Predicting Large-Scale Lyman- α Forest Statistics from the Dark Matter Density Field

Sébastien Peirani (IAP)

Lyman- α Mass Association Scheme

Peirani, Weinberg, Colombi, Blaizot et al., 2014, ApJ, 784, 11

Predicting Large-Scale Lyman- α Forest Statistics from the Dark Matter Density Field

Lyman- α Mass Association Scheme

Peirani, Weinberg, Colombi, Blaizot et al., 2014, ApJ, 784, 11

Quasar spectrum

Light from distant quasars is partially absorbed as it passes through clouds of hydrogen gas

LyMAS: Ly α Mass Association Scheme

Plan

- 1. Introduction
 - 2. Hydro simulations and hydro spectra
 - 3. Deterministic mapping
 - 4. LyMAS Probabilistic mapping
 - 5. LyMAS Coherent mapping
 - 6. Application to large N-body simulations
 - 7. Next

Equation of state:

$$w = \frac{P}{\rho} \qquad \qquad w(z) = w_0 + \frac{z}{1+z} w_a$$

Main observational methods to probe dark energy and its redshift evolution:

- Type la supernovae
- Galaxy clusters
- Weak gravitational lensing
- BAO

Equation of state:

$$w = \frac{P}{\rho} \qquad \qquad w(z) = w_0 + \frac{z}{1+z} w_a$$

Main observational methods to probe dark energy and its redshift evolution:

- Type la supernovae
- Galaxy clusters
- Weak gravitational lensing
- BAO

(Abell1689)

Equation of state:

$$w = \frac{P}{\rho} \qquad \qquad w(z) = w_0 + \frac{z}{1+z} w_a$$

Main observational methods to probe dark energy and its redshift evolution:

- Type la supernovae
- Galaxy clusters
- Weak gravitational lensing
- BAO

(courtesy of S. Colombi and CFHT team)

Equation of state:

$$w = \frac{P}{\rho} \qquad \qquad w(z) = w_0 + \frac{z}{1+z} w_a$$

Main observational methods to probe dark energy and its redshift evolution:

- Type la supernovae
- Galaxy clusters
- Weak gravitational lensing
- BAO

(courtesy of C. Blake and S. Moorfield)

Luminous Red galaxies (LRGs)

(see Eisenstein et al. (2005) using SDSS DR3)

Lya Forest

(courtesy of M. Blanton – SDSS-III)

First detection of BAO through Ly- α forest analysis

Busca et al. (2013) Slosar et al. (2013)

Using ~ 50000 quasars in the redshift range $2.1 \le z \le 3.5$ from BOSS DR9

Construction of Mock Ly- α spectra for large surveys

Construction of Mock Ly- α spectra for large surveys

Gaussian initial conditions Log-normal density field DM density field from N-body simulation

Problems of this approach:

- Model Gpc³ volume while retaining good resolution on the gas Jeans scale
- The choice of the smoothing scale for DM produces ambiguity in the predictions
- The FGPA assumes a deterministic relation between ρ and $F=e^{-\tau}$

 $F = e^{-A\left(\frac{\rho}{\overline{\rho}}\right)^{2-0.6(\gamma-1)}}$ γ -1 : index of the gas temperature-density relation

Plan

1. Introduction

- 2. Hydro simulations and hydro spectra
- 3. Deterministic mapping
- 4. LyMAS Probabilistic mapping
- 5. LyMAS Coherent mapping
- 6. Application to large N-body simulations
- 7. Next

MareNostrum (2006)

Horizon-MareNsotrum simulation

(PI J. Devriendt, R. Teyssier, G. Yepes)

- L_{box}=50 Mpc/h
- 1024³ DM particles M_{DM,res}=8x10⁶ M_{sun}
- Finest cell resolution dx=1 kpc (-1 level of refin.)
- Gas cooling & UV background heating
- Low efficiency star formation
- Stellar winds + SNII + SNIa
- O, Fe, C, N, Si, Mg, H metals wl solar composition
- AGN feedback radio/quasar
- Outputs
 - Simulation outputs
 - Lightcones (1°x1°) performed on-the-fly
 - Dark Matter (position, velocity)
 - Gas (position, density, velocity, pressure, chemistry)
 - Stars (position, mass, velocity, age, chemistry)
 - Black holes (position, mass, velocity, accretion rate)
- z=1.5 using 1.3 Mhours using 2048 cores

RAMSES: an adaptive Mesh Refinement (AMR) code

- Language :
 - Fortran 90
 - MPI parallel
- Method : adaptive grid refinement
- Equations :
 - Hydrodynamics
 - Gravity
 - Atomic/Metal cooling + UV-heating
 - (Magneto-hydrodynamics)
 - (Radiative transfer)
- Sub-grid physics :
 - Star formation
 - Supernovae & Stellar Winds
 - Active Galactic Nuclei (AGN)
- Cosmology

See Teyssier, 2002

The MareNostrum Galaxy Gallery

Stars are shown in true observed colors (I K and IRAC @ 8 microns) http://www.projet-horizon.fr

Horizon-AGN

Horizon-AGN simulation

- L_{box}=100 Mpc/h
- 1024³ DM particles M_{DM,res}=8x10⁷ M_{sun}
- Finest cell resolution dx=1 kpc (-1 level of refin.)
- Gas cooling & UV background heating
- Low efficiency star formation
- Stellar winds + SNII + SNIa
- O, Fe, C, N, Si, Mg, H
- AGN feedback radio/quasar

Outputs

- Simulation outputs
- Lightcones (1°x1°) performed on-the-fly
 - Dark Matter (position, velocity)
 - Gas (position, density, velocity, pressure, chemistry)
 - Stars (position, mass, velocity, age, chemistry)
 - Black holes (position, mass, velocity, accretion rate)

z=0.05 using 10 Mhours using 4096 cores

Dubois et al. (2014)

Horizon-AGN – Horizon-noAGN (2014)

Horizon-AGN (Dubois)

Horizon-noAGN (Peirani)

Gas density Gas temperature Gas metallicity

- L_{box}=100 Mpc/h
- 1024³ DM particles M_{DM,res}=8x10⁷ M_{sun}
- Finest cell resolution dx=1 kpc (-1 level of refin.)
- Gas cooling & UV background heating

- Low efficiency star formation
- Stellar winds + SNII + SNIa
- O, Fe, C, N, Si, Mg, H
- AGN feedback radio/quasar

LyMAS: Ly α Mass Association Scheme

Extracting Ly α spectra

For a given los, the opacity at observer-frame frequency υ_{obs} :

$$\tau(v_{obs}) = \sum_{cells} n_{HI} \sigma(v_{obs}) dl$$

 $n_{H\!I}\,$: numerical density of neutral H atoms in each cell $dl\,$: physical cell size

 $\sigma(v_{obs}) : \text{the cross section of Hydrogen to Lya photons}$ $\sigma(v_{obs}) = f_{12} \frac{\pi e^2}{m_e c} \times \frac{H(a, x)}{\sqrt{\pi} \Delta v_D}$ $f_{12} = 0.4162 : \text{Lya oscillator strength}$ $\Delta v_D = (2k_D T / m_H)^{1/2} \times v_D / C$

$$a = \Delta v_L / (2\Delta v_D) \qquad \Delta v_L \approx 9.910^7 s^{-1}$$
$$H(a, x) = \frac{a}{\pi} \int_{-1}^{1} \frac{e^{-y^2}}{a^2 + (x - y)^2} dy \quad : \text{ the Hjerting function}$$

Grid of density transmitted Flux (1024³ pixels)

Extracting Ly α spectra

1-d smoothed at the BOSS resolution

Extracting Dark matter skewers

1. Adaptive interpolation of the DM particle distribution on a high resolution grid.

2. Smoothing with a Gaussian window in Fourier space

3. Extraction of the skewers from a grid of lines of sight aligned along the z axis

Grid of density field 1+ δ (1024³ pixels)

Extracting Dark matter skewers

Ζ

Slice

3-d smoothed at different scales

Plan

- 1. Introduction
- 2. Hydro simulations and hydro spectra

- 3. Deterministic mapping
- 4. LyMAS Probabilistic mapping
- 5. LyMAS Coherent mapping
- 6. Application to large N-body simulations
- 7. Next

1. Construction of an "optimal" deterministic relation: $F_s = f(1+\delta_s)$

$$\int_{0}^{F_{s}} P(F_{s}') dF_{s}' = \int_{\delta_{s}}^{\infty} P(\delta_{s}') d\delta_{s}'$$
Grid of transmitted flux F_s
Grid of DM density contrast
$$1 + \delta_{s}$$

$$1.0 \qquad 1.0 \qquad 1.4 \qquad 1.4$$

1. Construction of a deterministic relation:

$$F_s = f(1 + \delta_s)$$

Plan

- 1. Introduction
- 2. Hydro simulations and hydro spectra
- 3. Deterministic mapping

- 4. LyMAS Probabilistic mapping
- 5. LyMAS Coherent mapping
- 6. Application to large N-body simulations
- 7. Next

$$P(F_s|1+\delta_s)$$

Optical depth:
$$\tau_s = -\ln F_s$$

 $P(\tau_s | 1 + \delta_s)$

Probabilistic mapping

Probabilistic mapping

Probabilistic mapping

Plan

- 1. Introduction
- 2. Hydro simulations and hydro spectra
- 3. Deterministic mapping
- 4. LyMAS Probabilistic mapping

- 5. LyMAS Coherent mapping
- 6. Application to large N-body simulations
- 7. Next

1. Construction of "percentile spectra": $Per(F_S, \delta_S) = \int_0^{F_S} P(F_S' | \delta_S) dF_S'$

2. Construction of "Gaussianized" percentile spectra:

Cumulative PDF of Gaussian function

3. Derive the 1d power spectrum of the "Gaussianized percentile spectra":

- 1. For each DM skewer, create a realization of G.Per(x) of the 1-d gaussian field
- 2. Get a realization of Per(F) by "degaussianization"

3. Get the flux field by drawing the flux at each pixel from the location of in $P(F_s|1+\delta_s)$ implied by the value of Per(F)

- 4. One iteration:
 - Pk rescaling: multiply each Fourier components by the ratio $[P_F(k)/P_{PS}(k)]^2$
 - Flux rescaling

4. Iteration on Pk:

(multiply each Fourier components by the ratio $[P_F(k)/P_{PS}(k)]^2$)

4. Iteration on F_s:

4. Iteration on F_s:

Mapping

Hydro Spectra F_s

1d P_k PDF(F_s)

ξ(x)

Deterministic mapping

LyMAS coherent

1d P_k PDF(F_s) ૬(x)

LyMAS probabilistics

Two-point conditional flux PDF

Two-point conditional flux PDF

 $P(F_1|F_2, dr, dz)$

Conditional mean flux <F₁|F₂,dr,dz>

Correlation function

Plan

- 1. Introduction
- 2. Hydro simulations and hydro spectra
- 3. Deterministic mapping
- 4. LyMAS Probabilistic mapping
- 5. LyMAS Coherent mapping

- 6. Application to large N-body simulations
- 7. Next

Gadget2 (Springel 2005)

300 Mpc/h - 1024³ particles - WMAP1 cosmology σ_{DM} =0.3 Mpc/h

1.0 Gpc/h - 1024³ particles - WMAP1 cosmology σ_{DM} =1.0 Mpc/h

Correlation function:

Plan

- 1. Introduction
- 2. Hydro simulations and hydro spectra
- 3. Deterministic mapping
- 4. LyMAS Probabilistic mapping
- 5. LyMAS Coherent mapping
- 6. Application to large N-body simulations

7. Next

Numerical modeling improvements

- 1. Algorithms
 - QSO continuum
 - Redshift evolution
 - Noises
 - Non constant spectral resolution
 - Etc...
- 2. Simulations and more realistic catalogs of spectra
 - N-body simulations : \geq 2 Gpc/h (BAO study)
 - Light cones
 - Hydro simulations (planck, WDM...)
 - Etc...

Cross correlation quasar Ly α in BOSS survey

0.05

0.00 $(\omega, \mu) = 0.05$ -0.10 $7 < \sigma < 10 \mathrm{Mpc}/h$ -0.150.0260 20 40 -40-200 6 0.01 0.00 -0.01 $\xi(\pi,\sigma)$ -0.02-0.03 -0.04 $15 < \sigma < 20 \text{ Mpc}/h$ -0.05--0.06-60 -40-2020 40 0 6 $\pi (h^{-1} \text{ Mpc})$

LyMAS mocks: WMAP7 – 1 Gpc/h – 2048³ particles – AGN and noAGN

"Modelling the Lya forest cross correlation with LyMAS" Lochhass, Weinberg, Peirani et al., to be submitted

MAMMOTH + LyMAS

z (h⁻¹ Mpc) "MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH): I -Cai, Fan, Bian, Peirani, Frye, McGreer, White & Ho, to be submitted

190

250

200

Effect of AGN feedback

Studying how large-scale Lya clustering depends on cosmological and IGM parameters and on redshift

Ex: Effects of AGN feddback? (Peirani et al. in prep)

Red = gas temperature / Green = gas density / Blue = gas metallicity

"The effect of AGN feedback on the Lya forest clustering" Peirani et al., in prep

Mock catalogs of galaxies

*"MoLUSC: a MOck Local Universe Survey Constructor"*2008, ApJ, 678, 569 T. Sousbie, H. Courtois, G. Bryan & J. Devriendt

Web : www2.iap.fr/users/lymas/lymas.htm

📓 LyMAS			
www2.iap.fr/users/peirani/lymas/wmap1_L50.htm	várala 🌠 Cairce d'Eparapa 🔅 Mátáo pour l'île de Er 💦 😤 Drophov	☆ ▼ 🖤 🚺	۹ 🕹 🏠
	Lyα Mass Association Scheme	Min	
LyMAS Articles Data - Calibrations Mocks WMAP1 WMAP7 WMAP7 WMAP7+AGN PLANCK Image Gallery	$Hocks$ $Ramses simulation ("Horizon-MareNostrum"):$ $MAP1 z=2.51 L_{box}=50 \text{ Mpc/h} 1024^3 \text{ DM particles}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h or } \sigma=1.0 \text{ Mpc/h - redshift space only:}$ $Redshift space - \sigma=0.3 \text{ Mpc/h} \qquad Redshift space - \sigma=1.0 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h or } \sigma=0.3 \text{ Mpc/h or } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h or } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h or } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h or } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h or } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatment: LyMAS \text{ coherent using } \sigma=0.3 \text{ Mpc/h}$ $Post-treatmen$	hydro spectra 50 Mpc/h 300 Mpc/h 1 Gpc/h	
	$ \begin{array}{c} 1.0 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0 \\ 10 \\ 20 \\ 30 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		

