Fitting formulae of the reduced-shear power spectrum for weak lensing

Martin Kilbinger, 2010, arXiv:1004.3493


We provide fitting formulae for the reduced-shear power-spectrum correction which is third-order in the lensing potential. This correction reaches up to 10% of the total lensing spectrum. Higher-order correction terms are one order of magnitude below the third-order term. The correction involves an integral over the matter bispectrum. We fit this integral with a combination of power-law functions and polynomials. We also fit the derivatives with respect to cosmological parameters. A Taylor-expansion around a fiducial (WMAP7) model provides accurate reduced-shear corrections within a region in parameter space containing the WMAP7 68% error elllipsoid.

Our fits are accurate to 1% for l<104, and to 2% for l<2·105, which reduces the bias by a factor of four compared to the case of no correction. This matches the precision lensing power spectrum predictions of recent N-body simulations.

The code

Download an example code which includes the fitting matrices. Use 'make' to compile the code. To use the code, you have to fill in Fmn(a) (eq. 10 from the paper) which involves the lensing efficiency, comoving distances and the redshift distribution(s).

The reduced-shear corrections are also implemented in the cosmology and lensing package 'nicaea'. This code provides all necessary functions to produce lensing observables (shear power spectrum and real-space second-order functions). The cosmology and redshift distributions are set via parameter files.

The author

Martin Kilbinger (

Last updated 20 April 2010.