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Abstract

In this thesis we study the anomalies of the theories of W gravity in

the context of path integral and BRST quantization. These theories—which

include w∞, W∞ and W3 gravity— are of particular interest in this context

because they contain anomalies at higher loop orders.

The Fujikawa method can be satisfactorily used to derive the one-loop

anomalies that arise in these theories. Furthermore, this method can be com-

plimented by the Wess-Zumino consistency condition to provide a method of

anomaly derivation to all loop orders. The Wess-Zumino consistency condi-

tion plays a fundamental role in the derivation and evaluation of the anom-

alies. We shall find that this condition narrows down the freedom in choos-

ing a regulating operator in the Fujikawa scheme by restricting the choice

to those that lead to consistent anomalies. In the ghost sector, the anom-

alies of the theories of w∞ and W∞ gravity suffer from divergent coefficients.

The Wess-Zumino consistency condition determines which scheme of zeta-

function regularization is allowed: it restricts the ghost-sector anomalies to

have diagonal form and further relates the coefficients of the diagonal anom-

alies in all spin sectors to the coefficient of the Virasoro-sector anomaly.

We also discuss the anomalies from the point of view of the BRST charge.

The non-nilpotence of the BRST charge results in an expression for the anom-

aly that is different from the one previously derived from the path-integral

quantization scheme. The two different notions of anomalies can be related

via a construction involving the BRST “gauge fermion”. In the conformal

gauge, the BRST charge fails to generate the transformation rule of the

gauge fields. We overcome this problem by using a time-derivative gauge.

In this gauge, the BRST charge is the true generator of all transformation

rules including those of the gauge fields. We show that the anomaly in the

BRST Ward identity is obtained by application of the anomalous operator

given by the square of the BRST charge—which is calculated using operator

products—to the gauge fermion.
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Chapter 1

Introduction

The concept of symmetry forms the foundation of our understanding of

the way our universe behaves. It plays the central role in the formulation

of the physical laws of nature. Many achievements of physics, in particular

modern theoretical physics, spring from the concept of symmetry.

In quantum field theory, the symmetries of a physical system form the

core of a theory. A classical action, describing the evolution of the system,

is formulated on the basis that it respects the symmetries. The action and

its symmetries satisfactorily predict the behaviour of the physical system.

However, as one goes to higher energies or lower scales the classical theory

fails to give a complete and consistent description of the events. A fuller

description can then be obtained by quantizing the theory. In a quantiza-

tion procedure the action and its symmetries are usually modified by finite

additional terms. These terms are identified by various powers of the Planck

constant h. Thus a classical theory can be thought of as the zero-h limit of

a more general quantum theory.

The process of renormalization, although appearing to be a natural way

of extending a classical theory, can cause many problems. One might find it

impossible to accomplish a quantization procedure consistently. That is to

say, there might be no way of renormalizing the action and its symmetries
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in an invariant way. If a theory behaves in this manner it is said to be

anomalous. The non-invariance of the quantum action under the classical

symmetries is represented by terms of various orders in h. These terms are

known as anomalies.

Anomalies can arise in many different ways. Instead of starting from the

symmetries of the action, one can start from the generators of these symme-

tries. One can associate a Noether charge with any local symmetry of the

action. The structure of the anomalies that arise in the process of quanti-

zation of a theory can be directly analyzed from the point of view of the

Noether charge. BRST charge is an example of a Noether charge which is

associated with the symmetries of a gauge-fixed action. This charge is clas-

sically nilpotent. This means that a single Wick contraction of the operator

Q with itself vanishes. However, at the level of multiple Wick contractions

the BRST charge might fail to be conserved. A multiple Wick contraction

is a quantum process which may be represented by loops in the Feynman

diagrams, while a single Wick contraction is a purely classical process which

is represented by tree diagrams. Therefore, the non-nilpotence of the BRST

charge at the level of multiple contractions represents the breakdown of a

classical law under a quantization scheme. This breakdown is indicated by

the presence of anomalies.

Since anomalies arise from the breakdown of classical symmetries, they

can play different roles in a theory depending on the nature of the broken

symmetry. The breakdown of gauge symmetries, which are of importance to

the consistency of a theory, can render a quantum theory unphysical. On

the other hand, if a theory is renormalizable without depending upon the

conservation of a symmetry, then the related anomaly can create physically

measurable phenomena. Such is the case in the decay of the neutral π meson

into two photons. We take up this example for illustrating the fundamental

importance of the anomalies.

A pion decaying into two photons is a classical example of an anomalous
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system. This system is invariant under two classes of symmetries: gauge

and chiral symmetries. The generators of these symmetries are the classical

vector and axial currents. Since the axial current is partially conserved, the

decay of the pion is classically forbidden. However, the experimental value

of the decay rate is approximately 7.4 eV [38, 52, 60]. This disagreement

between the experimental and the theoretical results is resolved by taking

into account the contributions from the anomalous processes. A pion can

decay into two photons via a process represented by the following triangle

diagram:

Figure 1.1: The lowest order term in the expansion of the π → 2γ decay
amplitude.

The fermions travelling in the triangle loop are the 3-colour constituent

quarks that make up the neutral π meson (fig. 1.1). In the quantized the-

ory, the axial and the vector currents are modified by the above one-loop

corrections. The conservations of both of these currents cannot be preserved

simultaneously by any renormalization program. Since preserving the gauge

symmetry is crucial to this theory, the choice between the two alternatives

is easy to make. The vector current is conserved at the price of loosing the

chiral symmetry. The axial current is an external current, i.e. there is no

gauge field of the theory coupling to it. Hence, the anomalous variation of

the axial current makes a finite contribution to the decay rate of the pion
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[38, 52, 60]. This finite contribution, assuming that each flavour of a quark

comes in three colours, is of the order of 7.6 eV which is in good agreement

with the experimental data.

The above process can alternatively be analyzed by a path-integral treat-

ment. Instead of the current we can take the action (S) as our basic quantity.

In the path-integral quantization scheme, one proceeds from the classical to

the quantum field theory by means of functional integration. The partition

function corresponding to the decay of the neutral pion ψ is given by

Z =
∫
DψDψ̄e−S/h̄. (1.1)

The anomalies originate from the non-invariance of the path-integral measure

under the symmetries of the action [16, 17]. Under these symmetries, the

measure transforms through a Jacobian factor which contains a product of

delta functions and their derivatives and is thus ill-defined. However, the

Jacobian can be regularized using a proper regulator. The anomaly A is

given by the logarithm of the regularized Jacobian. This anomaly cannot be

removed by the addition of counterterms to the action or the modification

of its symmetries and will eventually contribute to the process of the pion

decay. It follows therefore that under the symmetries of the action, the

partition function transforms as:

Z −→ Z ′ =
∫
DψDψ̄ exp(S + h̄A)/h̄. (1.2)

The transformed partition function is then used to calculate the S-matrix,

from which the rate of the pion decay is obtained [60]. This method of

anomaly derivation is an alternative to the usual Feynman diagram technique

and is known as the Fujikawa method. The Fujikawa derivation of the chiral

anomaly proves that the anomaly is a non-perturbative effect, even though

the original discovery of the triangle anomaly was noted in a perturbative

context [52]. The two different ways in which we have described the decay

of the neutral π meson predict the same decay rate.
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Similar triangle anomalies resolve the problem of U(1) in QCD and pre-

dict the existence of the top quark in the Glashow-Salam-Weinberg model

[38]. The triangle anomaly, discussed so far, is the example of an anomaly

whose presence plays a positive role in a theory. If in a four-dimensional the-

ory anomalies arise as a result of the breakdown of local gauge symmetries,

then the theory becomes non-renormalizable and so unphysical. The present

theories of all known long-range forces, from electromagnetism to gravitation

are based on a gauge principle. Anomalies that result when gauge symme-

tries cannot be maintained in the quantum theory are of a major importance

to the theory and are usually studied extensively. A complete understand-

ing of these anomalies is essential for the application of all gauge theories to

physical problems.

In recent years, it has become clear that two-dimensional theories pro-

vide good examples for the study of anomalies. Many undiscovered fea-

tures of anomalies are revealed in these theories. This dissertation is mainly

concerned with the anomalies of the theory of W∞ gravity. This is a two-

dimensional theory of gravity in which conserved currents exist at all spin

sectors up to infinity. These currents are the one-scalar realization of the W∞

algebra [62, 64, 65, 66, 68–71] and are the generators of the symmetries of

the W∞ gravity action [8, 61, 62, 66]. The multiple-scalar realization of the

W∞ algebra remains an interesting open problem. However, at this stage, it

seems that the multiple-scalar realization of the W∞ algebra contains anom-

alies that cannot be removed by any renormalization scheme.

The one-scalar realization of the W∞ algebra is obtained by removing

the matter-dependent anomalies from the theory of w∞ gravity [8]. The

w∞ algebra is also a linear higher-spin extension of the Virasoro algebra [1,

2] but, unlike the W∞, it only admits central terms in the spin-two sector.

There is also no realization of the gauged w∞ algebra at the full quantum

level [8]. By a full quantum level we mean the level of multiple, rather

than single, Wick contractions. Because the one-scalar realization of the
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w∞ currents does not form a closed algebra at the full quantum level, w∞

gravity contains anomalies. These divide into two main categories: matter-

dependent and universal anomalies. The universal anomalies do not have

functional dependence on the scalar fields. The matter-dependent anomalies,

on the other hand, are functionally dependent on the matter-fields. However,

all the matter-dependent anomalies can be removed by the addition of finite

local counterterms to the action and by modifications of the symmetries. As

a result of such a renormalization procedure, the theory of w∞ gravity is

replaced by the theory of W∞ gravity. The new theory is free from all the

matter-dependent anomalies by construction [8].

The W∞ gravity is taken as the starting point for our discussion of the

universal anomalies. We derive the universal anomalies via two different

procedures: first by taking the action as the starting point for the Fujikawa

derivation of the universal anomalies and second by deriving these anomalies

from the BRST charge. The expressions for the anomalies that are derived

in these two different ways are different. After deriving them, we will discuss

a possible way of relating the two forms of the anomalies. We will check the

validity of this relationship using a different gauge-fixing condition. Having

derived and examined the structure of W∞ anomalies in different ways, we

will then prove that these anomalies can be eliminated from the theory via a

BRST construction and a suitable regularization scheme [70, 71, 89]. Thus,

the theory of W∞ gravity is free from anomalies.

This dissertation is organized as follows. The second chapter is concerned

with the theory of w∞ gravity. We recall that w∞ gravity is the one-scalar

realization of the w∞ algebra at the classical level (i.e. at the level of single

Wick contractions). We shall derive the anomalies of the theory from the

measure of the path integral. Under the symmetries of the w∞ action, the

measure transforms through an ill-defined Jacobian factor [16, 17]. This fac-

tor, which potentially carries the possible anomalies of the theory, is initially

divergent. A Fujikawa regularization procedure can be used to extract the
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finite part of the ill-defined Jacobian. The fact that the Fujikawa regulators

have to be Hermitian, but are not constrained by any additional conditions,

leaves one with an unlimited number of regulators. This can cause problems

because the expressions for the anomalies depend on the choice of the reg-

ulator. The ambiguity in the choice of a regulator is resolved by using the

Wess-Zumino consistency condition [3, 86]. Although the regulators are not

tightly constrained by any conditions, the anomalies are. Since the expression

for the anomalies has to satisfy the Wess-Zumino consistency condition, the

choice of a regulator is indirectly constrained. Only the regulators that result

in consistent anomalies (i.e. those that satisfy the consistency condition) are

chosen. These regulators arise in a different scheme of regularization known

as Pauli-Villars scheme. One is certain to obtain consistent anomalies if one

chooses the Pauli-Villars regulators in the Fujikawa method [14].

The anomalies thus obtained occur in two sectors: the matter-sector

anomalies and the ghost-sector anomaly. The matter-sector anomalies oc-

cur at all spin levels and are all finite expressions. The ghost-sector anomaly

occurs at the Virasoro level only and suffers from infinities even after the

Fujikawa regularization. These further infinities appear in the form of diver-

gent sums. The summations are taken over the infinite number of ghost-spins.

The divergences in these sums require a further regularization scheme.

The zeta-function regularization scheme can be used for removing such

divergences [71, 89]. This regularization scheme is not free from ambiguities

either. Let us consider a simple example. The sum
∑∞
n=0(n+1)2, for instance,

can be written as
∞∑
n=0

((n+ 3)− 2)2 =
∞∑
n=0

(n+ 3)2 − 4(n+ 3) + 4. (1.3)

The alternative forms of this sum give different values after regularization.

This ambiguity can be resolved by requiring that the regularized value of the

sum remains invariant under the interchange (n + 1)↔ (−n− 2). This is a

spin symmetry of the ghost/antighost system [89] and is discussed in detail
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in Chapter 2. After deriving a finite expression for the anomalies in both

the matter and the ghost sectors, we will discuss possible ways of removing

them. The matter-dependent anomalies can be removed by modifying the

action and its symmetries by finite local counterterms. As a result of the re-

moval of the matter-dependent anomalies, the spin-2 matter-sector universal

anomaly is modified by an extra factor. This modified spin-2 matter-sector

anomaly cancels against its counterpart in the ghost-sector. Therefore, after

the renormalization, only the higher-spin matter-sector universal anomalies

remain in the theory. The renormalization procedure replaces the w∞ cur-

rents by the renormalized W∞ currents. The new currents satisfy the W∞

algebra rather than the w∞ algebra [8].

W∞ gravity is the subject of Chapter 3. We derive the universal anom-

alies of the W∞ gravity by the Fujikawa method. The ghost-sector universal

anomalies are derived to all spin orders. Although these occur at all orders

in h̄, they only arise from single-loop diagrams. This is why they can be

derived by the Fujikawa method. (The Fujikawa method is restricted to the

one-loop anomalies.) The anomalies in the ghost sector belong to two general

classes: the diagonal and the off-diagonal anomalies. The total spin of the

ghost and the gauge fields has the value 1 in the expression for the diagonal

anomalies, and otherwise in the expression for the off-diagonal anomalies.

The ghost-sector anomalies have divergent coefficients which appear in the

form of infinite sums. These sums suffer from ambiguities similar to those

discussed for the w∞ gravity earlier on. These infinite sums can be written

in infinitely different ways. Each of these methods of summations then gives

a different result upon regularization. In addition, as one goes up the spin

ladder, these ambiguities multiply and a consistent zeta-function regulariza-

tion scheme becomes more difficult to devise. The symmetry argument, by

means of which these ambiguities have been removed for the Virasoro anom-

aly, becomes more complicated. However, these ambiguities are resolved by

means of the Wess-Zumino consistency condition [3, 86].
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The unambiguous result at the Virasoro level, can be extrapolated to all

higher-spin levels by the Wess-Zumino consistency condition. That is to say,

all higher-loop anomalies can be derived as a result of the implementation

of the Wess-Zumino consistency condition on the one-loop anomaly. Not

only does this condition provide a method of consistently regularizing the

divergent sums at all the spin sectors but it also puts an additional constraint

on the anomalies. A further consequence of the Wess-Zumino consistency

condition is that off-diagonal anomalies are forbidden. A proper zeta-function

regularization scheme is therefore required to give a vanishing coefficient for

all the off-diagonal ghost-sector anomalies.

In the matter sector, only the spin-2 universal anomaly can be derived by

means of the Fujikawa method. This is the only one-loop anomaly of this sort

in the theory. Universal anomalies at higher-spin levels occur at higher-loop

orders and cannot be derived by using the Fujikawa method. However, they

can be obtained by the Wess-Zumino consistency condition. The matter-

sector anomalies do not require any form of the zeta-function regularization

scheme and automatically cancel against the ghost-sector anomalies. One

thus achieves the cancellation of all the anomalies in the theory ofW∞ gravity.

At the beginning of the introduction, we discussed several different ways

of deriving the anomalies. We described two possible methods of deriving

the triangle anomalies. Having devoted Chapters 2 and 3 to the derivation of

the anomalies from a path-integral point of view, we shall take an alternative

route to this derivation in Chapter 4. There we shall discuss possible ways

of deriving the anomaly from the BRST charge Q. The non-nilpotence of

the BRST charge (i.e. Q2 6= 0) is an indication that there is an anomaly

in the theory [40]. In this method of anomaly derivation, we encounter

two main difficulties. The anomaly that results from the non-nilpotence of

the BRST charge is not of the same form as that which we derived from

the path-integral method. These two forms of the anomalies initially seem

to be unrelated to each other. However, we propose that the path-integral
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anomaly is obtained by the application of the anomalous operator Q2—which

is calculated using operator-products—to the gauge fermion ψ [59]. The

gauge fermion is obtained from the BRST-trivial term in the action (i.e.

that for which Q(Qψ) = 0). The validity of this proposal for the theory

of the W∞ gravity is then confirmed by an explicit calculation. The second

difficulty is that, contrary to what we had expected, the standard BRST

charge Q does not generate all the symmetries of the action. The BRST

charge fails to generate the transformations of the gauge fields [59]. This

difficulty is discussed and resolved in the next chapter.

In Chapter 5, we consider the w∞ theory in a different gauge. In the

previous chapters, we had chosen the background-field gauge [i.e. Ai = Abacki ,

where Ai is the gauge field of spin (i+2)] as the gauge-fixing condition. Here,

we choose a time-derivative gauge. We then derive the BRST charge in this

gauge and prove that it is the true generator of all the BRST transformations

of the classical action, i.e. that the BRST charge also generates the symmetry

transformation of the gauge fields.

We also introduce sources into the theory and discuss a more general and

rigorous treatment of the Wess-Zumino consistency condition. We derive the

anomalies both from the path-integral and the BRST-charge (Q) points of

view. This provides us with an extra proof that the relationship proposed

earlier (relating the path-integral anomalies to the BRST-charge anomalies)

holds also in different gauges. In the derivative gauge, too, the path-integral

anomalies can be obtained by application of the operator Q2, calculated using

operator-products, to the gauge-fermion. Although the gauge fermion takes

a different form in the derivative gauge, the above relationship still holds.

The final chapter is devoted to a summary of the results of this thesis

and its conclusion.

Appendices are included at the end of this thesis. Appendix A is con-

cerned with the Pauli-Villars regularization scheme. In this appendix, we

discuss the choice of the regulating operator in the Fujikawa method and
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formulate a prescription for choosing regulators in the Fujikawa scheme that

would automatically lead to consistent anomalies [36, 85]. Appendix B, is de-

voted to the zeta-function regularization scheme. We discuss different ways of

summing the divergent coefficients of ghost-sector anomalies in spin-2, spin-

3 and spin-2/spin-4 off-diagonal anomalies. We then conclude that, of the

several methods considered, only one method of summation complies with

the Wess-Zumino consistency. In Appendix C, we discuss the theory of W3

gravity. This nonlinear theory, has been studied extensively in recent years

[43–51, 58, 63, 73–75, 85]. The main results that we have obtained for the

w∞ and W∞ gravity are re-examined briefly for the W3 gravity. We study

this theory in both the derivative and conformal gauges, and highlight the

differences between this theory and the theories of w∞ and W∞ gravity.

16



Chapter 2

Path-integral quantization of
chiral w∞ gravity

The purpose of this chapter is to find whether the theory of w∞ gravity is

anomalous or not. Since anomalies arise in the process of quantization, one

cannot consider them without considering a quantization program. It was

shown by Fujikawa that in the path-integral quantization scheme, anomalies

arise as a result of the non-invariance of the measure of the path integral

under the symmetries of the action [16, 17]. Under these symmetries, the

measure transforms through an ill-defined Jacobian factor. This factor, when

properly regularized, results in a finite expression, namely the anomaly [17–

31, 39, 53, 55, 83, 87, 88].

We start this chapter by considering the classical action and symmetries

of w∞ gravity [1, 2, 9]. We then fix the gauge by choosing a background-

field gauge [45]. The process of gauge fixing replaces the original action and

symmetries by their BRST counterparts. The measure of the new parti-

tion function, i.e. that corresponding to the BRST-invariant action, involves

ghosts and anti-ghosts as well as the matter and the gauge fields.

The path-integral measure does not respect the BRST symmetries. The

Jacobian that arises when the measure is varied under the symmetries of the
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action is a singular expression. It involves the product of a delta function with

its own derivative. This ill-defined quantity has to be regularized to become

meaningful. The regularization procedure is complicated by the freedom one

has in choosing a regulator. The final answer for the regularized Jacobian (i.e.

the anomaly) depends on the choice of regulator. Therefore it is important

to choose a proper regulator. It is known that anomalies have to satisfy

the so-called Wess-Zumino consistency condition [3, 86]. We shall consider

a regulator to be proper if it results in an expression for the anomaly that

satisfies this condition.

The regulators that result in consistent anomalies are constructed from

the propagators of the theory [14, 30, 36, 85]. The consistent regulators,

i.e. those that result in consistent anomalies, are certain to arise in the

Pauli-Villars regularization scheme. The point of studying Pauli-Villars reg-

ularization here is not to regularize the infinities of the theory by means of

this method. The Pauli-Villars scheme is studied so as to obtain an insight

into how one can choose the Fujikawa regulator in a consistent manner. Let

us briefly mention the key points about Pauli-Villars regularization. In this

scheme, massive Pauli-Villars fields are introduced into the action. These

fields contribute in such a way as to cancel the infinite contributions from

the original fields in the loops. Hence they remove the divergences from the

theory. The Pauli-Villars terms decouple from the theory as one lets the reg-

ulating mass tend to infinity. In the process of such regularization, certain

regulating operators arise. One can show that these regulators automatically

result in consistent anomalies [36, 85].

The anomalies that arise can be categorized into two groups. The first

group of such anomalies are the universal anomalies. We recall that these

anomalies correspond to Feynman diagrams with external gauge field lines

only. The second type of anomaly is the matter-dependent anomalies. Unlike

the universal anomalies, these anomalies correspond to Feynman diagrams

with external matter as well as gauge-field lines.
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The universal anomalies themselves dissociate into two kinds; ghost and

matter-sector anomalies. The ghost-loop universal anomalies give an infinite

contribution. This is because there are an infinite number of ghosts in the

theory. A proper zeta-function regularization scheme exists which can be

used to regularize the infinite sums arising in the ghost sector [71, 89]. The

process of zeta-function regularization is complicated by the fact that an

infinite sum can be written in many different ways. Each of these gives a

different finite value upon regularization. One then has no way of telling

which of these values is preferable. However, there is a symmetry in the

ghost/anti-ghost system that must be satisfied by the regularized infinite

sum. Such a symmetry argument leaves us with only a few allowed methods of

summation. All of the allowed summation methods give the same result upon

regularization.1 The matter-sector anomalies do not cause such problems.

Anomalies are, in essence, a measure of the degree of deformation of a

theory under a quantization program. However, the anomalies that we will

be calculating have a deeper significance. These anomalies are the result

of the breakdown of gauge invariance. Because of the importance of the

gauge symmetries, the gauge anomalies should be studied in detail. These

anomalies have different impacts on different theories and their implications

can vary from theory to theory. However, unless one can show that there is

an acceptable way of cancelling these anomalies or of handling the anomalous

dynamics implied by them, one is not in general able to put forward a viable

theory.

The matter-dependent anomalies can be removed by the addition of finite

local counter terms to the action and by corresponding modifications of the

BRST transformation rules [8]. The renormalization program that is used

to cancel the matter-dependent anomalies also cancels the spin-2 universal

1In Chapter 3 we shall discuss how the zeta-function regularization adopted in the
spin-2 sector can be extended to all higher-spin sectors by means of the Wess-Zumino
consistency conditions.
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anomaly. The process of renormalization has a very significant effect on

the theory of the w∞ gravity. As a result of the anomaly cancellation, the

currents that generate the w∞ algebra are renormalized. The renormalized

currents, however, no longer satisfy the w∞ algebra. They instead satisfy

the W∞ algebra [8]. The theory of chiral W∞ gravity will be discussed in

Chapter 3.

2.1 The BRST action of chiral w∞ gravity

Consider a single matter scalar field φ propagating in a two-dimensional

spacetime with the light-cone coordinates (+,−) = (z̄, z). The Lorentz-

invariant free Lagrangian for this field is given by

L =
1

2
∂φ∂̄φ, (2.1)

where ∂ = ∂
∂z

= ∂− and ∂̄ = ∂
∂z̄

= ∂+. The action corresponding to this

Lagrangian is invariant under the following holomorphic transformation:

δφ(z, z̄) =
∞∑
l=0

kl(z)
(
∂φ(z, z̄)

)l+1

. (2.2)

We now lift the restriction on the parameter k and make it a function of z̄ as

well as z. The action corresponding to (2.1) is not invariant under this new

local transformation. To restore the invariance of the action, we are forced

to introduce gauge fields. Thus, a spin (i + 2) gauge field Ai is coupled to

the current vi = (∂φ)i+2/(i+ 2). The new action,

S =
1

π

∫
d2z

(
1

2
∂φ∂̄φ−

∞∑
i=0

Ai
(∂φ)i+2

i+ 2

)
, (2.3)

is then invariant under the following gauge transformations [9, 56, 76]:

δφ(z, z̄) =
∞∑
l=0

Kl(z, z̄)
(
∂φ(z, z̄)

)l+1

,
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δAl(z, z̄) = ∂̄Kl(z, z̄)−
l∑

j=0

(
(j + 1)∂Kl−jAj − (l − j + 1)Kl−j∂Aj

)
.

(2.4)

The currents vi generate the w∞ algebra at the classical level (i.e. at the level

of taking Poisson brackets). The classical w∞ algebra is given by [1, 2]

[vim, v
j
n] = [(j + 1)m− (i+ 1)n]vi+jm+n, (2.5)

where vim denotes the mth Fourier mode of the spin-(i+2) current vi(z). One

can verify that the Jacobi identities permit only the usual Virasoro central

term in this algebra.

Next, we shall address the issue of whether the classical symmetries of the

action are preserved under quantization. In the path integral formalism, the

basic quantity is the partition function which, for the theory of w∞ gravity,

is given by

Z =
∫
DφDA exp(S/h̄), (2.6)

where DA stands for
∏
iDAi. In deriving this form of the partition function,

one starts from the Heisenberg equation describing the evolution of a state:

< qf , tf |qi, ti >=< qf | exp−iĤ(tf − ti)
h̄

|qi > . (2.7)

Subsequent manipulations result in an expression for the partition function

in phase space. Once this is obtained, one can integrate out the momenta

in order to replace the Hamiltonian form of the partition function by its

Lagrangian form. This integration usually, though not always, results in an

infinite constant which can then be absorbed into the normalization of the

path integral. Our reason for mentioning this point is to emphasize that

one cannot start from just any action and write an expression like (2.6) as

the corresponding path integral. Extra non-trivial terms can arise from the

integration over the momenta [40]. However, the phase space actions for both
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w∞ and W∞ are linear in momenta. Thus, the momentum integration makes

a contribution to the normalizing factor only and finally one is left with the

expression (2.6).

The partition function (2.6) suffers from singularities. It is not well-

defined, since the path integral contains a sum over all possible gauge-field

configurations including those related by gauge transformations. In other

words, when integrating over the gauge fields one also integrates over the

volume of the gauge group and as a result the integral diverges. Therefore,

one has to fix the gauge. That is, one has to choose a representative for

each orbit of the gauge group. Let F(A) be the gauge-fixing condition. The

imposition of such a condition in the path integral is accompanied by the

introduction of the Faddeev-Popov ghost and antighost fields. The Faddeev-

Popov ghost term that must be added to the action is given by [15]

SFPG =
∑
i,j

−1

π

∫
d2zd2w

{
bi(z)

δF [Ai(z) + δAi(z)]

δKj(w)
cj(w)

}
. (2.8)

The gauge-fixing condition is incorporated into the action by a Lagrange

multiplier πi. The gauge-fixing term is thus given by

Sgf =
1

π

∫
πiF(Ai). (2.9)

The full action, which now includes Faddeev-Popov ghost and gauge-fixing

terms, is then invariant under BRST symmetries rather than the original

gauge transformations (2.4). We shall initially use the background gauge

(Ai − Abacki = 0) as our gauge fixing condition F(Ai). The BRST action for

w∞ gravity is given by

SBRST =
1

π

∫ 1

2
∂φ∂̄φ+

∞∑
i=0

(
− Ai

(∂φ)i+2

(i+ 2)
− bi∂̄ci +

i∑
j=0

[(j + 1)Ajbi∂ci−j

−(i− j + 1)bi∂Ajci−j] + πi(Ai − Abacki )
)
. (2.10)

The BRST transformations for the scalar field and the gauge fields are

the same as the gauge transformations (2.4) with the gauge parameters Ki
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replaced by the ghosts ci. Let us now concentrate on the transformation

laws of the ghosts ci, of the antighosts bi and of the Lagrange multipliers

πi. The transformation rules of the antighost fields are derived by requiring

the invariance of the BRST action. The original part of the action without

the gauge-fixing term is invariant by itself for systems such as (2.10) for

which the tree-level BRST transformations are obtained by replacing the

parameters of the gauge transformations by the corresponding ghost fields.

This implies that the variation of the ghost action has to cancel against that

of the gauge-fixing term. The variation of these two terms can be written as

follows:

δ(SFPG + Sgf ) =
∞∑
i=0

[(
− δbi + πi

)
δAi + Aiδπi

]
. (2.11)

We easily see that in order for these variations to vanish, δbi has to equal the

Lagrange multiplier πi, a quantity whose variation vanishes. This illustrates

an important characteristic of the tree-level BRST transformations, i.e. that

they are nilpotent. This means that two successive transformations result

in a null transformation (i.e. δ2 = 0). The transformations of φ and Ai

are indeed also nilpotent provided that the ghost fields ci transform in an

appropriate way as given below. We find that the BRST action is invariant

under the following BRST symmetries

δφ =
∞∑
l=0

λcl(∂φ)l+1,

δAi = λ∂̄ci − λ
i∑

j=0

(
(j + 1)∂ci−jAj − (i− j + 1)ci−j∂Aj

)
,

δci = λ
i∑

j=0

(j + 1)cj∂ci−j,

δbi = λπi,

δπi = 0, (2.12)

where λ is the constant anticommuting BRST parameter. In this thesis, it
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only becomes necessary to write the BRST parameter explicitly in deriving

the Noether charge. Since this is not the concern of this chapter, we shall

drop λ for the sake of brevity.

2.2 The anomalies of w∞ gravity

The aim of this section is to derive the anomalies that arise in the path-

integral quantization of the theory of w∞ gravity. We recall that the anom-

alies can render our theory inconsistent. It is therefore essential to see

whether w∞ gravity entails any anomalies.

The partition function corresponding to the BRST-invariant action (2.10)

is:

Z =
∫
DφDADcDb exp(SBRST ). (2.13)

If the partition function is not invariant under the symmetries of the ac-

tion, the theory suffers from anomalies [16, 17]. Under the BRST symmetries

(2.12), the partition function Z transforms into Z ′ as follows:

Z −→ Z ′ =
∫
JDφDADcDb exp(SBRST ), (2.14)

where J is the Jacobian of the BRST transformation.

In saying that the path-integral measure transforms through a Jacobian

factor in the above manner, we assume that the path-integral behaves like

an ordinary integral. Stated differently, we assume that the measure of the

path-integral can be treated separately from the action. Whether these as-

sumptions are justified or not can be settled by considering the discretized

version of the path-integral [6, 35, 84]. However, we shall not discuss the

discretization of the path integral in this thesis and shall carry on with our

calculations assuming that the Jacobian J is the only source of any possible

one-loop anomaly. The Jacobian J of the BRST transformations is given by

J =
∏
l,r

det
∂(φ+ δφ,Al + δAl, cl + δcl, bl + δbl)

∂(φ,Ar, cr, br)
. (2.15)
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The above determinant can be written in the standard exponential-trace-log

form, so that the transformed partition function acquires the form:

Z ′ =
∫
DφDADcDb exp

(
SBRST +

∞∑
l=0

∞∑
r=0

Tr
∂(δφ, δAl, δcl, δbl)

∂(φ,Ar, cr, br)

)
, (2.16)

where the trace includes integration over spacetime as well as summation

over the internal indices. Thus, our theory is anomaly-free if the trace is zero

and anomalous otherwise. Using the BRST symmetries (2.12), the anomaly,

i.e. the trace appearing in the exponential of the above expression, can be

written in the form:

A =
∑
l,r

TrN lrδ2(z − w), (2.17)

where

N lr =

 N
l
φφ 0 N lr

φc

0 N lr
gg N lr

gc

0 0 N lr
cc

 , (2.18)

and

N l
φφ = (l + 1)cl(∂φ)l∂,

N lr
gg = −(r + 1)∂cl−r + (l − r + 1)cl−r∂,

N lr
cc = (r + 1)∂cl−r − (l − r + 1)cl−r∂. (2.19)

The matrix elements N lr
φc and N lr

gc are given similarly. As we shall see later,

these two off-diagonal elements do not contribute to the anomaly. However,

at this stage, the above trace cannot be evaluated since it diverges. Indeed,

it involves the product of a delta function (coming from the definition of the

trace) and its derivative (coming from the action of the matrix N on the

delta function in (2.17)). Therefore it has to be regularized. We shall use

the Fujikawa method for extracting the finite part of the singular expression

(2.17). In this method, the delta function in (2.17) is, in essence, replaced by
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a regularized expression [10, 11]. The procedure leading to this replacement

starts by expanding the delta function in a plane-wave basis:

δ2(z − w) =
∫ d2k

4π2
eik·(z−w), (2.20)

where k · (z − w) = 1
2
[k̄(z − w) + k(z̄ − w̄)]. The above integral can be

made meaningful everywhere by smearing out the integrand with a Gaussian

damping factor e−β(k)/M2
as follows: 2

δ2(z − w) = lim
M→∞

∫ d2k

4π2
e−β(k)/M2

eik·(z−w). (2.21)

Substituting this expression in (2.17) gives

A = lim
M→∞

∑
l,r

Tr N lr exp(−βlr(k)/M2), (2.22)

where the trace is evaluated in the plane-wave basis.3 The above expression

for the anomaly proves the statement made earlier that the regularization

scheme effectively replaces the delta function by a regularized expression.

Next, we discuss the choice of the regulating operator. The function β in

(2.22) is the real eigenvalue of a Hermitian operator H lr. This leaves us with

a wide range of possible operators H lr. Since the final form of the anomaly

depends on the choice of H lr, the freedom in choosing this operator implies

that there are many different expressions for the anomaly. In order to choose

the appropriate Hermitian operator H lr, one resorts to the Wess-Zumino

consistency condition which has to be satisfied by the anomalies [3, 86].

The Wess-Zumino consistency condition states that the gauge transfor-

mations can form a group and has the following general form:

δA = 0. (2.23)

2In general any function f( β
M2 ) can be used [19]. However, it is most convenient to use

Gaussian regularization.
3The trace can be evaluated in any basis defined by a complete set of functions [17].

However, the plane-wave basis is most practical from the calculational point of view.
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The role that this condition plays in choosing an appropriate regulator is dis-

cussed in detail in Appendix A. The fact that the anomalies have to satisfy

this condition indirectly limits the choices that one has for the regulating op-

erator H lr. In principle, one can initially choose any H lr that is Hermitian.

But at the end of the calculation, one has to check that the resulting anom-

alies are consistent. If the expression for the anomaly does not satisfy the

consistency condition, one can adopt one of two alternative procedures: either

one modifies the anomaly by finite terms such that the modified expression

satisfies the consistency condition, or one chooses a different regulator H lr

and repeats the procedure. Thus, the proper choice of a consistent regulator

can enormously simplify the task of anomaly calculation.

The Fujikawa regularization scheme does not automatically provide a

route to consistent anomalies. In this scheme, one is free to choose the regu-

lating operator and can easily end up with an operator which does not result

in consistent anomalies. On the contrary, in the Pauli-Villars scheme, the

regulators4 emerge from the theory itself and one can show that these regu-

lators necessarily result in consistent anomalies (see Appendix A). Thus, in

order to ensure that the anomalies that are derived in the Fujikawa scheme are

consistent, one can use the regulators that arise in the Pauli-Villars scheme

[14].

The chiral part of the consistent operator H lr for the w∞ gravity (see

Appendix A) is given by

H lr =

 H
j
φφ 0 0
0 Hlr

gg 0
0 0 Hlr

cc

 , (2.24)

where

Hj
φφ = −

(
∂∂̄ + ∂

[
(j + 1)Aj(∂φ)j

]
∂ +

[
(j + 1)Aj(∂φ)j

]
∂2
)
,

4In this thesis, the word regulator denotes the regulating operator eH/M
2
.
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Hlr
cc = −∂∂̄ + (r − l)∂Ar−2l∂ − (l + 1)∂2Ar−l + (r − l + 1)Ar−l∂

2,

Hlr
gg = −∂∂̄ + (r − l + 1)Ar−l∂

2 − (l + 1)∂Ar−l∂. (2.25)

Due to the diagonal nature of the regulator H lr, the anomaly dissociates into

the sum of its diagonal elements as follows:

A = Aφ +Ac +Ag, (2.26)

where

Aφ = lim
M→∞

Tr
∞∑
j=0

∞∑
l=0

N l
φφ exp−Hj

φφ/M
2,

Ac = lim
M→∞

Tr
∞∑
r=0

r∑
l=0

N lr
cc exp−Hlr

cc/M
2,

Ag = lim
M→∞

Tr
∞∑
r=0

r∑
l=0

N lr
gg exp−Hlr

gg/M
2, (2.27)

N is given in (2.22), and the trace includes integration over spacetime and is

evaluated in the plane-wave basis as before. The anomaly always dissociates,

in the above manner, if either the regulator or the matrix N is diagonal.

Otherwise there will be off-diagonal contributions to the anomaly.

The matter-sector anomaly Aφ can be evaluated in the plane-wave basis.

Upon taking the trace in this basis, one obtains:

Aφ = lim
M→∞

∞∑
l,j=0

∫
d2z

∫ d2k

4π2
(l + 1)cl(∂φ)l

×e−ik·z∂
[

exp
(
∂∂̄ − ∂Bj∂ −Bj∂

2

M2

)
eik·z

]
, (2.28)

where we have used Bj to represent (j + 1)Aj(∂φ)j. The action of the regu-

lator on eik·z replaces ∂ by ∂ + ik̄/2 and ∂̄ by ∂̄ + ik/2. Next, one rescales k

to 2kM and k̄ to 2k̄M . This gives
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Aφ = lim
M→∞

∫
d2z

∫ M2d2k

π2

∞∑
l=0

∞∑
j=0

(l + 1)cl(∂φ)l(∂ + ikM) exp (
−kk̄
M2

)

× exp
(
∂∂̄ − ∂Bj∂ −Bj∂

2

M2
+
ik∂ + ik̄∂̄ − ik̄∂Bj − 2ik̄Bj∂

M
+Bj k̄

2
)
.

(2.29)

The exponential is now expanded. It is obvious that the nth term in the

expansion must yield no worse a factor than M−3 in order to avoid being

discarded in the M →∞ limit. The only terms that meet this criterion are

given by

Aφ =
∫
d2z

∞∑
l=0

(l + 1)cl(∂φ)l∂3Bj

∫ d2k

π2

(
kk̄

2
− k2k̄2

3
+
k3k̄3

24

)
e−kk̄. (2.30)

The essence of all regularization schemes is to extract the divergences of a

theory. The infinities so isolated are then discarded from the theory. It may

seem that we have not encountered any divergent terms in our regularization

scheme. However, this is not really the case. There is a divergent term

of order M3 in the expansion of the exponential which is multiplied by a

vanishing k integral. Therefore, in our regularization scheme the divergences

are automatically discarded without any need for them to be thrown away

by hand.

The k integrals in (2.30) can be performed easily by using the following

general form of the Gaussian integral:∫
d2ke−kk̄kmk̄n = δm,nn!. (2.31)

The final expression for the chiral one-loop matter-sector anomaly is given

by

Aφ =
1

12π

∫
d2z

∞∑
l=0

∞∑
j=0

(l + 1)(j + 1)cl(∂φ)l∂3[Aj(∂φ)j]. (2.32)
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We recall that the expression for the anomaly (2.26) includes the ghost-

sector anomaly (Ag + Ac) as well as the matter-sector anomaly. Likewise,

the expression for the ghost-sector anomaly is given by

Ac = lim
M→∞

∫
d2zTr

∞∑
l=0

(
− (l + 1)∂c0 + c0∂

)

× exp
(
∂∂̄ + l∂A0∂ + (l + 1)∂2A0 − A0∂

2

M2

)
, (2.33)

and the anomaly coming from the Jacobian of the gauge field

Ag = lim
M→∞

∫
d2zTr

∞∑
l=0

(
(l + 1)∂c0 − c0∂

)

× exp
(
∂∂̄ + (l + 1)∂A0∂ − A0∂

2

M2

)
, (2.34)

Note that only the spin-2 gauge field and the corresponding ghosts contribute

to the ghost-sector anomalies. This is because, although the expression (2.19)

for Ncc implies l ≥ r , the expression (2.25) for Hcc implies r ≥ l. Obviously

these two contradict one another unless r = l. A similar situation arises in

the case of Ag. The expressions for Ac and Ag (2.27) can be evaluated in a

similar manner to that for Aφ. The total ghost-sector anomaly is then given

by

Ac +Ag = −
∞∑
l=0

(
6(l + 1)2 + 6(l + 1) + 1

6π

) ∫
d2zc0∂

3A0. (2.35)

The summation in (2.35) is strongly divergent. It might at first seem that the

ghost-sector anomaly is infinite. However, this infinite sum can be rendered

finite by a zeta-function regularization scheme as we shall now show.
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2.3 Zeta-function regularization of the ghost-

sector anomalies

The generalized Riemann zeta function is defined by [37]:

ζ(α, q) =
∞∑
l=0

1

(l + q)α
q 6= 0,−1,−2 · · · , realα > 1. (2.36)

The divergent sum in (2.35) is of the same form as (2.36) except that it

involves a negative value of α. By using an analytic continuation of (2.36),

we can write

ζ(−α, q) =
∞∑
l=0

(l + q)α. (2.37)

Taking into account that ζ(−α, q) can be expressed in terms of Bernoulli

polynomials as:

ζ(−α, q) =
Bα+1(q)

(α + 1)
, (2.38)

the sum appearing in (2.35) can be regularized as follows:

∞∑
l=0

6(l + 1)2 + 6(l + 1) + 1 = 6ζ(−2, 1) + 6ζ(−1, 1) + ζ(0, 1)

= 6
B3(1)

3
+ 6

B2(1)

2
+ 6B1(1)

= −1 (2.39)

There is, however, an ambiguity in the above regularization. This arises

from the freedom in writing the infinite summation in powers of (j + a) (for

arbitrary a) instead of (j + 1) [89]. That is to say, the summation in (2.35)

can also be expressed as:

∞∑
l=0

6(l + a)2 + (12− 12a+ 6)(l + a) + 6(1− a)(2− a) + 1, (2.40)

which on using the Bernoulli polynomials gives

2B3(a)+(9−6a)B2(a)+[6(1−a)(2−a)+1]B1(a) = 2a3−9a2+13a−5. (2.41)
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Therefore, the regularized value of the infinite sum in (2.35) depends on the

choice of the parameter a. This ambiguity is removed by using a symmetry of

the ghost/antighost system. The original Faddeev-Popov action is invariant

under the interchange of the ghost and antighost spins, i.e. the exchange

(−j − 1) ↔ (2 + j).5 To find the value of a that respects this symmetry,

we replace l by −l− 3 in (2.39) and rewrite the new expression in powers of

l + a. This gives

−
−3∑
−∞

6(l + a)2 + (18− 12a)(l + a) + 6(2− a)(1− a) + 1. (2.42)

A subsequent change in the limits of the sum and use of the Bernoulli poly-

nomial gives

−2a3 + 9a2 − 13a+ 7. (2.43)

Three solutions for a are then obtained by equating (2.41) with (2.43) and

solving the resulting cubic equation. These are a = 1, a = 2 and a = 3
2
,

as can be verified by substitution. All of these give the same result upon

regularization, by construction. Once the sum is regularized in a fashion

that respects the ghost/antighost spin interchange symmetry, its value can

be extrapolated to all the higher spins by using the Wess-Zumino consistency

conditions. This will be discussed in the next chapter.

Putting everything together, we can write the final expression for the

one-loop anomaly of w∞ gravity, which is

A =
1

12π

∫
d2z

∞∑
l=0

∞∑
j=0

(l+1)(j+1)cl(∂φ)l∂3(Aj(∂φ)j)+
1

6π

∫
c0∂

3A0. (2.44)

2.4 Higher-loop anomalies

The Fujikawa anomaly given by the above expression corresponds to the

one-loop diagrams only. Unlike what was originally believed [52], this does

5The ghost ci and the antighost bi have spins (−1− i) and (2 + i), respectively.
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not mean that an anomaly is a non-perturbative effect and can only occur

at one-loop level. The theories of w∞ and W∞ gravity provide very good

examples for showing that anomalies also have perturbative aspects. The

derivation of higher-loop anomalies from the Fujikawa method remains an

open problem. Whether the higher-loop anomalies also originate in some

sense from the non-invariance of the measure of the path integral is still

unknown. However, in the next chapter we shall discuss a possible way of

resolving this problem. We shall use the Wess-Zumino consistency condition

as a complement to the Fujikawa scheme and then derive all the multiple-

loop anomalies for the theory of W∞ gravity. This method can only be used

for the derivation of the universal anomalies. Since the theory of w∞ gravity

contains multiple-loop matter-dependent anomalies, we shall use the method

of operator-product expansions for the derivation of the anomalies to all loop

orders.

The multiple-loop w∞ anomalies can occur in the matter sector only. The

ghost action is bilinear in ghosts and, as a result, can only generate 1-loop

diagrams. The partition function corresponding to the matter-sector action

S0 (2.3) can be written as

Z =
∫
Dφ

(
1 + S0 +

1

2
S2

0 +
1

3!
S3

0 + · · ·
)
. (2.45)

The two-point functions are given by the second term in the above expansion.

This is the only term that is relevant for the calculation of the anomalies.

This is because all the higher-point functions can be written as the product

of two-point functions. The two-point function Γ can be written as [32]

Γ =
1

2

∫
d2z

∫
d2w

∞∑
i,j=0

〈
Ai(z)

[∂φ(z)]i+2

i+ 2
, Aj(w)

[∂φ(w)]j+2

j + 2

〉
. (2.46)

Using the short-distance expansion for the scalar field [i.e. φ(z)φ(w) = log(z−
w)] and inserting the symmetry factors that arise from the combinatorics of
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the contractions, we obtain

Γ =
1

2

∞∑
i,j=0

∑
n

(i+ 1)!(j + 1)!

(i+ 2− n)!(j + 2− n)!n!∫
d2z

∫
d2wAi(z)(∂φ)i+2−n(z)(∂φ)j+2−n(w)Aj(w)

1

(z − w)2n
.

(2.47)

[In the above expression, the limits of summation over n are: 2 ≤ n ≤ (i+ 2)

if i ≤ j and 2 ≤ n ≤ (j + 2) if j ≤ i.] The use of the standard relation,

1

(z − w)m
=

(−1)m−1

π(m− 1)!

∂m−1

∂̄
δ(z − w), (2.48)

in the expression (2.47) gives

Γ =
−1

2π

∞∑
i,j=0

∑
n

(i+ 1)!(j + 1)!

(i+ 2− n)!(j + 2− n)!(2n− 2)!n!

×
∫
d2z

∫
d2wAj(w)(∂φ)j+2−n∂

2n−1

∂̄

[
(∂φ(z))i+2−nAi(z)

]
.(2.49)

The anomaly A is obtained by taking the variation of the quantum action Γ

with respect to the gauge fields. The final expression for this anomaly is

A =
−1

2π

∞∑
i,j=0

∑
n

∫
d2z

(i+ 1)!(j + 1)!

(i+ 2− n)!(j + 2− n)!(2n− 1)!n!

×
(
Aj(∂φ)j+2−n∂2n−1

[
ci(∂φ)i+2−n

]
− cj(∂φ)j+2−n∂2n−1

[
Ai(∂φ)i+2−n

])
.

(2.50)

The above expression gives anomalies to all orders in h̄. Although the

operator-product expansion is a valid, and probably more convenient, method

of anomaly derivation, it does not give as much insight into the nature of

anomalies as the Fujikawa method does. The Fujikawa method is limited

to one-loop anomalies but shows that the measure of the path integral is

responsible for the existence of the anomalies. It also shows how regulators

enter the derivation of the anomalies and where the Wess-Zumino consistency

condition contributes in the process of anomaly derivation.
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2.5 Cancellation of the anomalies

In the preceding sections, we have been concerned with the calculation of

the anomalies. In this section, we shall study the possible ways of removing

the anomalies.

The renormalization process for anomalies involves the addition of finite

local counter terms to the action and modifications of the transformation

rules. This is equivalent to adjusting the currents vi[(∂φ)i+2/(i + 2)] by the

addition of h̄-dependent terms involving fewer φ fields but the same number

of derivatives [8].

For the purpose of renormalization, it is only necessary to consider the

matter part of the action (2.10). The renormalized Faddeev-Popov action

and the BRST transformations of the ghosts and antighosts can be obtained

directly from the renormalized transformations of the gauge fields. This is

because the Faddeev-Popov action is constructed by using the transformation

rule of the gauge fields. Similarly, the renormalized transformation rules of

the ghosts can be obtained by requiring the nilpotency of the renormalized

transformation rules of the gauge fields (see the next chapter).

From the matter part of the action (2.10), we can see that the matter

field φ has the dimension h̄1/2 and the gauge fields Ai have dimensions h̄−i/2.

The renormalization program involves the replacement of the scalar fields by

powers of h̄. This process continues until all the scalar fields are exhausted.

This is apparent from the expression below:

Sren
φ =

1

π

∫ 1

2
∂φ∂̄φ− A0

(
(∂φ)2

2
+
√
h̄α∂2φ

)
−A1

(
(∂φ)3

3
+
√
h̄β∂2φ∂φ+ h̄γ∂3φ

)
+ · · · , (2.51)

where α, β, γ · · · are the renormalization constants that we shall find from

the requirement of anomaly cancellation.
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The modifications of the action resulting from the renormalization of the

currents vi lead to a modification of the transformation rule of the matter

field. The transformation rules of the scalar field can be obtained by taking its

operator-product expansion with the currents [8, 67]. Using the propagator

for the matter field φ(z)φ(w) = log(z − w) and the renormalized currents

(i.e. the terms coupling to the gauge fields in (2.51)), we can obtain the

renormalized transformation rules of the scalar field as follows:

δφ(w) =
∮ dz

2πi

〈
c0(z)

(
(∂φ)2

2
+
√
h̄α∂2φ

)
, φ(w)

〉
+
〈
c1(z)

(
(∂φ)3

3
+
√
h̄β∂2φ∂φ+ h̄∂3φ

)
, φ(w)

〉
,

=
(
c0∂φ−

√
h̄α∂c0

)
+
(
c1(∂φ)2 −

√
h̄β∂c1∂φ+ h̄γ∂2c1

)
,

(2.52)

where the operators inside 〈〉 undergo a short distance expansion.

Next, we shall derive the renormalization constants α, γ and β from the

requirement of anomaly cancellation. Consider the cancellation of the term

j = l = 0 in the expression for the anomaly (2.44). This term corresponds

to the spin-2 universal anomaly and is given by

Ac0A0 =
1

4π

∫
c0∂

3A0. (2.53)

This is of the order of h̄ and can be represented by the following Feynman

diagram:6

Figure 2.1: The w∞ gravity anomaly at the Virasoro level.

6Although we are not showing the factors of h̄ explicitly, these factors are present and
can be used as loop-counting parameters. The ith-loop anomaly is of order h̄i.
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This anomaly can be cancelled by terms arising from the following vari-

ation:

δ1/2S1/2 + δ0S1 + δ1S0, (2.54)

where Si is the h̄i part of the action Sren
0 (2.51) and δi is the term of order

h̄i in the variation of the scalar field (2.52). The only term in the above

variation that can cancel against (2.44) is

δ1/2S1/2 = −α2
∫
A0∂

3c0. (2.55)

The requirement of anomaly cancellation results in the following relationship

for the parameter α:

α2 =
1

4
⇒ α = ±1

2
. (2.56)

To find the renormalization constant γ in (2.51), we consider the cancel-

lation of the terms l = 1 and j = 0 in the expression for the anomaly (2.44).

This term is given by

AA0φc1 =
h̄

6π

∫
c1∂φ∂

3A0. (2.57)

The terms containing c1 , A0 and φ that arise in the variation (2.54) are given

by

−A0γ∂φ∂
3k1 − 2γk1∂A0∂

3φ+ γ∂3φ∂k1A0. (2.58)

The cancellation of the above expression against (2.44) is only achieved if

γ = 1/12.

Similarly, by considering the cancellation of the terms l = 0 and j = 1

in the expression (2.44), we find that the renormalization constant β has to

assume the values ±1/2.

Also the modification

δ0A0 =
h̄

20
(2∂3A1 − 3∂2A1∂c1 + 3∂A1∂

2c1 − 2A1∂
3c1), (2.59)
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together with the addition of the term

h̄

π
A2

(
1

5
∂φ∂3φ− 1

20
(∂2φ)2

)
, (2.60)

to the action (2.51) are needed in order to cancel the term l = j = 1 in the

expression for the anomaly (2.44).

The fact that the transformation rules of the gauge fields must also be

modified in order to cancel the anomalies has an important consequence

for the anomalies themselves. The modification of the gauge transforma-

tion means that the Wess-Zumino consistency condition is modified. As a

result, the expression for the anomaly, prior to renormalization, might no

longer be consistent. The anomaly itself must therefore be modified to meet

the requirements of the modified consistency condition. That is to say, the

renormalization of the gauge-field transformation rules, for the purpose of

anomaly cancellation, can lead to the modification of the anomaly itself.

This point will be demonstrated in the next chapter.

We now continue with our renormalization program. In order to discuss

the effect of the current renormalizations on the structure of the algebra, we

first write them down explicitly:

V 0 =
1

2
(∂φ)2 +

√
h̄

2
∂2φ,

V 1 =
1

3
(∂φ)3 +

h̄

2
∂φ∂2φ+

h̄

12
∂3φ,

V 2 =
1

4
(∂φ)4 + α(∂φ)2∂2φ+− 1

20
(∂2φ)2 +

1

5
∂φ∂3φ+

1

60
∂4φ.

(2.61)

By taking the operator-product expansion of these currents, one can eas-

ily establish that they do not satisfy the operator-product form of the w∞

algebra, which is

vi(z)vj(w) ∼
(

(j + 1)∂z − (i+ 1)∂w

)
vi+j(w)

z − w
. (2.62)
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Instead, the currents satisfy the following relations:

V 0(z)V 0(w) =
∂V 0

z − w
+

2V 0

(z − w)2
− 1

(z − w)4
,

V 0(z)V 1(w) =
∂V 1

z − w
+

3V 1

(z − w)2
,

V 1(z)V 2(w) =
∂V 2

z − w
+

4V 2

(z − w)2
+

12

5

V 0

(z − w)4
,

V 1(z)V 1(w) =
2∂V 2

z − w
+

4V 2

(z − w)2
+

1

10

(
∂3V 0

(z − w)2
+ 15

∂V 0

(z − w)3

+
9

2

∂2V 0

(z − w)2
+ 30

V 0

(z − w)4

)
− 1

(z − w)6
. (2.63)

The above operator-product expansions strongly suggest that the renormal-

ized currents may form a linear algebra. However, it seems that for obtaining

a closed algebra one needs to introduce higher- and higher-spin currents. In

fact, the above operator-product expansions resemble the operator-product

expansions generated by the W1+∞ currents [8, 57].

The currents of W1+∞ in the basis corresponding to an arbitrary value of

the parameter α are given by

V i =
i+1∑
j=0

aj(i, α)∂jψ̄∂i+1−jψ, (2.64)

where the coefficients aj(i, α) are as follows:

aj(i, α) =

(
i+ 1
j

)
(i+ 2α + 2− j)j(2α− i− 1)i+1−j

(i+ 2)i+1

. (2.65)

Here, (a)n = (a + n− 1)!/[(a− 1)!]. The real scalar field φ can be obtained

by the following bosonization of the complex fermion field ψ:

ψ =: eφ : ψ̄ =: e−φ :, (2.66)

where :: denotes normal ordering with respect to the modes of φ. In the

bosonized form, the W1+∞ currents for the first few spins are given as follows:

V −1 = ∂φ,
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V 0 =
1

2
(∂φ)2 +

√
h̄α∂2φ,

V 1 =
1

3
(∂φ)3 +

√
h̄α∂φ∂2φ+

h̄

3
α2∂3φ,

V 2 =
1

4
(∂φ)4 +

√
h̄α(∂φ)2∂2φ+

h̄

20
(8α2 − 3)(∂2φ)2

+
h̄

10
(4α2 + 1)∂φ∂3φ− h̄2α

60
(4α2 + 1)∂4φ. (2.67)

Therefore, the renormalized w∞ currents (2.61) correspond to the above

bosonized form of the W1+∞ currents with the spin-1 current truncated and

with the parameter α set at ±1
2
. However, the positive value of α is the only

value for which one can truncate the spin-1 current V −1 (without truncating

others) from the W1+∞ algebra. The truncated currents satisfy the W∞

algebra. Since all the higher spin currents of w∞ are renormalized in the

same way as the spin-2, spin-3 and spin-4 currents, we can extrapolate our

result and conclude that the renormalized w∞ currents are not just a series

of unrelated currents but they indeed form a realization of the W∞ algebra

[8]. The W∞ algebra and its gauge theory, W∞ gravity, are the subjects of

the next chapter.

40



Chapter 3

Path-integral quantization of
chiral W∞ gravity

In the last chapter, we derived the anomalies of w∞ gravity using the

Fujikawa method. We also showed that the transformation rules of the

scalar and gauge fields can be renormalized in order to eliminate the matter-

dependent anomalies by the introduction of finite local counter terms. This

was equivalent to adjusting the currents vi[(∂φ)i+2/(i + 2)] by the addition

of h̄-dependent terms involving fewer scalar fields but the same number of

derivatives. The modifications of the currents implied that they did not gen-

erate the original w∞ algebra, but instead generated the W∞ algebra. In this

chapter, we consider the anomalies of W∞ gravity. We start with the gauge-

invariant W∞ action. We then fix the gauge by choosing a background-field

gauge. As discussed in the last chapter, this leads to the replacement of

the gauge-invariant action by a BRST-invariant action. Starting from this

action, we write down the partition function and derive the anomalies of the

W∞ gravity.

In the derivation of the anomalies, once again we employ the Fujikawa

method. Since all the matter-dependent anomalies are cancelled prior to

the formulation of W∞ gravity, the only anomalies left in this theory are
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universal. We recall that these are the anomalies with external gauge-field

lines only.

Universal anomalies occur in both the matter and the ghost sectors. In the

matter sector, the only universal anomaly that arises from the non-invariance

of the measure of the path integral is the one-loop Virasoro (spin-2) anomaly.

In order to test that the theory is genuinely free from all higher-loop anom-

alies, we use the Wess-Zumino consistency condition [3, 86]. The Virasoro

anomaly, like all other consistent anomalies, is constrained by this condition.

We find, however, that the Virasoro anomaly is not consistent in this theory

unless it is extended to include all the higher-spin anomalies. In this way, we

derive the higher-loop anomalies by the implementation of the Wess-Zumino

consistency condition on the one-loop anomaly.

In the ghost sector, although anomalies occur at all orders in h̄, they

only arise from single-loop diagrams. This explains why they can be derived

using the Fujikawa method. In the ghost sector, one also encounters, in prin-

ciple, off-diagonal as well as diagonal anomalies.1 Since all the matter-sector

anomalies are diagonal, there is no way of cancelling the off-diagonal ghost-

sector anomalies. These cannot be renormalized either, since the ghost action

is only bilinear in ghosts. However, the absence of off-diagonal anomalies in

the matter-sector is a requirement of the Wess-Zumino consistency condition.

That is to say, off-diagonal anomalies are not allowed by this condition.

As in the case of w∞ gravity, the ghost-sector anomalies of W∞ gravity are

multiplied by divergent coefficients. The off-diagonal ghost-sector anomalies

would be absent if one were to choose a proper zeta-function regularization

scheme that puts their divergent coefficients to zero. By using the Wess-

Zumino consistency condition, the zeta-function regularization scheme used

already in the spin-2 sector can be extended to all higher spins. In the spin-2

sector, the regularization scheme was chosen such that the spin symmetry in

1By off-diagonal anomalies we mean those of the form ci∂
2j+3A2j−i for j 6= i.
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the ghost and antighost system was preserved (see Section 2.3). As one goes

to higher spins, it becomes more difficult to identify a scheme of summation

that respects this symmetry. However, once we have established the regular-

ization method in the spin-2 sector, we can extend it to all the higher spins

by the Wess-Zumino consistency condition. This is because all the higher-

loop anomalies can be derived from the spin-2 anomaly. This method of

zeta-function regularization eliminates all the off-diagonal anomalies as well

as ensuring the cancellation of all the diagonal parts.

3.1 BRST-invariant W∞ gravity action

The action for the W∞ gravity is given by [8]

S =
1

π

∫ (
1

2
∂φ∂̄φ−

∞∑
i=0

AiV
i
)
d2z, (3.1)

where ∂ = ∂
∂z

= ∂− and ∂̄ = ∂
∂z̄

= ∂+ (adopting Euclidean signature on the

world sheet) and V i are the renormalized spin (i + 2) currents (2.61) of the

form2

V i =
(∂φ)i+2

i+ 2
+

1

2
∂2φ(∂φ)i + · · · (3.2)

These currents satisfy the operator-product expansion form of the W∞ al-

gebra and generate the following renormalized symmetry transformations of

the φ field:

V i(z)V j(w) = −
∞∑
l=0

f ij2l (∂z, ∂w)
V i+j−2l(w)

z − w
− 4−2iCiδ

ij∂2i+3
z

1

z − w
,

δφ =
∞∑
l=0

Kl(∂φ)l+1 − 1

2
∂K0 + · · · , (3.3)

where Ki are the parameters of the gauge transformations, Ci is given by

Ci =
22i−3i!(i+ 2)!c

(2i+ 1)!!(2i+ 3)!!
, (3.4)

2From now on, we shall set h̄ equal to 1.
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and c is the central charge of the algebra. The f ij2l are the structure constants:3

f ij2l (m,n) =
4−2l φij2l

2(2l + 1)!
M ij

2l (m,n) . (3.5)

In this expression, φij2l is given in terms of the Saalschutzian hypergeometric

function 4F3 [65]:

φij2l = 4F3

 −1
2

3
2

−l − 1
2

−l
; 1

−i− 1
2
−j − 1

2
i+ j − 2l + 5

2


=

l∑
k=0

(−1
2

)k(
3
2
)k(−l − 1

2
)k(−l)k

k!(−i− 1
2
)k(−j − 1

2
)k(i+ j − 2l + 5

2
)k
, (3.6)

where (a)n = Γ(a+n)/Γ(a). Here, M is a polynomial of degree 2l+ 1 in the

variables m and n :

M ij
2l (m,n) =

2l+1∑
k=0

Mij
2l,km

2l+1−k nk , (3.7)

where

Mij
2l,k = (−)k

(
2l + 1
k

)
(2i− 2l + 2)k[2j + 2− k]2l+1−k , (3.8)

and [a]n = Γ(a+ 1)/Γ(a− n+ 1). The notation f ij2l (∂z, ∂w) in (3.3) indicates

that the m and n arguments in f ij2l (m,n) are to be replaced by partial deriv-

atives acting either on functions of z only, or on functions of w only. The

transformation rules of the gauge fields are derived by the renormalization

of the w∞ gauge transformations. However, since the currents transform un-

der the adjoint representation of the algebra, it follows that the gauge fields

must transform under the coadjoint action [7]. Therefore, we can derive a

complete form of the gauge transformation by requiring that the variation

3The factors 4−2i and 4−2l in equations (3.3) and (3.4) correct a scaling error in [8].
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of the action cancels the matter-dependent anomalies. The variation of the

action is given by

δS =
1

π

∫
δ(

1

2
∂φ∂̄φ)− δAiV i − AiδV i. (3.9)

The transformation rules of the currents V i are obtained by using the operator-

product expansion (3.3):

δV j(w) =
∮ dz

2πi
Kn(z)V n(z)V j(w)

= −
∮ dz

2πi

∞∑
l=0

2l−j∑
n=0

fnjn−j+2l(∂z, ∂w)
V n+j−2l(w)

z − w
. (3.10)

In writing the variations of the currents, we have used terms that involve mul-

tiple contractions. Only the single-contraction part of the operator-product

expansion of the currents is used in the variation of the action. The higher-

contraction terms give the matter-dependent anomalies. Therefore, the vari-

ation of the action plus the matter-dependent anomalies has the following

form:

∞∑
l=0

i+2l∑
j=0

∫
d2w

(
δAiV

i − f ji−j+2l
2l (∂A, ∂K)AjKi−j+2lV

i + δφ∂∂̄φ− ciAi∂2i+3Ki

)
.

(3.11)

Thus the cancellation of the matter-dependent anomalies requires that the

gauge fields transform as follows:

δAi = ∂̄Ki +
i+2l∑
j=0

∞∑
l=0

f ji−j+2l
2l (∂A, ∂K)AjKi−j+2l. (3.12)

We now perform the BRST quantization of this theory. The gauge-fixing

procedure is conveniently carried out by using a background gauge Ai = Abacki

which is imposed by a Lagrange multiplier πi in the action. The Faddeev-

Popov ghost term is obtained, as in the last chapter, by using the above
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gauge transformations. After fixing the gauge the action, the symmetries

and the partition function are replaced by their BRST counterparts:

SBRST = S − 1

π

∫ ∞∑
i=0

(
bi∂̄ci +

∞∑
l=0

i+2l∑
j=0

bif
ji−j+2l
2l (∂A, ∂c)Ajci−j+2l

−πi(Ai − Abacki )
)
,

δφ =
∞∑
l=0

cl(∂φ)l+1 − 1

2
∂c0 + · · · ,

δAi =
∞∑
l=0

i+2l∑
j=0

(
∂̄ci + f ji−j+2l

2l (∂A, ∂c)Ajci−j+2l

)
,

δci = −
∞∑
l=0

i+2l∑
j=0

1

2
f ji−j+2l

2l (∂cj , ∂ci−j+2l
)cjci−j+2l ,

δbi = πi ,

δπi = 0 ,

Z =
∫
DφDADbDc exp (SBRST ). (3.13)

The BRST symmetries of ci and bi follow from nilpotence of δAi and invari-

ance of the action, respectively.

3.2 The anomalies of W∞ gravity

Under the BRST symmetries, the partition function transforms as follows:

Z −→ Z ′ =
∫
JDφDADcDb exp (SBRST + δSBRST ), (3.14)

where

J = det
∞∑

n,k=0

∂l(φ+ δφ,An + δAn, cn + δcn, bn + δbn)

∂(φ,Ak, ck, bk)
(3.15)

and ∂l denotes left differentiation. The anomaly A is given by the logarithm

of the above Jacobian. Expressing the Jacobian as the standard exponential-
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trace-log, we obtain a formal expression for the transformed partition func-

tion:

Z ′ =
∫
DφDADcDb exp (A+ SBRST + δSBRST ). (3.16)

Since the Faddeev-Popov and the gauge-fixed action are invariant under the

BRST symmetries, the only non-invariant part of the BRST action comes

from the variation of the original part of the action δS. However, this varia-

tion, by construction, cancels the matter-dependent part of the anomaly A.

Let us now proceed to find the remaining anomalies of the W∞ gravity.

Using the BRST transformations (3.13), the explicit form of the anomaly

is

A = Tr
∞∑

n,l=0

i+2l∑
j=0

 N
l
φφ 0 Nφc
0 N jln

gg N jln
gc

0 0 N jln
cc

 δ2(z − w), (3.17)

where

N l
φφ = (l + 1)cl(∂φ)l∂ + · · · ,

N jln
cc = −N jln

gg = f jn−j+2l
2l (∂c, ∂δ)cj, (3.18)

and the expressions for N jln
φc and N jln

gc follow in exactly the same way.

Since N l
φφ cannot be written down explicitly as an infinite sum, we shall

initially consider only the classical terms (i.e. terms with no factor of h̄) in the

matter sector. This means that the matter-sector anomaly, that we will be

deriving from the measure, has exactly the same form as that we derived in

the last chapter. We do not need at this stage to consider one-loop diagrams

carrying higher powers of h̄ because these will need to be considered later

with the higher-loop anomalies.4

The trace operation in (3.17) includes integrations over z and w. As a

result, the expression (3.17) involves the product of a delta function and its

derivative. Therefore, this is an ill-defined object that requires regularization.

4In the later sections of this chapter, we shall derive the expression for the anomalies
to all orders from the Wess-Zumino consistency condition.
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As we have already shown in the last chapter, the Fujikawa regularization

scheme replaces the δ function in (3.17) by a regularized operator [10, 11]:

A = lim
M→∞

Tr
∞∑

n,l=0

n+2l∑
j=0

(
N jln e−H

jln/M2
)
, (3.19)

where N stands for the matrix in (3.17).

In Appendix A, we discuss a way of choosing the regulating operator H

such that the resulting expression for the anomaly satisfies the Wess-Zumino

consistency condition. We explain there how such consistent regulators arise

in the Pauli-Villars scheme. Using the result of Appendix A, we have the

operator Hφ acting on the field φ from ∂2S0/∂φ
2 :

Hj
φ = −∂∂̄ + ∂[(j + 1)Aj(∂φ)j∂] , (3.20)

where S0 is the part of S which is of zeroth order in h̄. Since Fujikawa

regularization is restricted to the one-loop anomalies, the Jacobian and the

regulators in the matter sector can initially be limited to contain terms of

zeroth order in h̄ only. The operator Hφ, containing a d’Alembertian (i.e.

the d’Alembert operator ∂̄∂), is Hermitian and positive semi-definite and is

acceptable as it stands. On the other hand, the ghost sector operator derived

from (∂2SBRST )/(∂bk∂cn), which is given by

D =

(
0 (D1)jln

(D†1)jln 0

)
(3.21)

with (D1)jln = −∂̄ − ∑∞
r=0 f

2(l+r)−jn
2r (∂A, ∂)A2(r+l)−j, is not positive semi-

definite. Consequently, one needs to use the square of D as the regulator in

the ghost/anti-ghost sector.5 Remembering that our present concern is with

a chiral gauging of W∞, we need from the regulators only the terms involving

5Hermitian conjugation and the inner product are defined by (Hψ,ϕ) = (ψ,H†ϕ) and
(ψ,ϕ) =

∫
ψ̄ϕ.
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A and not Ā. Making the corresponding truncation in D2, one obtains the

following expression for the Hermitian operator H:

H =


Hj
φ 0 0

0 (D1D
†
1)jln 0

0 0 (D†1D1)jln


|chiral

, (3.22)

where the subscript chiral means that only terms containing A, and not Ā,

contribute to H.

Because the operator H is diagonal, the calculation is simplified and the

anomaly A, given in (3.19), dissociates into its individual components in the

matter, ghost and gauge sectors :

A = Aφ +Ac +Ag , (3.23)

in which

Aφ = lim
M→∞

∞∑
l,j=0

Tr
(
N j
φφe
−Hl

φ/M
2
)
,

Ac = lim
M→∞

∞∑
l,n=0

n+2l∑
j=0

Tr
(
N jln
cc e

−(D†1D1)jln/M2
)
,

Ag = lim
M→∞

∞∑
l,n=0

n+2l∑
j=0

Tr
(
N jln
gg e

−(D1D
†
1)jln/M2

)
, (3.24)

and the traces are evaluated in the plane-wave basis. The expression for

the matter-sector anomaly Aφ is exactly the same as that we derived for w∞

gravity (2.32). This is because we have restricted ourselves to terms of zeroth

order in h̄. However, in the present case all the matter-dependent anomalies

cancel against the variations of the W∞ action (see Section 2.5), leaving us

with the spin-2 universal anomaly:

Auφ =
−1

6π

∫
dz c0∂

3A0 . (3.25)
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This anomaly results in part from the non-invariance of the measure and in

part from the following variation of the counter term:

δ 1
2
(L 1

2
)0 = −1

4
c0∂

3A0, (3.26)

where δ 1
2

is given in (2.52) and (L 1
2
)0 is the counter term at spin-2 level given

in expression (2.51).

Let us now concentrate on the derivation of Ac and Ag. The expression

for the Ac part of the ghost-sector anomaly is given by

Ac = lim
M→∞

∞∑
l,n=0

2l+1∑
s=0

n+2l∑
j=0

Tr
(
− f j,n−j+2l

2l (∂cj , ∂δ)cjδ(z − w)
)

(3.27)

= lim
M→∞

∞∑
l,n=0

2l+1∑
s=0

n+2l∑
j=0

Tr
(

Φj,n−j+2l
2l ∂2l+1−scj∂

se
−(D

†
1
D1)jln

M2

)
, (3.28)

where the Φs are the deformed structure constants of the W∞ algebra :

Φβγ
2α,λ =

4−2l

2(2α + 1)!
φβγ2αM

αβ
2α,λ . (3.29)

In the above expression, φβγ2α is the hypergeometric function 4F3 andM is the

coefficient of the polynomial part of the structure constant. These are given

in (3.6) and (3.8), respectively. Substituting for the regulator (D†1D1)jln in

(3.28) and writing the trace in plane-wave basis, we obtain

Ac =
∞∑

l,n=0

2r+1∑
s′=0

2l+1∑
s=0

2(r+l)∑
j=0

Tr

(
Φj,n−j+2l

2l,s ∂2l+1−scj

∫ d2k

4π2
e−kk̄/4M

2

(∂ +
ik̄

2
)s

× exp
−1

M2

{
− ∂∂̄ − (ik∂ + ik̄∂̄)

2

−
[
∂2r+2−s′A2(r+l)−j + ∂2r+1−s′A2(r+l)−j(∂ +

ik̄

2
)
]

×
[
Φ

2(r+l)−j,n
2r,s′ (∂ +

ik̄

2
)s
′
]})

. (3.30)
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After rescaling k(k̄)→ 2kM(2k̄M) and expanding the exponential, the only

terms that are of interest to us are those linear in the gauge field. Upon

truncating the terms nonlinear in the gauge fields, the above expression can

be written as

Ac =
∞∑

l,m,n=0

2r+1∑
s′=0

2l+1∑
s=0

2(r+l)∑
j=0

Tr
{

Φj,n−j+2l
2l,s

Φ
2(r+l)−j,n
2r,s′

M2(m+ 1)!
∂2l+1−scj

×
∫ M2d2k

π2
e−kk̄

[
(∂ + ik̄M)s(

ik∂

M
)m
]

×
[
∂2r+2−s′A2(r+l)−j(ik̄M)s

′
+ ∂2r+1−s′A2(r+l)−j(ik̄M)s

′+1
]}
.

(3.31)

The binomial expansion

(∂ + ik̄M)s =
s∑
q=0

s!

q!(s− q)!
∂q(ik̄M)s−q (3.32)

is then substituted back in (3.31). The finite terms in the expression (3.31)

are those for which the power of M is zero. The finite part of the expression

(3.31) is given by

Ac =
∞∑

l,m,n=0

2r+1∑
s′=0

2l+1∑
s=0

2(r+l)∑
j=0

Tr

(
(−1)m+s+1(s+ 1)!

π(m+ 1)(s+ s′ + 1− n)!(m− s′)!

)
×
(

Φj,n−j+2l
2l,s Φ

2(r+l)−j,n
2r,s′

∫
cj∂

2(r+l)+3A2(r+l)−j

)
. (3.33)

The other part of the ghost-sector anomaly Ag is obtained in exactly the

same way and is given by
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Ag =
2r+1∑
s′=0

2l+1∑
s=0

∞∑
l,n=0

2(r+l)∑
j=0

∞∑
m=0

Tr (3.34)

(
(−1)m+s(s)!

π(m+ 1)(s+ s′ + 1−m)!(m− s′ − 1)!

×Φj,n−j+2l
2l,s Φ

2(r+l)−j,n
2r,s′

∫
cj∂

2(r+l)+3A2(r+l)−j

)
. (3.35)

3.3 Zeta-function regularization of the ghost-

sector anomaly

In the last section we calculated the ghost-sector anomalies. The relevant

quantity Ac +Ag is given by6

Ac +Ag =
−1

π

∞∑
l,r,n=0

2l+n∑
j=0

2l+1∑
s=0

2r+1∑
s′=0

s+s′∑
m=s′

Tr

(
(−1)m+ss!

(m+ 1)(s+ s′ −m)!(m− s′)!
Φjn−j+2l

2l,s Φ
2(r+l)−jn
2r,s′

)
×
(
cj∂

2(r+l)+3A2(r+l)−j

)
. (3.36)

Since the ghost action is entirely determined by the structure constants of

the algebra, it is bilinear in the ghosts. So, although anomalies will occur

at all orders in h̄, they do not actually arise from multi-loop diagrams. This

explains why these anomalies can be derived directly from the measure of

the path integral.

For the spin-2 ghost-sector anomaly (j = r = l = 0), we obtain

(Ac +Ag)(2) =
1

12π

∫ ∞∑
n=0

[6(n+ 1)2 + 6(n+ 1) + 1]c0∂
3A0 . (3.37)

6This expression contains terms of all orders in h̄. There is a factor h̄l+r+1 in (3.36)
which we have set equal to 1.
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This is exactly the same as the expression in (2.35), which means that the

spin-2 anomaly is not affected by the renormalization of w∞ to W∞ gravity.

This is because the Virasoro part of the ghost action given in (3.13) does not

have to be modified and retains its form through renormalization.

The summation in (3.37) is strongly divergent. In the last chapter we

regularized the sum by using a zeta-function regularization scheme. We recall

that, the generalized Riemann zeta function is defined by [37]

ζ(s− l, α) ≡
∞∑
n=0

(n+ α)l−s α 6= 0,−1,−2 · · · , s > l + 1, (3.38)

and is calculated using Bernoulli’s polynomials (2.38). The formally diver-

gent sum
∑∞
n=0(n+α)l can be interpreted as the analytic continuation of the

zeta function to s = 0 [i.e. ζ(−l, α)]. The regularized value of the divergent

sum depends on the parameter α. Because the sum in (3.37) is not conver-

gent, there is an ambiguity in the grouping of terms before regularization.

This leads to different regularization schemes employing different α’s and

consequently resulting in different values for the divergent sum. This ambi-

guity was resolved in the last chapter for the spin-2 anomaly by requiring

that the result obtained by regularizing the sum in (3.37) respect the sym-

metry under the interchange n+ 1↔ −(n+ 2) existing in the (b, c) system.

Upon choosing a scheme of regularization that respects this symmetry, one

obtains the value 2 for the infinite sum in (3.37). This is the value of the

ghost central charge.

As one goes on to higher spins, the freedom in choosing a scheme of

regularization increases and the ambiguities multiply. However, the regular-

ization schemes for different spins must be consistent with one another since,

as we shall show later, all the higher-spin anomalies can be obtained from the

spin-2 anomaly using the Wess-Zumino consistency condition. An extension

of the spin-2 regularization scheme has been proposed in [71] where it was

shown to give consistent results at least up to the spin-18 level for the diago-
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nal anomalies (anomalies of the form ci∂
2i+3Ai). This scheme of summation

is discussed in detail in Appendix B.

One also needs, however, to consider the off-diagonal anomalies (anom-

alies of the form cj∂
2(r+l)+3A2(r+l)−j for r + l 6= j). These anomalies, as can

be seen from (3.36), are generically present in the theory. Since the anom-

alies in the matter sector are purely diagonal, the presence of off-diagonal

ghost-sector anomalies would be problematic. We shall show, however, that

these off-diagonal anomalies are not allowed by the Wess-Zumino consis-

tency condition. This provides a strong reason for choosing a certain scheme

of zeta-function regularization in preference to others.

3.4 Higher-loop anomalies from the Wess-

Zumino consistency conditions

In the preceding calculation, we derived the one-loop matter-sector anom-

aly (Auφ) from the measure. We shall now show that all the higher matter-

loop anomalies can be derived by the implementation of the Wess-Zumino

consistency condition on Auφ.

We start with the commutation relation

[δcm , δcn ]Ai = δc[m,n]
Ai + gm,n,jAj j 6= i , (3.39)

where c[m,n] = (n+ 1)cn∂cm− (m+ 1)cm∂cn. This relation is then applied to

the generator of one-particle-irreducible diagrams with external gauge fields

only (Γ) :

[δcm , δcn ]Γ = δc[m,n]
Γ +

∫
gm,n,jAj

δΓ

δAi
. (3.40)

This form of the Wess-Zumino consistency condition can be used for di-

agrams with external gauge-field lines only [3, 86]. In the BRST formalism,

the ghosts play the role of the parameters of the gauge transformations. As

a result, anomalies which were originally functionals of the gauge fields only
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now become functionals of the ghost fields as well. In the case of W∞ gravity,

where the gauge-field transformations are linear, the BRST transformations

are obtained directly from the gauge transformations but with a substitu-

tion of ghosts for the original parameters. Consequently, the original Wess-

Zumino commutator form of the consistency condition can be used, modulo

the treatment of the ghosts as gauge parameters. It should be noted that

this simplified treatment of the consistency conditions is not always possi-

ble. In more complicated theories like W3 gravity the BRST transformations

cannot always simply be rewritten as gauge transformations with ghosts re-

placing the original parameters (see Appendix C). In these circumstances,

an anti-bracket form of the Wess-Zumino consistency condition has to be

developed from the Ward identities and used for analyzing the anomalies.7

In W∞ gravity, on the other hand, the BRST transformations of the gauge

fields involve terms at most linear in the gauge and ghost fields. As a result,

the anti-bracket form of the Wess-Zumino consistency condition reduces to

the commutator form (3.40) of the condition by virtue of the linearity of the

W∞ algebra.

Let us now proceed with our calculations, keeping in mind the limitations

imposed by the above form of the Wess-Zumino consistency conditions. The

second term in (3.40) is a non-local expression. All the non-local anomalies

should cancel independently of the local ones. For this reason, we shall not

consider them in our search for the local universal anomalies. Insertion of

the spin-2 universal anomaly Auφ (3.25) into (3.40) gives

1

6π

∫
∂3c0f

2l−m,m
2l (∂A, ∂c)A2l−mcm − δ0

∫
cmΛcm =∫

(c0∂cm − (m+ 1)cm∂c0)Λcm , (3.41)

7The anti-bracket form of the consistency condition for W∞ gravity is presented in
Chapter 5.
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where we have used the notation

δαΓ = Aα =
∫
αΛα . (3.42)

Rearranging the expression (3.41) and writing out the structure constant

explicitly, we obtain

1

6π

∫
∂3c0f

2l−mm
2l (∂A, ∂c)A2l−mcm =

∫
cm(δc0−(m+2)∂c0−c0∂)Λcm . (3.43)

On the basis of dimensional analysis, we can see that Λcm must be of the

form

Λcm = αl,m∂
2l+3A2l−m , (3.44)

where αl,m is a coefficient to be found. To derive the form of αl,m, this

expression is inserted into the consistency condition (3.41) giving

−1

12

∫ Φ2l−m,m
2l

(2l + 1)!
c0∂

3(∂2l+1−sA2l−m∂
scm) =(

− αl,m∂A2l−m∂
2l+3cm − (2l −m+ 1)αl,m∂

2l+4cm∂A2l−m

+(m+ 2)αl,m∂cm∂
2l+3A2l−m + (m+ 2)αl,mcm∂

2l+4A2l−m

−αl,mcm∂2l+4A2l−m

)
co. (3.45)

By equating different powers of A on both sides of (3.45), one can see that

there is no consistent value for α, apart from zero, if m 6= l. That is to say,

off-diagonal anomalies are not allowed by the consistency condition. Since

the consistency condition has exactly the same form in the ghost sector, off-

diagonal anomalies are not allowed in the ghost sector either. As a result, a

proper zeta-function regularization is the one that not only gives the right

value for the central charge but also puts the coefficients of all off-diagonal

anomalies in the ghost sector equal to zero. It is not easy to find a scheme

that works for all spins. As explained earlier, the regularization ambiguities

multiply as we go to higher orders and a generic zeta-function regulariza-

tion will not lead to cancellation of all the off-diagonal anomalies. However,
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appropriately chosen schemes that give cancellation of the off-diagonal anom-

alies do exist; an example of such a scheme is given in [61, 70, 71]. Thus,

our Wess-Zumino consistency condition considerations provide a stringent

requirement on the summation scheme used to combine the contributions

from different spin sectors to the anomalies. This consistency condition is

important because the sum of the contributions from the different spin levels

is otherwise ambiguous.

The diagonal part of anomalies has the following coefficients

αm,m =
−Φmm

2m,0

12π(2m+ 1)!(m+ 1)
, (3.46)

where

Φmm
2m,0 = −(2m+ 2)! 3F2

 −
1
2

3
2

−m
; 1

−m− 1
2

5
2

 . (3.47)

[In writing the above, we have used the definition of Φβ,γ
2α from (3.29).] Be-

cause of the simple relationship between the indices on Φ, the hypergeometric

function 4F3 appearing in the definition of Φmm
2m,0 is reducible to the hyperge-

ometric function 2F1 [65, 78]:

4F3

 −1
2

3
2

−m −m− 1
2

; 1
−m− 1

2
−m− 1

2
5
2

 =
(3)m
(5

2
)m

2F1

 −
1
2

−m
; 1

−m− 1
2

 ,
(3.48)

where we have used the following transformation rule for the hypergeometric

functions:

3F2

 a b −n
; 1

c d

 =
(d− a)n

(d)n
3F2

 a c− b −n
; 1

c 1 + a− d− n

 .
(3.49)

The function 2F1 , on the other hand, can be calculated using Gauss’ law for
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hypergeometric functions:

2F1

 a b
; 1

c

 =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (3.50)

After some manipulations, we obtain the final answer for αm,m :

αm,m = −22m−2

π

m!(m+ 2)!

(2m+ 1)!!(2m+ 3)!!
. (3.51)

Note that this is exactly the same as the central charge Cm of the algebra

given in (3.4). Consequently the final local matter anomalies to all loop

orders are given by:

Au
φ =

∫ ∞∑
m=0

αm,mcm∂
2m+3Am . (3.52)

We can check order-by-order that Au
φ cancels against the regularized anom-

alies in the ghost sector (Ac +Ag). Since the matter and ghost sector anom-

alies cancel at the Virasoro level, we can conclude that anomaly cancellation

is achieved to all loop orders. This is because all the higher-loop anom-

alies, in both sectors, can be derived by using the Wess-Zumino consistency

condition.
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Chapter 4

Anomalies from the BRST
charge

In the preceding chapters, we considered the anomalies in the context of

path-integral quantization. We showed that non-invariance of the measure of

the path integral under the symmetries of the action can lead to anomalies.

In this chapter, we discuss the anomalies from a different point of view.

Instead of the partition function, we take the BRST charge as our basic

quantity. This charge is derived by using the Noether theorem. This theorem

associates a conservation law with any symmetry of the action. The BRST

charge is the generator of the BRST transformations 1 and is classically nilpo-

tent. The nilpotence of the BRST charge at the classical level means that a

single Wick contraction of the charge with itself vanishes. However, at the

full quantum level, one takes multiple as well as single Wick contractions of

the BRST charge and consequently the charge may fail to be nilpotent. The

failure of nilpotence of the BRST charge at the full quantum level is repre-

sented by terms which involve various powers of h̄. These terms represent

the anomalies.

1Later in this chapter, we shall find that the W∞ BRST charge, in the conformal
gauge, does not actually generate the symmetries of the gauge fields. The reason behind
this problem and its solution will be discussed in the next chapter.
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The expression for the anomaly obtained from the BRST charge is dif-

ferent from that obtained via path-integral quantization. Although both

expressions represent the same quantity (i.e. the anomaly), they appear to

be unrelated. To bridge this gap, we propose a relationship that connects the

two forms of the anomalies [59]. We shall see that the path-integral anomaly

A can be obtained by application of the anomalous operator Q2, calculated

using operator-products, to the gauge fermion. The gauge fermion is defined

by the BRST-trivial terms in the action (i.e. those terms which can be writ-

ten as Qψ). Although, there is still no general proof for the validity of this

relationship, it has been explicitly derived in various theories. Our results

also confirm the validity of this relationship for the theory of W∞ gravity.

4.1 The anomalies of W∞ gravity from the

BRST charge

The BRST charge can be derived in the same manner as for any Noether

charge [12]. The Noether charge is defined as:

Q =
δ

δ(∂̄λ)
(L+ δL), (4.1)

where, for the BRST symmetries, λ is the parameter of the BRST trans-

formations (3.13), L is the BRST Lagrangian given in (3.13) and δL is its

variation with respect to the BRST transformations. Using the BRST La-

grangian and symmetries from (3.13), we obtain

Q =
∫ δ

δ(∂̄λ)

∞∑
l=0

i+2l∑
j=0[

− λcl(∂φ)l+1∂∂̄φ− ∂̄(λci)V
i − bi∂̄δci − δλπi∂̄ci

+πi∂̄(λci)− bif j,i−j+2l
2l (∂cj , ∂ci−j+2l

)∂̄(λcj)ci−j+2l

]
,

(4.2)
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where we have neglected terms that do not contain ∂̄. Note that the BRST

charge is obtained by first ensuring the invariance of the action under global

symmetries (i.e. under a constant λ) and then by making the parameter a

local function of time (here z̄). Proceeding in this way, we obtain

Q =
∞∑
i,l=0

2l−i∑
j=0

∫ (
ciVi −

1

2
f ij2l (∂cj , ∂ci)cicjbi+j−2l

)
. (4.3)

Before discussing the structure of the anomalies, let us mention that,

contrary to expectation, the above BRST charge is not in fact the generator of

the full BRST transformations (3.13). It fails to generate the transformations

of the gauge fields. This is because the BRST charge contains nothing with

non-vanishing operator product with the gauge fields.

We shall continue with our derivation of the anomalies, bearing the above

difficulty in mind. We recall that anomalies appear when the nilpotency of

the BRST charge cannot be maintained at the full quantum level (i.e. at the

level of multiple-contractions in the operator-product expansion). Interpret-

ing the BRST charge Q (4.3) as a normal-ordered quantum operator, one

may evaluate Q2 by standard operator-product expansion techniques. We

can Write (4.3) as the integral of a normal-ordered operator current,

Q =
∮ dz

2πi
JB(z), (4.4)

where this integral is now evaluated over a closed loop around the origin and,

in order to recover equivalence with the standard mode-expansion result,

one should collect the simple poles in the above expression using Cauchy’s

theorem; hence the factor of (2πi)−1 in the measure [37]. Calculating Q2

using standard operator-product rules, one obtains
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Q2 =
∮ dz

2πi
〈JBJB〉1(z);

〈JBJB〉1(z) =
∞∑
i=0

Cici(z)∂2i+3ci(z)

+
∞∑

i,r,l=0

2(r+l)∑
j=0

2l+1∑
s=0

2r+1∑
s′=0

Φij
2lΦ

2(r+l)−j,i+j−2l
2r

(2l + 1)!(2r + 1)!

(−1)s+s
′+1s′!

(s+ s′ + 1)!

×c2(r+l)−j(z)∂2(r+l)+3ci(z). (4.5)

In evaluating (4.5), we have taken the operator product JB(z)JB(w), as usual,

and have extracted the residue of the first pole (z − w)−1 in the resulting

Laurent series; the outcome of this procedure is here denoted by 〈JBJB〉1. In

addition, we have used the operator-product expansion ci(z)bj(w) = δij(z −
w)−1. The Ci in (4.5) are the coefficients of the central terms (3.4) and the

Φij
2l are the deformed structure constants of the W∞ algebra (3.29).

The first term in the expression (4.5) corresponds to the matter-sector

anomalies and the second term to the ghost-sector anomalies. The matter-

sector anomalies, as can be seen from the above expression, are diagonal.

In other words, the constituent ghosts in the first term have the same spin.

On the other hand, the ghost-sector anomalies can be off-diagonal as well as

diagonal. The diagonal part of the ghost-sector anomalies cancel against the

matter-sector anomalies via a zeta-function regularization scheme similar to

that discussed in the preceding chapters.2 The same zeta-function regular-

ization scheme sets the coefficient of the off-diagonal anomalies to zero. This

is justified by the fact that the off-diagonal anomalies are not allowed by the

Wess-Zumino consistency condition (see Chapter 3, Section 3.4).

2Note that the coefficient of the ghost-sector anomalies derived from the BRST charge
and from the partition function are the same. The difference between the two expressions
for the anomalies comes solely from their functional dependence. As a result, the divergent
coefficients of the ghost-sector anomalies derived from the BRST charge can be regularized
by a method identical to that employed for regularizing the partition-function anomalies
in the preceding chapters.
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4.2 Relating the BRST-charge anomalies to

the path-integral anomalies

In Chapter 3, we derived the expression for the matter-sector anomalies

to all loop orders. This was given by

Aφ =
∞∑
m=0

αm,m
π

∫
d2wcm(w)∂2m+3Am(w), (4.6)

where the constants αm,m are the same as the central charges of the algebra

Ci (3.4). In this chapter, however, we have derived a different expression for

the matter-sector universal anomalies. This can be inferred from (4.5) and

has the form

Q2
φ =

∮ dz

2πi
〈JBJB〉φ1 ;

〈JBJB〉φ1 =
∞∑
i=0

Cici(z)∂2i+3ci(z). (4.7)

Our task in this section is to relate the above two expressions. In order to

find the connection between these two forms of the anomalies, let us recall

how each of them was derived.

The path-integral expression for the anomaly, although not obvious from

the Fujikawa method, is obtainable by taking the full contraction between

Ai(z)V i(z) and Aj(w)V j(w). We shall calculate this operator product explic-

itly. We recall that the anomalies are basically the variation of the effective

action with respect to the gauge fields (see Section 2.4). The effective action

for the gauge fields in the theory of W∞ gravity may be written as

Γ =
1

2

∞∑
i,j=0

∫ ∫
d2zd2w

〈
V i(z), V j(w)

〉
Ai(z)Aj(w). (4.8)

Since in W∞ gravity the matter-dependent anomalies are absent by construc-

tion, the only terms that we need consider in taking the operator-product

expansion of the currents V i are the universal anomalies. These are given by
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the central term of the W∞ algebra (3.4). Substitution of this term in the

above expression yields

Γ =
1

2

∞∑
i=0

∫ ∫
d2zd2wAj(w)Ai(z)δijCi

∂2i+3

∂̄
δ(z − w). (4.9)

The anomaly Aφ can be obtained by varying the effective action with respect

to the gauge fields, as follows:

Aφ =
∑
k

∫ δΓ

δAk(w)
δAk(w) = −

∞∑
i=0

Ci
π

∫
∂2i+3Aici d

2z. (4.10)

On the other hand, the BRST charge anomaly is derived by taking the full

contraction between ci(z)V i(z) and cj(w)V j(w). This is why the gauge fields

in the path-integral anomaly (4.10) are replaced by the ghosts in the BRST-

charge anomaly (4.7). In the light of this fact, the following relationship

between the two forms of the anomalies is proposed:

Aφ =
1

2π

∫ 〈
〈JBJB〉φ1 , biAi

〉
1
, (4.11)

This relation can be verified for the anomalies given in (4.7) and (4.10):

1

2π

∫
d2z

〈
〈JBJB〉φ1 , biAi

〉
1

=
∞∑

i,j=0

Ci
2π

∫
〈ci∂2i+3ci, bjAj〉1

=
∞∑
i=0

Ci
π

∫
d2zci(z)∂2i+3Ai(z)

= Aφ. (4.12)

To pinpoint the origin of the term Aibi we write the BRST action (3.13) in

the following form:

S =
1

π

∫
∂φ∂̄φ− AiV i − δ(biAi). (4.13)

The above form of the BRST action shows that the variation of biAi is the

BRST-trivial term in the action. The entity biAi is also known as the gauge

fermion.

64



Although we have only verified this relationship for the matter-sector

anomalies so far, it is easy to see that it also holds for the ghost-sector

anomalies. The path-integral ghost-sector anomalies have the same form

as their counterparts in the matter-sector.3 Unless this is true, there could

be no possibility of a cancellation of anomalies between the two sectors.

Similarly, the ghost-sector BRST-charge anomaly has the same form as its

counterpart in the matter-sector. Therefore, one can easily extrapolate the

result of the matter sector to the ghost-sector anomalies. The general form

of the expression relating the path-integral anomaly A to the BRST-algebra

anomaly [59] is

A =
1

2π

∫ 〈
〈JBJB〉1,Ψ

〉
1
, (4.14)

where Ψ is the gauge fermion.

In the next chapter, we shall discuss why the BRST charge has failed

to generate the transformation rules for the gauge fields. We shall then

obtain a BRST charge which generates the transformation rules of all the

fields. By formulating such a BRST charge, we shall also show that the

relation proposed above, relating the path-integral anomaly to the BRST-

charge anomaly, holds also under a more general gauge-fixing condition.

3We recall that the coefficients of the ghost-sector anomalies, after a zeta-function reg-
ularization, have opposite signs to those in the matter sector. This is obviously necessary
for the cancellation of the anomalies.
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Chapter 5

Derivative-gauge quantization
of W∞ gravity

In the last chapter, we discussed the anomalies from the point of view

of the violation of the classical BRST algebra. We showed how the loss of

nilpotence for the BRST charge Q at the quantum level (evaluated by tak-

ing a fully-contracted operator product Q2) yields the anomalies. We then

observed that the anomalous results obtained in this way did not have the

same form as those obtained from the partition function. We suggested and

confirmed by explicit calculations that the local functional expressing the

anomaly in the partition function is given by application of the anomalous

operator Q2 to the “gauge fermion Ψ” of our theory. However, in the course

of these discussions we encountered the following problem: the BRST charge

that we derived from the Noether theorem did not generate the transforma-

tion rules of the gauge fields. This was because the standard BRST charge

contains no operators whose products with the gauge fields are non-vanishing.

In this chapter, we discuss how an inappropriate choice of gauge-fixing

condition can lead to a BRST charge which consequently fails to generate

the transformation rules of the gauge fields.

Given any Lagrangian L(ϕα) whose action is invariant under a continuous
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symmetry

δL = ∂µK
µ, (5.1)

we can write the Noether charge Q as follows [12]:

Q =
∫

(παδϕ
α −K0), (5.2)

where πα are the momenta conjugate to the fields ϕα. In the generalized

conformal gauge (i.e. for Ai = Abacki ) the momenta conjugate to the gauge

fields vanish (i.e. πi = ∂L/∂(∂̄Ai) = 0 ). Consequently, in deriving the BRST

charge one loses the term containing πi and hence the BRST charge fails to

generate the transformation rules of the gauge fields.

To resolve the above difficulty, we shall instead impose derivative gauge

conditions. The resulting gauge-fixed action will be shown to be classically

invariant under a set of BRST transformations. These transformations can

be derived as canonical transformations from the associated BRST charge

which properly generates the transformations of all the fields, including the

gauge fields.

In the derivative gauge, the ghost action is second-order in time deriva-

tives. This action is replaced by our equivalent first-order form by introducing

momenta as auxiliary fields. To derive the anomalies from the first-order form

of the action one needs to introduce source terms for the BRST variations.

The anomalies then result from the violation of the BRST Ward identities

for the effective action Γ and are evaluated by considering anomalous one-

particle-irreducible diagrams. In contrast, the BRST-charge anomalies result

from the non-nilpotency of the BRST charge Q at the full quantum level, as

they did before.

In this new formulation of the BRST quantization procedure the expres-

sion proposed in the last chapter, (4.14), relating the two versions of the

anomalies, emerges in a natural way. We shall see that the local functional

expressing the anomaly in the BRST Ward identity is given by the operator
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product of the anomalous local operator Q2 with the gauge fermion of our

reformulated gauge-fixed theory.

5.1 Derivative gauge-fixing conditions

In this section, we shall discuss why some gauge-fixing conditions are

preferable to others. We shall consider different gauge-fixing conditions first

from the point of view of the boundry conditions and then from the point of

view of the constraints imposed on a theory.

We take up the well-known example of Maxwell’s electrodynamics to illus-

trate the various points concerning the gauge-fixing conditions. The action

for the Maxwell theory is

S = −
∫ 1

4
FµνF

µν , (5.3)

where the signature is (−1, 1, 1, 1) , Fµν = ∂µAν − ∂νAµ, Aµ is the gauge

field and µ = 0, i with i running from 1 to 3. The action can be put into its

Hamiltonian form by using the conjugate momenta πµ,

πµ =
δL

∂(∂0Aµ)
, (5.4)

namely π0 = 0 , πi = F0i = −Ei. The Hamiltonian form of the action for the

evolution from t0 to tf is

S =
∫
d3x

∫
dt
(
πµ∂0Aµ −

1

4
FijF

ij − 1

2
πiπ

i + A0∂iπ
i
)
. (5.5)

Under the gauge symmetries δAµ = ∂µλ and δπi = 0 , the above action

transforms as

δS =
∫
d3xλ(~x, t)∂iπ

i

∣∣∣∣tf
t0

. (5.6)

Thus the invariance of the action for the general field configuration at tf and

t0 requires that

λ(~x, t0) = λ(~x, tf ) = 0. (5.7)
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Now suppose that for our gauge-fixing condition we choose the temporal

gauge A0 = ε, then from this gauge we can reach the zero gauge A0 = 0 by

a gauge transformation of the form

ε = λ̇. (5.8)

This differential equation should be solved subject to the boundry conditions

(5.7). However, for a first-order differential equation (5.8), the imposition of

two boundry conditions on the parameter λ overdetermines the problem, thus

yielding no solution [33, 34, 81]. In other words, we cannot actually reach

the configuration A0 = ε by a gauge transformation. By contrast, in the

covariant gauge ∂µA
µ = 0, the differential equation for the transformation

parameter λ becomes of second order

λ̈ = ε, (5.9)

which permits the imposition of two boundry conditions and so allows us to

find a solution to move into the gauge A0 = ε.

The problem of choosing an acceptable gauge can also be discussed from

the point of view of the constraints of the system. Varying the Lagrange

multiplier A0 in the canonical form of the action (5.5), we obtain the following

equation of motion:

∇ · E = ∂iπi = 0. (5.10)

This is the Gauss law in electrodynamics. Had we set A0 = 0 before varying

the action, we would have lost the Gauss law as an equation of motion. We

can therefore define an acceptable gauge as one which can be imposed prior

to or after varying the action in order to obtain the classical equations of

motion [54]. Consequently, We need to choose a different gauge such as the

Lorentz gauge ∂µAµ = 0 as our gauge-fixing condition.
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5.2 W∞ gravity in the derivative gauge

Once again, we shall start from the gauge-invariant W∞ action prior to

fixing the gauge (3.1), but instead of imposing the conformal gauge, we com-

plete the gauge fixing by choosing the derivative gauge condition ∂̄Ai = 0.

The gauge-fixed action then becomes

S =
1

π

∫
d2z

{
1

2
∂φ∂̄φ+

∞∑
i=0

(
− AiV i + πi∂̄Ai

−bi∂̄
[
∂̄ci +

∞∑
l=0

i+2l∑
j=0

f ji−j+2l
2l (∂A, ∂c)Ajci−j+2l

])}
. (5.11)

As a result, the ghost action is now of second order in ∂̄ derivative. To be

able to use the canonical formalism, and also the operator-product-expansion

techniques, we put the ghost action in the first-order form. This is achieved

by introducing auxiliary fields as canonical momenta. From the action (5.11),

one can see that the fields ci and bi are no longer conjugate, so we need to

introduce conjugate momenta1

πci =
∂lL
∂(∂̄ci)

= −∂̄bi,

πbi =
∂lL
∂(∂̄bi)

= ∂̄ci + f ji−j+2l
2l (∂A, ∂c)Ajci−j+2l. (5.12)

We can write the second-order action (5.11) in first-order form as

S =
1

π

∞∑
i=0

∫ 1

2
∂φ∂̄φ− πi∂̄Ai − πbiπci − πci ∂̄ci − πbi ∂̄bi − Ai(V i + V i

gh),

(5.13)

where

V i
gh =

∞∑
l=0

i−2l∑
j=0

F ij−i+2l
2l (∂πc , ∂c)πcjcj−i+2l. (5.14)

1Note that we are treating the ∂̄ derivative as the “evolution” derivative in this chapter.

70



In the above expression, F ij
2l are the deformed structure constants of the W∞

algebra:

F ij
2l (m,n) =

4−2lφij2l
2(2l + 1)!

2l+1∑
k=0

Mji−j+2l
2l,k (−1)km2l+1−knk, (5.15)

where φij2l and Mij
2l,k are given in (3.6) and (3.8).

The action (5.13) is invariant under the following BRST transformations:

δφ = λ
∞∑
i=0

ci(∂φ)i+1 −
√
h̄

2
∂c0 + · · · ,

δAi = λπbi ,

δbi = λπi,

δπi = δπbi = 0,

δci = λ
∞∑
l=0

i+2l∑
j=0

−1

2
f j,i−j+2l

2l (∂cj , ∂ci−j+2l
)cjci−j+2l,

δπci = λ(V i + V i
gh), (5.16)

where λ is the transformation parameter. These transformations are all

nilpotent at the classical level and are generated by the BRST charge Q.

The BRST charge can be obtained in exactly the same way as we derived

the BRST charge in the last chapter (see Section 4.1). First we ensure the

invariance of the action (5.13) under a global BRST parameter λ and then

we allow λ to depend on z̄. The BRST charge is then obtained by collecting

the factors multiplying ∂̄λ in the expression for the variation of the action.

The resulting expression for the BRST charge is

Q =
∫ ∞∑

i=0

(
ci (V

i +
1

2
V i
gh) + πi πbi

)
. (5.17)

The following operator-product expansions:

ci(z)πcj(w) ∼ δij
z − w

,
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bi(z)πbj(w) ∼ δij
z − w

,

πi(z)Aj(w) ∼ δij
z − w

, (5.18)

which are derived from the path-integral generating functional related to the

action (5.13) can be used to verify that the BRST charge Q now correctly

generates the canonical transformations (5.16) of all fields, including the

gauge fields Ai.

The fact that the transformations (5.16) are canonical is one of the main

benefits of the reformulated BRST quantization procedure. Using the canon-

ical nature of the transformation, we can easily show that the action (5.13)

is left invariant. Rewriting the action (5.13) as

S =
1

π

∞∑
i=0

∫
d2z

(
− 1

2
∂̄φ ∂φ+ πi ∂̄Ai − πbi ∂̄bi − πci ∂̄ci − δ(Ai πci)

)
, (5.19)

we see that the Hamiltonian density H = δ(Ai πci) is BRST trivial, and

hence is invariant as a consequence of the nilpotence of the transformations

(5.16). The remaining terms are also invariant because terms of the form

πχ ∂̄χ are invariant up to a total time derivative under arbitrary canonical

transformations.2

Having a well-defined BRST formalism available, we now proceed to cal-

culate the anomalies first from the BRST charge (5.17) and then from the

BRST Ward identities.

5.3 Anomalies in the derivative gauge

With the aid of the operator-product-expansion techniques developed

in the last chapter, we can evaluate the anomalies arising from the non-

nilpotence of the BRST charge at the quantum level. Since the BRST charge

2Note that the matter-field kinetic term ∂̄φ∂φ is already in first-order form with respect
to the “evolution” ∂̄ derivatives; for this reason we have not introduced conjugate momenta
for the scalar field φ. One may easily verify that this term is also invariant.
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(5.17) does not contain the fields conjugate to πi and πbi , the last term in

(5.17) which was missing in the generalized conformal gauge (4.3) does not

contribute to the anomalies arising from Q2. Also, because in evaluating Q2

we are taking full contractions of all the fields, the expression for the BRST-

charge anomalies does not contain any conjugate momenta, (they are all

contracted). This implies that the BRST-charge anomalies in the derivative

gauge are identical to the BRST-charge anomalies in the conformal gauge

(4.3). Let us recall the form of the BRST-charge anomalies:

Q2 =
∮ dz

2πi
〈JBJB〉1(z);

〈JBJB〉1 =
∞∑
i=0

(
Cici(z)∂2i+3ci(z) + αici(z)∂2i+3ci(z)

)
,

(5.20)

where the first term is the matter-sector and the second term is the ghost-

sector anomaly. The coefficient of the ghost-sector anomaly α is equal to −Ci
(after zeta-function regularization). However, for the purpose of relating the

path-integral and the BRST-charge anomalies, and also for the testing of the

consistency of the anomalies (i.e. for seeing whether the anomalies satisfy the

Wess-Zumino consistency conditions) we shall consider the ghost and matter

sector anomalies separately prior to their cancelling against each other.

Next, we shall obtain an expression for the anomalous BRST Ward identi-

ties using a derivative gauge-fixing condition. The symmetries of the effective

action are manifested in the Ward identities. The non-validity of the Ward

identities under the symmetries of the classical action indicates the presence

of anomalies. This method of anomaly derivation is basically of the same na-

ture as the Fujikawa method. However, whereas in the Fujikawa scheme one

derives the full expression for the anomalies from the measure of the partition

function, in the Ward identity derivation of the anomalies one undertakes a

diagram-by-diagram study of the one-particle irreducible Feynman diagrams

is essential. Whether a theory is anomalous or not is independent of how
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the anomalies are calculated. Also, because in the Fujikawa method and the

Ward-identity methods of deriving anomalies the partition function is taken

as the basic quantity, the results one obtains should be identical irrespective

of the method used.

Before deriving the anomalousW∞ Ward identities, we shall give a general

review of the Ward-identity treatment of the anomalies [4, 41, 80]. In order

to calculate correlation functions and derive the BRST form of the Ward

identity, one has to introduce sources into the BRST-invariant action. The

BRST Lagrangian L is extended to include two kinds of sources which are

Jχi and Kχi for the fields χi and their variations δχi respectively [5]. The

extended Lagrangian is then written as:

Lext = L+ Jχiχ
i +Kχiδχ

i. (5.21)

The partition function is consequently given by [42]

Z[Jχi , Kχi ] =
∫
Dχe−

∫
Lext . (5.22)

The generating function W and the effective action functional Γ are defined

respectively as

W(Jχi ,Kχi )
= lnZ(Jχi , Kχi), (5.23)

and

Γ(χi, Kχi) =W(J iχ, K
i
χ)−

∫
d2zJχiχ

i. (5.24)

The anomalies then originate from the non-invariance of the partition func-

tion under the BRST symmetries of the action (see Section 2.2). Under these

symmetries, the partition function transforms as follows:

Z −→ Z ′ =
∫
Dχ exp (

∫
L+ Jχiχ

i +Kχiδχ
i +A+ Jχiδχ

i)

= Z +
δΓ

δχi
δΓ

δKχi
Z +AZ, (5.25)
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where A is the anomaly. The invariance of the partition function is only

achieved if
δΓ

δχi
δΓ

δKχi
+A = 0, (5.26)

The above is the well known Ward-identity expression for the anomalies.

Expanding the effective action and the anomaly loopwise in powers of h̄, we

have

Γ = Γ0 + h̄Γ1 + h̄2Γ2 + · · · ,

A = h̄A1 + h̄2A2 + · · · . (5.27)

Returning to our specific case of chiral W∞ gravity we may write the

extended Lagrangian density Lext as

Lext =
∞∑
i,l=0

i+2l∑
j=0

[
1

2
∂φ∂̄φ+ πi∂̄Ai − πbiπci − Ai(V i + V i

gh)

+Jφφ+ JAiAi + Jbibi + Jπbiπbi

+Kφ(ci(∂φ)i+1 −
√
h̄∂c0 + · · · ) +KAiπbi +KbiπAi

+Kci(−
1

2
f ji−j+2l

2l (∂cj , ∂ci−j+2l
)cjci−j+2l)

+Kπci
(V i + V i

gh)
]
. (5.28)

Consider the matter-sector effective action at the i+ 1-loop order:

Γi+1 =
1

2

∫
d2z

∫
d2w

〈
(Ai −Kπci

)(z)V i(z), (Aj −Kπcj
)(w)V j(w)

〉
=

Ci
2

∫
d2z(Ai(z)−Kπci

(z))
∂2i+3

∂̄
(Ai(z)−Kπci

(z)). (5.29)

The anomaly at the order i+ 1 is given by

Ai+1 =
δΓi+1

δKπci

δΓ0

δπci
+
δΓi+1

δAi

δΓ0

δKAi

= Ci

∫
ci∂

2i+3(Ai −Kπci
). (5.30)

In order to check the accuracy of the above expression for the anomaly,

we need to verify that it satisfies the Wess-Zumino consistency condition. For

75



checking the BRST Ward identities the antibracket form of the Wess-Zumino

consistency condition is more appropriate then the commutator form of this

condition (see Section 3.4). This is given by

(Γ, (Γ,Γ)) = 0. (5.31)

The above form of the consistency condition is a consequence of the Jacobi

identity for the antibracket (.,.), which for arbitrary functionals A and B is

defined as [40]

(A,B) =
δA

δχ

δB

δKχ

+
δA

δKχ

δB

δχ
. (5.32)

The invariance of the extended classical action under the BRST symmetries

can be expressed in the following antibracket form:

(Γ0,Γ0) = 0. (5.33)

The antibracket form of the Wess-Zumino consistency condition can be

tested for a given order of h̄ only if one has already verified it at all the lower

orders. This means that the consistency of the expression for the i + 1-loop

anomaly (5.30) cannot be tested without considering the various lower-order

combinations that contribute to this anomaly.

The lowest-spin anomaly in the W∞ gravity whose consistency we shall

test is the Virasoro anomaly. The effective action at the two-loop level is

given by

Γ1 = − 1

24

∫
(A0 −Kπc0

)
∂3

∂̄
(A0 −Kπc0

). (5.34)

The anomaly A1 can be obtained as follows:

A1 = Ac0A0 = (S0,Γ1) =
δS0

δK0

δΓ1

δA0

+
δS0

δπc0

δΓ1

δKπc0

+
δS1/2

δφ

δS1/2

δKφ

= − 1

12π

∫
c0∂

3(A0 −Kπ0). (5.35)
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The Wess-Zumino consistency condition for the order-h̄ anomaly Ah̄ is ob-

tained by taking an antibracket with S0

(S0,A1) = (S0, (S0,Γ1)) + (S0, (S1/2, S1/2)) (5.36)

and then using the Jacobi identity for the antibracket together with the

relations

(S0, S0) = 0,

(S0, S1/2) = 0. (5.37)

Thus, we obtain the Wess-Zumino consistency condition at order of h̄

(S0,A1) = 0. (5.38)

The anomaly A1 given in (5.35) does indeed satisfy the above Wess-Zumino

consistency condition. This is shown explicitly below:

(S0,A1) = −1

6

∫
(πb0−∂̄c0−c0∂A0 +∂c0A0 +c0∂Kπc0

−∂c0Kπc0
) = 0. (5.39)

Next we shall consider the consistency of two-loop anomalies. We recall

that at order h̄2, the off-diagonal anomalies contributed to the ghost-sector

anomalies (see Section 3.3). The two-loop off-diagonal anomaly is of the form

c0∂
5A2 + c2∂

5A0 (3.36). In Chapter 3 we used the commutator form of the

Wess-Zumino consistency condition to show that the off-diagonal anomalies

are not allowed and hence a zeta-function regularization scheme had to be

adopted that rendered the coefficient of the off-diagonal anomalies equal to

zero. In this section we shall use the antibracket form of the consistency

condition to show that the diagonal part of the two-loop anomaly is consis-

tent whereas the off-diagonal part of the anomaly violates the Wess-Zumino

consistency condition. The effective action at the two-loop level is given by

Γ2 = − 1

240π

∫
(A1 −Kπc1

)
∂5

∂̄
(A1 −Kπc1

)

+α
∫

(A0 −Kπc0
)
∂5

∂̄
(A2 −Kπc2

), (5.40)
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where α is the coefficient of the off-diagonal anomalies.3 The anomaly cor-

responding to the effective action (5.40) is given by

A2 = Ac1A1 +Ac0A2 +Ac2A0 , (5.41)

where

Ac1A1 =
δS0

πc1

δΓ2

δKπc1

+
δS0

δKA1

δΓ2

δA1

=
1

120π

∫
c1∂

5(A1 −Kπc1
), (5.42)

Ac0A2 +Ac2A0 =
δS0

πc0

δΓ2

δKπc0

+
δS0

δKA0

δΓ2

δA0

+
δS0

πc2

δΓ2

δKπc2

+
δS0

δKA2

δΓ2

δA2

= α
∫
c0∂

5(A2 −Kπc2
) + c2∂

5(A0 −Kπc0
). (5.43)

The Wess-Zumino consistency condition at the order h̄2 is obtained in a

similar manner to the order-h̄ Wess-Zumino consistency condition (5.38). At

this order the Wess-Zumino consistency condition also receives contributions

from the one-loop anomaly and is given by

(S0,A2) + (S1,A1) = 0, (5.44)

where S1 is the order-h̄ term in the action (5.13) and A1 is given by (5.35).

Substituting for the anomalies from (5.35) in the above expression (5.44),

we obtain the following Wess-Zumino consistency condition for the order-h̄2

W∞ gravity anomalies:

(S0,Ac1A1) + (S1,Ac0A0) + (S0,Ac0A2) + (S0,Ac2A0) = 0. (5.45)

3The explicit value of α, as mentioned in Chapters 2 and 3, depends on the method of
summation that one adopts in writing the infinite coefficient of the ghost-sector anomalies.
The explicit value of α is immaterial since we shall show that irrespective of the value α,
the off-diagonal anomalies violate the Wess-Zumino consistency condition.
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However, explicit calculations show that the above equation is not satisfied

unless the off-diagonal anomaly Ac0A2 +Ac2A0 is zero. The expression for the

first two brackets are given below:

(S0,AA1c1) + (S1,Ac0A0) =

−
{(

(πb1 − f
j,1−j
0 (∂A, ∂c)Ajc1−j − ∂̄c1 + f j,1−j0 (∂k, ∂c)Kπcj

c1−j

)(
1

120π
∂5c1

)
− 1

120π

(
− 1

2
f j,1−j0 (∂cj , ∂c1−j)cjc1−j

)(
∂5A1 − ∂5Kπc1

)
−
(

1

120π
πb1∂

5c1

)}
−

{(
πb0 − f

j2−j
2 (∂A, ∂c)Ajc2−j − ∂̄c0 + f j2−j2 (∂k, ∂cKπcj

c2−j

)(
1

6π
∂3c0

)
+

1

6π

(
1

2
f j2−j2 (∂cj , ∂c2−j)cjc2−j

)(
∂3A0 − ∂3Kπc0

)
+
(

1

6π
πb0∂

3c0

)}
. (5.46)

One can then show that the corresponding terms in the above first two brack-

ets cancel. That is to say, the contribution to the Wess-Zumino consistency

condition at order h̄2 from the one-loop anomaly Ac0A0 cancels the contri-

butions from the two-loop anomaly Ac1A1 . Similarly the term in the Wess-

Zumino consistency condition arising from the off-diagonal anomalies is:

(S0,A02) = α
∫ {(

− 1

2
f 00

0 (∂c, ∂c)c0c0∂
5(Kπc2

− A2)
)

+
(
− f j2−j0 (∂A, ∂c)Ajc2−j + f j2−j0 (∂K , ∂c)Kπcj

Kπcj
c2−j

)
∂5c0

+
(
− 1

2
f j2−j0 (∂c, ∂c)cjc2−j∂

5(Kπc0
− A0)

)
+

(
− f 00

0 (∂A, ∂c)A0c0 + f 00
0 (∂K , ∂c)Kπc0

Kπc0
c0

)
∂5c2

}
. (5.47)

The above term does not vanish and hence the off-diagonal anomalies are not

allowed by the Wess-Zumino consistency condition. Note that the diagonal

anomalies satisfy the Wess-Zumino consistency condition because there are

contributions from the one-loop anomaly to the Wess-Zumino consistency

condition at order h̄2. The coefficient of the one and the two-loop diagonal

anomalies are related (before using a zeta-function regularization scheme) in

79



such a way that the two together make a vanishing contribution to the Wess-

Zumino consistency condition. However, the two-loop off-diagonal anomaly

violates the consistency condition and unless the off-diagonal anomaly van-

ishes we do not have a consistent anomaly at order h̄2. The only way in

which the off-diagonal two-loop anomaly could vanish is for its coefficient α

to vanish. This can only be achieved if a proper zeta-function regularization

is adopted. A zeta-function regularization scheme must therefore be selected

that consistently regularizes the infinite coefficients of the diagonal anomalies

and gives a vanishing coefficient for the off-diagonal anomalies. An example

of such a scheme is discussed in Appendix B.

5.4 Relationship between the path-integral and

the BRST-charge anomalies

In the preceding section, we derived an expression for anomalous Ward

identities (5.30) and also an expression for the BRST-charge anomalies (5.20).

In the preceding chapter we proposed an expression, (4.14), relating these

two forms of the anomalies. Having derived the two forms of the anomalies

in the derivative gauge, we now check the validity of the relationship (4.14)

for these anomalies.

The Ward identity W∞ anomalies A [the full expression for the Ward

identity W∞ anomaly is given by summing over the index i in (5.30)] in

the derivative gauge can also be obtained by application of the operator Q2

(5.20) to the gauge fermion Ψ. The gauge fermion in the derivative gauge is

given by the BRST trivial terms in the action (5.28). This term can be easily

found by rewriting (5.28) in the same form as (5.19). Thus the Ward-identity

anomaly can be obtained as follows:

1

2π

∫ 〈
〈JBJB〉1,Ψ

〉
1

=
∞∑

i,j=0

∫ Ci
2π

〈
(ci∂

2i+3ci), (πcj(Aj −Kπcj
))
〉

1
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=
∞∑
i=0

∫ Ci
π
ci∂

2i+3(Ai −Kπci
)

= A. (5.48)

The fact that the relationship (4.14) is valid for both the conformal gauge

and the derivative gauge in the W∞ gravity, and has also been proved to be

true for other theories, strongly indicates that this relationship might be

independent of how one fixes the gauge.
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Chapter 6

Conclusion

In this thesis we have studied the anomalies of the theories of w∞ and

W∞ gravity in the context of path integral and BRST quantization. These

theories contain anomalous diagrams at all loop orders. This special feature

makes them particularly valuable for the study of anomalies. The main

results of the present study are as follows.

The Fujikawa method of anomaly derivation

The Fujikawa method provides a natural method of anomaly derivation

and is an alternative to the commonly-used Feynman diagram technique. In

this scheme, the full expression for the one-loop anomalies can be derived

from the measure of the path-integral without any need for a diagram-by-

diagram search for the anomalies. In the Fujikawa scheme, different ex-

pressions for the anomalies are obtained upon choosing different regularizing

operators. However, an appropriate choice of the regularizing operator can

lead to anomalies that satisfy the Wess-Zumino consistency condition auto-

matically. These operators arise in the Pauli-Villars regularization scheme

and can be used within the framework of the Fujikawa regularization method

to yield consistent anomalies. By using the Pauli-Villars regulators we have
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derived all the one-loop matter-sector anomalies as well as the ghost-sector

anomalies to all orders in h̄.

Higher-loop anomalies

The Wess-Zumino consistency condition has played a central role in this

thesis. Apart from restricting our choice of the Fujikawa regulators, the

Wess-Zumino consistency condition allows us to obtain an expression for the

higher-loop anomalies. The implication of this condition for W∞ and w∞

gravity anomalies is that they will be given by a polynomial whose first term

is the Virasoro anomaly. Therefore, the Virasoro anomaly on its own does

not satisfy the consistency condition in such theories and should be extended

to include higher-loop anomalies. Here, the higher-order anomalies have been

derived by requiring that the Virasoro anomaly satisfies the commutator form

of the Wess-Zumino consistency condition.

Absence of off-diagonal anomalies

In the ghost sector, the Wess-Zumino consistency condition also plays a

crucial role. The coefficients of the ghost-sector anomalies appear in the form

of divergent sums. These sums can be regularized using a zeta-function regu-

larization scheme. Ambiguities arise in the regularization procedure because

the ghost-sector divergent sums of coefficients can be written in different

ways, each of which yields a different result upon regularization. We have re-

moved this ambiguity by using the Wess-Zumino consistency condition. This

condition places a stringent requirement on the permissible methods of sum-

mation. More explicitly, it has been shown that of the two frequently used

methods of summation, the methods of refs. [89] and [71], the former fails

to comply with the Wess-Zumino consistency condition while the latter pro-

vides a vanishing coefficient for the off-diagonal anomalies and self-consistent
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coefficients for all the diagonal ones.

Anomalies from the BRST charge

The BRST charge is classically nilpotent. However, in going from the

classical to a quantum theory, the classical BRST algebra can be violated.

The loss of nilpotence of the BRST charge at the quantum level will then

lead to anomalies. A fully-contracted operator product of two BRST charges

yields a local but non-vanishing anomalous result. This expression has a

different form from that given by the anomalous Ward identities. Here,

the path-integral anomalies correspond to Feynman diagrams with exter-

nal gauge-field lines and hence the anomalous Ward identity is given by an

expression containing gauge fields. On the other hand, the BRST charge,

formed from the ghost and matter currents, contains no gauge fields. Conse-

quently, the anomalies derived by taking the operator product of two BRST

charges never include gauge fields.

Relationship between the path integral and the BRST anomalies

We have shown that the two forms of the anomalies can be related. The

Ward-identity anomaly can be obtained from the BRST-charge anomaly via

a construction involving the gauge fermion. The gauge fermion is extracted

from the BRST-trivial terms in the action and has the gauge field and the

field conjugate to the ghost as its basic constituents. We have seen that the

anomaly in the Ward identity is derived by application of the anomalous

operator given by the square of the BRST charge—calculated using operator

products—to the gauge fermion. Although, there is still no proof for the

general validity of this relationship, it has been verified in various theories

[59]. Our results also confirms the validity of this relationship for the theory

of W∞ gravity.
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The choice of gauge-fixing condition

The choice of gauge-fixing condition is of importance for all gauge theo-

ries. An acceptable gauge-fixing condition can be defined as one which can

be imposed prior to or after varying the action in order to obtain the clas-

sical equations of motion. Part of the information contained in a theory

can be lost if one imposes an inappropriate gauge-fixing condition on that

theory as this may amount to a truncation of the theory’s dynamical con-

tent. In the conformal gauge, the momenta conjugate to the gauge fields

vanish. Consequently, the BRST charge does not contain these momenta

and fails to generate the transformation rule of the gauge fields. To resolve

this problem, we have replaced the conformal gauge-fixing condition by a

derivative gauge-fixing condition. In the derivative gauge the BRST charge

generates the transformation rules of all fields including the gauge fields. In

this new gauge, we have also derived the Ward-identity anomalies and the

BRST-charge anomalies. In this gauge, too, the Ward identity anomaly can

be obtained by application of the anomalous operator given by square of the

BRST charge—calculated using operator products— to the gauge fermion.
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Appendix A

Pauli-Villars regularization

In this appendix, we shall discuss the Pauli-Villars scheme for the regu-

larization of one-loop diagrams. We shall also consider how this method can

be used to find consistent regulators in the Fujikawa scheme.

The Pauli-Villars method consists of introducing a field χ, with a large

mass M for each field φ that gives divergent loops. The added Pauli-Villars

fields give the same contributions to a loop as the original fields φ, but with

a minus sign. For finite mass M , all loops are thus regularized and the

final result may be obtained by taking the limit M → ∞. Furthermore, in

the Pauli-Villars regularization scheme the full measure including the original

fields φi and the Pauli-Villars fields χi is invariant as the pair of contributions

cancel identically [13, 14, 36, 39, 85].

In a path-integral framework, propagating field φ is supplemented with a

Pauli-Villars field χ. The coupling of χ to other fields is exactly the same as

the coupling of φ to other fields. There is also a Pauli-Villar mass term which

is the only source of the anomaly in the Pauli-Villars scheme. To demonstrate

this point we shall take a simple action as an example. Consider the action

S =
∫ 1

2
φiRijφ

j, (A.1)
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where Rij is the differential operator depending on the fields coupling to the

φ-loop. The Pauli-Villars action corresponding to (A.1) is:

Spv =
∫
Lp + LM , (A.2)

where LM , the Pauli-Villars mass term, and Lp are:

LM =
1

2
Mχiχi, (A.3)

Lp =
1

2
χiRijχ

j. (A.4)

Suppose the total action, (A.1) and (A.2), excluding the Pauli-Villars mass

term is invariant under the following symmetry transformations:

δφi = F i
jφ

j, (A.5)

δχi = F i
jχ

j, (A.6)

where F is the operator in the space of all fields (i.e. φ and the Pauli-Villars

fields χ).

The corresponding partition function is

Z =
∫
DφDχ exp−(S + SPV ). (A.7)

Under the symmetries (A.5) and (A.6), the measure of the path-integral is

invariant since the contribution to the Jacobian from the Pauli-Villars fields

cancel those from their partners φ. Therefore, the anomaly in this scheme

comes entirely from the mass term. Under the symmetry (A.6), the Pauli-

Villars mass term transforms as follows:

δLM = MχiF i
jχ

j. (A.8)

With the aid of the two-point function from (A.7), the anomaly Apv can be

written as

Apv = Tr
[ MF i

j

M +Rij

]
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= TrF
(

1

1 +R/M

)
∼ TrFe−R/M , (A.9)

where the trace operation includes integration over spacetime, and we have

dropped the indices for simplicity.

A.1 Consistency of the Pauli-Villars anomaly

The anomalies arising in the Pauli-Villars scheme necessarily satisfy the

consistency conditions. This is the reason why it is appropriate to use the

regulators arising in the Pauli-Villars scheme in the Fujikawa regularization.

In this section, we shall consider the simple example given in the preceding

section to demonstrate why the Pauli-Villars regularization leads to consis-

tent anomalies.

A consistent one-loop anomalyA, by definition, satisfies the Wess-Zumino

consistency condition,

(S0,A) = 0 (A.10)

(see Chapter 5). We shall show that the Pauli-Villars anomaly (A.9) can

be written as a BRST variation itself and that, as a consequence of the

nilpotence of the BRST variations, the Wess-Zumino consistency condition

(A.10) is satisfied. We start from the master equation

(S, S) = 0. (A.11)

Differentiating this equation twice, we arrive at

δ

δφi
δ

δφj
(S, S) = 2RF + δR = 0, (A.12)

which, in turn, leads to

F = −1

2
R−1δR. (A.13)
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Substitution of (A.13) in (A.9) results in

Apv = Tr
[
1

2
R−1δR

(
1

1−R/M

)]
= Tr

[
− 1

2
(R−1δR)

(
1 +

∑
n=1

(
R

M
)n
)]

= −1

2
Tr
[
R−1δR +

(R)n−1

Mn
δR
]

= δ
{
− 1

2
Tr
[
lnR +

∑ 1

n
(
R

M
)n
]}
. (A.14)

Because the Pauli-Villars anomaly can be written as a δ variation, its BRST

variation vanishes. We can therefore conclude that the Pauli-Villars reg-

ularization scheme satisfies the Wess-Zumino consistency condition at the

one-loop level.

Although we have demonstrated this point here by only considering a

simple example, the general proof of the consistency of the Pauli-Villars

regularization follows from a similar argument and involves the same type of

calculation [36, 85].

A.2 Relating Pauli-Villars regularization to

Fujikawa regularization

In the Fujikawa, scheme anomalies arise when the measure of the path in-

tegral is not invariant under the symmetries of the action. For the theory

represented by the action (A.1), the anomaly obtained from regularizing the

Jacobian of the transformation (A.5) is

Af = lim
M→∞

TrFe−H/M
2

. (A.15)

By comparing the Fujikawa anomaly (A.15) with the Pauli-Villars anomaly

(A.9), we can see that the operator H is R, i.e. is the operator in the kinetic

part of the action.
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It is now clear how to construct a regulator1 for the Fujikawa method from

the Pauli-Villars field Lagrangian. The regulator to be used is a function of

O/M where O is the operator in the kinetic part of the action, and M is

the mass of the Pauli-Villars field. Note that if this operator is not already

quadratic and Hermitian, then one frequently—but not always—takes the

function exp(O/M)2 as the regulator.

To summarize, in the Pauli-Villars regularization scheme the anomalies

do not arise from the measure. The Pauli-Villars fields χi are transformed

in such a way as to cancel the Jacobian arising from the measure of the

original fields φi. In this scheme the only source of an anomaly is the Pauli-

Villars mass term. In the Fujikawa scheme, no Pauli-Villars fields appear

and the only source of the anomaly is the measure. This contribution can be

computed in such a way as to obtain the same value for the anomaly as that

obtained from the Pauli-Villars mass term in the Pauli-Villars scheme. In

this way one ensures that the Fujikawa anomalies satisfy the Wess-Zumino

consistency condition.

In this section, we have chosen a simple example to illustrate the key

points concerning the Pauli-Villars scheme and its relationship with the Fu-

jikawa method. The generalization of the above ideas to more complicated

BRST actions is also simple and proceeds along the same lines as those dis-

cussed above. In the next section we shall consider a more complicated theory

by taking up the example of the w∞ gravity.

A.3 Choosing the regulator for the w∞-gravity

anomaly

In Chapter 2, we saw that the anomalies in w∞ gravity can be traced

back to the measure of the path integral. The ill-defined Jacobian arising

1In this thesis, we have used the word regulator to denote e−H/M
2

or any other function
of H/M2.
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from the measure can lead to consistent anomalies (i.e. those satisfying the

Wess-Zumino consistency conditions) only if it is regularized in an appro-

priate manner. In this appendix, we derive and discuss the regulators that

would lead to consistent w∞ anomalies. These regulators, as we have already

mentioned, arise in the context of the Pauli-Villars scheme.

The BRST action for w∞ is as follows (see Chapter 2):

S =
1

π

∫ 1

2
∂φ∂̄φ− Ai

(∂φ)i+2

i+ 2
+
∞∑
i=0

(
πi(Ai − Abacki )− bi∂̄ci

+
i∑

j=0

[
(j + 1)bi∂ci−jAj − (i− j + 1)bici−j∂Aj

])
. (A.16)

To exhibit the operators in the quadratic part of the action, we write (A.16)

in matrix form:

S =
1

π

∞∑
l=0

l∑
j=0

∫ [
φ(−∂∂̄ + ∂Bl∂ +Bl∂

2)φ+ πl(Al − Abackl )

+ (cl−j bl)

(
0 D†

D 0

)(
cl−j
bl

) ]
,

(A.17)

where Bl is (l + 1)Al(∂φ)l and D = −δj0∂̄ + (j + 1)Aj∂ − (l − j + 1)∂Aj.
2

The action (A.16) is invariant under the following transformations:

δφ =
∞∑
l=0

cl(∂φ)l+1,

δAi = ∂̄ci −
i∑

j=0

(
(j + 1)∂ci−jAj + (i− j + 1)ci−j∂Aj

)
,

δci =
i∑
l=0

(l + 1)cl∂ci−l,

2Hermitian conjugation and the inner product are defined by (Dψ,ϕ) = (ψ,D†ϕ) and
(ψ,ϕ) =

∫
ψ̄ϕ, respectively.
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δbi = πi,

δπi = 0. (A.18)

The Pauli-Villars action can be written by introducing the Pauli-Villars

scalar field χ and the ghosts cpvi and the antighosts bpvi . The Pauli-Villars

action then assumes the form3

Spv = lim
M→∞

1

π

∞∑
l=0

∫
χ(−∂∂̄ + ∂Bl∂ +Bl∂

2)χ

+ (cpvl bpvl )

(
0 D†

D 0

)(
cpvl
bpvl

)

+ (χ cpvl bpvl )

 M 0 0
0 M1 0
0 0 M2


 χ
cpvl
bpvl

 . (A.19)

The Pauli-Villars fields transform in such a way as to keep the measure of

the path integral and the kinetic part of the action invariant. In this way the

anomaly is shifted to the Pauli-Villars mass term. The Pauli-Villars fields

thus transform as follows:4

δχ =
∞∑
l=0

(l + 1)cl(∂φ)l∂χ,

δbpvi = ∂̄ci −
i∑

j=0

(
(j + 1)∂ci−jb

pv
j − (i− j + 1)ci−j∂b

pv
j

)
,

δcpvi =
i∑
l=0

(l + 1)
(
cpvl ∂ci−l + cl∂c

pv
i−l

)
. (A.20)

In order to find the Fujikawa regulating operator, we shall use the expres-

sion (A.19). The operator in the scalar part of the action is already quadratic

3Note that all the scalar fields φ that appear in the Pauli-Villars action, and later
on in the Pauli-Villars transformations, should be treated as constant fields. This can
be achieved by expanding the original action about the mean field to obtain a Gaussian
action and then reverting all the fields back to φ at the end of the calculation. However,
we shall not demonstrate this explicitly, since we are not concerned with direct evaluation
of the path integral; we are only concerned with finding the Pauli-Villars regulators.

4Note that the Pauli-Villars antighosts transform like the gauge fields.
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and should be treated separately from that in the ghost part of the action

[which is not quadratic in the operator D (A.19)].

We shall consider the anomalies arising from the Pauli-Villars matter part

and the ghost part separately, since the matter and the ghost sectors are not

coupled in our theory and contribute independently to the anomaly. The

matter-sector w∞ anomaly calculated from the Pauli-Villars scheme is given

by

(Apv)matt = lim
M→∞

∞∑
j=0

∞∑
l=0

Tr(j + 1)cj(∂φ)j∂{− exp [(∂∂̄ + ∂Bl∂ +Bl∂
2)/M2]}.

(A.21)

The mass term of the Pauli-Villars action in the ghost sector gives rise to a

similar anomaly:

(Apv)gh = lim
M→∞

∞∑
l=0

l∑
r=0

Tr
[(
− (r + 1)∂cl−r + (l − r + 1)cl−r

)
∂e−DD

†/M1M2

+
(

(r + 1)∂cl−r − (l − r + 1)cl−r

)
∂e−D

†D/M1M2

]
. (A.22)

Note that we have used the square of the operator in the quadratic part of

the ghost action, i.e. (
D†D 0

0 DD†

)
, (A.23)

in order to obtain the Pauli-Villars ghost-sector anomaly.

The above considerations make it clear which regulator and which Jaco-

bian should be used in the Fujikawa scheme. In the Fujikawa scheme, the

anomaly arises from the measure of the path integral and is given by (see

Chapter 2)

A =
∞∑
l=0

l∑
r=0

TrN lre−H
lr/M2

, (A.24)

where

N lr =

 N
l
φφ 0 N lr

φc

0 N lr
gg N lr

gc

0 0 N lr
cc

 , (A.25)
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and

N l
φφ = (l + 1)cl(∂φ)l∂,

N lr
gg = −(r + 1)∂cl−r + (l − r + 1)cl−r∂,

N lr
cc = (r + 1)∂cl−r − (l − r + 1)cl−r∂. (A.26)

The matrix elements N lr
φc and N lr

gc have similar expressions. By using (A.21)

and (A.22), we can easily find the regulator H that should be used in (A.24).

This regulator is obtained by combining those in (A.21) and (A.22):

H lr =

 H
j
φφ 0 0
0 DD† 0
0 0 D†D

 , (A.27)

where the chiral parts of Hφφ, D†D and DD† are given explicitly below: 5

Hφφ = −
[
∂∂̄ + ∂

(
(j + 1)Aj(∂φ)j

)
∂ +

(
(j + 1)Aj(∂φ)j

)
∂2
]
,

D†D = −∂∂̄ + (r − 2l)∂Ar−2l∂ − (l + 1)∂2Ar−l + (r − l + 1)Ar−l∂
2,

DD† = −∂∂̄ + (r − l + 1)Ar−l∂
2 − (l + 1)∂Ar−l∂. (A.28)

The regulators that we have used arise basically from the kinetic part

of the action. For example, the regulator that regularizes the matter-loops

is obtained from the operator in the quadratic part of the matter action.

Similarly the operator that we have used to regularize the Jacobian associated

with the ghost measure is constructed from the operator acting on the ghost

in the ghost action. The gauge-field transformation also contributes to the

Jacobian. But the gauge field in our theory is non-propagating and does

not have a kinetic term in the action. The question then arises as to which

regulator one should use for the regularization of the gauge-field Jacobian

arising in the Fujikawa scheme. Here, the regulator that we have obtained

5Note that here we are only concerned with the chiral part of the anomaly, since we
are only considering the chiral theory of w∞ gravity.
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from the Pauli-Villars scheme is the regulator for the antighosts. This is

because in the Pauli-Villars scheme the gauge-field Jacobian cancels against

that arising from the Pauli-Villars antighosts. Therefore the Pauli-Villars

antighost fields and the gauge fields are partners. In the Fujikawa scheme,

the antighost itself transforms into the Lagrange multipliers and does not

contribute to the Jacobian. Accordingly, the operator acting on the antighost

in the action is used to construct the regulator for the gauge fields.

It is not necessary to go through a full analysis of the Pauli-Villars scheme

each time we need to obtain a consistent Fujikawa regulator. From the above

discussion, it is clear that these regulators are constructed from the opera-

tors in the action. The construction of such regulators from the operators

in the action is usually straightforward. If the operator in the action is al-

ready positive and contains a d’Alembertian, then it can be used without any

change. Otherwise, we encounter a situation similar to that arising in the

ghost sector: the operator in the kinetic part of the ghost action is not posi-

tive and does not contain a d’Alembertian. In such situations the regulator

can normally be constructed by squaring the operator in the ghost action.

In theories where the gauge field is non-propagating, the Jacobian arising

from the transformation of the gauge fields is regularized by using the oper-

ator acting on the antighost in the action. The regulator used in the gauge

sector is the Hermitian conjugate of the regulator used for the regularization

of the Jacobian associated with the ghost measure.

The above prescription for using the Fujikawa regulators works for theW
gravities considered in this thesis, i.e. w∞, W∞ and W3 gravity.
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Appendix B

The zeta-function
regularization scheme

The ghost-sector W∞ anomalies have divergent coefficients. These coeffi-

cients, which appear in the form of divergent sums can be regularized using a

zeta-function regularization scheme. However, the regularized values of these

coefficients depend on how the infinite sums are written. In Chapters 2 and

3 we have discussed how the Wess-Zumino consistency condition restricts

the allowed methods of summation to only those that give the same value of

central charge in all spin sectors, as well as yielding a vanishing coefficient

for the off-diagonal anomalies. In this appendix, we shall demonstrate two

methods of summation adopted in the literature and show that one of these

methods leads to a vanishing coefficient for the off-diagonal anomalies [61,

70, 71], whereas the other one fails to do so and as a result is incompatible

with the requirements of the Wess-Zumino consistency condition [89]. These

two methods are here illustrated for the diagonal anomalies at the spin-2 and

spin-3 levels and for the spin-2/spin-4 off-diagonal anomaly.
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B.1 The zeta-function regularization of the

spin-2 universal ghost-sector anomaly

The spin-2 universal anomaly was derived in Chapter 2 and has the fol-

lowing form:

A2 =
−α2

12π

∫
c0∂

3A0, (B.1)

where α2 is the divergent coefficient at the spin-2 level and is given by

α2 =
∞∑
n=0

6(n+ 1)2 + 6(n+ 1) + 1 (B.2)

−→ 6ζ(−2, 1) + 6ζ(−1, 1) + ζ(0, 1)

−→ −1, (B.3)

where ζ is the generalized Riemann zeta function [37] and the expressions on

the right-hand sides of the arrow denote regularized values of the divergent

sum. The sum (B.2) can be written in three essentially different ways. These

different ways are determined by the symmetry of the ghost-antighost system

[89]. In Chapter 2, we have seen that the regularized ghost-sector anomaly

must remain invariant under the ghost-antighost spin exchange. That is to

say, a ghost-antighost system (ci, bi) in which the ghost ci has spin −i−1 and

the antighost bi has spin i+ 2, should remain symmetric under the exchange

i ↔ −i − 3. We have also shown (see Section 2.3) that as a result of this

symmetry only the values 1, 2and3
2

of the parameter α are permissible in the

ghost-sector infinite summations [these summations are basically in the form∑∞
n=0(a+ n)l].

We shall now regularize the coefficient of spin-2 anomaly α2 by using

the various permissible values of the parameter a. In (B.3) we have already

shown how the zeta-function regularization is performed using a = 1. Using

a = 2, we obtain:
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α2(2) =
∞∑
n=0

6(n+ 2)2 − 18(n+ 2) + 1

−→ 6ζ(−2, 2)− 18ζ(−1, 2) + ζ(0, 2)

−→ −1. (B.4)

On the other hand if we use the value 3
2

for writing the infinite sum (B.2) we

obtain:

α2(3/2) =
∞∑
n≥0

6(n+
3

2
)2 − 1

2
(B.5)

−→ 6ζ(−2,
3

2
)− 1

2
ζ(0,

3

2
)

−→ −1. (B.6)

One can see by comparing (B.2), (B.4) and (B.6) that the last method of

summation, (B.5), has the special feature of only containing even powers.

Later on, we shall show that this special feature is essential for the purpose

of removing the off-diagonal anomalies and so the last method of summation

is preferable to the other methods.

B.2 Zeta-function regularization of the spin-

3 ghost-sector anomaly

In Chapter 3 we derived the spin-3 ghost-sector anomaly. This is given

by

Ac1A1 =
−α
π

∫
c1∂

5A1, (B.7)

where

α3 = − 1

30

∞∑
n=0

[
1− 3

(2n+ 3)(2n+ 5)

][
10(n+ 2)(2n+ 3)(n+ 1)2

+15(n+ 1)2(2n+ 3) + 30(n+ 1)2 + 30(n+ 1) + 10(n+ 1)(2n+ 3)

+10(n+ 2)(n+ 1)(2n+ 3) + 6
]
. (B.8)

98



Each term of the above infinite sum can be written in the following manner:

α3 = − 1

30

∞∑
n=0

{
20(n+ 1)4 + 80(n+ 1)3 + 105(n+ 1)2 + 50(n+ 1) + 6

−(
3

4
)
[
20(n+

3

2
)3 − 20(n+

5

2
)3 + 40(n+

3

2
)2

−40(n+
5

2
)2 + 15(n+

3

2
)− 15(n+

5

2
)− 5

]
−3

2

(
1

n+ 3/2
− 1

n+ 5/2

)}
. (B.9)

This sum can now be regularized by using the zeta-function regularization

scheme as follows:

α3(1) −→ − 1

30{
20ζ(−4, 1) + 80ζ(−3, 1) + 105ζ(−2, 1) + 50ζ(−1, 1) + 6ζ(0, 1)

−3

4

[
20ζ(−3, 3/2)− 20ζ(−3, 5/2) + 40ζ(−2, 3/2) + ζ(−2, 5/2)

+15ζ(−1, 3/2)− 15ζ(−1, 5/2)− 5ζ(0, 3/2)− 5ζ(0, 5/2)
]

−(
3

2
)(

2

3
)
}

−→ 1

15
. (B.10)

Next, we shall demonstrate the regularization of the spin-3 ghost-sector

coefficient using the alternative method of summation mentioned above. In

this alternative method, one groups the terms in such a way that all the

brackets have even powers. We have already seen an example of this scheme

in the spin-2 level (B.6); a similar situation arises at the spin-3 level. The

coefficient of the spin-3 anomaly, α3, given in (B.9) can, as in the spin-2 case,

be written as follows:
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α3(2) = − 1

30

∞∑
n=0

{
20(n+ 2)4 − 30(n+ 2)2 +

17

2

+
9

4

(
1

(2n+ 3)
− 1

(2n+ 5)

)}
(B.11)

−→ − 1

30

{
20ζ(−4, 2)− 30ζ(−2, 2) +

17

2
ζ(0, 2) +

3

4

}
−→ 1

15
. (B.12)

It appears at this stage that both of these methods of summation give

the same result upon regularization. However, the validity of these methods

is tested when we consider the off-diagonal anomalies.

B.3 The zeta-function regularization of the

off-diagonal anomalies

In Chapters 3 and 5, we showed that off-diagonal anomalies are forbid-

den by the Wess-Zumino consistency condition. We also pointed out that

a proper zeta-function regularization should give a vanishing coefficient for

the off-diagonal anomalies as well as the right central charge for the diagonal

anomalies. To test which of the above methods of summation would yield

a vanishing coefficient for the off-diagonal anomalies, we shall consider the

simplest example of such anomalies. The simplest example of off-diagonal

anomalies occurs at the spin-2/spin-4 level and is as follows:

A(c0A2+c2A0) = α2/4

∫
(c0∂

5A2 + c2∂
5A0), (B.13)

where the coefficient α2/4 is given by the divergent expression
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α2/4 =
∞∑
n=0

{
(−1

3
)
[
1− 9

5(2n+ 1)(2n+ 5)

][
16(n+ 1)(n+

1

2
)(n+

9

2
)n

+16(n+
1

2
)n+ 20n+ 80(n+ 1)(n+

3

4
) + 12

]
− 1

3!

[
16(n+ 3)(n+

5

2
)2(n+ 2)− 36(n+ 3)(n+ 2)

)
−(

1

3!
)
(

16(n+ 1)(n+
1

2
)2n− 36(n+ 1)n

]}
. (B.14)

We shall now demonstrate that the first scheme of summation [89] does

not yield a vanishing coefficient for the off-diagonal anomaly. In this scheme

the above sum is written as

α2/4(1) =
∞∑
n=0

{
16(n+ 1)4 + 32(n+ 1)3 + 20(n+ 1)2 + 4(n+ 1)

− 9

40

(
16(n+

1

2
)3 − 16(n+

5

2
)3 + 64(n+

1

2
)2 + 64(n+

5

2
)2

+92(n+
1

2
)− 92(n+

5

2
) + 112 + 12

[
1

(n+ 1/2)
− 1

(n+ 5/2)

])
+
(

16(n+ 1)4 + 96(n+ 1)3 + 176(n+ 1)2 + 96(n+ 1)
)}
.

(B.15)

A zeta-function regularization of the above sum then yields the value 77/45

and not zero. Recall that only the value zero for the coefficient of the off-

diagonal anomalies is allowed by the Wess-Zumino consistency condition.

Now we demonstrate that the second method of regularization [71] does

give a vanishing coefficient for the off-diagonal anomalies. The coefficient

α2/4 (B.15) in the second scheme is written as follows:

α2/4(3/2) =
∞∑
n=0

{
− 1

3

[
32(n+

3

2
)4 + 52(n+

3

2
)2
]

+(
9

40
)(

1

3
)
[
36(n+

3

2
)2 + 24

]
−12

(
1

n+ 1/2
− 1

n+ 5/2

)}
. (B.16)
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The zeta-function regularization of the above infinite sum then yields:

α2/4(3/2) −→ −1

3
ζ(−4, 3/2) + 52ζ(−2, 3/2)

+
27

10
ζ(−2, 3/2) + 24ζ(0, 3/2)− 12(

8

3
)

−→ 0. (B.17)

Therefore the method of summation suggested in reference [70, 71] is prefer-

able; it yields a vanishing coefficient for the off-diagonal anomalies whereas

the other methods fail to do so.6 This scheme of summation and regular-

ization has been shown to gives the expected central charge for the diagonal

anomalies and vanishing coefficients for the off-diagonal anomalies up to the

spin-18 level [71].

6Note that using the value a = 2 (which is the other value allowed by the ghost-antighost
spin-exchange symmetry) in summing the coefficient of the spin-2/spin-4 anomaly, we
would also obtain a non-zero result.
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Appendix C

Chiral W3 gravity

In this thesis, we have been concerned mainly with the theories of w∞

and W∞ gravity. Both of these theories have an underlying linear algebra.

However, in recent years much attention has been paid to another type ofW
algebra, known as W3 algebra [90]. Unlike the w∞ and W∞ algebras, W3 is

a nonlinear algebra. To arrive at this algebra, one starts from the Virasoro

algebra which, in the form of the operator-product expansion, is

T (z)T (w) ∼ ∂T

z − w
+

2T

(z − w)2
+

c/2

(z − w)4
, (C.1)

where T is the spin-2 energy-momentum tensor and c is the central charge of

the Virasoro algebra. Next, one introduces a spin-3 current W which gives

the following operator-product expansion with T :

T (z)W (w) ∼ ∂W

z − w
+

3W

(z − w)2
. (C.2)

The operator-product expansion of W with W then produces a spin-4 current

which is interpreted as a composite operator. The W -W operator-product

expansion is
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W (z)W (w) ∼ 16

22 + 5c

(
∂Λ

z − w
+

2Λ

(z − w)2

)

+
1

15

∂3T

z − w
+

3

10

∂2T

(z − w)2

∂T

(z − w)3
+

2T

(z − w)4
+

c/3

(z − w)6
,

(C.3)

where Λ is a spin-4 composite:7

Λ = (TT )− 3

10
∂2T. (C.4)

Although nonlinear, the W3 algebra does satisfy the Jacobi identities.

WN algebras, which include generators of higher spins, are essentially

similar to W3. The detailed structures of these algebras are complicated, but

the essential feature of the WN algebra is that

W s(z)W s′(w) ∼ W s+s′−2,W s+s′−4, · · ·+ cs
δss
′

(z − w)2s
. (C.5)

All WN algebras are nonlinear because at some point a higher-spin current

must be expressed through a non-linear combination of lower-spin currents

in order to close these algebras. However, if we take N →∞, then one never

generates a current with spin that exceeds N . We might, therefore, expect

to obtain a linear algebra when N = ∞. This has in fact been achieved

and underlies the idea behind the formulation of the w∞ and W∞ algebras

[61–71].

C.1 BRST action for W3 gravity

The spin-2 and spin-3 currents of W3 algebra have an explicit realization

in terms of n scalar fields φi as given below [44, 46, 48, 50, 63]:8

Tmatt = −1

2
∂φi∂φi,

7In expression (C.4), the rounded brackets () denote normal ordering.
8In this appendix Einstein summation is implies everywhere.
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Wmatt = −1

3
dijk∂φ

i∂φj∂φk, (C.6)

where the φi satisfy the operator-product expansion

∂φi(z)∂φj(w) ∼ −δij

(z − w)2
. (C.7)

In (C.6), the structure constants dijk satisfy the relation

dm(ijdkl)m =
a

2
δ(ijδkl), (C.8)

where a = 16(22 + 5Cmat)
−1 and Cmat is the central charge of the W3 algebra

for the realization (C.6).

The W3 action

S =
1

π

∫
d2z

(
− 1

2
∂φi∂̄φi − hTmat −BWmat

)
(C.9)

is invariant under the following symmetries:

δφi = ε∂φi + dijkλ∂φ
j∂φk,

δh = ∂̄ε+ ε∂h− ∂εh− a

2
(λ∂B − ∂λB)∂φi∂φi,

δB = ∂̄λ+ ε∂B − 2∂εB + 2λ∂h− ∂λh, (C.10)

where ε and λ are the infinitesimal parameters for the Virasoro and the spin-3

transformations, respectively.

The conventional gauge-fixing conditions for the spin-2 and spin-3 gauge

fields are h = hback and B = Bback, imposed by the Lagrange multipliers πh

and πB [45]. This leads to the BRST action

SBRST =
1

π

∫
d2z

[
− 1

2
∂φi∂̄φi − b∂̄c− β∂̄γ + πh(h− hback) + πB(B −Bback)

−h(Tmat + Tgh)−B(Wmat +Wgh)
]
. (C.11)
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In the above expression, Tmat and Wmat are given in (C.6) and Tgh and Wgh

are as follows:

Tgh = −2b∂c− ∂bc− 3β∂γ − 2∂βγ,

Wgh = −∂βc− 3β∂c− a[∂(bγTmat) + b∂γTmat]. (C.12)

The ghost-antighost pairs (c, b) and (γ, β) correspond, respectively, to the T

and W generators. They satisfy the following operator-product expansions

c(z)b(w) ∼ 1

z − w
; γ(z)β(w) ∼ 1

z − w
. (C.13)

The transformation rules for the fields in (C.11) are given by

δφi = c∂φi + dijkγ∂φ
jφk + abγ∂γ∂φi,

δh = ∂̄c+ c∂h− ∂ch− a

2
(γ∂B − ∂γB)∂φi∂φi,

δB = ∂̄γ + c∂B − 2∂cB + 2γ∂h− ∂γh,

δc = c∂c− a

2
γ∂γ∂φi∂φi,

δγ = c∂γ − 2∂cγ,

δb = πh, δβ = πB δπh = 0 δπB = 0. (C.14)

By comparing (C.14) and (C.10), we can see that the BRST transfor-

mations of W3 gravity have a structure that is not directly obtainable by

the simple prescription of replacing the parameters of the classical W3 gauge

transformations by ghosts (as in w∞ and W∞). One normally expects to

obtain the corresponding BRST transformation (C.14) simply by replacing

ε in (C.10) with the spin-2 ghost c and λ in (C.10) with the spin-3 ghost

γ. However, comparing the BRST transformation of φi given in (C.14) with

the gauge transformation of the scalar field given in (C.10) one sees that

the BRST transformation contains an unexpected term bγ∂γ∂φ. Conse-

quently, the classical action (C.9) is not invariant under the above BRST
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transformations.9

In addition to the unusual extra term in the δφ transformation, there is

another non-standard feature in the BRST transformations (C.14). Both the

BRST variations of the scalar and the spin-2 gauge field h are only nilpotent

on-shell, i.e. they are only nilpotent if one uses the equations of motion. This

feature is not encountered in w∞ and W∞ gravity and is another consequence

of the nonlinearity of W3 algebra. This, however, does not prevent the BRST

action (C.11) from being invariant under the BRST symmetries (C.14). The

terms arising from the variation of h in δ(bh), due to the δ2h off-shell non-

closure, are cancelled by the extra term abγ∂γ∂φi.

The problem of off-shell non-closure of the BRST symmetries can be

resolved by choosing a derivative gauge-fixing condition. This is discussed in

Section C.3 of the present appendix.

C.2 W3 anomalies from the path-integral mea-

sure

The partition function corresponding to the BRST action (C.11) is

Z =
∫
DφDhDBDCDbDγDβ expSBRST . (C.15)

Under the BRST symmetries (C.14), the measure in (C.15) transforms through

a Jacobian factor. This factor, when properly regularized, results in the

anomaly A1. The expression for the W3 one-loop anomaly derived from the

path-integral measure is as follows:

A1 = Aφ +Ah,B +Ac,γ, (C.16)

9Note that the invariance of the BRST action under the BRST symmetries at the
classical level is guaranteed. This is because the ghost action for this nonlinear theory
couples to the scalar field. As a result, the variation of the ghost action and the matter
part of the action cannot, as for linear theories, be treated independently and indeed these
variations cancel against each other. This feature is not encountered in w∞ and W∞
gravity and only arises as a consequence of the nonlinearity of W3 algebra.
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where

Aφ = lim
M→∞

Tr
(
c+ 2diljγ∂φ

l + abγ∂γδij
)
∂e−Hji/M

2

, (C.17)

Ah,B = lim
M→∞

Tr


∂δh
∂h

∂δh
∂B

∂δB
∂h

∂δB
∂B

 e−Dh,B/M2

= lim
M→∞

Tr

(
c∂ − ∂c a

2
∂φi∂φi(γ∂ − ∂γ)

2γ∂ − ∂γ c∂ − 2∂c

)
e−Dh,B/M

2

, (C.18)

Ac,γ = lim
M→∞

Tr

(
∂c− c∂ a

2
∂φi∂φi(∂γ − γ∂)

−2γ∂ + ∂γ 2∂c− c∂

)
e−Dc,γ/M

2

.(C.19)

The regulators in the above expressions are obtained by using the prescription

given in Appendix A. These regulators arise from the kinetic part of the

action (C.11) which can be written as

S =
1

π

∫
φiHjiφ

j + bD1c+ βD2c+ bD3γ + βD4γ, (C.20)

where the explicit expressions for the operators in (C.20) are

Hji = −∂∂̄ + ∂[(h− a(Bb∂γ − ∂Bbγ) + 2dimjB∂φ
m)∂], (C.21)

D1 = −∂̄ + h∂ − ∂h,

D2 = 2B∂ − ∂B,

D3 = −a
2
∂B∂φi∂φi +

a

2
B∂φi∂φi∂,

D4 = −∂̄ + h∂ − 2∂h. (C.22)

The regulator for the anomaly coming from the measure of the scalar field

is Hji which is already positive and contains the d’Alembertian (∂̄∂). The

operator acting on the space {h,B, c, γ} can be obtained from (C.20) and is

D =


0 0 D1 D3

0 0 D2 D4

D†1 D†2 0 0

D†3 D†4 0 0

 . (C.23)
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The operator D2 is then used to regularize the Jacobian arising from the

measure of the ghosts and gauge fields (see Appendix A). Writing D2 in

block-diagonal form, we arrive at the operators Dh,B and Dc,γ which we have

been using in (C.18) and (C.19) for the regularization of the gauge and ghost

measures. These regulators are obtained from the following expression:

D2 =

(
Dh,B 0

0 Dc,γ

)
. (C.24)

With the aid of the above regulators, the anomaly can then be evaluated

in a very similar manner to the evaluation of w∞ and W∞ gravity (see Chap-

ters 2 and 3). One expands the trace in a plane-wave basis and then discards

the infinite parts of the resulting expression. The resulting expressions for

the local parts of the chiral W3 anomaly are

Aφ =
1

π

∫ [
Cmat
12

c∂3h− diij∂φ
j

6
(B∂3c− γ∂3h)− dijkdljk

3
B∂φi∂3(γ∂φl)

+
3caCmat

16
∂3(Bb∂γ − ∂Bbγ) +

aCmat
12

bγ∂γ∂3h

+
3a2Cmat

16
bγ∂γ∂3(Bb∂γ − ∂Bbγ) +

a

6
bγ∂γdiij∂

3(B∂φj)
]
,

(C.25)

and

Ac,γ +Ah,B =
1

π

∫ [
− 100

12
c∂3h− a

2
∂φi∂φi(

2∂B∂2γ − 5

6
B∂3γ − 2∂γ∂2B +

5

6
γ∂3B

)]
. (C.26)

The above expressions constitute [44, 46, 48, 49] all the one-loop anomalies

that exist in the theory of chiral W3 gravity.

The two-loop universal anomaly that exists in the spin-3 sector of this

theory can be obtained by a similar analysis to that discussed for W∞ gravity

in Chapter 3. First, one tries to remove all the matter-dependent anomalies
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from this theory. This leads to a renormalization of the BRST transforma-

tions and the matter and ghost-sector currents. The renormalized transfor-

mation rule of the gauge field is then incorporated in the commutator form

of the Wess-Zumino consistency condition.10 The renormalized consistency

condition (i.e. the condition involving the renormalized gauge algebra) is

then imposed on the one-loop universal anomaly. The requirement for the

consistent one-loop anomaly leads to an expression for the two-loop spin-3

anomaly. The two-loop anomaly derived in this way is

A2 =
Cmatt − 100

360π

∫
γ∂5B. (C.27)

C.3 W3 gravity in the derivative gauge

In this section, we shall quantize chiral W3 gravity by using derivative

gauge conditions for the spin-2 and spin-3 gauge fields. The motivation

behind this is to find a new formalism that achieves full off-shell closure of

the BRST algebra.11 We would also like to find a BRST charge that is the

generator of all BRST transformations, including those of the gauge fields.12

An additional motivation is to find a relationship between the Ward-identity

anomaly and the BRST-charge anomaly (see Section 5.4 ).

The gauge conditions that we shall choose for chiral W3 gravity are ∂̄h = 0

and ∂̄B = 0. We shall consider the fully-renormalized gauge-fixed W3 action

and its renormalized symmetries. The renormalization terms are introduced

10The derivation of the two-loop anomaly by this method is more complicated for W3

because in this theory the gauge field transforms nonlinearly into the scalar fields. How-
ever, since we are only considering the universal anomalies, which do not depend on the
scalar fields, this complication is immaterial.

11We recall that in the conformal gauge the BRST transformations of the gauge and
scalar fields are only nilpotent upon using the equations of motion.

12In the conformal gauge, the BRST charge does not generate the transformation rule
of the gauge fields. This problem has been discussed in detail for W∞ gravity in Chapter
5. Here, a similar problem arises.

110



in order to cancel the matter-dependent anomalies given in expressions (C.25)

and (C.26). The renormalized W3 action in the derivative gauge is as follows:

S =
1

π

∫
d2z

(
− 1

2
∂̄φi ∂φi − hT r

mat −BW r
mat + πh ∂̄h

−b ∂̄[∂̄c+ c ∂h− ∂c h− a

2
(γ ∂B − ∂γ B)∂φi∂φi − a

√
h̄(γ ∂B − ∂γ B)αi ∂

2φi

+
1− 17a

30
h̄(2γ ∂3B − 3∂γ ∂2B + 3∂2γ ∂B − 2∂3γ B)]

−β ∂̄[∂̄γ + c ∂B − 2∂cB + 2γ ∂h− ∂γ h]
)
, (C.28)

where T r
mat and W r

mat are given below

T r
mat = −1

2
∂φi ∂φi −

√
h̄αi ∂

2φi,

W r
mat = −1

3
dijk ∂φ

i ∂φj ∂φk −
√
h̄ eij ∂φ

i ∂2φj − h̄ fi ∂3φi. (C.29)

As in the W∞ case, we now reduce this action to a first-order form by

introducing momenta conjugate to c, b, γ, β:

πc =
∂L
∂∂̄c

= −∂̄b,

πb =
∂L
∂∂̄b

= ∂̄c+ c ∂h− ∂c h− a

2
(γ ∂B − ∂γ B)∂φi∂φi

−a
√
h̄(γ ∂B − ∂γ B)αi ∂

2φi

+
1− 17a

30
h̄(2γ ∂3B − 3∂γ ∂2B + 3∂2γ ∂B − 2∂3γ B),

πγ =
∂L
∂∂̄γ

= −∂̄β,

πβ =
∂L
∂∂̄β

= ∂̄γ + c ∂B − 2∂cB + 2γ ∂h− ∂γ h. (C.30)

Using these definitions, the gauge-fixed action (C.28) may be put into the

first-order form:13

13As in W∞ case, we consider the off-diagonal kinetic term ∂̄φi ∂φi to be of first order
in ∂̄ derivatives.
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S =
1

π

∫
d2z

(
− 1

2
∂̄φi ∂φi + πh ∂̄h+ πB ∂̄B − πb ∂̄b− πc ∂̄c− πβ ∂̄β − πγ ∂̄γ

−πb πc − πβ πγ − h (T r
mat + T r

gh)−B (W r
mat +W r

gh)
)
, (C.31)

where T r
gh and W r

gh are no longer given by (C.12) but now include the con-

jugate momenta,

T r
gh = −2πc ∂c− ∂πc c− 3πγ ∂γ − 2∂πγ γ,

W r
gh = −∂πγ c− 3πγ ∂c− a[∂(πc γ Tmat) + πc ∂γ Tmat]

+
(1− 17a)

30
h̄(2γ ∂3πc + 9∂γ ∂2πc + 15∂2γ ∂πc + 10∂3γ πc).

(C.32)

From the path-integral generating functional derived from (C.31), we obtain

the following operator-product expansion relations:

∂φi(z)∂φi(w) ∼ −1

(z − w)2
,

πh(z)h(w) ∼ 1

z − w
,

c(z)πc(w) ∼ 1

z − w
,

b(z)πb(w) ∼ 1

z − w
,

πB(z)B(w) ∼ 1

z − w
,

γ(z)πγ(w) ∼ 1

z − w
,

β(z)πβ(w) ∼ 1

z − w
. (C.33)

The BRST transformations corresponding to the action (C.31) are
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δφi = c ∂φi + dijk γ ∂φ
j∂φk + a πc γ ∂γ ∂φ

i +
√
h̄
(
− aαi ∂(πc γ ∂γ)

−αi ∂c+ (eij − eji) γ ∂2ϕj − eji ∂γ ∂φj
)

+h̄ fi ∂
2γ,

δh = πb,

δB = πβ,

δc = c ∂c− a

2
γ ∂γ ∂φi∂φi − a

√
h̄ αi γ ∂γ ∂

2φi +
1− 17a

30
h̄(2γ ∂3γ − 3∂γ ∂2γ),

δγ = c ∂γ − 2∂c γ,

δb = πh, δβ = πB, δπc = T r
mat + T r

gh, δπγ = W r
mat +W r

gh,

δπh = 0, δπB = 0, δπb = 0, δπβ = 0, (C.34)

where the constants αi, dijk, eij and fi satisfy the following relations [72]:

dijj − 6eij αj + 6fi = 0,

e(ij) − dijk αk = 0,

3fi − αj eji = 0,

dikl djkl + 6dijk fk − 3eik ejk =
1

2
δij,

d(ij
m dkl)m =

1

2
a δ(ijδkl),

dijk(elk − ekl) + 2e(i
l dj)kl = aαk δij. (C.35)

Two useful consequences of this set of equations are

eii + 12αi fi = 0,

Cmat = −2dijk dijk − 18eij eij − 12eij eji − 360f 2
i . (C.36)

The central charge Cmat is given for the realization (C.29) by

Cmat = n+ 12αiαi. (C.37)
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In the derivative gauge, all the BRST transformations (C.34) are off-shell

nilpotent up to order h̄1/2.

The canonical generator of the transformations (C.34) is the BRST charge

Q in the derivative gauge:

Q =
∫
dz
(
c (T r

mat +
1

2
T r

gh) + γ (W r
mat +

1

2
W r

gh) + πh πb + πB πβ
)
. (C.38)

This BRST charge now contains the final two terms, which would not be

present in the BRST charge derived in the conformal gauge. These new

terms generate the transformations of the spin-2 and spin-3 gauge fields.

Therefore, the BRST charge is the true generator of all transformations and

is now fully canonical.

C.4 The W3 anomalies in derivative gauge

We shall derive the anomalies of W3 gravity in the derivative gauge by

using the standard Ward-identity formalism.14 We formulate the BRST Ward

identity of W3 gravity (as we have done for W∞ in Section 5.3) by introducing

sources Kχi for the nonvanishing variations (C.34). Here we denote all fields

χi and the sources of their variations Kχi as

χi = (φi, h, πh, B, πB, b, πb, c, πc, β, πβ, γ, πγ),

Kχi = (Kφi , Kh, KB, Kb, Kβ, Kγ, Kc, Kπc , Kπγ ). (C.39)

The extended Lagrangian is the sum of (C.31) plus the source terms,

14Note that the one-loop anomaly in the derivative gauge can also be derived by using
the Fujikawa method. Here, we are using the Ward-identity treatment of anomalies as a
more appropriate method for an extensive derivation of the anomalies and for the use of
the antibracket form of the Wess-Zumino consistency condition.
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Lext = −1

2
∂̄φi ∂φi + πh ∂̄h+ πB ∂̄B − πb ∂̄b− πc ∂̄c− πβ ∂̄β − πγ ∂̄γ

−πb πc − πβ πγ − h (T r
mat + T r

gh)−B (W r
mat +W r

gh)

+Kφi [c ∂φ
i + dijk γ ∂φ

j∂φk + a πc γ ∂γ ∂φ
i

+
√
h̄(−αi ∂c+ (eij − eji) γ ∂2φj − eji ∂γ ∂φj − aαi ∂(πc γ ∂γ)) + h̄ fi ∂

2γ]

+Kh πb +KB πβ +Kb πh +Kβ πB +Kγ(c ∂γ − 2∂c γ)

+Kc[c ∂c−
a

2
γ ∂γ ∂φi∂φi − a

√
h̄ αi γ ∂γ ∂

2φi

+
1

30
(1− 17a)h̄(2γ ∂3γ − 3∂γ ∂2γ)]

+Kπc(T
r
mat + T r

gh) +Kπγ (W
r
mat +W r

gh). (C.40)

The anomalous Ward identities at orders h̄, h̄3/2 and h̄2 are as follows:

A1 =
δS0

δφi
δΓ1

δKφi
+

δS0

δKφi

δΓ1

δφi
+
δS 1

2

δφi

δS 1
2

δKφi
,

A 3
2

=
δS0

δφi

δΓ 3
2

δKφi
+

δS0

δKφi

δΓ 3
2

δφi
+
δS 1

2

δφi
δΓ1

δKφi
+

δS 1
2

δKφi

δΓ1

δφi
,

A2 +A2,nl =
δS0

δφi
δΓ2

δKφi
+

δS0

δKφi

δΓ2

δφi
+
δS 1

2

δφi

δΓ 3
2

δKφi
+

δS 1
2

δKφi

δΓ 3
2

δφi
+
δΓ1

δφi
δΓ1

δKφi
,

(C.41)

where An represents the total local anomaly at order h̄n.15 The term A2,nl is

a dressing of the order-h̄ anomaly yielding a non-local order-h̄2 anomaly.

Using the extended Lagrangian (C.40) and the relations (C.35), we find

the following expressions for the local anomalies:

A1 = (
16

30π
(1− 17a)− a

12π
Cmat)

∫
d2z

(
γ πc ∂γ (∂3h− ∂3Kπc)

+∂3c [γ Kc ∂γ − πc (∂γ B − γ ∂B − ∂γ Kπγ + γ ∂Kπγ )]
)

− 1

12π
(100− Cmat)

∫
d2z c (∂3h− ∂3Kπc), (C.42)

15The non-local part of the anomaly at order h̄ vanishes upon using the equations of
motion.
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and

A2 = (− 29

50π
(1− 17a) +

Cmat

360π
)
∫
d2z γ (∂5B − ∂5Kπc). (C.43)

Note that the above results contain only universal, i.e. purely gauge-field-

dependent and ghost-dependent, anomalies. We recall that this is because

we have used the renormalized action (C.31) and symmetries (C.34) which

ensure the cancellation of matter-dependent anomalies.

We now check the consistency of the above one and two-loop anomalies.

The Wess-Zumino consistency condition at one-loop level is given by an ex-

pression identical to that given for the W∞ gravity (5.38). It is

(s0,A1) = 0. (C.44)

One can show that the anomaly (C.42) satisfies this condition.

At the two-loop level, the Wess-Zumino consistency condition takes a

non-standard form because of the nonlinearity of W3 algebra. The one-loop

anomaly (C.42) contains fields that can be dressed further in loops. For

example, the γπc in the first term of (C.42) can be contracted with the term

containing πγc in the action. These further contractions lead to the following

non-local expression at two-loop level:

A2,nl =
(

16

30π
(1− 17a)− a

12π
Cmat

)
×
∫
d2z

[(
∂3h− ∂3Kπc

)(
2∂γ

∂2

∂̄
(Kπc −B)− 5

6
γ
∂3

∂̄
(Kπγ )

)
+∂3c

(
5

6
(B −Kπγ )

∂3

∂̄
(Kπγ −B)− 2(∂B − ∂Kπγ )

∂2

∂̄
(Kπγ −B)

)
− 3

10

(
∂γ(B −Kπγ )− γ(∂B − ∂Kπγ )

)
∂5

∂̄
(Kπc − h)

]
. (C.45)

The above anomaly, although non-local, can lead to local expressions in the

Wess-Zumino consistency condition.16 The Wess-Zumino consistency condi-

16Let us emphasize that this feature is not encountered in W∞ and arises in W3 gravity
as a result of the nonlinearity of W3 algebra.
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tion at two-loop level is

(S0,A2) + (S0,A2,nl)loc + (S1,A1) = 0, (C.46)

where the second term is restricted to local contributions after taking the

antibracket. Insertion of the calculated results (C.42), (C.43) and (C.45) in

(C.46) shows that the consistency condition indeed is satisfied at order h̄2.

C.5 The relationship between the Ward-identity

and BRST-algebra anomalies

In Section (4.2), we have obtained a relationship (4.14) between the Ward

identity and the BRST algebra anomalies. In this section we verify this

relationship (4.14) for the W3 chiral anomalies given in (C.42) and (C.43).

In order to do this, we need to have an expression for the BRST algebra

anomalies. This anomaly is obtained by taking the full contraction of two

BRST charges (C.38) in the operator-product expansion, and is as follows:

Q2 =
1

2πi

∮
〈JBJB〉1;

〈JBJB〉1 =
1

6
(100− Cmat) c ∂

3c

+
(
− 16

15
(1− 17a) +

a

6
Cmat

)
γ πc ∂γ ∂

3c

+
(29

25
(1− 17a)− Cmat

180

)
γ ∂5γ. (C.47)

Using this, we can express the non-vanishing Ward-identity anomalies (C.42)

and (C.43) as

A1 +A2 = − 1

2π

∫ 〈
〈JBJB〉1(z),ΨW3

〉
1
, (C.48)
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where ΨW3 , the gauge fermion obtained from the extended action correspond-

ing to (C.40), is as follows:17

ΨW3 =
(
πc(h−Kπc) + πγ(B −Kπγ )− cKc

)
. (C.49)

The simplicity of the relation (C.48) and the fact that it is valid for

W∞ as well as W3 gravity suggests a general result for the relation between

the BRST-algebra anomalies and the anomalies occurring in BRST Ward

identities.

17The W3 gauge fermion can be obtained in a similar fashion to that derived for W∞
gravity in Chapters 4 and 5. The W3 action (C.40) is written in a similar form as (4.13)
containing only canonical and BRST trivial terms and the gauge fermion is then extracted
from the BRST-trivial term.
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