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Abstract

The COVID-19 pandemic is currently spreading in exponential fashion outside of
China. This report shows predictions from simple models that should clarify the
future evolution of this pandemic. The conclusions, are that 1) the basic repro-
duction factor, R0, may be as high as 5; 2) without Containment, up to 50% of
residents of large cities are Infectious at the peak of the pandemic, forcing hospitals
to choose a which small fraction of patients they can treat; 3) the exponential rise
of the fraction of Infectious people is followed by a slower exponential decrease; 4)
by the end of an un-Contained pandemic, almost everyone will have been infected;
5) since inhabitants of countries are clustered in big cities, where encounters (hence
the R0 factor) are more frequent, the pressure on the hospitals is even greater; 6)
At any given time during the current phase of exponential growth, the fraction of
Infectious people is roughly 10 times what is reported; 7) there is no evidence that
the virus is weakened by hot weather; 8) Containment is effective in limiting the
spread, but must continue at least until end of May or early June 2020 to hope for
eradication of the virus.

1 Introduction

This document presents my thoughts on the current Coronavirus disease 2019 (COVID-19) pandemic
caused by the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. This should not
be interpreted as the truth, but simple modeling, which may contain bad or inaccurate assumptions.
The text is sparsed with mathematical equations that the non-mathematical reader can just skip.
These equations are, for the most part, written in slow steps, so that readers with only moderate
mathematical skills can follow them.

2 Mathematical formalism

The mathematical formalism can be expressed in terms of numbers of people in different categories:

Susceptibles (S) People who may catch the virus infection, without being immune to it.

Exposed (E) People who have been exposed to the virus without having become infectious.

Infectious (I) People who have caught the virus and are in an infectious stage.

Recovered (R) People who have recovered from the infection, and are no longer infectious (but
could later become susceptible to a new strain of virus).

Deceased (D) Victims of the virus.

These categories follow the pattern shown in Figure 1. In a population of initial size N , the number
of people in each pattern evidently follows

S + E + I + R + D = N . (1)

In the simplest homogeneous SIR model (?), several assumptions are made:
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Figure 1: General progression of pandemic in categories of people

1. The Exposed population is merged into the Infectious population.

2. The Dead population is merged with the Recovered population to form the Removed population,
which if they survive become immune to the virus and can no longer become susceptible.

3. The Infectious people all remain infectious for a time TI.

4. The members of the Infectious population each infect a constant number R0 of Susceptible people
through the course of their infection. R0 is called the basic reproduction number.

5. The fraction of the population that die is very small, say less than 5%, so that one can assume
that the total population size N is roughly constant.
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Figure 2: Simplified SIR progression of pandemic in categories of people

The SIR model (Figure 2) thus involves only 3 categories of people, Susceptibles, Infectious, and
Removed. It provides a good representation to outbreaks such as measles (rougeole in French), mumps
(oreillons in French), and rubella (rubéole in French). Equation (1) can be simplified to

S + I + R = 1 , (2)

where S, I, and R now represent fractions of the total population.
One can write differential equations for the temporal variations of the different populations.

dS

dt
= −b S I ,

dI

dt
= b S I − g I ,

dR

dt
= g I .

(3a)

(3b)

(3c)
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Equation (3a) states that the Susceptibles are converted into Infectious when they run into an Infec-
tious, where b is the transmission rate, i.e. the (average) number of contacts between Susceptibles
and Infectious that lead to the infection of the Susceptible, per Susceptible and per Infectious. Equa-
tion (3b) converts the loss of Susceptibles into a gain of Infectious, but also has a loss term to account
for transition to the Removed category, either by Recovery or by Death. Here g is the removal
rate, so that 1/g is the period (e.g. in days) that a person remains Infectious. Finally, equation (3c)
expresses the loss of Infectious as a gain for the Removed. The basic reproduction number is defined
as the ratio of the rates

R0 =
b

g
. (4)

Equation (4) can also be re-written as R0 being the ratio of the infectious period to the time between
infectious contacts of an Infectious with Susceptible people.

3 Natural growth

We first analyze the unimpeded growth of a pandemic, that is without any efforts at containing the
population to avoid transmission of the virus from Infectious people to Susceptibles, who hereafter
become Infectious.

This growth can be described in several phases.

3.1 Exponential growth

In the early phase, the fraction of Infectious people is small, i.e. I � 1, and given equation (2), the
fraction of Susceptible people is close to unity. Therefore equation (3b) becomes

dI

dt
' (b− g) I = (R0 − 1)

I

TI
. (5)

Integrating equation (5) yields the evolution of the fraction of Infectious people as

I(t) = Ii exp

[
(R0 − 1)

t

TI

]
, (6)

where Ii is the initial number of Infectious people. Equation (6) indicates that for R0 > 1, there is
exponential growth of the fraction of Infectious people, and equation (6) can be re-written

I(t) = Ii 2t/T2 , (7)

where T2 is the doubling time of the number of Infectious people. Combining equations (6) and (7)
gives

T2 =
ln 2

R0 − 1
TI '

0.7

R0 − 1
TI . (8)

Conversely, if R0 < 1, the fraction of Infectious people drops exponentially. If R0 were exactly equal
to unity, the fraction of Infectious people would remain constant in time.

The graphs of the time evolution of the number of Infectious people per country1 all show expo-
nential growth for countries at this stage, except for China, where the exponential growth stage has
terminated in early February.

Equation (7) can be inverted to yield

R0 = 1 + ln 2
TI

T2
' 1 + 0.7

TI

T2
. (9)

1These graphs can be seen in ?, with data provided by the European Centre for Disease Prevention and Control
(ECDC) at https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-geographic-disbtribution-worldwide-
2020-03-14 1.xls.
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Figure 3: Basic reproduction factor, R0, as a function of doubling time of number of infected people for different
durations of the infectious stage, following equation (9)

Figure 3 illustrates how R0 depends on both the doubling time, T2 and on the duration of the Infectious
phase, TI.

The early phases of the exponential growth often occurred with doubling times of 2 to 3 days,
which, according to equation (9) and Figure 3 indicates that R0 lies somewhere between 2.5 and 6,
depending on the duration of the contagious phase, TI. There is little information available on the
value of TI, because it is very difficult to measure. A recent study (?) suggests that people infected
by COVID-19 are contagious from before the symptoms appear (the incubation period) to after
the symptoms disappear, which suggests that TI should be longer than previously thought. Also, the
time from onset of symptoms to death ranges from 2 to 8 weeks (?), which again suggests a very
long contagious time. This suggests that COVID-19 is unusually contagious with a basic reproduction
factor R0 > 5. This is at the upper limit of the range of R0 given in ?.2

3.2 Peak of pandemic

The pandemic reaches a peak, because Infectious people run out of Susceptibles to contaminate. This
peak is naturally defined when the fraction of Infectious people reaches its maximum, i.e. dI/dt = 0.
Since equation (3b) can be re-written as

dI

dt
= (R0 S − 1)

I

TI
, (10)

the peak occurs when S = Speak = 1/R0, and the fraction of people who have caught the virus at this
time (Infectious plus Removed), is

Zpeak = 1− Speak = 1− 1

R0
. (11)

For R0 = 2 to 5, equation (11) leads to 50% to 80% of the population having been contami-
nated at the peak of the pandemic, and more by the end as we shall see in Sect. 3.4 below.

2Note that the article giving the upper limit of R0 = 4.82 has been withdrawn, as the authors indicate they wish to
update it.
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3.3 Post-peak exponential decrease

After the peak, the fraction of Susceptibles is very roughly constant, and equation (10) can be ap-
proximated as

dI

dt
' (b S − g) I = (R0 S − 1)

I

TI
, (12)

which is similar to equation (5), with the extra constant S term. The solution of equation (12) is an
exponential decrease of the fraction of Infectious

I(t) = Ij exp

[
(S R0 − 1)

(t− tj)

TI

]
, (13)

where tj is a reference time, Ij = I(tj) is te fraction of Infecytious at this reference time. For S < 1/R0,
equation (13) can be re-written as

I(t) = Ij 2−t/T2 , (14)

where T2 is now the halving time of the number or fraction of Infectious people. Combining equa-
tions (13) and (14) produces

T2 =
ln 2

1−R0 S
TI '

0.7

1−R0 S
TI . (15)

One should note that the ratio of halving to doubling times is easily obtained by combining
equations (8) and (15):

T halving
2

T doubling
2

=
R0 − 1

1−R0 Sfinal
. (16)

The halving time is at best (shortest) equal to R0 − 1 times the doubling time. For R0 = 3, the
halving time is at least twice the doubling time. We shall see below that Sfinal is much lower
than unity, so the halving time is close to that limit.

3.4 End of pandemic

The pandemic ends when the fraction of Infectious people is significantly decreased by the Recoveries
or Deaths. A this stage, one can estimate the fraction Zfinal of people who have caught the virus can
be found as follows.

Equations (3a) and (3b) combine to

dS

dt
+

dI

dt
= −g I = − b

R0
I =

1

R0

1

S

dS

dt
. (17)

Equation (17) can be integrated to yield

(Sfinal − Sinitial) + (Ifinal − Iinitial) =
1

R0
ln

(
Sfinal

Sinitial

)
. (18)

Since Sinitial ' 1 and (Ifinal − Iinitial)� 1, equation (18) leads to

Zfinal = 1− Sfinal ' −
1

R0
ln (1− Zfinal) (19)

or equivalently

Zfinal = 1− e−R0Zfinal . (20)

Figure 4 shows the solution of equation (20) in terms of R0 (top panel) or of the Infectious duration,
TI (bottom panel). The final fraction of people infected at some point by the virus is as
high as 80%, 94%, or 99%, for R0 = 2, 3, or 5, respectively.

Since the fatality rate among those who have been contaminated at one point is estimated to be
between 1% and 5%,3 then the percentage of people in a country who die from the virus is
1% to 5%, assuming that no Containment measures are taken, as shown in Figure 5.

3The global fatality rate at 18 March 2020 is 4.4% (?), but may be lower given unreported (usually mild) cases.
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Figure 4: Final fraction of contaminated population versus R0 (top) or versus TI (Bottom).

3.5 Full evolution

The full evolution, with no measures of Containment (Sect. 5 below discusses Containment), obtained
by solving the system of differential equations (3a)-(3c) is shown in Figure 6. The top panel highlights
the different evolution of the Susceptibles, Infectious and Removed populations, for T2 = 3 days and
for three choices of TI (hence of R0). The fraction of Susceptibles (never contaminated) decreases
slowly from unity then rapidly, finally reaching a plateau at 5% to 15% in roughly 1 month of time.
The fraction of Infectious first rises rapidly, in fact exponentially, then reaches its maximum
and then decreases exponentially for lack of Susceptible people to infect. The fraction of Removed
rises exponentially and reaches a plateau near 100%. The longer the duration of the Infectious stage
of individuals, the longer is the exponential rise of Infectious people, and the later and higher is the
peak fraction of Infectious. For our choice of 3-day doubling time, as observed in most countries
before effective measures of Containment, the peak occurs when as many as half to 70% of
the population have been infected at one point. And, according to Figure 6, the maximum
fraction of Infectious people at a given time is as high as 18% to 34%, depending on the
Infectious duration, TI.
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Figure 5: Final percentage of deaths, for different fatality rates

4 Clustering

Unfortunately for the decision-makers, the parameter R0 is not uniform among the population. In
large cities, Infectious people will meet more Susceptibles and contaminate more of them than in small
villages. And even within cities, people in some occupations have more close encounters with others,
for example medical doctors who consult with up to 4 patients per hour.

I propose to neglect this second issue and assume that in a given zone, R0 is the same for everyone.
My clustering model has 3 zones:

1. A village, O, that is the Origin (foyer in French) of the infection in the country;

2. Cities, C;

3. The rest of the country side, V, made of small Villages similar to the foyer of infection.

We then have to follow 9 parameters, SO, IO, and RO for the populations (not fractions) of the Origin,
SC, IC, and RC for the populations of the Cities, and SV, IV, and RV for the populations of the other
Villages. The population NO = SO + IO +RO of the Origin represents a fraction FO of the population
N of the entire country, while the population NC = SC + IC + RC of the cities is FC that of the
country, with the remaining NV = N −NO −NC in the other villages, i.e. FO + FC + FV = 1.

I also assume that some fraction of the people from one zone make round-trip visits to the other
zone. This leads to Infectious from one zone contaminating the Susceptibles from other zones.

Therefore the rate of change of the number of Susceptibles from one zone is the sum of 3 terms:

1. contaminations from Infectious of their zone;

2. contaminations from Infectious people visiting from other zones;
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Figure 6: Top: Evolution of fractions of Susceptibles (solid), Infectious (dashed) and Removed (dotted), for 3
assumed durations of the Infectious. Bottom: Evolution of total cases (solid) and (current) Infectious (dashed).
Both panels assume doubling time T2 = 3 days and Infectious duration TI = 5, 7, or 10 days, which for T2 = 3
days amounts to R0 = 2.2, 2.6, and 3.3.

3. contaminations from Infectious people from other zones, when visiting their zone.

With these assumptions one can write the differential equations of our clustering SIR model as in
equations (24a)-(24i) of Appendix A.

Figure 7 shows the evolution of such a 3-zone clustered country. The infection spreads rapidly to
other Villages, then almost immediately to Cities, whose greater promiscuity, hence larger R0 factor,
leads to a faster relative rise in number of Infectious. The number of Infectious in the country
has two peaks: in Cities after 45 days, and in Villages after 270 days. Moreover, while up
to 10% of the inhabitants of the Origin and of Villages are Infectious at the peak of their respective
epidemics, the peak fraction of Infectious is as high as 50% in the Cities.

5 Containment

The top panel of Figure 8 displays the effects of a 90-day period of Containment that reduces R0 from
3 to 0.5. The figure indicates that Containment represents a delay in the Contamination,
but the final cumulative fraction of Contaminated people remains the same. Indeed, while
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Figure 7: Evolution of Infectious cases in 3-zone clustered country, where R0 = 5 in cities (total population of
20 million) and R0 = 1.5 elsewhere, without Containment. The simulation assumes that 20% of people in the
Origin and in other Villages travel regularly to Cities and 10% of the inhabitants of the Origin village to other
Villages. The dashed horizontal lines represent the total population of each of the 3 zones. The bottom panel
is a zoom at early times.

Containment does reduce drastically the Number of Infectious (decreasing portion of red line), the
Infectious rises exponentially (seen linearly in logarithmic y axis) as soon as Containment is ended.
The post-Containment period matches the evolution of the No-Containment case (dashed lines), but
with the delay of the Containment period.

With Containment, equation (16) becomes

T halving
2

T doubling
2

=
Rinitial

0 − 1

1−RContainment
0 SContainment

' Rinitial
0 − 1

1−RContainment
0

, (21)

where RContainment
0 < 1 < Rinitial

0 . According to equation (21) and illustrated in Figure 9, the ratio
of halving to doubling time is 4 for Rinitial

0 = 3 and RContainment
0 = 0.5 (a wild guess). Equation (21)

indicates that even with complete Containment (RContainment
0 = 0), the halving time will be

at least Rinitial
0 − 1 ' 2 times the initial doubling time.
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Figure 8: Effect of Containment (during times shown as gray shaded region) on fractions of cumulative cases
and of Infectious. The Infectious duration is assumed to be 7 days. The basic reproduction number is R0 = 3
before and after Containment, and R0 = 0.5 (top) or 0 (bottom) during Containment. The dashed and solid
curves show the cases without and with Containment.

6 Strategic choices

6.1 National and regional strategies

6.1.1 Should the population be Contained?

Given the observed fatality rate between 1% and 5%, and that the peak fraction of Infectious peo-
ple is between 14% and 33% in a homogeneous model (Figure 6) or as high as 50% in Cities in a
clustered model (top panel of Figure 7), the authorities feel obliged to treat the serious Infectious
cases. But since roughly 20% of the Infectious cases are life-threatening, the moral decision to treat
all serious cases implies that at one point of time as many as 7% of the entire population
(10% in Cities) will be hospitalized (roughly one-quarter of these in intensive care). These huge
fractions of peak demands for hospitalizations and of intensive care are well beyond the
capacities of any country. Therefore, all governments face the following dilemma:

• Treat only a fraction of the cases. This leads to choices of who should be treated, which be
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Figure 9: Ratio of Containment halving time to Pre-Containment doubling time

considered as immoral by a large fraction of the population.

• Contain the spread of the pandemic. This has dire consequences on 1) the economy, and 2)
the health of the remaining population. In fact, one could worry that a long Containment period
would indirectly cause more deaths than the roughly one million expected from the COVID-19
virus in a country of 65 million, from inadequate access to medical facilities and personnel of
people who are ill from other causes than the virus.

The only reason for Containment is to gain time in hope that the virus weakens during
the hot Summer days, or that an effective and safe vaccine becomes widely available.

6.1.2 When should Containment be instituted?

The analysis of the pandemic by national or regional authorities is difficult in the early exponential-
growth phase, because of two factors:

1. not all Infectious people report their illness;

2. those who do report their illness, do it with a delay corresponding to the incubation period plus
the period where their signs of illness are not deemed threatening.

Denoting this delay as Tdelay, and assuming that it is the same for all Infectious people, then the
actual number of cases is

Ireported(t) = I(t− Tdelay) = Ii 2(t−Tdelay)/T2 = 2−Tdelay/T2 I(t) . (22)

i.e.

I(t) = 2Tdelay/T2 Ireported . (23)

Equation (23) indicates that the number of reported cases is hugely underestimated. In China,
the arrival of the symptoms pre-dated the diagnosis of the virus by typically Tdelay = 7 days (?, see
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Figure 10: Effect of time delay on measured number of cases (semi-log plot)

also ?). Equation (23) indicates that there are 5 to 11 times more cases than reported if the
doubling time is 3 or 2 days, respectively (see ?). This underestimation of the number of cases is even
more important if, as many think, the Infectious stage begins before the first symptoms. So, when you
venture into the street, you should consider that at least 10 times the official ratio of contaminated
to total population are effectively Infectious, and multiply by another factor of 2 or more if you live
in a city, where people run into one another more frequently, hence Infectious people contaminate
Susceptibles at a faster rate (i.e. cities have higher R0 than rural areas).

6.1.3 When should Containment be lifted?

There are three criteria to lift the containment:

1. when the virus is eradicated;

2. when the Summer season hopefully decreases the strength of the virus.

3. when an effective and safe vaccine becomes widely available;

The eradication of the virus could be expected following the exponential decrease of the Infectious
population, predicted in equations (13) and (14), and computed in Figure 6 and especially Figure 8.
In particular, Figure 8 shows that for a country of population around 65 million (e.g. France, the
United Kingdom, Italy), the time to have the fraction of Infectious to fall below 1 over 65 million
is 150 days for RContainment

0 = 0.5 or a minimum of 75 days for RContainment
0 = 0. Empirically, the

residents of the Hubei province of China (where the outbreak begun) had to wait 50 days after the
start of Containment (a strictly-enforced lockdown) to see zero new cases on 18 March 2020. But
the number may rise again, and there are still some Infectious people. So the Containment period in
Hubei whose population is 60 million) should probably last 50+15 = 65 days, which is not too far off
from our estimate of 75 days. Therefore, in such countries, the absolute minimum duration of
Containment is 2 or 2.5 months. This brings us to end of May or early June 2020.

In practice, governments should not lift Containment as soon as the number of Infectious appears to
be nil, but wait a few days to make sure that the few missing cases of Infectious move to the Removed
category, otherwise they will re-infect the population with exponential growth. The Containment
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measures could be lifted in steps lasting a week each, so as to monitor the evolution of the number of
Infectious people.

There is also the hope that the COVID-19 virus will weaken when the hot Summer days arrive.
The one hot-Summer country in the Southern hemisphere whose medical quality is at the level of
Europe and North America is Australia. The doubling time of the cases (Infectious + Removed in
our parlance) is also roughly 3 days (?). While the fraction of cases in Australia is 5 times lower than
in France it is as much as half that of the United Kingdom. So, there seems to be little relief of
the pandemic from hot weather.

Finally, if the virus cannot be eradicated, our hope lies in an effective and widely distributed
vaccine. Vaccines usually take over a year to fully develop and certify, which would keep us in
Containment until February or March 2021. However, there is some hope for a shorter wait, as a
COVID-19 vaccine has begun Phase 1 trials, in record time (?).

7 Conclusions

It is very difficult to accurately predict the spread of a pandemic like that of the COVID-19 coronavirus.
This report highlights the spread of a pandemic in a given mid-size country from simple modeling in
cases of a homogeneous population, showing how a more clustered population changes the spread. It
also shows the effects and limits of Containment of the population. At best, the Containment will
last until late May or early June, but perhaps many months more. The effects on the economy will
be huge.
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A 3-zone model equations

In our 3-zone model, involving the Origin village (O), the Cities (C) and the other Villages (V), the
equations of the variations of the populations of each category in each zone (not the fractions) can be
written by considering
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0

fC→V IV

1 + fC→V IV

)]
,

dIC

dt
= −dSC

dt
− IC

TI
,

dRC

dt
=

IC

TI
,

dSV

dt
= − SV

TI NV

[
RV

0

(
IV +

fO→V IO

1 + fO→V IO
+

fC→V IC

1 + fC→V IC

)
+

(
RO

0

fV→O IO

1 + fV→O IO
+ RC

0

fV→C IC

1 + fV→C IC

)]
,

dIV

dt
= −dSV

dt
− IV

TI

dRV

dt
=

IV

TI
.

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

(24g)

(24h)

(24i)

Equations (24b), (24e), and (24h) for the Infectious all resemble equation (3b), and equations (24c),
(24f), and (24i) for the Removed all resemble equation (3c). On the other hand equations (24a), (24d),
and (24g) include extra terms relative to equation (3a), namely the infections from Infectious visitors
from another zone (2nd and 3rd terms of the 1st parentheses), and the infections occurred when
traveling to another zone (both terms of 2nd parentheses).
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