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1 Introduction
The main goal of these lectures is to illustrate how tools from kinetic theory can be extended to self-

gravitating stellar systems, and more generically to systems driven by long-range interactions (Campa et al.,
2009). A comprehensive introduction to stellar dynamics can be found in Binney & Tremaine (2008). Previous
lectures from James Binney can also be found under the link1.

Let us �rst note some of the key di�erences between a self-gravitating system and an electrostatic plasma:
ˆ There are no charges for gravity, which makes the associated force systematically attractive, in direct

opposition with the repulsive electrostatic force for particles with the same sign of charge. This is the
key reason why self-gravitating systems can develop instabilities on their largest scale, and why they can
also strongly amplify perturbations on these large scales.

1http://www-thphys.physics.ox.ac.uk/people/JamesBinn ey/kt.pdf
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ˆ As a consequence, self-gravitating systems are globally inhomogeneous, contrary to plasmas which are
inhomogeneous only on scales smaller than the Debye length � D . As a result, to describe the long-term
dynamics of self-gravitating systems, one has to carefully account for the fact that the mean potential
satis�es �( x) 6= 0 , de�ning a complex orbital structure. Even in the absence of any perturbations and
�uctuations, stars follow intricate orbital motions.

ˆ In a solid or a liquid, the forces acting on a particle are typically dominated by the contributions from its
close neighbours. Particles are submitted to violent and short-lived accelerations separated with longer
periods during which they move with nearly constant velocities. Similarly, in an electrostatic plasma,
forces are dominated by the contributions from the particles within � D . This is radically di�erent in self-
gravitating systems, where, since gravity cannot be screened, forces are dominated by remote particles,
i.e. the force is long-range, as we brie�y justify below.

Let us consider one test particle, placed at the origin of the coordinates system, and embedded within a
stellar system composed of N � 1 particles (e.g., N ' 105 stars in a globular cluster, or N ' 1011 stars in the
Milky Way (MW)). On scales larger than the mean inter-particle distance, we can describe this system with a
smooth density � (x). The small cell at distancejx j from the test particle and within the solid angle d
 contains a
massdM = � (x) jx j2 djx j d
 . This cell therefore generates a gravitational force per unit mass with a magnitude
given by dF =d M � G=jx j2 = G � (x) djx j d
 , where, importantly, one notes that the factor jx j2 has disappeared.
As a consequence, the force on that test particle is driven by the system's smooth density pro�le � (x), rather
than by the local contributions from the nearby neighbors. As a result, the force on a given star does not,
typically, vary rapidly, and each star undergoes a smooth acceleration generated by the self-gravitating system
as a whole. This is the archetype of a long-range interacting system.

Self-gravitating systems, such as galaxies, are therefore complex dynamical systems that require a careful
modelling to account for their key speci�cities and describe to their long-term evolutions, as illustrated in
Fig. 1.1.
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Figure 1.1: . Illustration of the di�erent components involved in the long-term dynamics of a test
star embedded in a galaxy. To describe the complex quasi-periodic motion of the test star, one has
to rely on angle-action-coordinates. The galaxy being self-gravitating, any perturbation is dressed by
collective e�ects, and therefore generates a gravitational wake. The long-term orbital di�usion of the
test star can �nally be induced either by external perturbations (e.g., through the cosmic environment)
or by internal perturbations (e.g., �nite- N e�ects).

ˆ Galaxies are inhomogeneous. Because a galaxy's mean potential is non-zero, individual stars follow intri-
cate orbits. As a consequence, the physical phase space coordinates(x; v ) are no longer appropriate to
describe the mean-�eld motion of the stars. One has to resort to labelling the system's orbital structure.
This asks for the use of the angle-action coordinates(� ; J) (see Section 2).

ˆ Galaxies are dynamically relaxed. Following the �rst few dynamical times after its formation, a self-
gravitating system rapidly reaches a quasi-stationary distribution, F (J; t), through the processes of
violent relaxation (Lynden-Bell, 1967) and phase mixing. Such a con�guration is dynamically frozen for
the mean-�eld dynamics, and can keep evolving only under the e�ects of perturbations. This asks for
the construction and speci�cation of a system's admissible quasi-stationary distributions and equilibria
(see Section 2).

ˆ Galaxies are self-gravitating. Stars evolve in the potential that they self-consistently construct. This allows
the system to amplify perturbations by self-gravity, which can accelerate the galaxy's secular dynamics
or even cause linear instabilities. This asks for the computation of the system's linear response theory
(see Section 3.4).

ˆ Galaxies are resonant. To each orbit is associated a set of orbital frequencies,
 (J), which characterise the
star's mean-�eld motion. This naturally introduces a time dichotomy between the fast orbital timescale to
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sweep orbits, and the slow secular timescale to distort the system's orbital structure. This asks therefore
for the correct accounting of resonant contributions to secular evolutions (see Section 5).

ˆ Galaxies are discreteand perturbed. Galaxies are composed of a �nite number of constituents. As a result,
�nite- N e�ects induce internal perturbations that act as seeds to source long-term orbital distortions.
This asks for the detailed accounting of the long-term e�ects associated with Poisson shot noise on a
system's structure (see Section 5).

Any worthy attempt at quantitatively describing the long-term evolution of self-gravitating systems must nec-
essarily account for all these de�ning features, as they drastically impact the system's long-term behaviour.
Overall, this drives the system's secular dynamics, i.e. the long-term relaxation induced by long-range reso-
nant couplings between the ampli�ed perturbations undergone by the system, see Fig. 1.2. This is the dynamics
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Figure 1.2: Illustration of the typical fate of a long-range interacting system, such as a galaxy. On the
�rst few dynamical times, the galaxy's evolution is governed by collisionless Vlasov-Poisson system.
As a result of violent relaxation (Lynden-Bell, 1967) and phase mixing, the galaxy reaches a quasi-
stationary state, i.e. a state dynamically frozen for the smooth mean-�eld dynamics. Later, on much
longer timescales, �uctuations present in the galaxy, ampli�ed by self-gravity and coupled through
orbital resonances, drive an irreversible long-term distortion of the galactic orbital structure: this is
the secular dynamics. These perturbations may be internal (e.g., induced by �nite- N �uctuations),
and captured by the inhomogeneous Balescu-Lenard equation (Heyvaerts, 2010; Chavanis, 2012), or
external (e.g., passing-by perturbers), and described by the dressed Fokker-Planck equation (Binney
& Lacey, 1988; Weinberg, 2001).

over which we will focus here.

1.1 Virial Theorem

As an highlight of these properties, let us �rst obtain an important result, the virial theorem, that connects the
mass of a self-gravitating system to its extent in real and velocity space. We consider N particles of individual
massm evolving within their mutually generated gravitational potential, as dictated by the pairwise interaction
U(x; x0) = � G=jx � x0j. The system's instantaneous moment of inertia w.r.t. the origin is given by

I =
NX

i =1

m x2
i : (1.1)

And its second derivative is given by

•I = 2
� NX

i =1

m v 2
i +

NX

i =1

m x i �
dv i

dt

�
: (1.2)
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The last term can be computed furthermore, using the equations of motion for particle i . We write it as

NX

i =1

m x i �
dv i

dt
= �

NX

i;j
i 6= j

m2x i �
@U(x i ; x j )

@x i

= �
1
2

NX

i;j
i 6= j

m2 (x i � x j ) �
@U(x i ; x j )

@x i

= �
1
2

NX

i;j
i 6= j

G m2 (x i � x j ) �
(x i � x j )
jx i � x j j3

=
NX

i<j

m2 U(x i ; x j ); (1.3)

where the second line was obtained by using the symmetrisation i $ j , and relying on Newton's second law
of equal action and reaction. To get the last line, we �nally used the fact that the gravitational interaction is a
a power law, U(x; x0)= � G=jx � x0j, making the computation of the forces explicit.

Let us now assume that the system is in equilibrium, i.e. we assume that hI i =0 , where h � i stands for both
an average over realisations. Equation (1.2) allows us then to �nally obtain

2K + W = 0 ; (1.4)

where we introduced the averaged kinetic and potential energies as

K =
�

1
2

NX

i =1

m v 2
i

�
; W =

� NX

i<j

m2 U(x i ; x j )
�

: (1.5)

The virial theorem from Eq. (1.4) is an important result that directly connects the system total kinetic energy,
i.e. the system's velocity dispersion, to the system's total potential energy, i.e. the system's physical extension.

1.2 Thermal Equilibrium

Relying on the virial theorem, let us now investigate in more details the thermodynamics of self-gravitating
systems, and argue why, contrary to electrostatic plasmas with their Maxwell distributions, self-gravitating
systems cannot reach their thermal equilibrium.

Let us assume that the self-gravitating system comprises N con�ned particles in thermal equilibrium. As-
suming that the particles have no internal degrees of freedom, and that binary systems can be neglected, we
can formally treat this system as a monoatomic gas, whose temperature satis�es 3

2 NkB T = K , and its internal
energy is given by E = K + W = � K , which is negative. The heat capacity of that system is then given by

C =
@E
@T

= �
@K
@T

= �
3
2

NkB ; (1.6)

which is also negative. This is very problematic, as it makes it impossible for the self-gravitating system to
reach a thermal equilibrium with a conventional heat bath, as such a con�guration would be unstable. Indeed,
let us assume that the system and heat bath were in thermal equilibrium. Then, we assume that some �uctu-
ations �E > 0 of energy �ows from the system to the heat bath. As a result, the system would heat up by the
amount �T = � �E=C > 0. By losing energy, the system gets hotter. As a consequence, since the system is now
hotter than the bath, more heat would �ow from the system to the bath, and the system would get hotter and
hotter, with no apparent limit. Such an argument is a �rst illustration of why self-gravitating systems cannot
generically reach their thermal equilibrium.

Another complication associated with thermal equilibria comes from the system's unavoidable tendency
of evaporating by launching particles to in�nitely large radii. Assuming that the system's gravitational poten-
tial is de�ned so that �( r ) ! 0 for r ! + 1 , a star is unbounded to the system if ever its individual energy,
E = 1

2 v 2+�( r ), satis�es E > 0. Phrased di�erently, at a given location, self-gravity con�nes particles only up
to a �nite escape speed given by vesc(x)=

p
� 2�( x). This already tells us that in thermal equilibrium, the

system's distribution function (DF), F (x; v ), would have to vanish for v > v esc, which cannot be a Maxwellian,
since it is always non-zero. As a result, any form of equilibrium will always scatter stars to v > v esc, which
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would then "evaporate" from the system. We can estimate the e�ciency of this evaporation by computing the
mean square value of vesc, as follows

� 2
esc =

1
M tot

Z
dx � (x) v2

esc(x)

= �
2

M tot

Z
dx � (x) �( x)

= �
2

M tot

Z
dxdx0U(x; x0) � (x) � (x0): (1.7)

where to get the last line, we wrote the system's potential as

�( x) =
Z

dx0U(x; x0) � (x0): (1.8)

Paying a careful attention to the over-counting of pairwise interactions, the last integral from Eq. (1.7) is equal
to 2W , so that we obtain

� 2
esc = � 4

W
M tot

= 8
K

M tot
= 4 � 2; (1.9)

where we used the virial theorem from Eq. (1.4), and introduced the cluster's velocity dispersion as � 2 = hv 2
i i .

As a consequence, we have� esc = 2 � , which is not far into the high-velocity tail. For the purpose of this calcu-
lation, if we assume that the system is in a thermal equilibrium with a Maxwellian distribution, so that its DF
is of the form F (v) / e� 3jv j2 =(2 � 2 ) , we can then estimate the fraction of escaping and unbound stars as

f esc =

R+ 1
2� dv v2 e� 3v2 =(2 � 2 )

R+ 1
0 dv v2 e� 3v2 =(2 � 2 )

=

R+ 1p
6 du e� u 2

R+ 1
0 du e� u 2

'
1

140
: (1.10)

If we assume that this evaporation process removes a fraction f esc of stars every relaxation time (de�ned more
precisely in the upcoming section), we can then compute the rate of loss by evaporation as

dN
dt

= �
f escN
t relax

; (1.11)

which gives a typical time for evaporation as tevap = t relax =f esc ' 140� t relax . This is an important conclusion,
which states that owing to the absence of any thermal equilibrium, a self-gravitating system will unavoidably
lose a substantial fraction of its mass over a few relaxation times. This once again emphasises the impossibility
for self-gravitating system to reach any true thermal equilibrium. This is in strong opposition with electrostatic
plasmas that can indeed reach their thermal Maxwellian distribution. As a result, describing the long-term evo-
lution of a self-gravitating system asks for the the detailed description of the (incomplete) relaxation undergone
by a kinetic system far from its thermal equilibrium.

1.3 Relaxation time

Let us now develop a �rst approximate calculation of the relaxation time, t relax , of a self-gravitating system (Bin-
ney & Tremaine, 2008; Hamilton et al., 2018). We assume that the system is of total massM tot = Nm, and of
characteristic size R. Following the virial theorem, we expect the typical internal speed within the system to
be of order � =

p
GM tot =R. We are interested in how the spontaneous Poisson �uctuations in the system, i.e.

the unavoidable shot noise associated with the system's �nite number of particles, can lead to the system's
irreversible relaxation.

We consider a subregion of size r = xR which undergoes some potential �uctuations. On average, this
region contains the massM r ' x3M tot , and therefore a number of particle equal to N r ' x3N . This local num-
ber of particles �uctuates as result of Poisson shot noise, with an amplitude of the order �N r ' N r =

p
N r , so

that the mass within that subregion �uctuates with the amplitude �M r = M r =
p

N r = x3=2M tot =
p

N , and this
�uctuation typically lasts �t = xR=� , i.e. the time for the �uctuation to �ow away from that small subregion.

We now consider a test particle that is a distance yR from this subregion, and we want to compute the e�ects
of the �uctuations of this subregion onto the test particle. Under the e�ect of this perturbation, the velocity of
the test star will typically change by

�v = �F �t =
G �M r

(yR)2 �t =
GM tot x3=2

(yR)2
p

N

xR
�

=
� x 5=2

y2
p

N
: (1.12)
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This equation describes the local velocity kick undergone by the test star and induced by the spontaneous
Poisson �uctuations in some distant subregion.

Let us now sum the contributions of these de�ections from all the di�erent subregions of size x. We assume
that di�erent contributions are statistically independent, so that we must add them in quadrature. For a �xed y,
i.e. for a �xed distance to the test star, there are � 4� (y=x)2 subregions of sizex, and during one dynamical time
of the test particle td = R=� , each subregion has undergonetd=�t = 1=x independent episode of �uctuations.
As a result, during one dynamical time, the overall contributions from all these subregions leads to an increase
in (� v)2 scaling like

(� v)2 = 4 �
y2

x3 (�v )2 = 4 �
� 2 x2

y2 N
: (1.13)

Keeping �xed x, the size of the perturbing subregions, we must now sum over all the distances to the test
particle, i.e. we must sum over y = x; 2x; :::; 1. This sum is computed using an integral with dy = x, and we
can write

X 1
y2 '

1
x

Z 1

x

dy
y2 '

1
x

�
1
x

� 1
�

'
1
x2 : (1.14)

As a result, within one dynamical time, the subregions of scale x lead to a change in (� v)2 of the order

(� v)2 ' 4�� 2 1
N

: (1.15)

This is a remarkable result, as it shows that the contributions of each scale is independent of their size, i.e.
independent of x. This illustrates in particular why gravity is in the complicated dynamical regime, where
small and large scales �uctuations apparently contribute equally to the relaxation undergone by the system.
The total change of the test particle's velocity must �nally be summed over all the relavant scales x. The relevant
scales of �uctuations go from the smallest one xmin and the largest one x = 1 , and to account for them, we
may multiply Eq. (1.15) by � ln(xmin ), i.e. the typical number of di�erent scales that independently source the
relaxation, to obtain the overall relaxation induced by the whole cluster. The smallest scale to consider should
be of the order of the inter-particle distance xmin ' 1=N1=3. The overall change of the test particle's velocity
over one dynamical time is �nally given by

�
� v

� 2
t d

'
4�� 2 ln(N )

3N
: (1.16)

The system's relaxation time, t relax , is then de�ned as the time required for these Poisson �uctuations to lead
to a change in the test particle's velocity of the order of itself, i.e. the time required for (� v)2 to accumulate to
� 2. Following Eq. (1.16), we �nally obtain

t relax '
0:2N
ln(N )

td : (1.17)

Of course, there are numerous very signi�cant shortcomings in the present calculation. But, it still provides
us with various physical enlightenings as we will now discuss.

ˆ We note that the relaxation time scales like / Nt d , where for most purposes the ln(N ) from Eq. (1.17)
can be ignored. The larger the number particles, the more one has to wait for the relaxation to happen.
In the present calculation, this number comes from the fact that spontaneous Poisson �uctuations have
an amplitude of the order 1=

p
N , and since they are assumed to be de-correlated one from another,

they only contribute in quadrature to the velocity kicks, leading to the observed scaling w.r.t. N . In the
upcoming calculations, we will show how, owing to the system's orbital structure, "encounters" should
not be treated as uncorrelated, but rather as resonant and correlated.

ˆ In Eq. (1.17), the Coulomb logarithm associated with ln(N ) is a consequence of the "scale conspiracy"
of the Newtonian interaction, � G=jx � x0j, that makes it so that the small number of very nearby de-
�ections and the large number of very far-away de�ections contribute equally to the budget of a test
star's di�usion. This logarithm factor also illustrates our mis-handling of the contributions from very
nearby particles, where our assumption of small velocity kicks does not apply anymore, as well as our
mis-handling of the contributions from particles on largest scales, where the homogeneity assumption
does not hold anymore as well.

ˆ In Eq. (1.17), we note that the ratio t relax =td only depends on N the number of particles, and is com-
pletely independent of � , a proxy for the dynamical temperature of the system. This is because we have
assumed that the source of �uctuations were "bare" Poisson �uctuations, i.e. only generated by the �nite
number of particles. In practice, this is not correct as self-gravity, i.e. the ability of the system to amplify
perturbations will "dress" the Poisson �uctuations, signi�cantly boost their amplitude, and therefore can
drastically accelerate the system's overall relaxation. This is of particular importance on the largest scales,
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where the self-gravitating ampli�cation is the most e�cient. Hence, large-scale �uctuations are expected
to have larger amplitude than simple Poisson �uctuations, so that rather than all scales contributing
equally to the relaxation, we expect the �uctuations on the size of the system to be the dominant driver
of the system's relaxation.

All these remarks will make our task of characterising in detail the relaxation of self-gravitating systems more
cumbersome in two respects. First, on the system's overall scale, we cannot rely on any homogeneous assump-
tion, and assume that the particles' unperturbed trajectories are simple straight lines, an assumption that was
legitimate in electrostatic plasmas. One has to account for inhomogeneity, and the associated intricate orbital
motions. Second, because of the importance of self-gravity, we will need to solve the system's linear response,
to characterise the e�ciency of the associated ampli�cation of perturbations. In the coming sections, we will
develop all the needed tools to make the estimation from Eq. (1.17) much more precise, reaching our �nal in
goal in Eq. (5.2), where we will present the inhomogeneous Balescu-Lenard equation, the kinetic equation de-
scribing the spontaneous, resonant and dressed relaxation of a discrete inhomogeneous long-range interacting
system.

2 Mean-�eld dynamics
In this section, we present the tools and methods needed to describe the mean-�eld dynamics of a self-

gravitating system. We refer to Goldstein (1950); Arnold (1978); Binney & Tremaine (2008) for thorough pre-
sentations of Hamiltonian dynamics.

2.1 Hamiltonian dynamics

A d-dimensional system can be described by its Hamiltonian H expressed as a function of the canonical coor-
dinates (q; p). These coordinates evolve according to Hamilton's equations

dq
dt

=
@H
@p

;
dp
dt

= �
@H
@q

: (2.1)

To shorten the notations, we denote the 2d-dimensional phase space coordinates with the w = ( q; p).
For two functions F (w) and G(w), we de�ne their Poisson brackets as

�
F (w); G(w)

�
=

@F
@q

�
@G
@p

�
@F
@p

�
@G
@q

: (2.2)

With these notations, Hamilton's equation can be written under the short form

dw
dt

=
�
w ; H

�
: (2.3)

In addition, the canonical phase space coordinates satisfy the canonical commutation relations

�
wp; wq

�
= Jpq with J =

�
0 I

� I 0

�
; (2.4)

where J is the 2d� 2d symplectic matrix, with 0 and I respectively the d� d zero and identity matrices.
Because Hamiltonian dynamics describes the dynamics in phase space, it allows for generalised change of

coordinates. Some phase space coordinatesW =( Q; P) are said to be canonical if they satisfy the canonical
commutation relations, i.e. if one has �

W p; W q
�

= Jpq: (2.5)

Canonical coordinates satisfy many fundamental properties. An essential one is that Hamilton's equations
conserve the same form. This means that one has _W =[ W ; H ], where the Hamiltonian is expressed as a func-
tion of these new coordinates, and the Poisson bracket also involves derivatives w.r.t. the new coordinates. We
note that in�nitesimal phase space volumes are also conserved by canonical transformations, so that dW =d w.
Similarly, Poisson brackets are also conserved through canonical transformations.

2.2 Klimontovich Equation

Throughout these notes, we will generically be interested in the dynamics of a N -body system, embedded
within some physical space of dimension d. We have thereforeN particles at our disposal, of individual mass m

7
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and coupled through some long-range interaction potential U(x; x0). To shorten the notations, we �nally denote
the phase space coordinates asw =( x; v ). At any given time, the full state of the system can be characterised
by the discrete DF (also called empirical DF)

Fd (w ; t) =
NX

i =1

m � D (w � w i (t)) ; (2.6)

where w i (t) stands for the location in phase space at time t of the i th particle. At this stage, we emphasise that
if the DF Fd (w ; t) is provided, then one knows exactly the state of the system, and the system's evolution is
fully deterministic.

Let us now determine the evolution equations satis�ed by this discrete DF. Taking a time derivative, we
can write

@Fd (w ; t)
@t

=
NX

i =1

m
@

@w i (t)

�
� D (w � w i (t))

�
_w i (t)

= �
NX

i =1

m
@

@w

�
� D (w � w i (t))

�
_w i (t)

= �
@

@w
�
� NX

i =1

m � D (w � w i (t)) _w i (t)
�

= �
@

@w
�
� NX

i =1

m � D (w � w i (t)) _w(t)
�

= �
@

@w
�
�
Fd (w ; t) _w(t)

�
: (2.7)

To get the second line, we simply used the parity of the Dirac delta, to switch the variable w.r.t. which the
derivative is computed. To get the third line, as the derivative only acts on w, we may move all particle's phase
space velocities, _w i (t), within the derivative. Finally, to get the last line, we used the presence of the Dirac delta
to identify the phase space location where the phase space velocity, _w, has to be computed1. In that equation,
the phase space velocity _w should therefore be interpreted as the phase space velocity that a test particle at
location w and time t would feel. Following Eq. (2.3), it is given by

_w =
�
w; Hd

�
; (2.8)

where, in the present case, the discrete Hamiltonian is given by

Hd (w) =
jv j2

2
+ � d (x ; t); (2.9)

with the discrete Hamiltonian � d (x ; t)

� d (x ; t) =
nX

i =1

m U(x; x i (t)) =
Z

dw 0U(x; x0) Fd (w 0; t): (2.10)

As a consequence, following Eq. (2.7), we have been able to rewrite the evolution of the discrete DF, Fd (w ; t),
as a continuity equation reading

@Fd (w ; t)
@t

+
@

@w
�
�
Fd (w ; t) _w

�
= 0 : (2.11)

Luckily, owing to the Hamiltonian structure, this equation can be rewritten under an even simpler form.
Indeed, Eq. (2.11) becomes

0 =
@Fd
@t

+
@

@x
�
�
Fd _x

�
+

@
@v

�
�
Fd _v

�

=
@Fd
@t

+
@Fd
@x

�
@Hd

@v
�

@Fd
@v

�
@Hd

@v
+ Fd

�
@

@x
�

@Hd

@v
�

@
@v

�
@Hd

@x

�

=
@Fd
@t

+
@Fd
@x

�
@Hd

@v
�

@Fd
@v

�
@Hd

@x
; (2.12)

1A careful reader would have noted that there is a subtlety associated with how self-interactions are considered, i.e. how one should
one treat contributions from U(x ; x ). As long as one assumes that there are no self-forces, the present derivation holds.
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where to get the second line, we used the canonical equations of motion, as given by Eq. (2.8), and the simpli�-
cation in the third line comes from Schwarz' theorem. Looking carefully at Eq. (2.12), we note that the two last
terms can identi�ed back as a Poisson bracket. All in all, the dynamics of Fd (w ; t) in phase space is therefore
given by

@Fd
@t

+
�
Fd ; Hd

�
= 0 : (2.13)

This is the Klimontovich equation (Klimontovich, 1967). It is an important result, as it highlights how the
dynamics of the whole N -body can be rewritten under the (seemingly) simple form of a continuity equa-
tion in phase space, that �ows through phase space according to Hamilton's equations. Of course, here the
main di�culty comes from the fact that the DF, Fd (w), and the Hamiltonian, Hd (w), are highly discontinu-
ous phase space functions, that keep track exactly of the system's instantaneous phase space distribution. As
such, this equation is formally equivalent to the 2dN Hamilton's equations, or the dN Newton's equations. The
Klimontovich equation will be our starting point to derive a kinetic theory describing the long-term evolution
of self-gravitating systems.

2.3 Angle-action coordinates

As we have already emphasised in Eq. (2.5), one of the key strength of the Hamiltonian framework is that
one can perform change of phase space coordinates towards new coordinates better tailored to describe the
intricate orbits of particles in an inhomogeneous system.

An integral of motion I (w) is de�ned to be any function of the phase space coordinates that is constant
along the orbits. Moreover, it is said to be isolating if for any value in the image of I , the region of phase space
reaching this value is a smooth manifold of dimension 2d � 1. For example, for a Hamiltonian independent of
time, the energy constitutes an isolating integral of motion. A system is then said to be integrable if it possesses
d independent integrals of motion, i.e. d integrals whose di�erentials are linearly independent in all points of
phase space. For such integrable systems, one can then devise a set of canonical coordinates, the angle-action
coordinates (� ; J), such that the actions,J, are independent isolating integrals of motion, and the angles, � , are
2� -periodic. Within these coordinates, the system's Hamiltonian H becomes independent of the angles� , and
one hasH = H (J).

In that case, Hamilton's Eq. (2.1) take the simple form

d�
dt

=
@H
@J

= 
 (J) ;
dJ
dt

= �
@H
@�

= 0 ; (2.14)

where we introduced the orbital frequencies 
 (J)= @H=@J. In these coordinates, the orbits are then straight
lines, as one has

� (t) = � 0 + 
 (J) t ; J(t) = cst : (2.15)

In Fig. 2.1, we illustrate one example of angle-action coordinate in the case of a harmonic oscillator. From the

x

v

�

J

�

J

0 2�

Figure 2.1: Illustration of the phase space diagram of a harmonic oscillator. Left panel: Illustration of
the trajectories in the physical phase space(x; v ). The trajectories take the form of concentric circles
along which the particle moves. Here, the action J should therefore be seen as a label for the circle
associated with the orbit, and the angle � should be seen as the position along the circle. Right panel:
Illustration of the same trajectories in angle-action space (� ; J). In these coordinates, the mean-�eld
motions are straight lines. The action J is conserved, while the angle � evolves linearly in time with
the frequency 
 (J)= @H=@J.
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unperturbed motions of Eq. (2.15), we can also already note the essential role played by the orbital frequen-
cies, as illustrated in Fig. 2.2. Indeed, the presence or absence of resonance condition satis�ed by the orbital
frequencies strongly impact the orbit. If the orbital frequencies are incommensurate, so that there exists no
relation of the form k �
 (J)=0 , the orbit is said to be quasi-periodic. The orbit �lls in the entire available angle
volume. Inversely, if the orbital frequencies satisfy a resonance condition then the orbit is resonant and does
not �ll in the entire available volume, as illustrated in Fig. 2.2. A Hamiltonian system is said to be degenerate

0
0

2�

2�

� 1

� 2

0
0

2�

2�

� 1

� 2

Figure 2.2: Illustration of two integrable trajectories in angle space, � = ( � 1; � 2). An orbit is fully
characterised by its action J, while the position of the particle along its orbit is tracked by the angle
� . Along the unperturbed motion, the actions are conserved, while the angle evolve linearly in time
with the frequency 
 . Left panel: Illustration of a degenerate orbit, for which there exists k 2 Z2

such that k �
 (J) = 0 , i.e. the frequencies are commensurate. The orbit is then closed, periodic, and
does not �ll in the available angle space (e.g., see Section 7.2 for the kinetic description of degenerate
galactic nuclei). Right panel: Illustration of a non-degenerate trajectory, for which the trajectory is
quasiperiodic and densely covers the available angle domain.

if ever there exists some global resonance condition of the form 8J; k � 
 (J) = 0 satis�ed by all the orbits, i.e.
for all J. Examples of degenerate systems include spherically symmetric systems, where, owing to angular
momentum conservation, the orbit stays in the same orbital plane, as well as Keplerian systems, where the
Keplerian motion imposed by a central mass takes the form of a closed ellipse.

Let us �nally mention some additional properties of the angle-action coordinates. As angle-action coordi-
nates are canonical, they leave the Poisson bracket invariant, so that one generically has

�
F (w); G(w)

�
=

@F
@q

�
@G
@p

�
@F
@p

�
@G
@q

=
@F
@�

�
@G
@J

�
@F
@J

�
@G
@�

: (2.16)

As a result, angle-action coordinates also leave the in�nitesimal phase space volumes invariant so that
dw =d xdv =d � dJ.

Angle-action coordinates are constructed such that the angles � are 2� -periodic. As a consequence, any
phase space function can be Fourier expanded as

G(w) = G(� ; J) =
X

k

Gk (J) eik � � with Gk (J) =
Z

d�
(2� )d G(� ; J) e� ik � � ; (2.17)

where k 2 Zd is a resonance vector composed of integers.
Actions are also adiabatic invariants. If H evolves on a timescale longer than the dynamical time, td ' 1=
 ,

an orbit of H will evolve in such a way that J =cst :
For self-gravitating systems, an important example of integrable system are 3D spherically symmetric sys-

tems with a mean central potential �( r ). An appropriate choice of action is then J =( Jr ; L; L z ). Here, Jr is the
radial action that quanti�es the radial excursions. It is given by

Jr =
1
�

Z r a

r p

dr
p

2(E � �( r )) � L 2=r2; (2.18)

with E and L the energy and the norm of the angular momentum of the orbit, and (r p ; r a) its peri- and apoc-
entre, i.e. the two roots of vr =

p
2(E � �( r )) � L 2=r2 = 0 . The second action is L , the norm of the angular

momentum, and the third one is L z , the projection of the angular momentum vector along a given z-axis. In
Fig. 2.3, we illustrate one such quasi-periodic orbit. As a conclusion, being able to construct angle-action coor-
dinates amounts to being able to characterise in detail the orbital structure of an (integrable) inhomogeneous
system.
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r p r a

� �

Figure 2.3: Illustration of a typical quasi-periodic orbit in a central potential, �( r ). Such an orbit is
the combination of an azimuthal oscillation at the frequency 
 � and a radial libration at the frequency

 r between the orbit's pericentre, r p , and apocentre, r a. In bold is highlighted the azimuthal increase
� � = 2 � 
 � =
 r during one radial oscillation. For degenerate orbits, a resonance condition of the form
k �
 (J)=0 is satis�ed, implying that � � is a multiple of 2� , i.e. the orbital frequencies 
 � and 
 r are
in a rational ratio. This overall leads to a closed and periodic orbit.

2.4 Mean-Field equilibrium

Having determined the evolution equation for the system, as given by the Klimontovich Eq. (2.13), and having
constructed appropriate phase space coordinates to describe intricate orbital motions, as given by the angle-
action coordinates (� ; J), we may now construct a system's mean-�eld equilibrium.

Following the de�nition from Eq. (2.13), we introduce the system's mean DF and mean Hamiltonian as

F0 =


Fd

�
; H0 =



Hd

�
; (2.19)

where h � i stands for the ensemble average over the system's realisations. Following Eq. (2.9), the mean-�eld
Hamiltonian can generically be written as

H0 =
jv j2

2
+ � 0(x ; t) with � 0(x ; t) =

Z
dw 0U(x; x0) F0(w 0; t); (2.20)

where � 0(x ; t) stands therefore for the system's mean-�eld potential.
A system is said to be in a mean-�eld equilibrium, equivalently said to be in a quasi-stationary state, if its

mean-�eld DF is left unchanged by the mean-�eld dynamics. Following Eq. (2.13), the system is therefore in a
mean-�eld equilibrium if it satis�es �

F0; H0
�

= 0 : (2.21)

If the mean-�eld Hamiltonian is integrable, we know that there exist some angle-action coordinates (� ; J), so
that H0 = H0(J). The constraint from Eq. (2.21) therefore tells us that mean-�eld equilibria are states whose
mean DF and mean Hamiltonian are of the form

(
F0 = F0(J; t)
H0 = H0(J; t):

(2.22)

This is the appropriate generalisation of what was considered in electrostatic plasmas, where one assumed
that F0 = F0(v ), since in an unperturbed homogeneous system one hasv =cst : For self-gravitating systems, v
is not an appropriate coordinate, as only the actions J are good labels of the system's orbital structure. Owing
to this fundamental similarity, many of the formulae derived for electrostatic plasmas will naturally go over to
stellar systems through the substitution (x; v ) 7! (� ; J). Deriving the kinetic theory of a self-gravitating system
amounts then to deriving the long-term evolution of the system's mean orbital distribution, i.e. the long-term
evolution of F0(J; t).

When interpreted in angle-action coordinates, the dynamics imposed by a mean-�eld integrable Hamilto-
nian is very simple. Indeed, let us consider some phase space distribution G(w), whose dynamics is driven by
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the mean-�eld Hamiltonian H0(J). Following Eq. (2.13), its evolution is governed by

0 =
@G
@t

+
�
G; H0

�

=
@G
@t

+ 
 (J) �
@G
@�

; (2.23)

where we recall that the orbital frequencies are de�ned as 
 (J)= @H0=@J. Such a �ow in phase space is the one
associated with phase mixing, as illustrated in Fig. 2.4. Phase mixing corresponds to the shearing in angle space

�

J

0 2�
�

J

0 2�

�

J

0 2�
�

J

0 2�
Figure 2.4: Illustration of phase mixing in angle-action space as a function of time. Here, within the
angle-action coordinates, as a result of the conservation of the actions, trajectories are simple straight
lines. Provided that the orbital frequencies 
 (J) change with the actions, particles of di�erent actions
dephase. This leads to the appearance of ever �ner structures in phase space. This is phase mixing.
When coarse grained, these �ne structures are washed out, and the system reaches a quasi-stationary
distribution that depends only on the system's distribution of orbits. This unavoidable mixing in �
is one the main justi�cations for our consideration of orbit-averaged di�usion, i.e. the construction of
kinetic theories that describe the long-term dynamics of F0(J; t).

associated with di�erences in orbital frequencies for di�erent actions. This unavoidable dissolution of angular
structures highlights again the relevance of characterising a system's long-term evolution by characterising in
detail the long-term evolution of its mean-�eld orbital distribution F0(J; t), i.e. the distribution independent
of � .

We now have at our disposal the main tools (evolution equations and angle-action coordinates) required to
describe the long-term evolution of self-gravitating systems. In order to highlight the various relaxation pro-
cesses undergone by these systems, we will proceed in successive stages. First, in Section 3, we will consider
the dynamics of a zero-mass test particle embedded in a background �uctuating self-gravitating system. And
we will characterise the properties and the orbital di�usion undergone by that test particle. In Section 4, we
will then assume that that same particle is now massive, so that it perturbs the background self-gravitating
system itself, and therefore undergoes an associated backreaction, that is called dynamical friction. Gluing to-
gether these two essential components, we will derive in Section 5, the main result of these notes, the so-called
inhomogeneous Balescu-Lenard equation, that describes the self-consistent long-term resonant relaxation un-
dergone by a discrete self-gravitating system. Bene�ting from all the tools and techniques gathered in the
previous sections, we will show in Section 6, how that same kinetic equation can also be obtained from the
direct quasi-linear expansion of the Klimontovich equation. Finally, in Section 7, we will illustrate examples of
these kinetic frameworks in the astrophysical context, in particular for self-gravitating galactic discs, as well as
galactic nuclei, i.e. stellar clusters around supermassive black holes.

12
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3 Orbital di�usion
As a �rst step towards the study of the the long-term dynamics of self-gravitating systems, let us consider

the problem of the di�usion of a test particle embedded in an external "bath" of N � 1 particles. For now,
we therefore assume that the particle di�using is a zero-mass test particle, i.e. a particle that only acts as a
probe of the potential generated by the bath. Such a dynamics is completely deterministic in the sense that the
evolution of the test particle is fully determined by the positions and velocities, (x i ; v i ) of the bath particles
at the initial time. Yet, the intricate motions of the N bath particles in the large N limit should rather be
interpreted as a random process, which stochastically drives the long-term evolution of the test particle. As a
result, the potential �uctuations induced by the background bath, which depend on the exact motion of the
bath particles, will be replaced by a stochastic potential that can be characterised by its statistical correlations.
Again, we emphasise that, for now, the test particle is taken to be of zero-mass, i.e. it does not induce any
back-reaction onto the background bath.

Let us now specify some of the key properties of the background bath. For generality, we assume that it
takes the form of a N -body system governed by a long-range pairwise interaction potential, U(x; x0), and we
denote with d the dimension of the physical space. For example, in the usual gravitational case, one hasd = 3 ,
and U(x; x0)= � G=jx � x0j. For simplicity, we assume that the bath is of total mass M tot and that all the bath
particles have the same individual mass mb = M tot =N.

The test particle is embedded in that noisy environment. The speci�c Hamiltonian driving the test particle's
dynamics takes the generic form

H t (x ; v ) =
1
2

jv j2 +
NX

i =1

mb U(x; x i (t)) ; (3.1)

where (x; v ) stands for the location of the test particle in phase space, while x i (t) stands for the location at time
t of the i th background bath particle. At this stage, we assume that the background is in a quasi-stationary
equilibrium, so that by averaging over all the possible bath realisations, i.e. over the initial conditions of the
background particles, we can introduce



H t

�
= jv j2=2 + � 0(x) = H0(x ; v ) as the test particle's mean Hamilto-

nian imposed by the mean background bath, with h � i the ensemble average over bath realisations. Following
our construction of quasi-stationary equilibria, we also assume that this mean Hamiltonian is integrable, so
that there exists a mapping to angle-action coordinates, (x ; v ) 7! (� ; J), within which the mean Hamiltonian
reads H0 = H0(J). Even if the ensemble-averaged Hamiltonian is only a function of J, a given bath realisa-
tion, as a result of the �nite number of background particles has unavoidably some instantaneous potential
�uctuations. We can therefore generically rewrite the test Hamiltonian from Eq. (3.1) as

H t (x ; v ) = H0(x ; v ) + � �( x ; t): (3.2)

where we introduced � �( x ; t) as the instantaneous �uctuations generated by the bath and felt by the test par-
ticle. Owing to the angle-action mapping, we can subsequently rewrite this Hamiltonian as

H t (� ; J) = H0(J) +
X

k

� � k (J; t) eik � � with � � k (J; t) =
Z

d�
(2� )d � �( x [� ; J]; t) e� ik � � : (3.3)

where we relied on the 2� -periodicity of the angles � to perform a Fourier transform. We recall that we assume
that � � are �uctuations, so that we have � � � H0, and



� �

�
= 0 .

Starting from the Hamiltonian from Eq. (3.3), and relying on the fact that (� ; J) are canonical coordinates,
we can immediately get the equations of motion for the test particle. They read

d�
dt

=
@Ht

@J
= 
 (J) +

X

k

eik � � @
@J

� � k (J; t);

dJ
dt

= �
@Ht

@J
= � i

X

k

k eik � � � � k (J; t); (3.4)

where we introduced 
 (J) = @Ht =@J as the mean orbital frequencies. At this stage, we note that the dynamics
of � (t) and J(t) are radically di�erent. Indeed, on the one hand, the evolution of the test particle's angle,



3. ORBITAL DIFFUSION 14

� (t), is primarily dominated by the mean-�eld motion that, in the absence of �uctuations, would lead to the
motion � (t) = � 0 + 
 (J) t. On the other hand, the evolution of the test particle's action is only a�ected by the
�uctuations, � � k (J; t), and in the absence of �uctuations, it would lead to the motion J(t) = cst : Equations (3.4)
are the starting points to characterise the long-term evolution of the test particle's action J.

Let us now investigate the stochastic long-term dynamics undergone by the orbit of a test particle embedded
in that noisy environment. At any time, the current action of the test particle is given by J(t), so that we can
introduce the function

' (J; t) � � D (J � J(t)) ; (3.5)

as the discrete probability distribution function (PDF) describing the instantaneous location of the test particle
in a given bath realisation. The main interest of such a writing is that it allows us to easily perform ensemble
averages over the statistics of the test particle. Indeed, let us assume that the test particle is drawn according
to some PDF,P(J; t), so that

P(J; t) =


' (J; t)

�
; (3.6)

where, once again,h � i stands for the average over the initial conditions of the background bath, as well as over
the initial conditions of the test particles. Rather than investigating one particular trajectory of one test particle
in action space, as given by ' (J; t), our goal will be to investigate the statistical evolution of a large collection
of test particles driven by di�erent bath realisations, as given by the dynamics of P(J; t). Describing the mean
long-term evolution of the test particle amounts then to describing the long-term evolution of the PDF, P(J; t).

The function ' (J; t) satis�es the continuity equation

@'(J; t)
@t

=
@
@t

�
� D (J � J(t))

�

=
dJ(t)

dt
�

@
@J(t)

�
� D (J � J(t))

�

= �
dJ(t)

dt
�

@
@J

�
� D (J � J(t))

�

= �
@

@J
�
�
' (J; t) _J(J; � (t); t)

�
; (3.7)

where _J = _J(� ; J; t) stands for the action velocity at the phase location (� ; J) and time t, as imposed by Hamil-
ton's Eq. (3.4). Using explicitly the test particle's evolution equations, we get

@'(J; t)
@t

=
@

@J
�
� X

k

ik � � k (J; t) eik � � ( t ) ' (J; t)
�
; (3.8)

where we recall that (� (t); J(t)) is the instantaneous location in phase space of the test particle. Now, in order
to describe the statistics of the test particle, we can perform an ensemble average of that equation, to obtain

@P(J; t)
@t

=
@

@J
�
� X

k

ik


� � k (J; t) eik � � ( t ) ' (J; t)

�
�
: (3.9)

Further simpli�cations of Eq. (3.9) are challenging, as the computation of the ensemble-averaged term in its
r.h.s. is not obvious. Indeed, we note that this term involves the average of a product of the noise function,
� � k (J; t), and a functional of this noise as it involves the current location (� (t); J(t)) of the test particle, whose
value is governed by all the past history of the noise imposed by the bath.

To proceed forward, we need some more assumptions on the properties of the noise generated by the back-
ground particles. As they correspond to the joint contributions from N bath particles, owing to the central
limit theorem, we may assume that � � k (J; t) is a random time-stationary Gaussian noise, whose main statisti-
cal properties can be characterised by its two-point correlation functions

Ckk 0(J; J0; t � t0) =


� � k (J; t) � � �

k 0(J0; t0)
�
: (3.10)

Relying on this assumption, let us now evaluate the r.h.s. of Eq. (3.9). As shown by Eqs. (3.4), the exact trajec-
tory of the test particle in phase space is itself a function of the stochastic noise � � k (J; t). One should therefore
interpret the r.h.s. of Eq. (3.9) as being sourced by the correlation of the noise � � k (J; t) with eik � � ( t ) ' (J; t),
which is a functional of the noise of the generic form R[� �]( J; t). The technical di�culty here amounts then
to computing the correlation of a stochastic noise with a functional of itself. Here, the calculation is also made
more intricate because the noise� � k (J; t) is spatially-extended as it depends both on time t, the considered
resonance vectork, and the location J in action space.
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Fortunately, correlations of the form


� � k (J; t) R[� �]( J0; t0)

�
can generically be computed using Novikov's

theorem (Novikov, 1965; Hänggi, 1978; Garcia-Ojalvo & Sancho, 1999). For a Gaussian noise, i.e. a noise for
which only the second cumulant is non-zero, one can write



� � k (J; t) R[� �]( J0; t0)

�
=

X

k 00

Z t 0

0
dt00

Z
dJ00
 � � k (J; t) � � �

k 00(J00; t00)
�

�
DR[� �]( J0; t0)
D� � �

k 00(J00; t00)

�
: (3.11)

where the conjugate was introduced for later convenience, and DR[� �]( J0; t0)=D� � �
k 00(J00; t00) stands for the

functional derivative of R[� �]( J0; t0) w.r.t. the noise � � �
k 00(J00; t00). In Eq. (3.11), the r.h.s. term corresponds to

the contributions arising from the noise intrinsic correlations. Let us brie�y detail the physical content of
that term. The l.h.s. of Eq. (3.11) aims at computing the correlation between the noise � � k (J; t), evaluated at
the location J and time t, with a functional of the noise R[� �]( J0; t0), evaluated at the location J0 and time
t0, which, because it is a functional, depends on the noise at any past time t00� t0, any location J00, and any
resonance vectork00. Novikov's theorem states that this correlation is given by the joint contributions from all
the di�erent noise terms � � �

k 00(J00; t00) (via the sum
P

k 00) for all past values (via the integral
R

dt00) and for all
the locations (via the integral

R
dJ00) of the correlations between � � k (J; t) and � � �

k 00(J00; t00) (via the correlation

� � k (J; t) � � �

k 00(J00; t00)
�
) multiplied by the functional gradient DR[� �]( J0; t0)=D� � �

k 00(J00; t00). This functional
gradient describes how much the value of R[� �]( J0; t0) would get to vary as a result of modifying the noise
� � �

k 00(J00; t0) at time t00, location J00, and resonance vectork00. As a summary, Novikov's theorem states that the
correlation between a noise and a functional of this noise scales qualitatively like the product of the correlation
of the noise and the response of the functional to changes in the noise. Novikov's theorem is therefore a very
general result.

Let us now apply Novikov's theorem to the r.h.s. of Eq. (3.9). This yields terms of the form



� � k (J; t) eik � � ( t ) ' (J; t)

�
=

X

k 0

Z t

0
dt0

Z
dJ0Ckk 0(J; J0; t � t0)

�
�

eik � � ( t )
�
ik �

D� (t)
D� � �

k 0(J0; t0)
�

DJ(t)
D� � �

k 0(J0; t0)
�

@
@J

�
' (J; t)

�
; (3.12)

where we recall that Ckk 0(J; J0; t � t0) was introduced in Eq. (3.10) as the two-point correlation function of the
noise. Equation (3.12) involves the so-called response functions,D� (t)=D� � �

k 0(J0; t0) and DJ(t)=D� � �
k 0(J0; t0),

that describe how the position of the test particle at time t, (� (t); J(t)) , changes as one varies the noise
� � �

k 0(J0; t0) felt by the test particle as it arrived at J0 at time t0.
Glancing back at the individual equations of motion from Eq. (3.4), we note that the motion of the test

particle in action space between the times t and t0 can formally be integrated as

� (t) = � (t0) +
Z t

t 0
ds 
 (J(s)) +

X

k

Z t

t 0
dseik � � (s) @

@J
� � k (J(s); s);

J(t) = J(t0) � i
X

k

k
Z t

t 0
dseik � � (s) � � k (J(s); s): (3.13)

We note that these equations depend on the noise both directly through the factor � � k (J(s); s), but also in-
directly through the past history of the test particle's trajectory, (� (s); J(s)) . As a consequence, if we were to
compute the functional gradients of these equations w.r.t. the noise � � �

k 0(J0; t0), we would not obtain closed
expressions for the response functions, as their r.h.s. would involve the response functions themselves. This
entices us to introduce additional assumptions to make the calculations tractable.

In Eq. (3.4), we note that at leading order, since � � � H0, the motion of the test particle is dominated by
the background smooth mean-�eld potential. As a consequence, to make further progress in the calculation,
when computing the test particle's response function, we will solve for the motion of the test particle at �rst
order in the noise. Glancing back at Eq. (3.13), this implies that in its r.h.s., we substitute the occurrences of
the location of the test particle, (� (s); J(s)) by its unperturbed mean-�eld motion between t0 and t, namely
(� (s); J(s)) = ( � (t0) + ( s � t0) 
 (J(t0)) ; J(t0)) . Equation (3.13) therefore becomes

� (t) = � (t0) + 
 (J(t0)) ( t � t0) +
X

k

Z t

t 0
dseik �( � ( t 0)+( s� t 0) 
 (J ( t 0))) @

@J
� � k (J(t0); s);

J(t) = J(t0) � i
X

k

k
Z t

t 0
dseik �( � ( t 0)+( s� t 0) 
 (J ( t 0))) � � k (J(t0); s): (3.14)

We can now compute the response functions of the test particle, as required by Eq. (3.12), by computing the
functional gradient of Eq. (3.14) w.r.t. the noise � � �

k 0(J0; t0)
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Because it is simpler, let us start with the computation of the response function for J(t). We can write

DJ(t)
D� � �

k 0(J0; t0)
= � i

X

k

k
Z t

t 0
dseik �( � ( t 0)+( s� t 0) 
 (J ( t 0))) D� � k (J(t0); s)

D� � �
k 0(J0; t0)

: (3.15)

Here, we may now use the fundamental relation

D� � k (J; t)
D� � �

k 0(J0; t0)
= � D (t � t0) � D (J � J0) � � kk 0; (3.16)

that states that noises at di�erent times, di�erent resonance indices, or di�erent action locations, are taken as
independent from each other when computing functional gradients.

As a consequence, we can rewrite Eq. (3.15) as

DJ(t)
D� � �

k 0(J0; t0)
= i k0e� ik 0� � ( t 0) � D (J0 � J(t0))

= i k0e� ik 0� � ( t ) e� ik 0� 
 (J 0)( t 0� t ) � D (J0 � J(t)) ; (3.17)

where to get the last line, we re-expressed(� (t0); J(t0)) in terms of (� (t); J(t)) using the unperturbed mean-�eld
motion.

We can perform a similar computation to determine the response function of � (t). Starting from Eq. (3.14),
we write

D� (t)
D� � �

k 0(J0; t0)
=

X

k

Z t

t 0
dseik �( � ( t 0)+( s� t 0) 
 (J ( t 0))) D

D� � �
k 0(J0; t)

�
@

@J
� � k (J(t0); s)

�
: (3.18)

To compute the needed functional gradient, one has to be careful. We write

D
D� � �

k 0(J0; t0)

�
@

@J
� � k (J(t0); s)

�
=

D
D� � �

k 0(J0; t0)

�Z
dJ � D (J � J(t0))

@�� k (J; s)
@J

�

=
Z

dJ � D (J � J(t0))
@

@J

�
D� � k (J; s)

D� � �
k 0(J0; t0)

�

= � � kk 0 � D (s � t0)
Z

dJ � D (J � J(t0))
@

@J

�
� D (J0 � J)

�

= � � � kk 0 � D (s � t0)
Z

dJ � D (J � J(t0))
@

@J0

�
� D (J0 � J)

�

= � � � kk 0 � D (s � t0)
@

@J0

�
� D (J0 � J(t0))

�
; (3.19)

where, in the �rst line of that equation, we rewrote the partial derivative with an integral, to avoid possible
confusion when computing the functional gradient. To get the second line, we noted that, because of causality,
J(t0) does not vary when one changes the noise � � �

k 0(J0; t0), so that the functional gradient only acts on the
partial derivative. To get the third line, we used the fundamental relation from Eq. (3.16), and to get the fourth
line, we used the fact that the Dirac delta is an even function. All in all, this allows us then to rewrite the
response function of � (t) as

D� (t)
D� � �

k 0(J0; t0)
= � e� ik 0� � ( t ) e� ik 0� 
 (J 0)( t 0� t ) @

@J0

�
� D (J0 � J(t))

�
; (3.20)

where we performed a similar replacement of the unperturbed mean-�eld motion as in Eq. (3.17).
Having computed the system's response function at �rst order in the perturbations, we can now use the

explicit expressions from Eqs. (3.17) and (3.20) into Eq. (3.12) to characterise the impact of the noise on the test
particles' trajectories. We can rewrite the di�usion Eq. (3.9) as

@P(J; t)
@t

=
@

@J
�
� X

k ;k 0

k
Z t

0
dt0

Z
dJ0Ckk 0(J; J0; t � t0) e� ik 0� 
 (J 0)( t 0� t )

�
�
k �

@
@J0 + k0 �

@
@J

� �
e� i( k 0� k ) � � ( t ) � D (J � J(t)) � D (J0 � J(t))

��
: (3.21)

Here, the ensemble average implies in particular averaging over the current phase � (t) of the test particle. We
assume that at any time t, the phase of the test particle, � (t), remains on average uniformly distributed in
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angles. As a consequence, in Eq. (3.21), the exponentiale� i( k 0� k ) � � ( t ) gives the constraint � kk 0. Equation (3.21)
can then be rewritten as

@P(J; t)
@t

=
@

@J
�
� X

k

k
Z t

0
ds

Z
dJ0Ckk (J; J0; s) eik � 
 (J 0)s

�
�
k �

@
@J0 + k �

@
@J

� �
� D (J � J(t)) � D (J0 � J(t))

��
; (3.22)

where we performed the change of variables s = t � t0. To simplify the last term, we write
�
k �

@
@J0 + k �

@
@J

� �
� D (J0 � J(t)) � D (J � J(t))

�
=

�
k �

@
@J0 + k �

@
@J

�
� D (J � J0)

�
� D (J � J(t))

�

=
�
k �

@
@J0 + k �

@
@J

�
� D (J � J0) P(J; t)

= k �
@�D (J � J0)

@J
+ k �

@�D (J � J0)
@J0 + � D (J � J0) k �

@P(J; t)
@J

= � D (J � J0) k �
@P(J; t)

@J
: (3.23)

This allows us then to rewrite Eq. (3.22) as

@P(J; t)
@t

=
@

@J
�
� X

k

k
Z t

0
ds Ckk (J; J; s) eik � 
 (J )s k �

@P(J; t)
@J

�
: (3.24)

The timescale over which P(J; t) signi�cantly changes is the relaxation timescale, which is much larger than
the dynamical time, td ' 1=
 . The dynamical time is also the timescale over which the correlation function
Ckk (J; J; t) decays, as it is generated by background bath particles orbiting with that same dynamical time. As
a consequence, in Eq. (3.24), we may take the limits of the time integration to + 1 , keeping P(J; t) constant.
That equation then takes the form of a di�usion equation of the form

@P(J; t)
@t

=
@

@J
�
�
D 2(J) �

@P(J; t)
@J

�
; (3.25)

where we introduced the di�usion tensor, D 2(J) as

D 2(J) =
X

k

k 
 k
Z + 1

0
dt Ckk (J; J; t) eik � 
 (J ) t

=
1
2

X

k

k 
 k
Z + 1

�1
dt Ckk (J; J; t) eik � 
 (J ) t ; (3.26)

where we used the symmetries of the correlation function. Let us �nally introduce the temporal Fourier trans-
form with the convention

bf (! ) =
Z + 1

�1
dt f (t) ei !t ; f (t) =

1
2�

Z + 1

�1
d! bf (! ) e� i !t : (3.27)

All in all, this allows us to rewrite the di�usion tensor as

D 2(J) =
1
2

X

k

k 
 k bCkk (J; J; k � 
 (J)) ; (3.28)

where we introduced bCkk (J; J; ! ) as the Fourier transform of the correlation function of the �uctuations un-
dergone by the test particle (Binney & Lacey, 1988; Weinberg, 2001).

Equations (3.25) and (3.28) are the important results of this section. It emphasises that the di�usion tensor
in action space of a given test particle is driven by the power spectrum of the noise �uctuations at the location
J and the dynamical frequency ! = k � 
 (J) of the test particle. Phrased di�erently, as a result of the presence
of a dominant underlying mean-�eld motion, i.e. the motion d� =dt = 
 (J), the only perturbations to which
a test particle can be sensitive are the perturbations in resonance with this mean-�eld motion. We note that
Eq. (3.25) is formally identical to a heat equation. The main di�erence here is that the di�usion tensor, D 2(J), is
strongly anisotropic, because it is a function of the considered orbital location, J, and for a given J its direction
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is also anisotropic, as each resonance vectork is associated with a di�erent direction of di�usion in action
space. We also recall that, for now, we assumed the test particle is of zero mass, i.e. it has no backreaction on
the background particles. This is the reason why Eq. (3.25) only involves a di�usion coe�cient and no friction
component, as the noise sourcing the di�usion is completely external. In particular, we note that the amplitude
of these di�usion coe�cients is independent of the mass of the test particle, so that such a di�usion cannot
source any mass segregation, i.e. the sinking of heavier populations within the system's centre as a result of
energy equipartition. In Section 4, we will show how one can adapt the previous calculation to account for the
back-reaction to the test particle perturbation, via the so-called friction force by polarisation. At that time, we
will also note that the amplitude of this friction force is proportional to the mass of the test particle, so that it
can drive a mass segregation between test particles of di�erent mass.

For now, let us compute explicitly the di�usion coe�cients from Eq. (3.28) for some important classes of
background baths, in particular to recover the inhomogeneous Landau and Balescu-Lenard di�usion coe�-
cients.

3.1 The Landau di�usion coe�cients

The main conclusion from Eq. (3.28) was that to characterise the di�usion undergone by the test particle, one
only has to characterise the correlation properties of the noise within which that test particle is embedded. As a
�rst step, let us assume that the background bath of particles is external to the test particle (i.e. no backreaction
of the test particle onto the motion of the bath particles). Furthermore, we assume that the bath itself is non-
interacting, so that the dynamics of every bath particle is imposed by the speci�c Hamiltonian

Hb (� ; J; t) = H0(J); (3.29)

where the mean-�eld Hamiltonian, H0(J) was already introduced in Eq. (3.2). In that limit, the bath is said to
be inert, because bath particles only see the smooth averaged mean-�eld potential, and not its instantaneous
�uctuations. At any given time, the full state of the bath is fully characterised by the discrete DF, Fd (� ; J; t),
de�ned as

Fd (� ; J) =
NX

i =1

mb � D (� � � i (t)) � D (J � J i (t)) ; (3.30)

where the sum over i runs over the N particles of the bath, (� i (t); J i (t)) stands for the location in angle-action
space of thei th particle at time t, and mb is the individual mass of the bath particles. As already obtained in
Eq. (2.13), the evolution of Fd is governed by the Klimontovich equation

@Fd
@t

+
�
Fd ; Hb

�
= 0 ; (3.31)

where Hb is the bath's one particle Hamiltonian, and [ � ; � ] was de�ned in Eq. (2.2).
Let us now assume that the bath's DF can be decomposed into two components, so that

Fd = F0 + �F with F0 = F0(J; t);


�F

�
= 0 : (3.32)

In that equation, we introduced F0 =


Fd

�
as the underlying smooth mean-�eld DF of the bath particles and �F

are the �uctuations around it, with h � i the ensemble average over the bath realisations. As in Eq. (2.21), we also
note that we assume that F0 = F0(J; t), i.e. the bath mean-�eld distribution is a quasi-stationary distribution
(as it depends only on J and not on � ).

The main interest of the �uctuations �F is that they allow us to straightforwardly compute � �( x ; t), the
instantaneous potential �uctuations present in the bath, i.e. the �uctuations that will source the di�usion of
the test particle. Indeed, one has

� �( x ; t) =
Z

dx0dv 0U(x; x0) �F (x0; v 0; t): (3.33)

We can then compute the Fourier transform in angles of the potential perturbations as

� � k (J; t) =
Z

d�
(2� )d e� ik � �

Z
dx0dv 0U

�
x[� ; J]; x0� �F (x0; v 0; t)

=
Z

d�
(2� )d e� ik � �

Z
d� 0dJ0U

�
x[� ; J]; x0[� 0; J0]

�
�F (J0; � 0); (3.34)

where we relied on the fact that angle-action coordinates conserve phase space volume, so thatdxdv = d � dJ.
All in all, this can be rewritten as

� � k (J; t) = (2 � )d
X

k 0

Z
dJ0 kk 0(J; J0) �F k 0(J0; t): (3.35)
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In that equation, we have expanded the pairwise interaction potential in angle-action space as

U(� ; J; � 0; J0) = U
�
x[� ; J]; x0[� 0; J0]

�

=
X

k ;k 0

 kk 0(J; J0) ei( k � � � k 0� � 0) ; (3.36)

where we introduced

 kk 0(J; J0) =
Z

d�
(2� )d

d� 0

(2� )d U
�
x[� ; J]; x0[� 0; J0]

�
e� i( k � � � k 0� � 0) : (3.37)

The Fourier coe�cients,  kk 0(J; J0), are called the bare susceptibility coe�cients and are de�ned as the Fourier
transform in angles of the pairwise interaction potential. They are said to be bare, because they do not account
for the bath self-gravitating ampli�cation. They are called susceptibilities, because  kk 0(J; J0) captures the
strength of the coupling between the orbits J and J0, when coupled through the pair of resonance vectors
(k; k0).

Using jointly the decoupled Hamiltonian from Eq. (3.29) with the decomposition from Eq. (3.32), we can
write the evolution for �F . It reads

0 =
@F0
@t

+
@�F
@t

+
�
F0 + �F; H 0

�
: (3.38)

As required by quasi-stationarity, we note that we have
�
F0(J); H0(J)

�
= 0 . Recalling that h�F i = 0 under

ensemble-average, we �nd that @F0=@t= 0 , i.e. we recover the fact that the present bath is inert. As a conse-
quence, the dynamics of the �uctuations, �F , in the bath is governed by

0 =
@�F
@t

+
�
�F; H 0

�

=
@�F
@t

+
@�F
@�

� 
 (J)

=
@�Fk

@t
+ i k � 
 (J) �F k (J; t); (3.39)

where we performed a Fourier transform w.r.t. the angles to get the last line. For a non-interacting bath, as
described by the Hamiltonian from Eq. (3.29), particles are independent one from another and limit themselves
to following the mean-�eld motion. Similarly to Fig. 2.4, such an inert bath is only undergoing a phase mixing
in angles, imposed by the smooth mean potential. Similarly to F0 = F0(J) that is taken to be constant, we
can assume that the mean-�eld orbital frequencies, 
 = 
 (J), are also time-independent on the dynamical
timescale over which the perturbations in the bath evolve. Equation (3.39) is then straightforward to integrate
in time, and one gets

�F k (J; t) = �F k (J; 0) e� ik � 
 (J ) t ; (3.40)

where �F k (J; 0) stands to the initial �uctuations in the bath's DF at t = 0 . Having characterised the dynamics
of �F k (J; t), we can now inject it into Eq. (3.35) to explicitly determine the potential �uctuations generated by
the present bath. We get

� � k (J; t) = (2 � )d
X

k 0

Z
dJ0 kk 0(J; J0) e� ik 0� 
 (J 0) t �F k 0(J0; 0): (3.41)

In order to compute the di�usion coe�cients from Eq. (3.28), we must then compute the correlation function
of these potential �uctuations. Following the de�nition from Eq. (3.10), we can write

Ckk (J; J; t � t0) = (2 � )2d
X

k 0;k 00

Z
dJ0dJ00 kk 0(J; J0)  �

kk 00(J; J00) e� ik 0� 
 (J 0) t eik 00� 
 (J 00) t 0

�


�F k 0(J0; 0) �F �

k 00(J00; 0)
�
: (3.42)

3.2 The initial �uctuations in the bath's DF

We must now characterise the properties of the initial �uctuations in the bath's DF, as required by the remain-
ing ensemble-averaged term in Eq. (3.42). Luckily, these are easy to characterise since they correspond to the
statistics of the Poisson �uctuations in the bath at the initial time, where the bath is initially uncorrelated. As
introduced in Eq. (3.32), the bath's instantaneous �uctuations are given by �F = Fd � F0, where Fd is the bath's
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discrete DF from Eq. (3.30), andF0 is the bath's smooth ensemble-averaged mean DF. To shorten the notations,
we temporarily drop the time dependence t = 0 and write



�F (� ; J) �F (� 0; J0)

�
= m2

b

NX

i;j =1



� D (� � � i ) � D (J � J i ) � D (� 0� � j ) � D (J0� J j )

�
� F0(J) F0(J0); (3.43)

where we relied on the fact that the �uctuations are of zero average, i.e. h�F i = 0 . In the double sum from
Eq. (3.43), there are two types of terms depending on whether i = j or i 6= j . Dealing separately with these two
components, the ensemble-averaged from Eq. (3.43) can then be written as

m2
b

NX

i;j =1



� D (� � � i ) � D (J � J i ) � D (� 0� � j ) � D (J0� J j )

�
= m2

b � D (� 0� � 0) � D (J0� J0)
NX

i =1



� D (� � � i ) � D (J � J i )

�

+ m2
b

NX

i 6= j



� D (� � � i ) � D (J � J i )

� 

� D (� 0� � j ) � D (J0� J j )

�
;

(3.44)

where we assumed that the particles are uncorrelated one from another at the initial time. From the relation
hFd i = F0 and the de�nition from Eq. (3.30), we get



� D (� � � i ) � D (J � J i )

�
=

1
Nm b

F0(J): (3.45)

As a consequence, Eq. (3.44) becomes

m2
b

NX

i;j =1



� D (� � � i ) � D (J � J i ) � D (� 0� � j ) � D (J0� J j )

�
= mb F0(J) � D (� � � 0) � D (J � J0) +

N (N � 1)
N 2 F0(J) F0(J0):

(3.46)
All in all, this allows us to rewrite Eq. (3.43) as



�F (� ; J) �F (� 0; J0)

�
= mb F0(J) � D (J � J0) � D (� � � 0) �

1
N

F0(J) F0(J0): (3.47)

As required by Eq. (3.42), we can take the Fourier transform of that relation w.r.t. (� ; � 0) to get



�F k (J; 0) �F �

k 0(J0; 0)
�

=
mb

(2� )d � kk 0 � D (J � J0) F0(J) �
1
N

� k0 � k 00 F0(J) F0(J0); (3.48)

where we used the fact that �F is real. As can already be noted in Eq. (3.28), the harmonics(k; k0) = ( 0; 0)
never contributes to the secular di�usion, so that we might already forget about the last term from Eq. (3.48).
As a summary, assuming that the N particles from the bath are initially drawn independently one from another
according to the smooth DF, F0(J), then the statistics of the initial �uctuations in the system are, as expected,
governed by Poisson shot noise, and read



�F k (J; 0) �F �

k 0(J0; 0)
�

=
mb

(2� )d � kk 0 � D (J � J0) F0(J): (3.49)

We can now use this explicit expression in Eq. (3.42) to compute the correlation of the potential �uctuations
generated by the bath. It reads

Ckk (J; J; t � t0) = mb (2� )d
X

k 0

Z
dJ0

�
�  kk 0(J; J0)

�
�2

F0(J0) e� ik 0� 
 (J 0)( t � t 0) : (3.50)

Following Eq. (3.28), we may now compute the di�usion coe�cients for the test particle, and one has

D 2(J) = mb � (2� )d
X

k ;k 0

k 
 k
Z

dJ0� D (k � 
 (J) � k0 � 
 (J0))
�
�  kk 0(J; J0; k � 
 (J))

�
�2

F0(J0); (3.51)

where we used the relation
R+ 1

�1 dt ei !t = 2 �� D (! ). Equation (3.51) is the important result of this section, and
gives the so-called inhomogeneous Landau di�usion tensor. This di�usion tensor is said to be inhomogeneous,
because the di�usion is described in orbital space, and it is said to be Landau, because collective e�ects were
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not accounted for, i.e. the background bath was inert and immune to perturbations. These di�usion coe�-
cients describe, via Eq. (3.25), the long-term orbital di�usion undergone by a test particle embedded in an
inhomogeneous external background bath of N independent particles orbiting in a smooth mean potential.

Qualitatively, the di�usion coe�cients from Eq. (3.51) should be understood as follows. First, the di�usion
of the test particle is sourced by the potential �uctuations from the background bath particles, as highlighted
by the mb = M tot =N prefactor: the larger the number of bath particles, the smoother the bath potential, and
therefore the slower the di�usion. To di�use away from its orbit J, the test particle has to resonantly couple
with the bath �uctuations. As such, the integration over dJ0 should be interpreted as a scan of action space,
looking for bath particles' orbits such that the resonance condition � D (k � 
 (J) � k0 � 
 (J0)) is satis�ed. This
resonance condition is a direct consequence of the general result from Eq. (3.28), where we showed that the dif-
fusion coe�cients ask for the evaluation of the noise correlation function at the test particle's orbital frequency,
! = k � 
 (J), for a noise created by bath particles evolving with their own orbital frequencies, ! = k0 � 
 (J0).
We also note that each resonant coupling is parametrised by a pair of resonance vectors (k; k0), which deter-
mines which linear combination of orbital frequencies is matched on resonance. As can be also seen from the
factor k 
 k in Eq. (3.51), the resonance vectork also controls the direction in which the di�usion occurs in
action space. Finally, we note that in the present regime where collective e�ects were neglected, the strength
of the resonant coupling between the test particle and the background bath �uctuations is controlled by the
squared bare susceptibility coe�cients, j kk 0(J; J0)j2. As de�ned in Eq. (3.37), these coe�cients are given by
the Fourier transform in angle of the pairwise interaction potential. In essence, they describe how e�ciently
the orbits J and J0 interact one with another.

3.3 The Balescu-Lenard di�usion coe�cients

In the previous section, when computing the di�usion coe�cients sourced by the background bath, we ne-
glected collective e�ects, i.e. we assumed in Eq. (3.29) that the dynamics of the bath particles was only governed
by the smooth mean-�eld potential. Of course, in practice, bath particles are not decoupled one from another,
and are therefore constantly submitted to the stochastic perturbations, � �( x ; t), that they jointly self-generate
themselves. Let us now account for this contribution, by assuming that the bath is live and self-gravitating, so
that the bath particles' dynamics also encompass their own self-generated perturbations. In such a regime, the
speci�c Hamiltonian for the bath particles from Eq. (3.29) becomes

Hb (� ; J; t) = H0(J) + � �
�
x [� ; J]; t

�
; (3.52)

where the noise � �( x ; t) = � �[ �F ] was already de�ned in Eq. (3.33) as being induced by the perturbations in
the bath's DF. In order to characterise the di�usion that can be generated by such a self-gravitating background
bath, we must characterise the correlation function of these potential �uctuations. This is what we now set out
to do.

As previously, we start from the same decomposition of the background bath's DF as in Eq. (3.32). Similarly,
the time evolution of the discrete DF, Fd , is governed by the Klimontovich Eq. (2.13) that reads here

0 =
@F0
@t

+
@�F
@t

+
�
F0 + �F; H 0 + � �[ �F ]

�
; (3.53)

where the important addition is the potential �uctuations � � . We recall that
�
F0(J); H0(J)

�
= 0 , as imposed by

quasi-stationarity. Assuming that under ensemble-average one has h�F i = 0 , and therefore h� � i = 0 , we �nd
that

@F0
@t

+

�

�F; � �
��

= 0 ; (3.54)

so that the variation of the bath mean DF is second-order in the perturbations, i.e. it only takes place on secular
times. Here, our goal is to characterise the dynamics of the bath's �uctuations, �F and � � , that happen on the
(fast) dynamical timescale. As a consequence, we will solve for this dynamics at �rst order in the perturba-
tions, i.e. by keeping only terms linear in the perturbations in Eq. (3.53). Following this linear truncation, the
dynamics in the �uctuations of the bath's DF is described by the linearised Klimontovich equation, that reads

0 =
@�F
@t

+
�
�F; H 0

�
+

�
F0; � �

�
;

=
@�Fk

@t
+ i k � 
 (J) �F k (J; t) � ik �

@F0
@J

� � k (J; t); (3.55)

where to get the last line, we performed a Fourier transform w.r.t. the angles. Compared to the bare evolution
equation obtained in Eq. (3.39), here we have to face a new di�culty, which is the fact that �F k and � � k are
directly connected one to another, as they satisfy the self-consistency requirement from Eq. (3.35). This is



3. ORBITAL DIFFUSION 22

exactly what we call collective e�ects, i.e. the fact that the dynamics of the perturbations happens in the same
�uctuating potential that they create themselves.

In order to solve Eq. (3.55), we will rely on the assumption of timescale separation (Bogoliubov's ansatz).
Namely, we assume that the bath's mean-�eld properties, F0(J) and 
( J), can be taken to be constant on the
dynamical timescales over which the ampli�cation of the perturbations happens. As already noted in Eq. (3.54),
this is a legitimate assumption as the dynamics of the bath's mean-�eld DF is second-order in the perturbations.
As in all linear ampli�cation mechanisms, it is a good idea to move to solve Eq. (3.55) in Laplace domain. It
becomes

� eFk (J; ! ) = �
k � @F0=@J

! � k � 
 (J)
� e� k (J; ! ) �

�F k (J; 0)
i( ! � k � 
 (J))

: (3.56)

In Eq. (3.56), we de�ned the Laplace transform with the convention

ef (! ) =
Z + 1

0
dt f (t) ei !t ; f (t) =

1
2�

Z

B
d! ef (! ) e� i !t ; (3.57)

where the Bromwich contour B has to pass above all the poles of the integrand, i.e.Im( ! ) has to be large enough.
From Eq. (3.35), we can rewrite the self-consistency between�F and � � as

� e� k (J; ! ) = (2 � )d
X

k 0

Z
dJ0 kk 0(J; J0) � eFk 0(J0; ! ): (3.58)

As a result, in order to rewrite Eq. (3.56) only in terms of � e� k (J; ! ), we act on both sides of that equation with
the same operator as appearing in Eq. (3.58). This gives

� e� k (J; ! ) = � (2� )d
X

k 0

Z
dJ0 k0 � @F0=@J0

! � k0 � 
 (J0)
 kk 0(J; J0) � e� k 0(J0; ! ) � (2� )d

X

k 0

Z
dJ0 �F k 0(J0; 0)

i( ! � k0 � 
 (J0))
 kk 0(J; J0):

(3.59)
Equation (3.59) is a complex self-consistent equation for � e� k (J; ! ), taking the form of a Fredholm equation
with a source term.

Let us now rely on analogies with the bare case considered previously to simplify that self-consistent rela-
tion. In the absence of any collective e�ects, the bare solution from Eq. (3.41) reads in Laplace space

�
� e� k (J; ! )

�
bare = � (2� )d

X

k 0

Z
dJ0 �F k 0(J0; 0)

i( ! � k0 � 
 (J0))
 kk (J; J0): (3.60)

Such an expression can also be recovered from Eq. (3.59), by neglecting therein the term involving @F0=@J. In
the present dressed case, let us therefore assume that the dressed potential perturbations follow the ansatz

�
� e� k (J; ! )

�
dressed = � (2� )d

X

k 0

Z
dJ0 �F k 0(J0; 0)

i( ! � k0 � 
 (J0))
 d

kk 0(J; J0; ! ); (3.61)

where we introduced the (yet unknown) dressed susceptibility coe�cients  d
kk 0(J; J0; ! ). Injecting the ansatz

from Eq. (3.61) into Eq. (3.59), we immediately get the self-consistent relation satis�ed by the dressed suscep-
tibility coe�cients, that reads

 d
kk 0(J; J0; ! ) = � (2� )d

X

k 00

Z
dJ00 k00� @F0=@J00

! � k00� 
 (J00)
 kk 00(J; J00)  d

k 00k 0(J00; J0; ! ) +  kk 0(J; J0): (3.62)

Equation (3.62) gives us a self-consistent integral relation de�ning the dressed susceptibility coe�cients
 d

kk 0(J; J0; ! ) as a function of the bare ones  kk 0(J; J0). We note that the integral term from Eq. (3.62) only
involves the mean-�eld properties from the bath, namely its smooth mean DF, F0(J), as well as the underlying
orbital frequencies, 
 (J). As such, it captures the e�ciency with which the underlying collisionless system
can amplify perturbations through self-gravity.

3.4 The basis method

While physically enlightening, Eq. (3.62) does not provide us with an explicit expression for the dressed sus-
ceptibility coe�cients,  d

kk 0(J; J0; ! ). This di�culty arises here because of our need to account for inhomo-
geneity. Indeed, while the bath's mean potential is only a function x, when it is expressed in angle-action
coordinates, it depends on both � and J. Phrased di�erently, while angle-action coordinates make the mean-
�eld dynamics trivial (it simply reads � (t)= � 0+ 
 (J)t and J(t) = cst :), it makes the resolution of Poisson's
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equation signi�cantly more complicated. A traditional method to circumvent this issue is to rely on the matrix
method (Kalnajs, 1976), and introduce a biorthogonal set of potential and density basis elements, on which the
pairwise interaction can be decomposed.

To avoid this di�culty, we assume that we have at our disposal a complete biorthogonal set of basis ele-
ments, ( (p) (x); � (p) (x)) , satisfying

8
><

>:

 (p) (x) =
Z

dx0U(x; x0) � (p) (x0);
Z

dx  (p) � (x) � (q) (x) = � � pq;
(3.63)

where the �rst relation can be rewritten as Poisson's equation, �  (p) = 4 �G� (p) , for the 3D gravitational in-
teraction, U(x; x0) = � G=jx � x0j. By doing so, we can straightforwardly translate any decomposition of the
potential �uctuations into the associated density so that

� �( x ; t) =
X

p

Ap(t)  (p) (x) =) �� (x ; t) =
X

p

Ap(t) � (p) (x) with Ap(t) = �
Z

dx � �( x ; t) � (p) � (x): (3.64)

There are many gains with such a basis expansion. First, Poisson's equation has been solved once and for all in
Eq. (3.63) to construct the basis elements. It does not need anymore to be solved when going from potentials
to densities or vice-versa. Second, one can note in the expansion of Eq. (3.64) that the spatial and temporal
dependences of the potential �uctuations have been separated one from another. Indeed, the spatial part is
captured by the basis elements, (p) (x), while their temporal dependences are given by the coe�cients Ap(t).

In order to illustrate how this expansion can be used, let us �rst expand the pairwise interaction potential
U(x; x0) on these basis elements. For a �xed value of x0, we can expand the function x 7! U(x; x0) under the
form

U(x; x0) =
X

p

up(x0)  (p) (x); (3.65)

where the coe�cient up(x0) follows from Eq. (3.64) and reads

up(x0) = �
Z

dx U(x; x0) � (p) � (x)

= �  (p) � (x0); (3.66)

where we used the fact that the interaction potential, U(x; x0), is real, and we relied on the de�nition of the
potential basis elements from Eq. (3.63). As a result, following Eq. (3.65), when expressed on the basis elements,
the pairwise interaction potential reads

U(x; x0) = �
X

p

 (p) (x)  (p) � (x0): (3.67)

Finally, we can use this expression to obtain the expression of the bare susceptibility coe�cients,  kk 0(J; J0), as
de�ned in Eq. (3.37) as the Fourier transform in angles of the pairwise interaction potential. We immediately
get

 kk 0(J; J0) = �
X

p

 (p)
k (J)  (p) �

k 0 (J0); (3.68)

where  (p)
k (J) stands for the Fourier transformed basis elements naturally de�ned as

 (p)
k (J) =

Z
d�

(2� )d  (p) � x [� ; J]
�

e� ik � � : (3.69)

Having obtained such a decomposition of the bare susceptibility coe�cients,  kk 0(J; J0), we can now return to
the implicit de�nition of the dressed susceptibility coe�cients,  d

kk 0(J; J0; ! ), from Eq. (3.62).
By analogy with Eq. (3.68), let us assume that the dressed susceptibility coe�cients can be expanded under

the form
 d

kk 0(J; J0; ! ) = �
X

p;q

 (p)
k (J) eE � 1

pq (! )  (q) �
k 0 (J0); (3.70)

where eEpq(! ) is a (yet unknown) dielectric matrix.
We may now inject this decomposition into the self-consistent relation from Eq. (3.62), and we obtain

X

p;q

 (p)
k (J) eE � 1

pq (! )  (q) �
k 0 (J0) =

X

p;q

 (p)
k (J)

� fM (! ) eE � 1(! )
�

pq  (q) �
k 0 (J0) +

X

p;q

 (p)
k (J) I pq  (q) �

k 0 (J0); (3.71)
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where we introduced the identity matrix I pq, as well as the system's response matrix fM (! ) as

fM pq(! ) = (2 � )d
X

k

Z
dJ

k � @F0=@J
! � k � 
 (J)

 (p) �
k (J)  (q)

k (J): (3.72)

Since the basis is biorthogonal, we can identify the elements in Eq. (3.71), and we obtain the matrix relation

eE � 1(! ) = fM (! ) eE � 1(! ) + I ; (3.73)

which immediately gives us the expression of the dielectric matrix, eE(! ), as

eE(! ) = I � fM (! ): (3.74)

As a conclusion, glancing back at Eq. (3.70), the dressed susceptibility coe�cients are given by

 d
kk 0(J; J0; ! ) = �

X

p;q

 (p)
k (J) eE � 1

pq  (q) �
k 0 (J0): (3.75)

The analogy between the bare susceptibility coe�cients, from Eq. (3.68), and the dressed ones, from Eq. (3.75)
is striking. In that phrasing, accounting for collective e�ects amounts to replacing the identity matrix, I , by the
dielectric matrix, eE � 1(! ) = [ I � fM (! )] � 1. We also note from Eq. (3.72) that for baths such that@F0=@J = 0 , one
has d

kk 0(J; J0; ! ) =  kk 0(J; J0). The bath is unable to support any self-gravitating ampli�cation, and collective
e�ects can be neglected.

Equation (3.72) highlights again the importance of accounting for all the key speci�cities of self-gravitating
systems, namely: (i) the dynamics is described in action space,J, i.e. galaxies areinhomogeneous; (ii) it involves
the system's mean-�eld DF, F0(J; t), i.e. galaxies arerelaxedand are dynamically frozen on quasi-stationary
states; (iii) the response matrix describes the system's linear response. i.e. galaxies areself-gravitating; (iv) this
response matrix involves a sum over resonance vectors,

P
k , as well as a resonant denominator,1=(! � k � 
 (J)) ,

i.e. galaxies areresonantand support a non-trivial orbital structure; (v) �nally, the response matrix describes
how perturbations get dressed by self-gravity, i.e. galaxies are perturbed.

Let us also highlight the deep connexions existing between the present (inhomogeneous) response matrix,
fM (! ), and the dielectric function for (homogeneous) electrostatic plasmas. In the self-gravitating case, one
has to deal with a few more di�culties, namely: (i) in plasmas, since the mean potential vanishes, v is an
appropriate coordinate to describe the particles' mean-�eld orbital motion, while here, we needed to introduce
the action coordinates J to describe the orbits; (ii) in plasmas, Poisson's equation is directly solved in Fourier
space, by simply dividing by 1=jk j2, while here we needed to introduce the basis elements to generically solve
Poisson's equation in Eq. (3.67), as in the inhomogeneous case one has�( x)= �( � ; J), i.e. this is the price to pay
for the use of angle-action coordinates; (iii) in plasmas, the resonant denominator was of the form 1=(! � k � v )
integrated over v , while here it involves the resonant denominator 1=(! � k � 
 (J)) integrated over J.

The response matrix, fM (! ), from Eq. (3.72) is an essential quantity to characterise the e�ciency with
which the self-gravitating bath can amplify perturbations, as illustrated in Fig. 3.1. More precisely, if we
were to introduce some external potential perturbations � � ext , then the bath's instantaneous self-generated
response,� � self , would be given by the joint ampli�cation of the external perturbation and the system's self-
generated response, so that� e� self (! ) / fM (! ) �

�
� e� self (! )+ � e� ext (! )

�
. Owing to this loop of ampli�cation, any

external perturbation is said to be dressed by collective e�ects, as the total perturbation in the bath is given by
�
� e� self (! )+ � e� ext (! )

�
/ eE � 1(! ) � � e� ext (! ). As such, the matrix eE � 1(! )=

�
I � fM (! )

� � 1
plays the role of a suscep-

tibility that quanti�es the e�ciency with which perturbations are boosted. A system is then linearly unstable
if there exists a complex frequency ! = ! 0+i s, with s> 0, such that fM (! ) has an eigenvalue equal to 1, i.e. if
there exists a frequency for which the self-gravitating dressing gets in�nitely large. Similarly, a self-gravitating
system will be linearly stable if there exists no such eigenmodes. From now on, we will assume that the back-
ground bath is linearly stable, so that the dielectric matrix eE � 1(! ), and therefore the dressed susceptibility
coe�cients,  d

kk 0(J; J0; ! ), have no poles in the upper half of the complex plane.
Having explicitly computed the dressed susceptibility coe�cients in Eq. (3.75), we can return to Eq. (3.61)

to characterise the correlation properties of the dressed noise �uctuations generated by a self-gravitating bath.
We can formally take the inverse Laplace transform of Eq. (3.61) to obtain the time-dependence of the potential
�uctuations in the bath. We write

� � k (J; t) = � (2� )d
X

k 0

Z
dJ0�F k 0(J0; 0)

1
2�

Z

B
d!

 d
kk 0(J; J0; ! )

i( ! � k0 � 
 (J0))
e� i !t ; (3.76)
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Collective e�ects

� � ext Klimontovich
� F

Z
dv

�� self

Poisson
� � self

Secular Evolution================= )
(or linear instability)

eM (! )

Figure 3.1: Illustration of the role of collective e�ects in a self-gravitating system. Any external po-
tential perturbation, � � ext , induces a response,�F , in the DF of a self-gravitating system, as described
by the linearised Klimontovich Eq. (3.55). The system being self-gravitating, a density perturbation
�� self =

R
dv �F is directly associated with this response. For the gravitational interaction, Poisson's

equation then relates this density perturbation to a self-generated potential perturbation � � self . Fol-
lowing this internal self-consistent ampli�cation, the system is now submitted to the total perturba-
tion � � tot = � � ext + � � self . Accounting for the additional potential perturbation, � � self , is accounting
for collective e�ects.

where the Bromwich contour, B, in the ! -plane has to pass above all the poles of the integrand. Because we have
assumed that the bath is linearly stable,  d

kk 0(J; J0; ! ) only has poles in the lower half of the complex ! -plane,
of the generic form ! = ! p + i sp , with sp < 0. These are called damped modes, because, once populated, their
amplitude decreases exponentially in time, as we shall see. As a result, in Eq. (3.76), there is only one pole on
the real axis, namely in ! 0 = k0 � 
 (J0). Following Fig. 3.2, we can distort the contour B into the contour B0, so
that the complex exponential goes to 0, and that there remains only contributions from the residues.

Re(! )

Im(! )

sp

B

B0

! 0 ! p

Figure 3.2: Illustration of the computation of the inverse Laplace transform from Eq. (3.76). By dis-
torting the contour B into the contour B0 with large negative complex values, only the contributions
from the residues of the poles remain.

Paying a careful attention to the direction of integration, each pole contributes a � 2� iRes[:::], and we can
rewrite Eq. (3.76) as

� � k (J; t) = (2 � )d
X

k 0

Z
dJ0�F k 0(J0; 0)

�
e� ik 0� 
 (J 0) t  d

kk 0(J; J0; k0 � 
 (J0)) +
X

p

esp t e� i ! p t � (:::)
�
; (3.77)

where the sum over "p" runs over all the poles of  d
kk 0(J; J0; ! ). Since all these modes are damped, we have

sp < 0, so that their contributions to Eq. (3.77) vanish for t & 1=jsp j ' 1=j
 j. This implies that after a few dy-
namical times, their e�ects can be neglected. This corresponds to the thermalisation of the bath. Indeed, a
self-gravitating bath, initially uncorrelated at t = 0 , will develop dressed correlations that will settle to a steady
state on a few dynamical times. Once these damped contributions have faded, Eq. (3.77) becomes

� � k (J; t) = (2 � )d
X

k 0

Z
dJ0 d

kk 0(J; J0; k0 � 
 (J0)) �F k 0(J0; 0) e� ik 0� 
 (J 0) t : (3.78)

At this stage, we note that Eq. (3.78) is the direct equivalent of the bare equation (3.41). In that equation,
accounting for the self-gravitating ampli�cation only amounts to replacing the bare susceptibility coe�cients,
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 kk 0(J; J0; k � 
 (J)) , with their dressed analogs,  d
kk 0(J; J0; k � 
 (J)) . As a result of these strong analogies, the

statistics of the �uctuations in a dressed bath remain formally the same as the ones in an inert bare bath, except
for a change in the pairwise interaction potential that is now dressed by the bath's linear response. Phrased
di�erently, Eq. (3.78) can be interpreted as describing the potential �uctuations generated by a bath where
the particles follow the mean-�eld orbits, (� (t); J(t)) = ( � 0 + 
 (J)t; J0), but interact via a di�erent pairwise
interaction potential dictated by the dressed susceptibility coe�cients,  d

kk 0(J; J0; ! ). As such, bath's particles
are said to be dressed by self-gravity, as one has to account for their associated gravitational wake. Because
the bare and dressed potential �uctuations are so similar, it is therefore straightforward to characterise their
correlation functions, and therefore to characterise the di�usion coe�cients that it generates on a test particle.

In the present dressed case, the di�usion coe�cient from Eq. (3.51) becomes

D 2(J) = mb � (2� )d
X

k ;k 0

k 
 k
Z

dJ0� D (k � 
 (J) � k0 � 
 (J0))
�
�  d

kk 0(J; J0; k � 
 (J))
�
�2

F0(J0); (3.79)

which involves the dressed susceptibility coe�cients. In Eq. (3.79), we have recovered the di�usion coe�cients
of the inhomogeneous Balescu-Lenard equation. They describe the di�usion undergone by a test particle em-
bedded in an external live and self-gravitating bath made of N particles interacting one with another, i.e. a
bath where collective e�ects are accounted for. Given its deep similarities with the inhomogeneous Landau
di�usion coe�cients from Eq. (3.51), the previous physical discussion applies similarly. Here, once again, the
big di�erence comes from the change in the strength of the resonant couplings, which is now controlled by the
squared dressed susceptibility coe�cients, j d

kk 0(J; J0; k � 
 (J)) j2. For some classes of self-gravitating systems,
this can be a very important change. This is particularly true for dynamically cold systems, such as razor-thin
cold galactic discs, that can strongly amplify perturbations, leading therefore to larger di�usion coe�cients,
and consequently to a much faster long-term di�usion.

4 Dynamical Friction
In the previous section, we set out to characterise the di�usion undergone by a zero-mass test particle em-

bedded in an external bath. As a result, there was no backreaction of the test particle on the bath. Relying on
Novikov's theorem, we obtained in Eq. (3.25) a di�usion equation that involved only a di�usion coe�cient,
D 2(J), which we interpreted in Eq. (3.28) as being sourced by the correlation of the potential �uctuations
generated by the bath and felt by the test particle. Then, in order to obtain explicit expressions for these di�u-
sion coe�cients, we considered the important case of a background bath composed of N particles, distributed
according to a smooth mean-�eld DF, F0(J). This led us to derive in Eq. (3.51) (resp. Eq. (3.79)) the inho-
mogeneous Landau (resp. Balescu-Lenard) di�usion coe�cients when collective e�ects are neglected (resp.
accounted for).

However, because we neglected any backreaction of the test particle onto the background bath, we obtained
in Eq. (3.25) a di�usion equation that only had a di�usion component, and no drift component that would be
proportional to the mass of the test particle. Yet, if the test particle can in�uence the bath particles, there must
exist an advection term associated with the perturbations generated in the bath along the trajectory of the test
particle. This component is called the friction force by polarisation, which captures in particular the process of
dynamical friction. Moreover, for a closed system, such a friction component is necessary to comply with the
constraint of energy conservation, as any di�usion generated in the system must be compensated elsewhere
by a friction. It is this component that we now set out to characterise.

We assume therefore that the test particle now has a non-zero mass, that we denote with mt . As the bath's
potential �uctuations are still the ones felt by the test particle, we are interested in how the statistics of the bath's
potential perturbations gets modi�ed by the disturbances generated by the test particle. Following Eq. (3.52),
the speci�c Hamiltonian of the bath particles becomes

Hb (� ; J; t) = H0(J) + � � t (� ; J; t) + � �( � ; J; t): (4.1)

In that equation, we have introduced � � t (� ; J; t) as the perturbations generated by the test particle and
� �( � ; J; t) as the bath's response, i.e. the �uctuations that will be felt by the test particle. This second part
is made of two components, namely the response of the bath to the �nite- N �uctuations associated with the
discrete number of bath particles (similarly to what was already characterised in Section 3.3), as well as the
self-gravitating response of the bath to the perturbation � � t (� ; J; t) generated by the test particle. Let us now
characterise these two �uctuations.

As already introduced in Eq. (3.32), we denote the instantaneous �uctuations in the bath's DF as �F . Sim-
ilarly to Eq. (3.55), at �rst order in the perturbations, the time evolution of �F is governed by the linearised

26
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Klimontovich equation that reads here

@�F
@t

+
�
�F; H 0

�
+

�
F0; � � t + � �

�
= 0 : (4.2)

A key point here is to note that the �uctuations of the DF, �F , are self-consistent with the bath's response,
� �= � �[ �F ], so that we have

� �( x ; t) =
Z

dx0dv 0U(x; x0) �F (x0; v 0): (4.3)

Owing to the similarity with Eq. (3.55), we can rewrite the present evolution equation in Laplace-Fourier space,
to obtain a self-consistent relation satis�ed by the bath's. In analogy with Eq. (3.56), we get

� e� k (J; ! ) = � (2� )d
X

k 0

Z
dJ0 k0 � @F0=@J0

! � k0 � 
 (J0)
 kk 0(J; J0) � e� k 0(J0; ! )

� (2� )d
X

k 0

Z
dJ0 k0 � @F0=@J0

! � k0 � 
 (J0)
 kk 0(J; J0) � e� t

k 0(J0; ! )

� (2� )d
X

k 0

Z
dJ0 �F k 0(J0; 0)

i( ! � k0 � 
 (J0))
 kk 0(J; J0): (4.4)

It is easy to give a physical meaning to each of the terms arising in that equation. The �rst term corresponds
to the kernel of the integral relation satis�ed by the bath's response. It captures the strength of the bath's
self-gravitating ampli�cation, i.e. the e�ciency with which perturbations imposed to the bath get ampli�ed.
The bath is submitted to two types of perturbations, namely the perturbations from the massive test particle
(second term), and the stochastic perturbations generated by the bath's discreteness (third term).

Our goal is to obtain an explicit expression for � e� k (J; ! ). To ease that inversion, we will follow the same
approach as in Section 3.4, so that all the potential perturbations are projected onto the basis elements. As a
consequence, we write

� e� k (J; ! ) =
X

p

eP p(! )  (p)
k (J);

� e� t
k (J; ! ) =

X

p

eT p(! )  (p)
k (J);

eSp(! ) = (2 � )d
X

k 0

Z
dJ0 �F k 0(J0; 0)

i( ! � k0 � 
 (J0))
 (p) �

k 0 (J0): (4.5)

We also recall the result from Eq. (3.68) that the bare susceptibility coe�cients can be decomposed on the basis
elements. Injecting these decompositions into Eq. (4.4), we obtain

X

p

eP p(! )  (p)
k (J) =

X

p;q

fM pq(! ) eP q(! )  (q)
k (J)

+
X

p;q

fM pq(! ) eT q(! )  (p)
k (J)

+
X

p

eSp(! )  (p)
k (J): (4.6)

Recalling that the basis is biorthogonal, this self-consistency can then be rewritten under the short vectorial
form

eP(! ) = fM (! ) � eP(! ) + fM (! ) � eT (! ) + eS(! ): (4.7)

where eP(! ) characterises the bath's response,eT (! ) is the perturbation from the test particle, eS(! ) is the initial
�nite- N �uctuations in the bath's DF. This relation also involves a self-consistent ampli�cation by the bath's
response matrix, fM (! ), as already de�ned in Eq. (3.72).

If we assume that the bath is linearly stable, the dielectric matrix eE � 1(! ) =
�
I � fM (! )

� � 1
is well de�ned,

and the bath's response can then be expressed as a function of the two source terms, so that

eP(! ) = eE � 1(! ) � eS(! ) +
� eE � 1(! ) � I

	
� eT (! ); (4.8)

where we recover that the total �uctuations generated by the bath are the result of the self-gravitating dressing
of the Poisson �nite- N �uctuations, as well as the dressing of the test particle's perturbation.
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Before writing the time version of Eq. (4.8), we �rst write an explicit expression for the source term, eT (! ),
due to the test particle. We note the position of the test particle at time t asx t (t). Then, we have

� � t (x ; t) = mt U(x; x t (t)) : (4.9)

When Fourier transformed in angle, this immediately gives

� � t
k (J; t) = mt

X

k 0

 kk 0(J; J t (t)) e� ik 0� � t ( t ) ; (4.10)

where we used the de�nition of the bare susceptibility coe�cients from Eq. (3.37), and denoted the position of
the test particle in angle-action space as(� t (t); J t (t)) . We now rely on our assumption of timescale separation,
assuming that the orbital di�usion of the test particle takes place on a timescale much longer than the test
particle's orbital motion. As a consequence, in Eq. (4.10), we replace the motion of the test particle by its mean-
�eld limit, i.e. by � t (t) = � 0

t + 
 (J t ) t and J t (t) = J t , with � 0
t the initial phase of the test particle. It is then

straightforward to take the Laplace transform of Eq. (4.10), and we obtain

� e� t
k (J; ! ) = mt

X

k 0

 kk 0(J; J t ) e� ik 0� � 0
t

Z + 1

0
dt e� ik 0� 
 (J t ) t ei !t

= � mt

X

k 0

 kk 0(J; J t )
e� ik 0� � 0

t

i( ! � k0 � 
 (J t ))

=
X
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�
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X

k 0

e� ik 0� � 0
t

i( ! � k0 � 
 (J t ))
 (p) �

k 0 (J t )
�

 (p)
k (J): (4.11)

All in all, glancing back at the de�nition from Eq. (4.5), this allows us to write the coe�cients eT p(! ) as

eT p(! ) = mt

X

k 0

e� ik 0� � 0
t

i( ! � k0 � 
 (J t ))
 (p) �

k 0 (J t ): (4.12)

Having explicitly obtained the expression of all the terms appearing in Eq. (4.8), we can now take the inverse
Laplace transform of this equation, to obtain the time dependence of the potential �uctuations within the bath.
This calculation is essentially identical to the one we already performed in Eq. (3.77) when computing the
Balescu-Lenard di�usion coe�cients. In particular, we rely on the assumption that the bath is linearly stable,
so that there are no poles from the dressed susceptibility coe�cients in the upper half of the complex plane.
We write

� � k (J; t) =
X

p

 (p)
k (J)

Z
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2�

e� i !t eP p(! )

= (2 � )d
X

k 0

Z
dJ0�F k 0(J0; 0)

X

p;q

 (p)
k (J)  (q) �

k 0 (J0)
Z

B

d!
2�

e� i !t
eE � 1

pq (! )

i( ! � k0 � 
 (J0))

+ mt

X

k 0

e� ik 0� � 0
t

X

p;q

 (p)
k (J)  (q) �

k 0 (J t )
Z

B

d!
2�

e� i !t

� eE � 1(! ) � I
	

pq

i( ! � k0 � 
 (J t ))

= � (2� )d
X

k 0

Z
�F k 0(J0; 0) e� ik 0� 
 (J 0) t

X

p;q

 (p)
k (J)  (q) �

k 0 (J0) eE � 1
pq (k0� 
 (J0))

� mt

X

k 0

e� ik 0� � 0
t e� ik 0� 
 (J t ) t
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 (p)
k (J)  (q) �

k 0 (J t )
� eE � 1(k0� 
 (J t )) � I

	
pq: (4.13)

Recalling the expression of the dressed susceptibility coe�cients from Eq. (3.75), we can �nally write the ex-
pression of the bath's potential �uctuations as

� � k (J; t) = � � di�
k (J; t) + � � fric

k (J; t) (4.14)

In that expression, we introduced the dressed stochastic potential �uctuations, � � di�
k (J; t), as

� � di�
k (J; t) = (2 � )d

X

k 0

Z
dJ0 d

kk 0(J; J0; k0 � 
 (J0)) �F k (J; 0) e� ik 0� 
 (J 0) t ; (4.15)
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which were already obtained in Eq. (3.78). We also introduced the deterministic potential �uctuations,
� � fric

k (J; t), as

� � fric
k (J; t) = mt

X

k 0

�
 d

kk 0(J; J t ; k0 � 
 (J t )) �  kk 0(J; J t )
	

e� ik 0� � 0
t e� ik 0� 
 (J t ) t : (4.16)

These two potential �uctuations are associated with very di�erent physical processes. The �rst component,
� � di�

k (J; t), was already obtained in Eq. (3.78), when deriving the Balescu-Lenard di�usion coe�cients. It
captures the dressed potential �uctuations resulting from the dressed internal �nite- N �uctuations within
the bath (i.e. it is sourced by �F k 0(J0; 0)). The second component, � � fric

k (J; t), captures the friction force by
polarisation, and describes the dressed potential perturbations present in the bath as a result of the back-
reaction of the test particle. These two potential perturbations have some fundamental di�erences. On the
one hand, � � di�

k (J; t) is truly a stochastic perturbation, as it depends on the particular sampling of the bath's
initial conditions. It is of zero mean, depends on the bath's realisations, and its amplitude is proportional top

mb , with mb the mass of the bath's particles. On the other hand, because it only depends on the mean-�eld
properties of the bath, � � fric

k (J; t) should be interpreted as a non-stochastic, systematic perturbation. It is of
non-zero mean, and its amplitude is proportional to mt , the individual mass of the test particle. As a result,
the more massive the test particle, the stronger the friction force by polarisation.

In Section 3.3, we have already shown how the time correlation of � � di�
k (J; t) leads to the inhomogeneous

Balescu-Lenard di�usion tensor. More precisely, in Eq. (3.25), we obtained
�

@P(J; t)
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@
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�
� X
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ik
�

� � di�
k (J; t) eik � � ( t ) ' (J; t)

��

=
@
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�
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D 2(J) �

@P(J; t)
@J

�
; (4.17)

where the explicit expression of the dressed di�usion tensor, D 2(J), was obtained in Eq. (3.79).
We may now focus on the long-term e�ects associated with � � fric

k (J; t). We now glance back at Eq. (3.9) that
describes the long-term di�usion of the test particle's PDF. Since � � fric

k (J; t) is non-stochastic, the contribution
from that component in Eq. (3.9) is easier to compute. One writes
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kk (J; J; k � 
 (J)) P(J; t)

�
; (4.18)

where to get the second line, we identi�ed � (t) with its unperturbed mean-�eld motion. To get the last line of
that same equation, we averaged over the phase� (t) of the test particle, assuming that at any time it remains
on average uniformly distributed in angles, and we used the fact that  kk (J; J) is real. All in all, this allows us
to rewrite the contribution from the friction force by polarisation as

�
@P(J; t)

@t

�

fric
= �

@
@J

�
�
D 1(J) P(J; t)

�
; (4.19)

where we introduced the friction coe�cient D 1(J) as

D 1(J) = � mt

X

k

ik  d
kk (J; J; k � 
 (J)) : (4.20)

The last step of the present calculation is to rewrite this coe�cient under a simpler form, much more similar
to the associated expression of the di�usion coe�cient, D 2(J), from Eq. (3.79).

4.1 Rewriting the dynamical friction

We assume that the basis elements, (p) (x), are real, so that they satisfy the symmetry relation  (p)
� k (J) =  (p) �

k (J).
Symmetrising Eq. (4.20) with the change k $ � k, and recalling the de�nition from Eq. (3.75), we can rewrite
this equation

D 1(J) = mt

X

k

ik
2

X

p;q

 (p)
k (J)

�
eE � 1

pq (k � 
 (J)) � eE � 1
qp (� k � 
 (J))

�
 (q) �

k (J): (4.21)
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Let us now explore the symmetry properties of the dielectric matrix, in particular when evaluated for a real
frequency ! R . Following Eq. (3.72), it is de�ned as

eEpq(! R ) = 1 � (2� )d
X

k

Z
dJ

k � @F0=@J
! R � k � 
 (J)

 (p) �
k (J)  (q)

k (J): (4.22)

In that expression, the resonant denominator should be interpreted in the sense of a distribution. Given our
convention for the Laplace transform in Eq. (3.57), to ensure the convergence of the Laplace transform, we must
always have Im[! ] > 0. As a consequence, the resonant denominator should be interpreted as

1
! R � k � 
 (J)

=
1

(! R � k � 
 (J)) + i0

= P
�

1
! R � k � 
 (J)

�
� i�� D (! R � k � 
 (J)) ; (4.23)

where in the �rst line, we added a small positive imaginary part to the frequency ! , and to get the second line,
we relied on Plemelj formula. Owing to this decomposition, we therefore rewrite the dielectric matrix as

eE(! R ) = eER (! R ) + i eE I (! R ); (4.24)

where we introduced the matrices

eER
pq(! R ) = 1 � (2� )d
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k (J)  (q)

k (J): (4.25)

Attention, we emphasise that ( eER ; eE I ) are not, per se, the real and imaginary parts of the dielectric matrix.
Owing to the symmetry of the Fourier transformed basis elements, the two matrices satisfy the symmetries

eER (� ! R ) = eER� (! R ) ; eE I (� ! R ) = � eE I � (! R );

eERy(! R ) = eER (! R ) ; eE I y(! R ) = eE I (! R ): (4.26)

As a consequence, following the de�nition from Eq. (4.24), we conclude that the dielectric matrix satis�es the
symmetry

eE(� ! R ) = eE � (! R ): (4.27)

This allows us then to rewrite Eq. (4.21) as

D 1(J) = mt

X
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ik
2

X

p;q

 (p)
k (J)

� eE � 1 � eE � 1y	
pq  (q) �

k (J); (4.28)

where, to shorten the notations, we did not write explicitly that, in this expression, the dielectric matrices have
to be evaluated in ! R = k � 
 (J).

Luckily, the matrices in bracket can be rewritten as

eE � 1 � eE � 1y = eE � 1
�

eEy � eE
�

eE � 1y: (4.29)

Following the symmetry relations from Eq. (4.26), the matrices within brackets can be rewritten as

eEy � eE = � 2i eE I : (4.30)

We can now �nally reinject this result into Eq. (4.28), and we get

D 1(J) = mt

X

k

k
X

p;q
r 1 ;r 2

 (p)
k (J) eE � 1

pr 1
eE I

r 1 r 2
eE � 1�

qr 2
 (q) �

k (J)

= mt � (2� )d
X

k ;k 0

k
Z

dJ0� D (k � 
 (J) � k0 � 
 (J0)) k0 �
@F0
@J0

�
� X

p;r 1

 (p)
k (J) eE � 1

pr 1
(k � 
 (J))  ( r 1 ) �

k 0 (J0)
� � X

q;r 2

 (q) �
k (J) eE � 1�

qr 2
(k � 
 (J))  ( r 2 )

k 0 (J0)
�
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Identifying again the de�nition of the dressed susceptibility coe�cients from Eq. (3.75) we can �nally write
the friction coe�cient as

D 1(J) = mt � (2� )d
X

k ;k 0

k
Z

dJ0� D (k � 
 (J) � k0 � 
 (J0))
�
�  d

kk 0(J; J0; k � 
 (J))
�
�2

k0 �
@F0
@J0 : (4.32)

This is the main result of this section. It is important to note that this friction component is sourced by the
gradient of the bath's DF, k0 � @F0=@J0, and its amplitude is proportional to the mass, mt , of the test particle.
Moreover, we also note that it shares a very similar structure with the one of the di�usion tensor, as already
obtained in Eq. (3.79). In particular, it involves the dressed susceptibility coe�cients,  d

kk 0(J; J0; ! ), as well as
the same resonance condition over orbital frequencies, � D (k � 
 (J) � k0 � 
 (J0)) .

5 The Balescu-Lenard equation
In the two previous sections, we successively derived the two components involved in the long-term evo-

lution of a massive test particle embedded in a discrete self-gravitating bath. In Section 3, we recovered in
Eq. (3.79) the di�usion tensor, D 2(J), sourced by the temporal correlations of the �nite- N dressed potential
perturbations unavoidably present in the bath. Then, in Section 4, we obtained in Eq. (4.32) the expression of
the friction coe�cient, D 1(J), which captures the back-reaction on the test particle of the perturbations induced
by that same test particle in the bath. Gathering these two components, the di�usion equation (3.9) for the test
particle's PDF takes the explicit form
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P(J; t) F0(J0; t)

�
: (5.1)

This is the (Fokker-Planck version of the) inhomogeneous Balescu-Lenard equation that describes the relax-
ation of a population of massive particles embedded within a background inhomogeneous discrete bath of N
particles.

As previously discussed, this equation comprises two components. First, a di�usion component associ-
ated with the term proportional to mbk �@=@J, and sourced by the correlations in the Poisson noise potential
�uctuations in the bath. Its amplitude is proportional to the mass of the bath particles, mb = M tot =N, and
therefore vanishes in the limit of a collisionless bath, i.e. in the limit N ! + 1 . Second, a friction component
associated with the term proportional to mt k0�@=@J0 and sourced by the back-reaction of the test particle onto
the bath. Its amplitude is proportional to the mass, mt , of the test particle, and is responsible for mass segrega-
tion. Moreover, this component does not vanish in the collisionless limit, but does vanish for a bath satisfying
@F0=@J = 0 .

Equation (5.1) describes the long-term di�usion of the statistics of a test particle (described by the PDF
P(J; t)), when embedded in a bath (described by the PDF F0(J; t)). We can now use that result to obtain
the self-consistent evolution equation satis�ed by the bath's DF on long timescales. This only amounts to
assuming that the statistics of the test particle is given by the statistics of the bath's particles, i.e. one performs
the replacementsP(J; t) ! F0(J; t) and mt ! mb in Eq. (5.1). One gets
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�
: (5.2)

Doing that replacement transforms the di�erential equation (5.1) into a self-consistent integro-di�erential
equation for the bath's DF. This is the self-consistent inhomogeneous Balescu-Lenard equation (Heyvaerts,
2010; Chavanis, 2012), the main result of the present notes1. In order to highlight the total conservation of the
number of orbits, one can �nally rewrite Eq. (5.2) as a continuity equation in action space, so that it reads

@F0(J; t)
@t

= �
@

@J
� F(J; t); (5.3)

1 There now exist various derivations of the inhomogeneous Balescu-Lenard equation, in particular from the BBGKY hierarchy (Hey-
vaerts, 2010), from the Klimontovich equation (Chavanis, 2012) as in Section 6, from Novikov's theorem (Fouvry & Bar-Or, 2018) as in
Section 3, as well as from Rostoker's superposition principle (Hamilton, 2020).
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where F(J; t) is the di�usion �ux in action space, and corresponds to the direction in which particles are
�owing. This �ux is composed of two components, a di�usion and a friction one, and reads

F(J) = D 1(J) F0(J) � D 2(J) �
@F0
@J

; (5.4)

where the friction coe�cient, D 1(J), and the di�usion tensor, D 2(J), follow from Eq. (5.2) and read
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Let us emphasise that all the key speci�cities of galaxies are accounted for in the Balescu-Lenard equa-
tion: (i) the di�usion equation takes place in action space, J, because the galaxy isinhomogeneous; (ii) the
dynamical quantity of interest is the system's mean DF, F0(J; t), because the galaxy isrelaxedonto a quasi-
stationary state; (iii) the kinetic equation involves the dressed susceptibility coe�cients, j d

kk 0j2, because the
galaxy is self-gravitating; (iv) the collision operator involves a resonance condition over the orbital frequencies,
� D (k �
 (J) � k0� 
 (J0)) , because the galaxy isresonant; (v) the long-term distortions are sourced by the couplings
between Poisson shot noise, as highlighted by the 1=N prefactor, because the galaxy isdiscreteand perturbed.

As detailed in the problem set, the inhomogeneous Balescu-Lenard Eq. (5.2) satis�es numerous impor-
tant properties. In particular, it conserves mass, energy, and satis�es a H -theorem for Boltzmann entropy. In
addition, the Balescu-Lenard di�usion �ux exactly vanishes for inhomogeneous Boltzmann DFs of the form
F0(J) / e� �H 0 (J ) .

It is very enlightening to compare this inhomogeneous kinetic equation, with the similar result obtained
for homogeneous electrostatic plasmas, the so-called (homogeneous) Balescu-Lenard equation. Indeed, these
two equations are fundamentally connected, provided that one makes the following analogies:

(Homogeneous) plasmas (Inhomogeneous ) self-gravitating systems

Orbital coordinates F0(v ; t) F0(J; t)

Basis decomposition U(x; x0) �
Z

dk
jk j2

eik �(x � x 0) U(x; x0) = �
X

p

 (p) (x)  (p) � (x0)

Response matrix �
Z

dv
k � @F=@v
! � k � v

�
X

k

Z
dJ

k � @F0=@J
! � k � 
 (J)

 (p) �
k (J)  (q)

k (J)

Perturbations dressing
1

�
�" (v ; k � v )

�
�2

�
�  d

kk 0(J; J0; k � 
 (J))
�
�2

Resonance vectors
Z

dk :::
X

k ;k 0

:::

Resonance condition � D (k � (v � v 0)) � D (k � 
 (J) � k0 � 
 (J0))

(5.6)

In the limit of a dynamically hot system, i.e. a system for which collective e�ects can be neglected, the inho-
mogeneous Balescu-Lenard equation becomes the inhomogeneous Landau equation where the only change is
the replacement of the dressed susceptibility coe�cients  d

kk 0(J; J0; k � 
 (J)) by their bare analogs  kk 0(J; J0).
It is also straightforward to generalise Eq. (5.2) to the case of a multi-mass bath. To do so, we assume that the

bath is composed of multiple components of individual mass (m� ; :::; m� ), each component being described
by a quasi-stationary DF of the form F� (J; t), following the normalisation convention

R
d� dJF� = M � , with

M � the total mass of the component � . The self-consistent evolution of the component � is then sourced by the
e�ects from itself and all the other components. More precisely, it reads

@F� (J; t)
@t

= � � (2� )d @
@J

�
� X

k ;k 0

k
Z

dJ0
�
�  d

kk 0(J; J0; k � 
 (J))
�
�2

� D (k � 
 (J) � k0 � 
 (J0))

�
X

�

�
m� k0 �

@
@J0 � m� k �

@
@J

�
F� (J; t) F� (J0; t)

�
; (5.7)

where the sum over � runs over all the system's components. In the multi-mass case, the dressed susceptibility
coe�cients now involve all the active components that drive the self-gravitating ampli�cation, so that in the
expression of the response matrix from Eq. (3.72), one has to make the replacementF0 !

P
� F� . We note that
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it is the subtle changes in the mass prefactors in the cross term(m� ::: � m� :::) that is the sole responsible for
the mass segregation of the di�erent components one w.r.t. another.

6 Balescu-Lenard from Klimontovich
One could be worried that in the process of "gluing" together the di�usion (Section 3) and the dynamical

friction (Section 4) to obtain the self-consistent Balescu-Lenard equation (Section 5), we might have missed
some subtle contributions to the system's self-consistent dynamics.

In this section, we will show how the Balescu-Lenard Eq. (5.2) can indeed be obtained directly and self-
consistently from a perturbative expansion of the bath's evolution equations, more precisely by a quasi-linear
expansion of the Klimontovich equation. In particular, we will emphasise how the two respective contributions
from the di�usion and the friction components naturally arise. As we will note, this calculation will also be
rather straightforward, as most of the technicalities have already been dealt with in the previous sections.

We recall that the bath is assumed to be composed of N particles of individual mass mb = M tot =N. As
already introduced in Eq. (2.6), the state of the system is fully described by the discrete DF

Fd =
NX

i =1

mb � D (x � x i (t)) � D (v � v i (t)) ; (6.1)

where (x i (t); v i (t)) stands for the location in phase space at time t of the i th particle of the bath. The dynamics
of that distribution function is exactly governed by the Klimontovich Eq. (2.13) that takes here the short form

@Fd
@t

+
�
Fd ; Hd

�
= 0 : (6.2)

In that equation, we have introduced the (speci�c) discrete Hamiltonian Hd as

Hd (x ; v ; t) =
1
2

jv j2 + � d (x ; t): (6.3)

Here, the crucial point is to recall that the instantaneous discrete potential, � d =� d [Fd ], depends directly on
the system's instantaneous DF, through the relation

� d (x ; t) =
Z

dx0dv 0Fd (x0; v 0; t) U(x; x0); (6.4)

with U(x; x0) the considered pairwise long-range interaction. In the particular case of the 3D gravitational
interaction, for which U(x; x0) = � G=jx � x0j, Eq. (6.4) can be rewritten as Poisson's equation, namely

�� d = 4 �G� d = 4 �G
Z

dv Fd (x ; v ; t) = 4 �G
NX

i =1

mb � D (x � x i (t)) : (6.5)

6.1 Quasi-linear expansion of the Klimontovich equation

Similarly to Eq. (3.32), we now assume that the system's DF can be decomposed into two components, so that

Fd = F0 + �F with F0 = F0(J; t);


�F

�
= 0 : (6.6)

In that equation, we recall that F0 = hFd i is the smooth underlying mean-�eld DF of the system, �F is the
�uctuation around this mean distribution, with h � i the ensemble average over realisations of the system. The
key assumptions here are that there exist some angle-action coordinates(� ; J) within which F0 = F0(J; t), i.e.
for which the mean-�eld distribution is in a quasi-stationary state. We also assume that the system is close
to that mean-�eld equilibrium, so that �F � F0, allowing us to perform perturbative expansions w.r.t. the
amplitude of the perturbations. Following Eq. (6.3), to any mean-�eld distribution F0, we can associate an
(integrable) mean-�eld Hamiltonian, H0 = H0(J; t), reading

H0 =
1
2

jv j2 + � 0 =
1
2

jv j2 +
Z

dx0dv 0F0(x0; v 0; t) U(x; x0): (6.7)

Following Eq. (6.4), to any perturbation �F , we can also associate a perturbing potential, � �= � �[ �F ], through

� �( x ; t) =
Z

dx0dv 0U(x; x0) �F (x0; v 0; t): (6.8)
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We can now inject the decomposition from Eq. (6.6) into the evolution equation (6.2) to characterise not
only the dynamics of the perturbations in the system, but also the long-term orbital reshu�ings irreversibly
undergone by the mean system. This reads

@F0
@t

+
@�F
@t

+
�
F0 + �F; H 0 + � �

�
= 0 : (6.9)

We recall that
�
F0(J; t); H0(J; t)

�
= 0 as the mean system is assumed to be in a collisionless equilibrium, and

that h�F i =0 and h� � i =0 as the perturbations are assumed to be of zero average. Taking the ensemble average
of Eq. (6.9), we obtain

@F0
@t

+

�

�F; � �
��

= 0 : (6.10)

This tells us that the slow and irreversible orbital di�usion undergone by the system's averaged DF occurs at
second-order in the perturbations. This is what drives the system's secular evolution. As the mean DF is only
a function of J, we can perform an average of it w.r.t. � , which gives us

@F0(J; t)
@t

= �
@

@J
� F(J; t): (6.11)

Here, we introduced the di�usion �ux F(J; t) as

F(J) =
X

k

ik


�F k (J; t) � � � k (J; t)

�
;

=
X

k

ik
Z

B

d!
2�

Z

B0

d! 0

2�
e� i( ! + ! 0) t 


� eFk (J; ! ) � e� � k (J; ! 0)
�
; (6.12)

where our convention for the Fourier and Laplace transforms were already introduced in Eq. (3.3) and (3.57).
Deriving the system's long-term kinetic equation amounts then to computing explicitly the ensemble-averaged
term



�F k � � � k

�
, and express it solely as a function of the system's mean quantities such asF0(J) and 
 (J).

We can now glance back at Eq. (6.9), and keeping only terms �rst order in the perturbations, we recover that
the dynamics of the perturbations in the system evolves according to the linearised Klimontovich equation

@�F
@t

+
�
�F; H 0

�
+

�
F0; � �] = 0 : (6.13)

In that equation, the �rst Poisson bracket corresponds to phase mixing, i.e. the unperturbed free streaming
of perturbations as imposed by the mean-�eld potential (see Fig. 2.4), while the second Poisson bracket is
associated with collective e�ects, i.e. describes the fact that the system is submitted to the perturbations that
it spontaneously generates, since� �= � �[ �F ]. We have already encountered a similar equation in Eq. (3.55),
when describing the dynamics of perturbations in a live self-gravitating bath. And in Eq. (3.56), we showed
that in Laplace-Fourier space, the perturbations are connected through the relation

� eFk (J; ! ) = �
k � @F0=@J

! � k � 
 (J)
� e� k (J; ! ) �

�F k (J; 0)
i( ! � k � 
 (J))

; (6.14)

where, we recall that here we assumed Bogoliubov's ansatz, i.e. we assumed that the system's mean orbital
structure evolves on a much longer timescale than the perturbations in the system, allowing us to treat F0(J)
and 
 (J) as time-independent on the dynamical timescale over which the perturbations evolve. In the present
context, this is justi�ed by Eq. (6.11) which shows that the orbital distortions undergone by F0(J; t) only occur
at second order in the perturbations. Finally, following Eq. (3.61), the potential �uctuations � � k satisfy

� e� k (J; ! ) = � (2� )d
X

k 0

Z
dJ0 �F k 0(J0; 0)

i( ! � k0 � 
 (J0))
 d

kk 0(J; J0; ! ): (6.15)

In Eq. (6.15), we note that the potential perturbations present in the system are sourced by the initial Poisson
�uctuations in the system, which come dressed, i.e. this expression involves the dressed susceptibility coe�-
cients,  d

kk 0, as de�ned in Eq. (3.75).
Having characterised the dynamics of the perturbations in the system, we can now set out to explicitly

compute the second-order average term appearing in the di�usion �ux from Eq. (6.12). Because Eq. (6.14) has
two terms, the di�usion �ux can similarly be separated in two components F = F1 + F2, that respectively read

F1(J) = �
X

k

k
Z

B

d!
2�

Z

B0

d! 0

2�
e� i( ! + ! 0) t

! � k � 
 (J)



�F k (J; 0) � e� � k (J; ! 0)

�
;

F2(J) = �
X

k

ik k �
@F0
@J

Z

B

d!
2�

Z

B0

d! 0

2�
e� i( ! + ! 0) t

! � k � 
 (J)



� e� k (J; ! ) � e� � k (J; ! 0)

�
: (6.16)
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Here, on the one hand, we note that the �rst di�usion component, F1(J), is sourced by the correlations exist-
ing between one particular �uctuations in the system's DF, via the term �F k (J; 0), and the associated potential
perturbations generated in the system, via the term � e� � k (J; ! 0). As a consequence, this �rst �ux is sourced
by the correlation between one perturbation and the system's associated potential response. This corresponds
exactly to the basis on which we derived the dynamical friction in Section 4, where we derived the (dressed)
friction generated by the back-reaction of the bath induced by the perturbation from a test particle. As a con-
sequence, we naturally expect that this �rst �ux will be the one associated with the friction component of the
Balescu-Lenard equation. On the other hand, we note that the second �ux component, F2(J), is sourced by
the correlations between the potential �uctuations, via the term h� e� k (J; ! ) � e� � k (J; ! 0)i . As already discussed
in detail in Section 3, we know that such potential correlations are sourcing a di�usion in the system. This
is also illustrated by the fact that this component is proportional to the gradient k � @F0=@J, the same type of
gradient that also appeared in the di�usion Eq. (3.25). As a consequence, we expect that this second �ux will
be responsible for the di�usion component of the Balescu-Lenard equation. Let us now compute explicitly the
ensemble averages appearing in Eq. (6.16). The main di�culty of this calculation is to correctly perform the
two inverse Laplace transforms, and correctly handle the resonant poles that appear.

6.2 Computing F1(J)

Let us �rst consider the �ux component F1(J), as de�ned in Eq. (6.16). Reinjecting the self-consistent relation
from Eq. (6.15), we can rewrite F1(J) as

F1(J) = � i(2� )d
X

k

k
Z

B

d!
2�

Z

B0

d! 0

2�
e� i( ! + ! 0) t

! � k � 
 (J)

X

k 0

Z
dJ0  d

� kk 0(J; J0; ! 0)
! 0 � k0 � 
 (J0)



�F k (J; 0) �F k 0(J0; 0)

�
: (6.17)

In Eq. (3.49), we already characterised the statistics of the �uctuations in the system's DF at the initial time.
These are only sourced by the initial Poisson shot noise and gave us (for (k ; k0) 6= (0 ; 0))



�F k (J; 0) �F k 0(J0; 0)

�
=

mb

(2� )d � k � k 0 � D (J � J0) F0(J); (6.18)

where we used the fact that �F is a real function, so that �F � k (J) = �F �
k (J). We can now use Eq. (6.18) to

compute explicitly the initial correlations in the system's DF, and we obtain

F1(J) = � mb F0(J)
X

k

ik
Z

B

d!
2�

Z

B0

d! 0

2�
e� i( ! + ! 0) t

! � k � 
 (J)
 d

� k � k (J; J; ! 0)
! 0+ k � 
 (J)

: (6.19)

We may now compute the remaining inverse Laplace transforms over ! and ! 0. We assume that the system
is linearly stable, so that ! 0 7!  d

� k � k (J; J; ! 0) has no poles in the upper half complex plane. Each of the two
frequency integrals then only involve one pole, and integrals can then be carried out by lowering the inte-
gration contours to low imaginary values, where the value of e� i( ! + ! 0) t vanishes. Assuming that t is large
enough for the contributions from the transients associated with the system's damped modes to be neglected
(see Eq. (3.77)), only the contributions from the obvious poles in ! = k � 
 (J) and ! 0 = � k � 
 (J) remain, con-
tributing each a � 2� i times the associated residue. In that process, we also note that the time dependence in
e� i( ! + ! 0) t exactly vanishes: this is a signature of the fact that the relaxation happens at resonance. Paying a
careful attention to the signs, and making the change of variable k 7! � k , we can �nally rewrite Eq. (6.19) as

F1(J) = � mb F0(J)
X

k

ik  d
kk (J; J; k � 
 (J)) : (6.20)

Glancing back at Eq. (4.20), we note that this expression exactly matches the di�usion coe�cient D 1(J) (where
one replacesmt the mass of the test star with mb the mass of the system's particles). As a consequence, relying
on the �nal result from Eq. (4.32), we can rewrite the �rst �ux as

F1(J) = D 1(J) F0(J); (6.21)

where the friction coe�cient D 1(J) follows from Eq. (4.32) and reads

D 1(J) = mb � (2� )d
X

k ;k 0

k
Z

dJ0� D (k � 
 (J) � k0 � 
 (J0))
�
�  d

kk 0(J; J0; k � 
 (J))
�
�2

k0 �
@F0
@J0 : (6.22)

As such, we have fully recovered that, indeed, the �ux F1(J) is the contribution directly associated with the
dressed dynamical friction occurring on every �uctuations in the system.
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6.3 Computing F2(J)

Let us now consider the second �ux F2(J). Injecting twice Eq. (6.15) into the de�nition from Eq. (6.16), we can
rewrite this �ux as

F2(J) = (2 � )2d
X

k

ik k �
@F0
@J

Z

B

d!
2�

Z

B0

d! 0

2�
e� i( ! + ! 0) t

! � k � 
 (J)

�
X

k 0;k 00

Z
dJ0

Z
dJ00  d

kk 0(J; J0; ! )
! � k0 � 
 (J0)

 d
� kk 00(J; J00; ! 0)

! 0 � k00� 
 (J00)



�F k 0(J0; 0) �F k 00(J00; 0)

�
: (6.23)

We can then use Eq. (6.18) to compute the ensemble average over the initial conditions of the DF. We get

F2(J) = mb (2� )d
X

k ;k 0

ik k �
@F0
@J

Z

B

d!
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Z

B0

d! 0
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e� i( ! + ! 0) t
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kk 0(J; J0; ! )
! � k0 � 
 (J0)

 d
� k � k 0(J; J0; ! 0)
! 0+ k0 � 
 (J0)

F0(J0): (6.24)

Using the same reasoning as in Eq. (6.19), we can perform the integral over ! 0, noting that it involves a single
pole on the real axis, in ! 0 = � k0 � 
 (J0), the other poles being damped. Recalling that with our convention
each pole contributes a � 2� i times the residue, for t large enough so that damped modes have faded away, we
can rewrite Eq. (6.24) as

F2(J) = mb (2� )d
X

k ;k 0

k k �
@F0
@J

Z
dJ0F0(J0) eik 0� 
 (J 0) t  d�

kk 0(J; J0; k0 � 
 (J0))
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Z
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d!
2�

e� i !t  d
kk 0(J; J0; ! )

(! � k � 
 (J))( ! � k0 � 
 (J0))
; (6.25)

where we used the relation  d
� k � k 0(J; J0; � ! R )=  d�

kk 0(J; J0; ! R ) that is a direct consequence of the symmetry
relation from Eq. (4.27). Let us now perform in Eq. (6.25) the last remaining inverse Laplace transform over ! .
Paying a careful attention to the fact that there are two poles, and that each of them contributes � 2� i times the
associated residue, we obtain

Z
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d!
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e� i !t  d
kk 0(J; J0; ! )

(! � ! 1)( ! � ! 2)
= � i

�
e� i ! 1 t  d (! 1)

! 1 � ! 2
+

e� i ! 2 t  d (! 2)
! 2 � ! 1

�

= i e � i ! 2 t  d (! 2)
1

! 1 � ! 2

�
1 � e� i( ! 1 � ! 2 ) t  d (! 1)

 d (! 2)

�
(6.26)

where we shortened the notations with ! 1 = k � 
 (J), and ! 2 = k0 � 
 (J0), as well as  d (! ) =  kk 0(J; J0; ! ).
When injected back in Eq. (6.25), this gives

F2(J) = i mb (2� )d
X

k ;k 0

k k �
@F0
@J

Z
dJ0F0(J0)

�
�  d

kk 0(J; J0; k0 � 
 (J0))
�
�2

� lim
t ! + 1

1
! 1 � ! 2

�
1 � e� i( ! 1 � ! 2 ) t  d (! 1)

 d (! 2)

�
; (6.27)

where the limit t ! + 1 stands for our assumption of the Bogoliubov's ansatz, i.e.the fact that since perturba-
tions evolve much faster than the mean system, we may replace these perturbations with their asymptotic time
behaviours, when we evaluate the long-term kinetic operator.

Fortunately, that time limit can be straightforwardly computed using the identity

lim
t ! + 1

e� ixt

x
= � i�� D (x): (6.28)

We can now use this result to rewrite Eq. (6.27) as

F2(J) = � mb � (2� )d
X

k ;k 0

k k �
@F0
@J

Z
dJ0� D (k � 
 (J) � k0 � 
 (J0))

�
�  d

kk 0(J; J0; k � 
 (J))
�
�2

F0(J0); (6.29)

where we used the fact that the di�usion �ux is real, so that the principal value, P(1=(! 1 � ! 2)) , does not
contribute. As a consequence, we can rewrite this second contribution to the �ux as

F2(J) = � D 2(J) �
@F0
@J

; (6.30)
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where the di�usion tensor, D 2(J), was already obtained in Eq. (3.79), and reads

D 2(J) = mb � (2� )d
X

k ;k 0

k 
 k
Z

dJ0� D (k � 
 (J) � k0 � 
 (J0))
�
�  d

kk 0(J; J0; k � 
 (J))
�
�2

F0(J0): (6.31)

As such, we have fully recovered that the �ux F2(J) is associated with the di�usion component sourced by the
temporal correlations in the system's self-induced and dressed potential perturbations.

Gathering the results from Eqs. (6.21) and (6.30), we have therefore been able to rewrite the total di�usion
�ux from Eq. (6.11) as

@F0(J; t)
@t

= �
@

@J
�
�
D 1(J) F0(J) � D 2(J) �

@F0
@J

�
; (6.32)

and we fully recovered the �nal form of the self-consistent inhomogeneous Balescu-Lenard equation already
obtained in Eq. (5.2).

7 Some examples of long-term relaxation
The generic formalism developed in the previous sections can provide deep insights into the long-term

dynamics of astrophysical self-gravitating systems. We will now illustrate some of these results in systems di-
verse in scales and dynamical temperatures, but all governed by the same long-range gravitational interaction.
We will successively consider the example of axisymmetric discs, such as the Milky Way's galactic disc, and
spherical systems such as galactic nuclei, i.e. the dynamics of stars orbiting a supermassive black hole (BH).

7.1 Galactic discs
A �rst interesting testbed for the present formalism is the case of axisymmetric galactic discs, i.e. the motion
of stars constrained to a 2D plane.

7.1.1 Angle-actions and basis for discs

For such a system, the physical space is of dimensiond=2 , that we describe with the polar coordinates (r; � ).
Assuming that the mean potential, �( r ), is axisymmetric, angle-action coordinates are readily constructed (Bin-
ney & Tremaine, 2008). The two actions of the system are(J1; J2)=( Jr ; J � ), respectively the radial and az-
imuthal action, given by

J1 =
1
�

Z r a

r p

dr
p

2(E � �( r )) � L 2=r2 ; J2 = L; (7.1)

with E and L the energy and the angular momentum of the orbit, and (r p ; ra) its peri- and apocentre, i.e. the
two roots of vr =

p
2(E � �( r )) � L 2=r2 =0 . To these actions are associated two orbital frequencies, de�ned as

2�

 1

= 2
Z r a

r p

dr
1

p
2(E � �( r )) � L 2=r2

;

 2


 1
=

L
�

Z r a

r p

dr
dr

p
2(E � �( r )) � L 2=r2

; (7.2)

where (
 1; 
 2) are respectively the radial and azimuthal frequencies. Finally, the angle-action coordinates are
completed with the associated angles (� 1; � 2) that read

� 1 = 
 1

Z

C1

dr
1

p
2(E � �( r )) � L 2=r2

; � 2 = � +
Z

C1

dr

 2 � L=r 2

p
2(E � �( r )) � L 2=r2

; (7.3)

where C1 is a contour starting from r = r p and going up to the current position r = r (� 1) along the radial
oscillation.

Having constructed the angle-action coordinates, we must now construct some appropriate basis of poten-
tials and densities, as de�ned Eq. (3.63), Owing to the azimuthal symmetry of the disc, it is natural to write the
basis elements as

 (p) (x) =  (p) (r; � ) = e i `� Un
` (r ); (7.4)

where Un
` (r ) are some tailored real radial functions (Kalnajs, 1976). In order to characterise the strength of the

self-gravitating ampli�cation in the system, as described by the response matrix from Eq. (3.63), we must now
compute the Fourier transformed basis elements,  (p)

k (J). These are given by

 (p)
k (J) =

Z
d�

(2� )2  (p) � x [� ; J]
�

e� ik � �

= � `
k2

W k
`n (J); (7.5)
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where we introduced the coe�cient W k
`n (J) as

W k
`n (J) =

1
�

Z �

0
d� 1 Un

`

�
r [� 1]

�
cos

�
k1� 1 + k2(� 2 � � )

�

=
1
�

Z r a

r p

dr
d� 1

dr
Un

` (r ) cos
�
k1� 1[r ] + k2(� 2 � � )[r ]

�
: (7.6)

Computing the Fourier transformed basis elements amounts then to computing the integral from Eq. (7.6).

7.1.2 A disc model

Let us now consider the same disc model as in Sellwood (2012). We consider a so-called Mestel disc, i.e. a
disc for which the circular velocity vc =

p
r @� =@ris a constant. Such a disc somewhat mimics the �at rotation

curve of the MW. If the disc was fully self-gravitating and generated this potential on its own, its surface density
would be �( R) / 1=r. It is more realistic to assume that the disc is not fully self-gravitating, and that the total
potential is generated by three components: (i) an inert bulge that dominates the mass near the centre; (ii) an
inert dark halo that dominates the mass density far from the centre; (iii) the self-gravitating disc that contributes
� 0:5 of the radial force at intermediate radii. The bulge and the halo are said to be inert, because they only
contribute to the mean-�eld potential, but are insensitive to perturbations. As a result of the introduction of
these additional components, the Mestel disc is said to be tapered at small and large radii, as its self-gravity
has been turned o� in the inner and outer regions. The initial unperturbed DF of that disc is given by

F0(E; L ) = � C L q e� E=� 2
r Tin (L ) Tout (L ); (7.7)

where C is a normalisation constant for the DF so that the disc generates the full potential for � = Tin = Tout =1 .
We also introduced � r as the radial velocity dispersion that controls the magnitude of the stars' random mo-
tions, and the power index q=( vc=� r )2 � 1 taken to be equal to 11:4. Finally, to mimic the bulge and the dark
halo, we introduced the inner and outer taper function as

Tin (L ) =
L 4

(Rin vc)4 + L 4 ; Tout (L ) =
(Rout vc)5

(Rout vc)5 + L 5 ; (7.8)

where Rin is the disc's scale radius, and the outer truncation is given by Rout =11:5Rin . The last important
parameter in Eq. (7.7) is � , the active fraction between zero and unity, that controls the dynamical importance
of the disc's self-gravity. In particular, for � =0 :5, the disc is known to be linearly stable (Toomre, 1981), i.e. all
its normal modes are damped.

We now have at our disposal a stable inhomogeneous self-gravitating system with an integrable orbital
structure. As a result of the �nite number of particles, we expect therefore that this system will undergo a
long-term orbital relaxation, via the resonant couplings of ampli�ed Poisson �uctuations, as described by the
inhomogeneous Balescu-Lenard Eq. (5.2). Such a long-term evolution was indeed observed in the numerical
simulations of Sellwood (2012), that integrated the dynamics of that disc for hundreds of dynamical times. The
resulting orbital di�usion is illustrated in Fig. 7.1.

7.1.3 Di�usion �ux in action space

In order to be able to compute explicitly the Balescu-Lenard Eq. (5.2) to recover the formation of the ridge,
some additional di�culties have to be overcome. First, the computation of the di�usion �ux requires the
computation of the dressed susceptibility coe�cients,  d

kk 0(J; J0; ! ), as de�ned in Eq. (3.75), that themselves
require the computation and the inversion of the response matrix, fM (! ), from Eq. (3.72). The second main
di�culty comes from Eq. (5.2) that requires us to solve the resonance condition, � D (k �
 (J) � k0� 
 (J0)) . We
refer to Fouvry et al. (2015) for a detailed illustration of how these two numerical di�culties can be overcome.

Once these di�culties have been dealt with, one can then compute explicitly the Balescu-Lenard �ux from
Eq. (5.3) at the initial time and compare it with measurements from numerical simulations. This is �rst illus-
trated in Fig. 7.2, where the arrows show the di�usion �ux F(J; t) in action space. We note thatF(J; t) is small
except along a ridge that slopes leftwards up away from the Jr =0 axis, where most of the stars of a cool disc
are concentrated.

Rather than representing F(J; t), we can represent its divergence, that, owing to the continuity Eq. (5.3)
tracks the local rate of change of the system's DF. This is illustrated in Fig. 7.3, where it is also compared
with the measurements from numerical simulations. In that particular �gure, we recover that @=@J �F(J) is
negligible except along a narrow ridge, where it is positive lower down and negative higher up, indicating
that stars are di�using from near circular orbits to more eccentric orbits, with slightly less angular momentum.
Satisfactorily, we also note that the measurements from numerical simulations, and the predictions from kinetic
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Figure 7.1: . From Sellwood (2012). Illustration of the spontaneous formation of a resonant ridge in
action space observed during the numerical simulation of a discrete tapered Mestel disc. Left panel:
Level lines of the DF from Eq. (7.7) at the initial time. Right panel: Level lines of that same DF after
evolving the systems for hundreds of dynamical times. One can note the formation of a narrow ridge
of di�usion towards more radial orbits in the central region of the disc.

Figure 7.2: . From Fouvry et al. (2015). Illustration of the di�usion �ux, F(J; t =0) , in action space
for a tapered Mestel disc with active mass fraction � = 0 :5. In this representation, one can clearly note
that the di�usion is anisotropic, both because it only acts in a restricted region of action space, and
also because it follows a very speci�c direction in that space.
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Figure 7.3: . Illustration of the contours of @=@J �F(J; t =0) , i.e. the divergence of the di�usion �ux in
action space, as de�ned in Eq. (5.3). Blue (resp. red) contours are associated with a increment (resp.
decrement) in the system's DF on secular timescales. The cyan line highlights the direction associated
with the inner Lindblad resonance, k �J =( � 2; 1)�(J � ; Jr ), emphasising the fundamental role played
by this resonance during the di�usion. Left panel: As measured in the numerical simulations of Sell-
wood (2012). Right panel: As predicted in Fouvry et al. (2015) using the Balescu-Lenard Eq. (5.2).
Both resonant ridges are aligned with the same direction, and their overall amplitude are consistent,
emphasising the key role played by collective e�ects to accelerate the long-term orbital di�usion.

theory are in agreement, both in the location, amplitude, and direction of the ridge. We also note that the ridge
coincides with the line k � J = cst : with k = ( � 2; 1). Stars on this line are said to be at the inner Lindblad
resonance, i.e. the resonance associated with this particular resonancek. As can be seen from the front factor
k in Eq. (5.2), a given resonance vectork, only sources a di�usion along the direction of k. As a consequence,
from Fig. 7.3, we can conclude the inner Lindblad resonance is indeed the resonance dominating the disc's
resonant relaxation. Following this measurement, one can perform a few additional tests of the kinetic theory.

First, from the mass prefactor in Eq. (5.2),mb = M tot =N, one can check the scaling ofF(J; t) with the number
of particles. For a �xed total mass, the larger N , the smoother the mean potential, the weaker the Poisson
�uctuations, and therefore the slower the long-term relaxation. This scaling in 1=N can be carefully recovered
from the numerical simulations.

Similarly, one can also check the dependence of the amplitude of the di�usion with � the disc's active frac-
tion. The larger � , the stronger the self-gravitating ampli�cation, and therefore the faster the relaxation. We
must also emphasise that the dependence ofF with � is far from being linear for dynamically cold systems.
Indeed, following Eq. (3.72), we note that the dielectric matrix scales like eE =1 � � fM 0, where the response ma-
trix fM 0 corresponds to the response matrix for � =1 . As a consequence, the dressed susceptibility coe�cients
from Eq. (3.75) scale heuristically like j d j2 / j  j2=(1� � )2. As � increases, the disc gets more and more self-
gravitating, and gets closer and closer to being linearly unstable. As a result, the dressing of the perturbations
gets larger and larger, so that the long-term di�usion get rapidly accelerated. This non-linear scaling w.r.t. �
can also be recovered in the numerical simulations.

One of the important conclusion of these comparisons is that, indeed, the Balescu-Lenard equation predicts
the action space di�usion �ux that the Poisson noise drives in a stable but (very) responsive disc. This evolution
occurs more than 1000times faster than naive estimates of two-particle relaxation, because the Poisson noise
is dressed by self-gravity, which drastically enhances the �uctuations' amplitude, and therefore increases the
e�ciency of the relaxation.

7.1.4 The long-term fate of discs

The sole computation of F(t =0) is already a cumbersome numerical task. But, we may rely on numerical
simulations to gain insight on the disc's long-term behaviour if one was able to integrate self-consistently the
Balescu-Lenard Eq. (5.2) forward in time. Following the di�usion �ux observed in Fig. 7.3, a resonant ridge
will slowly grow in the disc's mean DF, F0(J; t). In particular, this ridge will locally deplete the disc from
circular orbits, and move them to more radial ones. When large enough, this ridge will ultimately make the
disc unstable at the collisionless level (De Rijcke et al., 2019). That is, Poisson shot noise drives a disc that
is initially stable towards one that is unstable, through slow reshu�ings of orbits. Such a phase transition is
illustrated in Fig. 7.4, where we note the change of dynamical regime between a slow collisional relaxation,
described by the Balescu-Lenard, and a fast collisionless relaxation. All simulations of initially stable discs that
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Figure 7.4: . From Fouvry et al. (2015). Illustration of the destabilisation of the disc occurring on
secular timescales as a result of the slow and irreversible growth of the resonant ridge in action space,
as illustrated here by the strength of non-axisymmetric perturbations in the disc as a function of time,
where di�erent colors correspond to di�erent values of N . At some stage, the ridge gets so large
that the disc becomes unstable (De Rijcke et al., 2019). The dynamics therefore drastically changes
of dynamical regime, as it will undergo the (fast) growth of an unstable mode, as described by the
(collisionless) Vlasov equation. The larger N , the more one has to wait for this dynamical transition
to happen.

have been integrated for long enough developed O(1) non-axisymmetries that degenerated into a strong bar.
The larger the number N of particles, the longer one has to wait for the bar to form, but the bar always ends
up forming.

Owing to this result, we can now describe the main steps of the long-term evolution of a self-gravitating
system, as summarised in Fig. 7.5.

Figure 7.5: . From Sellwood (2012). Illustration of the typical fate undergone by the tapered Mestel
disc, where here � max describes the typical amplitude of non-axisymmetric �uctuations in the disc,
and di�erent colors correspond to di�erent values of N . See the main text for a discussion of these
di�erent stages.

1. First, at the initial time, owing to the system's �nite number of particles, the system unavoidably contains
some Poisson shot noise �uctuations. This corresponds to the �uctuations �F k (J; 0), whose statistics we
characterised in Eq. (3.49). The larger the number of particles, the smaller this initial value, as can be
seen in Fig. 7.5.
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2. Then, in the �rst few dynamical times, these initial Poisson �uctuations get ampli�ed by the system's
self-gravity. The disc thermalises, leading to Poisson shot noise �uctuations with amplitudes larger than
at the initial time. This corresponds to the stage of thermalisation we considered in Eq. (3.78), when we
characterised the amplitude of the dressed potential �uctuations, � � k (J; t), in a live self-gravitating sys-
tem, and replaced the bare susceptibility coe�cients,  kk 0(J; J0) with their dressed analogs,  d

kk 0(J; J0; ! ).
3. Because of resonant couplings between the dressed Poisson �uctuations, the disc begins subsequently

its secular evolution. This corresponds to the collisional dynamics captured by the inhomogeneous
Balescu-Lenard equation, that we derived in Eq. (5.2). This dynamics is sourced by 1=N e�ects, so that
the larger the number of particles, the slower the evolution. This can also be seen in Fig. 7.5, where we
note that the initial slope of the magenta line is smaller than the initial slope of the cyan line. During
these slow orbital distortions, a resonant ridge slowly grows in the disc's DF, as illustrated in Fig. 7.3.

4. When the resonant ridge gets too large, the disc �nally becomes linearly unstable, and undergoes an
out-of-equilibrium dynamical phase transition, as illustrated in Fig. 7.4. During this destabilisation, the
disc's dynamics is governed by the Vlasov equation. The evolution is then collisionless, i.e. independent
of the number of particles. This can also be seen in Fig. 7.5, where one can note that the �nal slopes of
the magenta and cyan lines are the same.

7.2 Galactic nuclei
Another important example of self-gravitating system comes from the case of galactic nuclei, i.e. the long-term
dynamics of stars orbiting a supermassive BH, such as SgrA*, the galactic centre of the MW, as illustrated in
Fig. 7.6.

Figure 7.6: Observations of SgrA*, the galactic nucleus of the MW. The MW contains in its centre a
supermassive BH of massM � ' 4� 106 M � . This BH strongly dominates the stars' dynamics within its
sphere in�uence, r h ' 1 pc, de�ned so that the enclosed stellar mass is M ?(r � r h ) ' M � . Left panel:
From Schödel et al. (2007). Observations of SgrA*'s sphere of in�uence. Galactic nuclei are among
the densest stellar systems of the Universe, making them ideal to apply the statistical tools presented
here. Right panel: From Gillessen et al. (2017). Detailed observations of the Keplerian dynamics of the
S-stars in the very vicinity of SgrA* ( � 10 mpc). We note that these stars follow very closely Keplerian
ellipses, justifying the orbit-average performed in Section 7.2.2.

As we will emphasise, one of the main dynamical speci�city of such a system is that it said to be dynamically
degenerate, as a global resonance conditionk � 
 (J) = 0 is satis�ed by all the orbits. Galactic nuclei are fasci-
nating dynamical systems, because the in�nite potential generated by the central BH guarantees the existence
of a wide range of dynamical timescales in the system. As such, the dynamical evolution of the stellar cluster
surrounding the BH comprises numerous dynamical processes acting on radically di�erent timescales (Rauch
& Tremaine, 1996; Hopman & Alexander, 2006; Alexander, 2017), as illustrated in Fig. 7.7.

1. First, the central BH being supermassive, it dominates the system's mean potential and imposes, at
leading order, a Keplerian motion to each individual star. This is the system's fast dynamical timescale.
Because this motion is so fast, one naturally performs an orbit-average over it, i.e. smears out the stars
along their Keplerian ellipses. Following this �rst average, studying the long-term dynamics of a galactic
nucleus amounts then to studying the long-term relaxation of a population of closed Keplerian wires.
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Figure 7.7: Illustration of the intricate hierarchy of timescales in a galactic nucleus. These are: (1) the
dynamical time; (2) the precession time; (3) the vector resonant relaxation time; (4) the scalar resonant
relaxation time; (5) the non-resonant relaxation time. Each process is brie�y described in the main
text.

2. Then, on longer timescales, the potential self-consistently generated by the stellar cluster, as well as the
relativistic corrections from the central BH (Schwarzschild precession) cause the wires to precess in their
orbital planes. This is the system's second timescale, the timescale for the precession of the Keplerian
wires' pericentres.

3. Subsequently, through the non-spherical stellar �uctuations and the relativistic corrections induced by
a possibly spinning BH (Lense-Thirring precession), the wires' orbital orientations get reshu�ed. This
process is called "vector resonant relaxation" (Kocsis & Tremaine, 2015), as wires' angular momentum
change in orientation, without changing in magnitude (i.e. in eccentricity) nor in energy (i.e. in semi-
major axis). This is the system's third timescale, the timescale for the redistribution of orbits' orientations.

4. On even longer timescales, resonant torques between the precessing wires lead to a di�usion of the
wires' eccentricity, a process called "scalar resonant relaxation" (Rauch & Tremaine, 1996). This process
is resonant because only wires that precess with matching precession frequencies couple to one another.
This is the system's fourth timescale, the timescale for the eccentricity relaxation.

5. Finally, on the longest timescale, stars occasionally see each other (rather than wire seeing each other),
as a result of close two-body encounters. The cumulative e�ects from these localised scatterings lead
to a relaxation of the stars' Keplerian energy (i.e. the wires' semi-major axis), through a process called
non-resonant relaxation. This is the system's last timescale, the timescale for energy relaxation.

Let us now brie�y detail how the previous kinetic methods can be used to describe some of these relaxation
processes.

7.2.1 The system's Hamiltonian

We consider of set of N stars of individual mass m orbiting a BH of mass M � . We assume that the BH is
supermassive so that we have Nm = M ? � M � . Within some given inertial frame, we denote the location of
the BH with X � and the locations of the stars with X i . The total Hamiltonian of the system is then given by

H =
P 2

�

2M �
+

NX

i =1

P 2
i

2
+

NX

i =1

M � mU(jX i � X � j) +
NX

i =1

m� i
rel +

X

i<j

m2 U(jX i � X j j); (7.9)

with the usual Newtonian interaction U(jX j) = � G=jX j. In that Hamiltonian, the �rst two terms correspond
to the kinetic energy of the BH and the stars. The third term corresponds to the Keplerian potential of the
stars w.r.t. the BH, while the fourth term is associated with the relativistic corrections generated by the BH
(such as the Schwarzschild and Lense-Thirring precessions). Finally, the last term corresponds to the pairwise
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interactions between the stars. As we will later emphasise, this term is the only term that will involve some
�nite- N Poisson �uctuations, and therefore is the only term able to source some long-term relaxation in the
system.

Because we know that the BH dominates the leading-order motion, we will rewrite the Hamiltonian from
Eq. (7.9) asN decoupled Keplerian Hamiltonians plus perturbations. To do so, we need to perform a canonical
change of coordinates towards the democratic coordinates (Duncan et al., 1998) centred on the BH. These are
de�ned as

8
<

:
x � =

M � X � +
P N

i =1 mX i

M � + M ?
;

x i = X i � X � :
;

8
>>><

>>>:

p � = P � +
NX

i =1

P i ;

p i = P i �
m

�
P � +

P N
j =1 P j

�

M � + M ?

(7.10)

Physically, through this change of coordinate, we only keep track of the position of the system's barycentre, and
the position of the stars respective to the BH. Without loss of generality, we can assume that (x � ; p � ) = (0 ; 0),
and the Hamiltonian from Eq. (7.9) becomes

H =
NX

i =1

�
p2

i

2m
+ M � m U(jx i j) + m� i

rel

�
+

NX

i<j

m2 U(jx i � x j j) +

� P N
i =1 p i

� 2

2M �
: (7.11)

The writing from Eq. (7.11) is satisfactory, because it consists of N independent Keplerian Hamiltonians (with
relativistic corrections) describing the interaction of the stars with the central BH, plus the pairwise couplings
among the stars. The last term is an additional kinetic term, that will vanish once we will perform an orbit-
average over the fast Keplerian motion, i.e. over the motion imposed by the dominating BH.

7.2.2 Averaging over the fast Keplerian motion

In the Hamiltonian from Eq. (7.11), because the BH is supermassive, the dominant term comes from the inter-
action of the stars with the central BH. This corresponds to the 2-body Keplerian problem, which is explicitly
integrable. As a consequence, in order to correctly describe this fast motion, it seems appropriate to perform
a new change of canonical coordinates towards the associated angle-action coordinates, which in the context
of the Keplerian motion are equivalently called orbital elements or Delaunay variables (Binney & Tremaine,
2008).

As illustrated in Fig. 7.8, we de�ne therefore the orbital elements as

(� ; J) = ( M; !; 
 ; L c; L; L z ); (7.12)

where M is the mean anomaly, i.e. the angle associated with the fast orbital motion, ! the argument of the
pericentre, 
 the longitude of the ascending node. We also introduced the three actions (L c; L; L z ) as

Figure 7.8: From Murray & Dermott (1999). Illustration of the Keplerian orbital elements.

L c = m
p

GM � a ; L = L c

p
1 � e2 ; L z = L cos(I ); (7.13)

with a the wire's semi-major axis, e its eccentricity, I its inclination, L the norm of the angular momentum, L z

its projection along the z-axis, and L c the circular angular momentum.
The key property of these variables is that they allow us to express the Keplerian Hamiltonian as a simple

function of the associated action variables, as one has

HKep =
p2

i

2m
+ M � mU(jx i j) = �

m3(GM � )2

2L 2
c

; (7.14)
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Here, we note that the Keplerian motion is said to be degenerate, since it depends only on one action, L c, so
that this Hamiltonian has only one non-zero orbital frequency


 Kep =
@HKep

@Lc
= _M =

r
GM �

a3 ; (7.15)

while all the other orbital frequencies are exactly zero.
In addition to performing the change of variables to the orbital elements, relying on the fact that the

BH is supermassive, we will also perform an orbit-average of the system's Hamiltonian w.r.t. the particles'
fast Keplerian motion, i.e. w.r.t. the particles' mean anomaly. As a result, we will perform the replacement
H !

R�
� � dM=(2� )H = H . In that process, we note that since the Hamiltonian becomes independent of the

angle M , the associated actionL c, whose dynamics is driven by _L c = � @H=@M= 0 gets adiabatically con-
served. SinceL c = L c(a), this means that the stars' semi-major axes are conserved for the orbit-averaged dy-
namics. Similarly, any contribution to the orbit-averaged Hamiltonian that only depends on the adiabatically
conserved action L c can also be removed; this is the case for the additional kinetic term from Eq. (7.11), that
we may therefore drop. Following the orbit-average over the mean anomalies of all the particles, particles are
replaced by Keplerian wires, and the Hamiltonian from Eq. (7.11) becomes

H =
NX

i =1

m �
i
rel +

NX

i<j

m2 U ij ; (7.16)

where we introduced the orbit-averaged relativistic precession and the orbit-averaged wire-wire interaction as

�
i
rel =

Z �

� �

dM i

2�
� i

rel ;

U ij =
Z �

� �

dM i

2�
dM j

2�
U(jx i � x j j); (7.17)

with the usual Newtonian pairwise coupling U(jx j) = � G=jx j. We made great progress in the Hamiltonian
from Eq. (7.16) as it formally ressembles the Hamiltonian considered in Eq. (3.1), i.e. it is the sum of some
external potential, as well as the sum over pairwise interactions. Here, the main di�erence stems from the
orbit-average over the fast Keplerian motion. As we have replaced particles by Keplerian wires, we e�ectively
replaced the Newtonian particle-particle interaction by its double orbit-averaged wire-wire version (Touma
et al., 2009). We can now leverage the similarity between these Hamiltonians to develop the orbit-averaged
kinetic theory of galactic nuclei.

7.2.3 Mean-�eld orbit-averaged dynamics

Following Eq. (7.16), the speci�c Hamiltonian of a test wire embedded in that system is given by

H = � rel +
NX

i =1

m U i ; (7.18)

where U i stands for the orbit-averaged interaction between the test wire and the background particle i , as
de�ned in Eq. (7.17). The dominating contribution to the relativistic correction from the BH is the 1PN con-
tribution (i.e. scaling in 1=c2) called the Schwarzschild precession that leads to an in-plane precession of the
stars' pericentre. More precisely (see, e.g., Touma et al. (2009)), it reads


 rel (a; e) =
@� rel

@L
=

3GM � 
 Kep (a)
c2a(1 � e2)

: (7.19)

We note that this precession of the pericentre is prograde, and independent of the orbital orientation of the
considered test wire.

Similarly, if we assume that background distribution of wires is on average spherically symmetric, i.e.
F0 = F0(L c; L ) = F (a; e), then it also leads to an in-plane precession of the test wire. More precisely, assuming
that the background stars have the enclosed mass pro�le M ?(r ), then it also generates a precession of the test
wire's pericentre (Tremaine, 2005) governed by


 ?(a; e) =
@� ?

@L
=


 Kep (a)
�M � e

Z �

0
df M ?

�
r [f ]

�
cos(f ); (7.20)
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where f stands for the test particle's true anomaly. For an outward decreasing stellar density pro�le, this
precession is retrograde, and is also independent of the particular orientation of the considered test wire.

As a result of these mean-�eld motions, the Hamiltonian from Eq. (7.18) takes the simple form

H = � rel (a; e) + � ?(a; e) + � � ; (7.21)

where � rel and � ? are the mean-�eld constructive in-plane precessions generated respectively by the relativistic
corrections from the BH and the mean stellar potential, and � � stands for the �nite- N �uctuations unavoidably
present in a discrete background bath. At this stage, the analogy with the generic inhomogeneous system
considered in previous sections is even more obvious.

Let us now recall the main steps that led us to Eq. (7.21). First, we performed an orbit-average over the fast
Keplerian motion induced by the BH. As a result, we replaced stars by their underlying Keplerian wires. As
we have smeared out the stars along their mean anomaly, a Keplerian wire is then characterised by �ve orbital
numbers. Namely, (L c; L ) = ( a; e), the semi-major axis and eccentricity, describe the shape of the wire; ! , the
argument of the pericentre, describes the in-plane phase of the wire's pericentre; bL = (
 ; L z ), the direction of
the angular momentum vector, describes the orbital orientation of the wire. Because of adiabatic invariance,
the "fast" action L c is conserved for the orbit-averaged dynamics, i.e. a Keplerian wire cannot see its semi-
major axis a change through orbit-averaged interactions. On the one hand, in the limit of a perfectly smooth
background bath, the test wire's pericentre, ! , still undergoes a constructive precession, as governed by the
mean-�eld precessions from Eq. (7.21). This motion is sourced by the relativistic corrections from the BH,
as well as by the smooth background stellar potential. On the other hand, in the limit of a perfectly smooth
background bath, the test wire's orientation, bL , is exactly conserved, and the test wire always remains within
its initial orbital plane.

Of course, the background bath is, in practice, composed of a �nite number of stars, which generates some
stochastic noise in the system. As a consequence, this can source the relaxation of the test wire's orbital param-
eters. Yet, because the wire's pericentre undergoes a non-zero constructive precession, while its orientation
does not, we expect that the statistical properties of the relaxation of the test wire's eccentricity and the test
wires' orientation are going to be radically di�erent. We therefore make the distinction between these two
processes of resonant relaxation, that we respectively call "scalar resonant relaxation" for the relaxation of the
norm of the test wire's angular momentum (i.e. the relaxation of eccentricity), and "vector resonant relaxation"
for the relaxation of the direction of the test wires' angular momentum vector. In the sections below, we brie�y
sketch the physical content of these two processes.

7.2.4 Scalar Resonant Relaxation

Let us �rst focus on the relaxation of the test wire's L . To shorten the notations and clarify the connexions
with the previous derivations, we de�ne the shape of the wires with the in-plane actions J = ( L c; L ). Our goal
is to describe the di�usion of the test wire's PDF, P(J; t). We start from the orbit-averaged Hamiltonian of
Eq. (7.21). We assume that the background bath follows an isotropic angular momentum distribution, so that
F0 = F0(J) = F0(L c). Glancing back at Eq. (3.72) where we noted that the bath's response matrix is sourced
by the gradients of the bath's DF w.r.t. the actions, our assumption of an isotropic bath has the important
consequence that, since@F0=@L= 0 , this bath cannot support any self-gravitating ampli�cation, i.e. the bath
response matrix is exactly zero. Phrased di�erently, the relaxation of the test wire's L is not accelerated by
collective e�ects, so that the Landau and Balescu-Lenard di�usion coe�cients, from Eq. (3.51) and (3.79), are
identical. In addition, this also leads to the cancellation of the drift component (see Eq. (5.2)), so that only
the di�usion component remains. The explicit and e�ective calculation of these di�usion coe�cients is a bit
cumbersome to deal correctly with all the numerical prefactors, so that we only report the �nal results, follow-
ing Bar-Or & Fouvry (2018). All in all, similarly to Eq. (3.25), we obtain a di�usion equation of the form

@P(J; t)
@t

=
1
2

@
@L

�
L D RR (J)

@
@L

�
P(J; t)

L

��
; (7.22)

where the additional factors in L come from averages over L z . In that equation, the di�usion coe�cients,
DRR (L c; L ) are formally similar to the ones we had already obtained in Eq. (3.51). They read

DRR (J) / m
X

k;k 0

k
Z

dJ0� D (k 
 prec (J) � k0
 prec (J0))
�
�  kk 0(J; J0)

�
�2

F0(J0); (7.23)

where we have introduced the total in-plane precession frequencies as 
 prec =
 rel +
 ?, and  kk 0(J; J0) are the
bare in-plane orbit-averaged susceptibility coe�cients, whose detailed expression can be found in Bar-Or &
Fouvry (2018). Of course, the similarities between the general result from Eq. (3.51) and Eq. (7.23) are striking.
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There are however two subtle changes in the case of scalar resonant relaxation. First, the resonance condition,
� D (k 
 prec (J) � k0
 prec (J0)) , involves the (slow) precession frequency rather than the (fast) orbital frequency.
Second, as a result of orbit-average, di�usion only occurs in the L-direction, and no di�usion occurs in the
direction of L c, the action adiabatically-conserved after orbit-average. An overall representation of the physical
mechanism driving this resonant relaxation is illustrated in Fig. 7.9.

Figure 7.9: Illustration of the process of scalar resonant relaxation in a galactic nucleus, i.e. the relax-
ation of stellar eccentricities in the vicinity of a supermassive BH. Because the central BH dominates
the system's total potential, it is natural to perform an orbit-average over this fast dynamics. Doing so,
stars are replaced by Keplerian wires. Top-left panel: Illustration of two Keplerian wires in the inertial
frame. As given by Eq. (7.21), as a result of the relativistic corrections from the BH and the stellar mean
potential, these wires undergo an in-plane pericentre precession, as described by 
 prec (J)= 
 rel +
 ?.
Top-right panel: The same two wires, but this time in the rotating frame in which they are in reso-
nance. As they are in resonance, these two wires are correlated and can therefore e�ciently couple one
to another. Bottom panel: Illustration in action space, J =( L c; L )=( a; e), of the �nite- N �uctuations
in the system, sourced by Poisson shot noise, and exhibiting overdensities for the blue and red orbits.
These two wires satisfy a resonance condition, � D (k 
 prec (J) � k0
 prec (J0)) , which permits a long-term
reshu�ing of the system's orbital structure, through the process of scalar resonant relaxation, as de-
scribed by the di�usion coe�cient from Eq. (7.23). We note that the two wires do not need to be close
in position space nor in action space to di�use, hence the name of discrete resonant encounters.

Having characterised in detail the di�usion coe�cients for the relaxation of eccentricities, they can now be
computed in detail. This is illustrated in Fig. 7.10 for a galactic nucleus mimicking SgrA*

7.2.5 Vector Resonant Relaxation

We also emphasised previously that as a result of the �nite number of stars in the system, a test wire will also
undergo some relaxation of its orbital orientation, through the process of vector resonant relaxation. Glancing
back at Eq. (7.21), we note that this stochastic jitter of the orbital orientation bL , is sourced by the Poisson �uctua-
tions � � , and therefore will happen on a timescale longer than the precession time tprec = 1=j
 prec j. Assuming
that this precession of the pericentre is much faster than the timescale for the orientations reshu�ings, we may
therefore perform a second orbit-average of Eq. (7.21), this time over the in-plane precession of the pericentres.

As a result, in Eq. (7.21), we will perform the operation H !
R�

� � d!= (2� )H = H . As illustrated in Fig. 7.11,
following this second orbit-average, Keplerian wires are replaced by Keplerian annuli, and the Hamiltonian
for our test annuli becomes

H =
NX

i =1

m U(J; J i ; bL � bL i ); (7.24)

where U(J; J0; bL � bL 0) stands for the double orbit-averaged pairwise interaction between two annuli of parame-
ters J and J0, and respective orientations bL and bL 0. By symmetry, this pairwise interaction is only a function of
the respective orientation of the two annuli, hence the fact that it only depends on their mutual angle, through
bL � bL 0. In the Hamiltonian from Eq. (7.24), since we have performed a double orbit-average, the parameters
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Figure 7.10: From Bar-Or & Fouvry (2018). Explicit computations of the di�usion coe�cients,
DRR (a; e), from Eq. (7.23), that describe the di�usion of a star's eccentricity in a galactic nucleus simi-
lar to the one of SgrA*. Moving from the right to the left, wires get from circular to very eccentric, up
to a point where they unavoidably fall on the central BH, as highlighted by the white region. Back-
ground green contours correspond the level lines of the eccentricity resonant di�usion coe�cients.
They dominate over the di�usion sourced by non-resonant encounters within the black region. The
red stars highlight the orbital parameters of the observed S-cluster from Fig. 7.6, whose dynamics is
dominated by resonant processes. As a wire becomes more and more eccentric, the e�ciency of its
resonant relaxation rapidly drops. This is the so-called Schwarzschild barrier (Merritt et al., 2011; Bar-
Or & Alexander, 2016), a direct consequence of the divergence of the relativistic precession frequency
from Eq. (7.19) for e ! 1. As a wire gets more and more eccentric, it precesses faster and faster through
these relativistic e�ects, up to a point that it precesses so fast that it cannot couple resonantly anymore
to the other slowly-precessing wires, and the e�ciency of the di�usion drastically drops.

Figure 7.11: Illustration of the process of vector resonant relaxation in a galactic nucleus. Following
an orbit-average over the fast Keplerian motion induced by the BH, stars are replaced by Keplerian
wires. Then, following a second orbit-average over the in-plane precession induced by the relativistic
corrections and the mean stellar potential, these wires are replaced by annuli, whose mutual inter-
action only depends on their respective orientation (left panel). To each annuli is associated a set of
conserved quantities J =( L c; L )=( a; e), and a set of dynamical variables bL =(
 ; L z ). As a result of the
Poisson �uctuations in the system, an annuli's orientation, bL , undergoes a random walk on the unit
sphere (right panel, where di�erent colors correspond to di�erent values of a), i.e. stars see their or-
bital plane di�use. This intricate stochastic dynamics is governed by the Hamiltonian from Eq. (7.24).
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J = ( L c; L ) = ( a; e) of the test annuli are adiabatically-conserved, while the only dynamical variable of the test
wire is bL = (
 ; L z ), i.e. the orientation of its orbital plane. Describing the vector resonant relaxation of that test
annuli amounts then to describing the correlated random walk undergone by bL , as a result of the perturbations

from the other annuli. For a spherically symmetric background distribution, one has H 0 =


H

�
= 0 , so that

there are no dominant constructive background mean-�eld motion for the test wire's orbital orientation. This
is beyond reach of the kinetic theory developed in the previous sections, where we always assumed to have at
our disposal a mean-�eld Hamiltonian H0(J) � � � , from which we could construct the system's mean-�eld

orbital structure. In the case where H 0 = 0 , another kinetic framework has to be developed to describe the
random jitters in orientations occurring in the system, as presented for example in Kocsis & Tremaine (2015);
Fouvry et al. (2019b). This is beyond the scope of the present notes.

There is still however one regime in which the present kinetic methods can be used to characterise the
vector resonant relaxation of stars in galactic nuclei. For simplicity, we assume that all the annuli have the

same J =( a; e), so that we can neglect that dependence w.r.t. (J; J0) in U(J; J0; bL � bL 0). We also assume that
the mean-�eld distribution of background stars is axisymmetric, so that we have F0(bL ) = F0(L z ). Then, the
mean-�eld Hamiltonian associated with Eq. (7.24) is given by

H 0(bL ) =
Z

dbL 0U(bL � bL 0) F0(bL 0) = H 0(L z ); (7.25)

which naturally de�nes some associated out-of-plane precession frequency, 
 z (L z ) = @H=@Lz , that drives the
precession of bL around the z-axis. This also implies that we have been able to construct a mean-�eld quasi-
stationary distribution for the system, as we have

�
F0(L z ) ; H 0(L z )

�
=

@F0
@


@H
@Lz

�
@F0
@Lz

@H
@


= 0 ; (7.26)

where we used the fact that (
 ; L z ) are conjugate canonical variables, making the computation of the Poisson
bracket obvious. As a conclusion, for an axisymmetric distribution of annuli, F0(L z ), we now have at our
disposal a discrete long-range interacting N -body system that supports a non-zero constructive mean-�eld
motion bL (t) = (
 0 + 
 z (L 0

z ) t; L 0
z ). This is great news as this corresponds exactly to the grounds on which we

derived the Balescu-Lenard equation in Eq. (5.2). As a conclusion, in analogy with Eq. (5.2), and making the
identi�cation to the angle-action coordinates (�; J )=(
 ; L z ), we expect that in the limit of an axisymmetric
distribution of stellar orientations in a galactic nucleus, the reshu�ing of the stars orientations is governed by
a kinetic equation of the form

@F0(L z ; t)
@t

/ � m 2� 2 @
@Lz

� X

k;k 0

k
Z

dL 0
z

�
�  d

kk 0(L z ; L 0
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�
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�
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@L0z
� k
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�
F0(L z ) F0(L 0

z )
�

/ �
@

@Lz

�
D1(L z ) F0(L z ) � D2(L z )

@F0(L z )
@Lz

�
; (7.27)

where  d
kk 0(L z ; L 0

z ; ! ) are the dressed susceptibility coe�cients between annuli. Of course, in practice, it re-
quires some work to obtain the exact expression and prefactors for that relation, and we refer to Fouvry et al.
(2019a) for precise results. An illustration of the computation of the di�usion coe�cient, D2(L z ), from Eq. (7.27)
is �nally presented in Fig. 7.12.



REFERENCES

50

Figure 7.12: From Fouvry et al. (2019a). Illustration of the di�usion coe�cient, D2(L z ) = D2(L cos(u))
for a toy-model mimicking the double orbit-averaged Hamiltonian from Eq. (7.24) and the associated
process of vector resonant relaxation in an axisymmetric galactic nucleus. Here is presented the dif-
fusion coe�cient in the absence (Landau) or presence (Balescu-Lenard) of collective e�ects, i.e. with
or without accounting for the system's internal self-gravitating ampli�cation, and compared with N -
body measurements (that naturally include collective e�ects).
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