results in huge noise amplification and useless
solutions.

The origin of ill-conditioning is, in most part, physical: it lies in
the evolution of the SSPs, which is dictated by stellar physics and
the relevant stellar evolution models. One aspect of the situation is
illustrated in Fig. 3. It shows a map of the χ2 distances between the
spectra (i.e. columns) of the kernel B, for different SNRs. In this
figure, the time interval [50 Myr, 15 Gyr] was arbitrarily divided
into 40 logarithmic age bins, and the SSP basis is flux normalized
as in equation (4). This shows that for low SNRs (of order 10), one
element of the basis cannot be quantitatively distinguished from its
neighbours within a typical log age interval of ∼0.5 dex. It also
makes it clear that the logarithmic age-resolution of any inversion
method will not be constant all over the time range.

3.4.2 Noisy correlated kernel

As discussed in Section 2.3, the models that are constructed from
observed spectra are also contaminated by observational noise. Let
us investigate the expected signature and basic properties of a noisy
kernel.

PÉGASE-HR SSPs have a noise component estimated to SNRb ≈
200 per 0.2-Å pixel (the subscript ‘b’ denotes basis). From theoret-
ical studies of random matrices (Hansen 1988), it is known that a
hypothetical noiseless SSP basis perturbated by adding white noise
of root mean square σ 0 should have its singular values settle around√

m σ0, where m is the number of samples in the observed SED. If
the spectra are normalized to unitary flux, we have σ 0  1/SNRb.
Fig. 4 shows the singular values of the flux-normalized kernel B
(thick line). The singular values clearly do not settle around the

C© 2005 RAS, MNRAS 365, 46–73381



STEllar Content via Maximum A Posteriori 53

initial kernel
 + white noise SNR=100
 + white noise SNR=1000
 + oversampled noise SNR=100
 + correlated noise SNR=100

 0  10  20  30  40

104

102

10+0

10+2

spectral signature of models noise

rank

Figure 4. Investigation of the noise signatures of the kernel. For com-
parison, the kernel was noised in several different ways: with white noise,
oversampled noise and finally noise correlated in the age direction of the
kernel, each type of noise producing characteristic features in the singular
values. The expected spectral signature of the noise in the initial basis (sat-
uration of the singular values) does not occur. This is likely to be caused by
the interpolation between the stars of the stellar library: the noise patterns
are carried along in the interpolation, giving rise to noise patterns correlated
in the direction of ages.

value expected for m  104, i.e. ≈1 for SNRb = 100 (dash-dotted
line) and ≈0.1 for SNRb = 1000 (dash-double-dotted line). On the
contrary, their decay is typical of an ill-conditioned noiseless ker-
nel, as if the SSPs involved had infinite SNR. Let us investigate
some details of the synthesis process, in an attempt to explain this
unexpected property.

As every SSP is actually the weighted sum of p single stars
from the library, the noise level of the synthetic SED should be
lower (typically divided by

√
p). However, the singular values of

the kernel plus white noise at a level SNR = 1000 (corresponding
to summing p = 100 stars having SNR = 100) are still much larger
than the initial kernel’s singular values. Having more stars available
would lower the saturation level, but one would need 1010 stars with
SNR = 100 to make the saturation vanish.

In order to test for the effect of wavelength resampling of the indi-
vidual stellar spectra, we added SNR =100 per pixel smoothed noise
(i.e. noise with a correlation between neighbouring wavelengths) to
the kernel. The corresponding singular values are very similar to the
former white noise case, except that they settle to a slightly smaller
value. They still saturate high above the singular values of the initial
kernel.

In contrast, when the added noise pattern is correlated in the
direction of ages instead of wavelength, one obtains a non-saturated
singular value spectrum very similar to the initial kernel, even with
SNR as low as 100 (a larger SNR would make it look even more
similar).

Indeed, such correlated noise arises in part in the kernel because
individual stellar spectra are interpolated in (T , g, Z ) space.

A single spectrum from the input stellar library can thus signif-
icantly contribute to several ages. For instance, the same limited
number of red giants will be used (with slightly different weights)

to represent the red giant branch stars over a range of ages and
metallicities. Their noise patterns will show up in several consecu-
tive synthetic SSPs, and can therefore not be properly discriminated
against true physical signal. The expected saturation is washed out
by the interpolation between spectra, resulting in a degraded sig-
nature. This correlation affects us in two ways: it prevents us from
determining the precise SNR of the basis, and then from computing
the conditioning number of the real problem (where SNRb → ∞).
Only a lower limit on the conditioning number is obtained, meaning
the real problem could actually be worse.

Whatever process is responsible for degrading the noise signa-
ture, the properties of the problem in very high-quality data regimes
cannot be inferred from the apparently noiseless initial kernel B.
Let us return to the case of white noise, with a noisy kernel B +
E. Its singular values saturate at some rank iB. The singular vectors
of lower rank are identical to those of B, but for higher rank they
differ strongly. Thus, the number of free parameters we can recover
cannot be larger than iB. For PÉGASE-HR we estimate iB = 6 for
SNRb ≈ 200. This means that high-frequency variations of the stel-
lar age distribution are unreachable, no matter what the SNR of
the data is. This is a fundamental limitation of the problem, related
specifically to the SNR of the SSP models. When SNRd � SNRb,
a pure maximum likelihood estimation actually uses noise patterns
inside the kernel as if it was a true physical signal, and simula-
tions will give results with an illusory accuracy. A useful technique,
which explicitly accounts for modelling errors, is then total least
squares (hereafter TLS). The TLS solution to our linear problem
(for simplicity we set W to Identity here) is defined by

xTLS = arg min
x,

¯B
(‖y − B̄ · x‖2 + ‖B̄ − B‖2), (24)

where ‖x‖ = √
x
 · x denotes the Euclidian (or �2) norm. More

can be found in Hansen & O’Leary (1996) and Golub, Hansen &
O’Leary (2000).

However, in the rest of the paper, we will most frequently explore
regimes where the dominant error source is the data, so that the
number of degrees of freedom of the problem is dictated by SNRd

rather than SNRb. It will also allow us to estimate what could be
the best performance of the method, if the SSP models were taken
as perfect. Thus, in the following sections, we focus exclusively on
the treatment of noisy data, and will often drop the subscript ‘d’.

3.5 Regularization and MAP

In this section we explain how adequate regularization allows us to
improve the behaviour of the problem with respect to noise in the
data. Perturbation of the solution arises from the noise-dominated
higher rank terms of equation (22). In order to ensure that xe remains
small, one could reduce the effective number of age bins. Several
criteria are applicable.

(i) The singular coefficients should always be dominated by the
true signal. With plots such as Fig. 2, we find that i0 is between 7 and
9 for SNRd = 100 per pixel with PÉGASE-HR SSPs. Nevertheless, in
a real situation only u


i ·y is generally available, and i0 is guessed
from the rank for which the singular coefficients begin to saturate.

(ii) In the true signal dominated region, the singular coeffi-
cients decrease faster than the singular values. Inversely, singu-
lar coefficients decreasing faster than the singular values for any
rank i guarantee the smallness of xe. This requirement is known
as the discrete Picard condition. See Hansen (1994) for further
details.
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(iii) A useful criterion that does not require any plot involves
choosing the number of age bins n so that the conditioning number
of the resulting kernel satisfies

CN = σ1/σn �
√

m SNRd, (25)

where m is the number of pixels. Note that this statement is SNR-
dependent.

Another way to prevent the noise component from being amplified
into the solution is to truncate the SVD expansion at some rank i trunc:

xTSVD =
itrunc∑
i=1

u

i · y

σi
vi . (26)

This technique is known as truncated SVD (hereafter TSVD). The
use of this method dates back to Hanson (1971) and Varah (1973).
The truncation rank i trunc can be chosen with the help of plots such
as Fig. 2

However, if the truncation is brutal, it will produce strong arte-
facts, known as aliasing, which reflects the fact that higher frequen-
cies are projected on to a low-frequency basis; the best fit leads to
a non-local alternated expansion which rings. Moreover, TSVD is
best suited for problems where a clear gap in the singular values is
seen because, in this instance, the lower modes are well represented
by the truncated basis. Unfortunately, our kernel displays a smooth,
continuously decreasing spectrum of singular values. This is very
similar to the situation in image reconstruction. When deconvolu-
tion problems are addressed, the brutal truncation of the transfer
function (which corresponds to the singular coefficients of the point
spread function, hereafter PSF) results in the formation of strong
artefacts known as Gibbs rings.

Moreover, here we have another degree of complexity arising
from the property that our problem is not shift-invariant. As a con-
sequence, the solution singular vectors are fairly unsmooth and even
more artefacts are expected, as discussed in Section 4.1.2. In image
deblurring, artefacts are reduced and reconstructions improved by
apodizing the Fourier transformed PSF (i.e. making it smoothly de-
crease to 0), for example by Wiener filtering.4 In a similar manner,
we wish to apodize the singular value spectrum of the kernel B.

We chose to regularize the problem by imposing the smoothness
of the solution through a penalizing function. We define the objective
function as

Qµ(x) ≡ −1

2
log( fpost) = χ2(s(x)) + µ P(x), (27)

which is a penalized χ 2, where P is the penalizing function; it has
large (small) values for unsmooth (smooth) x. Adding the penaliza-
tion P to the objective function is exactly equivalent to injecting a
priori information in the problem. We effectively proceed as if we
have assumed a priori that a smooth solution was more likely than a
rough one. This is in part justified by the fact that any unregularized
inversion tends to produce rough solutions. If we identify Qµ with
the expression of the logarithm of the maximum a posteriori likeli-
hood (16) we see that by building a penalization P we have built a
prior distribution f prior

fprior(x) = exp(−µP(x)) , (28)

omitting the normalization constant. If µ = 0, the prior distribution

4 Non-quadratic penalty functions, such as �1 − �2 penalties which accom-
modate rare sharp jumps in the sought field, can also significantly reduce
the effect of ringing.

is uniform and contains no information. It is a pure maximum likeli-
hood estimation. If µ > 0, the prior probability density is larger for
smooth solutions, and we are performing a maximum a posteriori
likelihood estimation (MAP).

The smoothing parameter µ sets the smoothness requirement
on the solution. There are several examples of such regulariza-
tions in the literature (Tikhonov, least squares with quadratic con-
straint, maximum entropy regularization, etc.; see Pichon, Siebert &
Bienaymé 2002 for a discussion). Here, we define P as a quadratic
function of x, involving a kernel L:

P(x) = x
 · L
 · L · x. (29)

If L is the identity matrix In , then P(x) is just the square of the
Euclidian norm of x. To explicitly enforce a smoothness constraint,
we can use a finite difference operator D2 ≡ diag2[−1, 2, −1] that
computes the Laplacian of x, defined in Pichon et al. (2002) by

D2 ≡


−1 2 −1 0 0 0 0 · · ·

0 −1 2 −1 0 0 0 · · ·
0 0 −1 2 −1 0 0 · · ·
0 0 0 −1 2 −1 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

 . (30)

The objective function Qµ is then quadratic and has an explicit
minimum

xµ
�= B̃ · y = (B
 · W · B + µL
 · L)−1 · B
 · W · y, (31)

where B̃ is defined here to be the regularized inverse model matrix,
whose properties we investigate below.

We may now derive a more insightful expression for xµ while
relying on the generalized singular value decomposition (hereafter
GSVD) of (B,L) (assuming W = Im or using the Choleski square
root of W). According to Appendix C, the regularized solution is
now written as

xµ = arg minx(‖B · x − y‖2 + µ ‖L · x‖2) ,

= [B
 · B + µL
 · L]−1 · B
 · y ,

= V · [Σ2 + µΘ2]−1 · Σ · U
 · y ,

=
n∑

i=1

ηi

(
u


i · y
)
vi , (32)

where the filter factors η i

ηi = σi

σ 2
i + µ θ 2

i
(33)

depend on the type of penalization and the smoothness parameter
µ. For any quadratic penalization as in equation (29), the matrices
U,V,Σ = diag(σ1, σ2, . . . , σn) and Θ = diag(θ1, θ2, . . . , θn) are
given by the GSVD of the matrix pair (B,L) (see Appendix C for
details). For the simple case of square Euclidian norm penalization,
L = In , the filter factors becomes

ηi = σi

σ 2
i + µ

. (34)

We then have η i ≈ 1/σ i when σ 2
i � µ, and η i → 0 for higher ranks

(i.e. smaller singular values), so that division by almost 0 is avoided
in high rank terms. Thus, setting µ actually sets the rank where the
weights of the SVD solution components begin to decrease. Note
that the smooth cut-off (apodization) of the singular values should
allow us to recover models similar to relatively high rank singular
vectors provided that the weights associated to lower rank vectors
are small enough. Small µ yield noise sensitive, possibly unphysical
solutions, whereas very large µ lead to flat solutions whatever the
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Figure 5. Histograms of the distribution of µGCV for a linear stellar age distribution inversion with 60 age bins, and several SNR per pixel and penalizations.
From left to right: Euclidian norm, Laplacian and D3 penalizations. The distributions are vertically offset for readability, and the SNR is given for each of them.
The median of these distributions give the GCV-optimal smoothing parameter for each SNR and penalization. It is well defined in all cases except for very low
SNR = 5 per pixel. The median parameter increases with the order of the penalization and decreasing SNR. Note the skewed distributions (this is quite generic
in GCV).

data. The choice of µ thus appears as a critical step, and should give
a fair balance between smoothness of the solution and sensitivity to
the data.

3.6 Setting the weight for the penalty: µ

The optimal weighing between prior and likelihood is a central
issue in MAP because it allows us to tailor the effective degree of
freedom of each inversion to the SNR of the data. See, for example,
Titterington (1985) for an extensive comparison between various
methods for choosing the value of the hyper-parameter µ.

3.6.1 The automatic way: generalized cross validation

Generalized cross validation (GCV) is a function of the parameter
µ, the data and the kernel B, defined as

GCV(µ) = ‖(I − B · B̃) · y‖2

tr2(I − B · B̃)
, (35)

where B̃ is the regularized inverse model, defined by equation (31)
and tr(·) is the trace of its argument. The minimum of GCV optimizes
the predictive power of the solution (Wahba 1990), in the sense that
if any pixel is left out of the data, this pixel’s value should still
be well predicted by the corresponding regularized solution. For
quadratic penalizations, one may obtain very simple expressions
for the GCV function, speeding up its computation, and therefore
the determination of µ by several orders of magnitude. Using the
GSVD of (B,L), we can derive

GCV(µ) =
∑n

i=1

(
ρi ui


 · y
)2(∑n

i=1 ρi

)2 , (36)

where

ρi = 1 − σ 2
i

σ 2
i + µ θ 2

i
= µ θ2

i

σ 2
i + µ θ 2

i
. (37)

Here, σ i and θ i are the singular values obtained from the GSVD of
the matrix pair (B,L) (see Appendix C). Note that µ in the denom-
inator of ρ i factorizes out in the expression of GCV (µ).

When available, the minimum of GCV provides a good, data
quality motivated value for µ. Moreover, GCV has been exten-
sively tested and applied by a number of authors, in several fields of

physics. Fig. 5 shows distributions of µGCV for a monometallic in-
version for several SNRs and penalizations. Each histogram results
from 150 experiments. The GCV determination of the smoothing
parameter is successful over a wide range of SNR, in the sense that
the histogram shows a clear maximum. This maximum is best de-
fined for the Tikhonov penalization (square of the Euclidian norm).
With Laplacian and higher-order penalizations, especially for low
SNR, the GCV values are more widely spread. Nevertheless, we can
still obtain a useful value by extrapolating the higher SNR µ down
to the desired SNR.

3.6.2 Empirical approach: trial and error

GCV and most of the automated smoothing parameter choice meth-
ods were designed for linear problems. In the case of non-linear
problems, it can provide a useful value for µ to start with, but
fine empirical tuning is also required (Craig & Brown 1986). For
instance, when positivity is imposed through reparametrization or
gradient clipping, µ should be smaller than µGCV. Indeed, because
the positive problem has a better behaviour than the full linear one, it
is expected that GCV overestimates µ. One can thus afford to lower
it to some extent without threatening the relevance of the solution.
As a consequence, finer structures can be recovered. To set µ for
the positive problem, we used the simple following procedure. First,
we set µ = µGCV. We produce mock data, and perform successive
inversions, while decreasing µ. As a consequence, finer structures
are recovered. At some point, we will enter a regime where the struc-
tures of the solution can be identified as artefacts. This transition
defines a lower limit above which µ should remain.

3.7 Where is the age information?

Which spectral domains or lines are most discriminative in terms of
population age-dating? An answer to this can be given by inspecting
the properties of the regularized inverse model matrix B̃(µ) defined
by equation (31). In effect, we expect the peak-to-peak amplitude
of a column of B̃(µ) to be largest for the most discriminatory wave-
lengths for age-dating. In Fig. 6, the inverse model matrix was com-
puted for a Laplacian penalization with µGCV = 102 corresponding
to SNR = 100 per pixel with 60 age bins from 10 Myr to 20 Gyr and
half-solar metallicity. It shows that the Balmer lines Hα,β,γ,δ , along
with the spectral regions of the Lick index NaD, the magnesium
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Figure 6. Black solid line: peak-to-peak variations of the inverse model matrix discussed in Section 3.7. In this example, we took 60 age bins and µ = 102

corresponding to SNR = 100 per pixel with Laplacian penalization. Large values point at age-sensitive parts of the spectrum. A 500-Myr SSP with half-solar
metallicity is shown as reference (grey solid line). The spectral domains corresponding to the Lick indices appear as grey-shaded areas. Many of the spectral
domains involved in the Lick system seem to effectively carry more information than the rest of the spectrum. However, the information is still widely distributed
along the whole optical range.

indices Mg1, Mg2, Mgb and the calcium Ca 4227 have strong weight
in the age-dating process. Note that the above analysis is clearly
noise-dependent via B̃(µGCV). The list of relevant lines will change
with the SNR. Many of the wiggles and peaks of the inverse model
remain so far uninterpreted, and many peaks hit spectral domains
where no referenced index is known, but still contribute strongly
to age separation. Another important feature of the inverse model
is that most of its norm is in the form of low-value pixels. If some
of the peaks were two or three orders of magnitude larger than the
average value, we could conclude that most of the information is
contained exclusively in the corresponding lines. Yet, Fig. 6 does
not allow us to reach this conclusion. Even though the information
seems denser in the strongest, well-known lines, most of it remains
in the form of a large number of weaker lines, more concentrated
in the blue part of our spectra. This supports the intuition that much
information is left aside by looking exclusively at spectral indices,
and that the constraints obtained therefrom are not optimal; hence,
our effort to build a global spectrum fitting tool.

4 VA L I DAT I O N : B E H AV I O U R O F T H E L I N E A R

I N V E R S I O N

Let us now apply STECMAP to mock data, to study the biases and
the dispersion of the solutions, and to test for different penalizations.
Producing mock data involves choosing a model age distribution,
x M , and a noise model, e. A mock spectrum is then obtained as
y = B·xM +e. The corresponding astrophysical goal is the recovery
of the star formation history of monometallic stellar populations (for
example superimposed clusters) seen without extinction. The stel-
lar age distribution models for these objects are single (Section 4.1)
or multiple (Section 4.2) star formation episodes of approximately

Gaussian shape. Recall that no assumption on the shape of the dis-
tribution is included in the inversion process. The only a priori is the
smoothness of the solution, while the smoothing parameter is set by
GCV. Here we relate the results of our simulations to the properties
of the solution singular vectors, thereby explaining the generation
of artefacts.

4.1 Single bump stellar age distribution

Let us discuss in turn the relationship between the artefacts
of the reconstructions and the shape of the solution vectors
(Section 4.1.1), the flux-averaging of the basis and the behaviour
of the problem regarding the fiducial model (Section 4.1.2 ), the
choice of penalization (Section 4.1.3), the requirement to impose
positivity (Section 4.1.4), and the need for an extensive simulation
campaign (Section 4.1.5).

4.1.1 Artefacts and the shape of the solution vectors

Because any solution is a linear combination of the solution vectors
vi (see equation 32), their shapes impose what kind of shape for x

can or cannot be reconstructed, depending on what feature in the
observed spectra is best matched by the corresponding data singular
vectors.

Moreover, as regularizing the problem involves attenuating the
high rank terms of equation (32), the detailed shape of the solution
is in general given by the first few vi . Fig. 7 shows the stellar mass
distribution reconstruction of an old population. It is actually a blow-
up of the recovery of the oldest burst in the bottom right-hand panel
of Fig. 8. The penalization is square Euclidian norm, so that the
relevant singular vectors are given by the SVD of B. The details of
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Figure 7. Blow-up of the bottom right-hand panel of Fig. 8 showing only
the mass reconstruction of the oldest bump. The dashed line is the model
distribution, and the diamonds show the median of the recovered age distri-
butions for 10 realizations. The error bars showing the dispersion are smaller
than the symbol itself. The details of the shape of the mass distribution re-
construction trace closely the fourth singular vector of the kernel B, with
very little dispersion, showing that the artefacts and the fine structures of the
reconstructions are closely related to the properties of the SSP models.

the solution are mostly those of the fourth solution singular vector,
and appear as a systematic artefact (the diamonds are the median of
10 realizations, and the dispersion of the solutions is smaller than the
symbol itself). The spurious young component between 107.5 and
108 yr seems to be related to the fourth singular vector as well, and
also appears systematically even though it has no physical reality.
The fine structure and the artefacts of any solution thus rely most on
the properties of the SSP basis rather than on the data or even the
realization of the noise.

It is generally impossible to reconstruct accurately the shape of the
distribution for ages where the singular vectors display no structure.
The right-hand panel of Fig. 9 shows that the 10 first singular vectors
of the absolute flux kernel have very little structure for ages larger
than  3 Gyr. Correspondingly, the right-hand panels of Fig. 8 show
that indeed, in this range of ages, the shape of the distribution is very
poorly constrained.

For an inversion problem to be well behaved, the first solution
singular vectors, vk , should be rather smooth. They should display
more and more oscillations as the rank k increases (typically k − 1
oscillations), but remain smooth and regular. The unsmooth aspect
of our singular vectors arises from the temporal roughness in the
spectral basis. This could also be related to physical fast evolution
of the SSPs in some specific stages of stellar evolution, producing
variable distance between the elements of the basis. It also reflects
the non-shift-invariance of the problem, as is also illustrated by
Fig. 3.

However, some further artefacts cannot be trivially explained by
the solution singular vectors alone. For example, many of the dis-
played solutions, even with high SNR, show variations far away
from the bulk of the signal, seen as misleading spurious secondary
bumps. This artefact is the analogue of Gibbs rings in imaging.
It arises because the higher-frequency modes needed to suppress

these secondary oscillations are attenuated by regularization, and
would be best identified by examining the GSVD of (B,L). It is
the old age extension of the low-frequency mode involved in build-
ing the main bump. We deal with this by introducing positivity in
Section 4.1.4

4.1.2 Flux-normalized basis and independence
from the fiducial model

In practice, one can choose between a basis where the flux of each
SSP is given for 1 M� (absolute flux basis or mass-normalized
basis), and a basis where the flux of each SSP has been normalized
to the same value (or flux-normalized basis; cf. Section 2.1). This
choice has a physical meaning: in the first case, the unknown x will
contain mass fractions, whereas in the latter case, it will contain flux
fractions.

There are several reasons why we prefer to work with the flux-
normalized basis.

It is more directly linked to the luminous properties of the ob-
served population (and thus less directly linked to the mass); a com-
ponent of a given flux cannot ‘hide’ behind another component of
similar flux. This is not true for components of similar masses, due
to the evolution of M/L(t). For instance, in the upper-right plot
of Fig. 8, the mass of the older components is poorly constrained
when the model is a young burst. This is expected, because when
a young component is present, adding the same mass of old stars
will have very little effect on the integrated optical light. This is
predictable from the lack of structure beyond 3 Gyr in the singular
vectors of the right-hand panel of Fig. 9 (see also the discussion
in Section 4.1.1). Modulations in this range of ages are seen in the
vectors of the right-hand panel for the higher rank vectors only. On
the other hand, the singular vectors of the flux-normalized basis
(left-hand panel of Fig. 9) display structure in the large ages even
for low ranks, indicating a better behaviour. Indeed, the upper-left
plot of Fig. 8 shows that all the flux fractions are satisfactorily con-
strained no matter if the model population is young or old. In this
respect, the ‘separability’ issues tackled later in the paper for su-
perimposed populations (Section 4.2) are more easily discussed in
terms of flux fractions. Note, however, that it is not expected that the
mass fractions obtained by multiplying the flux fractions by M/L(t)
be accurate over the whole age range (positivity will improve this
particular aspect significantly; see Section 4.1.4).

The difference of behaviour between the mass and flux fractions
reconstructions is also reflected in the variation of the transition
rank i0 (see Section 3.4) between the noise- and signal-dominated
regimes, as shown in Fig. A1. For a mass-normalized basis, the
transition rank i0 increases with the age of the fiducial model x (as
defined in Panter, Heavens & Jimenez 2003), from 5 to 20. On the
other hand, for a flux-normalized basis, the transition rank remains
around 7–9 in this pseudo-observational set-up, no matter the age
of the fiducial model. Ideally, we would like to come up with a
problem whose behaviour is fixed only by the SNR. In this respect,
independence of the transition rank i0 from the fiducial model is a
welcome property. We have thus chosen to carry on with the flux-
normalized basis for the rest of the paper.

4.1.3 Laplacian or square Euclidian norm penalty

Fig. 8 allows us to check which penalization gives the solutions with
smallest distance to the model. First of all, it is quite clear that the
square Euclidian norm penalization is worst, because it produces
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Figure 8. Simulations of the reconstruction of a young, intermediate and old single-burst populations. The thick histograms represent the models, while the
symbols and vertical bars show the median and interquartiles of 10 inversions. Negative values in these reconstructions have been set to zero for clarity. Right:
case of an absolute flux basis. The plots thus represent mass fractions. Left: case of a flux normalized basis. Thus are represented flux contributions. The SNR
is fixed to 100 per pixel with R = 10 000. The penalizations are square Euclidian norm (bottom) and Laplacian (top). In terms of distance to the model, the
bumps are best reconstructed in flux fractions, and the best penalization is Laplacian. We checked that Laplacian penalization gave flux fraction reconstructions
similar to the third-order penalization, showing that these do not strongly rely on the details of the smoothness a priori.

both flattened solutions and strong artefacts. Indeed, requiring the
norm of the solution to be small does not explicitly have an effect
on the smoothness of the solutions.

Laplacian penalizations give results very similar to the third-
order penalization D3 ≡ Diag3[−1, 3, −3, 1] defined as in equa-
tion (30). The latter are therefore not plotted, and perform equally
well. Both produce moderately flattened solutions showing increas-
ing dispersion with decreasing SNR, without systematic bias in
age. The width of these bumps is a simple (but crude) measure
of the time resolution of the reconstructions, because any bump
narrower than the models displayed would be broadened by the
inversion. The absence of significant difference between the results
of the Laplacian and third-order penalizations shows that the inver-
sion does not rely strongly on the details of regularization, as long
as it involves a differential operator. We chose to carry on with the
Laplacian penalization for the rest of the paper.

4.1.4 Positivity and Gibbs apodization

Positivity of the solution is a physically motivated requirement, but
it also stabilizes the inversion by strongly reducing the explored pa-
rameter space. The maximum frequency (or best resolution in age)
that would be obtained for infinite SNR is thus not only a matter
of basis ill-conditioning but also has a methodological component.
This is illustrated by the slightly better age resolution (and thus
higher frequency) obtained while relying on positivity, as shown in
Fig. 10. Unfortunately there is no simple extension of the analyt-
ical ill-conditioned problem diagnosis to the non-linear problem.
Also, the minimization of Qµ defined in equation (27) requires effi-
cient algorithms, as described in Appendix B. As any regularization
method, positivity will also introduce some bias. Indeed, the solu-
tions in Fig. 10 seem to be slightly asymmetrical compared to the
linear solutions. However, one strong advantage of positivity is its
ability to reduce Gibbs ringing. Linear solutions with any penal-
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Figure 9. Solution singular vectors of the flux-normalized kernel (left) and the absolute flux basis (right). The vectors are vertically offset for visibility, and
the associated singular values are given on the right. The low rank singular vectors of the absolute flux basis are very flat in the large ages, indicating that no
information about these populations can be obtained unless we have very high SNR. On the contrary, fluctuations in large ages are already present in the low
rank singular vectors of the flux-normalized basis, which indicates the better feasibility of reconstructing the age distribution in the older part.
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Figure 10. Same as Fig. 8 with a flux-normalized basis, positivity enforced by quadratic reparametrization and Laplacian penalization. Results of simulations
for SNR = 100 and SNR = 10 per pixel at R = 10 000 are shown. Even though some residual remains, the solution sticks to zero where it should, instead of
displaying Gibbs rings.

ization exhibit spurious oscillations even far from the main bump,
which can be interpreted as a superimposed component. These an-
noying artefacts do not appear in the positive solutions, as shown
in Fig. 10. In many applications, this property turns out to be more
important than the possible bias it might introduce in age estimation.

4.1.5 Why carry out an extensive simulation campaign?

An inversion method can perform very well for some specially cho-
sen cases while performing poorly generally. As an example, we
discuss the recovery of the age distribution of a complex population

consisting in a superposition of young, intermediate, and old sub-
populations. Each of these three components contributes equally
to the total observed spectrum y. The noise is Gaussian. Fig. 11
shows reconstructions of the age distribution by the equation (31),
for 150 realizations, with a Laplacian penalization. The reconstruc-
tion seems to be satisfactory: it is unbiased and the interquartile
intervals of the solutions shrink with increasing SNR. A naive read-
ing of Fig. 11 would suggest that we are able to recover nearly
any age distribution, without bias and with very small error for all
the time bins, even with quite low SNR; however, there is a trick.
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Figure 11. Same as Fig. 10, with a 1 + sin model for the stellar age dis-
tribution. The SNR per pixel is given for each experiment (10 realizations),
and the resolution is R = 10 000. The smoothing parameter µ was adjusted
by running several simulations and choosing the one providing the smallest
distance to the model. The reconstruction is excellent, but there is a catch:
it turns out that sine functions are intrinsically easier to recover than sin-
gle bumps, given the shape of the solution vectors of the kernel. Hence,
such reconstructions are very misguiding. More systematic simulations are
required.

Why do the simulations in Fig. 11 look so good? First, the tem-
poral frequency of the solution is lower than in the single bump
simulations. Secondly, higher-frequency sine functions are needed
to represent a single bump than to represent a sinusal curve (one
is enough). Thus, as the first singular vectors roughly form a basis
of sine functions, one needs fewer and lower-order solution sin-
gular vectors to represent a sine function than a bump, and lower
SNR.

One simple (yet unadvisable) recipe to make good looking sim-
ulations even without regularization could involve the following
steps:

(i) choose as model x one of the last few solution singular vectors
vk (or one of the first few if some penalization is implemented);

(ii) compute the corresponding pseudo-data y = B · x;
(iii) noise the data at chosen SNR;
(iv) invert and show how close the recovered solution lies to the

initial model.

By doing so, we managed to produce apparently good looking simu-
lations down to SNR = 0.1 per pixel. Thus, the requirement to assess
and demonstrate the validity and efficiency of the MAP method car-
ried out in this section.

4.2 Age separation versus R and SNR

We have already made clear that we cannot recover all the high-
frequency oscillations of a given stellar age distribution even with
very high SNR, but rather moderately slow variations, correspond-
ing to smooth solutions. Let us none the less consider the special case
where a composite population consists of two successive bursts, i.e.
stellar age distributions with two bumps of same luminosity. This

is one order of complexity above the classical characterization of
a population through one unique age using Lick indices. Indeed,
it applies to many astrophysically interesting cases. The ability to
separate the two main populations would allow us, for example,
to age-date respectively the disc and the bulge of unresolved spiral
galaxies, or late stages of accretion and star-forming activity in ellip-
ticals in surveys, such as the SDSS and 2dFGRS. It would also allow
us to better constrain the mass-to-light ratio of such complex pop-
ulations. We wish to investigate what observational specifications
(spectral resolution, SNR) are required to reliably perform such a
separation. We thus ran extensive simulations of reconstructions of
double-burst populations. The spectral resolution, SNR and the age
separation �age between the two bursts were varied, and the recov-
ered ages were studied as a function of R, SNR and �age. Fig. 12
shows the recovered and model age couples (a1, a2) in several ex-
periments of double-burst superpositions, for SNR = 20–200 per Å,
at R = 10 000 and R = 2500. The model age grid takes 13 values,
separated by 0.2 dex, therefore defining 78 age couples.

These systematic simulations allow us to estimate the resolution
in age achievable for a given (R, SNR) and the corresponding er-
rors. It is a solid, systematic way for testing the method in different
regimes. The smoothing parameter was set for each (R, SNR) by
taking the GCV value as a guess and fine-tuning it in order to obtain
stable reconstructions of close bumps. The quality of the reconstruc-
tions is assessed using the following two criteria.

(i) Because, in the model, the two bursts have exactly the same
luminosity, we require that the areas of the two biggest bumps have
a ratio smaller than 2.

(ii) The minimum between the two main bumps of the solution
should be fairly low, otherwise it is difficult to state whether the
populations are truly distinct or part of an extended star formation
episode. Here, we required the minimum to be lower than 10 per
cent of the mean height of the biggest bumps.

The solutions are required to satisfy these two criteria to be con-
sidered as ‘good’ in terms of age separation. Fig. 13 shows as an
example an acceptable (well-defined bumps, minimum at 0) and
a rejected solution (bumps and minimum unclear). In Fig. 12, we
retained exclusively the cases satisfying these criteria, i.e. for the
other age couples (not plotted), the recovered stellar age distribu-
tions failed one or both criteria. A common failure is the recovery
of one wide bump instead of two, indicating that the subpopulations
are not separated given the SNR and spectral resolution. Thus, the
empty region between the successfully separated couples and the bi-
sector (dashed line) is a region of ‘inseparable’ couples. The width
of this region indicates the resolution in age that we can achieve.
This region shrinks with increasing SNR, showing that we can sep-
arate two close subpopulations more accurately. We superimposed
on the leftmost panel of Fig. 12 several vertical segments spanning
the ‘inseparable’ region. We define the resolution in age as the me-
dian length of these segments. The statistical error on this quantity
is of the order of 0.2 dex for SNR = 20 per Å.

In a realistic observational context, a separation of two subpop-
ulations with an age difference lower than the computed resolution
in age should not be attempted, or at least not trusted. The resolu-
tion in age achieved here is a lower limit because no error source
other than Gaussian noise is considered. Other possible sources of
noise are glitches, residual sky lines, non-sky-emission lines (when
not masked in W), spectrophotometric and wavelength calibration
error, and model error, along with effects of the age–metallicity–
extinction degeneracy (in this section the true metallicity of the
observed system was known a priori).
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Figure 12. Recovery of double bursts for several SNR per Å. The large circles are the models. Their coordinates (a1, a2) are the ages of the two bursts. The
smaller circles with error bars show the median and the interquartiles of the recovered ages in 10 reconstructions each. The dotted line represents the a1 = a2

limit. Solutions that do not satisfy the quality criteria illustrated in Fig. 14 are rejected and not plotted. The upper diagonal part of each panel shows R = 2500
results while the lower diagonal part shows R = 10 000 results. Results for the other spectral resolutions down to R ≈ 1000 are very similar and therefore
are not shown. Our ability to separate close double bursts improves with increasing SNR, but does not significantly change with spectral resolution. The top
left-hand panel illustrates the definition of the resolution in age as the median length of the segments. Note that the shape of the ‘inseparable’ zone and its
evolution with SNR are similar to that shown in Fig. 3.
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Figure 13. Selection criterion: the rejected solution shows no clear sepa-
ration, while the accepted solution has two clear bumps of similar area with
a well-defined minimum.

Fig. 12 also shows that the error on both ages of the couple of
subpopulations decrease on average with increasing SNR, as ex-
pected. For small SNR, the figure is quite inconclusive, and the
recovered age couples are more or less randomly spread all over the
age domain, while for high SNR, every couple seems to be quite in
place, even though some couples remain slightly offset. For other
resolutions, the plots are quite similar, and therefore we do not re-
produce them here. The left-hand panel of Fig. 14 gives a synthesis
of all the experiments by showing the resolution in age, computed
according to the given definition, versus the SNR per Å, for several
spectral resolutions. The resolution in age improves with increas-
ing SNR, from 0.9 dex at SNR = 20 per Å to 0.4 dex at SNR =
200 per Å. Given the small number of measurements of the width
of the unseparable zone in each experiment, the variation of the
resolution in age with spectral resolution is not highly significant.
Thus, it seems that, as long as the SNR per Å is conserved, spec-
tral resolution does not significantly improve our ability to separate
subpopulations. The right-hand panel of Fig. 14 shows the error on
recovered ages versus SNR for the successful separations, for sev-
eral spectral resolutions. The error decreases with increasing SNR,
as expected, and is about 10 times smaller than the resolution in
age for the same SNR. Again, no strong trend is seen with spectral
resolution.
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Figure 14. Left: resolution in age, in dex versus SNR per Å for various spectral resolutions. As expected, the age resolution improves with increasing SNR,
and seems to settle around 0.4 dex for the highest SNR. No significant trend is seen with spectral resolution. Right: mean error of the age estimates for the
successful cases (according to our criteria). The mean error is approximately one order of magnitude smaller than the resolution in age, and decreases with
increasing SNR.

4.3 Compressed versus uncompressed data

In this section, we discuss the similarity between SVD and Gram–
Schmidt othonormalization (GSO), the decomposition scheme
adopted by MOPED’s authors (Reichardt et al. 2001). This compari-
son is carried out in the monometallic, extinctionless regime. Data
can be compressed by multiplying them by the n singular vectors
to obtain n numbers containing the same information as the whole
original spectrum. Appendix D shows that the fact that the sin-
gular vectors are provided by non-truncated SVD or GSO makes
little difference in the linear regime. The compression can effec-
tively be lossless, but the conditioning of the problem is unchanged,
as shown by the inspection of the singular values in the left-hand
panel of Fig. D1. The right-hand panel of Fig. D1 shows the re-
sult of a GSO (equation D2) and an SVD (equation 22) inversion
for a composite population in a moderately ill-conditioned exam-
ple. They are equal down to machine precision. Minimizing the χ2

of the compressed data involves the issues discussed in Section 3.4,
if the compression is provided via the SVD or GSO singular vectors.

4.4 Constraints on metallicity?

When attempting to reconstruct the stellar age distribution from real
observations, one would still have to guess the metallicity of the pop-
ulation. A classical parametric way to proceed would be to perform a
monometallic inversion for each of the available metallicities in the
basis. If the dominant observational error is Gaussian, we expect χ2

to be minimum when using the true metallicity. However, because
of the age–metallicity degeneracy, it might not be so clear, and one
could expect to reach a good χ 2 even with an erroneous metallicity
guess, resulting in an error in age estimation. Fig. 15 shows a plot
of the reduced χ 2 when inverting a population of metallicity Z =
0.004 with a basis of different metallicity for several SNR and R =
10 000. The smoothing parameter was chosen using GCV with the
Z = 0.004 kernel. The best fit is always obtained when the initial
model metallicity is used. We computed the 90 per cent confidence
level by taking as the number of degrees of freedom, the number
of pixels in the spectrum minus the number of age bins (40 in this
example). This choice could be discussed because the weights of
adjacent time bins are correlated by the penalization. However, the

90% confidence level
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Figure 15. The high-resolution SED of model extinctionless monometallic
population with Z = 0.004 is inverted using spectral bases with different
metallicities for several SNR. For SNR = 10 per pixel, the metallicity is
moderately well constrained (�Z ≈ 1 dex), while for SNR � 30 per pixel all
the metallicities other than 0.004 can be rejected at the 90 per cent confidence
level.

number of time bins remains far smaller than the number of pixels
and thus plays no critical role. For SNR = 10 per pixel (i.e. SNR =
20 per Å), we cannot reject fits with wrong metallicities Z ∈ [0.002,
0.009]. The error on metallicity can therefore reach 0.35 dex for
SNR = 10. The range of acceptable metallicities, however, shrinks
rapidly with increasing SNR, tightening the constraints. At SNR �
30, it is possible to break the age–metallicity degeneracy, and thus
to allow metallicity to be a free parameter of the inversion problem.

This closes our detailed investigation of the idealized problem of
recovering the stellar age distribution of a monometallic, reddening-
free stellar population.
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Figure 16. Same as in Fig. 6 for the linear age–metallicity distribution recovery. The dimensions of the inverse problem are 60 age bins and five metallicity
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spectral domains involved in the definition of the Lick indices system seem to carry more information than the rest of the spectrum. However, the information
is still widely spread along the whole optical range in the form of medium depth lines, suggesting there is a large number of potential high-resolution indices.

5 S T E L L A R C O N T E N T A N D R E D D E N I N G

R E C OV E RY

In the previous section we have presented STECMAP in an idealized
regime, which could only be applied to observations where both the
metallicity and the extinction are known a priori, which is rarely
the case in reality. We now present an extension of STECMAP
accounting for these additional free parameters as well. In Sec-
tion 5.1, the full linear age–metallicity problem is examined, where
both metallicity mixing and age mixing are allowed, and we study its
behaviour. Then, for simplicity, and given the extremely poor con-
ditioning of this problem, the unknown metallicity will be handled
specifically as an AMR. The technique for reconstructing the stellar
age distribution, the AMR and the extinction will be presented in
Section 5.2, along with a few example simulations in Section 5.3.
Finally, its applicability and accuracy will be discussed while ex-
ploring several observational regimes in Section 5.4.

5.1 Two-dimensional linear age–metallicity problem

Here we consider a very composite population where several sub-
populations with different ages and metallicities are superimposed.
Let us define a two-dimensional (2D) stellar age and metallicity
distribution �(t , Z ) yielding the fraction of optical flux emitted by
stars with age t ∈ [t , t + dt] and metallicity Z ∈ [Z , Z + dZ ].
The model spectrum is the integral of � over age and metallicity
space. Discretizing as in Section 3, we obtain the discrete model
spectrum as the weighted sum of the SSPs for all the ages and all
the metallicities in the basis. Here the parameter vector is a 2D map
containing the weights xij of the SSP of age ti and metallicity Zj.
The model matrix B is the concatenation of the monometallic bases
described in Section 3, i.e. sequences of SSPs in age and metallicity.
Its conditioning number is commonly of the order of 108, telling us
that thorough regularization is required.

5.1.1 Where is the information on Z?

In a manner similar to Section 3.7 we can determine which spec-
tral domains are important for age and metallicity determination.
We compute the inverse model matrix B̃ of the problem for a given
SNRd and look for large peak-to-peak variations in this matrix, in-
dicating spectral features having strong discriminative power, as
shown in Fig. 16. Most of the bands involved in the Lick indices
carry much information. However, some of them, such as TiO2,
seem to be unimportant, and a large number of medium- and high-
resolution lines not involved in Lick indices actually carry most
of the information.The comparison with Fig. 6 shows that several
metallic lines, which were not important for a monometallic popu-
lation age distribution recovery, turn out to carry a substantial part
of the information when the metallicity is unknown. Again, the blue
part of the spectrum seems to be more discriminative.

Because age sensitive and metallicity sensitive lines are spread
along the whole optical wavelength range, any small section of the
spectrum has good chances of containing such lines (see Le Borgne
et al. 2004 for an example around Hγ ). Thus, if the available data do
not allow reliable full optical domain fitting, plots such as Fig. 16
are a good starting point for the search for new high-resolution
indices. The use of the whole spectrum implies some redundancy,
but considering the sensitivity of the inversion problem to noise, this
redundancy is highly welcome.5

5.1.2 Age–metallicity degeneracy?

We carried out the following experiment illustrated in Fig. 17.
We produced mock data corresponding to a 2D stellar age and

5 The redundancy is also useful in oder to address in part problems induced
by the poor modelling of some spectral lines.
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Figure 17. (a) and (b): free metallicity reconstructions of a monometallic population for SNR = 500 and SNR = 200 per pixel. For high SNR a monometallic
population is unambiguously recovered, while at lower SNR, a multimetallic solution appears, indicating the degeneracy of the problem. (c) and (d): solution
singular modes of the 2D age–metallicity reconstruction problem. The difficulty involved in such a reconstruction arises from the very bad conditioning number,
and the lack of features of the first singular modes in the metallicity direction.

metallicity distribution map x and investigated how well we could
reconstruct it for a given SNR. In the example of Fig. 17 (top pan-
els), the model is a monometallic bump centred on 1 Gyr and Z =
0.008. The corresponding mock data are noised and then inverted
as in equation (31) except that B is now the multimetallic SSP ba-
sis defined above. In this experiment, we focus on the broadening
of the bump in the metallicity direction as a signature of the age–
metallicity degeneracy.

The inspection of the first non-attenuated solution singular modes
tells us about the properties of the regularized problem. Figs 17(c)
and (d) show the second and fifth solution singular modes of the
model matrix B. Each of them is an age–metallicity map. The shapes
of the stellar age distribution for each metallicity in the second
singular mode are very similar, indicating bad separability between
metallicities. Thus, if only the first singular modes are recovered,
the solutions will have a strong tendency to be flat in the metallicity
direction.

The fifth singular mode is the first to show a well-defined struc-
ture: a bump in age, elongated in the metallicity direction, with a
slight shift to larger ages with decreasing metallicities. This traces
the age–metallicity degeneracy: a pure monometallic population
will be reconstructed in regularized regimes as a composite, mixing
younger metal-rich SSPs with older metal-poor SSPs. Figs 17(a)
and (b) show reconstructions of such age–metallicity maps for R =
10 000, SNR = 500 and 200 per pixel. The model consists of a
single bump centred on 1 Gyr and Z = 0.008, and the penalization

is Laplacian. For SNR = 500 per pixel we see that the population
is effectively reconstructed as a single bump in age and metallic-
ity. The age–metallicity degeneracy is, in this example, explicitly
broken. The same experiment with SNR = 200 per pixel gives a
solution degenerate in metallicity: the monometallic population is
seen as the sum of three monometallic subpopulations contributing
nearly equally to the total light. The younger component is more
metal-rich, while the older component is poorer, as is expected for
age–metallicity degenerate solutions, and is similar to the trend seen
in the solution singular modes. In this example, the smoothing pa-
rameter was chosen by GCV. More realizations of this experiment
gave similar degenerate solutions. From the shape of the fifth solu-
tion singular mode, we can measure the slope of the age–metallicity
degeneracy, i.e. the slope defined by the maxima of the bumps of the
singular mode in the age–metallicity plane. We find it to be equal to
0.3, which is much smaller than the 3/2 given in Worthey (1994).
Smaller slopes indicate a better definition of age. This is expected
because here we consider the whole optical range and the continuum
as reliable.

As a conclusion, we found 2D age–metallicity map reconstruc-
tions to be feasible for only very high SNR � 500. Because this is
comparable or larger than SNRb, we consider it strongly unphys-
ical. Moreover, from an observational point of view, such a high
(SNR, R) combination for an outer galaxy is generally unreachable
in reasonable time with the present generation of instruments. Thus,
inversions with this complexity and SNR are doubly challenging.
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We now address a simplified version of this problem by reducing
the metallicity parameters to a one-dimensional AMR.

5.2 Non-linear age–metallicity recovery

In the rest of the paper we assume that the chemical properties of
the population are represented by an AMR Z(t) of unknown shape.
In contrast to Section 5.1, the subpopulation of age tj is therefore
assigned one and only one metallicity Zj rather than a metallicity
distribution. In addition, we now allow the SED to be affected by an
extinction f ext(E , λ) parametrized by the colour excess E. Finally,
accounting for the age distribution �(t), the observed SED at rest
is then written as

Frest(λ) = fext(E, λ)

∫ tmax

tmin

�(t) B (λ, t, Z (t)) dt . (38)

This model is linear in age distribution �, and non-linear in metal-
licity Z and extinction E. Recall that f ext may be replaced by other
parametric functions of wavelength that could, for instance, describe
flux calibration corrections.

5.2.1 Discretization and parameters

Following the same prescription as in Section 3, but accounting for
extinction, we can derive the discretized version of equation (38).
Provided the extinction law is very smooth compared to the size of
the wavelength bins, the model of the sampled SED of the reddened
composite stellar population in the ith spectral bin is written

si =
∫

Frest(λ) gi (λ) dλ

� fext(E, λi )

∫
gi (λ)

∫ tmax

tmin

�(t) B (λ, t, Z (t)) dt dλ, (39)

which simplifies to

si = fext(E, λi )
n∑

j=1

Bi, j x j , i ∈ {1, .., m}, (40)

or in matrix form

s = diag( f ext(E)) · B · x. (41)

Here, the kernel matrix B and the vector x of the age distribution
�(t) sampled upon time are defined as in Section 3, and diag( f ext)
is the diagonal matrix formed from the extinction vector

f ext(E) = ( fext(E, λ1), . . . , fext(E, λm))
, (42)

which contains the extinction law seen by the population and de-
pends non-linearly on the colour excess E. Note that B contains the
SSP basis for the AMR vector Z (the AMR Z(t) sampled in time).

From a computational point of view, any matrix product involving
diag( f ext(E)) is very expensive and can be profitably implemented
using term-to-term product. However, in order to save the intro-
duction of confusing operators, we will continue with the current
notation.

5.2.2 Smoothness a priori with MAP

The model defined by equation (41) is non-linear because of the
dependences of fext and B on E and Z, respectively. Therefore, we
cannot refer to the classical definition of ill-conditioning. However,
because the simpler problem solved in Section 3 is ill-conditioned, it

is expected that the more complex problem treated here will be even
more ill-conditioned, all the more because we now seek two fields
plus one extinction parameter. We will thus add a priori information
by implementing smoothness constraints, and allow the unknowns
to have different smoothing parameters. We define the penalizing
function Psmooth by

Psmooth(x, Z) ≡ µx P(x) + µZ P(Z), (43)

where P is the standard quadratic function defined by equation (29).

5.2.3 Metallicity bounds

The metallicity range [Z min, Z max] for which models are available
is bounded. We must therefore find a way to ensure that the solution
lies in the desired metallicity range by making unwanted values of Z
unattractive. To do this we use a binding function c (c denotes con-
straint) which is another kind of penalizing function. This technique
was proposed by R. Lane (private communication). The function c
must be flat inside [Z min, Z max] in order not to influence the metal-
licity search and increase gradually outside. We define c piecewise
by

c(Z ) =
{

(Z − Zmin)2 if Z � Zmin,

(Z − Zmax)2 if Z � Zmax,

0 else.
(44)

The binding function C used in practice is defined by

C(Z) =
∑

j

c(Z j ). (45)

The penalization function we finally adopt is

Pµ(x, Z) ≡ Psmooth(x, Z) + µC C(Z), (46)

where a binding parameter µC allows us to set the repulsiveness of
the exterior of [Z min, Z max]. The objective function

Qµ = χ2 [s(x, Z, E)] + Pµ(x, Z),

is now fully characterized. Its derivatives are given in Appendix B.

5.3 Simulations of metal-dependent LWSAD

We applied the proposed inversion method to mock data for various
stellar age distributions, AMRs, extinctions and SNRs. In this case,
choosing an input model involves choosing the functions �(t), Z (t),
and a colour excess E. The corresponding model spectrum is then
computed following equation (41). Gaussian noise is added to obtain
the pseudo-data.

Fig. 18 shows simulations of reconstructions in the case of high-
quality pseudo-data: R = 10 000 at 4000–6800 Å with SNR =
100 per pixel for 100 realizations. The left-hand panels show the stel-
lar age distribution while the right-hand panels show the AMRs. The
top row shows reconstructions of a double-burst population where
the two bursts have different luminous contributions. The young
component accounts for 75 per cent of the light, and its metallicity is
a tenth of the old component’s, which contributes only to 25 per cent
of the total light. The imbalance between the young and old lumi-
nous contributions should make it more difficult to constrain the old
component. Still, the reconstructions are good in the sense that the
bumps are properly centred and scaled. Metallicities are also ad-
equately recovered. The reconstructed stellar age distributions are
smoothed versions of the model, as expected.

The bottom line plots illustrate the case of a continuous rather
than bumpy stellar age distribution. All ages contribute equally to
the light except the youngest and oldest. The model AMR yields a
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Figure 18. Reconstruction of the stellar age distribution (left) and AMR (right) for R = 10 000 and SNR = 100 per pixel. The thick line is the input model.
The circles and the bars show, respectively, the median and the interquartiles of the recovered solutions for 100 realizations. The metallicities and flux fractions
of the populations with significant contributions are adequately recovered. In each experiment, the extinction parameter of the model was chosen randomly and
recovered with good accuracy.

metallicity Z(t) that increases with time. The rise and decay of the re-
covered age distribution are adequately located, and the metallicities
have the correct trend. The metallicities of the youngest component
are unconstrained simply because they do not contribute to the total
light.

For each realization of these simulations, the colour excess was
a random number between 0 and 1. In each case, it was recovered
with an accuracy better than 10−2.

5.4 Age separation of metal-dependent LWSAD

In a realistic observational setting, we would like to age-date su-
perimposed populations. For such investigations, it is essential to
have a good understanding of the limitations of the non-parametric
method. We therefore investigated again how well we could recon-
struct two superimposed bursts of unknown metallicities and extinc-
tion. We proceeded as in Section 4.2, and the grid of double-burst
ages is the same. Both bursts contribute equally to the total light.
In a first set of experiments, the model AMR is arbitrarily chosen
as log(Z ) = −9.95 + 0.85 log[age(yr)], where the age ranges from
50 Myr to 15 Gyr. It is not supposed to be a physically motivated
choice, but allows us to explore about two decades in metallicity.
The allowed range for the solution AMR is [Z min = 0.0004, Z max =
0.05]. The extinction parameter was chosen randomly between 0

and 0.5. The reconstructions were performed without any a priori
for the AMR, stellar age distribution or extinction parameter, apart
from the requirement of smoothness. For each pseudo-observational
context, the smoothing parameter was set using the GCV value for
the monometallic case and fine-tuned for a small separation be-
tween two bursts. The smoothing parameter for the AMR was set
to a large value (around 103) because we just wish to recover a
global trend of the metallicity evolution in the reconstruction. A flat
guess for all variables was the starting point. In every case we con-
verged to a stable solution in less than 1500 iterations, correspond-
ing to ≈1 min on a 1-GHz PC for a R = 10 000 basis (i.e. 14 000
pixel of 0.2 Å) with 60 age bins. The distributions of the reduced
χ 2 of the solutions were found to follow a Gaussian distribution
law with unit mean, showing that each experiment had properly
converged.

We are thus able to give an estimate of the resolution in age ver-
sus SNR and spectral resolution. Fig. 19 shows some of the results
of our simulation campaign. On each panel we plotted the results
obtained at R = 2500 (upper octan) and R = 10 000 (lower oc-
tan). The results for R = 1000 and R = 6000 are very similar
and are not shown. The number of successful inversions rises with
increasing SNR, and the inseparable zone in the diagram shrinks.
In the same way, the error bars and bias reduce with increasing
SNR. We give the resolution in age for several SNR per Å and
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Figure 19. Same as Fig. 12 but the metallicities and the extinction are free parameters. The SNR is given per Å. The ability to separate close subpopulations
improves with SNR, as does the accuracy of the age estimates.
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Figure 20. Left: resolution in age (dex) versus SNR per Å for various spectral resolutions. As expected, the resolution in age improves with increasing SNR.
It settles around 0.8 dex for the highest SNR. No significant trend is seen with spectral resolution. Middle: median error on the age of the bursts (dex) in the
successful separations versus SNR for several resolutions. High-resolution experiments give the smallest errors. Right: same as middle panel but for metallicity
estimates. Again, the best accuracy is obtained at high spectral resolution, given the same total number of photons.

spectral resolutions in Fig. 20. It improves with increasing SNR,
but settles around 0.8 dex for very high-quality data. The variation
of the resolution in age with spectral resolution is not significant
compared to the statistical error (≈0.25 dex), so that no trend with
spectral resolution can clearly be deduced. The middle panel shows
the median error on the luminous weighted ages of the two bursts

for the successful separations. The error decreases with increasing
SNR down to 0.02 dex for SNR = 200 per Å, and is significantly
lower for the high-resolution experiments (the relative statistical er-
ror for this measure is smaller than 5 per cent). We see the same
trend in the metallicity median errors of the double bursts, in the
right-hand panel. The smallest error is obtained for the highest
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spectral resolution. The general smallness of these errors is partly
explained by the severity of the selection, which rejects as non-
separable any ambiguous solution.

Somewhat unexpectedly, the results do not depend on the slope
of the AMR adopted for the double-burst models. With a negative
slope, a young metal-rich population is added to an old metal-poor
one. In view of the age–metallicity degeneracy, this should be the
least favourable situation for a proper separation. We performed
simulations with positive and negative slopes and obtained identical
results considering the statistical errors given above. Thus, the age–
metallicity degeneracy is not a limiting factor in our experiment.

6 C O N C L U S I O N S A N D P RO S P E C T S

Let us sum up our findings relative to the diagnosis of the linear
(monometallic) problem (Sections 3 and 4) and the more realis-
tic non-linear problem of recovering simultaneously the LWSAD,
the extinction and the AMR (Section 5) in turn, and close on the
observational and methodological prospects of STECMAP.

6.1 Probing the linear problem: tricks of the trade

The idealized problem of recovering the non-parametric stellar age
distribution of a monometallic population seen without extinction
is linear. The conditioning number of the kernel is very large and
accounts for the ill-conditioning of the problem, i.e. pathological
sensitivity to noise in the data.

The noise in the SSP models also limits the number of free param-
eters that may be recovered robustly to describe the star formation
history. In textbook inversion problems, this number can be esti-
mated quantitatively from the sequence of singular values of the
SSP basis. Here, however, this theoretical value is misleading be-
cause the expected signature of the model noise in the singular value
spectrum is not apparent. We explained this by the correlations be-
tween the noise patterns in subsequent basis spectra. To obtain the
number of free parameters, the singular values are used together
with an independent estimate of the SNR of the basis. For the op-
tical spectral range covered with PÉGASE-HR and ages ranging from
50 Myr to 15 Gyr, the corresponding number is 6. This makes high-
frequency variations of the stellar age distribution unrecoverable,
no matter the data quality, SNRd, and the inversion method.

When the dominant error source is the data, the problem may
be regularized by truncating the SVD or reducing the number of
age bins so that σ1/σn � SNRd

√
m. This crude rule can be used

to obtain a quick estimate of the performance expected for a given
data set.

The problem can be more profitably regularized without reducing
arbitrarily the number of age bins by imposing the smoothness of
the solution, to obtain a penalized likelihood estimate. This con-
straint reduces the risk of overinterpreting the data. The smoothing
parameter is set automatically by GCV for each SNRd, or/and by
performing simulations in a suited pseudo-observational context.

For an adequately regularized problem, we defined the inverse
model matrix and inspected it in order to find the wavelength ranges
which are most discriminative for age determinations. We found
that the information is widely distributed along the optical range
(cf. Figs 6 and 16).

The behaviour of the inversion can be predicted by inspecting
the SVD or GSVD of the kernel. The first non-attenuated solution
vectors are responsible for the detailed shape of the regularized
reconstructions, and thus for the generation of artefacts. The general
shape of the solution vectors, and especially the presence/absence

and location of their oscillations, gives an indication in which age
ranges the inversion behaves worst.

In particular, the inspection of the SVD components revealed that
the problem of recovering flux distributions was less pathological
than the problem of recovering mass fractions. More specifically, the
transition rank i0 between signal- and noise-dominated regimes is
independent from the fiducial model in the recovery of flux fractions.

Second- or third-order penalizations gave similarly good results,
showing that the quality of the inversion does not rely strongly on
the details of the regularization.

Requiring the solutions to be positive improves the results even
further, and in particular reduces Gibbs ringing, as can be seen by
comparing Figs 8 and 10.

One should be aware that the efficiency of the inverse method
cannot be assessed on the basis of a small set of simulations. Indeed,
it is easy to produce good-looking results down to SNRd = 0.1 per
pixel by carefully choosing the model age distribution.

We performed an extensive simulation campaign by inverting
a grid of double-burst models in several pseudo-observational
regimes. If the age difference between the bursts was larger than
0.4 dex, we were able to separate the two components and recover
their ages with a very small error from high-quality data (SNRd =
200 per Å).

However, the high SNRd regime for which we obtained the best
results is questionable. Indeed, when SNRd and SNRb are compa-
rable, the number of degrees of freedom is imposed by the noise in
the basis rather than in the data. We therefore consider the extreme
regimes with SNRd � 200 per Å unphysical: small oddities (of un-
certain nature) in the basis are seen as physically discriminative
information. Only an improvement of SNRb could in principle in-
crease the number of degrees of freedom. Assuming that the singular
value spectrum of the initial kernel shown in Fig. 4 is representative
of the basis even at higher SNRb, we can set the following rules of
thumb.

(i) If, for example, SNRd = 100 per pixel, the maximum number
of freedom degrees one may consider is of the order of 8 (n = 8
from criterion 25 or Fig. 2).

(ii) To ensure that no serious contamination of the singular values
by noise in the basis happens for i < 8, one would need SNRb �
1000 per pixel (estimated from Fig. 4) (2500 per Å). We caution that
this is an extrapolation, and that the actual behaviour of SSP spectra
at this kind of SNR is not known.

By comparing the solutions given by SVD and the GSO kernel we
showed that ill-conditioning remains an issue when working with
compressed data.

Finally, the mismatch observed when a monometallic popula-
tion is fitted by a basis of different metallicity allowed us to con-
strain this additional metallicity parameter with a SNRd as small as
10 per pixel, well enough to motivate a feasibility study of the re-
covery of the age distribution, the metallicities and the reddening of
a composite stellar population.

6.2 Beyond the monometallic inversion?

The ill-conditioned problem of recovering a 2D age–metallicity dis-
tribution of a composite unreddened population can also be recast
into a linear problem. A penalized likelihood estimate can be ob-
tained by means of additional smoothness constraints. The inspec-
tion of the regularized inverse model matrix reveals that a large
number of age and metallicity sensitive lines carrying discrimina-
tive information are located all along the optical range. The shape of
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the first solution singular modes shows that age–metallicity degen-
erate solutions are expected even for SNRd as large as 200 per pixel.
Notwithstanding the above caveat about high SNR, the inversions
with such a complexity are thus infeasible in realistic regimes from
optical integrated light only.

A natural simplification involves assuming that the metallicity
of the population can be described by a one-to-one non-parametric
AMR. The problem of recovering the stellar age distribution, the
AMR and an extinction parameter then becomes tractable provided
that adequate regularization (smoothness, bound and positivity) is
implemented, and yields a penalized likelihood estimate.

A detailed simulation campaign allowed us to estimate the res-
olution in age that can be achieved from optical data in several
pseudo-observational regimes. If the time elapsed between two in-
stantaneous bursts is larger than 0.8 dex, they can be separated
unambiguously by STECMAP from high-quality data (SNRd =
100 per Å), and their ages and metallicities can be constrained with
an accuracy of 0.02 and 0.04 dex, respectively. In such regimes,
the age–metallicity degeneracy is effectively broken. For smaller
separation, there is always a monoburst or smoother solution that
fits the data equally well. Our experiments reveal no clear depen-
dency of the resolution in age on the spectral resolution R (�1000)
as long as the SNR per Å (or integration time) is conserved in the
comparative experiments. As in the preliminary conclusion for the
idealized monometallic unreddened problem, it is not clear whether
the extreme SNRd are physical or not, because in these regimes the
noise in the basis is no longer negligible compared to the noise in the
data. In any case, 0.8 dex should be considered as a lower-resolution
limit, for any separation attempt in the range λλ = [4000, 6800].

The fact that free extinction does not hinder the inversions indi-
cates that the continuum is not a critical constraint. Simulations with
more complex corrections on the continuum (not described in this
paper) confirm this point. The information on age and metallicities
is carried in the line spectrum.

6.3 Discussion and prospective

Perhaps the most intriguing conclusions of this paper are the small
number of degrees of freedom found in an optical SSP basis even
with SNRb as large as PÉGASE-HR, and the very anti-intuitive hint that
significantly larger SNR is needed in the basis than in the data to be
analysed. It highlights the need to study and quantify the influence of
the models noise in linear and non-linear inversions, and to continue
and improve the various steps involved in the construction of the
model.

Several directions can be followed, on the basis of Section 2.3.
Empirical libraries should improve with the combination of large
collecting areas, and high-resolution, large coverage instruments
with massive multi-object capacities, which should boost the con-
struction of libraries by a significant factor. The library Ultravio-
let and Visual Echelle Spectrograph (UVES) Paranal Observatory
Project (POP; Bagnulo et al. 2003) is an example. With telescopes
of the 10-m class or larger, stars in clusters and in Local Group
galaxies can be observed to remedy in part the issue of complete-
ness and some of the biases of solar neighbourhood libraries (e.g.
more luminous metal-poor stars, or stars with modified α-element
abundances).

On the theoretical side, one should investigate accurately and
systematically what drives the shape of the singular value spectrum
of the SSP basis. In this paper we have concentrated on a given SSP
model, without tuning the basis to study the effect of, for example,
sampling strategies on the conditioning. Because the behaviour of

an inverse problem depends on the shape of the solution singular
vectors as well, it is a key issue to understand what drives their shape.
Making them smoother and more regular is a step towards reducing
the generation of artefacts. Clearly, one would want to question the
sampling strategy in (T , g, Z ) space in terms of both the conditioning
number of B and the roughness of its singular vectors. In particular,
one would like for instance to apply an error-weighted regularized
tomographic interpolation in (T , g, Z ) space, in order to construct a
noise-free spectral basis, which would by construction prevent from
interpolating the noise from one spectrum to another. Even though
the interpolation of the noise patterns of individual stars in the library
may explain the vanishing of the saturation of the singular values,
we still miss a quantitative relation between the density of library
stars in (T , g, Z ) space, their SNR, and the slope of the singular
value spectrum.

Ultimately, one should aim at designing inverse methods where
the errors in the models are explicitly taken into account (for in-
stance, using TLS) in order to draw a consistent error budget.

The generally very limited separability of successive star for-
mation episodes in most pseudo-observational settings is in strong
contrast with the results of a number of more optimistic authors. In
particular, if one is bound to draw cosmological constraints from
the stacking of a large set of noisy star formation histories, it is
still essential to check that individual star formation histories are
well recovered, because otherwise the median solution is likely to
be dominated by artefacts. Exhaustive testing of the method as we
propose is in this case a mandatory step.

The SED matching procedures and parameter recovery presented
here are absolutely not model-dependent and could be used in as-
sociation with any other stellar population model as is.6 It will thus
be interesting and informative to perform the same kind of study
(resolution in age, conditioning) with other existing evolutionary
synthesis models, in order to quantify the amount of information
and the constraints to be expected from observations in other wave-
length domains, as the ultraviolet, near-infrared or far-infrared. It is
expected that increasing the wavelength coverage should improve
significantly the resolution in age and the behaviour of the problem
in general. The possible discrepancies between the models are also a
major matter of concern. For instance, are the metallicity constraints
using a given set of SSPs robust to a change of the evolutionary syn-
thesis code? It will be interesting to test this by producing mock
data with one available code (Bruzual & Charlot 2003; Gonzalez
Delgado et al. 2005) and interpreting them with another one. We ex-
pect misfits to arise from wavelength calibration error, small-scale
flux calibration errors, and systematic deviations caused by the use
of different evolutive tracks, IMFs, and stellar libraries. This exer-
cise will allow us to investigate the amount of error introduced by
the models themselves.

The methods we have described, together with the correspond-
ing error and separability analysis, will be very useful for inter-
preting large sets of data from large surveys such as SDSS, 2DF-
GRS, DEEP2, etc., and also for upcoming new generation instru-
ments, especially high-resolution instruments with multi-object or
field integral capacities, for instance FALCON (Puech & Sayede
2004) or MUSE (Henault et al. 2003). In this context, astronomers
will want to extract kinematical information as well, and ques-
tion the relationship between the kinematics and the nature of the
stellar populations. The simultaneous recovery of the kinemati-
cal distribution and the corresponding stellar population via the

6 We are preparing a public release of the inversion codes.
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non-parametric interpretation of spectra is described in a companion
paper.
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A P P E N D I X A : D E P E N D E N C E

O F T H E S I G NA L – N O I S E T R A N S I T I O N

O N T H E F I D U C I A L M O D E L

In this section we clarify the relation between the transition rank i0

between the noise- and signal-dominated regimes (the intersection
of u


i · y with u

i ·e) and the fiducial model, as defined in Section 3.4

and Fig. 2. More specifically, we explore the shift of the transition
by varying the age of the fiducial model, for a flux-normalized and
a mass-normalized basis. The results are shown in Fig. A1. The
fiducial models are given in the bottom of each column. Note that
the y-axis is labelled ‘flux fractions’ on the left and ‘mass fractions’
on the right. This is to recall that the interpretation of the model
curve differs, depending on the adopted normalization of the basis.
Compared to Fig. 2, we added a third-order polynomial fit to the
signal singular coefficients and a constant fit to the noise coefficients.
This allows us to detect automatically and objectively the transition
rank i0, as the intersection of the two fits.

For the mass-normalized basis, the transition moves from the fifth
rank (for the youngest fiducial model) up to the twentieth (for the
oldest fiducial model). On the other hand, the location of the tran-
sition for the flux-normalized basis is rather unaffected by changes
of the fiducial model and remains around rank 7–9.

A P P E N D I X B : G R A D I E N T S O F Qµ

The direct linear solution which minimizes the objective function
Qµ can only be used in the case of a linear model (with respect
to the parameters) and without constraints (such as positivity). For
all other cases, the objective function Qµ can only be minimized
by means of an iterative method. The most efficient, and yet sim-
ple to use, of these methods require the computation of the objec-
tive function and of its gradient. These optimization methods are
the conjugate gradients and variable metric methods (e.g. BFGS).
In practice, for non-linear problems, variable metric methods have
been found to require fewer iterations and fewer function evaluations
than conjugate gradient ones (Thiébaut 2002). For this reason, we
used the limited memory variable metric method VMLM-B imple-
mented in the OPTIMPACK package written by E. Thiébaut for Yorick
(http://www.maumae.net/yorick/doc/index.html).

Because the efficiency of these iterative optimization algorithms
relies on the correctness of the gradient of Qµ (i.e. partial derivatives
of Qµ with respect to the free parameters), we devote this appendix
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Figure A1. Study of the location of the signal–noise transition rank as a function of the fiducial model. The figures are the same as Fig. 2, with the same
pseudo-observational setting (SNR = 100 per pixel), for a flux-normalized (top) and a mass-normalized basis (middle) respectively, for three different fiducial
models x, given at the bottom of each column. Polynomial fits are given for the signal and noise singular coefficients. The transition rank i0 is given in each
figure as the intersection of these fits. For the mass-normalized basis, the rank of the transition between signal- and noise-dominated regimes spans a wide range
of values depending on the fiducial model x. On the contrary, for the flux-normalized basis, the transition rank is rather constant with regard to modifications
of the age of the fiducial model.

to the derivation of such partial derivatives for the different cases
considered in this paper. Whenever it was possible (i.e. in the linear
case), the iterative solutions were tested against the analytical solu-
tions, and were found to be identical down to machine precision.

B1 Simple linear model

In the linear problem, the gradients of Qµ have simple expressions:

∂χ 2

∂x
= −2 B
 · W · (y − B · x) , (B1)

∂P
∂x

= 2 L
 · L · x. (B2)

B2 Age–metallicity–extinction gradients

For the resolution of the age–metallicity–extinction problem
(Section 5), the objective function Qµ is a χ 2 penalized by reg-
ularization terms and a binding function. The regularization terms
being the same as in the linear case, their gradients are given by equa-
tion (B2). The gradient of the binding function C for a metallicity
vector Z reads(

∂C

∂Z

)
j =
{

2 (Z j − Zmin) for Z j < Zmin,

2 (Z j − Zmax) for Z j > Zmax,

0 else.
(B3)

In order to derive the gradients of the χ 2 term for more
complex (non-linear) models, it is useful to rewrite it
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as

χ 2 = r
 · W · r , (B4)

where, for the sake of simplicity, we have introduced the vector of
residuals r defined, in this case, by

r
�= y − diag( f ext) · B · x. (B5)

Then the derivative of the χ2 term with respect to any free parameter,
say α, is written

∂χ 2

∂α
= 2

∂r


∂α
· W · r . (B6)

Considering the different types of free parameters, we obtain

∂χ 2

∂x
= −2 B
 · diag( f ext) · W · r , (B7)

∂χ 2

∂Z
= −2 x
 · ∂B


∂Z
· diag( f ext) · W · r , (B8)

∂χ 2

∂E
= −2 x
 · B
 · diag

(
∂ f ext

∂E

)
· W · r . (B9)

In the above expressions, ∂B/∂Z is derived directly from the SSP
basis B(λ, t , Z ):(

∂B

∂Z

)
i, j

�=
(

∂B(λ, t, Z )

∂Z

)
t=t j ,Z=Z j ,λ=λi

. (B10)

Similarly, the term ∂ f ext/∂E derives directly from the chosen ex-
tinction law f ext(E , λ):(

∂ f ext

∂E

)
i

�=
(

∂ fext(E, λ)

∂E

)
E,λ=λi

. (B11)

A P P E N D I X C : G E N E R A L I Z E D S I N G U L A R

VA L U E D E C O M P O S I T I O N

In this section we introduce briefly the GSVD which is used in
the main text to understand how regularization damps smoothly the
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Figure D1. Left: singular values of the GSO and the SVD of the kernel. Both decays are characteristic of an ill-conditioned problem. Right: solutions found
using the GSO and the SVD (slightly offset for clarity) for simulated data with SNR = 100 per pixel, R = 10 000. They are identical down to machine precision,
showing the similarity between both formulations.

singular vectors according to the SNR. In short, the GSVD of (B,L)
is defined by

B = U · Σ · V
 and L = Q · Θ · V
, (C1)

where U and Q are both orthogonal. The matrix V is non-
singular and its columns vi are B
·B and L
·L orthonormal,
i.e. V
·B
·B·V = Σ2 and V
·L
·L·V = Θ2. The matrices
Σ and Θ are diagonal: Σ = diag(σ1, σ2, . . . , σn) and Θ =
diag(θ1, θ2, . . . , θn), with σi in increasing order and θ i decreasing.
See Hansen (1994) for a more detailed description of the GSVD and
its properties.

A P P E N D I X D : G S O V E R S U S S V D

In the main text, we claim that GSO amounts to SVD in the linear
regime (monometallic and extinctionless populations) in the absence
of truncation. Let us demonstrate and discuss this briefly.

In the monometallic extinctionless case, we can expand the kernel
B as

B = O · Σ · V, (D1)

where O is the GSO kernel obtained from B, and Σ =
diag(σ1, . . . , σn) is a diagonal matrix such that Σ · V = O
B is
the passage matrix from the initial coordinates of the kernel B to
the orthonormalized basis. In this sense, σ i are the norms of the
vectors of the passage matrix. It is interesting to compare this ex-
pansion with the SVD: the kernel O is orthonormal and the matrix
Σ is diagonal, but the matrix V is not orthogonal.

Thus, the expansion of equation (D1) is not exactly identical to
that corresponding to the SVD. Still, as long as none of the σ i is
zero, the matrix V is inversible. As for the SVD, we can write the
solution x as

x = V−1 · Σ−1 · O
 · y =
n∑

i=1

O

i · y

σi
(v−1)i , (D2)

where y = B · x is the data, and (v−1)i are the columns of
V−1. We will, in this section, by analogy with the SVD expan-
sion, call σ i the singular values, and Oi and (v−1)i the data sin-
gular vectors and the solution singular vectors, respectively. The
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solution x is the sum of the singular coefficients Oi

 · b (the

‘compressed datum’ proposed by MOPED’s authors) divided by the
singular values σ i times the solution singular vector (v−1)i . The
left-hand panel of Fig. D1 shows the singular values of the SVD
and the GSO expansion of the kernel. Their very similar decay in-
dicates similar behaviour of the inverse problem. The right-hand
panel of Fig. D1 shows for a moderately ill-conditioned exam-
ple (R = 10 000, SNRd = 100, 10 age bins, solar metallicity,
σ1/σ10 = 2

√
m SNRd) the solutions found by applying equa-

tions (D2) and (22) corresponding to the two expansions. As ex-
pected from the conditioning number and SNRd, both are fairly
noisy, but the important point is that they are actually equal down to
machine precision. Thus, even though there is a slight formulation
difference between these two expansions, they practically give the
same solutions.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT

We introduce STECKMAP (STEllar Content and Kinematics via Maximum A Posteriori
likelihood), a method for recovering the kinematic properties of a galaxy simultaneously with its
stellar content from integrated light spectra. It is an extension of STECMAP (presented recently
by Ocvirk et al.) to the general case where the velocity distribution of the underlying stars is
also unknown. The reconstructions of the stellar age distribution, the age–metallicity relation
and the line-of-sight velocity distribution (LOSVD) are all non-parametric, i.e. no specific
shape is assumed. The only a priori conditions that we use are positivity and the requirement
that the solution is smooth enough. The smoothness parameter can be set by generalized
cross-validation according to the level of noise in the data in order to avoid overinterpretation.

We use single stellar populations (SSPs) from PÉGASE-HR (R = 10 000, λ = 4 000–6 800 Å,
from Le Borgne et al.) to test the method through realistic simulations. Non-Gaussianities in
LOSVDs are reliably recovered with signal-to-noise ratio (SNR) as low as 20 per 0.2 Å pixel.
It turns out that the recovery of the stellar content is not degraded by the simultaneous recovery
of the kinematic distribution, so that the resolution in age and error estimates given in Ocvirk
et al. remain appropriate when used with STECKMAP.

We also explore the case of age-dependent kinematics (i.e. when each stellar component has
its own LOSVD). We separate the bulge and disc components of an idealized simplified spiral
galaxy in integrated light from high-quality pseudo-data (SNR = 100 per pixel, R = 10 000),
and constrain the kinematics (mean projected velocity, projected velocity dispersion) and age
of both components.

Key words: methods: data analysis – methods: statistical – techniques: spectroscopic – galax-
ies: abundances – galaxies: kinematics and dynamics – galaxies: stellar content.

1 I N T RO D U C T I O N

For decades now, the spectral indices from the Lick group have
been used to study the properties of stellar populations (Faber et al.
1985; Worthey 1994; Trager et al. 1998). Since the profile and
depth of the lines involved in these spectral indices are affected
by the line-of-sight velocity distribution (LOSVD) of the stars, it
is necessary to correct the measured depths by a factor depend-
ing on the moments of the velocity distribution (Davies, Sadler &
Peletier 1993; Kuntschner 2000, 2004). The latter moments must
be determined using specialized code (Bender 1990; Kuijken &
Merrifield 1993; van der Marel & Franx 1993; Saha & Williams
1994; Merritt 1997; Pinkney et al. 2003). These kinematic decon-

�ocvirk@pleiades5.u-strasbg.fr

volution routines have been used for some time and have undergone
two major mutations. First, thanks to the increasing power of com-
puters, it became affordable to swap back and forth from direct
space to Fourier space, so that many disturbances such as border ef-
fects and saturation could be avoided. It became straightforward to
mask problematic regions of the data, such as dead pixels, emission
lines, etc. The second evolution of these codes allowed the use of
multiple superimposed stellar templates to match best the observed
spectrum (Rix & White 1992; Cappellari & Emsellem 2004). It
has also been proposed to use single stellar populations (SSPs) as
synthetic templates, and this approach has proved to be useful in
addressing the template mismatch problem (Falcón-Barroso et al.
2003). Moreover, this technique can save precious telescope time,
since it circumvents the need for observing template stars.

In Ocvirk et al. (2005, hereafter Paper I), we introduced
STECMAP, a method for recovering non-parametrically the stellar
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content of a given galaxy from its integrated light spectrum. Using
STECMAP requires, as a preliminary, convolving the data or mod-
els with the proper point spread function (PSF), which can be of
both physical (i.e. the stellar LOSVD) and instrumental (the instru-
ment’s PSF) origin. Adjusting the LOSVD to fit the data not only
constrains the kinematics of the observed galaxy but will also re-
duce the mismatch due to errors in the determination of the redshift
or anomalous PSF, which is ultimately a necessary step when fitting
galaxy spectra.

Here we propose to constrain the velocity distribution simultane-
ously with the stellar content, by merging the kinematic deconvo-
lution and the stellar content reconstruction into one global maxi-
mum a posteriori likelihood inversion method. Hence, STECMAP
becomes STECKMAP (STEllar Content and Kinematics via Maxi-
mum A Posteriori likelihood). In this respect, STECKMAP resem-
bles the method proposed by, for example, Falcón-Barroso et al.
(2003), except that it takes advantage of the treatment of the stellar
content by STECMAP. Together with the stellar age distribution
and the age–metallicity relation, the LOSVD is described non-
parametrically and the only a priori conditions we use are smooth-
ness and positivity.

We also tentatively address the case of age-dependent kinematics,
i.e. we try to recover the individual LOSVDs and ages of several
superimposed kinematic subcomponents. This approach is moti-
vated by the fact that galaxies often display several kinematic com-
ponents. Ellipticals and dwarf ellipticals, for instance, are known
often to harbour kinematically decoupled cores (Balcells & Quinn
1990; Bender & Surma 1992; De Rijcke et al. 2004), and spiral
galaxies are usually assumed to be constituted of a thin and a thick
disc, a bulge and a halo (Freeman & Bland-Hawthorn 2002). The
variety of the dynamical properties of the components has a coun-
terpart in their stellar content, as a signature of the formation and
evolution of the galaxy. For instance, the halo of the Milky Way is
believed to consist mainly of old, metal-poor stars, while the bulge is
more metal-rich, and the thin disc is mainly younger than the bulge
(Freeman & Bland-Hawthorn 2002). It is thus natural to let any stel-
lar subpopulation have its own LOSVD. This possibility has been re-
cently addressed by De Bruyne et al. (2004a,b), in a slightly different
framework. They use individual stars as templates for the different
components, while we propose to use synthetic SSP models. Such
a method would allow us to separate the several kinematic compo-
nents of galaxies from integrated light spectra, and to constrain, for
example, their age–velocity dispersion and age–metallicity relation.
The highly detailed stellar content and kinematic information that
can be obtained for the Milky Way or for nearby galaxies that can
be resolved into stars, such as M31 (Ferguson et al. 2002; Ibata
et al. 2004), could be extended to a larger sample of more distant
galaxies. This technique could also be useful in detecting and char-
acterizing major stellar streams in age and velocity from integral
field spectroscopy of galaxies.

In this paper we use the PÉGASE-HR SSP models (Le Borgne
et al. 2004) in order to illustrate and investigate the behaviour of the
problems through simulations and inversions of mock data. Indeed,
PÉGASE-HR, with its high spectral resolution (R = 10 000), is an
adequate choice for testing the recovery of detailed kinematic infor-
mation in the form of non-parametric LOSVDs. The problems and
methods we describe are, however, by no means specific to PÉGASE-
HR (and its wavelength coverage), and STECKMAP could be used
with any possible SSP model, depending on the type of data that is
being analysed.

We will start with the modelling of the kinematics. Then, we
will address the idealized linear problem of recovering the LOSVD

when the stellar content is known, i.e. the template is assumed to be
perfect. Section 4 deals with simultaneous age and LOSVD recon-
struction of composite populations. Finally, Section 5 investigates
the case of age-dependent kinematics in a simplified context where
the metallicity and extinction are known a priori.

2 M O D E L S O F G A L A X Y S P E C T R A

In this section we present the modelling of galaxy spectra, taking
into account the composite nature of the stellar population, in age,
metallicity and extinction, and finally its kinematics.

2.1 The composite reddened population at rest

We model the spectral energy distribution (SED) of the composite
reddened population at rest using the ingredients defined in Paper I:

Frest(λ) = fext(E, λ)

∫ tmax

tmin

�(t)B(λ, t, Z (t)) dt, (1)

where fext(E , λ) is the extinction law, �(t) is the luminosity-
weighted stellar age distribution, Z(t) is the age–metallicity relation,
and B(λ, t, Z) is the flux-averaged SSP basis of an isochrone pop-
ulation of wavelength λ, age t and metallicity Z. We recall briefly
the main properties of the PÉGASE-HR SSP basis that we use in this
paper. As mentioned earlier, spectral resolution is R = 10 000 over
the full optical domain λ = [4000, 6800] Å, sampled in steps of
0.2 Å. The models are available for metallicities Z ∈ [0.0001, 0.1]
and considered reliable between t min = 10 Myr and t max = 15 Gyr.
The initial mass function (IMF) used is described in Kroupa, Tout
& Gilmore (1993), and the stellar masses range from 0.1 M� to
120 M�. The extinction law fext was taken from Calzetti (2001).

2.2 Model kinematics

Stellar motions in galaxies define a LOSVD corresponding to pro-
jected local velocity distributions integrated along the line of sight
and across one resolved spatial element.

2.2.1 Global kinematics

The motion of the stars can to first approximation be accounted for
by assuming that the velocities of all stars of all ages along the line of
sight are taken from the same velocity distribution (hence ‘global’).
The model SED, φ(λ), is the convolution of the assumed normalized
LOSVD, g(v), defined for v ∈ [vmin, vmax] with the model spectrum
at rest Frest(λ). The convolved spectrum φ(λ) reads

φ(λ) =
∫ vmax

vmin

Frest

(
λ

1 + v/c

)
g(v)

dv

1 + v/c
, (2)

where c is the velocity of light. The above expression reads as a
standard convolution

φ̃(w) = c

∫ umax

umin

F̃(w − u)g̃(u) du, (3)

with the following reparametrization:

w ≡ ln(λ), u ≡ ln

(
1 + v

c

)
, (4)

F̃(w) ≡ Frest(e
w) = Frest(λ), (5)

g̃(u) ≡ g(c(eu − 1)) = g(v), φ̃(w) ≡ φ(ew) = φ(λ), (6)

umin = ln

(
1 + vmin

c

)
, umax = ln

(
1 + vmax

c

)
. (7)
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2.2.2 Age-dependent kinematics

We now allow the LOSVD to depend on the age of the stars. For
simplicity, we consider here only unreddened monometallic popu-
lations, i.e. fext(E , λ) = 1 and Z (t) = Z 0. We introduce the age–
velocity distribution, �(v, t), defined in [vmin, vmax] × [t min, t max],
which gives the contribution of stars of velocity and age in [v, v +
dv] × [t , t + dt] to the total observed light. Thus, for a given age t,
�(v, t) is the LOSVD of the SSP of age t. The age–velocity distri-
bution, �(v, t), is related to the stellar age distribution, �(t), by∫ vmax

vmin

�(v, t) dv = �(t). (8)

The model spectrum of such a population thus reads

φ(λ) =
∫ tmax

tmin

∫ vmax

vmin

B

(
λ

1 + v/c
, t, Z0

)
�(v, t)

dv dt
1 + v/c

. (9)

The above expression can be rewritten more conveniently as

φ̃(w) = c

∫ umax

umin

∫ tmax

tmin

B̃(w−u, t)�̃(u, t) dt du, (10)

using the same reparametrization as in Section 2.2.1 and

B̃(w, t) ≡ B(ew, t, Z0) = B(λ, t, Z0), (11)

�̃(u, t) ≡ �(c(eu − 1), t) = �(v, t). (12)

In the rest of this paper, we will use exclusively the standard
(i.e. reparametrized) convolutions as in equations (3) and (10). For
readability, we will drop the superscript ˜ and set the speed of light
to unity.

3 K I N E M AT I C D E C O N VO L U T I O N

Section 2.2.1 shows that, with proper reparametrization, the convo-
lution of a model spectrum at rest, F(w), with the stellar LOSVD,
g(u), reads as a standard convolution, given by equation (3). Finding
the LOSVD when the observed spectrum, φ(w), and the template
spectrum, F(w), are given is a classical deconvolution problem. Our
goal here is not to discuss the respective qualities of the many differ-
ent methods available in the literature to solve this problem. Most
rely on fitting the data while imposing some a priori constraint on
the LOSVD, i.e. they provide maximum a posteriori (MAP) esti-
mates of the LOSVD. Let us describe briefly our method to obtain
such a solution with the purpose of coupling it in a later step with
STECMAP.

3.1 The convolution kernel

Here we discretize equation (3) to obtain a matrix form defining the
convolution kernel. We use an evenly spaced set{

u j = umin + ( j − 1
2

)
δu; j = 1, 2, . . . , p

}
spanning [umin, umax] with constant step δu ≡ (umax − umin)/p. We
expand the LOSVD as a sum of p gate functions:

g(u) = 1

δu

∑
j

g j θ

(
u − u j

δu

)
,

where

θ (x) =
{

1 if −1
2 < x � 1

2 ,

0 otherwise.

Inserting this expansion into equation (3) leads to

φ(w) = 1

δu

j=p∑
j=1

g j

∫ umax

umin

F(w − u) θ

(
u − u j

δu

)
du,

�
j=p∑
j=1

g j F(w − u j ). (13)

Similarly, we now sample along the wavelengths by integrating over
a small δw:

φi ≡ 1

δw

∫
φ(w) θ

(
w − wi

δw

)
dw,

�
j=p∑
j=1

g j F(wi − u j ), (14)

where {wj ; j = 1, 2, . . . , m} is a set of logarithmic wavelengths
spanning the spectral range with a constant step.

Using matrix notation and accounting for data noise, the observed
SED reads

y = K · g + e, (15)

where y = (φ1, φ2, . . . , φm)T is the measured spectrum, and e =
(e1, e2, . . . , em)T accounts for modelling errors and noise. The vec-
tor of sought parameters g = (g1, g2, . . . , gp)T is the discretized
LOSVD. The vector s = K · g is the model of the observed spec-
trum, and the matrix K,

Ki j = F(wi − u j ), ∀ (i, j) ∈ {1, . . . , m} × {1, . . . , p}, (16)

is called the convolution kernel.
The convolution theorem (Press et al. 2002) states that the Fourier

transform of the convolution of two functions is equal to the
frequency-wise product of the individual Fourier transforms of the
two functions. Applying this theorem yields another equivalent ex-
pression for the model spectrum s:

s = F−1 · diag(F · F) · F · g, (17)

whereF is the discrete Fourier operator defined in Press et al. (2002)
as

Fi j = exp

[
2iπ

m
(i − 1)( j − 1)

]
, ∀ (i, j) ∈ [1, . . . m]2, (18)

F−1 = 1

m
F∗. (19)

Note that, since m is the size of the template spectrum F, the dis-
cretized LOSVD g, which is initially of size p, needs to be sym-
metrically padded with zeros to the size m in order to transform the
Toeplitz matrix into a circulant one. The diagonal matrix diag(F ·F)
carries the coefficients of the Fourier transform of the model spec-
trum at rest, F. This notation involving the Fourier operator, F ,
will be very useful for a number of algebraic derivations in the rest
of the paper. In practice, from a computational point of view, it is
more efficient to implement any forward or inverse Fourier trans-
form through a fast Fourier transform (FFT). Similarly, the product
diag(F · F) · F · g is in practice implemented as a frequency-wise
product of the individual FFTs.

3.2 Regularization and MAP

A number of earlier publications have shown that the maximum-
likelihood solution to equation (15) is very sensitive to the noise in
the data, e. Hence, in the spirit of Paper I, we choose to regularize

C© 2005 RAS, MNRAS 365, 74–84405



STECKMAP 77

the problem by requiring the LOSVD to be smooth. To do so, we
use the quadratic penalization P(g) as defined by equation (29) in
Paper I:

P(g) = gT · LT · L · g. (20)

In the rest of the paper, the penalization is Laplacian, i.e. L = D2,
where D2 is the discrete second-order difference operator, as defined
in Pichon, Siebert & Bienaymé (2002). The objective function, Qµ,
to be minimized is given by

Qµ(g) = χ2(y | g) + µP(g), (21)

where the χ 2 is defined by

χ 2(y | g) = (y − s(g))T · W · (y − s(g)). (22)

The vector y is the observed spectrum, and the weight matrix is the
inverse of the covariance matrix of the noise: W = Cov(e)−1. The
parameter µ controls the smoothness of the LOSVD through its co-
efficients, g. It can be set on the basis of simulations (as described
in Paper I) or automatically by generalized cross validation (GCV)
(Wahba 1990), according to the signal-to-noise ratio (SNR) of the
data. In the latter case, the properties of the convolution kernel can be
used to speed up the computation of the GCV function. Further regu-
larization is provided by the requirement of positivity, implemented
through quadratic reparametrization. Minimizing Qµ yields the reg-
ularized solution gµ. Efficient minimization procedures require the
analytical expression of the gradients of Qµ, given in Appendix
Section A1.

3.3 Simulations

We applied this deconvolution technique to mock data, created from
PÉGASE-HR SSPs of several ages and metallicities, with R = 10 000
at 4000–6800 Å. In a first set of experiments, the model spectrum
at rest was a solar-metallicity 10-Gyr SSP. It was convolved with
various LOSVDs, both Gaussian and non-Gaussian, with velocity
dispersions ranging from 30 to 500 km s−1. It was then perturbed
with Gaussian noise at levels ranging from SNR = 5 to 100 per pixel,
and deconvolved using the model spectrum at rest as template (i.e.
no template mismatch). In all cases, the LOSVDs are adequately
recovered. Fig. 1 shows the reconstruction of a Gaussian LOSVD,
for SNR = 10 per pixel. However, there are necessarily some biases
in the reconstruction of the sharp features of the LOSVD. This is
expected since we introduced regularization via smoothing. To illus-
trate the relationship between regularization and bias, we performed
a new set of similar simulations for a non-Gaussian LOSVD (sum
of two Gaussians) with SNR = 20 per pixel and varied the smooth-
ing parameter µ. The results are shown in Fig. 2. Panels (a) and (b)
correspond to µ = 10, while panels (c) and (d) correspond to µ =
1000. The model, median and interquartiles of 500 reconstructions
are displayed. We also plotted the whole set of 500 recovered solu-
tions, in order to show the locus of the solutions. One can see that
the biases of the median reconstruction are reduced when lowering
µ. The highest bump is correctly reproduced for µ = 10, while it
is not for µ = 1000. On the other hand, the solutions are much
more widely spread when µ = 10. This means that most solutions
taken from the set of low-µ simulations can be very far from the
model, while all the large-µ solutions lie reasonably close to the
model.

The regularization acts as a Wiener filter in the sense that it damps
the high-frequency components of the solution. Regularization im-
proves the significance of an individual reconstruction (it will nearly

−200  0  200
0.00

0.05

0.10

0.15

v[km/s]

g
(v

)

Figure 1. Non-parametric reconstruction of a Gaussian LOSVD for simu-
lated data, σ v = 100 km s−1, SNR = 10 per pixel. The model spectrum at rest
is a 10 Gyr old solar-metallicity SSP with R = 10 000 at 4000–6800 Å. The
template spectrum is identical, so that no template mismatch is allowed here.
The curve is the input model. The circles and the bars show respectively the
median and the interquartiles of the recovered solutions for 500 realizations
of the noise.

always lie reasonably close to the model), at the cost of introducing
a bias.

3.4 Age and metallicity mismatch

We take advantage of the large range of ages and metallicities of
SSPs covered by PÉGASE-HR to illustrate briefly the effects of tem-
plate mismatch on LOSVD determinations. In this section we show
the results of a large number of simulations aimed at characterizing
the error made when a wrong template is chosen for the kinematic
inversion of data. For this purpose, mock data were created by con-
volving an SSP of age a0 and metallicity Z0 with a centred Gaussian
LOSVD of dispersion σv = 50 km s −1. It was perturbed by Gaussian
noise corresponding to SNR = 100 per pixel and then deconvolved,
using as template an SSP of age a1 and metallicity Z1. The spectral
resolution and wavelength range are the same as in Section 3.3. Fig. 3
shows the error on the measured velocity dispersion. The latter is
measured as the rms of the reconstructed LOSVD. If the parameters
of the template are different from those of the model, the velocity
dispersion error increases very quickly. The age–metallicity degen-
eracy is visible as a valley of smaller error, following the upper left
to bottom right diagonal of the figures. Of course, the χ2 distance
between the model and the mock data follows a similar 2D distri-
bution, and will lead to the rejection of highly mismatched LOSVD
estimates. However, in practice, it is usually not straightforward to
quantify all the sources of error. It is thus somewhat arbitrary to set
an upper limit of χ2 for the admissible solutions, and the error on
the kinematics is thus hard to quantify. This experiment illustrates
in this context the long known issue that, when the correct model is
not available, large errors on the determination of kinematics are ex-
pected. In order to reduce the error in the estimates of the kinematic
properties of a stellar assembly, it is necessary to allow for a wide
range of modulations of the template. This is naturally achieved by
making the non-parametric stellar content account for the changes
of the template, as discussed in the next section.
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(c) SNR=20   mu=1000
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Figure 2. Impact of the smoothing parameter. Reconstruction of a non-Gaussian LOSVD for simulated data with SNR = 20 per pixel for µ = 10 (top) and
µ = 1000 (bottom). Left: The curve is the input model LOSVD. The circles and the bars show respectively the median and interquartiles of the reconstructed
LOSVDs for 500 realizations of the experiment. Right: The whole set of 500 solutions is displayed, with the model as a thick white line, in order to give the
reader a sense of what individual solutions look like. The figures show the trade-off between bias and reliability of the reconstruction. For small µ, the median
reconstruction is unbiased but the individual reconstructions are very noisy. For large µ, the median reconstruction is slightly biased but all the reconstructions
are reasonable. Hence, the significance of an individual reconstruction is improved by regularization at the cost of introducing a bias.
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Figure 3. Velocity dispersion error as a function of the age and metallicity of the template SSP. Contours show regions of increasing velocity dispersion error.
In each experiment, the age and metallicity of the original model template are shown as a thick cross, and the model LOSVD is a Gaussian with zero mean and
50 km s−1 dispersion. The velocity dispersion error is minimum when the template’ s age and metallicity are similar to those of the model. The error increases
quickly when the template parameters differ from the model parameters, also in the age–metallicity degeneracy direction (upper left to bottom right diagonal).
It increases even faster in the direction orthogonal to the age–metallicity degeneracy.
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4 R E C OV E R I N G S T E L L A R C O N T E N T

A N D G L O BA L K I N E M AT I C S

The mixed inversion described in this section couples the recov-
ery of both the stellar content and the kinematics, thereby turning
STECMAP into STECKMAP. Proper application of this method
provides an interpretation of the observed object in terms of stellar
content and kinematics.

4.1 Inverse problem

For a given model spectrum at rest, Frest(λ), and an LOSVD, g(v), the
emitted SED, φ(λ), is given by equation (2). We now wish to account
also for the additional variables involved in Frest, given by equation
(1), namely the stellar age distribution, �(t), the age–metallicity
relation, Z(t), and the colour excess, E(B − V ) = E . Inserting
equation (1) into the convolution equation (3) yields the emitted
SED

φ(w) =
∫ ∫

fext(E, w − u)�(t)B(w − u, t, Z (t))g(u) dt du. (23)

Solving equation (23) for �, Z, E and g when φ, fext and B are given
is the inverse problem we are tackling here.

4.2 Discretization and parameters

Expanding the two time-dependent unknowns �(t) and Z(t) as a
sum of n gate functions and inserting into equation (1) yields the
discrete model spectrum at rest:

F = diag( f ext(E)) · B · x, (24)

This discretization is explained in detail in section 5 of Paper I.
Similarly, we develop the LOSVD g(u) as a sum of p gate functions
as in Section 3. Note that the reddened model at rest plays the role
of the stellar template in a classical kinematic convolution. Inserting
equation (24) into equation (17) thus allows us to express the model
spectrum, s, as

s = F∗ · diag(F · diag( f ext(E)) · B · x) · F · g, (25)

However, here, the template is this time modulated by the unknowns
describing the stellar content.

4.3 Smoothness and metallicity constraints

The discrete problem of finding the stellar age distribution x, the
age–metallicity relation Z, the extinction E and the LOSVD g for
an observed spectrum y and given an extinction law fext and an
SSP basis B is of course likely to be very ill-conditioned since
it arises as the combination of several ill-conditioned problems. It
therefore requires regularization. We also want the metallicity of
the components to remain in the model range. We use the standard
penalization P and the binding function C defined in Paper I to build
the penalization Pµ for this problem:

Pµ = µx P(x) + µZ P(Z) + µC C(Z) + µv P(g), (26)

whereµ≡ (µx , µZ , µC , µv). Again, we chooseL = D2 as defined in
Pichon et al. (2002), so that the penalization P is actually Laplacian.
The objective function, Qµ, is now defined as

Qµ = χ2(s(x, Z, E, g)) + Pµ(x, Z, E, g), (27)

and its partial derivatives are given in Appendix Section A2. Note
that there is in principle an additional formal degeneracy for this
inverse problem. If the set (x, Z, E, g) is a solution to (23), then

(αx, Z, E, g/α) is also a solution for any scalar α, because the age
distribution x and the LOSVD g are not explicitly normalized in this
formulation. However, the adopted regularization lifts this degen-
eracy. The penalization function P is quadratic [P(αx) = α2 P(x)].
Thus, if x or g is too large in norm, the solution is unattractive. Prac-
tically, the algorithm reaches a solution where x and g are similar
in norm. In any case, this degeneracy would easily be remedied by
adding a normalizing term to the penalization Pµ of the form ‖x‖ −
1, which would force the discretized stellar age distribution x to
have unitary norm. Following the same principle, one could equiv-
alently choose to normalize the LOSVD rather than the stellar age
distribution.

4.4 Simulations

Let us now test the behaviour of STECKMAP by applying it to
mock data. The latter were produced using an arbitrary stellar age
distribution x, an age–metallicity relation Z, an LOSVD g and an
extinction parameter E. Several simulations were performed with
various input models: bumpy age distributions, increasing or de-
creasing age–metallicity relation and extinctions, Gaussian and non-
Gaussian wide or narrow LOSVDs, in various pseudo-observational
contexts. Fig. 4 shows the results of two of these experiments. In the
top line, the model is a young metal-poor population superimposed
on to an older metal-rich population. In the bottom panels, the model
has a rather constant stellar age distribution, a non-monotonic age–
metallicity relation and a strongly non-Gaussian LOSVD. In both
cases the three unknowns are correctly recovered. In these examples,
the data quality mimics that of the best Sloan Digital Sky Survey
galaxies: the resolution is R ≈ 2000 and SNR = 30 per ≈ 1 Å pixel.
The wavelength domain of PÉGASE-HR is however narrower than
that of the SDSS. These simulations simply aim to demonstrate the
generally good behaviour of the method, and show that accounting
for the kinematics does not fundamentally weaken the constraints on
the stellar content. For a more thorough study of the informational
content of the PÉGASE-HR wavelength range, the reader can refer
to the systematic double burst simulations with variable spectral
resolution and SNR per Å performed in Paper I.

5 R E C OV E RY O F AG E - D E P E N D E N T

K I N E M AT I C S

In this section we present an implementation of the recovery of age-
dependent kinematics, i.e. the situation when each subpopulation
has its own LOSVD. In this experiment, we restrict ourselves to
the case where the stellar populations have a known metallicity and
are seen without extinction. This choice is mainly motivated by the
numerical cost of such a large inversion procedure. The modelling
is given by equation (10). Finding the age–velocity distribution �(u,
t) when the monometallic basis B and the observed spectrum φ are
given is the inverse problem. It arises as the combination of a linear
age inversion and a kinematic deconvolution.

5.1 A sum of convolutions

The age–velocity distribution, �(u, t), is expanded as a linear com-
bination of normalized 2D gate functions θ i j (u, t):

θi j (u, t) ≡ 1

δu δt
θ

(
u − ui

δu

)
θ

(
t − t j

δt

)
.

In other words, �(u, t) is represented by a 2D array v of size (p, n),
i.e. p is the size of each LOSVD and n is the number of age bins.
The linear step in u is δu and the step in t is δt.
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Figure 4. Reconstruction of the stellar age distribution, age–metallicity relation and LOSVD for simulated SDSS-like data with SNR = 30 per pixel. The
histogram is the input model. The circles and the bars show respectively the median and the interquartiles of the recovered solutions for 50 realizations.

By inserting the expansion into equation (10) we obtain

φ(w) =
∫ ∫ p∑

i=1

n∑
j=1

vi jθi j (u, t)B(w − u, t) dt du,

�
p∑

i=1

n∑
j=1

vi j B j (w − ui ). (28)

As in the previous sections, Bj (u) is a time-averaged SSP of age
t j ± 1

2 δt . We then discretize along wavelengths by averaging over
small δw:

φk = 1

δw

p∑
i=1

n∑
j=1

vi j

∫
Bj (w − ui ) θ

(
w − wk

δw

)
dw,

�
p∑

i=1

n∑
j=1

vi j B j (wk − ui ), (29)

where (wj) j∈{0,...,m} is a set of constant step logarithmic wavelengths.
The above expression also reads in matrix form as a sum of kernel
convolutions. Finally, the model SED of the emitted light reads

s =
n∑

j=1

K j · v j , (30)

where s = (φ1, φ2, . . . , φm), v j = (v1 j , v2 j , . . . , v pj ) and

K j =


K11 j K12 j . . . K1pj

K21 j K22 j . . . K2pj
...

...
. . .

...
Km1 j Km2 j . . . Kmpj

 , (31)

with

Kik j ≡ Bj (wk − ui ). (32)

With this notation, K j and vj are respectively the convolution ker-
nel and the LOSVD of the subpopulation of age tj, and the model
spectrum y is the sum of the convolution of the kernel of each sub-
population with its own LOSVD.

5.2 2D age–velocity smoothness constraints

In the previous sections, the unknowns were 1D functions of time
or velocity. Here, the unknown is a 2D distribution, and we thus
have to implement a 2D smoothing constraint. We wish to allow the
smoothness in age to be distinct from the smoothness in velocity.
We thus construct two penalizing functions, Pa and Pv , relying on
the standard function P. Pa computes the sum of the Laplacians
of the columns of v while Pv computes the sum of the Laplacians
of the lines of v. The smoothness in the direction of the velocities
(respectively ages) is set by µv (respectively µa). We define the
vectorsv j = (v1 j , v2 j , . . . , v pj) as the columns of v, i.e. the LOSVDs
of the subpopulations. We similarly define the vectors vi = (v i1,
v i2, . . . , vin) as the lines of v. With this notation, the penalization
Pµ reads

Pµ(v) ≡ µa Pa(v) + µv Pv(v),

≡ µa

p∑
i=1

P(vi ) + µv

n∑
j=1

P(v j ). (33)

The objective function, Qµ, is now fully specified as Qµ = χ2 +
Pµ. Its gradients are given in Appendix Section A3. Here we choose
the smoothing parameters,µ≡ (µa ,µv), on the basis of simulations.

5.3 Simulations of a bulge–disc system

We studied the feasibility of separating two age-dynamically dis-
tinct populations, i.e. two components that do not overlap in an
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Table 1. Projected kinematic parameters and age of the
model bulge–disc system used to produce the simulations
of Figs 5 and 6. Vc (respectively σ v) is the rotation velocity
(respectively, the velocity dispersion) projected on the line of
sight.

Vc (km s−1) σv (km s−1) Age (Gyr)

Case 1
Bulge 0 100 8
Disc 120 30 0.5
Case 2
Bulge 0 150 8
Disc 0 50 0.5

age–velocity distribution diagram, in a regime of very high-quality
model and data. We performed simulations in the idealized case of
a very simplified spiral galaxy consisting of a bulge–disc system of
solar metallicity seen without extinction at some intermediate incli-
nation, in two observational contexts. The corresponding ages and
projected kinematic parameters are given in Table 1. The resolution
of the pseudo-data is R = 10 000 at 4000–6800 Å, and the SNR is
100 per 0.2 Å pixel.

Case 1: The galaxy is resolved, and the fibre aperture is small
compared to the angular size of the galaxy. The line of sight is off-
set by a couple of kiloparsecs from the centre along the major axis.
The projected model age–velocity distribution involves two super-
imposed components: an old, non-rotating, kinematically hot pop-
ulation representing the bulge; and a young, rotating, kinematically
cold component. The model and the median of 30 reconstructions
are shown in Fig. 5. The separation of the components is clear and
their parameters can be recovered with good accuracy, considering
the difficulty of the task.

Case 2: The galaxy is unresolved. The difference from the for-
mer situation is that, because of the spatial integration, both age–
velocity distributions are centred. For a given dynamical model, the
projected dispersion of the disc component depends on its incli-
nation. Fig. 6 shows that the separation is successful and that the

−400 −200  0  200  400
7.0

7.5

8.0

8.5

9.0

9.5

10.0

model

v[km/s]

lo
g(

ag
e[

yr
])

−400 −200  0  200  400
7.0

7.5

8.0

8.5

9.0

9.5

10.0

median reconstruction

v[km/s]

lo
g(

ag
e[

yr
])

Figure 5. Model (left) and median reconstruction (right, ≈30 realizations) of a stellar age–velocity distribution from SNR = 100 per 0.2 Å pixel pseudo-data at
4000–6800 Å. The model stellar age–velocity distribution mimics that of a simplified spiral galaxy seen with intermediate inclination. The old, broad component
can account for the bulge population, while the young, narrow, rotating component represents a thin disc population. The projected kinematic parameters of
the model are given in Table 1 (Case 1). The different kinematic components are well separated and clearly identifiable.

ages and integrated kinematic properties of both components can be
measured.

6 C O N C L U S I O N S A N D O U T L O O K

6.1 Conclusions

The non-parametric kinematic deconvolution of a galaxy spectrum
is efficiently performed using a MAP formalism (Section 3). Reg-
ularization through smoothness requirements and positivity signifi-
cantly improve the behaviour of the inversion with respect to noise
in the data. This improvement occurs at the cost of introducing
some bias in the reconstructed LOSVD, but this bias remains rea-
sonable. Strong non-Gaussianities of LOSVDs are reliably detected
from mock data generated using PÉGASE-HR SSPs for SNR down to
20 per 0.2 Å pixel.

When the template does not exactly match the model spectrum at
rest, i.e. there is some template mismatch, the error on the velocity
dispersion increases very quickly (Section 3.4). For example, in our
experiments, where σv = 50 km s −1 with R = 10 000 data, the error
on the measured velocity dispersion amounts to 10–20 per cent if
the template differs from the model by more than 0.3 dex in age and
metallicity, perpendicular to the age–metallicity degeneracy.

The formal similarity between the non-parametric kinematic de-
convolution and the recovery of the stellar content allows us to merge
both processes in a ‘mixed’ inversion where the observed spectrum
is fitted by determining the stellar content and the kinematics si-
multaneously (Section 4). This circumvents the need for iterations
where kinematic and stellar content analyses are carried out one af-
ter the other, until convergence is reached; this provides an efficient
method to analyse large sets of data.

Satisfactory reconstructions of the stellar age distribution, the
age–metallicity relation, the extinction and the global LOSVD were
obtained from mock data down to R = 2000, SNR = 30 per 1 Å pixel
in the 4000–6800 Å range (simulating SDSS data in the PÉGASE-HR
range), indicating the good behaviour of the method. Since, in our
simulations, the introduction of the kinematics into STECMAP did
not affect the recovery of the stellar content, we consider that the
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Figure 6. Same as Fig. 5 but for an unresolved simplified spiral galaxy with projected and spatially integrated kinematic parameters given in Table 1 (Case 2).
The velocity dispersion of the integrated young disc component depends on the inclination angle. The bulge and the disc are well separated and clearly
identifiable. Their respective velocity dispersions and ages are reliably recovered.

error estimates and separability analysis given in Paper I remain
valid.

In a more exploratory part of this work, we showed the fea-
sibility of recovering age-dependent kinematics in a simplified
monometallic unreddened context (Section 5). We were able to sep-
arate the bulge and disc components of a simplified model spiral
galaxy in integrated light provided very high-quality data (SNR =
100 per 0.2 Å pixel in the optical domain) and models are avail-
able, i.e. we constrain both components in velocity dispersion and
age. This separation was also carried out successfully in the setup
corresponding to an unresolved galaxy.

Further investigations are needed to extend this technique to a
regime where the metallicity and extinction are unknown. We ex-
pect that letting the metallicity be a free parameter would certainly
lead to a more degenerate problem, as shown by the degradation of
the resolution in age found in Paper I compared to fixed metallicity
problems. On the contrary, we do not expect the addition of the ex-
tinction as a free parameter or a more complex form of extinction law
or flux calibration correction, possibly non-parametric, to deterio-
rate the conditioning of the problem. The results are encouraging,
and the feasibility of such age-dependent kinematics reconstruc-
tions deserves to be tackled in realistic specific pseudo-observational
regimes in the future.

As mentioned in Paper I, the SSP models were considered to
be perfect and noiseless. It still has to be investigated how instru-
mental error sources such as flux and wavelength calibration error,
additive noise, contamination by adjacent objects and, equally im-
portant, model errors can affect the robustness of such sophisticated
interpretations.

6.2 Outlook

STECKMAP will be very useful to interpret data of large spectro-
scopic surveys, complete or in progress, such as 2DFGRS,1 SDSS,2

1 http://www.mso.anu.edu.au/2dFGRS/
2 http://www.sdss.org/

DEEP2,3 or VVDS,4 especially where constraints on both the stel-
lar content and the dynamics are required. STECKMAP’ s analysis
of the spectroscopic survey data or of an SNR-selected subsam-
ple, combined with survey photometry, could provide estimates of
the stellar and dynamical masses (which must be corrected for fi-
bre aperture though), thereby allowing astronomers the prospect of
investigating the dark matter content in galaxies on a statistically
significant sample, in the spirit of Padmanabhan et al. (2004).

The application of age-dependent kinematics to integral field
spectroscopy data from, for example, SAURON (Bacon et al. 2001;
de Zeeuw et al. 2002), OASIS (McDermid et al. 2004a), MUSE
(Henault et al. 2003) or MPFS (Chilingarian et al. 2004) could sig-
nificantly boost the amount of information extracted from these
data.

The inner parts of elliptical or dwarf elliptical galaxies have shown
via adaptive optics new kinematically decoupled structures (cores or
central discs), which were previously unresolved (McDermid et al.
2004b; Bacon et al. 2001). Similarly, if decoupled structures are
unresolved and remain so, even with adaptive optics, it may still be
possible to separate components in age–velocity space. Hence, the
technique presented in Section 5 extends the range of investigation
for the inner components of galaxies even further in redshift and
distance with the current generation of instruments. The faint, gen-
eralized counterparts of kinematically decoupled cores, i.e. stellar
streams generated by minor merging and accretion of satellites, may
also be detectable by an age-dependent kinematics reconstruction
in systems that cannot be resolved into stars, provided that they are
sufficiently distinct from the bulk stars of the galaxy in the age–
velocity space. This will enlarge the sample of galaxies for which
such detailed information is available, and may make it statistically
significant.
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A P P E N D I X A : G R A D I E N T C O M P U TAT I O N S

A1 Kinematic deconvolution

In this section we derive the gradient of Qµ with respect to the
LOSVD g. First, we rewrite the χ2 term as

χ 2 = rT · W · r , (A1)

where the residuals vector r is defined by

r = y − F−1 · diag(F · F) · F · g. (A2)

The derivative of the χ 2 then reads

∂χ2

∂g
= −2F∗ · diag(F · F)∗ · F · W · r , (A3)

where the asterisk
∗

denotes the complex conjugate. Since the
stellar template and the LOSVD can play symmetrical roles in
equation (17), we can also write the derivative of χ2 relatively to
the stellar template:

∂χ2

∂F
= −2F∗ · diag(F · g)∗ · F · W · r . (A4)

This expression will be useful for later derivations of gradients for
more complex problems in the following appendices.

A2 Gradients of the mixed inversion

Here we show how to obtain the partial derivatives of Qµ = χ2 +
P µ as defined in Section 4. Given that writing the derivatives of the
penalizing functions Pµ is straightforward, in this appendix we will
focus on the gradients of χ 2. In the mixed inversion, the reddened
model spectrum at rest plays the role of the stellar template F in the
classical kinematic deconvolution of equation (15). Thus ∂χ 2/∂g

can be obtained by replacing F ← diag( f ext(E)) ·B · x in equation
(A3):

∂χ2

∂g
= −2F∗ · diag(F · diag( f ext(E)) · B · x)∗ · F · W · r , (A5)

where r = y − s is the residuals vector, with s as given by equation
(25). To obtain the other partial derivatives, we use the following
relation. For any parameter α we have

∂χ2

∂α
=
(

∂χ2

∂F

)T

· ∂F

∂α
. (A6)

The first term ∂χ2/∂F is given by equation (A4), while the second
term reads, considering each unknown,

∂F

∂x
= diag( f ext) · B, (A7)

∂F

∂Z
= diag(x) · ∂B

∂Z
· diag( f ext), (A8)

∂F

∂E
= diag

(
∂ f ext

∂E

)
· B · x, (A9)

with the same notation as in the appendix of the STECMAP paper.

A3 Gradients for the age-dependent kinematics recovery

Again, we focus on the partial derivatives of χ2. Using equa-
tion (17), the model can be rewritten using the Fourier operator

s =
n∑

j=1

F∗ · diag(F · B j ) · F · v j , (A10)
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where B j is the discretized time-averaged SSP of age [t j−1, tj]. The
derivatives of χ 2 relative to v can be derived directly from equation
(A3) since the model is just a sum of convolutions. Replacing F ←
B j and g → v j yields the gradient of χ2:

∂χ 2

∂v j
= −2F∗ · diag(F · B j )

∗ · F · W · r , (A11)

with the residuals vector r = y − s. Finally, the derivative of Qµ

relative to v is the matrix defined by

∂Qµ

∂v
=
(

∂Qµ

∂v1
,
∂Qµ

∂v2
, . . . ,

∂Qµ

∂vn

)
. (A12)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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A B S T R A C T

A method for inverting the statistical star counts equation, including proper motions, is

presented; in order to break the degeneracy in that equation, it uses the supplementary

constraints required by dynamical consistency. The inversion gives access to both the

kinematics and the luminosity function of each population in three régimes: the singular

ellipsoid, the constant ratio Schwarzschild ellipsoid plane-parallel models and the epicyclic

model. This more realistic model is tailored to account for the local neighbourhood density

and velocity distribution.

The first model is fully investigated, both analytically and by means of a non-parametric

inversion technique, while the second model is shown to be formally its equivalent. The effect

of noise and incompleteness in apparent magnitude is investigated. The third model is

investigated by a 5D 1 2D non-parametric inversion technique where positivity of the

underlying luminosity function is explicitly accounted for.

It is argued that its future application to data such as the Tycho catalogue (and in the

upcoming satellite GAIA ) could lead – provided that the vertical potential and or the

asymmetric drift or w( are known – to a non-parametric determination of the local

neighbourhood luminosity function without any reference to stellar evolution tracks. It should

also yield the proportion of stars for each kinematic component and a kinematic diagnostic to

split the thin disc from the thick disc or the halo.

Key words: methods: data analysis – Hertzsprung–Russell (HR) diagram – stars: luminosity

function, mass function – Galaxy: kinematics and dynamics – Galaxy: stellar content –

Galaxy: structure.

1 I N T R O D U C T I O N

Most of our knowledge of the global structure of the Galaxy relies

on the comparison of magnitude and colour star counts in different

Galactic directions. Star counts alone do not allow us to solve the

dilemma that a star of a given apparent magnitude can be either

intrinsically faint and close by, or bright and distant. This problem

may be addressed statistically by using the century-old equation of

stellar statistics (von Seeliger 1898):

Alðm;‘; bÞ ¼

ð1

0

FlðMÞrðr; ‘; bÞr 2 dr; ð1Þ

where Alðm; ‘; bÞ dm d‘ dðsin bÞ is the number of stars that have

an apparent magnitude in the range ½m; m 1 dm�, Fl(M ) is the

luminosity function (LF), which depends on the intrinsic

magnitude, M, and the colour band l, while r(r, ‘, b ) is the

density at radius r (within dr ) along the line of sight in the direction

given by the Galactic longitudes and latitudes (‘, b ) [within the

solid angle d‘ cos(b ) db ].

This equation cannot be solved or inverted (i.e., by determining

both the stellar LF and the density law) except for a few simplified

cases. For instance, with a ‘homogeneous’ stellar sample for which

the absolute magnitudes of stars or, more precisely, their LFs are

known, the density law along the line of sight can be recovered. A

classical numerical technique (Mihalas & Binney 1981) has been

proposed – the Bok (1937) diagram – while more rigorous

treatments are required for small samples to stabilize the inversion

so as to produce smooth solutions (Binney & Merrifield 1998). The

converse situation is the determination of the LF assuming a known

density law (see, for instance, recent studies of the faint end of the

disc or halo main sequence based on deep star counts (Reid et al.

1996; Gould, Flynn & Bahcall 1998).PE-mail: pichon@astro.u-strasbg.fr

Mon. Not. R. Astron. Soc. 329, 181–194 (2002)
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A simple approach, developed largely in the 1980s, was to

integrate equation (1) assuming some prior information concerning

the stellar populations (see, e.g., Pritchet 1983, Bahcall, Soneira &

Schmidt 1983, Buser & Kaeser 1985 and Robin & Crézé 1986). A

frequent assumption is, for instance, to assume that the halo stars

have the same LF as some low-metallicity globular clusters.

Another approach consists in building a stellar LF from stellar

evolution tracks and isochrones of various ages. This has been

used to put constraints on the Galactic disc star formation rate

(Haywood, Robin & Crézé 1997a,b).

Stronger a priori constraints may also be derived by requiring

dynamical consistency, since the vertical kinematics of stars is

related to the flattening of stellar discs or spheroidal components.

Since star counts alone, Al(m, ‘, b ), are not sufficient to

constrain uniquely the Galactic stellar population models, it is

expected that two (or more) distinct models will reproduce the

same apparent star counts. However, this is not a real worry, since it

is likely that adding some relevant extra a priori information must

help to lift partially the degeneracy of the models.

In this paper it is shown that the degeneracy is lifted altogether

when we consider, in addition to the star counts in apparent

magnitude, the proper motions, m‘ and mb. For a relatively general

dynamically consistent model (stationary, axisymmetric and fixed

kinematic radial gradients), the statistical equation counts may be

formally inverted, giving access to both the vertical density law of

each stellar population and their LFs. This is developed in Section

2, where we show how the vertical motions are related to the

thickness of stellar components. The remaining degeneracy occurs

only for a quadratic vertical potential. Otherwise – when the

vertical component of the potential is known – the departures from

quadratic behaviour define a characteristic scale that allows us to

transform statistically the magnitudes into distances and proper

motions into velocities. Similarly, the asymmetric drift and/or the

vertical velocity component of the Sun provide a natural scale in

energy, leading to the same inversion procedure.

For ideal star counts (infinitely deep and for an infinite number

of stars), the inversion gives exactly the proportion of stars in each

kinematic component, providing a direct diagnostic to split the thin

disc from the thick disc or the halo, and its luminosity function

Fl(M ) is recovered for each kinematic stellar component. This is a

direct consequence of the supplementary constraints introduced by

the requirement for dynamical consistency.

Section 2 presents the generalized stellar statistic equation

which accounts for proper motions, and demonstrates the

uniqueness of the inversion for two families of plane-parallel

distribution functions: the singular velocity ellipsoid (Section 2.1)

and a constant ratio velocity ellipsoid (Section 2.2), while Section

2.3 presents a basic description of the epicyclic model. Section 3

illustrates the inversion procedure on a fictitious superposition of

four kinematically decoupled populations with distinct main-

sequence turn-off magnitudes for the constant ratio velocity

ellipsoid and the epicyclic models. Section 4 discusses the effects

of truncation in apparent magnitude (i.e., completeness of the

catalogue) in the recovered LF, as well as noise in the

measurements. Finally, Section 5 discusses the applicability of

the method to the Tycho-2 catalogue and to external clusters, and

concludes the paper.

2 D E R I VAT I O N

The number of stars, dN, that have an apparent luminosity in the

range ½L; L 1 dL� in the solid angle defined by the Galactic

longitudes and latitudes (‘, b ) [within d‘ d(sin b )], with proper

motions m‘ and mb (within dmb and dm‘) is given by

dN ; AlðL;ml;mb; l; bÞ dm‘ dmb d‘ cos b db dL

¼

ð ð
FQ

l ½L0;b�

ð
f bðr; uÞ dur

� �
r 4 dr db

� �
� dm‘ dmb d‘ cos b db dL; ð2Þ

where we have introduced the LF per unit bandwidth, FQ
l ½L0;b�,

which is here taken to be a function of the absolute luminosity, L0,

and of a continuous kinematic index, b. The variables r, u are the

vector position and velocity coordinates (ur, u‘, ub) in phase-space

relative to the local standard of rest, while R and V are those

relative to the Galactic Centre. The relationship between

AlðL; ml; mb; l; bÞ and FQ
l ½L0;b� involves a double summation

over b, and distance, r, along the line of sight. Here f bðr; uÞ

represents the b component of the distribution function of the

assumed stationary axisymmetric equilibrium, i.e.,

f ðr; uÞ ¼

ð1

0

f bðr; uÞ db; ð3Þ

where f is decomposed over the basis of isothermal solutions fb of

the Boltzmann equation for the assumed known potential c.

Equation (3) corresponds to a decomposition over isothermal

populations of different kinematic temperatures, s 2 ¼ 1/b. Apart

from this restriction, the shape of the distribution f(Ez) could be

anything. Note that equation (2) is a direct generalization of

equation (1), since

rbðr; ‘; b;m‘;mbÞ; r 2

ð
f bðr; uÞ dur

is by definition the density of stars (belonging to population b )

which are at position r ; ðr;‘; bÞ within dr d‘ d(sin b ), with proper

motion mb (within dmb) and m‘(within dm‘). The extra summation

on b which arises in equation (2) accounts for the fact that stars in

the local neighbourhood come from a superposition of different

kinematic populations which, as is shown later, can be

disentangled. Note that FQ
l is defined here per unit absolute

luminosity, L0, and therefore

Fl½MðL0Þ� ¼
2 logð10Þ

5
L0

ð
FQ

l ½L0;b� db; where

MðL0Þ ¼ 2
5

2

1

log 10
log

L0

L(

� �
1 M(:

Since there is no convolution on l (which is mute), it will be

omitted from now on in the derivation. In Section 3, B 2 V colours

are reintroduced to demonstrate the inversion for a fictitious HR

diagram. We shall also drop the Q superscript, but will keep in

mind that the LF is expressed as a function of the absolute

luminosity, L0.

This paper is concerned with the inversion of equation (2). We

proceed in three steps. First, a simplistic Ansatz for the distribution

function is assumed (corresponding to a stratification in height of

uniform discs with a pin-like singular velocity ellipsoid), leading to

a proof that, in this context, equation (2) has a well-defined unique

solution which can be made formally explicit. A more realistic

model is then presented, accounting for the measured anisotropy of

the velocity ellipsoid. It is shown that, in the direction of the

Galactic Centre, and if the velocity dispersions ratios are constant

for all populations, this model is formally invertible following the
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same route. Away from the Galactic Centre direction, the velocity

components of the Sun are also accounted for to recover

statistically distances via another inversion procedure related to

secular parallaxes. Finally, we illustrate the inversion on a fully

seven-dimensional epicyclic model. The detailed investigation of

this model is postponed to a companion paper (Siebert, Pichon &

Bienaymé, in preparation).

2.1 A toy model: parallel sheet model with singular velocity

ellipsoid

Let us assume here a sheet-like model for the distribution function

of kinematic temperature b:

f bðr; uÞ ¼

ffiffiffiffiffiffi
b

2p

r
exp ð2bEzÞdðvRÞdðvfÞ; ð4Þ

which corresponds to a stratification in height with a pin-like

singular velocity ellipsoid that is aligned with the rotation axis of

the Galaxy. Calling mb ; ub/ r, the energy reads in terms of the

heliocentric coordinates

Ez ¼
v2

z

2
1 czðzÞ ¼

r 2m2
b

2 cos2ðbÞ
1 a sin2ðbÞr 2 1 x½r sinðbÞ�; ð5Þ

where the harmonic component of the z potential ða z 2Þ was made

explicit while leaving unspecified the non-harmonic residual, x.

Putting equation (4) into equation (2) leads to

A ½b;mb;L� ¼

ð ð ffiffiffiffiffiffi
b

2p

r
F½Lr 2;b�

cosðbÞ

� exp 2bar 2 sin2ðbÞ2 br 2 m2
b

2 cos2ðbÞ
2 bx½r sinðbÞ�

� �
r 3 dr db;

ð6Þ

given the relationship L0 ¼ Lr 2 relating apparent and absolute

luminosities. Introducing z ¼ L 1=2r,

x ¼ a
sin2ðbÞ

L
1

m2
b

2L cos2ðbÞ
; and y ¼

sinðbÞ

L 1=2
: ð7Þ

Equation (6) then reads

L2 cosðbÞA½b;mb;L� ¼

ð ð ffiffiffiffiffiffi
b

2p

r
F½z 2;b�

� exp½2bz 2x 2 bxðzyÞ�z 3 dz db: ð8Þ

2.1.1 Harmonic degeneracy

Suppose for now that the z-potential is purely harmonic, so that x is

identically null. Calling s ¼ bz 2, the inner integral over z in

equation (8) can be rewritten as an integral over b and s:ð ð ffiffiffiffiffiffi
b

2p

r
F½z 2;b� expð2bz 2xÞz 3 dz db

¼
1

2
ffiffiffiffiffiffi
2p
p

ð ð
F½s/b;b�b23=2 db

� �
exp ð2sxÞs ds: ð9Þ

Equation (9) shows that for a purely harmonic potential the mixture

of populations (integrated over b ) is recovered from A[b, mb, L ],

which is effectively a function of x only (given by equation 7). In

this instance, the inversion does not allow us to disentangle the

different kinematic populations. In physical terms, there is a

degeneracy between the distance, luminosity and proper motion.

In contrast, when the data set extends far enough to probe the

anharmonic part of the potential, we now demonstrate that

equation (8) has formally a unique exact solution, before

exploring non-parametric means of inverting it in a more general

framework.

2.1.2 Uniqueness?

Let us assume that not too far from the Galactic plane, x(z ) is well

approximated by xðzÞ ¼ gz n, so that equation (8) becomes

L 2 cosðbÞA½b;mb; L� ¼

ð ð ffiffiffiffiffiffi
b

2p

r
F½z 2;b�

� exp ð2bz 2x 2 bgzny nÞz 3 dz db: ð10Þ

Calling

F1½U;B� ¼
1ffiffiffiffiffiffi
2p
p F½exp ð2UÞ; exp ðBÞ�

� exp {4U 1 3=2B 2 c½ð2 1 nÞU 1 2B�};

K0ðzÞ ¼ exp½cz 2 expðzÞ�; ð11Þ

and A1½X;Y� ¼ L 2 cos bA½b;mb; L� exp½cðX 1 YÞ�; ð12Þ

where

B ¼ logðbÞ; Z ¼ logðzÞ;

X ¼ logðxÞ ¼ log a
sin2ðbÞ

L
1

m2
b

2L cos2ðbÞ

� �
;

Y ¼ log
g sinnðbÞ

L n/2

���� ����; ð13Þ

Equation (10) becomes

A1½b;mb; L� ¼ A1½X; Y� ¼

ð ð
F1½Z;B�K0ðB 1 2Z 1 XÞ

� K0ðB 1 nZ 1 YÞ dZ dB: ð14Þ

The positive scalar c is left to our discretion and can be chosen so as

to yield a narrow kernel, K0 (in practice, c should be close to one).

Since r runs from zero to infinity and so does b, the integration over

B and Z will run from 21 to 1. Similarly, X and Y span ]21,1[ as

b goes from zero to p/2. Let

w ¼ 2ðB 1 nZÞ; 4 ¼ 2ðB 1 2ZÞ; ð15Þ

Equation (14) then reads

A1½X; Y� ¼ jn 2 2j
21

ð ð
F1½4;w�K0ðX 2 4Þ

� K0ðY 2 wÞ d4 dw: ð16Þ

The unique solution of equation (16) reads formally

F1½4;w� ¼ jn 2 2jFT 21 Â1½k4; kw�

K̂0ðk4ÞK̂0ðkwÞ

� �
; ð17Þ
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where

Â1½k4; kw� ¼

ð ð
exp½1 iðkwX 1 k4YÞ�A1½X; Y� dX dY and

K̂0½k� ¼

ð
exp½1 iðkXÞ�K0ðXÞ dX;

while

FT 21½ f ðkx; kyÞ� ¼
1

4p2

ð ð
exp½2 ikx4 2 ikyw�f ðkx; kyÞ dkx dky:

Both Fourier transforms are well-defined, given the span of 4, w

and X, Y. Approximating both K0 and A1 by a Gaussian of width

respectively 1=‘K and 1/‘2
N , equation (17) shows that F1 will be a

Gaussian of width 1=ð‘N 2 ‘KÞ
2.

This procedure is therefore a true deconvolution: the luminosity

function Fl[L, b ] is effectively recovered at arbitrary resolution

(in effect fixed by the signal-to-noise ratio of the data). In practice,

equation (17) is impractical for noisy finite data sets, so we shall

investigate non-parametric regularized solutions to equation (8) in

Section 3.1.1.

There is a natural scale ‘0 ¼ ða/gÞ1=ðn22Þ, given by the break in

the potential, which provides us with a means to lift the degeneracy

between faint close stars moving slowly and bright stars moving

faster farther out. This scale reflects the fact that statistically the

dynamics (i.e., the velocities) gives us a precise indication of

distances in units of ‘0. We can therefore reassign a posteriori

distances to stars in the statistical sense and deconvolve the

colour–magnitude diagram. Fig. 1 graphically demonstrates the

requirement to access the break radius of the potential in order to

derive statistical distances to the stars. It shows sections of increasing

apparent magnitude in the b, mb plane for a two-temperature model

and for a one-temperature model (corresponding to a unique

Figure 1. In each panel: Isocontour of A*(b,mb) (defined by equation 48) in the b,mb plane (b ranging from 2p=2 to p=2 and mb from 21 to 1): sections of

increasing apparent magnitude (from left to right and top to bottom) Top left: two-temperature models ½logb ¼ 22 and logb ¼ 2, log ðL0Þ ¼ 0� Top right:

same as top left, but for a unique temperature ðb ¼ 1Þmodel. The observed star counts enable us to distinguish between the one- and two-temperature models,

especially at the faint end (top left section) for significantly non-zero gð¼ 1Þ. Bottom left: Shows that even the faint end (top left section) of the observed star

counts are barely distinguishable from the two-temperature model (Bottom right: ) for small gð¼ 1=10Þ. This demonstrates graphically the requirement to

access the break radius, ‘0/1/g, of the potential to derive statistical distances to the stars.
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absolute luminosity). The observed star counts enable us to

distinguish between the one- and two-temperature models,

especially at the faint end for significantly non-zero g.

Turning back to equation (8), it remains true that for more

general x the equation can still be inverted in the least-squares

sense, but this involves a less symmetric kernel, K1ðx; yju; bÞ,

whose functional form depends explicitly on x:

K1ðx; yju;bÞ ¼

ffiffiffiffiffiffi
b

2p

r
exp ½2bu 2x 2 bxðuyÞ�u 3:

The inversion procedure, which will be described in Section 3, still

applies to such kernels.

2.2 A Schwarzschild model: accounting for the local velocity

ellipsoid anisotropy

Let us now move to more realistic models with a fully triaxial

Schwarzschild ellipsoid. Its distribution function is given in terms

of the kinematic inverse dispersions bR,bf and bz by

f bðr; uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bRbzbf

8p3

r
exp½2ðbzEz 1 bRER 1 bfEfÞ�; ð18Þ

where

Ez ¼
1
2

v2
z 1 czðzÞ; ER ¼

1
2

v2
R and Ef ¼

1
2
ðvf 2 �vfÞ

2: ð19Þ

Here v̄f measures the mean azimuthal velocity in the local

neighbourhood (which is assumed not to depend on b ), and V ¼

ðvR; vf; vzÞ are respectively the radial, azimuthal and vertical

velocities of a given star measured in a direct cylindrical system of

coordinates centred at the Galactic Centre. These velocities are given

as a function of the velocities measured in the frame of the Sun by

vF ¼
1

R
{r( sinðbÞ sinð‘Þub 2 r( cosðbÞ sinð‘Þur 2 r( cosð‘Þu‘

1 r cosðbÞ½u‘ 2 sinð‘Þu(�1 ½r( 1 r cosðbÞ cosð‘Þ�v(};

ð20Þ

vR ¼
1

R
{½r cosðbÞ2 r( cosð‘Þ� sinðbÞub 2 r( sinð‘Þu‘

2 cosðbÞ½r cosðbÞ2 r( cosð‘Þ�ur 1 r(u(

2 r cosðbÞ cosð‘Þu( 1 r cosðbÞ sinð‘Þv(}; ð21Þ

vz ¼ sinðbÞur 1 cosðbÞub 1 w(; ð22Þ

where

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

( 2 2r(r cosðbÞ cosð‘Þ1 r 2 cosðbÞ2
q

and

z ¼ r sinðbÞ: ð23Þ

R measures the projected distance (in the meridional plane) to the

Galactic Centre, while z is the height of the star. Here u(, v(, w(

and r( are respectively the components of the Sun’s velocity and

its distance to the Galactic Centre. The argument of the exponential

in equation (18) is a quadratic function in ur via equations (20)–

(22), so the integration over that unknown velocity component is

straightforward.

In short, we show in Appendix A that equation (2) has solutions

for families of distributions obeying equation (18). Those solutions

are unique, and can be made explicit for a number of particular

cases which are discussed there. They are shown to be formally

equivalent to those found for equation (4). For instance, at large

distances from the Galactic Centre ðr(!1Þ, equation (6) along the

plane mb ¼ 0 can be recasted into

L 2 cosðbÞA2½b;‘;mb ¼ 0; L� ¼

ð ð ffiffiffiffiffiffi
b

2p

r
F½u 2;b�

� exp ð2bu 2x3 2 bz2Þu
3 du db; with x3 ¼ a

sin2ðbÞ

L
; ð24Þ

and

z2 ¼
½w( cos b 2 ðv( 2 �vfÞ sin b sin ‘�2

2 cos2ðbÞ1 2 sin2ðbÞ½jR cos2ð‘Þ1 jf sin2ð‘Þ�
;

jR ¼
bz

bR

; jf ¼
bz

bf

; ð25Þ

which is of the form described in Section 2.1.2 with n ¼ 0, x3

replacing x, and z2 replacing y. With the exception of the special

cases also described in Appendix A, the solution can be found via

x 2 minimization, as shown below in Section 3.

2.3 Epicyclic model: accounting for density gradients

The above models do not account for any density or velocity

dispersion gradients, which is a serious practical shortcoming. Let

us therefore construct an epicyclic model for which the radial

variation of the potential and the kinematic properties of the

Galaxy are accounted for.

A distribution function solution of Boltzmann equation with two

integrals of motion (energy and angular momentum) can be written

according to Shu (1969) as

f bðr; uÞ ¼ QðHÞ
Vb 3=2rDffiffiffi
2
p

p
3
2ks2

Rsz

exp 2b
ER 2 Ec

s2
R

2 b
Ez

s2
z

� �
; ð26Þ

where Q is the Heaviside function, while

V ¼
kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a 1 2
p ; rD ¼ r( exp

R( 2 Rc

Rr

� �
; with

Rc ¼ H
1

a11R
a

a11

(
V

2 1
a11

(
; ð27Þ

a being the slope of the rotation curve, V the angular velocity, k the

epicyclic frequency, rD the density, Rc the radius of the circular

orbit of angular momentum H, s2
R and s2

z the square of the radial

and vertical velocity dispersion, and b the kinematic index

s2
R ¼ s2

R(
exp

2R( 2 2Rc

RsR

� �
;

s2
z ¼ s2

z(
exp

2R( 2 2Rc

Rsz

� �
;

Ec ¼
a 1 1

2a
H

2a
a11R

2 2a
a11

( V
2

a11

( : ð28Þ

Here r0;V; k;sR;sz and Ec are known functions of momentum H

given by

H ¼ r( cosðbÞ sinð‘Þur 2 r( sinðbÞ sinð‘Þub 2 ½r cosðbÞ

2 r( cosð‘Þ�u‘ 1 r cosðbÞ cosð‘Þu(

1 ½r( 2 r cosðbÞ cosð‘Þ�v(: ð29Þ
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In the case of a separable potential given by

cðR; zÞ ¼ cRðRÞ1 czðzÞ; where cRðRÞ ¼
R 2aV2

(R22a
(

2a
;

czðzÞ ¼
1

2pG
S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z 2 1 D 2

p
2 D

� �
1 reffz

2
h i

; ð30Þ

where G is the universal gravity constant, while S0, reff and D are

constants, the energies Ez and ER obey

Ez ¼
½sinðbÞur 1 cosðbÞub 1 w(�

2

2
1 czðzÞ; ð31Þ

ER ¼
½cosðbÞur 2 sinðbÞub�

2 1 u2
‘ 1 u2

( 1 v2
(

2

1 cRðRÞ2 sinð‘Þ{u‘u( 2 ½cosðbÞur 2 sinðbÞub�v(}

1 cosð‘Þ{½cosðbÞur 2 sinðbÞub�u( 1 u‘v(};

while R and z are given by

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

( 2 2r(r cosðbÞ cosð‘Þ1 r 2 cosðbÞ2
q

and

z ¼ r sinðbÞ: ð33Þ

Note that the integration over ur in equation (2) must now be

carried numerically, since r0, V, k, sk and sz are all functions of ur

via equation (29).

This model, based on the epicyclic theory, accounts for density

and velocity dispersion gradients, and is therefore more realistic

than the Schwarzschild ellipsoid model presented in Section 2.2.

The density distribution together with the distribution of the

maximum of the proper motion along the ‘ coordinate are

presented in Fig. 2 projected on to the sphere. The asymmetry

along the Galactic longitude is produced by the solar motion.

3 S I M U L AT I O N S

3.1 Method

We have chosen to implement a non-parametric inversion

technique to invert equation (2) or (8). The non-parametric

inversion problem is concerned with finding the best solution to

equation (2) or (8) for the underlying LF indexed by kinematic

temperature when only discrete and noisy measurements of

[Ab, mb, L ] are available (e.g. Titterington 1985; Dejonghe 1993;

Lucy 1994; Merritt, 1996; Fadda, Slezak & Bijaoui 1998, Pichon &

Thiébaut 1998; and references therein), and most importantly when

we have little prejudice regarding what the underlying LF should

be. In short, the non-parametric inversion corresponds to model-

fitting in a regime where we do not want to impose (say via stellar

evolution tracks) what the appropriate parametrization of the

model is. It aims at finding the best compromise between noise and

bias; in effect, it correlates the parameters so as to provide the

smoothest solution amongst all possible solutions compatible with

a given likelihood.

An optimal approach should involve a maximum-likelihood

solution parametrized in terms of the underlying six-dimensional

distribution. In practice, such an approach turns out to be vastly too

costly for data sets involving 106 measurements. Binning is

therefore applied to our ensemble of ð‘; b; m‘; mb; L; B 2 VÞ

measurements.

3.1.1 Non-parametric inversion

The non-parametric solutions of equations (8) and (14) are then

described by their projection on to a complete basis of p � p

functions

{ekðzÞelðbÞ}k¼1;…;pl¼1;…;p

of finite (asymptotically zero) support, which could be cubic

B-splines (i.e., the unique C 2 function, which is defined to be a

cubic over four adjacent intervals and zero outside, with the

extra property that it integrates to unity over that interval) or

Gaussians:

Fðz;bÞ ¼
Xp

k¼1

Xp

l¼1

FklekðzÞelðbÞ; ð34Þ

The parameters to fit are the weights Fkl. Calling x ¼
{Fkl}k¼1;…p;l¼1;…p (the parameters) and ~y ¼ {L 2 cosðbÞ

Aðxi; yjÞ}i¼1;…n;j¼1;…n (the n � n measurements, with L 2 cos(b ) a

function of xi,yi via equation (7)), equation (8) then becomes

Figure 2. Left: Aitoff projection of the normalized density distribution for the epicyclic Shu model. Right: Distribution of the maximum of the proper motion

along the galactic longitude (in arcsec yr21). The Galactic Centre is at the centre of the plot, and longitude is increasing from the centre to the left. The

asymmetry along the Galactic longitude derives from the peculiar motion of the Sun.
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formally

~y ¼ a:x; ð35Þ

where a is an ðn; nÞ � ðp; pÞ matrix with entries given by

ai; j; k; l ¼

ð ð
ekðu

2ÞelðbÞ exp½2bu 2xi 2 bxðuyjÞ�u
3 du db

� �
i; j; k; l

:

ð36Þ

For the epicyclic model the measurements are ~y ¼ {Aijklm ¼

Að‘i; bj;m‘k
mbl

;LmÞ}i¼1;…n1 ; j¼1;…n2 ;; k¼1;…n3 ;; l¼1;…n4 ;m¼1;…n5
and a

is an ðn1; n2; n3; n4; n5Þ � ðp1; p2Þ matrix with entries given by

ai; j; k; l;m; q; s ¼

ð ð ð
eqðLmr 2ÞesðbÞf bð‘i; bj;m‘k

mbl
; r; urÞr

4

�

� dr dur db

�
i; j; k; l;m; q; s

; ð37Þ

with fb given by equation (26).

Assuming that we have access to discrete measurements of Aij

(or Aijklm via binning as discussed above), and that the noise in A

can be considered to be normal, we can estimate the error between

the measured star counts and the non-parametric model by

LðxÞ;x 2ðxÞ ¼ ð ~y 2 a:xÞ’:W:ð ~y 2 a:xÞ; ð38Þ

where the weight matrix W is the inverse of the covariance matrix

of the data (which is diagonal for uncorrelated noise, with diagonal

elements equal to one over the data variance).

The decomposition in equation (34) typically involves many

more parameters than constraints, such that each parameter

controls the shape of the function only locally. The inversion

problem corresponding to the minimization of equation (38) is

known to be ill-conditioned: Poisson noise induced by the very

finite sample of stars may produce drastically different solutions,

since these solutions are dominated by artefacts due to the

amplification of noise. Some trade-off must therefore be found

between the level of smoothness imposed on the solution in order

to deal with these artefacts on the one hand, and the level of

fluctuations consistent with the amount of information in the

data set on the other hand. Finding such a balance is called

the ‘regularization’ of the inversion problem, and in effect implies

that between two solutions yielding equivalent likelihood, the

smoothest is chosen. In short, the solution of equation (35) is found

by minimizing the quantity

QðxÞ ¼ LðxÞ1 lRðxÞ;

where L(x) and R(x) are, respectively, the likelihood and

regularization terms given by equation (38) and

RðxÞ ¼ x’:K:x; ð39Þ

where K is a positive definite matrix, which is chosen so that R in

equation (39) should be non-zero when x is strongly varying as a

function of its indices. In practice, we use here

K ¼ K3#I 1 I#K3 1 2K2#K2;

where # stands for the outer product, I is the identity matrix, and

K2 ¼ D’
2
:D2, K3 ¼ D’

3
:D3. Here D2 and D3 are finite difference

second-order operators [of dimensions ðp 2 2Þ � p and ðp 2 3Þ � p

respectively] defined by

D2 ¼ Diag2½21; 2;21�;

21 2 21 0 0 …

0 21 2 21 0 …

0 0 21 2 21 …

0 0 0 21 2 …

… … … … … …

26666666664

37777777775
;

D3 ¼ Diag3½1;23; 3;21�;

1 23 3 21 0 …

0 1 23 3 21 …

0 0 1 23 3 …

0 0 0 1 23 …

… … … … … …

26666666664

37777777775
;

ð40Þ

This choice corresponds a quadratic operator whose kernel

include planes and paraboloids. The operator K is typically non-

zero [and therefore penalizes the minimization of Q(x)] for

unsmooth solutions (i.e., those leading to strong variations in the

coefficients Fkl).

The Lagrange multiplier l . 0 allows us to tune the level of

regularization. The introduction of the Lagrange multiplier l is

formally justified by the fact that we want to minimize Q(x),

subject to the constraint that L(x) should be in the range

Ndata ^
ffiffiffiffiffiffiffiffiffiffiffiffi
2Ndata

p
. In practice, the minimum of

QðxÞ ¼ ð ~y 2 a : xÞ’ :W : ð ~y 2 a : xÞ1 lx’ :K : x ð41Þ

is

x ¼ ða’ :W : a 1 lKÞ21 : a’ :W : ~y: ð42Þ

The last remaining issue involves setting the level of

regularization. The so-called cross-validation method (Wahba

1990) adjusts the value of l so as to minimize residuals between

the data and the prediction derived from the data. Let us define

~aðlÞ ¼ a : ða’ :W : a 1 lKÞ21 : a’ :W: ð43Þ

We make use of the value for l given by generalized cross

validation (GCV) (Wahba & Wendelberger 1979) estimator

corresponding to the minimum of

l0 ; GCVðlÞ ¼ minl

kð1 2 ~aÞ : ~yk
2

½traceð1 2 ~aÞ�2

( )
: ð44Þ

Note that the model equation (35) is linear and so is equation (42),

but this need not be the case when positivity is required. We would

then resort to non-linear minimization of equation (41).

3.1.2 Positivity

When dealing with noisy data sets, the non-parametric inversion

technique presented above (Section 3.1.1) may produce negative

coefficients in the reconstructed LF. In order to avoid such effects,

positivity can be imposed on those coefficients Fkl in equation

(34). A simple way to achieve positivity is to use an exponential
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transform and introduce w so that

F;F0 expðwÞ; ð45Þ

where F0 corresponds to our first guess for F (here F0;103Þ. A

first-order Taylor expansion of equation (45), together with

equation (35), yields

~y 0; ~y 2 a :F0 ¼ a :F0
:w;a :x0; ð46Þ

which defines ỹ 0 and x0. We first invert equation (46) for x0. The

algorithm is then iterative, and we invert in turn for xn
0

~y0n ¼ a : x0n; where ~y0n ¼ ~y 2 a :Fn21 and x0n ¼ Fn21
:wn;

the LF is expressed as

Fn ¼ Fn21 expðhconvx0n/Fn21Þ ð47Þ

in equation (46) for the iteration number n. In practice,

convergence is controlled via a parameter, hconv [ ½0; 1�, which

fixes the amplitude of the correction in equation (47) in order to

remain within the régime of the Taylor expansion. It should be

emphasized that using equation (46) together with equation (42)

(replacing x by x0) does not lead directly to the expected LF but to a

correction that has to be applied to F0.

We will now proceed to invert equation (10) in two régimes: the

Schwarzschild model described by equation (18), and the epicyclic

model given by equation (26). The former model is dimensionally

less demanding, while the latter is more realistic, since it accounts

for density and velocity dipsertion gradients.

3.2 Simulated Schwarzschild models

We will first focus on the inversion of equation (8), rather than (A5)

or (A8) (which were shown to be equivalent in the zero asymmetric

drift approximation) and (24) (which was also shown to be of the

same form). Special emphasis is put on the toy model described in

Section 2.1 while carrying the inversion on a superposition of four

kinematically decoupled populations with distinct main sequence

turn-off magnitudes. These are illustrated in Fig. 3, which displays

the four fictitious tracks corresponding to increasing kinematic

temperature weighted by some IMF on each track. The image in the

observed plane ðmb; b;L;B 2 VÞ of these tracks is shown in Fig. 4,

which shows isocontours of A* defined by (corresponding to

equation 12 with c ¼ 3=4Þ

A*½b;mb;L� ¼ A½b;mb; L� cosðbÞ

�
g sinnðbÞ½m2

b sec2ðbÞ1 2a sin2ðbÞ�

2L n/225=3

� �3=4

ð48Þ

in the b,mb plane for increasing B 2 V at a fixed apparent

magnitude L ¼ 1=10. The multiple kinematic components of the

redder sections display distinct extrema for opposite values of mb at

fixed Galactic latitude, b, and also as a function of b at fixed proper

motions. In all figures, g is chosen equal to 1 (unless specified

Figure 3. Left: Fictitious tracks corresponding to increasing (from left to right) kinematic temperature. Right: Decomposition of corresponding colour

magnitude diagram into its four components, weighted by the IMF on each track. The image in the observed plane ðmb; b; L;B 2 VÞ of these tracks is shown in

Fig. 4.

Figure 4. A*ðb;mb;B 2 VÞ in the b,mb plane for increasing B 2 V (from left

to right and top to bottom) at a fixed apparent magnitude L ¼ 1=10 of the

model described in Fig. 3. Interestingly, the multiple kinematic components

of the redder sections display distinct extrema for opposite values of mb at

fixed Galactic latitude, b, and also as a function of b at fixed proper motions.
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otherwise) and n equal to 3. For simplicity, we also numerically

approximate K0 in equation (11) by a Gaussian, since the matrix

elements in equation (37) are then analytic.

3.3 Simulated epicyclic models

In order to test the inversion procedure, a set of four HR diagrams

with different turn-off luminosity was constructed, assuming a

mass–luminosity relation (MLR) and a Salpeter initial mass

function (IMF). The LF of each population scales like

F0/L 2s
t ; ð49Þ

where t (the slope of the MLR on a logarithmic scale) was set to

3.2, which is characteristic of the main sequence, and s to 2.35 (the

IMF slope). The scaling factor fixes the number of stars in the

simulated galaxy. The tracks associated with those HR diagrams

were then binned on a 20 � 20 � 4 grid in the ½L0;B 2 V , beta ]

space; those HR diagrams represent the absolute luminosity

function, FB2V ðL0;bÞ. The observed counts were then computed

assuming that each track corresponds to a given kinematic index,

and that its distribution can be reproduced by the epicyclic model

of the same kinematic index, i.e.,

dN ð‘i; bj;m‘; k;mb;l; Lm;B 2 VÞ ¼ ai; j; k; l;m;q; s

� ½F0ðB 2 VÞ�q;s dm‘ dmb d‘ cos b db dL dðB 2 VÞ; ð50Þ

where ai; j;k;l;m;q;s is given by equation (37). Poisson noise was

introduced in corresponding histograms used as input for the

inversion procedure. It should be emphasized that constructing

such HR diagrams does not challenge the relevance of our physical

model, equation (26), but only our ability to recover a given LF.

The model LF need not be very realistic at this stage. The

parameters of the epicyclic model given in Table 1 were set so as to

reproduce the local neighbourhood according to Bienaymé &

Séchaud (1997) and Vergely et al. (2001). Fig. 8 shows the

assumed and reconstructed HR diagrams for the four populations

in the ½L0;B 2 V� plane for this model, while Fig. 9 shows the

reconstruction error in per cent for those two figures.

4 R E S U LT S

4.1 The Schwarzschild models

The above non-parametric inversion technique was implemented

on 19 � 19 � 19 data sets (and up to 41 � 41 � 41Þ corresponding

to measurements in X; Y ;B 2 V (equation 13). For each B 2 V

section, we recover 19 � 19 (respectively 41 � 41Þ coefficients xij

corresponding to values of U,B, which implies that our resolution

in kinematic dispersion is logarithmic. Fig. 5 shows isocontours of

the assumed and reconstructed HR diagram as its decomposition in

kinematic dispersion. In this zero-noise, no-bias régime, the

relative discrepancy between the data and the projection of the

model is less than one part in 103, while that between the model

and the inversion is lower than 10 per cent (the corresponding loss

in accuracy is characteristic of non-parametric deconvolution).

Note that the wiggly structures are a property of the model, and are

well recovered by the inversion procedure. Fig. 6 shows the actual

deprojection overlaid on top of the expected contour of the model

in the (logarithmic) (b, L ) plane for increasing values of B 2 V

(the projection of the fit in data space is not displayed, because

residuals of the fit would be too small to be seen). Errors in the

deprojection are largest for lower contours. Note that the contours

in Fig. 5 correspond to sections of the cube shown in Fig. 6 that are

orthogonal to those displayed in Fig. 6.

4.1.1 Errors in measurements and finite sample

The above results were achieved assuming infinite numbers of stars

and no truncation in apparent magnitude. The Poisson noise

induced by the finite number of stars (for which accurate

photometric and kinematic data are available), as well as the actual

error in those measurements, are likely to make the inversion of

equation (8) troublesome.

Fig. 7 shows how the error in the recovered HR diagram decreases

as a function of the signal-to-noise ratio in the data which, for the

sake of simplicity, was assumed to be constant while the noise was

taken to be Gaussian (corresponding to the large number of stars

per bin). Note that in reality the signal-to-noise ratio will clearly be

apparent-magnitude-dependent, and distance-dependent (because

of extinction and proper motion errors). Fig. 7 also shows how the

truncation in apparent magnitude induces a truncation in absolute

magnitude (here we truncate in Y, since a truncation in L induces a

truncation in Y but none in X, given equation 13).

4.2 The epicyclic models

The inversion technique has been implemented over a 36 � 9 �

7 � 7 � 10 � 20 � 4 model which corresponds to a bin size

projected on to the sphere of 10 � 10 degrees in position sampled

linearly, seven bins in proper motion ranging from 20.2 to

0.2 mas yr21, and 20 bins in apparent and absolute luminosity

corresponding to an integration over the line of sight from 0.1 pc to

4 kpc (those are also linear bins in luminosity, which correspond to

a logarithmic binning in radius). The four kinematic indexes

(ranging from 0.8 to 120) were set to reproduce a series of discs

with density scaleheights ranging from nearly 200 pc to 1 kpc (i.e.,

corresponding to thin and thick discs). The mean signal-to-noise

ration for these simulation is 2000, ranging from 20 on the giant

branches to 70 000 at the bottom of the main sequence.

Fig. 9 shows the reconstruction error in the ½B 2 V ; L0� plane

corresponding to the HR diagram shown in Fig. 8. The main

sequence and the different turn-off are well reconstructed (the error

lies well below 1 per cent for the faint part of the main sequence,

and is less than 10 per cent at the turn-offs). The red giant branch

(RGB) is also well reproduced, even though it strongly depends on

the age of the population (via b ). This can be understood if we look

at the number of stars in the different regions on the ½B 2 V ; L0�

plane. Older (younger) populations have larger (lower) number of

stars on the RGB, and the signal-to-noise ratio is increasing

(decreasing) correspondingly. We note that the four tracks are

recovered without creating any spurious structure. The LFs Fb(L0)

Table 1. Parameters used for the epicyclic model described in Section 2.3.

Distribution function Potential Solar motion

Rr¼ 2.5 kpc D¼ 240 pc R(¼ 8.5 kpc
Rr¼ 2.5 kpc S0¼ 48 M( pc22 VLSR¼ 220 km s21

RsR
¼ 10 kpc reff¼ 0.0105 M( pc23 U(¼ 9 km s21

Rsz
¼ 5 kpc a¼20.1 V(¼ 5.2 km s21

sR(
¼ 48 km s21 W(¼ 7 km s21

sz(
¼ 24 km s21

r(¼ 0.081 M( pc23
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are recovered within 1 per cent uncertainty (in mean value) for the

oldest population, and within 20 per cent for the youngest (note

that sometimes the reconstruction error increases up to 100 per cent

when no stars are recovered on the RGB).

5 D I S C U S S I O N A N D C O N C L U S I O N

The main result of this paper is a demonstration that the

generalized stellar statistic equation including proper motions,

equation (2), can be inverted, giving access to both the kinematics

and the luminosity function. The inversion was carried for two

rather specific functional decompositions of the underlying

distribution (namely, constant ratio and possibly singular

Schwarzschild ellipsoids plane-parallel models) and a more

realistic physical model (the epicyclic Shu model) which accounts

for gradients. The inversion assumes that the departure from

harmonicity of the vertical potential, and/or the asymmetric drift or

the Sun’s vertical velocity, w(, are known. Indeed, the break in the

potential yields a scale which reflects the fact that statistically

the dynamics (i.e., the velocities) gives a precise indication of

distances in units of that scale. The asymmetric drift or vertical

component of the Sun’s velocity provides another energy scale

(and therefore a distance scale). The existence of more than one

distance scale is mathematically redundant, but practically of

interest for the purpose of accounting for local and remote stars.

In a nutshell, it was shown in Section 2 that equation (2) has

solutions for families of distributions obeying equation (4)

(singular ellipsoid) or equation (18) (Schwarzschild ellipsoid).

Those solutions are unique, and can be made explicit for a number

of particular cases: equation (17) (pin-like velocity ellipsoid),

equation (A5) (constant ratio bR/bz, w( < 0Þ, equation (A8)

(constant ratio bR/bz and bf/bz, either with v( < �vf;w( < 0, or

with v( 2 �vf – 0, w( – 0 and x < 0 : statistical secular

parallaxes). In all other instances, the solution can be found via

the general non-parametric inversion procedure described in

Section 3.1.1, the only constraint being the computation of the

model matrix generalizing equation (37) (which might require

numerical integration, as shown for instance in Section 2.3); in this

more general framework it remains also to demonstrate that the

inversion will converge towards a solution which is unique. For

instance, in the régime where the epicyclic model has been tested

(Section 3.3) a unique solution seems to be well defined. The LF of

each kinematical component is well recovered throughout the HR

diagram.

More tests are required before applying the method to real data,

and are postponed to a companion paper (Siebert et al., in

preparation). For a given vertical potential, it appears that the

modelling of star counts indexed by proper motion Al(m,ml,mb;

Figure 5. Left: assumed and Right: reconstructed HR diagram together with its decomposition in kinematic temperature. Note that the wiggly structures are a

property of the model, and are well recovered by the inversion procedure. The plain, dashed, dot-dashed, short-dashed curves correspond to the four dispersions

associated with the four populations with distinct main-sequence turn-off radii shown in Fig. 3.

Figure 6. Assumed model (plain line, filled contour) and non-parametric

deprojection (dashed line) overlaid on top of the expected contours in the

ðlog 1/L, logb ) plane for increasing B 2 V sections. Errors in the

deprojection are largest for lower contours. Note that these sections are

orthogonal to those superposed in Fig. 5.
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l, b ) has a solution for most model parameters. Many different

models based on distinct priors have produced realistic magnitude

and colour star counts, but failed to predict proper motion

measurements accurately [for instance, note that the Besaņcon

model – which relies on a nearly dynamical consistent model –

produces a good fit to proper motion surveys (Ojha et al. 1994),

while dynamically inconsistent models are more problematic

(Ratnatunga, Bahcall & Casertano 1989)].

It should be emphasized that the inversion method presented in

Section 3.1.1 is a true deconvolution, and should give access to a

kinematically indexed HR diagram. Together with some model of

the time evolution of the different kinematic components (via, say,

a disc-heating mechanism), the indexing could be translated into

one on a cosmological time, hence providing a non-parametric

measurement of the local neighbourhood LF which is complemen-

tary to that obtained by evolutionary track fitting with an assumed

IMF and star formation rate (see, e.g., Hernandez, Valls-Gabaud &

Gilmore 1999). Note that, conversely, the agreement between the

standard direct method to predict the local LF and the method

presented here could be used to measure the Galactic potential.

The deepest photometric and proper motion of whole sky survey

available is the Tycho-2 catalogue (Høg et al. 2000), which is a new

reduction of the Tycho data (Høg et al. 1998). Many Tycho stars are

disc giants and subgiants covering a large range of distances; the

method developed here can be applied to these stars, and will allow

us to recover their LF without any prior information from stellar

evolution tracks. We intend in a forthcoming paper to apply the

method presented here to the Tycho-2 catalogue (Høg et al. 1998)

and to other proper motion catalogues in order to determine the LF

of stars in the solar neighbourhood. We will investigate the

limitations introduced by a magnitude-limited catalogue, by the

finite size of catalogues, and also by our limited knowledge of

the Galactic potential. Reddening is also bound to be a concern,

since it will bias apparent luminosities as a function of ‘ and b. If

Figure 7. Left panel: The mean absolute residual of the luminosity function,
P

ijjF
recov
ij 2 F

input
ij j=

P
ijjF

input
ij j versus the signal-to-noise ratio in logarithmic

coordinates. This graph demonstrates that the non-parametric inversion sketched in Section 3.1.1 is robust with respect to sampling or measurement noise.

Right panel: The effect of truncation in magnitude on the main sequence: plain line: recovered HR diagram with a truncated data set; dashed line: recovered HR

diagram without truncation. As expected, the truncation in apparent magnitude removes the information at the bottom of the main sequence.

Figure 8. Left: Assumed HR diagram for the epicyclic model. The four populations have distinct turn-off point and kinematic index. Right: Reconstructed HR

diagram. L0 is expressed in unit of L(. Note that all four populations are well recovered. The main sequence and turn-off are reconstructed within 10 per cent

error (less than 1 per cent for the lower part of the main sequence due to the large number of stars in that part of the HR diagram). The giant branch is also

recovered, although the reconstruction error is higher.

The local neighbourhood luminosity function 191

q 2002 RAS, MNRAS 329, 181–194 424



the reddening is diffuse and the absorbing component law is

known, the kernel of e.g., equation (10) will simply be modified

accordingly. Alternatively, multicolour photometry could be

sufficient to constrain the spatial extinction law. Of course, the

dimensionality of the problem is increased by the number of colour

bands used, since the analysis must be carried while accounting for

all colours simultaneously.

The final error on the recovered LFs will depend on the

photometric errors of the observational catalogue (, 0.1 for the

Tycho-2 catalogue down to 0.013 for VT , 9, , 0:05–0:10 for

photographic surveys). It will also depend on the relative proper

motion accuracy ½dðmÞ , 2dðmÞ/sm, with sm the typical dispersion

for a stellar group at a given distances]. With the Tycho-2 catalogue

completed by proper motions (with an accuracy of 2.5 mas y21),

and for disc giants with velocity dispersions from 10 to 50 km s21

and proper motion dispersions from 2 to 10 mas y21, the accuracy

on the recovered LF will be limited to about 0.5 mag. Closer (and

fainter) stars with proper motions from photographic catalogues

will constrain the lower part of the LF with a higher accuracy.

In the next decade, sky surveys by the Fame, Diva and GAIA

satellites will probe the Galactic structure in superb detail, giving

directly access to larger volumes of the 6D stellar phase space of

the Galaxy. It will remain that farther out, only proper motions and

photometry will have sufficient accuracy and generalization of

methods such as that derived here will be used to extrapolate our

knowledge of the kinematic and LFs of the Galaxy and its

satellites. For instance, Appendix B sketches the possible inversion

of an external globular cluster LF with GAIA-quality photometry.
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von Seeliger H. H., 1898, Abh. K. Bayer Akad Wiss Ser II Kl, 19, 564

Wahba G., 1990, Spline models for Observational Data. CBMS-NSF

Regional Conf. Ser. App. Mathematics Soc. Industrial and Applied

Mathematics, Philadelphia

Wahba G., Wendelberger J., 1979, Monthly Weather Review, 108, 1122

A P P E N D I X A : A S Y M P T OT I C A N A LY T I C
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M O D E L

Let us demonstrate that equation (2) has explicit analytic solutions

Figure 9. Left panel: Reconstruction error in the ½B 2 V ; L0� plane for the epicyclic model shown in Fig. 8. Right panel: Model versus recovered luminosity

function Fb(L0) for the four kinematic indexes corresponding to the oldest population (lower curve) to the youngest (upper curve). The LFs are plotted on a

logarithmic scale and arbitrary normalized. The curves corresponding to the two kinematic index where shifted along the y-axis. Plain lines correspond to the

model LF, while dot-dashed lines are the reconstructed LF. Note that the LF is well reconstructed for the main sequence (at low luminosity) and for the turn-off.

The total LF summed over the kinematic index is also displayed as the top thick lines. The bumps at low and high luminosity are properties of the model and

correspond to the lower part of the main sequence and to the subgiant branch of each population.
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for families of distributions obeying (18), using the inversion

procedure sketched in Section 2.1.

A1 Slices towards the Galactic Centre

For the sake of simplicity, let us first restrict the analysis to u( ¼

v( ¼ w( ¼ 0 and assume first that we have measurements only in

the direction ‘ ¼ 0. The integration over ur then yieldsð
f bðr; uÞ dur ¼

ffiffiffiffiffiffiffiffiffiffiffi
bbbf

4p2

r
� exp{ 2 1

2
½bfðu‘ 2 �vfÞ

2 1 bbu2
b�2 bzczðzÞ};

ðA1Þ

where

b21
b ¼ b21

R sin2ðbÞ1
r( 2 r cosðbÞ

R

� �2

b21
z cos2ðbÞ: ðA2Þ

Without loss of generality, let us integrate over u‘:ð ð
f bðr; uÞ dur du‘ ¼

ffiffiffiffiffiffi
bb

2p

r
exp½2 1

2
bbu2

b 2 bzczðzÞ�: ðA3Þ

At large distances from the Galactic Centre, both R and r( are large

compared to r, and equation (A2) becomes

�b
21
b ¼ b21

R sin2ðbÞ1 b21
z cos2ðbÞ: ðA4Þ

Let us now also assume that bR and bz are known monotonic

functions of a unique parameter b. We may now convolve equation

(A3) with the LF sought, F[Lr 2,b ], so that

A½b;mb; L� ¼

ð ð ffiffiffiffiffiffi
�bb

2p

r
F½Lr 2;b�

� exp{ 2 1
2

r 2 �bbm
2
b 2 bzcz½r sinðbÞ�}r 3 dr db: ðA5Þ

Equation (6) appears now as a special case of equations (A4) and

(A5) corresponding to bR!1. Even though the convolution in

equation (A5) is less straightforward than that of equation (8), and

so long as cz is not purely harmonic, equation (A5) will have a non-

trivial solution for F. In particular, if the ratio of velocity

dispersions bR/bz is assumed constant, equation (8) still holds but

with b ¼ bz, and x replaced by x0 defined by

x0 ¼ a
sin2ðbÞ

L
1

m2
b

2L cos2ðbÞ1 j2L sin2ðbÞ
; where j ¼

bz

bR

;

with A0½b;mb; L� ¼ A½b;mb; L�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 j tan2ðbÞ

p
:

Note that if v( and w( are not negligible, equation (A5) becomes

A½b;mb; L� ¼

ð ð ffiffiffiffiffiffi
�bb

2p

r
F½Lr 2;b� exp{ 2 1

2
�bb½ub 1 cosðbÞw(�

2

2 bzcz½r sinðbÞ�}r 3 dr db; ðA6Þ

and is of the form discussed below as equation (A8) with ‘ ¼ 0.

A2 Slices away from the Galactic Centre

For any direction ‘ – 0 when r(!1, the kinetic dispersion

(replacing in equation A4) along Galactic latitude is given by

b̂
21

b ¼ ðb21
R cos2‘ 1 b21

F sin2‘Þ sin2b 1 b21
z cos2b;

and equation (6) is replaced by

A ½b;‘;mb; L� ¼

ð ð ffiffiffiffiffiffi
b̂b

2p

s
F½Lr 2;b� exp{ 2 b̂b½rmb 1 cosðbÞw(

2 sinðbÞ sinðlÞðv( 2 �vfÞ�
2 2 bzcz½r sinðbÞr 3 dr db�}; ðA7Þ

which can be rearranged as (again with b ¼ bzÞ

L 2 cosðbÞA2½b;‘;mb; L� ¼

ð ð ffiffiffiffiffiffi
b

2p

r
F½u 2;b�

� exp½2bu 2x2 1 buy2 2 bz2 2 bxðuyÞ�u 3 du db; ðA8Þ

with z2 given by equation (25),

x2 ¼ a
sin2ðbÞ

L
1

m2
b

2L cos2ðbÞ1 2L sin2ðbÞ½jR cos2ð‘Þ1 jf sin2ð‘Þ�
;

ðA9Þ

y2 ¼
mb½ðv( 2 �vfÞ sin b sin ‘ 2 w( cos b�ffiffiffi

L
p

cos2ðbÞ1
ffiffiffi
L
p

sin2ðbÞ½jR cos2ð‘Þ1 jf sin2ð‘Þ�
; ðA10Þ

A2½b;‘;mb; L� ¼ A½b;mb; L�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 tan2ðbÞ½jR cos2ð‘Þ1 jf sin2ð‘Þ�

q
;

where jR ¼
bz

bR

; jf ¼
bz

bf

: ðA11Þ

In the region where the asymmetric drift and the z-component of

the Sun’s velocity can be neglected, v( < �vf and w( < 0, y2 and

z2 vanish and equation (A8) is formally identical to equation (10);

once again the solution of equation (A8) is given by equation (17)

with the appropriate substitutions. Alternatively, in the regions

where either w( or v( 2 �vf cannot be neglected, equation (A8)

has a unique solution even if x; 0, which can be found along the

section mb ¼ 0 (note that when r(!1, we can always assume

u( ¼ 0 by changing the origin of Galactic longitude, ‘). Indeed,

equation (A8) becomes equation (24), which is of the form

described in Section 2.1.2 with n ¼ 0, x3 replacing x, and z2

replacing y; the corresponding solution is found by following the

same route. It is analogous to statistical secular parallaxes (note,

none the less, that the section mb ¼ 0 might not be sufficient to

carry the inversion without any truncation bias, since log(z2) spans

]21,Z [ when b and ‘ vary with Z as a function of jR, jF, w( and

ðv( 2 �vfÞ.

Turning back to equation (A8), it remains true that for more

general x the equation can still be inverted via the kernel,

K2ðx2; y2; z2; yju;bÞ, which depends explicitly on x:

K2 ðx2; y2; z2; yju;bÞ ¼

ffiffiffiffiffiffi
b

2p

r
� exp½2bu 2x2 1 buy2 2 bz2 2 bxðuyÞ�u 3:

Note that the multidimensionality of the kernel, K2, is not a

problem from the point of view of a x 2 non-parametric

minimisation described in Section 3.
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A P P E N D I X B : E X T E R N A L S P H E R I C A L

I S OT R O P I C C L U S T E R S

Consider a satellite of our Galaxy assumed to be well described as a

spherical isotropic cluster with an LF indexed by this kinematic

temperature. Let 4p2Alðmb; L; RÞm dm dLR dR be the number of

stars which have proper motions, m 2 ¼ m2
b 1 m2

‘, and apparent

luminosity L at radius R from the centre at the wavelength l. This

quantity is a convolution of the distribution function f(1, b )

(a function of energy, 1, and b; 1/s 2Þ and the luminosity

function, gl(L0, b ), a function of the intrinsic luminosity, L0, the

population, b, and wavelength l:

Alðm; L;RÞ ¼

ð ð ð
f ð1;bÞglðb; Lr02Þ db dz dvz; ðB1Þ

which can be rearranged as

Alðm; L;RÞ ¼ 4

ð ð ð
f ð1;bÞglðb; Lr02Þ

�
r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 2 R 2
p

d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc 1 1Þ2 v 2

p db; ðB2Þ

where v 2 ¼ m 2r02 is the velocity in the plane of the sky,

r02 ¼ ðr 2 2 R 2 1 r2
(Þ the distance to the observer, r( the distance

to the cluster, and r the distance to the cluster centre. The potential

can be derived non-parametrically from the projected density

(using Jeans’s equation). Indeed, the mass enclosed within a sphere

of radius r reads

Mdynð, rÞ ¼ r 2 dc

dr
¼ 2

r 2

r

dðrs 2Þ

dr
; ðB3Þ

where c(r ) is the gravitational potential, r(r ) the density, and s(r )

the radial velocity dispersion. The surface density is related to the

density via an Abel transform:

SðRÞ ¼

ð1

21

rðrÞ dz ¼ 2

ð1

R

rðrÞ
r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 2 R 2
p ;ARðrÞ; ðB4Þ

where S(R ) is the projected surface density, and R the projected

radius as measured on the sky. Similarly, the projected velocity

dispersion s2
p is related to the intrinsic velocity dispersion, s 2(r ),

via the same Abel transform (or projection)

SðRÞs2
pðRÞ ¼ 2

ð1

R

rðrÞs 2ðrÞ
r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 2 R 2
p ;ARðrs

2Þ: ðB5Þ

Note that SðRÞs2
p is the projected kinetic energy density divided by

3 (corresponding to one degree of freedom), and r(r )s 2 the kinetic

energy density divided by 3. Inserting equations (B4) and (B5) in

equation (B3) yields

Mdynð, rÞ ¼ 2
r 2

A21
r ðSÞ

dA21
r ðSs

2
pÞ

dr
;

while rðrÞ ¼
1

4pr 2

d

dr
Mdynð, rÞ and 72c ¼ 24pGr: ðB6Þ

The underlying isotropic distribution is given by an inverse Abel

from the density:

f ð1Þ ¼
1ffiffiffi
8
p

p2

ð
d2r

dc 2

dcffiffiffiffiffiffiffiffiffiffiffiffi
1 2 c
p ;

ð1

0

FðbÞ expð2b1Þ db; ðB7Þ

where an isothermal decomposition over temperature b was

assumed for the distribution function (this assumption is not

required: any parametrized decomposition is acceptable). So

FðbÞ ¼ L21½ f ð1Þ� ¼ L21{A21½A21ðSÞ�}; ðB8Þ

where L is the Laplace operator.

Calling

G½Y� ¼

ðY

0

expð2XÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2 X
p ¼

ffiffiffiffi
p
p

Erfið
ffiffiffiffi
Y
p
Þ e2Y ;

g1ðb; Lr02Þ ¼ glðb; Lr02ÞFðbÞb23=2; ðB9Þ

equation (B2) becomes

Alðm; L;RÞ ¼ 2
ffiffiffi
2
p
ð1

0

ð1

R

G b
m 2ðr 2 2 R 2 1 r2

(Þ

2
2 cðrÞ

� �� ��

� g1½b; Lðr
2 2 R 2 1 r2

(Þ�
r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 2 R 2
p

�
db ðB10Þ

where G is a known kernel, while gl is the unknown LF sought.

Equation (B10) is the direct analogue of equation (8). It will be

invertible following the same route with GAIA photometry. (With

today’s accuracy in photometry, for a typical globular cluster at a

distance r( of, say, 10 kpc, the relative positions within the cluster

are negligible with respect to r(: r 2 2 R 2 ! r2
(; therefore

Alðm; L;RÞ ¼ 2
ffiffiffi
2
p
ð1

0

ð1

R

G b
m 2r2

(

2
2 cðrÞ

� �� �
rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 2 R 2
p

� �
� g1ðb; Lr2

(Þdb:

L is then also mute, and the inversion problem shrinks to one

involving finding the relative weights, gL[b ] of a known

distribution.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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A B S T R A C T

We discuss the implementation of Bayesian inversion methods in order to recover the

properties of the intergalactic medium from observations of the neutral hydrogen Lyman a

absorptions observed in the spectra of high-redshift quasars (the so-called Lyman a forest).

We use two complementary schemes: (i) a constrained Gaussian random field linear

approach, and (ii) a more general non-linear explicit Bayesian deconvolution method, which

offers in particular the possibility to constrain the parameters of the equation of state for the

gas.

The interpolation ability of the first approach is shown to be equivalent to the second one in

the limit of negligible measurement errors, low-resolution spectra and null mean prior.

While relying on prior assumption for the two-point correlation functions, we show how to

recover, at least qualitatively, the three-dimensional topology of the large-scale structures in

redshift space by inverting a suitable network of adjacent, low-resolution lines of sight. The

methods are tested on regular bundles of lines of sight using N-body simulations specially

designed to tackle this problem.

We also discuss the inversion of single lines of sight observed at high spectral resolution.

Our preliminary investigations suggest that the explicit Bayesian method can be used to

derive quantitative information on the physical state of the gas when the effects of redshift

distortion are negligible. The information in the spectra remains degenerate with respect to

two parameters (the temperature scale factor and the polytropic index) describing the

equation of state of the gas.

Redshift distortion is considered by simultaneous constrained reconstruction of the

velocity and the density field in real space, while assuming statistical correlation between the

two fields. The method seems to work well in the strong prior régime where peculiar

velocities are assumed to be the most likely realization in the density field. Finally, we

investigate the effect of line-of-sight separation and number of lines of sight. Our analyses

suggest that multiple low-resolution lines of sight could be used to improve the most likely

velocity reconstruction on a high-resolution line of sight.

Key words: methods: data analysis – methods: N-body simulations – methods: statistical –

intergalactic medium – quasars: absorption lines – dark matter.

1 I N T R O D U C T I O N

It has been realized recently that the cosmological mass density of the baryons located in the intergalactic medium (IGM) at high redshift is

similar to the total cosmological mass density of baryons predicted by primordial nucleosynthesis theories (Meiksin & Madau 1993; Petitjean

PE-mail: pichon@astro.u-strasbg.fr
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hydrogen density, nH I, by

t‘ðwÞ ¼
cs0

Hð�zÞ
ffiffiffiffi
p
p

ð ð ð11

21

nH iðx; x’Þ

bðx; x’Þ
exp 2 2

½w 2 x 2 vpðx; x’�
2

bðx; x’Þ
2

� �
dx

� �
dDðx’ 2 x’;‘Þ d

2x’; ‘ ¼ 1…L; ð1Þ

where s0 is the effective cross-section for resonant line scattering, H(z̄) is the Hubble constant at mean redshift z̄, and vp(x ) is the projection

of the peculiar velocity along the LOS. The double sum over x’ corresponds to the integration in the directions perpendicular to the LOSs. dD

is the 2D Dirac distribution. The Doppler parameter b(x ) is considered a function of the local temperature of the IGM at point x ; ðx; x’Þ

where x is the real-space coordinate expressed in km 21½¼ rHð �zÞ�.

This work is concerned with assessing the inversion of equation (1) with the aim of constraining the 3D fields, nH I(x, x’), b(x, x’) and

vp(x, x’), from the knowledge of a bundle of LOSs, ‘ ¼ 1…L.

2.1 The model

To relate the gas density, the dark matter (DM) density and the temperature, we follow the prescriptions of Hui & Gnedin (1997). We refer to

this paper for a detailed derivation of the relations given below. We assume that baryons trace DM potential (Bi & Davidsen 1997) and are in

ionization equilibrium. Therefore

nH i/r2
DMT 20:7; ð2Þ

where nH I is the neutral hydrogen particle density, and rDM the dark matter density.

Considering that shock heating is unimportant for the thermal budget of the intergalactic gas (Hui & Gendin 1997), an effective equation

of state describes the physical state of the gas,

TðxÞ ¼ �T
rDMðxÞ

�rDM

� �2b

: ð3Þ

The parameter b is in the interval 0 , b , 0:31 (this upper bound corresponds to the asymptotic value at z ¼ 0 far from re-ionization).

Therefore

nH iðxÞ ¼ �nHI

rDMðxÞ

�rDM

� �a
with a scaling a ¼ 2 2 1:4b: ð4Þ

If there is no turbulence, then the Doppler parameter b(x ) at each position is due to thermal broadening only,

bðxÞ ¼ 13 km s21

ffiffiffiffiffiffiffiffiffiffiffi
�T

104 K

r
rDMðxÞ

�rDM

� �b
; ð5Þ

and equation (1) becomes

t‘ðwÞ ¼ Að�zÞc1

ð ð ð11

21

rDMðx; x’Þ

�rDM

� �a2b

exp 2c2

½w 2 x 2 vpðx; x’Þ�
2

½rDMðx; x’Þ/ �rDM�
2b

� �
dx dDðx’ 2 x’;‘Þ d

2x’: ð6Þ

The parameters c1 and c2 depend on the characteristic temperature of the IGM:

c1 ¼ 13
ffiffiffiffi
p
p

ffiffiffiffiffiffiffi
�T

104

r !21

; c2 ¼ 132
�T

104

� �21

and Að�zÞ ¼ �nH i

cs0

Hð�zÞ
/

�T 20:7

J
; ð7Þ

where J is the ionizing flux, assumed to be uniform. Here the temperatures are given in Kelvin. The value of A(z̄) is fixed by matching the

observed average optical depth (.0.2 at �z ¼ 2Þ.

2.2 The régimes of interest for the reconstruction

Several régimes will be considered in Section 5 when performing the inversion.

(i) Small scales or high resolution ð‘ & 0:1 MpcÞ : In this régime, and although it might not necessarily be a good approximation (e.g. Hui

et al. 1997), we simply assume that redshift distortion is negligible ðvp ¼ 0 in equation 6), and reconstruct the density field in redshift space

while constraining the equation of state.

(ii) Large scales or low resolution ð‘ * 1 MpcÞ : In this régime, applicable to low-resolution spectra, thermal broadening can be neglected

and equation (1) simply becomes

t‘ðwÞ ¼ Að�zÞ

ð ð
rDM{w 2 vp½xðw; x’Þ�; x’}

�rDM

� �a
dDðx’ 2 x’;‘Þ d

2x’; for ‘ ¼ 1…L; ð8Þ
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et al. 1993; Press & Rybicki 1993; Rauch et al. 1997; Valageas, Schaeffer & Silk 1999). Therefore there is probably a close interplay between

galaxy formation and IGM evolution. The IGM acts as the baryonic reservoir for galaxy formation, while star formation activity in forming

galaxies should influence the physical state of the IGM through metal enrichment and emission of ionizing radiation. Hence it would be of

primary interest to be able to correlate the spatial distribution of intergalactic gas with that of galaxies.

Neutral hydrogen in the IGM is revealed by the numerous absorption lines seen in QSO spectra (the so-called Lyman a forest). The

physics of the gas is remarkably simple: its thermal state is governed by photoionization heating and adiabatic cooling (e.g. Hui & Gnedin

1997; Weinberg 1999), and its dynamics results from the effects of gravity on large scales and pressure smoothing on small scales

(Reisenegger & Miralda-Escudé 1995; Bi & Davidsen 1997; Hui, Gnedin & Zhang 1997). Dark matter and baryons trace each other quite

well, and the Lyman a forest is due to mildly overdense fluctuations in a pervasive medium with density contrasts of the order of 1 to 10. The

gas should be distributed along filaments and/or sheets of significant extension.

This is supported by observations of multiple lines of sight (LOSs) showing that the gaseous complexes producing the Lyman a forest

have large sizes. Indeed, in the spectra of multiple images of lensed quasars with separations of the order of a few arcsec (Smette et al. 1995;

Impey et al. 1996), the Lyman a forests appear nearly identical, implying that the absorbing objects have sizes . 50 h21
75 kpc.1 Pairs with

separation up to 500 h21
75 kpc show an excess of absorptions common to both LOSs compared to what is expected for an uncorrelated

distribution of absorption lines (Dinshaw et al. 1995; Crotts & Fang 1998; D’Odorico et al. 1998; Petitjean et al. 1998). This suggests rather

large dimensions or better coherence length and a non-spherical geometry of the absorbing structures (Rauch & Haehnelt 1995).

Recent N-body simulations have provided a consistent theoretical framework for the description of the IGM (Cen et al. 1994; Petitjean,

Mücket & Kates 1995; Zhang, Anninos & Norman 1995; Hernquist et al. 1996; Miralda-Escudé et al. 1996; Mücket et al. 1996; Bond &

Wadsley 1998). The simulations are very successful at reproducing the main characteristics of the Lyman a forest: the column density

distribution, the Doppler parameter distribution, the flux decrement distribution and the redshift evolution of absorption lines. It has become

clear that the Lyman a forest is a powerful tool to investigate key cosmological issues such as the re-ionization of the Universe (Abel &

Haehnelt 1999; Schaye et al. 1999; Ricotti, Gneden & Shull 2000), the density fluctuation power spectrum (Croft et al. 1998; Gnedin & Hui

1998; Hui 1999; Nusser & Haehnelt 1999a), the geometry of the Universe (Hui, Stebbins & Burles 1999) or cosmological parameters

(Weinberg et al. 1999).

Applications to real data have led to interesting constraints on the fluctuation power spectrum (Croft et al. 1999; Nusser & Haehnelt

1999b), cosmological parameters (Weinberg et al. 1999; Theuns, Schaye & Haehnelt 2000) or the physical characteristics of the gas (Schaye

et al. 1999). However, these studies are presently limited by the amount of information available, and show that it is important to increase

current LOS data sets.

Two approaches can be considered: (i) increasing the number of LOSs observed at intermediate and high spectral resolution in order to

improve the precision of the above measurements; large redshift surveys in progress or in preparation such as the Sloan Digital Sky Survey

(SDSS; e.g. Szalay 2000) the Two degree Field (2dF; e.g. Folkes et al. 1999) or the VIRMOS redshift survey (e.g. Le Fèvre et al. 1998) should

dramatically increase the number of low spectral resolution QSO spectra available for analysis; (ii) using groups of QSOs to constrain the

three-dimensional (3D) distribution of the gas and to study redshift-space distortion effects, taking into account peculiar velocities in the

reconstruction; the ultimate goal would be to increase the density of LOSs so that the reconstructed 3D spatial distribution of the gas can be

correlated with galaxies observed in the same field; the deep imaging surveys planned with MEGACAM (e.g. Boulade et al. 1998) at the

Canada-France-Hawaii Telescope and follow-up spectroscopy should provide data for such projects.

It is thus of first importance to prepare the tools needed for the interpretation of the wealth of data that will be provided by the planned

surveys. Nusser & Haehnelt (1999a) have described a method for the recovery of the real-space density distribution along one LOS. Using an

analytical model of the IGM, they propose a direct inversion of the Lyman a forest seen in the QSO spectra using an iterative scheme based

on Lucy’s deconvolution method (Lucy 1974). This method yields fields for the density in contrast to Voigt profile decomposition.

Here we show that these techniques can be generalized to multiple LOSs to reconstruct the 3D density field (see Vergely et al. 2001 for a

similar application to the 3D mapping of the local interstellar medium). This should help for characterizing the structures (filaments,

sheets…), determining physical properties of the gas (temperature, peculiar velocity) and discussing the cosmological evolution of the IGM.

This paper is organized as follows. In Section 2 we present basic equations describing the relationship between absorption along LOSs

and properties of the IGM. Section 3 is concerned with sketching the basis for the inversion technique; two methods are described, a Bayesian

regularized inverse method and a constrained random Gaussian field reconstruction, which can actually be seen as a particular case of the first

method.Section 4 describes two N-body simulations from which we construct simulated data. Section 5 discusses the use of inversion

techniques implemented here (i) to recover the 3D spatial distribution of the IGM from Lyman a forest absorption lines on large scales while

neglecting thermal broadening, (ii) to address the issue of thermal broadening on small scales, and (iii) to take into account peculiar velocities

and correction for the induced redshift distortions.

2 T H E LY M A N -a O P T I C A L D E P T H A L O N G A L I N E O F S I G H T

The optical depth, t‘(w ), along the LOS ‘, at projected position x’;‘ ; ðy‘; z‘Þ on the sky, and in velocity space, w, is related to neutral

1where h75 is the Hubble constant expressed in units of 75 km s21 Mpc21.
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where x(w, x’) is defined implicitly by the equation x ¼ w 2 vpðx; x’Þ. Our efforts in this régime will focus on 3D reconstruction of the

density in redshift space, i.e., with vp ¼ 0 in equation (8) and known equation of state for the gas. In principle, redshift distortion should not

be neglected, but this does not change significantly the topology of large-scale structures, at least at weakly non-linear scales, thus making

such simplified analysis still relevant.

(iii) Intermediate scales or intermediate resolution ð0:1 & ‘ & 1 MpcÞ : Redshift distortion will not be neglected anymore, and equation

(6) will be used to determine simultaneously the density and velocity fields, assuming that the effective equation of state is known.

Note that we neglect here the statistical scatter away from equation (3) and in particular the departure from a unique power law for larger

overdensities.

3 D E C O N VO L U T I O N O F T H E I G M

The basic idea is to interpolate between adjacent LOSs the fields which are measured along the LOSs. This first requires assumptions on the

nature of the fields. In fact, strictly speaking, our ability to say anything away from the LOSs could be questioned, since to the best of our

unbiased knowledge, space between the LOSs could well be empty. Moreover, the inversion of equation (1) is obviously not unique, and

additional assumptions must be made in order to reduce the parameter space. For example, the Doppler parameter and/or the peculiar velocity

fields are taken to be described by a simple function of the sought density field, nH I. Indeed, dynamical considerations supported by

numerical simulations suggest there exists a statistical relationship between overdensities and the corresponding projected velocity field,

while temperature and density are also statistically related by an equation of state.

This paper addresses these issues via two techniques.

(i) A general, explicit Bayesian deconvolution method (Section 3.1), capable of dealing with fields and priors such as a given equation of

state. This method should allow one to deconvolve thermal broadening non-linearly, while accounting for peculiar velocities, and therefore to

reconstruct the density/velocity field along a LOS and constrain the equation of state of the gas. With several LOSs, it should simultaneously

be possible to obtain the 3D density field.

(ii) A constrained Gaussian random field linear approach (Section 3.2), which relates the peculiar velocities projected along the LOS to the

3D density field, or directly the 3D density field to the LOS density in redshift space. It requires prior knowledge of the logarithm of density in

redshift space along each LOS, but can be used after applying method (i) to each LOS.

In fact, method (i) is very general and can be applied in many ways, which differ mainly in the priors taken for the statistical properties

of the density and velocity fields. Method (ii) corresponds to a given choice of strategy for the 3D density/velocity reconstruction step: like

Wiener filtering, it is a particular case of method (i) (Section 3.3).

3.1 A non-parametric explicit Bayesian regularized inverse method

We aim to invert equation (1), i.e., reconstruct the density field nH I and the velocity field vp(x, x’). To that end, we take a model, g, such as

equations (3)–(5), which basically relate the Doppler parameter b and the gas density nH I to the dark matter density, rDM, and obtain equation

(6). In this equation, there are a certain number of parameters to be determined, which can be continuous fields such as the DM density or the

velocity field, or discrete parameters such as a and b. This set of parameters can be formally described as a vector, M. The goal here is to

determine M by fitting the data, D, i.e., the absorption spectra along the N LOSs.

Since the problem is underdetermined, we use a Bayesian technique described in Tarantola & Valette (1982a; see also, e.g., Craig &

Brown 1986 and Pichon & Thiébaut 1998). In order to achieve regularization, this method requires a prior guess for the parameters, or in

statistical terms, their probability distribution function, fprior(M ).

Using Baye’s theorem, the conditional probability density f postðM|DÞ for the realization M given the observed data D then writes:

f postðM|DÞ ¼ LðD|MÞf priorðMÞ; ð9Þ

where L is the likelihood function of the data given the model.

If we assume that both functions L and fprior are Gaussian, we can write

f postðM|DÞ ¼ A exp 2
1

2
½D 2 gðMÞ�’ : C21

d
: ½D 2 gðMÞ�2

1

2
ðM 2 M0Þ

’ : C21
0

: ðM 2 M0Þ

� �
; ð10Þ

with Cd and C0 being respectively the covariance ‘matrix’2 of the observed noise and of the prior guess for the parameters, M0. A is a

normalization constant. The superscript, ’, stands for transposition. The first argument of the exponential in equation (10) corresponds to the

likelihood of the data, given the model and the parameters,3 while the last corresponds to the likelihood of the parameters, given the prior M0.

Note that the assumption of a Gaussian field for fprior could be lifted, in particular to account for the presence of contrasted filaments (i.e., we

could introduce three-point correlation functions, or higher order statistics to account for the fact that, say, the prior likelihood of aligned

2Formally defined on continuous + discrete fields, as is the vector M.
3Note that the model g taken here would correspond to equation (6) instead of equations (3)–(5) as said earlier.
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overdensities is higher). A possible method for maximizing the posterior probability given in equation (10) is sketched in Appendix A. In a

nutshell, the minimum, kMl, of the argument of the exponential in equation (10) is shown by a simple variational argument (Tarantola &

Valette 1982a,b) to obey the implicit equation

kMl ¼ M0 1 C0
: G’ : ðCd 1 G : C0

: G’Þ21 : ðD 1 G : ðkMl 2 M0Þ2 gðkMlÞÞ; ð11Þ

where G is the matrix (or, more rigorously, the functional operator) of partial derivatives of the model g(M ) with respect to the parameters.

Note that, under the assumption of Gaussianity, the extremum kMl is at the same time the most likely constrained value of the parameters

vector and its mean value. The posterior covariances of the parameters, CM, can be computed from equation (A6).

The method can in principle be iterated, taking in equation (11) M0 ¼ M and C0 ¼ CM to compute a new value of M until possible

convergence. However, in this paper we did not test this procedure.

We might then wonder how the choice of the prior for the parameters, M0 and their covariance matrix, C0, affect the final result, kMl. We

will show in Section 3.3 that for null prior, M0 ¼ 0, the method proposed here is equivalent to Wiener filtering if the model is linear

½gðMÞ ¼ G:M�. However, we may include more prior information when possible. For instance, if in the field of interest, redshifts of galaxies

and clusters, gravitational lensing or SZ data, etc., is available, we may explicitly incorporate these additional constraints in the prior M0

instead of extending the data set, D. More realistic expressions accounting for the statistical scatter around equation (3) and a possible slope

break are also possible. Additional information about our prejudice on the evolution of large-scale structures can also be incorporated in the

description of the prior probability distribution function to account for, say, dynamically induced non-Gaussianity.

3.2 Constrained mean field reconstruction

In principle, the explicit Bayesian method described above can be applied to the data to reconstruct along each LOS the density field in

redshift space while constraining the equation of state, as illustrated in Section 5.3. When dealing with the large-scale régime of Section 2.2,

equation (8) applies, and the density contrast, defined by

dðxÞ; logðrDM/ �rDMÞ < ðrDM 2 �rDMÞ/ �rDM; ð12Þ

reads, along each LOS and in redshift space ðx ¼ wÞ,

d‘ðx; x’Þ ¼
1

a
log

t‘ðxÞ

Að�zÞ

� �
: ð13Þ

This section focuses on recovering the 3D density field in redshift space or in real space, the latter case requiring treatment of peculiar

velocities. To achieve that, we use a constrained mean field method (e.g. Hoffman & Ribak 1992). Broadly speaking, such a method assumes

that part of a model (here the density in redshift space along the LOSs) is fixed by the observations. It then provides the relation between these

‘data’ and the most likely value of the remaining part of the parameters (here the density between the LOSs and the full 3D velocity field).

This method requires some assumptions on the statistical properties of the searched fields. The idea is to consider large enough scales so that

non-linear effects have not driven the system dynamically too far away from its initial conditions, which we assume to be Gaussian-

distributed.4 The theory of constrained random Gaussian fields is well known (e.g. Rice 1944, 1945; Longuet-Higgins 1957; Adler 1981;

Bardeen et al. 1986, and references therein), and application to our problem is detailed in Appendix B.

We assume that the constraints are distributed along a bundle of L LOSs, i.e., that the density contrast (defined above in equation 12)

takes the values ½d‘ðxÞ�‘¼1…L along the LOSs. Then, using linear perturbation theory and the Gaussian nature of underlying fields, we can

write the probability distribution function of the 3D velocity or density field in redshift space in terms of these constraints and of the 3D power

spectrum of the density field, P3D(k ). A prior is thus required for P3D(k ), but an iterative procedure can in principle be implemented, using

the P3D(k ) measured in the reconstructed data after redshift distortion deconvolution as a new prior.

We demonstrate that the most likely velocity kvpl‘ along the LOS ‘ is given by the linear relationship (equation B14)

kvpl‘ðxÞ ¼
X

‘0

ð
K‘‘0 ðx; x

0Þd‘0 ðx
0Þ dx0; or discretely kvpl ¼ Cvd

:C21
dd

: d; ð14Þ

where the kernel, K‘‘0(x, x0), is a simple function of the assumed 3D power spectrum given by equation (B14), while Cdd and Cvd are

respectively the log density autocorrelation, and the mixed log density–velocity correlation given by

Cdd ; ðkdidjÞli¼1…n;j¼1…n; Cvd ; ðkvidjlÞi¼1…p;j¼1…n; ð15Þ

assuming we know the log-density at n points in space ( p stands for the number of points at which we seek the velocity).

To obtain the density in real space along one LOS, it is possible to rely on the explicit Bayesian method once more, by using for the

model, g, equation (6) or equation (8) with vp given by equation (14). This ‘strong prior’ régime will be tested against simulations in Section

5.4.2. Of course, the Bayesian method could as well allow us to perform the simultaneous 3D reconstruction of the density field.

The constrained mean field machinery can also be used to reconstruct the 3D density field in redshift space (or in real space once the

4Hence we do not address here possible non-Gaussianity due to topological defects.
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density along each LOS is deconvolved from redshift distortion), kd ð3DÞlðxÞ. This is particularly relevant at low spectral resolution which

corresponds to the large-scale régime, where equation (13) can be directly used for d‘(x ). One obtains (equation B15)

kd ð3DÞlðxlÞ ¼
X

‘

ð
Kð3DÞ

l‘ ðxl; x
0
‘Þd‘ðx

0Þ dx0; or kd ð3DÞl ¼ Cd ð3DÞd
:C21

dd
: d; ð16Þ

where the kernel, Kð3DÞ
l‘ ðxl; x

0
‘Þ, is also a function of the assumed 3D power spectrum given by equation (B15). Cdd is given by equation (15),

Cd ð3DÞd is the mixed LOS-3D overdensity correlation given by Cd ð3DÞd ; ðkdð3DÞ
i djlÞi¼1…p;j¼1…n.

3.3 Overlap between the two methods and connection with Wiener filtering

The above extrapolation technique is restricted to quasi-linear analysis in redshift space and unsaturated absorption lines, since it assumes a

priori that the density is known along each LOS and that it is Gaussian distributed. As such, constrained mean fields methods cannot be

applied directly to equation (1) which involves a double non-linear convolution over the underlying density both explicit (via nH I) and

implicit (via vp). The Bayesian approach sketched in Section 3.1 is more general and makes less stringent assumptions. In particular, it should

provide means of applying redshift distortion correction on the fly while accounting for temperature-induced blending. We none the less show

that, for linear models, when the prior dominates, the extrapolation ability of equation (10) reduces to constrained mean field extrapolation,

while, in contrast, in the zero prior limit, it reduces to Wiener filtering. We also show how the covariance of the prior log-density and velocity

can be adjusted to fix a unique linear relationship between the sought density field and its redshift distortion.

Let us start from the explicit Bayesian method. If the prior is null, M0 ; 0, the error in the measurements negligible, Cd < 0, the model

linear, gðMÞ ¼ G :M, equation (11) becomes

kMl ¼ C0
:G’ : ðG :C0

:G’Þ21 :D: ð17Þ

When recovering the 3D density field from the measured density along the LOSs, C0 ; Cd ð3DÞd ð3DÞ , the linear operator G operates then simply

like a Dirac comb on a field h:

G‘
:h;

ð
dDðx’ 2 x’‘ÞhðxÞ dx’; ð18Þ

so that

C0
:G’ ¼ Cd ð3DÞd and G :C0

:G’ ¼ Cdd; which implies for equation ð17Þ : kd ð3DÞl ¼ Cd ð3DÞd
: ðCddÞ

21 : d: ð19Þ

Equation (19) is identical to equation (16). Note incidentally that if the prior is null and the model linear, but if the errors in the measurements

are accounted for, equation (11) becomes

kMl ¼ C0
:G’ : ðG :C0

:G’ 1 CdÞ
21 :D ¼ ðG’ :C21

d
:G 1 C21

0 Þ
21 :G’ :C21

d
:D; ð20Þ

which corresponds to Wiener filtering (Wiener 1949; Zaroubi et al. 1995). In other words, when the model is linear, our method is equivalent

to Wiener filtering applied to M 2 M0. When we seek to invert for both d and vp (hence imposing a weak prior on the field),

M ; ðd;vpÞ; ð21Þ

The penalty function (corresponding to the log of the prior in equation 10) can be re-arranged (cf. equation B2):

ðM 2 M0Þ
’ :C21

0
: ðM 2 M0Þ ¼ ðvp 2 Cvd

:C21
dd

: dÞ’ : ðCvv 2 Cvd
:C21

dd
:C’

vdÞ
21 : ðvp 2 Cvd

:C21
dd

: dÞ: ð22Þ

The strong prior régime, mentioned in Section 3.2 and tested in Section 5.4.2, is therefore a subcase of equation (22) where

Cvv < Cvd
:C21

dd
:C’

vd; implying vp < Cvd
:C21

dd
: d;

i.e., vp will take its most likely value, as was assumed in equation (14).

Both the explicit Bayesian method and the constrained mean field reconstruction require detailed description of a prior model for the

large-scale structure of the IGM in order to fix M0, C0, P3D(k ), plus additional relationships such as those sketched in Section 2. As

mentioned earlier, these methods can be iterated with new priors measured in the reconstructed data, but we have not tested the convergence

of such a scheme, and leave that to future work.

4 N U M E R I C A L S I M U L AT I O N S

To test our methods we use two standard cold dark matter (CDM) N-body simulations. The gas distribution is derived from the DM

distribution, using simple recipes described in Section 2 and based on previous works (e.g. Hui & Gnedin 1997; Nusser & Haehnelt 1999a).

As discussed in the analysis of more realistic numerical simulations, taking fully into account the details of the gas dynamics is left for future

work. Many aspects of the reconstruction problem do not strongly depend on the detail of the gas dynamics.

The simulations were run with a particle-mesh (PM) code, fully vectorized and parallelized on SGI-CRAY architecture with shared
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memory.5 The characteristics of the simulations, S and B, which involve respectively , 32 and , 16 millions particles, are given in Table 1.

The cosmological parameters are inspired from Jenkins et al. (1998). The particles were laid down on a mesh with the same shape as the grid

used to compute the forces. Then the Zel’dovich (1970) approximation was used to perturb the positions of the particles and to set up

Gaussian initial conditions with the appropriate power spectrum for standard CDM. This was done in a similar way as in the COSMICS

package of Bertschinger (1995). To avoid effects of transients (e.g. Scoccimarro 1998), the simulations were started at high redshift z ¼ 255

and evolved until the desired redshift, z ¼ 2. Figs 1 and 2 display the corresponding DM distribution. A detailed analysis of the power

spectrum and the variance of the density field measured in the simulations is presented in Appendix C.

The spatial comoving resolutions of simulations S and B are lg . 4:9 and 40 km s21 respectively, which correspond to physical

resolutions , 8.5 and 68 km s21 at z ¼ 2. This is to be compared with the maximum possible pixel resolutions of the instruments available on

5This program is an improved version of an older code (Bouchet, Adam & Pellat 1985; Alimi et al. 1990; Moutarde et al. 1991; Hivon 1995). It uses for better

performances a ‘predictor-corrector’ (e.g. Rahman 1964) implementation of the time-step (instead of the traditional ‘leapfrog’, e.g. Hockney & Eastwood

1981). It is still in construction, but available on request by e-mail at nic@iap.fr.

Table 1. Characteristics of the N-body experiments.

Model V0 L h G s8 Np L

S 1.0 0.0 0.5 0.5 0.51 512� 256� 256 50� 25� 25
B 1.0 0.0 0.5 0.5 0.51 1024� 128� 128 800� 100� 100

Model: ‘S’ and ‘B’ stand for ‘small’ and ‘big’ respectively.
V0: value of the density parameter of the Universe.
L: value of the cosmological constant.
h: parametrizes the Hubble constant, H0¼ 100 h km s21 Mpc21.
G: shape parameter of the initial power spectrum (see, e.g. Jenkins et al. 1998 for
details). s2

8 : the linear variance in the dark matter at the present time in a sphere of
radius 8 h 21 Mpc (to fix the normalization). Np: size of the grid used to compute the
potential and the forces; also the number of particles. L: dimensions of the
rectangular periodic box in comoving Mpc.

Figure 1. The dark matter distribution in the small simulation box, S, at z ¼ 2 (see Table 1 and text). The colour scales roughly logarithmically with the

projected density. Darker regions are denser.
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the VLT: UVES, l . 3 km 21, and FORS, l . 100 km 21. However, the actual resolution of the simulation depends on the physical

parameter of interest, and is always worse than the mesh resolution. For density-related processes, we can expect the PM simulation to be

sufficiently accurate at scales as small as , 2lg, although the dynamics can actually be contaminated by softening of the forces on scales as

large as 6lg (Bouchet et al. 1985). For velocities, which are quite sensitive to resolution, numerical comparisons between PM simulations and

higher resolution codes show that results are correct to within , 25 per cent at scales close to lg (e.g. Colombi 1996). Concerning the gas

dynamics, density fluctuations are expected to be damped out below the Jeans length, and therefore it is not necessary to have a spatial

resolution much better than this cut-off scale. For example, the thorough analysis of Gnedin & Hui (1998) shows that this scale is of the order

of 50–100 h 21 comoving kpc, i.e., 5–10 comoving km s21. This roughly corresponds to the spatial resolution of the S simulation (at least for

density-related quantities). In this respect, the resolution of the B simulation is not high enough, and this simulation is only used to test

reconstruction of weakly non-linear structures.

In addition to small-scale softening and limited resolution, discreteness effects represent another source of concern, particularly in

underdense regions. We apply adaptive Gaussian smoothing to the particle distribution as follows. The mean quadratic distance, di, between

each particle, i, and its six nearest neighbours is computed. This sets a smoothing length, ‘i ¼ di, i.e., the Gaussian filter associated to particle

i is W‘i
ðrÞ/expð2r 2/2‘2

i Þ within 3‘i after appropriate renormalization. In practice, the smoothed density (or mass-weighted velocity) is

computed on a grid chosen here to be the same as the simulation grid. Each cell, j, is subdivided in N 3 subpixels, kj, corresponding to

positions xkj
, with N ¼ 3. The contribution of particle i to the grid site j writes

Cj;i/
X

kj ;|r2xkj
|#3‘i

W‘i
ð|r 2 xkj

|Þ; ð23Þ

with the appropriate normalization
P

jCj;i ¼ mi, where mi is the mass of particle i.

5 A P P L I C AT I O N

In this section we apply the methods discussed in Section 3 to simulated Lyman-a spectra extracted from the N-body simulations (using

equation 6).

Our preliminary analyses are organized as follows. In Section 5.1 we give some details on the models and the priors used for both the

Bayesian method and the constrained mean field reconstruction. Section 5.2 deals with 3D reconstruction of the density field. We first test the

constrained mean field method in a régime where the density along each LOS is supposed to be known. Next, we test the Bayesian approach.

The latter method does not rely on such a strong prior for the density, and is first applied to the large-scale régime discussed in Section 2.2,

where thermal broadening can be neglected. Moreover, redshift distortion is not taken into account. In Section 5.3 we apply the Bayesian

method to constrain the equation of state of the gas. We consider the small-scale régime as discussed in Section 2.2, but neglect redshift

distortion again for the sake of simplicity, although peculiar velocity effects should realistically be accounted for. These velocities are dealt

with in Section 5.4, which assume in turn that the equation of state of the IGM is well constrained. We analyse the efficiency of velocity

reconstruction versus number of LOSs, and test Bayesian reconstruction in the frameworks of strong and floating priors.

The reader will notice that for each problem considered, we neglect in turn either redshift distortion or thermal broadening. Accounting

simultaneously for both effects can in principle be achieved with the explicit Bayesian method or a combination with the constrained mean

Figure 2. Same as Fig. 1, but for the large simulation box, B.
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field reconstruction. However, our main goal here was to illustrate the method and to pin down various effects at each step of the

reconstruction, concentrating on one particular property of the IGM, such as the structures of the 3D density field, the equation of state, or

redshift distorsion. More general applications will be developed in future work.

5.1 The priors

5.1.1 Explicit Bayesian method

The Gaussian Bayesian prior (equation 10) is fully described by the first two moments: the prior choice for the parameters of the model, M0,

and its covariance, C0.

For the model we choose the following combination of fields and discrete parameters:

M ¼ ½gðx; x’Þ; vpðx; x’Þ; �T;b�: ð24Þ

Function g(x, x’) is defined as

rDMðx; x’Þ

�rDM

¼ D0ðx; x’Þ exp ½gðx; x’Þ�; ð25Þ

so that positivity of density is insured. Here, D0(x, x’) is an arbitrary function (specified later) which fixes the value of the prior for

rDMðx; x’Þ/ �rDM, when gðx; x’Þ ¼ g0 ; 0. Note that A(z̄) is assumed to be known throughout the paper.

For the prior, we take

M0 ¼ ½0; 0; �T0;b0�; ð26Þ

where the values of T̄0 and b0 will be given in Section 5.3.

We derive the prior covariance operator C0 either in an ad hoc manner (Sections 5.2.2, 5.3 and 5.4.2) or from the simulations (Section

5.4.3). In the first case, Cgg, is chosen to obey

Cggðx; x
0; x’; x’

0Þ;s2
g exp 2

|x 2 x0|

jx

� �
exp 2

|x’ 2 x’
0|

jT

� �
; ð27Þ

where jx and jT are natural lengths in the inversion and govern the level of smoothness of the reconstruction. Typically, jT will be of order of

the mean transverse distance between two LOSs. The optimal choice for jx depends on the problem considered. If peculiar velocity effects are

neglected, jx can be taken as small as the maximum scale between spectral resolution and Jeans length (Sections 5.2.2 and 5.3). In that case,

no small-scale information is lost along the LOSs. However, when redshift distortion is to be taken into account (e.g. Section 5.4.2), it is

necessary to have a smoother prior to stabilize the inversion, typically the length marking the transition toward the non-linear régime (in other

words, the typical size of clumps).

The parameter sg may, if required, depend on position. On average, it corresponds roughly to the variance of g in a rectangle of volume

jxj
2
T . It governs indirectly by how much the reconstructed field, kMl, is allowed to float around the prior M0 while solving equation (11) with

the iterative method detailed in Appendix A. When peculiar velocity effects are neglected, this parameter can be taken to be rather large, of

the order of 0.2. Otherwise, the inversion process is more complicated: details will be given in Section 5.4.2. Exponential correlation

functions turned out to be more appropriate than Gaussian ones in order to recover filamentary structures: the covariance kernel given in

equation (27) is steeper, which allows us to take into account high-density fluctuations.

5.1.2 Constrained mean field reconstruction priors

The constrained mean field reconstruction method, applied in Sections 5.2.1, 5.4.1 and 5.4.2, also requires values for the prior covariance

matrix C0, which is taken to be those measured in the simulations, as detailed in Appendix B. Some of the biases involved in this choice are

discussed in Section 5.2.3.

5.2 Large-scale structures: tomography of the IGM

We apply the two methods described in Section 3 to recover the large-scale structures in simulation B. For this purpose, we use a network of

equally separated LOSs, along which we simulate spectra in accordance with equation (6) (as shown in Fig. 5) while varying the separation.

We proceed in two steps: we first ignore all issues related to finite signal-to-noise ratios (S/N), thermal broadening or line saturation, and use

constrained mean fields to extrapolate the density away from the LOSs, assuming that this latter is fully determined along the LOSs (Section

5.2.1); we then illustrate the Bayesian technique, which does not suppose that the density along the LOSs is known (Section 5.2.2). In the

latter case, only the large-scale régime is considered [i.e., the régime (ii) discussed in Section 2.2], and redshift distortion is neglected

ðvp ¼ 0Þ. Section 5.2.3 discusses shortcomings of the two methods and realistic extensions.
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5.2.1 Constrained mean field

Let us first consider redshift space and assume that we have derived the density on each LOS using for example equation (13). Recall that the

most likely 3D density away from the LOS obeys equation (16). The covariance matrix of the prior, C0 ¼ Cdd, is shown on the top of the

bottom right panel of Fig. 6. We present the results of a reconstruction of part of simulation B in Fig. 3. For this figure, we used the discrete

form of equation (16), on a regular network of overlapping subgrids of size 20 � 20 � 20 pixels such that the centres of adjacent subgrids are

separated from each other by 10 pixels. The value of the reconstructed density on one pixel is obtained by a weighted interpolation of the

recovered density on each subgrid containing this pixel, the weight being inversely proportional to the distance of the pixel from the centre of

the subgrid considered. This procedure ensures smoothness of the reconstruction, while keeping the size of the matrices reasonable. The top

panels of Fig. 3 illustrate the bias in the extrapolation procedure as we vary the distances between LOSs, the middle panels display the 3D

reconstructed iso-log densities corresponding to d ¼ 0:2, while the bottom panels show a slice through this field. The large-scale filaments are

recovered for all separations investigated, but small-scale structures disappear beyond 2.5 Mpc comoving of separation. The topography of

the structures is well described. As expected, the density is poorly recovered for the largest separations.

5.2.2 Bayesian reconstruction: line saturation and finite signal-to-noise ratio (S/N)

Choosing simply D0 ; 1 in equation (25), our model g, on pixelized data, reads (equation 8 with vp ¼ 0; see also Appendix D1.2)

gi‘ðgÞ ¼ Að�zÞ exp½agðwi‘; x’‘Þ�; ð28Þ

with a fixed equal to 1.7 Here, wi‘ is the velocity at bin i corresponding to the LOS labelled ‘, and g(x, x’) is the only parameter for which the

prior covariance is given by equation (27). The parameters sg, jx and jT are respectively chosen equal to 1, twice the resolution and 1.5 times

the distance between LOSs. The matrix G is given in Appendix D1.2. Errors in the simulated data are modelled as follows. We assume that

they are uncorrelated, so that the covariance error matrix Cd is diagonal, with elements given by

s2
t ;

s2
F

F 2
.

1

ðS/NÞ2
1

s2
0

F 2
¼

1

ðS/NÞ2
1 s2

0 expð2tÞ; ð29Þ

Figure 3. Top panels, from left to right: The recovered log density versus the real (simulated) log density as a function of the distance between the LOSs, LLOS,

as labelled: as expected, the bias increases with LLOS; Middle panels, from left to right: the model and the reconstructed density for LLOS ¼ 2:5; 4 and 5.5 Mpc

comoving; Bottom panels, from left to right: a slice of 1 � 80 � 80 Mpc across the simulation and the reconstructed fields (the scale on the panels is in pixels).

Most of the small-scale structures are lost in the reconstructed field. The large-scale topology is, however, recovered. The rounded features in the reconstructed

density are an artefact of the interpolation method.
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since the observed flux is simply: FðwÞ ¼ exp½2tðwÞ�. Equation (29) states that the error on the flux has two origins: a constant S/N

component and a residual instrumental noise, s0, which dominates at large optical depth. In the inversion illustrated in Fig. 4, we use an S/N

of 25 and a residual error of magnitude 0.01.

The reconstruction of filamentary structures is effective only in the régime where the distance between LOSs is of the order of 1–3 Mpc

comoving. Beyond this limit, the isotropic method presented here is insufficient to recover the structure of the IGM (such anisotropic features

may be described by higher order correlation functions and stronger assumptions relying on a prior different from equation 10). Inherent to

the method is the limitation that density fluctuations at scales smaller than the separation between LOSs are damped out by the reconstruction.

Also, the probability to intersect a given strong overdensity is inversely proportional to the amplitude of the overdensity. In other words, the

information regarding rare high overdensities is simply not sampled enough by the LOSs. A related effect is induced by flux saturation in the

spectra depending on the spectral resolution and the S/N. For instance, optical depths of t ¼ 5 or 10 will correspond to very different

overdensities but very similar (<0) fluxes. Note finally that for simplicity we have made use of Gaussian line profiles, when Lorentzian would

have been more appropriate.

5.2.3 Discussion

In the reconstruction of Section 5.2.1, the density is assumed to be known along the LOSs, together with the covariance matrix of the 3D log-

density field. At low spectral resolution, we may neglect both thermal broadening and peculiar velocities, and use equation (13) to determine

directly the density in redshift space from the Lyman a forest along each LOS. At high spectral resolution, thermal debroadening and redshift

distortion deconvolution could in principle be achieved simultaneously with the explicit Bayesian method or a combination of the Bayesian

method with the constrained mean field reconstruction, as discussed in Section 3.2 and shown below.

Note also that our prior for the 3D covariance matrix in Section 5.2.1 is optimal: it is measured directly in the simulation. In that sense,

our reconstruction is biased, since we use part of the correct answer in advance. Moreover, we go beyond Gaussian linear approximation,

since we work on log-density, which contributes to improve the reconstruction even more. In real observations, we would not have a prior as

good as that chosen here at our disposal. However, as shown in Section 5.2.2, the results from the explicit Bayesian reconstruction, which rely

Figure 4. Density contrast reconstruction using the Bayesian algorithm from a set of 9 � 9 lines of sight taken through simulation B. The distance between two

adjacent lines of sight is equal to 2.4 Mpc comoving. Each panel represents respectively on the left the reconstruction and on the right the simulation. Dark

regions correspond to overdense regions. The filaments are well recovered.
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on a much weaker prior, equation (27), give very similar results to the constrained mean field reconstruction. This shows that the non-linear

features present in the measured correlations do not play an important role in our ability to carry out the inversion on the scales explored here.

Finally, it may be worth mentioning again that the methods should be iterated, using for new priors and covariance matrixes the measured

ones in the reconstructed field.

5.3 Small scales: the IGM temperature

We now aim to determine the equation of state of the IGM by considering the inversion of a single LOS observed at high spectral resolution

[régime (i) in Section 2.2]. The inversion of the density, velocity and temperature fields from a single LOS is not unique (Hui & Rutledge

1999; Theuns et al. 1999). Indeed, the same spectrum can be reconstructed with different equations of state and density distributions, as

illustrated by Fig. 5. Neglecting peculiar velocities for the sake of simplicity ðvp ¼ 0Þ, the problem reduces to the determination of two

parameters T̄ and b and one unknown field, g. The simultaneous determination of these parameters and the field remains a degenerate

problem. As detailed in Appendix D1.1, our model, g, on pixelized data reads, from equation (6),

gi‘ðgÞ ¼ Að�zÞc1

ð ð ð11

21

{D0ðx; x’Þ exp ½gðx; x’Þ�}
a2b exp 2c2

ðwi‘ 2 xÞ2

{D0ðx; x’Þ exp½gðx; x’Þ�}2b

� �
dx

� �
dDðx’ 2 x’‘Þ d

2x’: ð30Þ

Here, A(z̄) is arbitrarily fixed to Að�zÞ ¼ 0:7 as explained in Section 5.1.1, a ¼ 2 2 1:4b (equation 4), and c1 and c2 are functions of T̄

(equation 7). The function D0(x, x’) is chosen to be

D0ðx; x’Þ ¼
t‘ðw ; xÞ

Að�zÞ

� �1/a

: ð31Þ

The prior covariance matrix Cgg is given by equation (27) with jT!1. Here jx and sg are chosen equal to 0.2 Mpc comoving and 0.2.

We conduct our analyses as follows. We first simulate a spectrum along one LOS with a given real pair (bt, T̄t). The noise matrix Cd is the

same as in Section 5.2.2 with a ðS/N;s0Þ ¼ ð50; 0:05Þ. We then invert this LOS for g(x ), while varying (b, T̄) over a given range of realistic

values. In that sense, the only effective parameter in the inversion is the field g. For each value of (b, T̄ ), we compute the reduced x 2, i.e.,

½D 2 gðM�’ :C21
d

: ½D 2 gðMÞ� in equation (10), as shown in the right-hand panel of Fig. 5. The value of (bt, T̄t) is shown by a white cross.

The (b, T̄) plane is divided into two regions separated by a straight borderline, one with x 2 @ 1 (corresponding to large values of T̄) and the

other one with x 2 # 1. This arises because the absorption lines are indeed thermally broadened and resolved. When �T . �Tt, the absorption

features in the data are narrower than the model and cannot be fitted anymore.

As expected, the real parameters stand on the borderline between convergence and divergence: these parameters correspond to a good

fit. We cannot however distinguish – using a x 2 criterion – between pairs of (b, T̄ ) on this borderline. Even though the degeneracy is not

completely lifted, this analysis provides a complementary method to the standard techniques of Voigt profile fitting (see Schaye et al. 1999

and Ricotti et al. 2000) to measure the mean properties of the IGM and its cosmological evolution. The application of our method to real data

is developed to a companion paper (Rollinde, Petitjean & Pichon, submitted).

Note finally that, for close enough LOSs (e.g., multiple lensed QSO images) we might in theory be able to investigate the small-scale 3D

properties of the IGM, while accounting for thermal broadening.

Figure 5. Left-hand panels: Inversion using different equations of state. The upper panel shows a portion of simulated spectrum through S. The equation of

state used corresponds to equation (3) with �T ¼ �Tt ; 104 K, b ¼ bt ; 0:2. Peculiar velocities are not considered. The lower panel shows the simulated density

as black dots. The density recovered using the same equation of state is plotted as a solid line; it is apparent that even the internal structure of absorption blends

is recovered. Other curves correspond to the results of inversions using various lower values of T̄ at fixed b ¼ 0:2. The effect of lowering T̄ is to give smaller

values for reconstructed density with a reduced x 2 , 1. If, on the contrary, �T . T t, one obtains x 2 @1. Right-hand panel: Map of convergence ðx 2 , 1Þ or

divergence ðx 2 @ 1Þ for inversions using equation (30) with different values of T̄ and b. The LOS is the same as in the left-hand panels.
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5.4 Redshift distortion

Recall that in this section, for the sake of simplicity, we assume that the equation of state of the IGM is known.

There are several issues to address here. The optical depth along a bundle of LOSs does not constrain uniquely the corresponding

velocity field. This would require the knowledge of the full 3D density distribution, together with the assumption that linear dynamics

applies. Thus we first investigate how increasing the number of measured LOSs, or changing the mean separation between them, improves

the likelihood of the corresponding realization of the constrained velocity field for a given density field along the bundle (Section 5.4.1). We

then turn to the problem of deconvolving the optical depth in real space, but conduct a preliminary analysis on a single LOS. We test two

approaches. The first approach is a strong prior inversion (Section 5.4.2), i.e., it relies on the Bayesian formalism, while assuming that the

velocity field takes its most likely value. The second method allows the velocity field to float around this most likely value (Section 5.4.3).

Finally, we discuss the limitations of the present work and possible improvements (Section 5.4.4).

Let us briefly describe the filters and correlation function involved. Fig. 6 (left-hand panel) displays the 3D correlation function,

Cvd(x, x’), measured in simulation S. It is antisymmetric along the LOS, and symmetric orthogonally. The top right panel shows the 1D filter,

K (v )(x, y ) (equation 14 with ‘ ¼ ‘0 ¼ L ¼ 1Þ, which was in practice computed according to the prescription sketched in Appendix B. This

antisymmetric filter presents two characteristic scales: a strong peak at <2 Mpc (comoving) and broad wings up to <20 Mpc. This implies

that the most likely velocity at a given point will depend on the local density and also significantly on the density further away (up to

<20 Mpc). Transversally, the shape of the 3D cross-correlation function, Cvd(x, x’), which vanishes near the line x ¼ 0, implies that the

density away from a given point will dominate the local velocity field.

5.4.1 Most likely velocity versus LOS separation and the number of LOSs

In this subsection we assume temporarily that the log-density field is known along a bundle of LOSs. In the framework of constrained mean

field (Section 3.2), equation (14) gives the relationship between the most likely velocity along a given bundle of LOSs and the corresponding

log-density.

Figure 6. Left-hand panel: the 3D correlation function, Cvd(x,x’), measured in simulation S. Top right panel: the filter K (v ) required to compute the most likely

velocities along one LOS (equation 14 with ‘ ¼ ‘0 ¼ L ¼ 1Þ. The width of the filter shows that the peculiar velocity has two natural scales, as discussed in the

main text. Bottom right panel: the 1D LOS correlation functions: top subpanel: log(Cdd); middle subpanel: Cvv; bottom subpanel: Cdv.
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Let us define the quality factor, Q, as

Q ;
svp

sdvp

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kv2

pl
kðvp 2 vrecÞ

2l

s
; ð32Þ

where vrec is the reconstructed velocity. Parameter Q measures the inverse residual misfit in units of the variance for the velocity. We show in

Fig. 7 (top left panel) that this number increases with the number of LOSs sampling the sky, as expected. However, Q increases as well with

the distance between LOSs until it reaches a maximum, which might sound confusing. This can be easily understood by examining the left-

hand panel of Fig. 6. In fact, a bundle of LOSs constrains the transverse 3D velocity distribution at intermediate scales, as a result of a

competition between short-range and long-range correlations.

(i) High-frequency structures are read from the LOS through the two strong peaks along the x coordinate axis in the left-hand panel of Fig. 6

(at approximately ^0.8 Mpc). Other LOSs can in principle contribute to small scales, but only if they are found very close to the LOS of

interest (i.e., with x’ . 0Þ.

(ii) Low 3D frequency features are mainly sampled by LOSs away from the LOS of interest, due to the significant tails present on Cvd at

scales as large as , 20 Mpc, as illustrated by the top right panel of Fig. 6. This effect is three-dimensional, i.e., in all directions: it thus

provides information on the structures transverse to the LOS.

(Note that in this discussion, we implicitly assumed that Cdd . identity in equation 14. Taking into account the real contribution of matrix

C21
dd would simply boil down to smoothing the density with an isotropic filter, which has no effect on our qualitatives conclusions.)

The competition between effects (i) and (ii) fixes an optimal separation between the LOSs as a function of their number. From the top

Figure 7. Top left panel: quality of the reconstruction (equation 32) versus LOS separation and the number of LOSs. Increasing the sampling on the sky

decreases the dispersion between the constrained most likely velocity and the measured velocity as discussed in the text. Note the saturation for 11 � 11 LOSs

at a separation of . 5 Mpc. Top right panel: isocontour for the quality of the reconstruction projected on the sky for a bundle of 11 � 11 LOSs, separated by

2.4 Mpc comoving. Note that the reconstruction obviously works better for the central LOSs. Bottom left panel: in simulation B, most likely velocity

constrained by a single LOS. The solid line on the upper subpanel corresponds to simulated velocity, and the dashed one to the reconstructed velocity. The

simulated density is displayed in the lower subpanel. Bottom right panel: solid lines: simulated velocities along the centre of a bundle of 5 � 5 LOSs or 11 � 11

LOSs; dashed lines: corresponding recovered velocities.
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left panel of Fig. 7, we see, for example, that the optimal separation is 5 Mpc for a bundle of 11 � 11 LOSs. For a bundle with a smaller

number of LOSs, the optimal separation becomes larger, so that the tails of Cvd are still fully sampled (but with a sparser binning and thus a

smaller quality factor).

The bottom right and left panels of Fig. 7 compare the velocity along one LOS measured in the simulation to the reconstructed one by

applying equation (14) to bundles of various sizes ð1 � 1, 5 � 5 and 11 � 11Þ distributed uniformly on the sky (from simulation B), with a

mean separation of 2.5 Mpc. With only one LOS, the reconstructed velocity does not account in detail for small structures, although it seems

to match well large-scale flows in the example studied here. Increasing the number of LOSs significantly improves the reconstruction: with a

bundle of 11 � 11 LOSs, the reconstruction almost perfectly matches the simulation.

An important outcome of this analysis is that since the optimal separation between LOSs is rather large (a few Mpc), the small-scale

information in the reconstruction is only contained in the LOS of interest. Therefore, having high-resolution spectra on all the LOSs is not

required: a survey dedicated to real-space reconstruction should provide a high-resolution spectrum together with a set of low-resolution

spectra separated by distances smaller than or of the order of < 4–5 Mpc comoving. Note that Q was computed while averaging over the

whole bundle: the quality of the reconstruction in fact depends on the position of the LOS in the bundle, as illustrated in the top right panel of

Fig. 7. Obviously, the quality factor is optimal at the centre of the bundle: the high-resolution spectrum should be located there.

We assumed here that the 3D covariance matrices needed for the reconstruction were known. In fact, we used the best possible guess for them,

since they were derived from direct measurement in the simulation. In reality, we would have to proceed iteratively: for a given power spectrum, we

could recover the 3D density, compute perturbatively the corresponding 3D velocity field, and derive a new covariance matrix until convergence is

achieved. We have not demonstrated here that this procedure is convergent. This is certainly a possible shortcoming of the procedure.

5.4.2 Strong prior inversion

Let us now try to deconvolve the density in real space along one LOS. A combination of the general Bayesian method and the constrained

mean field technique is implemented: the constrained mean field method allows us to relate the unknown field vp to g, imposing that the

peculiar velocity takes its most likely value, but the recovery of g is still based on the Bayesian method. Our model, gi(g ), is now

giðgÞ ¼ Að�zÞc1

ð11

21

{D0ðxÞ exp½gðxÞ�}a2bexp 2c2

½wi 2 x 2 vpðxÞ�
2

{D0ðxÞ exp½gðxÞ�}2b

� �
dx; ð33Þ

with the supplementary assumption that the peculiar velocity in equation (33) equals the most likely velocity (Appendix B):

vpðxÞ ¼ kvl ;
ð

K ðvÞðx; yÞgðyÞ dy; where K ðvÞðx; yÞ;
1

2p

ð
eikxðx2yÞ Pvd;1DðkxÞ

Pdd;1DðkxÞ
dkx: ð34Þ

The unknown parameter remains the density contrast. The prior for the density is chosen as D0 ; 1 so that g ¼ d. For the filter K (v )(x, y ) we

use a simple analytic fit of the function K (v )(x, y ) measured in the simulation as explained in Appendix B1.1. The derivation of the different

vectors and matrices involved in this case is sketched in Appendix D2.1. The practicalities involves fixing appropriately the parameters

ðsg; jxÞ in equation (27) ðjT ; 1 for a single LOS) for the minimization procedure detailed in Appendix A to converge while providing as

accurate reconstruction as possible. To stabilize the inversion, we need to take for jx a value close to the correlation length, jx ¼ 1 Mpc. With

a larger value of jx, the inversion is still stable but makes the reconstructed density field too smooth, while a smaller value of jx makes the

inversion unstable. The choice of sg, which fixes the amount of variations allowed around the prior, is more delicate. A small value of sg

makes convergence easier, but does not leave enough freedom for the reconstructed density to float around the prior: voids tend to be filled,

and high density peaks are not saturated. On the contrary, a large value for sg allows significant deviations from the prior but makes the

iteration procedure less stable. For this reason, the reconstruction is carried out in two steps. We first take a small value for sg ¼ 0:0175, and

reconstruct the density while using equation (34) to determine accurately the most likely velocity. Because of our choice of sg, the

reconstructed density is not as contrasted as it should be, but this does not affect significantly the corresponding most likely velocity: it just

makes it smoother. In the second step, we fix the most likely velocity at the value obtained from the first step. Thus equation (34) is

disregarded, and we iterate once more on the density with a larger value of sg, sg ¼ 0:2, allowing more variations of the density around the

new prior – the reconstructed density obtained from the first step. The fact that the most likely velocity is fixed indeed makes the inversion

more stable and allows larger values of sg.

Fig. 8 illustrates how the method performs on two unsaturated LOSs: the first isolated and the latter nearby a cluster. The simulated

spectra assume A ¼ 0:39, b ¼ 0:4, �T ¼ 104 K, and were calculated after smoothing the density and velocity fields with a cube of size

, 200 kpc (2 cells). The errors in the data are modelled as described in Section 5.2.2 with ðS/N;s0Þ ¼ ð100; 0:05Þ in equation (29). As

expected, the reconstructed velocity matches the original only when there is no significant structure close to the LOS, likely to induce large-

scale infall contamination. The bottom panels of Fig. 7 show that the reconstructed density reproduces well the shape of most structures,

except that they are not correctly located along the velocity axis in the bottom right panel.

Note that our two-step procedure is similar in spirit to that proposed by Nusser & Haehnelt (1999a), although we use same smoothing

length jx in both steps, which allows more small-scale features on the reconstructed density. Also, our method is not yet able to deal with

spectra containing significantly saturated absorption lines: in that case, the inversion is much less stable and the reconstructed most likely

velocity is often unrealistic, even if the LOS is isolated. Finally, we assumed that the kernel function K (v )(x, y ) was known, which should not
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be the case in reality: a more detailed study of the effects of the assumed shape for this function will be needed in the future to fully qualify the

method.

5.4.3 Floating prior for the velocities

A less biased representation of the underlying field would be to assume that g and vp are two fields which are statistically correlated (by the

dynamics) but whose realizations are independent. The model is formally identical to equation (33), with the restriction that vp does not obey

equation (34) anymore. The vector of the model parameters is: M ¼ ½gðxÞ; vpðxÞ�. The correlation between g and vp, Cvg, is considered to be

linear. Recall that the prior variance–covariance matrix, C0, has three independent terms, shown in the bottom right panel of Fig. 6:

C0 ¼
Cgg Cvg

C’
vg Cvv

 !
: ð35Þ

The penalty function then obeys equation (22), and realizations of the velocity field are entitled to float around their most likely values,

equation (14). The corresponding model, g, is sketched in Appendix D2.2. The iterative procedure presented in Appendix A brings the

reduced x 2 down from values of about a 100 to 1 ^
ffiffiffiffiffiffiffiffi
2/N
p

in a few iterations, but does not converge if peculiar velocities induce

displacements larger than the effective width of the absorption lines. Even though the weak prior inversion is more elegant and easier to

implement than the strong prior approach (cf. Appendix D2.2), it seems to fail to constrain sufficiently our model when redshift distortion is

important. This arises because the effective correlation in equation (22) is too weak to induce convergence.

5.4.4 Discussion

A priori, the best approach for reconstructing the density in redshift space would be to use the explicit Bayesian method with a floating prior

for the velocity described in Section 5.4.3. However, our preliminary analyses show that this method fails to converge when applied to one

LOS if redshift distortion becomes of the order of the width of absorption lines, which is unfortunately the case in realistic situations. The

strong prior inversion of Section 5.4.2, tested again on one LOS, seems to be more reliable, but gives accurate reconstruction only if the

considered LOS is unsaturated and is isolated from large structures. The only reliable way to improve the reconstruction is therefore to have

more information on the 3D structure of the IGM through bundles of LOSs, as studied in Section 5.4.1. The difference between Sections 5.4.3

and 5.4.2 would then vanish, since the discrepency between the most likely velocity and the actual field becomes smaller and smaller, while

the correlation between the density and the velocity becomes simultaneously tighter and tighter. However, we have not explicitly tested the

methods of Sections 5.4.2 and 5.4.3 on several LOSs: this is left for future work.

Figure 8. Inversion while accounting for peculiar velocity with strong prior. Simulation S is used to test the method. Two examples are considered, according

to whether there is a large structure near the LOS or not (respectively right and left panels). Top panels: the simulated spectra. Middle panels: the simulated

(solid line) and most likely (dotted line) peculiar velocity along the LOS. Bottom panels: the simulation (solid line) and reconstructed (dotted line) log-density

(in log10 units).
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6 C O N C L U S I O N S

In this paper an explicit Bayesian technique and a constrained mean field method have been proposed to recover various properties of the

intergalactic medium from observations of the Lyman a forest along LOSs to quasars. In particular, our preliminary analyses suggest that

these methods may be used (i) to recover the large-scale 3D topology of the IGM from inversion of a network of adjacent LOSs observed at

low spectral resolution, (ii) to constrain the physical characteristics of the gas from inversion of single LOSs observed at high spectral

resolution, (iii) to investigate how the number of, and the distance between, LOSs constrain the projected peculiar velocities, and (iv) to

correct in part for redshift distortions induced by these velocities using either strong or weak priors.

Both approaches rely on prior assumptions on the covariance of the log-density field and the cross-correlation between the log-density

field and the peculiar velocity field.

These methods are used in various régimes: as extrapolation tools to recover the 3D structure of the IGM, as non-linear deconvolution

tools to correct for blending, as non-parametric field extractors, and as model fitting routines to constrain the parameters of the equation of

state.

We have demonstrated (Section 3.3) that as far as extrapolation is concerned the standard constrained mean field interpolation scheme

could be viewed as a specific linear subcase of the Bayesian inversion scheme presented in Section 3.1. The method presented in Section 3.1

is therefore complementary to, and more general than, standard constrained mean field techniques: it can also cope with thermal broadening

and finite S/N, in a manner similar to Wiener filtering, but allows for non-linear models and non-zero mean priors. The correlation functions

required for the prior need not be measured in the simulations, and can be postulated. It is more flexible, since some level of redshift distortion

can in principle be corrected for using the full 3D information along the bundle (although we did not demonstrate it explicitly in this paper). It

is well suited for this kind of problems, since it deals directly with unknown continuous fields (i.e., the parameter space is the Hilbert space

L2; see, e.g. equation D16). In contrast with the Lucy–Richardson algorithm, regularization is built in.

We have shown that temperature inversion is degenerate with respect to two parameters describing the equation of state of the gas, the

temperature scalefactor T̄ and the effective polytropic index b.

Recall that we have assumed in this paper the correlation matrices of the log density to be fixed a priori, together with the cross-

correlation of the log density and the velocities when dealing with peculiar velocities. When the method is applied to real data, we will

proceed iteratively and recompute these (cross-)correlations once the 3D reconstruction is achieved. We expect this procedure to converge,

and that the convergence limit will not depend too strongly on the initial prior.

A thorough analysis of the various biases involved in the methods presented here is postponed to a companion paper, which will

investigate statistically the properties of the reconstructed fields and the degeneracies involved in recovering the density and the temperature,

while relying on numerical hydrodynamical simulations. Since this inversion method relies on existing cross-correlation between the density

and the velocity fields, it should still be applicable on scales where dark matter dynamics is less relevant, so long as such correlations exist.

We have left aside for now the simultaneous true 3D deconvolution of both the temperature and the peculiar velocities.
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A P P E N D I X A : M I N I M I Z AT I O N P R O C E D U R E

In this section we sketch an iterative procedure leading to the optimization of the posterior probability of the model for a given data set in

equation (10). The minimum of the argument of the exponential in equation (10) is shown by a simple variational argument (Tarantola &

Valette, 1982a,b) to obey the implicit equation

kMl ¼ M0 1 C0
:G’ : ðCd 1 G :C0

:G’Þ21 : ½D 1 G : ðkMl 2 M0Þ2 gðkMl�; ðA1Þ
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with G, the matrix of partial derivatives:

G ¼
›g

›M

� �
: ðA2Þ

This minimum is found using an iterative procedure:

M½k11� ¼ M0 1 C0
:G’
½k�

: ðCd 1 G½k� :C0
:G’
½k�Þ

21 : ½D 1 G½k� : ðM½k� 2 M0Þ2 gðM½k��; ðA3Þ

where subscript [k ] refers to the iteration order. In this scheme the minimum corresponds to ~M ¼ M½1�; and in practice is found via a

convergence criterion on the relative changes between iteration [k ] and ½k 1 1�. For the sake of numerical efficiency, rather than inverting

ðCd 1 G½k� :C0
:G’
½k�Þ, we solve for the vector W[k ] satisfying

S½k� :W½k� ¼ ½D 1 G½k� : ðM½k� 2 M0Þ2 gðM½k�Þ; where S½k� ¼ Cd 1 G½k� :C0
:G’
½k�; ðA4Þ

and iterate:

M½k11� ¼ M0 1 C0
:G’
½k�

:W½k�: ðA5Þ

From now on, we drop the subscript [k ]. Once the maximum of equation (10) has been reached, an approximation of the internal error

made on the parameter estimation is derived from a second-order development of the posterior distribution function in the vicinity of the

solution:

CM ¼ C0 2 C0
:G’ :S21 :G :C0: ðA6Þ

The high spatial frequency fluctuations are lost in the inverse process because of limited resolution and finite S/N. The prior correlation

function therefore plays an important role to transform an ill-posed problem into an invertible one. How is the density information degraded

in the spectra? This question can be addressed via the resolving kernel, R, introduced for the first time by Backus & Gilbert (1970) and which

gives the spread of the density estimation at a given position. Suppose that we know the true model, Mtrue. The data can be written:

D ¼ gðMtrueÞ. Approximating locally operator g near its minimum as a linear operator, equation (A1) yields:

kMl 2 M0 ¼ C0
:G’ :S21 :G : ðMtrue 2 M0Þ; R : ðMtrue 2 M0Þ; ðA7Þ

which defines the resolving kernel R(x, x0) as a low-bandpass filter.

A P P E N D I X B : C O N S T R A I N T S , M E A N F I E L D S A N D M U LT I P L E L I N E O F S I G H T S

As a thought experiment, let us assume that we know the density contrast d on n points and ask what the corresponding most likely velocity

(or density) at points labelled k ¼ 1…p, 4k is. We shall not assume that the densities d1;…; dn are necessarily along the same LOS, nor that

the quantity 4k is sought along any of these. Let X ¼ ½41;…;4p; d1; ; dn�. We define

C ;

k4141l … k414pl k41d1l … k41dnl

..

.
] ..

. ..
.

] ..
.

k414pl … k4p4pl k4pd1l … k4pdnl

k41d1l … k4pd1l kd1d1l … kd1dnl

..

.
] ..

. ..
.

] ..
.

k41dnl … k4pdnl kd1dnl … kdndnl

26666666666666664

37777777777777775
;

Cww Cwd

C’
wd Cdd

" #
; ðB1Þ

so that Cww is the p � p autocorrelation matrix of the sought field, Cdd is the n � n autocorrelation matrix of the known density field, and Cwd is

the p � n cross-correlation matrix of the sought field with the density field. The joint probability of achieving velocity 4k and density profile

d1;…; dn is given by

pðXÞ dn1pX ¼ pð41;…;4p; d1;…; dnÞ d41…d4p dd1…ddn ¼ exp 2
1

2

X
a;b¼1…n1p

ðC 21Þa;bXaXb

" #( )
dn1pXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞn1pdet|C|
p :

The argument of the exponential can be rearranged as

ð4; dÞ’ :
Cww Cwd

C’
wd Cdd

" #21

: ð4; dÞ ¼ ð4 2 Cwd
:C21

dd
: dÞ’ : ðCww 2 Cwd

:C21
dd

:C’
wdÞ

21 : ð4 2 Cwd
:C21

dd
: dÞ1 rest ðB2Þ

where ‘rest’ stands for terms independent of 4; ð41…4pÞ. Applying Bayes’s theorem, the conditional probability of 4, given the density
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profile ðd1;…; dnÞ, obeys

pð41;…;4p|d1;…; dnÞ d41…d4p ¼ pð41;…4p; d1;…; dnÞ/pðd1;…; dnÞ d41…d4p;

which in turns implies that

pð41;…;4p|d1;…; dnÞ/exp 2
1

2
ð4 2 Cwd

:C21
dd

: dÞ’ : ðCww 2 Cwd
:C21

dd
:C’

wdÞ
21 : ð4 2 Cwd

:C21
dd

: dÞ
� 	� �

;

since pðd1;…; dnÞ is independent of 4. The maximum of the conditional probability is therefore reached for k4l given by

k4l ¼ Cwd
:C21

dd
: d: ðB3Þ

Appendix B1 Peculiar velocity–density relation

Let us now be more specific about 4k and assume, in this subsection, that we are seeking the most likely peculiar velocity field, vk, where we

dropped the subscript p referring to ‘peculiar’.

Appendix B1.1 One line of sight

Recall that nothing has been said about the relative position of the di and the vk at this stage. Let us now assume for a while that the subscript i

refers to a regular ordering along the LOS, so that di ¼ dðiDxÞ, and vi ¼ vðiDxÞ. Let us also introduce the intermediate field,

u ¼ ðuiÞi¼1…n ; C21
dd

: d, so that equation (B3) reads

kvl ¼ Cvd
: u; d ¼ Cdd

: u: ðB4Þ

Multiplying both sides of equation (B4) by Dx, we getX
j

ðCvdÞi;jujDx ¼
X

j

u½jDx�kv½jDx�d½ði 2 jÞDx�lDx ¼ kv½iDx�lDx;

X
j

ðCddÞi;jujDx ¼
X

j

u½jDx�kd½jDx�d½ði 2 jÞDx�lDx ¼ d½iDx�Dx: ðB5Þ

In the limit of Dx going to zero, equation (B5) readsð
kdðx 2 x0Þvðx0Þluðx0Þ dx0 ¼ kvðxÞlDx and

ð
kdðx 2 x0Þdðx0Þluðx0Þ dx0 ¼ dðxÞDx: ðB6Þ

Transforming equation (B6) in Fourier space leads to

k~vlðkxÞ ¼
Pvd;1DðkxÞ

Pdd;1DðkxÞ
~dðkxÞ; ðB7Þ

where Pdd,1D(kx) and Pvd,1D(kx) are respectively the 1D density power spectrum and the 1D mixed velocity density power spectrum, while

d̃(kx) and k~vlðkxÞ are the Fourier transform of d(x ) and kvlðxÞ respectively. Here the 1D power spectra satisfy

Pdd;1DðkxÞ ¼

ð
P3DðkÞW JðkÞ d

2k’ and Pvd;1DðkxÞ ¼

ð
P3DðkÞkx

k2
x 1 k2

’

W JðkÞ d
2k’; ðB8Þ

where P3D(k ) is the 3D power spectrum of the density contrast, while WJ(k ) is a window function whose characteristic scale RJ should be the

Jeans length, but is chosen here to be the maximum of the Jeans length and the sampling scale. Indeed, below this latter scale no information

is to be derived from the data. Note that the direct inversion of equation (B3) may lead to significant aliasing if the power spectrum has energy

beyond the cut-off frequency 1/RJ. The power spectrum ratio in equation (B7) is an antisymmetric filter which relates the most likely velocity

field to a given density field in linear theory.

Equation (B7) can be transformed back into real space as

kvlðxÞ ¼
ð

K ðvÞðx; x0Þdðx0Þ dx0; where K ðvÞðx; x0Þ;
1

2p

ð
eikxðx2x0 Þ Pvd;1DðkxÞ

Pdd;1DðkxÞ
dkx: ðB9Þ

This filter is illustrated in Fig. 6. Equation (B9) could be used to derive K (v )(x, x0) from perturbation theory in the weakly non-linear régime

given an initial power spectrum. In practice, this filter is constructed here from the simulation in the following manner: for each LOS in the
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simulation, we compute the FFT of the overdensity and of the velocity; we multiply one by the complex conjugate of the other, and repeat the

operation on the whole box; we then average over the box (using a bundle of 60 � 60 LOSs) and FFT-transform back in real space: this yields

equation (B9).

Appendix B1.2 Multiple lines of sight

Let us now turn to the more general problem of multiple LOSs. How can we take advantage of larger scale information on multiple LOSs to

constrain the velocity along the measured LOSs ?

To conduct the calculation which follows, we order the d1;…; dn, where n ¼ Lp, so that the first p corresponds to the first LOS, the next p

to the second LOS, and so on for the ‘ ¼ 1…L LOSs. Our purpose here is to account for the fact that in realistic situations, the LOSs

distribution on the sky is not necessarily uniform and that the volume covered by all LOSs is rather elongated (i.e., L ! pÞ. For the sake of

numerical efficiency, we Fourier-transform along the longitudinal direction and are left with a matrix representation for the two transverse

dimensions. We write each block in Fourier space in terms of the corresponding 1D power spectra (this is possible since both Fourier

transform and matrix multiplication are linear operations, which therefore commute when applied on different directions); following the

derivation of equation (B7) we find

k ~vl ¼ ~J : ~D21 : ~d; ðB10Þ

where

~D;

P11
dd
ðkxÞ … P1L

dd
ðkxÞ

..

.
] ..

.

P1L
dd
ðkxÞ … PLL

dd
ðkxÞ

266664
377775; ~J;

P11
vd
ðkxÞ … P1L

vd
ðkxÞ

..

.
] ..

.

P1L
vd
ðkxÞ … PLL

vd
ðkxÞ

266664
377775; ðB11Þ

and k ~vl ¼ ½~v 1ðkxÞ;…~v LðkxÞ�, ~d ¼ ½ ~d
1ðkxÞ;… ~dLðkxÞ�, where the superscript refers to the L LOSs. Here

P‘‘0

dd
ðkxÞ ¼

ð
exp ðik’

: {x’;‘ 2 x’;‘0}ÞP3DðkÞW J; �RðkÞ d
2k’; ðB12Þ

P‘‘0

vd
ðkxÞ ¼

ð
exp ðik’

: {x’;‘ 2 x’;‘0}ÞW J; �RðkÞ
P3DðkÞkx

k2
x 1 k2

’

d2k’: ðB13Þ

The window function, WJ,R̄(kx, k’) involves two scales: the longitudinal Jeans length and the transverse mean inter-LOS separation, R̄. The

latter filtering is required to apodize the inversion. Note that P‘‘

dd
ðkxÞ ¼ Pdd;1DðkxÞ and P‘‘

dv
ðkxÞ ¼ Pdv;1DðkxÞ are given by equation (B8).

Equation (B10) reads back into real space:

v‘0 ðxÞ ¼
X

‘

ð
K‘0‘ðx; x

0Þd‘ðx
0Þ dx0; where K‘0‘ðx; x

0Þ;
1

2p

ð
eikxðx2x0 Þð ~J : ~D21Þ‘0‘ dkx; ðB14Þ

where the matrix ~J : ~D21 is given in equation (B11). In practice, this filter is also constructed here from the simulation following the

prescription sketched above: for each bundle of LOSs in the simulation, we compute the FFT of the log density and of the velocity; we

multiply one bundle by the complex conjugate of the other, and repeat the operation on the whole box; we then average over the box (using a

bundle of 20 � 20 LOSs): this yields the matrix (B11). The matrix multiplication in equation (B14) is carried Fourier mode by Fourier mode,

while the inverse Fourier transform is done by FFT.

Appendix B2 3D density–LOSs density relation

Let us now assume that 4k refers to the 3D density on a grid of P points at the point xl ¼ ðx’;l; xlÞl¼1…P. No restriction on the location of xl
along the LOSs applies here. Under these assumptions, the above section translate as:

kd ð3DÞlðxlÞ ¼
X

‘

ð
Kð3DÞ

l‘ ðxl; x
0
‘Þd‘ðx

0Þ dx0; where Kð3DÞ
l‘ ðxl; x‘

0Þ;
1

ð2pÞ3

ð
exp½ik : ðxl 2 x‘

0Þ�ð ~J3D
: ~D21Þl‘ d3k ðB15Þ

with D̃ obeying equation (B11) and

~J3D ¼

P11
3D
ðkxÞ … PL1

3D
ðkxÞ

..

.
] ..

.

P1P
3D
ðkxÞ … PLP

3D
ðkxÞ

266664
377775; given P‘l

3D
ðkxÞ ¼

ð
exp ðik’

: {x’;‘ 2 x’;l}ÞP3DðkÞW J; �RðkÞ d
2k’: ðB16Þ

We check that when we consider a point on the LOSs, x ¼ ðx’;‘; xÞ, Kð3DÞ
l‘ ðx; x

0Þ ¼ dDðx 2 x0Þ ~d
l

‘, where ~d
l

‘ stands for the Kronecker symbol.
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A P P E N D I X C : P R O P E RT I E S O F T H E S I M U L AT I O N

Note from Table 1 that the simulation boxes are rectangular. This long-box technique might be questionable. Indeed, the number of modes

available in Fourier space is different along each coordinate axis. This anisotropic mode sampling contaminates the simulation, and the effect

augments with the ratio between the largest and the smallest side of the box.

One way to test, at least partly, the quality of our N-body experiments is to compare second-order statistics measured in the simulations

to theoretical predictions, as illustrated by Fig. C1. The left-hand panel shows the measured power spectrum, PðkÞ ¼ k|dk |2l, in the density

field smoothed with the procedure described in Section 4. Agreement with linear theory is appropriate at large scales, as expected. For

comparison, we also plot the result obtained from the non-linear Ansatz of Hamilton et al. (1991) optimized for the power spectrum by

Peacock & Dodds (1996). The overall agreement between measurements and non-linear theory is quite good, except at large values of k in

both simulations. This is mainly the effect of the grid, and to a lesser extent a consequence of the adaptive Gaussian smoothing. Indeed, any

procedure inferring on a grid a density from a particle distribution implies some smoothing with a window of approximately the mesh cell

size. This induces large-k damping of the power spectrum. Here, the smoothing is not well defined, but most of the particles are in dense

regions, due to non-linear clustering, and therefore the corresponding smoothing length, ‘, is likely to be much smaller than the grid size.

Thus, for most particles, all the contribution to the density is given to the nearest grid point (NGP). As a result, the Gaussian adaptive

smoothing has a damping effect quite close, though slightly larger, to top-hat smoothing with a mesh cell (at least for sufficiently evolved

stages). This is illustrated by middle panel of Fig. C1, which shows the power spectrum after correction for damping due to NGP assignment.

Most of the missing power is recovered, as expected, and the agreement with theory is much improved. Note that the triangles tend to be

slightly above the solid curve in the neighbourhood of log10k . 0:4. This irregularity is not surprising, given the small physical size of

simulation S. It is probably associated with a rare event, for example an atypical cluster, although this does not show up significantly in Fig. 1.

The right-hand panel of Fig. C1 shows the real-space counterpart of the power spectrum. More precisely, it displays the variance of the

smoothed density field with a sphere of radius ‘ as a function of ‘. To measure it, we computed the density from the particle distribution on a

grid twice thinner than the one used to do the simulation, using the cloud-in-cell method (CIC) (e.g. Hockney & Eastwood 1981). Then we

corrected for CIC damping and smoothed with the top-hat window of size ‘ in Fourier space. Finally, back in real space, the variance of the

density field was computed with the appropriate corrections for discreteness (e.g. Peebles 1980), i.e., s 2 ¼ kd 2l 2 1/ �N, where N̄ is the

average particle count in a cell of radius ‘. The scale range considered was lg # ‘ # L/4, where L is the smallest dimension of the box and

lg the spatial resolution of the simulation. As can been seen in Fig. C1, the agreement with theoretical predictions is quite good, even at

‘ . lg, although the effect of softening of the forces is slightly felt at this point. Note also that the triangles are somewhat shifted up

compared to the non-linear Ansatz (except at very large scales, where finite-volume-effect contamination reduces the value of s 2; e.g.

Colombi, Bouchet & Schaeffer 1994), as already noticed for the power spectrum.

A P P E N D I X D : I M P L E M E N TAT I O N O F T H E I N V E R S E M E T H O D

Appendix D1 Neglecting peculiar velocities

Appendix D1.1 High-resolution spectra

When the spectral resolution is higher than 100 km 21, thermal broadening cannot be neglected and our model reads

gi‘ðgÞ ¼ Að�zÞc1

ð ð ð11

21

{D0ðx; x’Þ exp½gðx; x’Þ�}
a2b exp 2c2

ðwi‘ 2 xÞ2

{D0ðx; x’Þ exp½gðx; x’Þ�}2b

� �
dx

� �
dDðx’ 2 x’‘Þ d

2x’; ðD1Þ

Figure C1. Left-hand panel: the power spectrum measured at z ¼ 2 in the S (filled triangles) and B (open squares) simulations after adaptive smoothing, in

logarithmic coordinates (wavenumber k is expressed in Mpc21). It is compared to linear theory (dots) and to non-linear Ansatz of Peacock & Dodds (1996, solid

curve). Middle panel: same as left-hand panel, except that a correction for NGP damping was applied to the data prior to measurement of P(k ). Right-hand panel:

the variance of the smoothed density field with a spherical cell of radius r is shown in logarithmic coordinates as a function of r, as explained in the text.
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where a, A(z̄ ), c1, c2, b, D0(x, x’) and wi‘ are defined in equations (3)–(7) and equation (25). Since the model, M ; gðx; x’Þ is a continuous

field, we need to interpret equation (6) in terms of convolutions, and functional derivatives. In particular, the matrix of partial functional

(Fréchet) derivatives, G, has the following kernel:

ðGÞi‘ðx; x’Þ;
›gi‘

›g

� �
ðx; x’Þ ¼ Að�zÞc1D

a2b
0 ðx; x’Þ exp ½ða 2 bÞgðx; x’Þ�Bi‘ðx; x’ÞdDðx’ 2 x’;‘Þ; ðD2Þ

with dDðx’ 2 x’;‘Þ the Dirac delta function accounting for the singular distribution of LOSs, and

Bi‘ðx; x’Þ ¼ {ða 2 bÞ1 c22bðwi‘ 2 xÞ2D
22b
0 ðx; x’Þ exp½22bgðx; x’Þ�}Bi‘ðx; x’Þ; ðD3Þ

where

Bi‘ðx; x’Þ ¼ exp 2c2

ðwi‘ 2 xÞ2

{D0ðx; x’Þ exp½gðx; x’Þ�}2b

� �
: ðD4Þ

The operator, G, defined by equation (D2) contracts over a given field, h, as:

ðGÞil :h ¼

ð
Að�zÞc1D

a2b
0 ðx; x’Þ exp½ða 2 bÞgðx; x’Þ�Bi‘ðx; x’;‘Þhðx; x’;‘Þ dx: ðD5Þ

Appendix D1.2 Low-resolution spectra

At low spectral resolution, the model spells

gi‘ðgÞ ¼ Að�zÞ

ð ð ð
ðD0ðx; x’Þ exp½gðx; x’Þ�Þ

adDðx 2 wi‘ÞdDðx’ 2 x’;‘Þ dx d2x’; ðD6Þ

which corresponds to the limit c2!1 in equation (D1). The kernel of partial functional derivatives G obeys

ðGÞi‘ðx; x’Þ ¼ Að�zÞaDa
0 ðx; x’;‘Þ exp½agðx; x’;‘Þ�dDðx 2 wÞdDðx’ 2 x’;‘Þ: ðD7Þ

For instance, ðG :C0
:G’Þi‘;jm in equation (A1) reads

Að�zÞ2a 2Cggðwi‘;wjm; x’;‘; x’;mÞD
a
0 ðwi‘; x’;‘ÞD

a
0 ðwjm; x’;mÞ exp½agðwi‘; x’;‘Þ1 agðwjm; x’;mÞ�: ðD8Þ

Appendix D2 Implementation of the inverse method with peculiar velocities

Appendix D2.1 Strong prior: peculiar velocity equals most likely velocity

Restricting ourselves to a unique LOS, our model reads

gi‘ðgÞ ¼ Að�zÞc1

ð11

21

{D0ðxÞ exp½gðxÞ�}a2b exp 2c2

½wi‘ 2 x 2 vpðxÞ�
2

{D0ðxÞ exp½gðxÞ�}2b

� �
dx; ðD9Þ

where the peculiar velocity, vp(x ), equals the most likely velocity

kvpðxÞl ¼
ð

K ðvÞðx; yÞgðyÞ dy: ðD10Þ

The matrix of partial functional derivatives, Gi is defined by its contraction over a given field, h, as:

ðGÞi :h;
ð

GiðxÞhðxÞ dx ¼

ð
AiðxÞhðxÞ dx 1

ð
DiðxÞ

ð
K ðvÞðx; yÞhðyÞ dy

� �
dx; ðD11Þ

with

AiðxÞ ¼ Að�zÞc1D
a2b
0 ðxÞ exp ½ða 2 bÞgðxÞ�{a 2 b 1 2bc2D

22b
0 exp ½22bgðxÞ�½wi 2 x 2 vpðxÞ�}EiðxÞ; ðD12Þ

DiðxÞ ¼ Að�zÞc1D
ða23bÞ
0 ðxÞ exp ½ða 2 3bÞgðxÞ�2c2½wi 2 x 2 vpðxÞ�EiðxÞ; ðD13Þ

EiðxÞ ¼ exp 2c2

½wi 2 x 2 vpðxÞ�
2

D
2b
0 ðxÞ exp ½2bgðxÞ�

( )
: ðD14Þ

The double integration in the last term of equation (D11) arises because g is effectively a double convolution.
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Appendix D2.2 Weak prior: floating peculiar velocity

We aim to determine directly the density and the velocity, while assuming the correlations between these two quantities are known. The

model is identical to equation (D9), but the peculiar velocity does not obey equation (D10). The matrix of partial functional derivatives is

G ¼ ð›g/›g; ›g/›vpÞ. The first component of G is given by equation (D2). The kernel of the second component is computed as follows:

›g

›vp

¼ Að�zÞc1D
a23b
0 ðxÞ exp ½ða 2 3bÞgðxÞ�2c2½wi 2 x 2 vpðxÞ�EiðxÞ; EiðxÞ; ðD15Þ

where Ei(x ) is given by equation (D14). The matrix G :C0
:G’ (where MC0 is given by equation (35) is computed as follows:ð ð

½AiðxÞAjðyÞCggðx; yÞ1AiðxÞEjðyÞCgvðx; yÞ1 EiðxÞAjðyÞCvgðx; yÞ1 EiðxÞEjðyÞCvvðx; yÞ� dx dy: ðD16Þ

Note that this is a double integral to be compared to the quadruple integral involved in the computation of the equivalent term in the strong

prior method (where contraction already involves a double convolution).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT
We study the clustering properties of metals in the intergalactic medium (IGM) as traced
by 619 C IV and 81 Si IV absorption components with N � 1012 cm−2 and 316 Mg II and
82 Fe II absorption components with N � 1011.5 cm−2 in 19 high signal-to-noise ratio
(60–100 pixel−1), high-resolution (R = 45 000) quasar spectra. C IV and Si IV trace each other
closely and their line-of-sight correlation functions ξ (v) exhibit a steep decline at large sepa-
rations and a flatter profile below ≈150 km s−1, with a large overall bias. These features do
not depend on absorber column densities, although there are hints that the overall amplitude of
ξ C IV (v) increases with time over the redshift range detected (1.5–3). Carrying out a detailed
smoothed particle hydrodynamic simulation (2 × 3203, 57 Mpc3 comoving), we show that
the C IV correlation function cannot be reproduced by models in which the IGM metallicity is
constant or a local function of overdensity (Z ∝ �2/3). However, the properties of ξ C IV(v) are
generally consistent with a model in which metals are confined within bubbles with a typical
radius Rs about sources of mass �M s. We derive best-fitting values of R s ≈ 2 comoving Mpc
and M s ≈ 1012 M� at z = 3. Our lower-redshift (0.5–2) measurements of the Mg II and Fe II

correlation functions also uncover a steep decline at large separations and a flatter profile at
small separations, but the clustering is even higher than in the z = 1.5–3 measurements, and
the turnover is shifted to somewhat smaller distances, ≈75 km s−1. Again, these features do
not change with column density, but there are hints that the amplitudes of ξ Mg II(v) and ξ Fe II(v)
increase with time. We describe an analytic ‘bubble’ model for these species, which come
from regions that are too compact to be accurately simulated numerically, deriving best-fitting
values of R s ≈ 2.4 Mpc and M s ≈ 1012 M�. Equally good analytic fits to all four species are
found in a similarly biased high-redshift enrichment model in which metals are placed within
2.4 comoving Mpc of M s ≈ 3 × 109 sources at z = 7.5.

Key words: galaxies: formation – intergalactic medium – quasars: absorption lines – cosmol-
ogy: observations

1 I N T RO D U C T I O N

Pollution is ubiquitous. Even in the tenuous intergalactic medium
(IGM), quasar (QSO) absorption-line studies have encountered
heavy elements in all regions in which they were detectable (Tytler
et al. 1995; Songaila & Cowie 1996). Such analyses were limited

�E-mail: evan@kitp.ucsb.edu

at first to somewhat overdense regions of space, traced by Lyman
α clouds with column densities N H I � 1014.5 cm−2. Here measure-
ments of N C IV/N H I indicated that typically [C/H] � −2.5 at z �
3, with an order-of-magnitude scatter (Hellsten et al. 1997; Rauch,
Haehnelt & Steinmetz 1997a).

Pushing into more tenuous regions, statistical methods have
shown that unrecognized weak absorbers must be present in or-
der to reproduce the global C IV optical depth (Ellison et al. 2000),
and that a minimum IGM metallicity of approximately 3 × 10−3 Z�
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was already in place at z = 5 (Songaila 2001, hereafter S01). While
the filling factor of metals in such tenuous structures is an object of
intense investigation and debate (Schaye et al. 2000, 2003; Petitjean
2001; Bergeron et al. 2002; Carswell, Schaye & Kim 2002; Simcoe,
Sargent & Rauch 2002; Pettini et al. 2003; Aracil et al. 2004), their
very existence has profound cosmological implications.

As the presence of metals increases the number of lines available
for radiative cooling, even modest levels of enrichment can greatly
enhance the cooling rate (e.g. Sutherland & Dopita 1993), which
has the potential to accelerate the formation of massive (�1012 M�)
galaxies (e.g. Thacker, Scannapieco & Davis 2002). Furthermore,
significant pre-enrichment is necessary to reproduce the abundances
of G-dwarf stars in the Milky Way (e.g. van den Bergh 1962; Schmidt
1963) and nearby galaxies (e.g. Thomas, Greggio & Bender 1999).

Similarly, the violent events that propelled heavy elements into the
space between galaxies have important implications for the thermal
and velocity structure of the IGM (e.g. Tegmark, Silk & Evrard 1993;
Gnedin & Ostriker 1997; Cen & Bryan 2001). Outflows energetic
enough to eject metals from the potential wells of dwarf galaxies,
for example, would have exerted strong feedback effects on nearby
objects (Thacker et al. 2002). In this case the winds impinging on
pre-virialized overdense regions would have been sufficiently pow-
erful to strip the baryons from their associated dark matter, greatly
reducing the number of �1010 M� galaxies formed (Scannapieco,
Ferrara & Broadhurst 2000; Sigward, Ferrara & Scannapieco 2005).

Yet despite their many consequences, the details of how met-
als came to enrich the IGM are unclear. While numerous starburst-
driven outflows have been observed at z = 3 (Pettini et al. 2001) and
in lensed galaxies at 4 � z � 5 (Frye, Broadhurst & Benitez 2002),
it is unclear whether these objects are responsible for the majority of
cosmological enrichment. In fact, a variety of theoretical arguments
suggest that such galaxies represent only the tail end of a larger
population of smaller ‘pre-galactic’ starbursts that mostly formed at
much higher redshifts (Madau, Ferrara & Rees 2001; Scannapieco,
Ferrara & Madau 2002). On the other hand, active galactic nu-
clei are observed to host massive outflows (Begelman, Blandford
& Rees 1984; Weymann 1997), whose contribution from less lumi-
nous objects at intermediate redshifts remains unknown (e.g. Fan
et al. 2001). The impact of such lower-redshift events on the IGM is
also hinted at by the ‘stirring’ of C IV systems observed in studies of
lensed QSO pairs (Rauch, Sargent & Barlow 2001). Finally, a num-
ber of theoretical studies suggest that primordial, metal-free stars
may have been very massive (e.g. Bromm et al. 2001; Schneider
et al. 2002), resulting in a large number of tremendously powerful
pair-production supernovae, which distributed metals into the IGM
at extremely early redshifts �15 (Bromm, Yoshida & Hernquist
2003; Norman, O’Shea & Paschos 2004).

While perhaps the main feature shared by such scenarios is their
dependence on a poorly understood population of presently unde-
tectable objects, this assessment paints an overly bleak picture. Re-
gardless of which objects enriched the IGM, it is clear that they
must have formed in the densest regions of space, regions that are
far more clustered than the overall dark matter distribution. Fur-
thermore this ‘geometrical biasing’ is a systematic function of the
masses of these structures, an effect that has been well studied an-
alytically and numerically (e.g. Kaiser 1984; Jing 1999). Thus the
observed large-scale clustering of metal absorbers encodes valu-
able information about the masses of the objects from which they
were ejected. Likewise, as the maximal extent of each enriched re-
gion is directly dependent on the velocity at which the metals were
dispersed, measurements of the small-scale clustering of these ab-
sorbers are likely to constrain the energetics of their sources.

Previous studies of the two-point correlation function of C IV com-
ponents have shown that they cluster strongly on velocity scales
up to 500 km s−1 (Sargent et al. 1980; Steidel 1990; Petitjean &
Bergeron 1994; Rauch et al. 1996). It has often been suggested that
this clustering signal reflects a combination of (i) relative motions
of clouds within a galactic halo and (ii) clustering between galax-
ies. More recently Boksenberg, Sargent & Rauch (2003, hereafter
BSR03) have gathered a sample of 908 C IV absorber components
clumped into 199 systems in the redshift range 1.6 < z < 4.4 iden-
tified in the Keck spectra of nine QSOs. They conclude that most of
the signal is due to the clustering of components within each system,
where a system is defined as a set of components that is ‘well sepa-
rated’ from its neighbours as identified by the observer. In this case
almost all the systems extend less than 300 km s−1 and most extend
less than 150 km s−1. They did not observe clustering between sys-
tems on the larger scales expected for galaxy clustering, although
they concluded from their measurements of component clustering
and ionization balance that each system was closely associated with
a galaxy.

In Pichon et al. (2003, hereafter Paper I) we used 643 C IV and
104 Si IV absorber components, measured by an automated proce-
dure in 19 high signal-to-noise ratio quasar spectra, to place strong
constraints on the number and spatial distribution of intergalactic
metals at intermediate redshifts (2 � z � 3). In this work, we showed
that the correlation functions of intergalactic C IV and Si IV could be
understood in terms of the clustering of metal bubbles of a typical
comoving radius Rs around sources whose biased clustering was
parametrized by a mass M s. A similar picture was also put forward
in BSR03, but in our case significant large-scale clustering, similar
to that seen in galaxies, was observed.

In this paper we extend the analysis in Paper I in three impor-
tant ways. First we carry out a more detailed study of the physical
properties of C IV and Si IV absorbers and the relationship between
local quantities and the overall spatial distribution. Secondly, we
carry out a similar analysis of Mg II and Fe II absorbers in our ob-
servational sample, which probe the IGM in a somewhat lower red-
shift range. Finally, we replace our dark-matter-only modelling of
Paper I with a full-scale smoothed particle hydrodynamic simu-
lation. We then generate simulated metal-line spectra by painting
bubbles of metals directly on to the gas distribution at z � 2. By
analysing the resulting spectra with the same automated procedure
applied to the measured data set, we are able to place our models and
observations on the same footing, drawing important constraints on
the sources of metals. Motivated by measurements of the cosmic
microwave background, the number abundance of galaxy clusters
and high-redshift supernovae (e.g. Spergel et al. 2003; Eke, Cole &
Frenk 1996; Perlmutter et al. 1999), we adopt cosmological param-
eters of h = 0.7, �m = 0.3, �� = 0.7 and �b = 0.044 through-
out this investigation, where h is the Hubble constant in units of
100 km s−1 Mpc−1 and �m, �� and �b are the total matter, vacuum
and baryonic densities in units of the critical density, ρ crit.

The structure of this work is as follows. In Section 2 we summa-
rize the properties of our data set and reduction methods. In Section
3 we present the number densities of C IV, Si IV, Mg II and Fe II, and
estimate the cosmological densities of these species. In Section 4
we study the spatial clustering of these species and how it is related
to local quantities such as column density and abundance ratios.
In Section 5 we describe our numerical model for the distribution
of neutral hydrogen in the IGM and compare it with observations.
In Section 6 we extend our model to include various histories of
cosmological enrichment; and in Section 7 we compare these to
the observed distribution of C IV to derive constraints on the sizes
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and properties of sources of cosmological metals. In Section 8 we
discuss an analytic model that is particularly suitable for compar-
isons with the distribution of Mg II and Fe II, as numerical analy-
ses of these species are beyond the capabilities of our simulation.
Conclusions are given in Section 9.

2 DATA S E T A N D A NA LY S I S M E T H O D S

2.1 Data and reduction

The ESO Large Programme ‘The Cosmic Evolution of the IGM’
was devised to provide a homogeneous sample of QSO sight-
lines suitable for studying the Lyα forest in the redshift range
1.7–4.5. High-resolution (R ≈ 45 000), high signal-to-noise ratio
(60–100 pixel−1) spectra were taken over the wavelength ranges
3100–5400 and 5450–10 000 Å, using the UVES spectrograph on
the Very Large Telescope (VLT). Emphasis was given to lower red-
shifts to take advantage of the very good sensitivity of UVES in
the blue and the fact that the Lyα forest is less blended. The distri-
bution of redshifts and the resulting coverage of various metal-line
absorbers are given in Table 1. In all cases we consider only metal
absorption lines redward of the Lyα forest, to avoid the extensive
blending in this region, and blueward of 8110 Å, to avoid contami-
nation from sky lines. The regions 5750–5830, 6275–6323, 6864–
6968, 7165–7324 and 7591–7721 Å were also excluded from our
sample because of sky-line contamination. The C IV, Si IV, Mg II

and Fe II metal lines discussed in this paper were well detected
over the redshift ranges of 1.5–3.0, 1.8–3.0, 0.4–1.8 and 0.5–2.4,
respectively.

Observations were performed in service mode over a period of
2 yr. The data were reduced using the UVES context of the ESO
MIDAS data reduction package, applying the optimal extraction
method, and following the pipeline reduction step by step. The ex-
traction slit length was adjusted to optimize sky background sub-
traction. While this procedure systematically underestimates the sky
background signal, the final accuracy is better than 1 per cent. Wave-
lengths were corrected to vacuum heliocentric values and individual

Table 1. List of lines of sight. Here zem is the quasar redshift, while Lyα forest is used only redward of the Lyβ transition
at 1025.7 Å, and metal absorption lines are used only redward of the Lyα forest and blueward of 8130 Å.

Name zem Coverage

Forest C IV Si IV Mg II Fe II

PKS 2126−158 3.280 2.61–3.28 2.36–3.28 2.74–3.28 0.85–1.89 1.03–2.42
Q 0420−388 3.117 2.47–3.12 2.23–3.12 2.59–3.12 0.79–1.89 0.95–2.42
HE 0940−1050 3.084 2.45–3.08 2.21–3.08 2.56–3.08 0.77–1.89 0.93–2.42
HE 2347−4342 2.871 2.27–2.87 2.04–2.87 2.38–2.87 0.68–1.89 0.83–2.42
HE 0151−4326 2.789 2.20–2.79 1.97–2.79 2.31–2.79 0.64–1.89 0.79–2.42
Q 0002−422 2.767 2.18–2.77 1.96–2.77 2.29–2.77 0.64–1.89 0.78–2.42
PKS 0329−255 2.703 2.13–2.70 1.91–2.70 2.23–2.70 0.61–1.89 0.75–2.42
Q 0453−423 2.658 2.09–2.66 1.87–2.66 2.19–2.66 0.59–1.89 0.73–2.42
HE 1347−2457 2.611 2.05–2.61 1.83–2.61 2.15–2.61 0.57–1.89 0.70–2.42
HE 1158−1843 2.449 1.91–2.45 1.71–2.45 2.01–2.45 0.50–1.89 0.63–2.42
Q 0329−385 2.435 1.90–2.44 1.70–2.44 2.00–2.44 0.49–1.89 0.62–2.42
HE 2217−2818 2.414 1.88–2.41 1.68–2.41 1.98–2.41 0.48–1.89 0.61–2.41
Q 1122−1328 2.410 1.87–2.41 1.68–2.41 1.98–2.41 0.39–1.89 0.61–2.41
Q 0109−3518 2.404 1.87–2.40 1.67–2.40 1.97–2.40 0.48–1.89 0.61–2.40
HE 0001−2340 2.263 1.75–2.26 1.56–2.26 1.84–2.26 0.42–1.89 0.54–2.26
PKS 0237−23 2.222 1.72–2.22 1.53–2.22 1.81–2.22 0.40–1.89 0.53–2.22
PKS 1448−232 2.220 1.72–2.22 1.53–2.22 1.81–2.22 0.40–1.89 0.52–2.22
Q 0122−380 2.190 1.70–2.19 1.50–2.19 1.78–2.19 0.38–1.89 0.51–2.19
HE 1341−1020 2.135 1.65–2.14 1.46–2.14 1.74–2.14 0.36–1.89 0.48–2.14

1D spectra were combined using a sliding window and weighting
the signal by the total errors in each pixel.

The underlying emission spectrum of each quasar was estimated
using an automated iterative procedure that minimizes the sum of a
regularization term and a χ2 term that was computed from the dif-
ference between the quasar spectrum and the continuum estimated
during the previous iteration. Finally the spectrum was divided by
this continuum, leaving only the information relative to absorption
features.

2.2 Metal-line identification

Metal-line absorbers were identified using an automated two-step
procedure. For each species that has multiple transitions, we esti-
mated the minimal flux compatible with the data for all pixels of the
spectrum. This was done by first finding the pixels associated with
the transition wavelengths wi of a given species and then taking the
maximum of the flux values in these pixels, scaled by w i f i , where
fi is the oscillator strength associated with each of the transitions.

A standard detection threshold was then applied to these spectra,
such that only absorption features with equivalent widths (EWs)
larger than five times the noise rms were accepted, giving a first list
of possible identifications. This list was cleaned, using the similarity
of the profiles of the transitions of a species and applying simple
physical criteria that correlate the detection of two different species.
For instance, one criterion implies that the detection of a Si IV system
at a given redshift should be associated with the detection of a C IV

system.
Next, each system was fitted with Voigt profiles, taking care of

their identification and possible blends with other systems. The first
guess and the final Voigt profile decomposition were carried out us-
ing the VPFIT software (Carswell et al. 1987). Our decomposition of
saturated systems is conservative, in that it introduces additional un-
saturated components only if there is some structure in the 1551-Å
line that reveals their presence. This fitting procedure is described in
detail in Aracil (in preparation) and has been tested on simulated spe-
ctra, doing well for all components with realistic values of N and b.
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Finally we applied a set of five cuts to the automated list generated
by VPFIT: log N (cm−2) � 12 for C IV and Si IV, and log N (cm−2) �
11.5 for Mg II and Fe II, owing to the detection limit of our proce-
dure; b � 3 km s−1 to avoid false detections due to noise spikes;
log N (cm−2) � 16 to remove very badly saturated components; and
b � 45 km s−1 to avoid false detections due to errors in continuum
fitting. For the analyses presented here, we removed all associated
components within 5000 km s−1 of the quasar redshifts. These cuts
resulted in a final data set of 619 C IV (1548, 1551 Å), 81 Si IV (1394,
1403 Å), 316 Mg II (2796, 2803 Å) and 82 Fe II (2344, 2473, 2382 Å)
components, drawn from 688, 102, 320 and 88 components, respec-
tively, if we include the associates. These numbers differ slightly
from those presented in Paper I as a result of further refinements in
our detection procedure.

3 N U M B E R D E N S I T I E S

We first used our sample to compute the column density distribution
function, f (N), again working in the above assumed cosmology.
Following Tytler (1987), f (N) is defined as the number of absorbing
components per unit column density and per unit redshift absorption
path, dX . In this paper, we adopt a definition

dX ≡ (1 + z)2
[
�� + �m(1 + z)3

]−1/2
dz

such that at all redshifts f (N) does not evolve for a population whose
physical size and comoving space density are constant. Note that
this definition is slightly different from that used in Paper I and in
S01, namely

dX ′ ≡ (1 + z)1/2 dz,

although when z > (��/�m)1/3 − 1 = 0.32, as is appropriate for
our sample, dX ′ can be very closely approximated as �1/2

m dX for
comparison with previous analyses.

In Fig. 1 we plot f (N) for both C IV and Si IV components, as
was presented in Paper I. The mean redshifts of C IV and Si IV in
our sample were 2.16 and 2.38, respectively, and so in this plot we
divide the data into two redshift bins from 1.5 � z � 2.3 and 2.3 �
z � 3.1. Both species are consistent with a lack of redshift evolution,
as found by previous lower-resolution studies of C IV and Si IV (S01;
Pettini et al. 2003), and pixel-by-pixel analyses of intergalactic C IV

(Schaye et al. 2003). The overall density distribution of C IV is also
consistent with a power law of the form f (N ) = BN−α with α =
1.8 and log10 f = −12.7 at 1013 cm−2 as fitted by S01. Finally, we
compare our results with the data set collected in BSR03 from nine
QSO spectra with a signal-to-noise ratio ≈50 pixel−1. Here and
below we use the full data set taken by BSR03, to which we apply
exactly the same cuts as we do to our data. For components with
columns ≈1013 cm−2 these data sets are quite similar. However,
a significant difference between this sample and our own is the
fit to the saturated C IV components with log(N C IV) � 14. These
have been decomposed into a large number of smaller log(N C IV) �
12.5 systems in the BSR03 analysis, while our decomposition only
introduces additional unsaturated components if there is structure in
the 1551-Å line. Extrapolating the results of S01 to column depths
below 1013 cm−2 also yields a distribution similar to ours.

While fewer in total, the Si IV components in the lower panel of
Fig. 1 are also consistent with a lack of evolution, following a similar
power law with a lower overall magnitude. Note that in this figure
the error bars are purely statistical, estimated as the reciprocal of
the square root of the number of components in each bin. Again, for
comparison, we include the number densities computed from the
full BSR03 sample, with our cuts applied. While this comparison

Figure 1. Column density distributions of C IV (upper panel) and Si IV

(lower panel) absorption components. In each panel, components are divided
into two redshift bins: 1.5 � z � 2.3 (squares) and 2.3 � z � 3.1 (triangles).
The column density bins are 100.5 N cm−2 wide and error bars in this and
all further plots are 1σ . The dashed line is the power-law fit measured in
S01. Finally the small crosses are the full set of C IV and Si IV components
identified by BSR03, with our cuts imposed.

is noisier, the overall trends are the same: at 1013 cm−2 the number
densities are similar, while saturated components are decomposed
into a larger number of smaller systems in the BSR03 data set.

In Fig. 2 we plot f (N) for both Mg II and Fe II, now going down
to a minimum column density of 1011.5 cm−2, which corresponds to
roughly the same optical depth as 1012 cm−2 for C IV and Si IV. For
Mg II and Fe II the relevant doublets are at substantially longer rest-
frame wavelengths, and therefore our UVES detections primarily
occur at lower redshifts. Thus the mean redshifts of Mg II and Fe II

are only 1.05 and 1.38, and we divide our data into bins from 0.4 �
z � 1.15 and 1.15 � z � 1.9. These lines arise in lower-ionization
gas and are often thought of as tracers of quiescent clouds, probably
associated with galaxies (e.g. Petitjean & Bergeron 1990; Churchill
et al. 1999; Churchill, Vogt & Charlton 2003).

Like its higher-ionization counterparts, Mg II is consistent with
a lack of evolution in number densities over the observed redshift
range. In the Fe II case, however, a significant excess of intermedi-
ate column density components is found at lower redshifts. A closer
inspection of the data indicates that this feature is caused by a sin-
gle large system in Q 0002−422, at z = 0.836, which spans over
560 km s−1. The removal of this system results in the third set
of points in the lower panel of Fig. 2, which are consistent with
the higher-redshift values. The large impact of this system in our
measurements suggests that simple

√
N estimates may somewhat

underpredict the statistical error on our measurement. This hints at
strong clustering between Fe II components, which is in fact mea-
sured, as we discuss in detail below.

Statistical fluctuations aside, the overall density distributions of
Mg II and Fe II are largely consistent with the power-law fits obtained
from previous measurements, apart from showing only a weak de-
viation in the lowest N Fe II bin, probably due to incompleteness.
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Figure 2. Column density distributions of Mg II (upper panel) and Fe II

(lower panel) absorption components. In each panel, components are divided
into two redshift bins: 0.4� z �1.15 (squares) and 1.15� z �1.9 (triangles).
As in Fig. 1, the column density bins are 100.5 N cm−2 wide. The dashed lines
correspond to the power-law fits described in the text, and in the lower panel
we also include f values when the large z = 0.836 system in Q 0002−422
is removed (crosses; see text).

In this case, the dashed-line fits in Fig. 2 are f (N ) = BN−α with
α = 1.6 and log10 f = −13.2 at 1013 cm−2 for Mg II, and α = 1.7
and log10 f = −13.4 at 1013 cm−2 for Fe II. While some flattening
of f Mg II (N ) at even higher columns is necessary to match obser-
vations at column densities �1016.5 cm−2 (Prochter, Prochaska &
Burles 2004), for the column densities in our sample our measured
slopes are identical to those determined by previous studies. In par-
ticular our α fits match those of Churchill et al. (2003), although our
B values are different, as these authors did not attempt to normalize
their results by the total redshift path observed.

In summary, our automatic identification procedure produces a
set of components whose column density distributions are consistent
with previous measurements, complete to N � 1012 cm−2 for C IV

and Si IV, and complete to N � 1011.5 cm−2 for Mg II and Fe II. No
evolution in f is seen for any species over the full redshift range
probed, indicating that the majority of IGM enrichment is likely to
have occurred before the redshifts observed in our sample.

Finally, our number densities allow us to compute the total cos-
mological densities of each of the detected species. Following S01,
we express these in terms of a mass fraction relative to the critical
density, which can be computed as

�ion = H0m ion

cρcrit

∑
Nion

�X
= 1.4 × 10−23 A

∑
Nion

�X
, (1)

where H0 is the Hubble constant, mion is the mass of the given ion, A
is its atomic number, and �X is the total redshift path over which it is
measured. The results of this analysis are given in Table 2. Note that
these values are species densities, and no ionization corrections have
been applied to estimate the corresponding element densities. Again,
these values are broadly consistent with previous measurements,
although there is a significant scatter due to the fact that most of
the material lies in the largest, rarest components. Thus previous

Table 2. Cosmological densities of detected species.

Species 〈z〉 log N (cm−2) � ��

C IV 2.2 12–16 7.54 × 10−8 ±2.16 × 10−8

Si IV 2.4 12–16 6.00 × 10−9 ±1.21 × 10−9

Mg II 1.1 11.5–16 5.95 × 10−8 ±2.23 × 10−8

Fe II 1.4 11.5–16 1.87 × 10−8 ±0.36 × 10−8

studies have found �C IV values as disparate as 6.8 × 10−8 at z = 2.5
(S01), (3.8 ± 0.7) × 10−8 (BRS03), and between 3.5 × 10−8 and
7.9 × 10−8 depending on the method of analysis (Simcoe, Sargent
& Rauch 2004).

4 S PAT I A L D I S T R I BU T I O N

4.1 C IV and Si IV

Having constructed a sample of well-identified metal absorption
components, we then computed their two-point correlation func-
tion in redshift space, ξ (v). This quantity was previously studied in
Rauch et al. (1996), who noted a marked similarity between ξ (v) of
C IV and Mg II, in BSR03, who carried out a two-Gaussian fit (see
also Petitjean & Bergeron 1990, 1994), and in Paper I. For each
quasar, we computed a histogram of all velocity separations and di-
vided by the number expected for a random distribution. Formally,
the correlation function for a QSO � is

ξ�(vk) + 1 = n�
k〈

n�
k

〉 , (2)

where n�
k is the number of pairs separated by a velocity difference

corresponding to a bin k, and 〈n�
k〉 is the average number of such

pairs that would be found in the redshift interval covered by QSO �,
given a random distribution of redshifts with an overall density equal
to the mean density in the sample. Alternatively, we may consider
all QSOs at once and compute

ξ (vk) + 1 =
∑

�
n�

k∑
�

〈
n�

k

〉 , (3)

or equivalently

ξ (vk) + 1 =
∑

�

w�
k

[
ξ�(vk) + 1

]
(4)

with

w�
k ≡

〈
n�

k

〉∑
�

〈
n�

k

〉 ,

that is weighting the correlation found for each QSO by the number
of random pairs that are expected given the redshift coverage of that
QSO. The statistical variance in this measurement is given by

σ 2
k =

∑
�

(
w�

k

)2
σ

2,�
k , (5)

where σ
2,�
k is the variance associated with bin k of quasar �. In Paper

I, we estimated this quantity according to the usual formula

σ
2,�
k = n�

k〈
n�

k

〉2 , (6)

which gives the Poisson error in our measurement. In the results
presented here, however, we adopt a more conservative approach,
and also include the additional scatter caused by the finite sample
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Figure 3. Two-point correlation function of C IV (upper panel) and Si IV

(lower panel) absorption components. In each panel the components have
been divided into two redshifts bins, with symbols as in Fig. 1. The upper
panel also includes a number of comparisons with previous measurements.
In particular: the lower set of crosses corresponds to the full set of com-
ponents defined in BSR03, normalizing each QSO individually; the upper
set of crosses corresponds to imposing a column density cut of 1012 cm−2,
normalizing each QSO by its expected number of pairs; and the solid lines
correspond to dividing the BSR03 data into a subsamples with z �3.1 (lower
line) and z < 3.1 (upper line), as described in the text. In the lower panel,
the crosses corresponds to imposing a column density cut of 1012 cm−2 on
the Si IV components observed in BSR03 and normalizing each QSO by its
expected number of pairs.

size used to construct the correlation function (Mo, Jing & Börner
1992). In this case

σ
2,�
k = 1〈

n�
k

〉2

[
n�

k + 4

(
n�

k

)2

N �

]
, (7)

where N � is the total number of components detected in QSO �. Note
that the presence of this additional scatter highlights the strength of
our high signal-to-noise ratio data set, as it allows us to work in
the limit in which the number of C IV components detected in each
quasar is large.

The resulting correlation functions are shown in Fig. 3, again
split into two redshift bins. Interestingly, in the better measured C IV

case, there are hints that the z � 2.3 correlation function may be
enhanced with respect to the high-redshift one. Furthermore, this
growth is consistent with a population of absorbers that ‘passively’
evolves by following the motion of the IGM during the formation
of structure, as we discuss in further detail in Section 8.

In the upper panel of Fig. 3 we also plot correlation functions
computed from the sample defined in BSR03, which is drawn from
the spectra of nine QSOs with a mean redshift of 3.1 and a signal-to-
noise ratio per pixel of ≈50. In this case we show results obtained
both from using the full data set, normalizing each quasar individ-
ually (as was carried out in BSR03), and from imposing a lower
cut-off at N C IV,min = 1012 cm−2, normalizing each quasar by the ex-
pected number of pairs (as was carried out in our analysis). In both
cases the resulting ξ C IV(v) values are similar and somewhat lower

in amplitude than our measurements. Rauch et al. (1996) similarly
have found a lower amplitude. Dividing the BSR03 data into a z <

3.1 bin with a mean redshift of 2.5 and a z > 3.1 bin with a mean
redshift of 3.6 resulted in correlation functions given by the solid
curves (again calculated according to our method). Furthermore,
the amplitude of the z = 2.5 BSR03 correlation function is similar
to our measurements, which are drawn from a sample with a mean
redshift of 2.3. However, the higher-redshift curve is substantially
lower, again indicating that ξ C IV(v) is likely to evolve with redshift.
This was also suggested by the analysis in fig. 14 of BSR03, al-
though they point out that the changing ionizing background may
also be an issue. Finally we note that the BSR03 sample shows a
relative lack of components at ≈500 km s−1. This is very near the
C IV doublet separation.

Moving to the bottom panel of Fig. 3, we see that the overall
shape and amplitude of the C IV and Si IV correlation functions are
similar and are consistent to within the Si IV measurement errors, as
was discussed in Paper I. Both functions exhibit a steep decline at
large separations and a flatter profile at small separations, with an
elbow occurring at ≈150 km s−1. Both functions are also consistent
with the correlation one obtains from the full BSR03 Si IV sample,
after applying our cuts. Finally, as was noted in Paper I, there is a
weak low-redshift feature at ≈500 km s−1 in ξ C IV(v), the origin of
which we explore in Section 4.2.

In Fig. 4 we study the dependence of the C IV spatial distribution
on column density, by computing the correlation function over the
full redshift range but selecting components within a fixed range of
column density. In the upper panel we apply a cut on the maximum
column density component, while holding the minimum N C IV fixed
at our detection limit of 1012 cm−2. Apart from a weak shift in the
500–630 km s−1 bin, ξ C IV(v) remains practically unchanged by this
threshold. As the majority of the detected components are relatively
weak, this indicates that our signal is determined by the bulk of the

Figure 4. Dependence of the C IV correlation function on column den-
sity threshold. Upper panel: Effect of applying a cut on the maximum
column density of C IV components used to calculate ξ C IV(v). In all cases
N C IV,min = 1012 cm−2. Lower panel: Effect of applying a cut on the mini-
mum C IV column density, with N C IV,max fixed at 1016 cm−2.
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components in our sample, rather than by the properties of individual
strong absorbers.

The results of a more drastic test are shown in the lower panel of
Fig. 4. Here we hold N C IV,max fixed at 1016 cm−2 and apply a cut on
the minimum column density, which greatly reduces the number of
components in the sample. Nevertheless, moving from N C IV,min =
1012 cm−2 to N C IV,min = 1013.5 cm−2 results only in a very weak
enhancement of ξ C IV(v) at small separations, while the rest of the
correlation function remains unchanged. Thus, unlike Lyα absorp-
tion systems (Cristiani et al. 1997), the correlation of C IV does not
depend strongly on absorption column densities. Instead, the spatial
distribution seems to be a global property of the population of C IV

components.
A question that immediately arises is whether the features ob-

served in the C IV and Si IV correlation functions are intrinsic to
the underlying distribution of metals, or perhaps arise from varia-
tions in the ultraviolet (UV) background at somewhat shorter wave-
lengths. In fact, analyses of the He II distribution due to ionization by
54.4-eV photons suggest that the second reionization of hydrogen
may still have been quite patchy at z = 2.3–2.9 (Shull et al. 2004),
with He II found preferentially in ‘void’ regions where H I is weak
or undetected.

On the other hand, the ionization potentials of C III and Si III are
47.5 and 33.5 eV, respectively, somewhat lower than that of He II,
but well beyond the ionization potential of hydrogen. Thus if the
suggested patchiness of He II is due primarily to changes in the IGM
opacity at wavelengths shortward of 54.4 eV, then the distribution of
C IV and Si IV is likely to trace the underlying distribution of metals
more closely. If He II inhomogeneities exist and are caused by a
sparsity of hard sources, however, it is possible that background
variations may also play a role in the distribution of triply ionized
regions of carbon and silicon.

As the ionization potentials of C III and Si III differ by 12 eV, each
is sensitive to a slightly different range of UV photons. Thus if the
features seen in Fig. 3 were produced by changes in the ionizing
background, one might expect to see systematic changes in the ratio
of these species as a function of separation. As a simple test of
this possibility, we considered the average log (N C IV/N Si IV) as a
function of separation. In order to make the sample included in this
average as large as possible, we computed this as〈

log

(
NC IV

NSi IV

)〉
k

=
∑

i, j∈bin k

∑
�

log

(
NC IV,i

NSi IV,�

)
θ (5 − |v� − vi |)

×
{ ∑

i, j∈bin k

∑
�

[1 × θ (5 − |v� − vi |)]
}−1

, (8)

where θ (v) is the Heaviside step function, i and j are indices of C IV

components, � is an index over all Si IV components, and k is a given
bin in velocity separation used to calculate the correlation function.
In other words, for each bin in the correlation function, we average
log(N C IV/N Si IV) over all C IV components i that are found at the
appropriate separation from another C IV component j and within
5 km s−1 of a Si IV component �.

The results of this analysis are found in Fig. 5, which shows no cor-
relation between separation and species abundances. Furthermore,
our average value of log (N C IV/N Si IV) ≈ 0.7 is similar to that seen in
previous analyses of 1012 cm−2 � N C IV � 3 × 1014 cm−2 absorbers
(Kim, Cristiani & D’Odorico 2002; BSR03), as well as the weaker

Figure 5. The average log(N C IV/N Si IV) ratio for C IV components con-
tributing to the correlation function at various separations. At each separa-
tion the dashed error bars are the statistical errors, while the solid error bars
are the intrinsic scatter.

C IV and Si IV lines detected by Aguirre et al. (2004) using the pixel
optical depth method. Thus there is nothing particularly unusual
about the subset of absorbers selected by our procedure. Although
this is clearly not an exhaustive test, it nevertheless suggests that the
features in the correlation functions are not imprinted in a straight-
forward way by the UV background itself, and are more likely to be
caused by the spatial distribution of metals. However, a much more
detailed analysis is necessary to settle this issue definitively.

4.2 Peculiar systems at low redshift

The C IV correlation functions in Figs 3 and 4 hint at a secondary
bump at large separations. It is important to try to understand if this
comes from the presence of a few peculiar systems or if this is a
generic feature of the C IV distribution. To this end, we computed the
correlation function for different samples, each time excluding one
of the lines of sight, and discovered that the signal comes from three
QSOs, namely, PKS 0237−23, HE 0001−2340 and Q 0122−380.

The first of these has long been known to be very peculiar. Indeed,
a huge C IV complex is seen towards PKS 0237−23 at 11 different
redshifts over the range 1.596–1.676 (more than 10 000 km s−1) with
three main subcomplexes at z abs = 1.596, 1.657 and 1.674 (Boroson
et al. 1978; Sargent et al. 1988). Furthermore Foltz et al. (1993)
searched the field around PKS 0237−23 for other QSOs to provide
background sources against which the presence of absorption at
the same redshifts could be investigated. They concluded that the
complex can be interpreted as a real spatial overdensity of absorbing
clouds with a transverse size comparable to its extent along the line
of sight, that is of the order of 30 Mpc. The correlation function
without this line of sight is shown in Fig. 6.

Two other lines of sight display peculiar systems. At z abs = 2.1851
towards HE 0001−2340 there is a sub-damped Ly α (sub-DLA)
system and the associated C IV system is spread over ≈450 km
s−1. It is therefore difficult to know if the structure there is due to
large scales or more probably to the internal structure of the halo
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Figure 6. Upper panel: Impact of peculiar systems on the C IV correlation
function. Here the square points are computed from the full sample, the
circles are computed excluding the sightline towards PKS 0237−23, and
the stars are computed excluding both PKS 0237−23 and the two sub-DLA
systems, as described in the text. Lower panel: Comparison between ξ C IV(v)
for the full sample, including associated absorbers (crosses), and excluding
C IV components with 5000 km s−1 of the quasar redshifts (squares).

associated with this high-density peak. At z abs = 1.9743 towards Q
0122−380, there is a double strong system spread over more than
500 km s−1. It is again difficult to know whether these absorptions
reflect internal motions of highly disturbed gas.

After these are removed, the most significant excess at large sepa-
rations is found in the 500–630 km s−1 bin. This velocity difference
corresponds to the difference in wavelengths of the C IV doublet it-
self. In fact, it is interesting to note that this bin is the only one that is
significantly reduced by applying a cut to eliminate the larger N C IV

components, as was seen in Fig. 4.
As a further test of large-separation correlations, we have also

computed ξ C IV(v) including the associated systems, found within
5000 km s−1 of the redshifts of the QSOs in this sample. This is
compared with the C IV correlation function for our standard sample
in the lower panel of Fig. 6. At all separations, ξ C IV(v) remains un-
changed, thus indicating that associated systems are not distributed
in a particularly unusual way, and do not contribute any significant
features to ξ C IV(v) at ≈500 km s−1, or any other separation.

4.3 Fe II and Mg II

We now turn our attention to the distribution of lower-redshift met-
als, as traced by Mg II and Fe II. Splitting the data into two redshift
ranges yields the line-of-sight correlation functions shown in Fig. 7,
where again we have included both the Poisson and sample-size er-
rors in our estimate of the variances. Like their high-redshift coun-
terparts, Mg II and Fe II are found to trace each other closely. Their
correlation functions are both relatively shallow at small separations
and fall off more steeply at large separations. Also, like ξ C IV(v), both
ξ Mg II(v) and ξ Fe II(v) exhibit slight enhancements at lower redshifts,
although again these excesses fall within the errors.

Next we examine the dependence of the Mg II spatial distribution

Figure 7. Upper panel: Two-point correlation function of Mg II, divided into
two redshift bins as in Fig. 2. Lower panel: Two-point correlation function
of Fe II, divided into the same redshift bins.

on column density. Removing the strongest absorbers in our sample
before calculating ξ Mg II(v) results in the values plotted in the upper
panel of Fig. 8. As in the C IV case, the Mg II correlation function
is not dominated by the clustering of large components, but rather
remains almost unchanged as a function of N max, even when it is
reduced to 1012.5 cm−2, excluding over a third of the systems. Simi-
larly, raising the minimum column density from 1011.5 to 1012.5 cm−2

Figure 8. Dependence of Mg II correlation function on column density
threshold. Upper panel: Effect of applying a cut on the maximum column
density of Mg II subcomponents used to calculate ξ Mg II(v). In all cases
N Mg II,min = 1011.5 cm−2. Lower panel: Effect of applying a cut on the
minimum Mg II column density, with N Mg II,max fixed at 1016 cm−2.
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Figure 9. Measured correlation function of all metal-line components.
Points are measurements from our sample, while the solid line is the Mg II fit
by Churchill et al. (2003), arbitrarily normalized. The dashed line is the C IV

correlation function, shifted upwards by a factor of 2.1 to provide a simple
estimate of the impact of structure formation from z = 2.2 to 1.1 on a fixed
population of absorbers.

does not boost ξ Mg II(v), even though this excludes approximately
two-thirds of the sample.

In Fig. 9 we compare the correlation functions of C IV and Si IV

with those of Mg II and Fe II. Note that the mean redshift zmean of
these lower-ionization species is ≈1.2, while for C IV and Si IV it
is ≈2.3. Thus our sample contains very few objects in which all
four species can be directly compared. Nevertheless, a comparison
of their redshift-space correlation functions reveals a number of
important parallels. While ξ (v) of all species decline steeply at large

Table 3. Summary of measured metal-component correlation functions. Note that there is likely to be significant
redshift evolution of these functions. The mean redshifts of C IV and Si IV are ≈2.3. The mean redshifts of Mg II

and Fe II are ≈1.15.

Bin (km s−1) ξ C IV ξ Mg II Bin (km s−1) ξ Si IV ξ Fe II

20–25 41 ± 8 170 ± 50 20–30 94 ± 52 310 ± 150
25–32 66 ± 13 170 ± 40 30–43 71 ± 30 280 ± 130
32–40 59 ± 11 240 ± 60 43–65 71 ± 36 220 ± 100
40–50 40 ± 6 140 ± 40 65–100 30 ± 17 160 ± 70
50–63 49 ± 9 145 ± 30 100–140 27 ± 13 74 ± 34
63–79 35 ± 5 155 ± 40 140–200 11 ± 6 45 ± 19
79–100 30 ± 5 96 ± 23 200–300 6.2 ± 4.2 25 ± 11
100–125 26 ± 4 98 ± 21 300–450 6.6 ± 3.5 7.8 ± 4.1
125–160 20 ± 3 64 ± 15 450–670 3.9 ± 2.6 0.88 ± 0.58
160–200 14 ± 2 42 ± 10 670–1000 0.8 ± 0.7 0 ± 1
200–250 7.3 ± 1.2 35 ± 8
250–320 5.4 ± 1.0 20 ± 5
329–400 3.6 ± 0.7 12 ± 3
400–500 3.5 ± 0.7 6.9 ± 2.3
500–630 3.6 ± 0.8 1.7 ± 0.8
630–790 1.6 ± 0.4 4.2 ± 2.4
790–1000 0.98 ± 0.32 2.2 ± 1.3

separations and exhibit a turnover at smaller velocity differences, the
transition between these two regimes is pushed to slightly smaller
separations in the Mg II and Fe II case, and the fall-off at higher
densities is more abrupt.

Interestingly, the features seen in this distribution can be inferred
from the original fitting to the distribution of velocity separations of
Mg II absorbers by Petitjean & Bergeron (1990), using a remarkably
small number of systems. Their data were fitted with the sum of
two Gaussian distributions with similar overall weights and velocity
dispersions ofσ v =80 and 390 km s−1, which the authors interpreted
as due to the kinematics of clouds bound within a given galaxy halo,
and the kinematics of galaxy pairs, respectively. Working at higher
spectral resolution and higher signal-to-noise ratio, Churchill et al.
(2003) also obtained a good two-component Gaussian fit to the
two-point clustering function of Mg II components, although they
did not attempt to normalize this function to obtain ξ Mg II(v) + 1.
In this case the best-fitting values were σ v = 54 and 166 km s−1,
where the relative amplitude of the narrow component was twice
that of the broad component. This fit has been added to Fig. 9,
adopting an arbitrary normalization. Although our data set has an
overall signal-to-noise ratio that is higher than that of Churchill
et al. (2003), and thus is more complete at lower column densities,
their two-Gaussian model also provides a good match to our data at
�v � 400 km s−1. However, it falls short of the observed correlation
at larger separations.

To contrast the correlation functions in more detail, we have added
a simple estimate of ‘passive’ evolution to Fig. 9, that is, the evo-
lution if the metals detected at z ≈ 2.3 as C IV absorbers were to
move along with the formation of structure before appearing as
Mg II absorbers at z = 1.2. To first approximation, the overall bias
of such a metal tracer field would remain fixed, but its correlation
function would be enhanced by a factor of D2(1.2)/D2(2.3) = 2.1,
where D(z) is the linear growth factor. Surprisingly, simply shifting
ξ C IV(v) by a factor of 2.3 provides us with an accurate match for
the Mg II correlation function over a large range of separations, al-
though it underpredicts the clustering of Mg II and Fe II at smaller
distances. This is discussed in further detail in Section 8.

To facilitate future comparisons, in Table 3 we give the correlation
function and errors for each of the four species averaged over our full

C© 2005 The Authors. Journal compilation C© 2005 RAS, MNRAS 365, 615–637460



624 E. Scannapieco et al.

sample. Note that the small number of Si IV and Fe II components
forces us to use a smaller number of bins to beat down the statistical
noise in our measurements.

Finally, we carry out a test to determine if the spatial distribu-
tion of metals as traced by ξ C IV(v) may be affected by our VPFIT

decomposition into components. Previous studies have attempted
to trace the distribution of intergalactic metals by grouping together
components into ‘systems’, which are likely to have a common phys-
ical origin, and computing the correlation function of these systems
(e.g. Petitjean & Bergeron 1990; BSR03). While, typically, system
identifications have been carried out by eye, here we attempt a more
objective approach, which parallels the friends-of-friends technique
(Davis et al. 1985) widely used for group finding in cosmological
simulations. In this case, we define a velocity linking length (v link)
and group together all components whose separation from their near-
est neighbour is less than v link into a system at a redshift equal to the
average over all its components. Note that this procedure does not
involve simply linking together pairs within v link, but rather forms
collections of many components, each within a linking length of
its neighbours and grouped together into a single entity. It is there-
fore equivalent to partitioning a set of components into two systems
whenever they are separated by a gap wider than v link.

In the upper panel of Fig. 10 we plot ξ C IV(v) computed for the
resulting C IV systems, for three different choices ofv link. In all cases,
within our measurement errors, combining components into systems
has no appreciable impact at separations much larger than the linking
length. Thus while BSR03 report a lack of clustering of systems as
identified by eye, we are unable to reproduce this behaviour with our
automatic method. Perhaps this is not surprising, as the clustering of
ξ C IV(v) is very strong, and thus many pairs of ‘systems’ are likely to
be closely spaced and easily tagged as a single object. However, our
results show that fixing a pre-specified definition of systems does
not remove large-scale correlations in this way.

In the lower panel of Fig. 10, we see that grouping Mg II com-
ponents into systems has no clear impact at larger separations if

Figure 10. Upper panel: Impact of linking together C IV components into
systems. Lower panel: Impact of linking together Mg II components into
systems. Details described in the text.

v link = 25 or 50, and while there are hints of weak larger-scale
damping if v link = 100; these changes are within our errors. Simi-
lar results were obtained if each group was assigned the redshift of
its largest component, leading us to conclude that the ξ (v) features
observed in both the high-redshift and low-redshift species are not
related to division into components, but rather reflect the underlying
distribution of intergalactic metals.

5 N U M E R I C A L S I M U L AT I O N

5.1 Overall properties

For a better interpretation of the features seen in metal absorption-
line systems, we conducted a detailed smoothed particle hydrody-
namic (SPH) simulation of structure formation. Our goal here is
to apply the same automated procedure used to identify metal ab-
sorbers in the ESO Large Programme (LP) data set to a detailed
simulation, drawing conclusions as to what constraints our mea-
surements place on the underlying distribution of IGM metals. For
this purpose we focus our attention on a cold dark matter (CDM)
cosmological model with the same general cosmological parameters
as above, and the additional parameters σ 8 = 0.87 and n = 1, where
σ 2

8 is the variance of linear fluctuations on the 8 h−1 Mpc scale and
n is the ‘tilt’ of the primordial power spectrum. The Bardeen et al.
(1986) transfer function was used with an effective shape parame-
ter of  = 0.2, and the ionizing background flux was taken to be
(Haardt & Madau 1996):

J (ν, z) = 2.2 × 10−22

(
ν

νH I

)−1

(1 + z)0.73 exp

[
− (z − 2.3)2

1.9

]
erg s−1 Hz−1 cm−2 sr−1,

corresponding to a photoionization rate of

6.8 × 10−13 (1 + z)0.73 exp[−(z − 2.3)2/1.9] s−1.

We simulated a box of size 40/h comoving Mpc on a side, using
3203 dark matter particles and an equal number of gas particles.
The mass of each dark matter particle was 2.0 × 108 M�, and the
mass of each gas particle was 3.4 × 107 M�. This yields a nominal
minimum mass resolution for our (dark matter) group finding of
1.0 × 1010 M�. The run was started at an initial redshift of z =
99, and a fixed physical S2 (Hockney & Eastwood 1988) softening
length of 6.7 kpc was chosen, which is equivalent to a Plummer soft-
ening length of 2.8 kpc. The simulation was conducted using a par-
allel MPI2-based version of the HYDRA code (Couchman, Thomas
& Pearce 1995) developed by the Virgo Consortium (Thacker et al.
2003).

We used the SPH algorithm described in Thacker et al. (2000),
although, in an improvement upon earlier work, the maximum SPH
search radius now allows us to resolve the mean density of the
box accurately. Photoionization was implemented using the publicly
available routines from our serial HYDRA code. Radiative cooling was
calculated using the Sutherland & Dopita (1993) collisional ioniza-
tion equilibrium tables, and a uniform 2 per cent solar metallicity
was assumed for all gas particles for cooling purposes. Integration to
z = 2.0 required 9635 (unequal) steps, and four weeks of wall clock
time on 64 processors. Outputs for post-processing were saved at
redshifts of z = 8.0, 5.0, 4.0, 3.0, 2.5 and 2.0.

From each of the final three outputs, we interpolated to extract
two-dimensional slices of overdensity, temperature and line-of-sight
peculiar velocities on 24 equally spaced planes. By extracting ran-
dom sightlines from each of these three fields, we were then able to
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generate simulated metal-line spectra, which could be processed in
an identical fashion as the observed data. Before turning our atten-
tion to this issue, however, we first address the more basic concern
of the overall hydrogen distribution, which serves as both a check
of our simulation methods, and a way of fine-tuning the assumed
ionizing background to reproduce the observed properties of the
IGM.

5.2 Calculation of neutral hydrogen fraction

Once the baryon density, temperature and line-of sight velocity are
extracted along a line of sight, constructing a simulated spectrum
is relatively straightforward. One obtains the neutral hydrogen frac-
tion, f H I, in the IGM by solving the ionization equilibrium equation
(Black 1981)

α(T )npne = ci(T )nenH I + J22G1nH I, (9)

where α(T ) is the radiative recombination rate, ci (T ) is the rate of
collisional ionization, J22 is the UV background intensity in units of
10−22 erg s−1 Hz−1 cm−2 sr−1, J22G 1 is the rate of photoionization,
and np, n e and nH I are the number densities of protons, electrons
and neutral hydrogen, respectively. For the Haardt & Madau (2001)
spectrum assumed below, G 1 = 2.7 × 10−13 s−1; for the original
Haardt & Madau (1996) spectrum, G 1 = 3.2 × 10−13 s−1; and for the
(ν/νH I)−1 spectrum used in our simulation, G 1 = 3.1 × 10−13 s−1.
For comparison, G 1 J22 is equal to J−12 as defined in Choudhury,
Srianand & Padmanabhan (2001) and to 10 G 1 J21 as defined in Bi
& Davidsen (1997).

If we assume that the neutral fraction of hydrogen is �1 and all
the helium present is in the fully ionized form, we find

fH I(x, z) = α(T (x, z))

α(T (x, z)) + ci(T (x, z)) + G1 J22n−1
e (z)

, (10)

where the collisional ionization rate is

ci(T ) = 5.85 × 10−11 T 1/2 exp(−157 809.1/T ) cm3 s−1,

with T in kelvin, and Black (1981) gives an approximate form for
the radiative recombination rate as

α(T )

cm3 s−1
=
{

4.36 × 10−10 T −0.7573 if T � 5000 K,

2.17 × 10−10 T −0.6756 if T < 5000 K.
(11)

With these expressions we can compute the neutral hydrogen
density, nH I(x , z(x)), along a line of sight. Here x and z are related by
c dz = dx H (z), where the Hubble constant as a function of redshift
is H (z) = H0

√
�� + �m(1 + z)3. We choose a coordinate system

such that x = 0 at the front of the box and define �z(x , z0) as the
change in redshift from x = 0. We then construct the Lyα optical
depth as

τα(z0 + �z)

= cσα

(1 + z0)
√

π

∫
dx

nH I(x, z0)

b(x, z0)

× exp

{
−
[

x H (z0) + v(x, z0)(1 + z0) − c�z

(1 + z0)b(x, z0)

]2
}

, (12)

where

b(x, z0) ≡
√

2kBT (x, z0)/mp

(with kB the Boltzmann constant),

nH(z) = 1.12 × 10−5 (1 − Y )�b(1 + z)3h2 cm−3

= 1.83 × 10−7 (1 + z)3 cm−3

(with Y the helium mass fraction), and σ α is the Lyα cross-section,
which can be calculated as

σα = (3πσT/8)1/2 f λ0, (13)

where λ0 is the rest-frame wavelength of the transition, f is the
appropriate oscillator strength, and σ T = 6.25 × 10−25cm2 is the
Thomson cross-section. For Lyα, we have λ0 = 1215 Å and f =
0.4162, which gives σ α = 4.45 × 10−18 cm2. With equation (13) in
hand, we are able to construct simulated UVES spectra of the Lyα

forest by stacking vectors of optical density computed from ran-
domly extracted sightlines. These are then convolved with a Gaus-
sian smoothing kernel with a width of 4.4 km s−1 (corresponding to
the UVES resolution) and rebinned on to a 205 000 array of wave-
lengths, using the UVES pixelization from 3050 to 10 430 Å. Rather
than interpolate between simulation outputs, however, we first turn
our attention to a careful comparison between observations and lim-
ited segments of spectra at fixed redshifts, concentrating on two
main quantities: the probability distribution function, a single-point
quantity that is sensitive to the overall temperature and J22 evolution
background; and the two-point correlation function, a measure of
the spatial distribution of the gas.

5.3 Tests of the numerical hydrogen distribution

The probability distribution function (PDF) of the transmitted flux
was first used to study the Lyα forest by Jenkins & Ostriker (1991)
and since then has been a widely used tool for quantifying the mean
properties of the IGM (e.g. Rauch et al. 1997b; McDonald et al.
2000). In the upper panels of Fig. 11 we compare the PDF as mea-
sured by McDonald et al. (2000) to that generated from 20 simulated
spectra at representative redshifts of 2.5 and 3.0. In order to obtain
the good agreement seen in this figure, it was necessary to adjust the
assumed J22 values to 4.7 at z = 2.5 and to 3.7 at z = 3 (correspond-
ing to photoionization rates of 1.3 × 10−12 s−1 and 1.0 × 10−12 s−1),
down from the values of 5.4 and 4.7 (corresponding to photoioniza-
tion rates of 1.7 × 10−12 s−1 and 1.5 × 10−12 s−1), respectively, that
were assumed in the simulations.

This results in a slight inconsistency between the simulated
ρ–T relation and the one that would have arisen if we had repeated
the simulation with our fitted values of J22. In practice, however,
this difference is unimportant in relation to our primary goal of con-
structing simulated metal lines. It is dwarfed by effects due to the
uncertain evolution of the UV background at higher redshifts (e.g.
Hui & Gnedin 1997; Hui & Haiman 2003), uncertainties in the nor-
malization of the quasar spectra (e.g. McDonald et al. 2000), and
the extrapolation of the UV background from 912 Å to the shorter
wavelengths relevant for C IV and Si IV (e.g. Haardt & Madau 2001).
Thus our approach is more than adequate for the purposes of this
study. With our assumed background values, the mean fluxes at
z = 2.5 and 3.0 are 0.794 and 0.692, respectively, while the ob-
served values are 0.818 ± 0.012 and 0.684 ± 0.023.

As a second test of our simulations, we constructed the Lyα flux
correlation function ξ (�v) = 〈δF(v) δF(v + �v)〉, which primarily
provides a validation of our assumed primordial power spectrum
P(k) and its evolution in our simulation. Beginning with Croft et al.
(1998), the direct inversion of the one-dimensional power spectrum
of the Lyα flux has been seen as one of the best constraints on the
shape of the mass power spectrum on intermediate scales (e.g. Hui
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Figure 11. Top: Measured and simulated flux PDFs of the Lyα forest at
two representative redshifts. Measurements are taken from McDonald et al.
(2000) over redshift ranges of 2.09 � z � 2.67 (left panel) and 2.67 �
z � 3.39 (right panel), respectively, while simulations are at fixed red-
shifts of 2.5 (left panel) and 3 (right panel). Bottom: Measured and sim-
ulated flux two-point correlation functions of the Lyα forest: ξ (�v) =
〈δF(v) δF(v + �v)〉, where δF = F/F̄ −1, at two representative redshifts.
The triangles are measurements by McDonald et al. (2000) over redshift
ranges of 2.09 � z � 2.67 (left panel) and 2.67 � z � 3.39 (right panel),
respectively, and the circles are measurements by Croft et al. (2002) over
redshift ranges of 2.31 � z � 2.62 (left panel) and 2.88 � z � 3.25 (right
panel). Again, the simulations, represented by the solid lines, are at fixed
redshifts of 2.5 (left panel) and 3 (right panel).

1999; McDonald et al. 2000; Pichon et al. 2001; Croft et al. 2002;
Viel, Haehnelt & Springel 2004).

Again, this quantity is straightforward to extract from our simu-
lated spectra. The resulting values are shown in the lower panels of
Fig. 11, in which we compare them to measurements by McDonald
et al. (2000) as well as Croft et al. (2002). As in the single-point case,
our simulations are generally in good agreement with the observed
values. In fact, at z = 2.5, our simulated values are well within the
range of values bracketed by the weakly disagreeing observational
results. At z = 3.0, our simulated values provide a slight underpre-
diction at small separations, although this is only just outside the
1σ error in the current measurements. In summary, then, the gas
properties of our numerical simulation are more than adequate to
provide a firm basis for the construction of Lyα spectra, while at
the same time containing sufficient resolution to allow us to push
towards the denser regions associated with metal-line absorption
systems.

6 M O D E L L I N G M E TA L E N R I C H M E N T

6.1 Calculation of observed metal lines

Extending the methods of Section 5.2 to construct the spatial distri-
bution of metal lines requires us to adopt an overall spectral shape
for the ionizing background, as well as a more detailed calculation

Figure 12. Abundances of various species as a function of total hydrogen
number density for a 10−2 Z� gas exposed to a Haardt & Madau (2001)
background at z = 2.5. In the upper left panel, the temperatures correspond-
ing to each of the curves are, from top to bottom, 103.75 K (dotted), 104 K
(solid), 104.25 K (dot-dashed), 104.5 K (dashed), 104.75 K (dotted), 105.0 K
(solid), 105.25 K (dot-dashed), 105.5 K (dashed), 105.75 K (dotted) and 106.0 K
(solid). Similar labelling is used in the other panels. The vertical lines give
the mean hydrogen number density at z = 3 and 2, while the horizontal lines
give the total abundance of each of the elements.

of the densities of various species. Here we assume a UV spectrum
as predicted by the updated models of Haardt & Madau (2001, see
also Haardt & Madau 1996) at z = 2.5, but shifted such that J22

is consistent with the levels found in Section 5. Assuming local
thermal equilibrium, we then make use of CLOUDY94 (Ferland et al.
1998; Ferland 2000) to construct tables of the relevant species as
a function of temperature and density at each of these redshifts,
for a characteristic metallicity of 10−2 Z�. Self-shielding in opti-
cally thick regions was not taken to account. The resulting species
densities are shown as a function of hydrogen number density and
temperature in Fig. 12, which is modelled after fig. 2 of Rauch et al.
(1997a).

In this figure, we see that, roughly speaking, C IV traces the widest
range of environments, while Si IV, Mg II and Fe II probe progres-
sively denser regions. Thus while an appreciable level of C IV is
found in only a few times overdense z = 3 gas, comparable levels of
Si IV are achieved only in denser regions with � ≡ ρ(x)/ρ̄ ≈ 10;
and while Mg II is found at similar densities to Si IV, Fe II is only
detectable in � � 100 regions, orders of magnitude denser than
most C IV regions.

Similarly, C IV is detectable over a large temperature range, cover-
ing from 104 up to ≈106 K. While Si IV is also relatively stable with
respect to temperature changes, Mg II and Fe II are much more frag-
ile, and their abundances fall away quickly above ≈105 K. From
these results, we see that the correct modelling of Si IV requires
simulations that probe to densities ≈10 times higher than those
most relevant to CIV, although ξ C IV(v) and ξ Si IV(v) trace each other
closely. Thus while our numerical modelling was carried out at the
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Figure 13. Correlation functions and column density distributions for models in which metallicity is assumed to be constant throughout the simulation, or
a simple function of density. The filled points in the upper panels show high-metallicity models in which Z = 10−1 Z� and Z = �2/3 10−2 Z�, while the
filled points in the lower panels show lower-metallicity models in which Z = 10−2 Z� and Z = �2/3 10−3 Z�. Fifty-seven simulated QSO sightlines were
averaged in the high-metallicity models, and 114 were averaged in the lower-metallicity cases. The open circles give the measured C IV correlation function,
and the dashed lines give the fit to the column density distribution as in Fig. 1.

highest resolution possible, we nevertheless limit our comparisons
to C IV to minimize any remaining numerical effects.

6.2 A non-local dependence

Having determined the number densities of each of the species of in-
terest as a function of temperature and density in a 10−2 Z� medium,
we then applied these calculations to extract simulated metal absorp-
tion spectra from our simulations. As a first step, following Rauch
et al. (1997a), we assumed a constant metallicity across the simula-
tion volume and extracted sightlines of τ C IV using an appropriately
modified version of equation (12):

τC IV,i (z0 + �z)

= cσC IV,i

(1 + z0)
√

π

∫
dx

nC IV(x, z0)

bC IV(x, z0)

× exp

{
−
[

x H (z0) + v(x, z0)(1 + z0) − c�z

(1 + z0)bC IV(x, z0)

]2
}

, (14)

where now

bC IV(x, z0) ≡
√

2kBT (x, z0)/12mp,

nC IV(z) is the mean C IV density, and σ C IV,i is the cross-section cor-
responding to the ith absorption line of the C IV doublet. These we
compute directly from equation (13), taking (λ0,C IV,1, λ0,C IV,2) =
(1548.2, 1550.8) and ( f C IV,1, f C IV,2) = (0.1908, 0.09522). For the
low metallicities relevant for the IGM, the effects of changing metal-

licity can be modelled as a simple linear shift in the species under
consideration.

In contrast with the fixed-redshift comparisons described in
Section 5, our goal was to construct simulated data sets that cor-
responded as closely as possible to the full LP data set. In this case,
instead of stacking together spectra drawn from a single output, we
instead allowed for redshift evolution: drawing slices from the out-
put that most closely corresponded to the redshift in question, taking
n ∝ (1 + z)3, and interpolating between CLOUDY tables with appro-
priate J22 values. Finally, we applied Poisson noise corresponding
to a signal-to-noise ratio of 100 pixel−1.

Each spectrum generated by this method was subject to the same
two-step identification procedure that was applied to the real data,
and the resulting fits were subject to the same N and b cuts as de-
scribed in Section 2.2. The line lists compiled in this way were then
used to generate correlation functions and column density distribu-
tions that directly parallel those calculated from the LP data set.

These are shown in Fig. 13, in which we explore a low-metallicity
model (10−2 Z�) roughly consistent with previous estimates (e.g.
Rauch et al. 1997a; Schaye et al. 2003) as well as a higher-metallicity
model (10−1 Z�). Note that, at these metallicities, changes in Z can
be modelled simply by boosting the C IV density derived from the
CLOUDY tables by a linear factor. Increasing the metallicity by a factor
of 10 in this way has very little effect on the correlation function:
decreasing ξ C IV(v) in the 20 and 35 km s−1 bins by roughly a factor
of 1.5, while leaving the rest of the correlation function largely
unchanged. In all cases these values fall far short of the clustering
levels seen in our observational data, and they lack the conspicuous
bend observed at ≈150 km s−1.
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However, changing metallicity has a large effect on the column
density distribution. The low-metallicity model is consistent with
observations over the range of 12.5 � log N (cm−2) � 13.5, and
slightly overpredicts the number of large components (which have a
negligible impact on the correlation function). The high-metallicity
model, on the other hand, overpredicts the number of components
for all column densities log N (cm−2) � 13.0.

The poor fit to the correlation function is perhaps not surpris-
ing given the known inhomogeneity of the IGM metal distribution
(e.g. Rauch et al. 1997a). Most recently, this has been quantified
by Schaye et al. (2003), who applied a pixel optical depth method
to derive a non-linear relation between the local overdensity � of
hydrogen and the local carbon abundance. Over a large range of
environments, they found [C/H] ∝ �

2/3
H with a large variance. Is it

possible that accounting for this relationship would be able to re-
solve the discrepancy in ξ C IV(v)? In order to address this question,
we repeated our experiment, assuming that the local density fol-
lowed the best-fitting relationship derived by Schaye et al. (2003).
Again we considered both high- and low-metallicity models, result-
ing in correlation functions and column density distributions that
are shown in Fig. 13.

As our results, which depend on a line-fitting procedure, are bi-
ased to the densest regions, the ‘zero-point’ metallicities of these
models are naturally shifted to lower values. Thus, the �2/3 10−2 Z�
and the �2/3 10−3 Z� models shown in these figures yield simi-
lar numbers of components as the single-metallicity 10−1 Z� and
10−2 Z� models, respectively. In particular, the lower-metallicity
model allows us to obtain good agreement with the observed col-
umn density distribution, while assuming mean metallicity values
more in line with previous estimates (e.g. Hellsten et al. 1997; Rauch
et al. 1997a; Schaye et al. 2003).

Introducing a � dependence has almost no effect, however, on
the correlation function, neither boosting it at low separations nor
introducing a feature at ≈150 km s−1. Thus it appears that this
relationship is not the source of the clustering properties of the
metal-line components, and rather that the large variance seen in
the pixel-by-pixel results hides a third parameter that determines
these features. In fact, in Paper I, we described just such a key
parameter, the separation from a large dark-matter halo.

7 S O U R C E S O F I N T E R G A L AC T I C C I V

7.1 Distribution of metals and identification of sources

While the observed features in the C IV correlation function cannot
be understood in terms of a local non-linear relationship between
the metal and density distributions, we saw in Paper I that these
features could be easily explained in terms of the distribution of
metal sources. In that work we used a pure dark matter model to de-
scribe C IV components as contained within bubbles centred around
sources, and we interpreted the amplitude and the knee in the C IV

correlation function in terms of the source mass and bubble size,
respectively. In this investigation we develop a similar model, but
make use of the full gas and CLOUDY modelling described in Sections
5 and 6.

Following Paper I, we adopt a parametrization in which all metals
are found within a comoving radius Rs of a dark matter halo whose
mass is above a fixed value, M s. To facilitate comparison with our
previous modelling, as well as to allow for future comparisons with
analytic approaches, we identified all sources at a fixed redshift of
z = 3. In particular, halo detection was performed using the HOP

algorithm (Eisenstein & Hut 1998) with parameters δpeak = 160,

δ saddle = 140 and δouter = 80. The centres of these groups were
then traced forwards in time to the z = 2.5 and 2.0 slices such that
exactly the same groups could be selected from all the simulation
slices, accounting for appropriate peculiar motions.

As in Paper I, our choice of z = 3 is not meant to imply that
enrichment occurred at this redshift, but rather that it occurred at an
unknown redshift higher than the observed range, centred on groups
whose large-scale clustering was equivalent to z = 3 objects of mass
M s. For each choice of Rs and M s, we then painted bubbles of met-
als on our simulations, as illustrated in Fig. 14. While increasing
Rs has the obvious effect of increasing the volume filling factor of
metals, increasing M s not only lowers this filling factor, but also
clusters the bubbles more strongly. This can be most easily seen by
comparing models with similar filling factors. For example, com-
paring the M s = 1 × 1011 M�, R s = 1.6 comoving Mpc slice to the
M s = 5 × 1011 M�, R s = 2.4 comoving Mpc slice indicates that
a similar fraction is enriched with metals in both cases, but these
regions are spread over a considerable area in the lower-mass case
and concentrated into dense knots in the higher-mass case.

7.2 Properties of C IV

From slices such as those shown in Fig. 14 we were able to generate
simulated QSO absorption spectra, in a manner exactly parallel to
that described in Section 6.2: drawing lines of sight for the various
time outputs, piecing them together by evolving the mean density,
interpolating between CLOUDY tables, and applying realistic levels
of Poisson noise. In this case the metallicity was assumed to be at a
fixed value Zb within each bubble, and zero everywhere else. Note,
however, that our measurements are insensitive to C IV components
with columns below 1012 cm−2, and thus a more widely dispersed,
lower-level contribution to IGM metals (e.g. Schaye et al. 2003;
Bergeron & Herbert-Fort 2005) cannot be excluded.

In Paper I, our modelling made use of a parameter b̃ that con-
trolled the impact parameter associated with each subclump within
a bubble. In our more physical modelling, this role is played by
Zb, which we fixed at an initial value of 1/20 Z�. These spectra
were analysed by our automated procedure, and in Figs 15 and 16
we compare the resulting correlation functions and column density
distributions with those measured in the LP data set.

These plots reflect the trends seen in the slices. Increasing the
mass concentrates the metal into fewer regions, boosting the corre-
lation function, particularly at large separations. Increasing Rs, on
the other hand, impacts the correlation function primarily at smaller
separations, and has a strong impact on the total number of C IV

components detected per spectrum. From Fig. 15, the best-fitting
models are the M s = 5 × 1011 M� and R s = 2.4 Mpc, the M s =
1012 M� and R s = 2.4 Mpc, and the M s = 1012 M� and R s =
3.2 Mpc cases, with filling factors of 5.5, 8.6 and 11.6 per cent, re-
spectively, although several of the lower filling factor cases produce
so few lines as to be difficult to evaluate in detail. Similar filling fac-
tors have been advocated by Pieri & Haehnelt (2004) on the basis of
O VI measurements. The large M s values we derive are also sugges-
tive of the regions around Lyman-break galaxies (LBGs), which are
observed to be clustered like ≈1011.5 M� haloes at z = 3 (Porciani
& Giavalisco 2002), and for which a strong cross-correlation with
C IV absorbers has been measured (Adelberger et al. 2003, 2005;
see also Chen et al. 2001). It is also reminiscent of the association
between galaxies and C IV absorbers put forward in BSR03.

In Fig. 16 we better quantify the number of components in each
model by constructing simulated column density distributions as
discussed in Section 3.1. Here we see that, regardless of our choice
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Figure 14. The C IV distribution of a z = 3 slice in the simulation. Dark regions are those contained within a distance Rs of a dark matter halo of mass M s,
with parameters as labelled in the panels. These regions are used in constructing simulated spectra, while all gas outside them is considered to be metal-free.
From left to right, and then top to bottom, the overall volume filling factors (per cent) of these models are: 3.3, 8.6, 16.1; 3.4, 8.6, 16.7; and 1.7, 5.5, 11.6.

of source mass and bubble radius, all these models fall short of
reproducing the observations. Owing to the relatively small filling
factors of such bubble models, our choice of Z b = 1/20 Z� is not
able to generate the relatively large number of C IV absorbers seen
in the data.

In order to improve this agreement we considered a model in
which we assume a higher bubble metallicity of Z b ≈ 0.2 Z�, gen-
erating the ξ C IV(v) and log f (N ) values seen in Figs 17 and 18. As
was the case for our b̃ parameter in Paper I, varying Zb has relatively
little impact on the C IV correlation function, although the increased
number of components does result in less noise.

Thus the high-metallicity simulations display the same trends and
best-fitting models as were seen in the lower Zb case. However, the
improved signal allows us to distinguish the M s = 1012 M� and
R = 2.4 Mpc model as a somewhat better match to the data than the
M s = 5 × 1011 M� and R = 1.6 Mpc model and the M s = 1012 M�
and R = 3.2 Mpc model. The improved signal in Fig. 17 also enables
us to reject cases with very low filling factors. In particular, we see
that the models with the smallest bubble sizes do not reproduce the
observed ≈150 km s−1 elbow, exceeding the measured ξ C IV(v) at
small separations. Furthermore, models with M s = 1011 M� are
now seen to fall far short of the observed correlation function at
large separations, particularly if we consider the models with R s �
0.8, which are not overly peaked at small distances.

Finally, assuming a mean bubble metallicity of 1/5 Z� has a large
impact on the column density distribution, approximately doubling
the number of detected components and bringing our best-fitting
model into rough agreement with the data, although perhaps even

this value is slightly low in our best-fitting cases. It is clear that we
are forced towards these values because much of the gas around
≈1012 M� is heated by infall above ≈105.5 K, and thus it is largely
in the outskirts of our bubbles in which C IV absorbers are found.

While, at face value, this metallicity is widely discrepant with
other estimates, there are nevertheless two reasons to take it seri-
ously. First, the dense metal-rich regions in our model are observed
to be enriched to similar levels at z = 1.2. At this point, the LBG-
scale haloes around which we have placed our metals are expected to
have fallen into clusters, and thus the IGM gas is detectable through
X-ray emission in the intracluster medium (ICM). In fact, detailed
Chandra and XMM–Newton observations indicate ICM iron levels
of Z = 0.20+0.10

−0.05 at z = 1.2 (Tozzi et al. 2003), implying that at
even higher redshifts these metals have been efficiently mixed into
the diffuse gas that forms into clusters. Secondly, we note that more
than enough star formation has occurred by z = 2.3 to enrich these
regions to our assumed values. Indeed, comparisons between the in-
tegrated star formation history and more standard estimates of IGM
metallicity have shown that a large fraction of z ≈ 2 metals have so
far escaped detection (Pettini 1999). Thus, we find no compelling
reason to dismiss this high metallicity value as spurious, although
we emphasize that it has no direct impact on our derived clustering
masses and bubble sizes.

8 A N A NA LY T I C M O D E L

While our simulated bubble model provides a compelling picture of
the C IV and Si IV distribution at z ≈ 2–3, it leaves open the question
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Figure 15. Correlation functions of simulated C IV components, with an assumed bubble metallicity of 1/20 Z�. Panels are labelled by their assumed
M s in units of M� and Rs in units of comoving Mpc. In each panel the open circles summarize the observational results, while the filled squares repre-
sent the experimental results, as averaged over 114 spectra. Each panel is also labelled by the average number of C IV components detected per simulated
spectrum.

Figure 16. Column density distributions of simulated C IV absorption components, with an assumed bubble metallicity of 1/20 Z�. Models are as in Fig. 15,
and in each panel the filled points represent the simulation results, while the dashed line is the fit given in Fig. 1.
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.

Figure 17. Correlation function of simulated C IV components, with an assumed bubble metallicity of 1/5 Z�. Panels and symbols are as in Fig. 16.

Figure 18. Column density distributions of simulated C IV absorption components, with an assumed bubble metallicity of 1/5 Z�. Panels and symbols are as
in Fig. 16.
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as to properties of Mg II and Fe II. Yet the detailed modelling of these
species is beyond the capabilities of our simulation. As we saw in
Section 6.1, the environments of Mg II and Fe II are denser than C IV

and Si IV, particularly in the case of Fe II. Even more constraining
is the fact that almost all our detections of these systems fall well
below our final simulated redshift of 2, with the majority lying in
the 0.5 � z � 1.5 redshift range.

In Fig. 9 we saw that, while the overall shape and correlation func-
tion of these species is comparable to that observed in C IV and Si IV,
the magnitude and long separation tail of ξ (v) are shifted upwards
by a factor associated with the cosmological growth of structure.
While reproducing these trends is beyond the capabilities of our
simulation, they can nevertheless be studied from an approximate
analytic perspective.

8.1 Derivation

In Section 7 we found good agreement between our observations
and a model in which we painted metals around biased regions in our
simulation. Analytically this corresponds to a picture in which the
metal lines observed at zobs come from clumps that are within a fixed
radius of the sources of IGM metals. These pollution sources are
associated with relatively rare objects of mass Mp that ejected metals
into surroundings at a high redshift zp > zobs. After enrichment, these
components continue to cluster gravitationally to zobs.

In the numerical simulations, these pollution centres are identified
with the galaxies of mass M s at a redshift of z = 3. However, this
mass and redshift were intended only to quantify the bias of sources,
and it is more probable that they are really related to less massive,
higher-redshift objects, which exhibit similar clustering properties
(Porciani & Madau 2005; Scannapieco 2005).

Let us consider, then, four points: the centres of two clumps (1 and
2), which we observe as metal-line components, and the centres of
two bubbles (3 and 4), which correspond to the sources of pollution.
We require that the pollution sources correspond to peaks [i.e. linear
overdensities with a contrast larger than δcr ≡ 1.68D(zp)−1] at a
redshift zp > zobs and at a mass scale Mp. The clumps, on the
other hand, are associated with the C IV absorbers themselves, and
correspond to peaks at a mass scale Mc. In the linear approximation,
these fields satisfy a joint Gaussian probability distribution, which
is specified by the block correlation matrix

M =


ξcc(0) ξcc(r12) ξcp(r13) ξcp(r14)

ξcc(r12) ξcc(0) ξcp(r23) ξcp(r24)

ξcp(r13) ξcp(r23) ξpp(0) ξpp(r34)

ξcp(r14) ξcp(r24) ξpp(r34) ξpp(0)


≡
[

Mcc ccp

cpc Mpp

]
, (15)

where rij ≡ ||r i − r j ||, and ξ pp, ξ cc and ξ cp refer to the correlation
between pollution centres, the correlation between satellite clumps,
and the cross-correlation between satellite clumps and pollution
centres, respectively. The joint probability of having a peak of an
amplitude larger than δcr at the four points is given by

p(1, 2, 3, 4)

= 1

4π2
√

det |M|

∫ ∞

δcr

dδ1

∫ ∞

δcr

dδ2

∫ ∞

δcr

dδ3

∫ ∞

δcr

dδ4

× exp

[
− (δ1, δ2, δ3, δ4)T · M−1 · (δ1, δ2, δ3, δ4)

2

]
. (16)

We will evaluate this expression, assuming that the threshold that
defines the object is high relative to the corresponding rms densities
and taking the correlation between the metal-line clumps and the
centres of pollution to be small. We shall not assume the smallness
of the centre–centre nor clump–clump correlations, the first of which
is the most important. In this limit

M−1 ≈
[

M−1
cc −M−1

cc ccpM
−1
pp

−M−1
pp cpcM

−1
cc M−1

pp

]
, (17)

det |M| ≈ det |Mcc| · det |Mpp| (18)

and

p(1, 2, 3, 4)

≈ 1

4π2
√

det |Mcc|
√

det |Mpp|

×
∫ ∞

δcr

dδ1

∫ ∞

δcr

dδ2 exp
[− 1

2 (δ1, δ2)T · M−1
cc · (δ1, δ2)

]
×
∫ ∞

δcr

dδ3

∫ ∞

δcr

dδ4 exp
[− 1

2 (δ3, δ4)T · M−1
pp · (δ3, δ4)

]
× exp

[
(δ1, δ2)T · M−1

cc ccpM
−1
pp · (δ3, δ4)

]
. (19)

In the high peak limit, the last cross-correlation term can be factored
out from the integrals (see Appendix), yielding

p(1, 2, 3, 4)

≈ p(1, 2)p(3, 4) exp
[
(δcr, δcr)T · M−1

cc ccpM
−1
pp · (δcr, δcr)

]
, (20)

where p(1, 2) and p(3, 4) are computed from equation (A12), or,
explicitly,

p(1, 2, 3, 4)

≈ 1

4π2
ν−2

cc ν−2
pp C(ccc(r12), νcc)C(cpp(r34), νpp)

× exp

{
− ν2

cc

1 + ccc(r12)
− ν2

pp

1 + cpp(r34)

+ νccνpp
ccp(r13) + ccp(r24) + ccp(r14) + ccp(r23)

[1 + cpp(r34)][1 + ccc(r12)]

}
, (21)

where the function C(x , ν) is defined in the Appendix, and we define
the cross-correlation coefficients1 as

ccc ≡ ξcc(r )/ξcc(0),

cpp ≡ ξpp(r )/ξpp(0),

ccp ≡ ξcp(r )/
√

ξcc(0)ξpp(0),

and the normalized density thresholds as

νcc ≡ δcr/
√

ξcc(0),

νpp ≡ δcr/
√

ξpp(0).

1 The cross-correlation coefficients ξ cc(r )/ξ cc(0) and ξ pp(r )/ξ pp(0) reach
unity at r = 0 and thus cannot be assumed small everywhere. At the same
time ξcp(r )/

√
ξcc(0)ξpp(0) is always less than unity if Mc and Mp do not

coincide (Schwartz inequality). In particular, the smaller its maximum value,
achieved at r = 0, the larger the difference between the scales describing the
clumps and the pollution centres.
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Note that in equation (21) the correlation functions in the de-
nominator are not assumed to be small, which allows for proper
accounting of the case when two clumps or two pollution centres
are the same. For example, setting r 12 = r 34 = 0 properly recovers
the bivariant joint probability p(1, 3) to find a clump at a separation
r13 from the centre of pollution (equal in this case to r 14 = r 23 =
r 24).

In our model only those clumps that lie within the spherical bub-
ble around some pollution centre are observed to have metals. The
correlation function of clumps of mass Mc that are within spherical
bubbles around peaks corresponding to the mass Mp is defined as

p(δ1, δ3)p(δ2, δ4)[1 + ξ̄ (r12)] ≡ p̄(δ1, δ2, δ3, δ4), (22)

where the bar denotes averaging over the position of pollution cen-
tres within a distance Rs around two metal-rich clumps at a fixed
separation r12. Note that our definition of the correlation function,
ξ̄ (r12), is not equivalent to the estimator of the underlying correlation
function of all the clumps of mass M c, ξ (r 12), nor is it equivalent to
the conditional correlation function if there were a source of metals
(a high peak of the scale Mp) in the vicinity of every small halo,
ξ̄c(r12), which would be given by

p(δ1)p(δ2) p̄(δ3, δ4)[1 + ξ̄c(r12)] ≡ p̄(δ1, δ2, δ3, δ4). (23)

Furthermore, ξ̄ (r12) depends on the underlying two-point correla-
tion of small clumps, the correlation of the sources, and the cross-
correlation between clumps and sources. This last term is subject to
the most modification should the physics of metal dispersal change.
However, it mostly affects the biased density of small clumps in the
vicinity of the sources relative to the cosmological mean, which is
precisely the excess factored out in equation (22).

Thus equation (22) describes the correlation of metal components
at the redshift of pollution, which is dominated by the clustering of
the pollution sources. Subsequent gravitational clustering of en-
riched metals then leads to further amplification of the correlation
in the linear approximation as

ξ̄ (r , zobs) = [D(zobs)/D(zp)]2ξ̄ (r , zp), (24)

where D(z) is the linear density growth factor. This growth is sug-
gestive of the difference between the C IV and Mg II correlation func-
tions, as we saw in Fig. 9, as well as the hints of evolution seen in
ξ C IV(v) and ξ Mg II(v) in Figs 3 and 7.

8.2 Application to observed metal absorbers

In Fig. 19 we fit our analytic model to the data. In the left panel we
adopt the parameters used in our numerical simulations, identifying
metal pollution centres with M p = 1012 M� objects at a redshift
zp = 3 and metal-rich clumps with collapsed objects of M c =
109 M�, with R s = 2.4 comoving Mpc. At zobs = 2.3, the analytic
fit reproduces the measured ξ C IV(v) at large velocity separations,
where it is dominated by the correlation between pollution centres,
but it falls short at small velocities, where ξ C IV(v) is dominated by
the clump distribution within each bubble.

This is because the smoothing imposed by choosing M p ≈
1012 M� is similar to the 2.4 Mpc bubble size, and thus our lin-
ear formalism is insufficient to describe distances less than Rs. In
reality, the non-linear collapse of Mp would have moved in new ma-
terial to fill in this region. To mimic such non-linear effects at small
radii, we apply the prescription δcr −→ δcr + (1 − 1/δcr)ξ (Mo &
White 1996), resulting in the dashed curve. This correction, while

Figure 19. Comparison of our analytic model with the data. Left panel:
Low-redshift model for metal sources. Dotted lines represent the linear clus-
tering at zobs = 2.3 (lower) and zobs = 1.15 (upper) of clumps observed in
the vicinity of the pollution centres, with M p = 1012 M�, M c = 109 M�
and zp = 3. Solid lines show the effect of applying a non-linear correction
to these models. Finally, the dashed curve shows a non-linear zobs = 1.15
model in which M p = 1012 M� and zp = 3, but now M c = 1010 M�.
Right panel: The lower solid curve corresponds to M p = 3 × 109 M�,
M c = 108 M�, zpol = 7.5, zobs = 2.3, with no non-linear correction ap-
plied. The upper solid line is a further linear extrapolation of this model to
zobs = 1.15. The dashed line is a linear model again with zobs = 1.15,
M p = 3 × 109 M�, zpol = 7.5, but with Mc raised to 109 M�. For all
curves the comoving size of the bubble is 2.4 Mpc.

crude, is seen to recover a ξ C IV(v) that is similar to our simulated
1012 M� and R s = 2.4 Mpc case (and thus the observed correla-
tion function), confirming that the discrepancy at small distances is
caused by our neglect of non-linear motions.

Next we turn our attention to Mg II and Fe II, which are observed
at lower redshifts z ≈ 1.2. As we saw in Fig. 9, the rise of the correla-
tion amplitude of these species relative to C IV and Si IV is generally
in agreement with the hypothesis of linear growth of gravitational
clustering of a fixed population of objects from z = 2.3 to z = 1.15,
although there are significant discrepancies at small radii. Again we
plot both a linear zpol = 3, M p = 1012 M�, M c = 109 M� model
observed at zobs = 1.15 and a similar model in which a non-linear
correction has been applied. While the non-linear curve does well
at most radii, a shortfall is seen at z � 100 km s−1, similar to the
discrepancy between the ‘shifted’ ξ C IV(v) curve and the ξ Mg II(v)
curves in Fig. 9. Based on our plots of the species fraction as a func-
tion of environment, an important difference between these species
is clear. As Mg II can only survive in regions with a low ionization
parameter, it is biased towards much denser regions than C IV, which
corresponds in our analytic models to higher clump masses. Raising
Mc to 1010 M� to account for this effect leads to the dashed curve
in the left panel, which again agrees well with the data.

As discussed above, however, it is likely that the origin of metal
pollution lies at higher redshift from sources of a lower mass,
whose comoving clustering properties are identical to M ≈ 1012 M�
galaxies identified at z = 3. Indeed, these biased high-redshift
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sources may be the progenitors that later grew into large z = 3
galaxies. In the right panel of Fig. 19 we explore such a high-redshift
model, in which we take zpol = 7.5 and M p = 3 × 109 M�, so that
the bias of our sources is the same as for M p = 1012 M�, objects
forming at zp = 3. Adopting a similar ν c as in the zp = 3 case results
in the solid curves. As the smoothing due to the Lagrangian radius
associated with M p = 3 × 109 is minimal, no non-linear correction
is necessary and our simple model provides a reasonable fit to the
C IV and Si IV components observed at z = 2.3.

Similarly, extrapolation of the same objects to z = 1.15, the mean
redshift for Mg II and Fe II systems, matches their large-scale (v >

300 km s−1) correlations quite well, although the data at these sepa-
rations are sparse. At small velocities the difference between the en-
vironments of the two species becomes important, and linear scaling
does not completely explain the enhancement of correlation ampli-
tude in Fe II and Mg II relative to C IV and Si IV. As in the low-redshift
case, if we associate these species with larger clumps, the fit is much
improved at small radii, resulting in the dashed curve.

In summary, our simple analytic model generally reproduces
the features seen in our simulations of the C IV and Si IV correla-
tion functions, although a non-linear correction is necessary in the
zp = 3 model. Linearly extrapolating these models to lower redshift
results in a good fit to Mg II and Fe II at large distances, although
a fit at smaller distances requires us to use larger clump masses,
associated with denser environments. Finally, we find that there is
a strong degeneracy between Mp and zpol, with a family of sources
with similar biases producing acceptable fits.

9 C O N C L U S I O N S

While intergalactic metals are ubiquitous, the details of how these
elements made their way into the most tenuous regions of space
remains unknown. In this study we have used a uniquely large, ho-
mogeneous and high signal-to-noise ratio sample of QSO sightlines
to pin down the spatial distribution of these metals and combined this
with advanced automated detection techniques and a high-resolution
SPH simulation to pin down just what we can learn from this dis-
tribution. Our study has been focused on four key species: C IV and
Si IV, which serve as tracers of somewhat overdense regions from
redshifts 1.5 to 3.0, and Mg II and Fe II, which trace dense, lower-
redshift (z = 0.5–2.0) environments. No evolution in the column
density distributions of any of these species is detected.

In the high-redshift case, C IV and Si IV trace each other closely.
For both species, ξ (v), exhibits a steep decline at large separations,
which is roughly consistent with the slope of the �CDM matter
correlation function and the spatial clustering of z ≈ 3 Lyman-break
galaxies. At separations below ≈150 km s−1, this function flattens
out considerably, reaching a value of ξ (v) ≈ 50, if v � 50 km s−1.
Our data also suggest that ξ C IV(v) evolves weakly with redshift, at
a level consistent with the linear growth of structure.

The distribution of metals as traced by ξ C IV(v) is extremely ro-
bust. We find that it remains almost completely unchanged when
minimum or maximum column density cuts are applied to our sam-
ple, even if they are so extreme as to eliminate over two-thirds of
the components. We have also linked together C IV components into
systems, using a one-dimensional friends-of-friends algorithm, with
linking lengths of v link = 25, 50 and 100 km s−1. In all cases, the
line-of-sight correlation function of the resulting systems matches
the original component correlation function (within measurement
errors) at separations above v link. Finally, the Si IV/C IV ratio shows
no clear dependence when binned as a function of separation, sug-
gesting that the features seen in ξ C IV(v) and ξ Si IV(v) do not result
from fluctuations in the ionizing background.

Thus none of our tests indicate that the observed distributions of
C IV and Si IV represent anything but the distribution of intergalac-
tic metals at z = 1.5–3.0. This motivated us to carry out a con-
frontation between our C IV observations and detailed simulations
of IGM metal enrichment, which paralleled previous comparisons
for the Lyα forest. Furthermore, the advanced automatic detection
procedures described in Section 2.2 (see also Aracil, in preparation)
allowed us not only to compare simulated and observed spectra,
but also to generate simulated line lists in a manner that exactly
paralleled the observations.

Using these tools, we found that the observed features of the
C IV line-of-sight correlation function cannot be reproduced if the
IGM metallicity is constant. Rather, any such model falls far short
of the observed ξ C IV(v) amplitude and fails to reproduce flattening
seen below ≈150 km s−1. Furthermore, adopting a local relation
between overdensity and metallicity, as observed by Schaye et al.
(2003), has little or no effect on these results.

On the other hand, rough agreement between simulated and ob-
served C IV correlation functions is obtained in a model in which
only a fraction of the IGM is enriched. Emulating the simple model
in Paper I, we explored a range of models in which metals were
confined within bubbles of radius Rs about z = 3 sources of mass
M s, where these quantities are not meant literally as source red-
shifts and masses, but rather as tracers of the bias of the zpol � 3
source population. Varying these quantities, we derived parameters
that suggest large metal bubbles, R s ≈ 2 comoving Mpc, around
highly biased sources, with M s ≈ 1012 M�.

These results are suggestive of the association between galax-
ies and C IV absorbers put forward in BSR03, and the high cross-
correlation between LBGs and C IV absorbers measured by Adel-
berger et al. (2003, 2005). Yet this does not mean that LBGs are the
sources of intergalactic metals, only that the zpol � 3 sources were bi-
ased like LBGs. In fact, the case for outflows escaping lower-redshift
starbursts is much more convincing for dwarfs (Martin 2005). Sim-
ilarly, Rs need not be interpreted as the ejection radius of each
source, but instead as the distance at which bubbles from multiple
sources overlap. Our best-fitting M s and Rs values are independent
of the assumed bubble metallicity, although the low (�10 per cent)
volume filling factors of these models forces us to use large
(≈1/5 Z�) values to reproduce the observed C IV column density
distribution. Note, however, that given the high bias of our enriched
regions, such metallicities may be necessary to reconcile z ≈ 2.3
measurements with z ≈ 1.2 observations of the iron content of the
ICM in high-redshift galaxy clusters (Tozzi et al. 2003).

At lower redshifts, the line-of-sight correlation functions of Mg II

and Fe II are consistent with the same enriched regions seen in C IV

and Si IV, but now ‘passively’ evolved down to z ≈ 1.2. Again both
ξ Mg II(v) and ξ Fe II(v) trace each other closely, and exhibit the same
steep decline at large separations and flattening at small separations
as were seen in ξ C IV(v) and ξ Si IV(v). Also, as in the higher-redshift
case, the Mg II correlation function remains unchanged when min-
imum and maximum column density cuts are applied, and linking
together Mg II components into systems has no strong impact on
ξ Mg II(v) outside separations corresponding to the linking length.

Although Mg II and Fe II are detected in regions that cannot be
simulated numerically, we are nevertheless able to develop an ana-
lytic model that allows for a simple analysis of these species. Test-
ing our model against ξ C IV(v) and ξ Si IV(v), we find generally good
agreement with the data for similar values of mass and Rs as in the
numerical case. Pushing the model to lower redshift, we find that
the same parameters do well at reproducing the clustering proper-
ties of Mg II and Fe II, especially when we account for the fact that
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these species are found in denser environments. Finally, we also
find agreement with the observed ξ C IV(v) and ξ Si IV(v) at z = 2.3
and ξ Mg II(v) and ξ Fe II(v) at z = 1.15, and a high-redshift analytic
model in which zp = 7.5 and M p = 3 × 109 M�, illustrating the
strong degeneracy between Mp and zp for similarly biased sources.

Taken together, our z ≈ 2.3 and z ≈ 1.2 measurements, numerical
simulations and analytic modelling paint a consistent picture of IGM
enrichment. The distribution of intergalactic metals does not appear
uniform, nor simply dependent on the local density, but rather it
bears the signature of the population from which it came. While the
z � 3 redshift of metal ejection is unknown, a joint constraint on the
masses and redshifts of the objects responsible for IGM pollution
remains compelling. Models of IGM enrichment must come to terms
with the observed biased sources of intergalactic metals.
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A P P E N D I X A : T WO - P O I N T J O I N T P RO BA B I L I T Y D I S T R I BU T I O N O F H I G H P E A K S
I N G AU S S I A N F I E L D S

In this section we present formulae for the joint two-point probability for the peaks in the Gaussian field that are used in our analytic model.
These allow for the pair of peaks to have different scales and improve on the asymptotic results for the high peaks.

In the standard cosmological picture one identifies a collapsed object of mass M with a peak of height δ > δcr in the density field δ(x),
smoothed with a top-hat window function W(R) with the scale R = (3M/4πρ̄)1/3. In the limit of large height the geometrical peaks of the
Gaussian field can be approximately described as just the regions of high field values. This is the approximation that we adopt.

We shall need, first, the variance of the smoothed density field

σ 2 =
∫

P(k)W 2(k R)k2 dk, (A1)

where P(k) is the power spectrum of the density field and the Fourier image of the top-hat window is

W (k R) ≡ 4πR3

[
sin(k R)

(K R)3
− cos(k R)

(K R)2

]
, (A2)

and, secondly, the correlation function between the values of the field at two positions, separated by the distance r 12 = x 1 − x 2,

ξ (r12) =
∫

P(k)
sin(kr12)

kr12
W (k R1)W (k R2)k2 dk, (A3)

where the value at point 1 is taken after the field is smoothed on a scale R1, while at point 2 the field is evaluated after smoothing on a scale
R2. If R1 = R2, then ξ (0) = σ 2, while in general ξ (0) � σ 1 σ 2.

To evaluate the probability distribution functions used in Section 8, we begin with the well-known result for the one-point probability of
the field height to exceed δcr :

p(1) = 1√
2π σ

∫ ∞

δcr

dδ1 exp

(
− δ2

1

2σ 2
1

)
∼ 1√

2π

σ1

δcr
exp

(
− δ2

cr

2σ 2
1

)
= 1√

2π
ν−1

1 exp

(
−ν2

1

2

)
, (A4)

where ν 1 ≡ δcr/σ 1. Here 1 refers both to the (arbitrary) point where the field is evaluated, as well as to the scale it was smoothed with, R1.
Next we evaluate the asymptotic behaviour at large δcr � σ for the joint two-point probability

p(1, 2) = 1

2π
√

σ 2
1 σ 2

2 − ξ (r12)

∫ ∞

δcr

dδ1

∫ ∞

δcr

dδ2 exp

[
−1

2

δ1σ
2
2 + δ2σ

2
1 − 2ξ (r12)δ1δ2

σ 2
1 σ 2

2 − ξ 2(r12)

]
, (A5)

paying attention to the prefactors of the exponential terms. In general, σ 1 �= σ 2, but when δ1 and δ2 represent the same field smoothed with
the same filter taken at two different points (the case that we mostly need in this paper), then σ 1 = σ 2. Introducing uncorrelated variables

x = δ1σ2 + δ2σ1

δcrσ2 + δcrσ1
and y = δ1σ2 − δ2σ1

σ1σ2
,

we obtain

p(1, 2) = δcr(σ1 + σ2)

4π
√

σ 2
1 σ 2

2 − ξ 2(r12)

∫ ∞

1

dx exp

[
−1

4

δ2
cr

σ1σ2

(σ1 + σ2)2

σ1σ2 + ξ (r12)
x2

]∫ δcr[x(σ1+σ2)−2σ1]/σ1σ2

δcr[2σ2−x(σ1+σ2)]/σ1σ2

dy exp

[
−1

4

σ1σ2

σ1σ2 − ξ (r12)
y2

]
. (A6)
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This integral is of Laplace type,

I =
∫ ∞

1

dx e−αφ(x) f (x) with α = δ2
cr/σ1σ2,

which for large α asymptotically accumulates at the lower integration boundary over the interval x ∈ [1, 1 + �x], with

�x = 2
σ1σ2

δ2
cr

σ1σ2 + ξ (r12)

(σ1 + σ2)2
.

Asymptotic expansion is straightforward if one can expand f (x) in a Taylor series near x = 1,

f (x) ≡
∫ δcr[x(σ1+σ2)−2σ1]/σ1σ2

δcr[2σ2−x(σ1+σ2)]/σ1σ2

dy exp

[
−1

4

σ1σ2

σ1σ2 − ξ (r12)
y2

]
≈ 2(x − 1)

δcr(σ1 + σ2)

σ1σ2
exp

[
−1

4

δ2
cr

σ1σ2

(σ1 − σ2)2

σ1σ2 − ξ (r12)

]
, (A7)

in which case we get

p(1, 2) ≈ 2

π

σ1σ2

δ2
cr

[σ1σ2 + ξ (r12)]3/2

(σ1 + σ2)2[σ1σ2 − ξ (r12)]1/2
exp

[
−1

2
δ2

cr

σ 2
1 + σ 2

2 − 2ξ (r12)

σ 2
1 σ 2

2 − ξ 2(r12)

]
. (A8)

Two things are notable: First is the prefactor (σ 1σ 2)/δ2
cr. Secondly, we find that for small correlations the effect in the exponent where

small ξ/σ 1σ 2 is multiplied by δcr/σ 1σ 2 dominates the correction from the prefactor. Thus, as a leading-order approximation, we can account
for small correlations by factoring out the exponential correlation term from the original expression, with the values of the field replaced by
the threshold values.

In reality, the asymptotics in equation (A8) do not give an accurate approximation if correlations are strong, ξ (r 12) → σ 1σ 2, especially
since our threshold parameter δcr/σ may not be very large. This is definitely the case for a distribution of identical objects at short distances,
since then ξ (r → 0) = σ 2. More accurately, the Taylor expansion of f (x) in equation (A7) is not suitable when the width of the relevant
integration range �y = δcr �x (σ 1 + σ 2)/(σ 1σ 2) exceeds the width of the Gaussian

√
[σ1σ2 − ξ (r12)]/(σ1σ2). In this case, however, the

integration over y can be extended to ±∞. With subsequent asymptotic analysis of the integral over x, this gives

p(1, 2) ≈ 1√
π

√
σ1σ2

δcr

√
σ1σ2 + ξ (r12)

σ1 + σ2
exp

[
−1

4

δ2
cr

σ1σ2

(σ1 + σ2)2

σ1σ2 + ξ (r12)

]
, with

2√
σ1σ2 − ξ (r12)

σ1σ2 + ξ (r12)

σ1 + σ2
� δcr√

σ1σ2
� 1. (A9)

The general equations (A8) and (A9) are much simpler in the case when variances are identical, σ 2
1 = σ 2

2 = ξ (0). Defining the cross-
correlation coefficient c(r 12) = ξ (r 12)/ξ (0) and specifying accurately the range of validity of equation (A8) gives

p(1, 2) ≈ 1

2π
ν−2 A(c(r12)) exp

[
− ν2

1 + c(r12)

]
, for ν � max

(
1,

1 + c(r12)√
1 − c(r12)

)
, (A10)

p(1, 2) ≈ 1√
2π

ν−1 B(c(r12)) exp

[
− ν2

1 + c(r12)

]
, for

1 + c(r12)√
1 − c(r12)

� ν � 1, (A11)

where smooth functions

A(x) ≡
√

(1 + x)3

1 − x
x→0−→ 1 and B(x) ≡

√
1 + x

2
x→1−→ 1.

As expected,

p(1, 2)
c→0−→ p(1)p(2) and p(1, 2)

c→1−→ p(1).

It is important to note that the probability is additionally enhanced by ν = δcr/σ when correlations are strong.
Finally, we combine (A10) and (A11) into the uniform approximation

p(1, 2) ≈ 1

2π
ν−2C(c(r12), ν) exp

[
− ν2

1 + c(r12)

]
, for ν � 1, (A12)

with the help of an interpolating function, C(x , ν), such that C(0, ν) = 1, C(1, ν) = ν
√

2π. The choice

C(x, ν) = ν
√

π
√

(1 + x)3

(ν
√

π − 1)
√

1 − x + (1 + x)
(A13)

reflects both the details of the functions A(x) and B(x) and of the transition between (A10) and (A11).
In the weak correlation regime, the formula (A12) coincides with the classic result of Kaiser (1984). At the same time, in the strong

correlation regime, the result (A12) shows that the correlation between regions of high density is additionally enhanced by the factor
√

2πν.
Although our result is rigorous for the points of high excursions of the field at all separations r, the interpretation of the last regime in terms
of peak, or object, correlation is questionable at r < R1 + R2 when the two high-density points probably belong to the same peak.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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A B S T R A C T

We report a new analysis of the stellar dynamics in the Galactic Centre, based on improved

sky and line-of-sight velocities for more than 100 stars in the central few arcseconds from

the black hole candidate SgrA*. The main results are as follows.

(1) Overall, the stellar motions do not deviate strongly from isotropy. For those 32 stars

with a determination of all three velocity components, the absolute, line-of-sight and sky

velocities are in good agreement, consistent with a spherical star cluster. Likewise the sky-

projected radial and tangential velocities of all 104 proper motion stars in our sample are

also consistent with overall isotropy.

(2) However, the sky-projected velocity components of the young, early-type stars in our

sample indicate significant deviations from isotropy, with a strong radial dependence. Most

of the bright He i emission-line stars at separations from 1 to 10 arcsec from SgrA* are on

tangential orbits. This tangential anisotropy of the He i stars and most of the brighter

members of the IRS 16 complex is largely caused by a clockwise (on the sky) and counter-

rotating (line of sight, compared to the Galaxy), coherent rotation pattern. The overall

rotation of the young star cluster may be a remnant of the original angular momentum

pattern in the interstellar cloud from which these stars were formed.

(3) The fainter, fast-moving stars within <1 arcsec of SgrA* may be largely moving on

radial or very elliptical orbits. We have so far not detected deviations from linear motion

(i.e., acceleration) for any of them. Most of the SgrA* cluster members are also on

clockwise orbits. Spectroscopy indicates that they are early-type stars. We propose that the

SgrA* cluster stars are those members of the early-type cluster that happen to have small

angular momentum, and thus can plunge to the immediate vicinity of SgrA*.

(4) We derive an anisotropy-independent estimate of the Sun±Galactic Centre distance

between 7.8 and 8.2 kpc, with a formal statistical uncertainty of ^0.9 kpc.

(5) We explicitly include velocity anisotropy in estimating the central mass distribution.

We show how Leonard±Merritt and Bahcall±Tremaine mass estimates give systematic

offsets in the inferred mass of the central object when applied to finite concentric rings for

power-law clusters. Corrected Leonard±Merritt projected mass estimators and Jeans

equation modelling confirm previous conclusions (from isotropic models) that a compact

central mass concentration (central density $1012.6 M( pc23) is present and dominates the

potential between 0.01 and 1 pc. Depending on the modelling method used, the derived

central mass ranges between 2:6 � 106 and 3:3 � 106 M( for R( � 8:0 kpc:

Key words: celestial mechanics, stellar dynamics ± stars: kinematics ± Galaxy: centre ±

Galaxy: kinematics and dynamics.

1 I N T R O D U C T I O N

High spatial resolution observations of the motions of gas and

stars have in the past decade substantially strengthened the

evidence that central dark mass concentrations reside in many

(and perhaps most) nuclei of nearby galaxies (Kormendy &

Richstone 1995; Magorrian et al. 1998; Richstone et al. 1998).

These dark central masses are very likely to be massive black

Mon. Not. R. Astron. Soc. 317, 348±374 (2000)

w E-mail: genzel@mpe-garching.mpg.de
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Numerical investigation of lens models with substructures

using the perturbative method.
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ABSTRACT

We present a statistical study of the effects induced by substructures on the deflection
potential of dark matter halos in the strong lensing regime. This investigation is based
on the pertubative solution around the Einstein radius (Alard 2007) in which all the
information on the deflection potential is specified by only a pair of one-dimensional
functions on this ring.

Using direct comparison with ray-tracing solutions, we found that the iso-contours
of lensed images predicted by the pertubative solution is reproduced with a mean
error on their radial extension of less than 1% — in units of the Einstein radius, for
reasonable substructure masses. It demonstrates the efficiency of the approximation
to track possible signatures of substructures.

We have evaluated these two fields and studied their properties for different lens
configurations modelled either through massive dark matter halos from a cosmological
N-body simulation, or via toy models of Monte Carlo distribution of substructures
embedded in a triaxial Hernquist potential.

As expected, the angular power spectra of these two fields tend to have larger
values for larger harmonic numbers when substructures are accounted for and they
can be approximated by power-laws, whose values are fitted as a function of the profile
and the distribution of the substructures.

Key words: methods: Gravitational lensing-strong lensing; N-body simulations

1 INTRODUCTION

The cold dark matter (CDM) paradigm (Cole et al. 2005
and references therein) has led to a successful explanation of
the large-scale structure in the galaxy distribution on scales
0.02 ≤ k ≤ 0.15h Mpc−1. The CDM power spectrum on
these scales derived from large redshift surveys such as, for
instance, the Anglo-Australian 2-degree Field Galaxy Red-
shift Survey (2dFGRS), is also consistent with the Lyman-α
forest data in the redshift range 2 ≤ z ≤ 4 (Croft et al. 2002;
Viel et al. 2003; Viel, Haehnelt & Springel 2004).

In spite of these impressive successes, there are still dis-
crepancies between simulations and observations on scales
≤ 1 Mpc, extensively discussed in the recent literature. We
may mention the sharp central density cusp predicted by
simulations in dark matter halos and confirmed by the rota-
tion curves of low surface brightness galaxies (de Blok et al.
2001) or in bright spiral galaxies (Palunas & Williams 2000;
Salucci & Burkert 2000; Gentile et al. 2004). Moreover, deep

⋆ E-mail: peirani@iap.fr

surveys (z ≥ 1−2), such as the Las Campanas Infrared Sur-
vey, HST Deep Field North and Gemini Deep Deep Survey
(GDDS) are revealing an excess of massive early-type galax-
ies undergoing “top-down” assembly with high inferred spe-
cific star formation rates relative to predictions of the hier-
archical scenario (Glazebrook et al. 2004; Cimatti, Daddi &
Renzini 2006).

One problem that requires closer examination concerns
the large number of sub-L∗ subhalos present in simulations
but not observed (Kauffmann, White & Guiderdoni 1993;
Moore et al. 1999; Klypin et al. 1999). This is the case of
our Galaxy or M31, although there is mounting evidence for
a large number of very low mass dwarfs (Belokurov et al.
2006). However, it is still unclear whether the CDM model
needs to be modified to include self-interacting (Spergel
& Steinhardt 2000) or warm dark matter (Bode, Ostriker
& Turok 2001; Coĺın, Avila-Reese & Valenzuela 2000) or
whether new physical mechanisms can dispel such discrep-
ancies with the observations. For instance, gas cooling can
be partly prevented by photoionization process which may
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Abstract. The shape and the decomposition of the Lilly-Madau diagram representing the evolution of the cosmic
star-formation rate density (hereafter SFRD) is still subject to vigorous debates, both on observational and
modeling grounds. We address here this issue with two complementary empirical approaches. First, using the
deepest data available today at 24 µm (24µJy), we present the evolution of the SFRD probed by infrared light
and of the infrared luminosity functions, complementing previous similar works on this subject, which were 4 times
shallower, with a luminosity gain of 0.6 dex in the faint-end. We then use an original non-parametric inversion
technique to derive the range of all possible evolving luminosity functions able to reproduce simultaneously the
available multi-wavelength infrared counts from 15 to 850 µm. The redshifts of the sources are not needed as
an input for this inversion: the only constraints we impose are that the limits from measurements of the cosmic
infrared background are respected, and that the evolution of the LF is smooth both in redshift and in luminosity.
We find that the range of possible LFs is in remarkable agreement with the direct measurements at low redshift.
The cosmic SFRD inferred by these luminosity functions are also in agreement with direct observations; the
uncertainties in the contribution of LIRGs and ULIRGS are tightened at high redshift. When accounting for
stellar lifetimes and remnants, the integral of the SFRD is consistent with the stellar density per unit comoving
volume from z = 0 to 3, in contrast with previous claims. Since these SFRD are measured from completely
independent datasets (old-cold stars from optical-NIR for the stellar density, and young massive warm stars from
UV radiation reprocessed by dust in the FIR), the consistency between the SFR and stellar mass histories in
that redshift range should now be considered to be a robust constraint for theoretical models and numerical
simulations. A particular difficulty for these models will be to explain this “IR downsizing”, i.e. the fact that the
average IR luminosity of the galaxies, which dominate the SFR density, increases with redshift. Finally, we make
predictions for the number of sources to be seen in future infrared missions such as HERSCHEL and SCUBA2.

Key words. Galaxies: high-redshift– Galaxies: evolution – Galaxies: formation – Infrared: galaxies – Submillimeter
– Galaxies: luminosity function

1. Introduction

Some key questions remain concerning the cosmic forma-
tion of galaxies, such as when and how galaxies formed
their stars over the last 13 Gyr. However, thanks to recent
ultra-deep surveys at various wavelengths, some phenom-
ena are now quite accurately measured and described, at
least at relatively low redshift. For instance, it is well es-
tablished that massive galaxies have experienced most of
their star formation (SF) activity at early epochs whereas
the SF activity in small galaxies keeps on average a more

Send offprint requests to: Damien Le Borgne, e-mail:
damien.leborgne@cea.fr

constant level. This so-called “downsizing” has been sub-
ject to many studies over the last few years (Madau et al.
1996; Lilly et al. 1996; Steidel et al. 1999; Juneau et al.
2005; Le Floc’h et al. 2005) and various signs of this down-
sizing are now seen. But precise measurements of the SF
occurring at high redshift are still needed to challenge ef-
ficiently the latest models of galaxy formation. Hence ad-
ditional constraints on the modeling of the evolution of
the cosmic star-formation history must come from obser-
vations.

Recently, very deep surveys were designed to probe
SF in the distant universe. The GOODS survey (PI.
Dickinson, see also Giavalisco et al. 2004), with its very
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ABSTRACT

We investigate how well the 3D density field of neutral hydrogen in the Intergalactic
Medium (IGM) can be reconstructed using the Lyman-α absorptions observed along lines of
sight to quasars separated by arcmin distances in projection on the sky. We use cosmological
hydrodynamical simulations to compare the topologies of different fields: dark matter, gas
and neutral hydrogen optical depth and to investigate how well the topology of the IGM can
be recovered from the Wiener interpolation method implemented by Pichon et al. (2001). The
global statistical and topological properties of the recovered field are analyzed quantitatively
through the power-spectrum, the probability distribution function (PDF), the Euler charac-
teristics, its associated critical point counts and the filling factor of underdense regions. The
local geometrical properties of the field are analysed using the local skeleton by defining the
concept of inter-skeleton distance.

As a consequence of the nearly lognormal nature of the density distribution at the scales
under consideration, the tomography is best carried out on the logarithm of the density rather
than the density itself. At scales larger than∼ 1.4〈dLOS〉, where〈dLOS〉 is the mean separation
between lines of sight, the reconstruction accurately recovers the topological features of the
large scale density distribution of the gas, in particular the filamentary structures: the inter-
skeleton distance between the reconstruction and the exact solution is smaller than〈dLOS〉.
At scales larger than the intrinsic smoothing length of the inversion procedure, the power
spectrum of the recovered HI density field matches well that of the original one and the low
order moments of the PDF are well recovered as well as the shape of the Euler characteristic.
The integral errors on the PDF and the critical point counts are indeed small, less than 20% for
a mean line of sight separation smaller than∼2.5 arcmin. The small deviations between the
reconstruction and the exact solution mainly reflect departures from the log-normal behaviour
that are ascribed to highly non-linear objects in overdense regions.

Key words: methods: statistical, hydrodynamical simulations – cosmology: large-scale struc-
tures of universe, intergalactic medium – quasars: absorption lines

1 INTRODUCTION

The structure and composition of the intergalactic medium (IGM)
has long been studied using the Ly-α forest in QSO absorp-
tion spectra (Rauch 1998). The progress made in high resolution
Echelle-spectrographs has led to a consistent picture in which the
absorption features are related to the distribution of neutral hy-
drogen through the Lyman transition lines of HI. Hydrogen in the
IGM is highly ionized (Gunn & Peterson, 1965). Its photoioniza-
tion equilibrium in the expanding IGM establishes a tight corre-
lation between neutral and total hydrogen density and numerical
simulations have confirmed the existence of this correlation. They
have also shown that the gas density traces the fluctuations of the
DM density on scales larger than the Jeans length (see for example

Cen et al. 1994, Petitjean et al. 1995, Miralda-Escudé et al. 1996,
Theuns et al. 1998, Viel, Haehnelt & Springel 2004).

As we will show in the first part of this work, the statistical
and topological properties of the IGM and of the dark matter dis-
tributions are the same, so that recovering the three-dimensional
distribution and inferring the topological properties of the IGM al-
lows us to constrain the properties of the dark matter distribution as
well.

Although topological tools have been introduced only rela-
tively recently in cosmological analysis, they have been used ex-
tensively to characterize the topology of large scales structures as
revealed by the three-dimensional distribution of galaxies in the
local universe (see for exemple Gott et al. (1986), Vogeley et al.
(1994), Protogeros & Weinberg (1997), Trac et al. (2002), Park et
al.(2005) and Sousbie et al. (2006) for the topological analysis of

c© 0000 RAS
481

http://fr.arXiv.org/abs/0801.4335v1


A&A 376, 28–42 (2001)
DOI: 10.1051/0004-6361:20010901
c© ESO 2001

Astronomy
&

Astrophysics

Physical properties and small-scale structure of the Lyman-α
forest: Inversion of the HE 1122–1628 UVES spectrum?,??

E. Rollinde1, P. Petitjean1 ,2, and C. Pichon3,1

1 Institut d’Astrophysique de Paris, 98bis boulevard d’Arago, 75014 Paris, France
2 UA CNRS 173 – DAEC, Observatoire de Paris-Meudon, 92195 Meudon Cedex, France
3 Observatoire de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France
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Abstract. We study the physical properties of the Lyman-α forest by applying the inversion method described by
Pichon et al. (2001) to the high resolution and high S/N ratio spectrum of the zem = 2.40 quasar HE 1122–1628
obtained during Science Verification of UVES at the VLT. We compare the column densities obtained with the
new fitting procedure with those derived using standard Voigt profile methods. The agreement is good and gives
confidence in the new description of the Lyman-α forest as a continuous field as derived from our method. We show
that the observed number density of lines with logN > 13 and 14 is, respectively, 50 and 250 per unit redshift
at z ∼ 2. We study the physical state of the gas, neglecting peculiar velocities, assuming a relation between the
overdensity and the temperature, T = T (ρ(x)/ρ̄)2β . There is an intrinsic degeneracy between the parameters
β and T . We demonstrate that, at a fixed β, the temperature at mean density, T , can be uniquely extracted,
however. While applying the method to HE 1122–1628, we conclude that for 0.2 < β < 0.3, 6000 < T < 15 000 K
at z ∼ 2. We investigate the small-scale structure of strong absorption lines using the information derived from
the Lyman-β, Lyman-γ and C iv profiles. Introducing the Lyman-β line in the fit allows us to reconstruct the
density field up to ρ/ρ̄ ∼ 10 instead of 5 for the Lyman-α line only. The neutral hydrogen density is of the order
of ∼2× 10−9 cm−3 and the C iv/H i ratio varies from about 0.001 to 0.01 within the complexes of total column
density N(H i) ∼ 1015 cm−2. Such numbers are expected for photo-ionized gas of density nH ∼ 10−4 cm−3

and [C/H] ∼ −2.5. There may be small velocity shifts (∼10 km s−1) between the peaks in the C iv and H i

density profiles. Although the statistics is small, it seems that C iv/H i and nHI are anti-correlated. This could
be a consequence of the high sensitivity of the C iv/H i ratio to temperature. The presence of associated O vi

absorption, with a similar profile, confirms that the gas is photo-ionized and at a temperature of T ∼ 105 K.

Key words. methods: data analysis – methods: N-body simulations – methods: statistical – galaxies: intergalactic
medium – galaxies: quasars: absorption lines – cosmology: dark matter

1. Introduction

The numerous absorption lines seen in the spectra of dis-
tant quasars (the so-called Lyman-α forest) reveal the in-
tergalactic medium (IGM) up to redshifts larger than 5.
It is believed that the space distribution of the gas traces

Send offprint requests to: E. Rollinde,
e-mail: rollinde@iap.fr
? Based on data collected during Science Verification of the

Ultra-violet and Visible Echelle Spectrograph at the European
Southern Observatory on the 8.2 m KUEYEN telescope oper-
ated on Cerro Paranal, Chile.
?? Table A.1 is only available in electronic form at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr

(130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/376/28

the potential wells of the dark matter. Indeed, recent nu-
merical N -body simulations have been successful at re-
producing the observed characteristics of the Lyman-α
forest (Cen et al. 1994; Petitjean et al. 1995; Hernquist
et al. 1996; Zhang et al. 1995; Mücket et al. 1996; Miralda-
Escudé et al. 1996; Bond & Wadsley 1998). The IGM is
therefore seen as a smooth pervasive medium which can be
used to study the spatial distribution of the mass on scales
larger than the Jeans’ length. This idea is reinforced by
observations of multiple lines of sight. It is observed that
the Lyman-α forest is fairly homogeneous on scales smaller
than 100 kpc (Smette et al. 1995; Impey et al. 1996) and
highly correlated on scales up to one megaparsec (Dinshaw
et al. 1995; Fang et al. 1996; Petitjean et al. 1998; Crotts
& Fang 1998; D’Odorico et al. 1998; Young et al. 2001).
The number of known suitable multiple lines of sight is

482



A&A 419, 811–819 (2004)
DOI: 10.1051/0004-6361:20034346
c© ESO 2004

Astronomy
&

Astrophysics

Metals in the intergalactic medium�

B. Aracil1, P. Petitjean1,2, C. Pichon3, and J. Bergeron1

1 Institut d’Astrophysique de Paris – CNRS, 98bis Boulevard Arago, 75014 Paris, France
2 LERMA, Observatoire de Paris-Meudon, 61 avenue de l’Observatoire, 75014 Paris, France

e-mail: petitjean@iap.fr
3 Observatoire de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France
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Abstract. We use high spectral resolution (R = 45 000) and high signal-to-noise ratio (S/N ∼ 35−70 per pixel) spectra

of 19 high-redshift (2.1 < zem < 3.2) quasars to investigate the metal content of the low-density intergalactic medium using

pixel-by-pixel procedures. This high quality homogeneous survey gives the possibility to statistically search for metals at

H  optical depths smaller than unity. We find that the gas is enriched in carbon and oxygen for neutral hydrogen optical

depths τH I > 1. Our observations strongly suggest that the C /H  ratio decreases with decreasing τH I with log τC IV =

1.3 × log τH I − 3.2. We do not detect C  absorption statistically associated with gas of τH I < 1. However, we observe that a

small fraction of the low density gas is associated with strong metal lines as a probable consequence of the IGM enrichment

being highly inhomogeneous. We detect the presence of O  down to τH I ∼ 0.2 with log τO VI/τH I ∼ −2.0. We show that

O  absorption in the lowest density gas is located within ∼300 km s−1 of strong H  lines. This suggests that this O  phase

may be part of winds flowing away from overdense regions. This effect is more important at the largest redshifts (z > 2.4).

Therefore, at the limit of present surveys, the presence of metals in the underdense regions of the IGM is still to be demonstrated.

Key words. cosmology: observations – galaxies: halos – galaxies: ISM – quasars: absorption lines

1. Introduction

One of the key issues in observational cosmology is to un-

derstand how and when star formation took place in the high
redshift universe. In particular, it is not known when the first

stars appeared or how they were spatially distributed. The di-

rect detection of these stars is challenging but the intergalactic
medium (IGM) provides at least a record of stellar activity at

these remote times. Indeed, metals are produced in stars and ex-

pelled into the IGM by supernovae explosions and subsequent
winds and/or by galaxy interactions. It is therefore crucial to

observe the distribution of metals present in the IGM at high
redshifts.

The high-redshift intergalactic medium (IGM) is revealed

by numerous H  absorption lines observed in the spectra of re-
mote quasars (the so-called Lyman-α forest). It is believed that

the gas in the IGM traces the potential wells of the dark mat-

ter and its spatial structures: overdense sheets or filaments and
underdense voids (e.g. Cen et al. 1994; Petitjean et al. 1995;

Hernquist et al. 1996; Bi & Davidsen 1997). In the course
of cosmic evolution, the gas is most likely metal enriched by

Send offprint requests to: B. Aracil, e-mail: aracil@iap.fr
� Based on observations collected at the European Southern

Observatory (ESO), under the Large Programme “The Cosmic

Evolution of the IGM” ID No. 166.A-0106 with UVES on the

8.2 m KUEYEN telescope operated at the Paranal Observatory, Chile.

winds flowing out from star-forming regions that are located

preferentially in the centre of massive halos. It is therefore not

surprising to observe C  absorption associated with most of
the strong H  lines with log N(H ) > 14.5 as these lines most

likely trace filaments in which massive halos are embedded

(Cowie et al. 1995; Tytler et al. 1995). The question of whether
the gas filling the underdense space (the so-called voids) de-

lineated by these overdense structures also contains metals or
not is crucial. Indeed, it is improbable that winds from star-

forming regions located in the filaments can pollute the voids

entirely (Ferrara et al. 2000). Therefore, if metals are found in
the gas filling the voids, then they must have been produced

in the very early Universe by objects more of less uniformly

spatially distributed.

Absorptions arising through voids are mostly of low-

column densities (typically of the order or less than
N(H ) = 1013 cm−2). Given the expected low metalicities (typ-

ically [C/H] < −2.5 relative to solar), direct detection of metals

at such low neutral hydrogen optical depth is currently impos-
sible due to the weakness of the expected metal absorption and

statistical methods should be used instead. Lu et al. (1998) used
the stacking method to increase the signal-to-noise ratio at the

place where metal absorptions are expected and did not find any

evidence for metals in the range 1013 < N(H ) < 1014 cm−2.
Although uncertainties in the position of the lines can

lead to underestimate the absorption, they conclude that

483



Mon. Not. R. Astron. Soc. 341, 1279–1289 (2003)

The correlation of the Lyman α forest in close pairs and groups of
high-redshift quasars: clustering of matter on scales of 1–5 Mpc

E. Rollinde,1� P. Petitjean,1,2 C. Pichon,1,3,4 S. Colombi,1,4 B. Aracil,1

V. D’Odorico1 and M. G. Haehnelt5
1Institut d’Astrophysique de Paris, 98 bis boulevard d’Arago, 75014 Paris, France
2LERMA, Observatoire de Paris, 61 Avenue de l’Observatoire, F-75014 Paris, France
3Observatoire de Strasbourg, 11 Rue de l’Université, 67 000 Strasbourg, France
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ABSTRACT
We study the clustering of matter in the intergalactic medium from the Lyman α forests seen
in the spectra of pairs or groups of z ∼ 2 quasars observed with FORS2 and UVES at the
VLT-UT2 Kueyen ESO telescope. The sample consists of five pairs with separation of 0.6, 1,
2.1, 2.6 and 4.4 arcmin and a group of four quasars with separations from 2 up to 10 arcmin.
This unprecedented data set allows us to measure the transverse flux correlation function
for a range of angular scales. Correlations are clearly detectable at separations smaller than
3 arcmin. The shape and correlation length of the transverse correlation function on these
scales are in good agreement with those expected from absorption by the photoionized warm
intergalactic medium associated with the filamentary and sheet-like structures predicted in cold
dark matter-like models for structure formation. At larger separation no significant correlation
is detected. Assuming that the absorbing structures are randomly orientated with respect to the
line of sight, the comparison of transverse and longitudinal correlation lengths constrains the
cosmological parameters (as a modified version of the Alcock & Paczyński test). The present
sample is too small to have significant constraints. Using N-body simulations, we investigate
the possibility of constraining �� from future larger samples of quasistellar object pairs with
similar separations. The observation of a sample of 30 pairs at 2, 4.5 and 7.5 arcmin should
constrain the value of �� at ±15 per cent (2σ level). We also use the observed spectra of the
group of four quasars to search for underdense regions in the intergalactic medium. We find a
quasi-spherical structure of reduced absorption with radius 12.5 h−1 Mpc, which we identify
as an underdense region.

Key words: methods: data analysis – methods: N-body simulations – methods: statistical –
intergalactic medium – quasars: absorption lines – dark matter.

1 I N T RO D U C T I O N

The intergalactic medium (IGM) is revealed by the numerous H I

absorption lines seen in the spectra of distant quasars, the so-called
Lyman α forest. For a long time these absorption lines have been
believed to be the signature of discrete and compact intergalac-
tic clouds photoionized by the ultraviolet (UV) background (e.g.
Sargent et al. 1980). However, N-body simulations (Cen et al. 1994;
Petitjean, Mücket & Kates 1995; Zhang, Anninos & Norman 1995;
Hernquist et al. 1996; Mücket et al. 1996; Miralda-Escudé et al.

�E-mail: rollinde@ast.cam.ac.uk

1996; Bond & Wadsley 1998; Theuns et al. 1998) and analytical
works (e.g. Bi & Davidsen 1997; Hui & Gnedin 1997) together with
the first determination of the approximate size of the absorbing struc-
tures from observation of quasistellar object (QSO) pairs (Bechtold
et al. 1994; Dinshaw et al. 1994) established a new paradigm. The
Lyman α forest is now generally believed to arise instead from spa-
tially extended density fluctuations of moderate amplitude in the
continuous intergalactic medium. The baryons thereby follow the
dark matter distribution on scales larger than the Jeans length. Obser-
vations of the Lyman α forest can thus be used to constrain structure
formation models and cosmological parameters. Croft et al. (2002),
for example, used hydrodynamic simulations to investigate the rela-
tion between the flux power spectrum along the line of sight and the

C© 2003 RAS 484
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Abstract. Results are presented for our search for warm-hot gas towards the quasar Q 0329−385. We identify ten O  systems
of which two are within 5000 km s−1 of zem and a third one should be of intrinsic origin. The seven remaining systems have
H  column densities 1013.7 ≤ N(H ) ≤ 1015.6 cm−2. At least ∼1/3 of the individual O  sub-systems have temperatures T <
1× 105 K and cannot originate in collisionally ionized gas. Photoionization by a hard UV background field reproduces well the
ionic ratios for metallicities in the range 10−2.5−10−0.5 solar, with possibly sub-solar N/C relative abundance. For [O/C] = 0,
the sizes inferred for the O  clouds are in some cases larger than the maximum extent implied by the Hubble flow. This
constraint is fulfilled assuming a moderate overabundance of oxygen relative to carbon. For a soft UV ionizing spectrum, an
overabundance of O/C is required, [O/C] ≈ 0.0−1.3. For a hard(soft) U spectrum and [O/C] = 0(1), the O  regions have
overdensities ρ/ρ ≈ 10−40.

Key words. cosmology: observations – intergalactic medium – galaxies: halos – quasars: absorption lines

1. Introduction

Numerical simulations suggest the existence of a warm-hot
phase in the intergalactic medium, 105 < T < 107 K, which
comprises a fraction of the baryons increasing with time. This
phase should be mostly driven by shocks, at least at low red-
shift z (Cen & Ostriker 1999; Davé et al. 2001). Possible
signatures of the warm-hot intergalactic medium (WHIM)
are absorptions by high ionization species such as O , O 
and O . These absorptions are difficult to detect as they ei-
ther fall in the Lyα forest (below the atmospheric cut-off for
z < 1.92) or in the soft X-ray range. Successful observations
of the WHIM at low z were made with the FUSE, HST and
Chandra satellites (e.g. Tripp et al. 2001; Savage et al. 2002;
Nicastro et al. 2002).

At z ∼ 2−2.5, an analysis of the O /O  ratio from
HST stacked spectra favors a hard UV background spectrum
(thus a small break at 4 Ryd) and the inferred metallicity is
[O/H] ' −2.2 to −1.3 together with an enhanced oxygen
abundance relative to carbon (Telfer et al. 2002). Detection
of individual O  absorbers has been recently reported: for
systems at z ∼ 2.5 with N(H ) ∼ 1014.0 to 1015.0 cm−2, the
inferred metallicity is [O/H] ∼ −3 to −2 (Carswell et al.
2002) and for N(H ) ≥ 1015.5 cm−2 the metallicity is higher,

Send offprint requests to: J. Bergeron, e-mail: bergeron@iap.fr
? Based on observations made at the European Southern

Observatory (ESO), under prog. ID No. 166.A-0106(A), with the
UVES spectrograph at the VLT, Paranal, Chile.

[O/H] ≥ −1.5 (Simcoe et al. 2002). The main heating process
of the high z WHIM is still unclear: the more tenuous regions
of the Lyα forest could be ionized by a hard UV background
spectrum, whereas the high column density population could
be shock heated.

A systematic, large survey of quasar absorption lines at
high S/N and high spectral resolution is being completed
at ESO for a sample of about 20 quasars of which half are
at z ≤ 2.6. In this paper, we present the results of our search
for O  absorbers towards one quasar of the ESO large pro-
gramme, Q 0329−385, with several unambiguous cases of
narrow, strong and weak O absorptions. The observations,
the selection procedure for O  systems and our O  sample
are presented in Sect. 2. The constraints derived from the line
widths are given Sect. 3. Our modelling of the O  absorbers is
presented in Sect. 4. The summary and conclusions are given
in Sect. 5.

2. Observations and the O VI sample

The quasar Q 0329−385 (zem = 2.423) was observed at
the VLT with the UVES spectrograph. The full wavelength
coverage 3050–10 400 Å was obtained in two settings, us-
ing dichroics, with an exposure time of 6 hr per setting. The
S/N ratio is about 30 and 100 at 3300 and 5000 Å respec-
tively. The resolution is b = 6.6 km s−1. A modified ver-
sion of the ESO-UVES pipeline was used, better adapted
to quasar spectra. A full description of the data reduction

L
e
tt
e
r
to

th
e
E
d
it
o
r

485



Astron. Astrophys. 329, 920–936 (1998) ASTRONOMY
AND

ASTROPHYSICS

The distribution of nearby stars in phase space
mapped by Hipparcos?

I. The potential well and local dynamical mass
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Abstract. Hipparcos data provide the first, volume limited and
absolute magnitude limited homogeneous tracer of stellar den-
sity and velocity distributions in the solar neighbourhood. The
density of A-type stars more luminous than Mv = 2.5 can be
accurately mapped within a sphere of 125 pc radius, while
proper motions in galactic latitude provide the vertical ve-
locity distribution near the galactic plane. The potential well
across the galactic plane is traced practically hypothesis-free
and model-free. The local dynamical density comes out as
ρ0 = 0.076 ± 0.015 M� pc−3 a value well below all previous
determinations leaving no room for any disk shaped component
of dark matter.

Key words: Galaxy: kinematics and dynamics – Galaxy: fun-
damental parameters – Galaxy: halo – solar neighbourhood –
Galaxy: structure – dark matter

1. Introduction

All the data used here were collected by the Hipparcos satellite
(ESA, 1997). Individual stellar distances within more than 125
pc were obtained with an accuracy better than 10% for almost
all stars brighter than mv = 8., together with accurate proper
motions. Based on these data, a unique opportunity is offered
to revisit stellar kinematics and dynamics; any subsample of
sufficiently luminous stars is completely included within well
defined distance and luminosity limits, providing a tracer of
the local density-motion equilibrium in the galaxy potential: a
snapshot of the phase space. We have selected a series of A-F
dwarf samples ranging from Mv = −1.0 down to Mv = 4.5.
Completeness is fixed within 50 pc over the whole magnitude

Send offprint requests to: M. Crézé
? Based on data from the Hipparcos astrometry satellite

range and within 125 pc at the luminous end (Mv ≤ 2.5). In
this series of papers we shall investigate such samples in terms
of density and velocity distribution small scale inhomogeneities
addressing the problem of cluster melting and phase mixing.

The expected first order departure to homogeneity is the
potential well across the galactic plane. This problem is well
known in galactic dynamics; it is usually referred to as “the Kz

problem”, where Kz means the force law perpendicular to the
galactic plane. The Kz determination and subsequent deriva-
tion of the local mass density ρ0 has a long history, nearly com-
prehensive reviews can be found in Kerr & Lynden-Bell (1986)
covering the subject before 1984 and in Kuijken (1995) since
1984. Early ideas were given by Kapteyn (1922), while Oort
(1932) produced the first tentative determination.

The essence of this determination is quite simple: the ki-
netic energy of stellar motions in the z direction when stars
cross the plane fixes their capability to escape away from the
potential well. Given a stellar population at equilibrium in this
well, its density law ν(z) and velocity distribution at plane cross-
ing f (w0) are tied to each other via theKz or the potential φ(z).
Under quite general conditions the relation that connects both
distributions is strictly expressed by Eq. (1).

ν(φ) = 2
∫ ∞
√

2φ

f (|w0|) w0 dw0√
w2

0 − 2φ
(1)

This integral equation and its validity conditions are estab-
lished and discussed in detail by Fuchs & Wielen (1993) and
Flynn & Fuchs (1994). There is no specification as to the form
of distribution functions f and φ except smoothness and sepa-
rability of the z component.

Given ν(z) and f (w0), φ(z) can be derived. Then according
to Poisson equation, the local dynamical density comes out as

ρ0 =
1

4πG
(d2φ/dz2) (2)
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2Institut d’Astrophysique de Paris, UMR 7095 CNRS & Université Pierre et Marie Curie, 98 bis boulevard d’Arago, 75014 Paris, France
3LERMA, Observatoire de Paris, 61, avenue de l’observatoire F-75014 Paris, France
4IUCAA, Post Bag 4, Ganesh Khind, Pune 411 007, India
5Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
6DAPNIA, CEA Saclay, Bat 709, 91191 Gif-sur-Yvette, France

Accepted 2006 May 19. Received 2006 May 19; in original form 2005 September 12

ABSTRACT
We present the transverse flux correlation function of the Lyα forest in quasar absorption

spectra at z ∼ 2.1 from VLT-FORS and VLT-UVES observations of a total of 32 pairs of

quasars; 26 pairs with separations in the range 0.6 < θ < 4 arcmin and six pairs with 4 < θ <

10 arcmin. Correlation is detected at the 3σ level up to separations of the order of ∼4 arcmin

(or ∼4.4 h−1 Mpc comoving at z = 2.1 for �m = 0.3 and �� = 0.7). We have, furthermore,

measured the longitudinal correlation function at a somewhat higher mean redshift (z = 2.39)

from 20 lines of sight observed with high spectral resolution and high signal-to-noise ratio with

VLT-UVES. We compare the observed transverse and longitudinal correlation functions to that

obtained from numerical simulations and illustrate the effect of spectral resolution, thermal

broadening and peculiar motions. The shape and correlation length of the correlation functions

are in good agreement with those expected from absorption by the filamentary and sheet-like

structures in the photoionized warm intergalactic medium predicted in cold dark matter (CDM)-

like models for structures formation. Using a sample of 139 C IV systems detected along the

lines of sight towards the pairs of quasars we also investigate the transverse correlation of metals

on the same scales. The observed transverse correlation function of intervening C IV absorption

systems is consistent with that of a randomly distributed population of absorbers. This is likely

due to the small number of pairs with separation less than 2 arcmin. We detect, however, a

significant overdensity of systems in the sightlines towards the quartet Q 0103−294A&B,

Q 0102−2931 and Q 0102−293 which extends over the redshift range 1.5 � z � 2.2 and an

angular scale larger than 10 arcmin.

Key words: methods: data analysis – methods: N-body simulations – methods: statistical –

intergalactic medium – quasars: absorption lines – dark matter.

1 I N T RO D U C T I O N

The numerous H I absorption lines seen in the spectra of distant

quasars, the so-called Lyα forest, contains precious information on

�Based on observations carried out at the European Southern Observa-

tory with UVES (ESO programme no. 65.O-299 and the Large Programme

‘The Cosmic Evolution of the IGM’ no. 166.A-0106), FORS2 (ESO pro-

gramme no. 66.A-0183) and FORS1 (ESO programmes nos 69.A-0457 and

70.A-0032) on the 8.2-m VLT telescopes Antu, Kuyen and Melipal operated

at Paranal Observatory, Chile.

†E-mail: fcoppola@eso.org

the spatial distribution of neutral hydrogen in the Universe. Unrav-

elling this information from individual spectra has for a long time

proven difficult and ambiguous (see Rauch 1998, for a review). Stud-

ies of the correlation of the Lyα forests observed in the two spectra

of QSO pairs have been instrumental in measuring the spatial extent

of absorbing structures. The Lyα forests in the spectra of multiple

images of lensed quasars or pairs of quasars with separations of

a few arcsec (Bechtold et al. 1994; Dinshaw et al. 1994; Smette

et al. 1995; Impey et al. 1996; Rauch et al. 1999; Becker, Sargent

& Rauch 2004) appear nearly identical implying that the absorb-

ing structures have sizes >50 h−1
70 kpc. Significant correlation be-

tween absorption spectra of adjacent lines of sight towards quasars

C© 2006 The Authors. Journal compilation C© 2006 RAS487
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Abstract. This paper is the fourth of a series dealing with the
cluster of galaxies ABCG 85. Using our two extensive photo-
metric and spectroscopic catalogues (with 4232 and 551 galax-
ies respectively), we discuss here three topics derived from opti-
cal data. First, we present the properties of emission line versus
non-emission line galaxies, showing that their spatial distribu-
tions somewhat differ; emission line galaxies tend to be more
concentrated in the south region where groups appear to be
falling onto the main cluster, in agreement with the hypothe-
sis (presented in our previous paper) that this infall may cre-
ate a shock which can heat the X-ray emitting gas and also
enhance star formation in galaxies. Then, we analyze the lu-
minosity function in the R band, which shows the presence of
a dip similar to that observed in other clusters at comparable
absolute magnitudes; this result is interpreted as due to com-
parable distributions of spirals, ellipticals and dwarfs in these
various clusters. Finally, we present the dynamical analysis of
the cluster using parametric and non-parametric methods and
compare the dynamical mass profiles obtained from the X-ray
and optical data.

Key words: methods: analytical – methods: numerical – galax-
ies: clusters: general – galaxies: clusters: individual: ABCG 85
– galaxies: luminosity function, mass function

1. Introduction

As the largest gravitationally bound systems in the Universe,
clusters of galaxies have attracted much interest since the pio-
neering works of Zwicky, who evidenced the existence of dark
matter in these objects, and later of Abell (1958), who achieved
the first large catalogue of clusters. Clusters of galaxies are now
studied through various complementary approaches, e.g. optical
imaging and spectroscopy, which allow in particular to derive

Send offprint requests to: F. Durret (durret@iap.fr)
? Based on observations collected at the European Southern Obser-

vatory, La Silla, Chile

the distribution and kinematical properties of the cluster galax-
ies, and to estimate the luminosity function, and X-ray spectral
imaging, which gives informations on the physical properties of
the X-ray gas embedded in the cluster, and with some hypothe-
ses can lead to estimate the total cluster binding mass.

As a complementary approach to large cluster surveys at
small redshifts such as the ESO Nearby Abell Cluster Survey
(ENACS, Katgert et al. 1996), we have chosen to analyze in
detail a few low-z clusters of galaxies, by combining optical
data (imaging and spectroscopy of a large number of galaxies)
and X-ray data from the ROSAT archive. We present here com-
plementary results on ABCG 85, which our group has already
analyzed under various aspects (see references below).

ABCG 85 has a redshift of z∼0.0555, corresponding to a
spatial scale of 97.0 kpc/arcmin (for H0 = 50 km s−1Mpc−1,
value that will be used hereafter, together with q0=0). Its center
is defined hereafter as the center of the diffuse X-ray compo-
nent:αJ2000 = 0h41mn51.9s, δJ2000 = −9◦18′17′′ (Pislar et
al. 1997). A wealth of data is now available for this cluster: a
photometric catalogue of 4232 galaxies obtained by scanning a
bJ band photographic plate in a square region±1◦ (5.83 Mpc
at the cluster redshift) from the cluster center, calibrated with
V and R band CCD imaging taken in the very center (Slezak
et al. 1998) and a spectroscopic catalogue of 551 galaxies in a
roughly circular region of 1◦ radius in the direction of ABCG 85,
among which 305 belong to the cluster (Durret et al. 1998a). As
discussed in our previous papers (Pislar et al. 1997, Lima-Neto
et al. 1997, Durret et al. 1998b), there exists in fact a complex of
clusters ABCG 85/87/89 in this direction. In X-rays, ABCG 85
shows a homogeneous body, onto which are superimposed vari-
ous structures: an excess towards the north-west and south-west,
a south region superimposed on it, and several blobs forming a
long filament towards the south-east; the velocity data confirm
the existence of groups and clusters superimposed along the line
of sight (see a complete description in Durret et al. 1998b) and
show that this X-ray filament seems to be made of blobs falling
onto the main cluster.
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S. Caucci1, S. Colombi1, C. Pichon1,2, E. Rollinde1, P. Petitjean1, T. Sousbie1,2
1 Institut d’Astrophysique de Paris & UPMC, 98 bis boulevard Arago, 75014 Paris, France
2 Centre de Recherche Astrophysique de Lyon, 9 avenue Charles Andre, 69561 Saint Genis Laval, France

13 May 2008

ABSTRACT

We investigate how well the 3D density field of neutral hydrogen in the Intergalactic
Medium (IGM) can be reconstructed using the Lyman-α absorptions observed along lines of
sight to quasars separated by arcmin distances in projection on the sky. We use cosmological
hydrodynamical simulations to compare the topologies of different fields: dark matter, gas
and neutral hydrogen optical depth and to investigate how well the topology of the IGM can
be recovered from the Wiener interpolation method implemented by Pichon et al. (2001). The
global statistical and topological properties of the recovered field are analyzed quantitatively
through the power-spectrum, the probability distribution function (PDF), the Euler charac-
teristics, its associated critical point counts and the filling factor of underdense regions. The
local geometrical properties of the field are analysed using the local skeleton by defining the
concept of inter-skeleton distance.

As a consequence of the nearly lognormal nature of the density distribution at the scales
under consideration, the tomography is best carried out on the logarithm of the density rather
than the density itself. At scales larger than∼ 1.4〈dLOS〉, where〈dLOS〉 is the mean separation
between lines of sight, the reconstruction accurately recovers the topological features of the
large scale density distribution of the gas, in particular the filamentary structures: the inter-
skeleton distance between the reconstruction and the exact solution is smaller than〈dLOS〉.
At scales larger than the intrinsic smoothing length of the inversion procedure, the power
spectrum of the recovered HI density field matches well that of the original one and the low
order moments of the PDF are well recovered as well as the shape of the Euler characteristic.
The integral errors on the PDF and the critical point counts are indeed small, less than 20% for
a mean line of sight separation smaller than∼2.5 arcmin. The small deviations between the
reconstruction and the exact solution mainly reflect departures from the log-normal behaviour
that are ascribed to highly non-linear objects in overdense regions.

Key words: methods: statistical, hydrodynamical simulations – cosmology: large-scale struc-
tures of universe, intergalactic medium – quasars: absorption lines

1 INTRODUCTION

The structure and composition of the intergalactic medium (IGM)
has long been studied using the Ly-α forest in QSO absorp-
tion spectra (Rauch 1998). The progress made in high resolution
Echelle-spectrographs has led to a consistent picture in which the
absorption features are related to the distribution of neutral hy-
drogen through the Lyman transition lines of HI. Hydrogen in the
IGM is highly ionized (Gunn & Peterson, 1965). Its photoioniza-
tion equilibrium in the expanding IGM establishes a tight corre-
lation between neutral and total hydrogen density and numerical
simulations have confirmed the existence of this correlation. They
have also shown that the gas density traces the fluctuations of the
DM density on scales larger than the Jeans length (see for example

Cen et al. 1994, Petitjean et al. 1995, Miralda-Escudé et al. 1996,
Theuns et al. 1998, Viel, Haehnelt & Springel 2004).

As we will show in the first part of this work, the statistical
and topological properties of the IGM and of the dark matter dis-
tributions are the same, so that recovering the three-dimensional
distribution and inferring the topological properties of the IGM al-
lows us to constrain the properties of the dark matter distribution as
well.

Although topological tools have been introduced only rela-
tively recently in cosmological analysis, they have been used ex-
tensively to characterize the topology of large scales structures as
revealed by the three-dimensional distribution of galaxies in the
local universe (see for exemple Gott et al. (1986), Vogeley et al.
(1994), Protogeros & Weinberg (1997), Trac et al. (2002), Park et
al.(2005) and Sousbie et al. (2006) for the topological analysis of

c© 0000 RAS
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ABSTRACT

In the framework of particle-based Vlasov systems, this paper reviews and analyses
different methods recently proposed in the literature to identify neighbours in six
dimensional space (6D) and estimate the corresponding phase-space density. Specif-
ically, it compares Smooth Particle Hydrodynamics (SPH) methods based on tree
partitioning to 6D Delaunay tessellation. This comparison is carried out on statical
and dynamical realisations of single halo profiles, paying particular attention to the
unknown scaling, SG, used to relate the spatial dimensions to the velocity dimensions.

It is found that, in practice, the methods with local adaptive metric provide the
best phase-space estimators. They make use of a Shannon entropy criterion combined
with a binary tree partitioning and with subsequent SPH interpolation using 10 to 40
nearest neighbours. We note that the local scaling SL implemented by such methods,
which enforces local isotropy of the distribution function, can vary by about one order
of magnitude in different regions within the system. It presents a bimodal distribution,
in which one component is dominated by the main part of the halo and the other one
is dominated by the substructures of the halo.

While potentially better than SPH techniques, since it yields an optimal estimate
of the local softening volume (and therefore the local number of neighbours required to
perform the interpolation), the Delaunay tessellation in fact generally poorly estimates
the phase-space distribution function. Indeed, it requires, prior to its implementation,
the choice of a global scaling SG. We propose two simple but efficient methods to
estimate SG that yield a good global compromise. However, the Delaunay interpolation
still remains quite sensitive to local anisotropies in the distribution.

To emphasise the advantages of 6D analysis versus traditional 3D analysis, we
also compare realistic six dimensional phase-space density estimation with the proxy
proposed earlier in the literature, Q = ρ/σ

3, where ρ is the local three dimensional
(projected) density and 3σ

2 is the local three dimensional velocity dispersion. We show
that Q only corresponds to a rough approximation of the true phase-space density,
and is not able to capture all the details of the distribution in phase-space, ignoring,
in particular, filamentation and tidal streams.

Key words: methods: data analysis, methods: numerical, galaxies: haloes, galaxies:
structure, cosmology: dark matter

1 INTRODUCTION

There are many methods to analyse dark matter
haloes structures. A standard approach involves inves-
tigating spherically averaged density profiles, such as
the Hernquist profile (Hernquist 1990), the NFW pro-

⋆ E-mail: maciejewski.michal@gmail.com (MM); colombi@iap.fr
(SC); alard@iap.fr (CA); bouchet@iap.fr (FB); pichon@iap.fr
(CP)

file (Navarro, Frenk and White 1997), the Moore profile
(Moore et al. 1998; Moore et al. 1999) and the Stoehr pro-
file (Stoehr 2006). More sophisticated methods devel-
oped recently involve different elliptical density profiles
(Jing & Suto 2002; Hayashi et al. 2007). An other alterna-
tive consists of analysing velocity profiles, e.g., Romano-Diaz
& van de Weygaert (2007), for a review.

Other investigations look in more details at halo detec-
tion as well as their internal substructures, the subhaloes.
They usually use a two steps procedure: they first find haloes
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ABSTRACT
A method to rapidly estimate the Fourier power spectrum of a point distribution is presented.
This method relies on a Taylor expansion of the trigonometric functions. It yields the Fourier
modes from a number of FFTs, which is controlled by the orderN of the expansion and by the
dimensionD of the system. In three dimensions, for the practical valueN = 3, the number
of FFTs required is 20.

We apply the method to the measurement of the power spectrum of a periodic point
distribution that is a local Poisson realization of an underlying stationary field. We derive
explicit analytic expression for the spectrum, which allows us to quantify—and correct for—
the biases induced by discreteness and by the truncation of the Taylor expansion, and to bound
the unknown effects of aliasing of the power spectrum. We show that these aliasing effects
decrease rapidly with the orderN . For N = 3, they are expected to be respectively smaller
than∼ 10−4 and0.02 at half the Nyquist frequency and at the Nyquist frequency of the grid
used to perform the FFTs. The only remaining significant source of errors is reduced to the
unavoidable cosmic/sample variance due to the finite size of the sample.

The analytical calculations are successfully checked against a cosmologicalN -body ex-
periment. We also consider the initial conditions of this simulation, which correspond to a
perturbed grid. This allows us to test a case where the local Poisson assumption is incorrect.
Even in that extreme situation, the third-order Fourier-Taylor estimator behaves well, with
aliasing effects restrained to at most the percent level at half the Nyquist frequency.

We also show how to reach arbitrarily large dynamic range in Fourier space (i.e., high
wavenumber), while keeping statistical errors in control, by appropriately “folding” the parti-
cle distribution.

Key words: methods: analytical, data analysis, numerical, statistical,N -body simulations –
cosmology: large-scale structure of Universe

1 INTRODUCTION

The power spectrum,P (k), represents the primary tool to char-
acterize the clustering properties of the large scale structure of the
universe. Most of major constraints on cosmological models and on
cosmological parameters have been derived from measuringP (k)
or its Fourier transform, the two-point correlation function. For in-
stance, the tight constrains derived from WMAP experiment rely on
measurements of the power spectrum in spherical harmonic space
(e.g., Dunkley et al., 2008); the most significant results from weak
lensing analysis come from measurements of the two-point corre-
lation function of the cosmic shear (e.g., Benjamin et al., 2007; Fu
et al., 2008); the analysis of the power spectrum of absorption lines
of lyman-α forest allowed one to infer drastic constraints on the
clustering properties of the matter distribution at small scales (e.g.,

⋆ E-mails: colombi@iap.fr (SC), a.jaffe@imperial.ac.uk (AJ),
d.novikov@imperial.ac.uk (DN), pichon@iap.fr (CP).

Croft et al., 1999); and, last but not least, the two-point correla-
tion function and the power spectrum have been used extensively
to analyse directly the clustering properties of 2 and 3 dimensional
galaxy catalogs (e.g., Peebles, 1980; Baumgart & Fry, 1991; Mar-
tinez, 2008, for a recent general review on the subject).

To be able to derive predictions from models of large scale
structure formation, there has been successful attempts to find uni-
versal dynamical laws, partly phenomenological, that lead to semi-
analytical expressions of the non linear power spectrum (or the two-
point correlation function) of the matter distribution. Among them,
one can cite the nonlinear ansatz of Hamilton et al. (1991), later
improved by Peacock & Dodds (1996, see also Smith et al., 2003).
Such a non-linear ansatz has been used to constrain models against
observations, particularly in weak lensing surveys (e.g., Benjamin
et al. 2007; Fu et al. 2008). Another well known phenomenological
description is the so called halo model, which proposes not only
some insights on the clustering properties of the dark matter dis-
tribution, but also of the galaxy distribution itself (see,e.g., Ma &

491



LETTERS

;
<

Cold streams in early massive hot haloes as the main
mode of galaxy formation
A. Dekel1, Y. Birnboim1,2, G. Engel1, J. Freundlich1,3, T. Goerdt1, M. Mumcuoglu1, E. Neistein1,4, C. Pichon5,
R. Teyssier6,7 & E. Zinger1

Massive galaxies in the young Universe, ten billion years ago,
formed stars at surprising intensities1,2. Although this is commonly
attributed to violent mergers, the properties of many of these
galaxies are incompatible with such events, showing gas-rich,
clumpy, extended rotating disks not dominated by spheroids1–5.
Cosmological simulations6 and clustering theory6,7 are used to
explore how these galaxies acquired their gas. Here we report that
they are ‘stream-fed galaxies’, formed from steady, narrow, cold gas
streams that penetrate the shock-heated media of massive dark
matter haloes8,9. A comparison with the observed abundance of
star-forming galaxies implies that most of the input gas must
rapidly convert to stars. One-third of the stream mass is in gas
clumps leading to mergers of mass ratio greater than 1:10, and
the rest is in smoother flows. With a merger duty cycle of 0.1,
three-quarters of the galaxies forming stars at a given rate are fed
by smooth streams. The rarer, submillimetre galaxies that form
stars even more intensely2,12,13 are largely merger-induced star-
bursts. Unlike destructive mergers, the streams are likely to keep
the rotating disk configuration intact, although turbulent and
broken into giant star-forming clumps that merge into a central
spheroid4,10,11.=

It appears that the most effective star formers in the Universe were
galaxies of stellar and gas masses of ,1011M[ at redshifts z 5 223,
when the Universe was ,3 Gyr old. (M[, solar mass.) The common
cases1,3 show star-formation rates (SFRs) of 100M[2200M[ yr21.
These include ultraviolet-selected galaxies termed BX/BM galaxies
(ref. 14) and rest-frame optically selected galaxies termed sBzK gal-
axies (ref. 15), to be referred to collectively as ‘star-forming galaxies’
(SFGs). Their SFRs are much higher than the 4M[ yr21 in today’s
Milky Way, although their masses and dynamical times are compar-
able. The co-moving space density of SFGs is n < 2 3 1024 Mpc23,
implying, within the standard cosmology (termed LCDM), that they
reside in dark matter haloes of mass =3.5 3 1012M[. The most
extreme star formers are dusty submillimetre galaxies (SMG)12,13,
with SFRs of up to ,1,000M[ yr21 and n < 2 3 1025 Mpc23.
Whereas most SMGs could be starbursts induced by major mergers,
the kinematics of the SFGs indicate extended, clumpy, thick rotating
disks that are incompatible with the expected compact or highly
perturbed kinematics of ongoing mergers1,3,4. The puzzle is how mas-
sive galaxies form most of their stars so efficiently at early times
through a process other than a major merger. A necessary condition
is a steady, rapid gas supply into massive disks.

It is first necessary to verify that the required rate of gas supply is
compatible with the cosmological growth rate of dark matter haloes.
The average growth rate of halo mass, Mv, through mergers and smooth
accretion, is derived6 on the basis of the extended Press–Schechter (EPS)

theory of gravitational clustering (Supplementary Information,
section 1) or from cosmological simulations16,17. For LCDM, the cor-
responding growth rate of the baryonic component is approximately

_MM<6:6M1:15
12 (1zz)2:25f0:165M8 yr{1 ð1Þ

where M12 ; Mv/1012M[ and f0.165 is the baryonic fraction in the
haloes in units of the cosmological value, fb 5 0.165. Thus, at
z 5 2.2, the baryonic growth rate of haloes of mass 2 3 1012M[ is
_MM < 200M[ yr21, sufficient to maintain the SFR in SFGs. However,

the margin by which this is sufficient is not large, implying that (1) the
incoming material must be mostly gaseous, (2) the cold gas must
efficiently penetrate into the inner halo and (3) the SFR must closely
follow the gas supply rate.

The deep penetration is not a trivial matter, given that halo masses
of Mv . 1012M[ are above the threshold for virial shock heat-
ing8,9,18–21, Mshock = 1012M[. Such haloes are encompassed by a
stable shock near their outer radius, Rv, inside which gravity and
thermal energy are in virial equilibrium. Gas falling in through the
shock is expected to heat up to the virial temperature and stall in
quasi-static equilibrium before it cools and descends into the inner
galaxy22. However, at z $ 2, these hot haloes are penetrated by cold
streams8,9,20. Because early haloes with Mv . Mshock populate the
massive tail of the distribution, they are fed by dark matter filaments
from the cosmic web that are narrow in comparison with Rv and
denser than the mean within the halo8. The enhanced density of
the gas along these filaments makes the flows along them unstop-
pable; in particular, they cool before they develop the pressure to
support a shock, and thus avoid shock heating (Supplementary
Information, section 2).

To investigate the penetration of cold streams, we study the way
gas feeds massive high-z galaxies in the cosmological MareNostrum
simulation—an adaptive-mesh hydrodynamical simulation in a co-
moving box of side length 71 Mpc and a resolution of 1.4 kpc at the
galaxy centres (Supplementary Information, section 3). The gas maps
in Figs 1 and 2 demonstrate how the shock-heated, high-entropy,
low-flux medium that fills most of the halo is penetrated by three
narrow, high-flux streams of low-entropy gas (Supplementary Figs
3–6). The penetration is evaluated from the profiles of gas inflow rate,
_MM(r), through shells of radius r (Fig. 3, Supplementary Fig. 7). The

average profile reveals that the flow rate remains constant from well
outside Rv < 90 kpc to the disk inside r < 15 kpc.

To relate the feeding by streams to the observed abundance of
galaxies as a function of SFR, we use the MareNostrum inflow-rate
profiles to evaluate n(. _MM), the co-moving number density of
galaxies with an inflow rate . _MM . We first extract the conditional
probability distribution P( _MM jMv) by sampling the _MM(r) profiles
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ABSTRACT

The effect of the environment of galaxies on their spectroscopic properties is investi-
gated in 3D using the skeleton and the Horizon MareNostrum cosmological simulation.
Galactic winds, chemical enrichment, UV background heating and radiative cooling are
taken into account in this high resolution simulation, which over the course of 4 Gyrs
(before z = 1.5) produced 2 × 107 “star” like particles with a given age, metallicity
and mass . Spectral synthesis is applied to these single stellar populations to generate
spectra and colors for all “galaxies”, defined here as a set of at least 10 stars which
are embedded within a given dark halo subclump. All galaxies are labelled according
to their euclidian distance to the closest filament (using the skeleton as a tracer of the
cosmic web), which are split in two equal groups (dense and diffuse), according to the
the relative density of dark matter underneath that filament.

The evolution of the age, metallicity, star formation rate, and rest-frame and ob-
served colours of galaxies as a function of the distance to the filaments are investigated.
It is found that both physical, and spectroscopic properties of galaxies show strong
spatial gradient as a function of the environment. Denser filaments are redder, older,
more metal rich, a trend which increases with cosmic time. These features reflect the
dynamical flow of galaxies within the cosmic network. This is found both in 3D and
in projection over 50h

−1Mpc using the 2D skeleton, which opens the prospect of us-
ing photometric redshifts. Preliminary analysis of the SDSS catalogue using slightly
different tools at lower redshift show similar features. Other environments estimators
such as the fifth neighbour confirmed this bias but are less sensitive than the skeleton.

For denser filaments, a bimodality also appears below redshift two and close to
the skeleton, involving red, old, metal rich galaxies on the one hand and blue, young,
metal poor galaxies on the other hand, whereas for more diffuse filaments no such bi-
modality occurs. It is conjectured that this bimodality is induced by the tidal stipping
of satellites within the more massive clusters of the simulation.

The corresponding catalogs (spectroscopical properties of the MareNostrum galax-
ies) are available online⋆.

Key words: methods: Numerical simulations, N-body, hydrodynamical, adaptive
mesh refinement galaxies: formation

1 INTRODUCTION

It is nowadays admitted that the ΛCDM theory provides a
framework where a large number of observed galaxy prop-
erties can be interpreted. It is referred to as the “hierar-
chical scenario of galaxy formation”. Most importantly, this
framework explains why many of these properties (physical
sizes, black hole mass, bulge mass...) are found to correlate
simply with galaxy mass (Kauffmann & Haehnelt 2000). Be-
yond these simple correlations, it is of interest to investigate

how the interplay between galaxies and with the intergalac-
tic medium affect these findings. The environment of the
galaxies is known to influence the properties of the galax-
ies. Dressler (1980) showed the existence of the morphology-
density relation (MDR): the denser regions tends to contain
more elliptical galaxies (Postman & Geller 1984). This sug-
gests that the environment strongly influences the formation
and evolution of galaxies and therefore their spatial repar-
tition (Davis & Geller 1976), as well as their physical prop-
erties (Balogh et al. 1998). This feature is expected in the

c© 2006 RAS
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ABSTRACT
We investigate the problem of probing the spatial structure of the magnetic field of our Galaxy
using multi-frequency polarized maps of the synchrotron emission at radio wavelengths. More
specifically, we focus in this paper on the three-dimensional reconstruction of the largest
scales of the magnetic field, relying on the internal depolarisation (due to differential Fara-
day rotation) of the emitting medium as a function of electromagnetic frequency. We argue
that multi-band spectroscopy in the radio wavelengths, developped mostly nowadays in the
context of the search of high-redshift extragalactic HI lines, could be very useful probe of the
magnetic field structure of our Galaxy. We show here that starting from a quite good approxi-
mation of the magnetic field, we are able to recover the true one by using a linearized version
of the inverse problem considered. We show that the statistical and topological properties of
the fields can be refound and how apply our method to realistic galactic magnetic field (GMF).

1 INTRODUCTION

The problem of studying the magnetic field structure of
our Galaxy using measurements of the synchrotron emis-
sion of high energy electrons in the Galactic magnetic field
is an old one (e.g. (Ginzburg and Syrovatskii(1965)), (Ruz-
maikin et al.(1988)Ruzmaikin, Sokolov, and Shukurov), (Beck
et al.(1996)Beck, Brandenburg, Moss, Shukurov, and Sokoloff)).
The fact that the emitting medium is itself magnetized induces a
differential Faraday rotation of the different emission planes trans-
verse to the line of sight, resulting in a well known depolarisation
effect of the integrated emission that depends strongly on the elec-
tromagnetic frequency. This effect, described in the first place by
(Burn(1966)) in the case of a constant magnetic field, has been fur-
ther studied in detail semi-analytically for given functional forms
of the magnetic field; it has also been studied from the statisti-
cal point of view in some asymptotic regimes (see e.g. (Sokoloff
et al.(1998)Sokoloff, Bykov, Shukurov, Berkhuijsen, Beck, and
Poezd)). In the present work, we want to consider the (ambi-
tious) problem of using this depolarization effect, together with
the solenoidal character of the magnetic field, toreconstructthe
magnetic field structure from a set of polarized maps of the syn-
chrotron emission of an ionized medium at different electromag-
netic frequencies. A statistical inference of the measurement of
the Galactic magnetic field correlator as a function of scale from
multi-frequency polarization measurements has already been suc-
cessfully achieved by (Vogt and Enßlin(2005)) in the case of the
Faraday rotation of the polarized light from background objects by
the intra-cluster magnetized plasma. In this case, there is no depo-
larization effect due to differential Faraday rotation, and the rela-
tionship between the measured polarization at a given frequency
and the polarization of light in the source plane is linear in the
(longitudinal) magnetic field strength. The linearity of the prob-

lem makes the statistical analysis tractable in the former case. In
the case that we investigate, the emitting and the rotating medium
are the same, which results in depolarization effects of the emit-
ted light. Moreover, the synchrotron emissivity itself depends in a
non-linear way on the field strength transverse to the line of sight.
The reconstruction of the magnetic field structure from the polar-
ization data is in this case a non-linear inverse problem. Finally,
we must note that to address the full problem of reconstruction of
the magnetic field from the depolarized synchrotron emission we
need in principle knowledge of both the thermal electron spatial
distributionneand the spatial distribution of cosmic ray electrons
ncr, when, in comparison, the inference of the magnetic energy
spectrum from the rotation measures of background sources only
requires knowledge of the thermal electron distribution. In a first
attempt at reconstructing the magnetic field, we will make the as-
sumption that the fluctuations of the thermal and cosmic ray elec-
trons can be neglected compared to the fluctuations in the magnetic
field itself. This article is organized as follows: in the following
section 2, we consider the electronic distribution as constant, and
discuss the reconstruction of the magnetic field on large scales us-
ing only the leading coupling coefficient in the equation of radiative
transfer. In the (thin medium, strong rotativity) limit that we assume
for this work, this leading term is the usual Faraday term, respon-
sible for the rotation of the plane of polarization. We will assume
that the Faraday coefficient is dominated by the thermal electrons,
which is a reasonable assumption in non-relativistic astrophysical
plasmas. We will discuss in particular when we solve the linearized
problem corresponding to a small fluctuating field added to a dom-
inant “mean” field (Section 3). In section 4.6, we will deal with the
statistical and topological properties of the reconstructed field and
then in section 5 we will apply our reconstruction method to a re-
alistic galactic magnetic field (GMF). Finally, we will present our
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The current concordance cosmological model provides us with a successful 
framework to understand large scale structure formation in a universe dominated 
by dark energy and cold dark matter.  On galaxy scales however, the complex 
interplay between cold dark matter and baryons has prevented us to convincingly 
validate this model one step further. This article reports on state-of-the-art 
numerical efforts undertaken to achieve this goal. More specifically, we calculate 
the basic properties of galaxies which form during the first couple of billion years 
after the Big Bang, using the most resolved cosmological simulation including 
hydrodynamics ever performed to date. The evolution of an expanding cubic 
fragment of the Universe 230 billion light years on a side containing dark matter 
and gas is followed numerically, solving the coupled Vlazov and Euler-Poisson 
equations. Key physical processes for galaxy formation such as radiative heating 
and cooling, star formation, supernovae feedback and dust extinction are also 
implemented self-consistently using the latest subgrid algorithms. It is shown that 
these calculations yield galaxies whose luminosities closely match those measured 
in the deepest observational surveys available. This agreement is surprisingly good 
considering our admittedly simplistic modelling of the subgrid physics: ultra-violet 
luminosity functions can be reconciled with the data over the whole redshift range 
from 3 to 7, which strongly suggests that their evolution with time is correctly 
reproduced. Arguably the most interesting conclusion we draw from this study is 
the existence of a major degeneracy between dust extinction and cosmological 
parameters. Indeed, this will require that astronomers detect the far infrared 
counterparts of primordial galaxies in order to be broken should it turn out that 
extinction strongly affects galaxies across their entire luminosity range.  

Over the past couple of decades, the cold dark matter (CDM) model, recently 
complemented with dark energy5aa, has established itself as the theoretical framework of 
choice to describe the formation of structures in the Universe. In such a paradigm, 
density fluctuation seeds of quantum origin will eventually grow into galaxies after they 
are stretched to a macroscopic size and amplified by gravitational instability. Whereas it 
is certainly true16, that critical aspects of the baryonic physics of galaxy formation are 
still poorly understood and beyond the reach of direct numerical simulation, the 
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ABSTRACT
The connection of the cosmic web down to galactic scales is investigated via the
skeleton. This tool produces a set of vertex (the critical points of the field), together
with the corresponding list of edges (the skeleton segments connecting the critical
points together) which allow us to relate the properties of the field to those of the
corresponding graph.
When applied to N Dimensional Gaussian random fields, it is found that the most
likely degree of the vertices (connected edges) of peakpatches is 3 in 2D and 6 in
3D. Correspondingly, the mean degree is 4 and 12 respectively, a value which does not
depend on the scale invariant powerspectrum. In contrast, the mean degree of maxima
is 3 and 4 in 2 and 3D respectively.

When investigating the connectivity of cosmological dark matter simulations this
paper analyses what is the statistics of the degree of cosmic nodes, how the skeleton
connects onto dark matter halos as a function of they mass or spin versus cosmic
time, and investigates the details of local spin accretion in the context of the cosmic
web superhighways. As a function of redshift the mean connectivity decreases both
in 2D projection and in 3D from 4 to about 3.6 (on scales below 20 h−1Mc) and from
12 to 8 for a ΛCDM cosmogony. The lower the scale the stronger the departure from
the linear Gaussian result.

1 INTRODUCTION

Over the course of the last decades, our understanding of
the extragalactic universe has undergone a paradigm shift:
the description of its components has evolved from from
being (totally) isolated to being multiply connected both
on large scale, cluster scales and galactic scales. This inter-
play between large and small scales is driven in part by the
scale invariance of gravity which tends to couple dynamically
different scales, but also by a the strong theoretical preju-
dice associated with the so-called concordant cosmological
model (de Bernardis 2000). This model predicts a certain
shape for the initial conditions, leading to a hierarchical for-
mation scenario, which produces the so called cosmic web,
the most striking feature of matter distribution on mega-
parsecs scale in the Universe. This distribution confirmed
more than twenty years ago by the first CfA catalog (de
Lapparent et al. 1986) and the more recent catalogs such as
SDSS (Adelman-McCarthy 2008) or 2dFGRS (Cole 2005).
On these scales, the “Cosmic Web” picture relates the ob-
served clusters of galaxies, and filaments that link them, to
the geometrical properties of the initial density field that

are enhanced but not yet destroyed by the still mildly non-
linear evolution (Zel’Dovich 1970) (Bond et al. 1996). The
analysis of the connectivity of this filamentary structures is
critical to map the very large scale distribution of our uni-
verse to establish, in particular, the percolation properties
of the Web (Colombi et al. 2000).

On intermediate scales, the paradigm shift is sustained
by pan chromatic observations of the environment of galax-
ies which illustrate sometimes spectacular merging pro-
cesses, following the pioneer work of e.g. Schweizer (1982)
(motivated by theoretical investigations such as Toomre
& Toomre (1972)). The importance of anisotropic accre-
tion on cluster and dark matter halo scales (Aubert et al.
(2004),Aubert & Pichon (2007) Bailin & Steinmetz (2005) )
is now believed to play a crucial role in regulating the shape
and spectroscopic properties of galaxies. Indeed it has been
claimed (see e.g. Ocvirk et al. (2008) Dekel et al. (2008)) that
the geometry of the cosmic inflow on a galaxy (its mass,
temperature and entropy distribution, the connectivity of
the local filaments network etc. ) is strongly correlated to
its history and nature. One of the puzzle of galaxy formation
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