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Abstract
The spherical infall model first developed by Lemaı̂tre and Tolman was modified in order to include the effects of a dark energy term. The resulting velocity-distance relation was

evaluated numerically. This equation, when fitted to actual data, permits the simultaneous evaluation of the central mass and of the Hubble parameter. Application of this relation
to the Local Group, when the dark energy is modeled by a cosmological constant, yields a total mass for the M31-Milky Way pair of (2.5 ± 0.7) × 1012M�, a Hubble parameter
H0 = 74 ± 4 kms−1Mpc−1 and a 1-D velocity dispersion for the flow of about 39 kms−1. A similar analysis for the Virgo cluster yields a mass of (1.10 ± 0.12) × 1015M� and
H0 = 65± 9 kms−1Mpc−1. Several other groups of galaxies were also studied and the results obtained lead to an estimation of the Hubble parameter, namely h = 0.67± 0.03.

The spherical infall model:
The evolution of a self-gravitating zero-pressure fluid with
spherical symmetry was first considered by Lemaı̂tre (1933)
and Tolman (1934). The Lemaı̂tre-Tolman model describes
quite well the dynamics of an extended halo around a
bound central core, asymptotically approaching a homoge-
neous Friedmann background. In this situation, three main
distinct regions can be distinguished: (1) the central core, in
which the shell crossing has already occurred, leading to en-
ergy exchanges which transform radial into transverse motion;
(2) the zero-velocity surface, boundary which separates in-
falling and expanding bound shells and (3) the “marginally”
bound surface (zero total energy), segregating bound and un-
bound shells (see Fig. 1).
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Figure 1: Diagram of the spherical infall model

Mass determination of group of galaxies:
Lynden-Bell (1981) and Sandage (1986) proposed an alterna-
tive method to the virial relation in order to estimate the mass
of the Local Group, which can be extended to other systems
dominated either by one or a pair of galaxies. Their analysis is
essentially based on the spherical infall model. If the motion of
bound satellites is supposed to be radial, the resulting paramet-
ric equations describe a cycloid. Initially, the radius of a given
shell embedding a total mass M expands, attains a maximum
value and then collapses. At maximum, when the turnaround
radius R0 is reached, the radial velocity with respect to the cen-
ter of mass is zero. For a given group, if the velocity field close
to the main body, probed by satellites, allows the determination
of R0, then the mass can be calculated straightforwardly from
the relation
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where T0 is the age of the universe and G is the gravitational
constant.

The velocity-distance relation:
If displacements of galaxies, here associated to the outer halo
shells, develop mainly at low redhsifts when the formation of
the mass concentration around the core is nearly complete, then
the equation of motion for a spherical shell of mass m, moving
radially in the gravitational field created by a mass M inside a
shell of radius R, including the dark energy term is
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where M = 4π
∫ R

0 r2ρmdr and a is the scale parameter (the
present value is taken as a0 = 1). The latter satisfies the Hubble
equation
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Here, the common assumption that the dark energy can be
modeled as being a fluid with an equation of state P = wε
was adopted and in the two equations above, the dependence
of the dark energy on the scale parameter was obtained by solv-
ing the energy conservation for such a component. Eq. (2) is
intended to describe the motion of shells in the halo, excluding
the central region where shell crossing effects have probably
already occurred.
Defining the dimensionless variables y = R/R0, τ = tH0 and
x = a/a0, eqs. (2) and (3) can be rewritten as
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where we have introduced the parameters A = 2GM/(H 2
0R

3
0)

andB = (1+3w)Ωv. These equations were solved numerically
by adopting the following procedure. For a given redshift, the
initial value of the scale parameter is derived as well as the
corresponding instant of time from the Hubble equation. If ini-
tially, at high redshifts (here taken around z ∼ 100), the dark
energy term is negligible, then using a Taylor expansion of the
standard Lemaı̂tre-Tolman solution, when the angle parameter
θ << 1, the initial values of y and its derivative dy/dτ can
be estimated. For a given value of w, the parameter A is var-
ied until the condition defining the zero-velocity surface, e.g.,
dy/dτ = 0 at y = 1 is satisfied. For the particular case w = −1,
representing a cosmological constant, A = 3.658. Therefore,
the mass inside the zero-velocity radius R0 is

M = 1.827H
2
0R

3
0

G = 4.1× 1012h2R3
0 M� (6)

Comparing with eq. (1), we notice that the inclusion of the dark
energy term represents, for a given R0, an increase of about
38% on the mass derived by such a procedure.
Once the parameter A is known, the velocity-distance relation,
v = v(R), for different shells at a given time is obtained by
varying their energy. Shells with negative energy will expand,
halt and fall back toward the center, while shells with posi-
tive energy expand forever, according to the aforementioned
characterization of regions (2) and (3). At a given time, there
is a critical energy Ec which defines the zero-velocity radius.
Shells having E < Ec have already crossed the turnaround
point and are collapsing. Consequently, they have negative ve-
locities. Shells with E > Ec are still expanding and thus have
positive velocities.
For the case w = −1, the resulting numerical values are quite
well fitted by the relation

v(R) = −0.875H0

Rn

(
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H2

0

)(n+1)/3

+ 1.274H0R (7)

with n = 0.865.

Applications:
In this section, the derived velocity-distance relation is applied
to the Local Group, the Virgo cluster, and groups relating to
M81, Sculptor and IC342/Maffei. The necessary observation-
nal data can be found in Karachentsev et al. (2002, 2003,
2005). For each group, the velocity and the distance for galax-
ies with respect to the mass center of the system and the best
fit solution to v = v(R) relation for eq. (7) are represented in
Fig. 2.
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Figure 2: Velocity and distance data with respect to the
mass center of the system for galaxies belonging to a

studied group.
The previous fit solutions yield to estimation of the mass of
each group of galaxies as well as the Hubble parameter. The
results obtained are summarized in the following table.

Group of galaxies mass (M�) h
Local Group (2.5± 0.7)× 1012 0.74± 0.04

Virgo (1.10± 0.12)× 10150.65± 0.09

M81 (9.7± 3.4)× 1011 0.69± 0.05

Sculptor (1.5± 1.3)× 1011 0.67± 0.06

IC342/Maffei (2.0± 1.2)× 1011 0.58± 0.10

Now, if we take into account all the derived values of the Hub-
ble parameter, we find an interesting result which is in good
agreement with previous studies:

h = 0.67± 0.03 (8)

The enigma of the cold Hubble flow:
The velocity-distance relation gives also an indication of the
dispersion of the peculiar velocities over the Hubble flow. In-
deed, the local velocity dispersion is known to be quite small
(Giraud 1986; Schlegel et al. 1994), a fact referred usually as
the “coldness” of the local flow. Thus, an investigation of the
dynamics of the Local Group and its environment by using nu-
merical simulations permits to test different Cold Dark Matter
models.
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Figure 4: Simulation of the Local Group with the
technique of “re-simulation”. This example of pair of dark

matter halos have physical characteristics similar to the
Milky Way-M31 pair.
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