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Abstract

Most galaxies harbor a supermassive black hole in their centre around which orbits a stellar cluster, the
galactic nucleus. The unique proximity of the Milky-Way’s central black hole, SgrA*, offers an extraordinary
opportunity to study such a crowded environment. Although galactic nuclei are among the densest stellar
systems in the universe, the steep potential well generated by the central black hole allows for efficient orbital
interactions between the stars. Ultimately, this drives the relaxation of the stellar orbits through an intricate hi-
erarchy of dynamical processes. In this manuscript, we focus on two such processes: scalar resonant relaxation
through which the stellar orbital eccentricities relax, and vector resonant relaxation through which the stellar
orbital orientations get reshuffled. For both processes, we report on recent developments in kinetic theory,
devise efficient numerical methods to simulate these dynamics, and present first quantitative applications of
these frameworks to constrain SgrA*’s stellar content.

Résumé

La plupart des galaxies abritent en leur centre un trou noir supermassif autour duquel orbite un amas
stellaire, le noyau galactique. La proximité unique de SgrA*, le trou noir supermassif au centre de la Voie
Lactée, offre une opportunité extraordinaire d’étudier un environnement aussi peuplé. Bien que les noyaux
galactiques soient parmi les systèmes stellaires les plus denses de l’univers, le profond puits de potentiel généré
par le trou noir central garantit des interactions orbitales très efficaces entre les étoiles. Cela permet la relaxation
des orbites stellaires par le biais d’une complexe hiérarchie de processus dynamiques. Dans ce manuscrit,
nous nous concentrons sur deux de ces processus: la relaxation résonante scalaire grâce à laquelle les orbites
stellaires relaxent en excentricité, et la relaxation résonante vectorielle grâce à laquelle les orientations des
orbites stellaires sont redistribuées. Pour ces deux processus, nous décrivons les récents développements de
la théorie cinétique, concevons des schémas numériques efficaces pour simuler ces dynamiques, et présentons
des premières applications quantitatives de ces paradigmes pour contraindre les propriétés de l’amas stellaire
orbitant autour de SgrA*.
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1 Stellar dynamics in galactic nuclei

The work presented in this section is based on Fouvry et al. (2022); Lisa Collaboration (2022).

Supermassive black holes (BHs) are ubiquitous in external galaxies (Magorrian et al., 1998; Genzel et al.,
2010; Kormendy&Ho, 2013; Graham, 2016) and their induced feedback plays a critical role in regulating galaxy
formation through cosmic ages (Heckman & Best, 2014). These supermassive BHs are generically surrounded
by a dense population of stars, which forms the nuclear star cluster (Neumayer et al., 2020). Recent outstanding
observations keep providing uswith new information on these crowded regions. These include detailed census
of stellar populations around SgrA* in the centre of the Milky-Way (MW) (Ghez et al., 2008; Gillessen et al.,
2017); the characterisation of SgrA*’s clockwise stellar disc (Bartko et al., 2009; Lu et al., 2009; Yelda et al.,
2014); the first observation of the relativistic precession of the star S2 within our own Galactic centre (Gravity
Collaboration et al., 2020); the observation of a cool accretion disc around SgrA* (Murchikova et al., 2019);
the first image of the shadow of SgrA* (Event Horizon Telescope Collaboration et al., 2022); and the mergers
of binary BHs recently detected via gravitational wave (GW) emission (Abbott et al., 2019) that may have
originated in galactic nuclei.

These various successes will soon be complemented with ever finer resolution around SgrA* (Gravity
Collaboration et al., 2017), as well as much larger stellar populations permitted by the planned upgrade on
VLTI/GRAVITY (Eisenhauer, 2019; Gravity Collaboration et al., 2021) and upcoming thirty-meter class tele-
scopes such as TMT (Do et al., 2019) and ELT/MICADO (Davies et al., 2018; Pott et al., 2018). Such a wealth of
observational information offers new venues to investigate the details of stellar dynamics around supermas-
sive BHs, as well as to probe the possible presence of intermediate mass black holes (IMBHs) in these dense
regions (see, e.g., Portegies Zwart & McMillan, 2002).

Although galactic nuclei are the densest stellar systems of the universe, the gravitational potential therein
still remains nonetheless dominated by the central supermassive BH. Because of the steep potential it gener-
ates, the dynamics of galactic nuclei encompasses a wide range of relaxation processes which act on radically
different timescales (Rauch & Tremaine, 1996; Hopman & Alexander, 2006; Alexander, 2017). In this first sec-
tion, we introduce the key equations on which detailed descriptions of these processes may be devised.

1.1 Hamiltonian

We consider a set of N stars of individual masses mi orbiting a supermassive BH of mass M", assuming that
Mæ=

∑
i mijM". Within a given inertial frame, we denote the location of the BH with R" and the locations

of the stars with Ri. This system’s total Hamiltonian is

H =
P2

"

2M"

+
N∑

i=1

[
P2

i

2mi

2 GM"mi

|Ri 2R"|

]
+

N∑

i=1

mi Φ
i
GR 2

N∑

i<j

Gmimj

|Ri 2Rj |
, (1.1)

with the canonical momenta P"=M"Ṙ" and Pi=miṘi. In Eq. (1.1), we introduced, for convenience, the
effective potential, ΦGR, to account for the (conservative) relativistic corrections induced by the central BH,
namely the Schwarzschild and Lense–Thirring precessions (see, e.g., Merritt, 2013).

Because the central BH dominates the potential, it is appropriate to rewrite Eq. (1.1) within new canonical
coordinates centred on the BH. An appropriate choice is the democratic coordinates (Duncan et al., 1998)

ù
üú
üû
r" =

1

M"+Mæ

[
M"R" +

N∑

i=1

miRi

]
,

ri = Ri 2R",

;

ù
üüüüú
üüüüû

p" = P" +

N∑

i=1

Pi,

pi = Pi 2
mi

M"+Mæ

[
P" +

N∑

i=1

Pi

]
,

(1.2)

which keep track of the position of the system’s barycentre and the position of the stars w.r.t. the BH. Without
loss of generality, we set (r",p")=(0, 0) and Eq. (1.1) ultimately becomes

H =

N∑

i=1

[
p2
i

2mi

2 GM"mi

|ri|

]
+

N∑

i=1

miΦ
i
GR 2

N∑

i<j

Gmimj

|ri 2 rj |
+

1

2M"

[ N∑

i=1

pi

]2
. (1.3)

This writing is satisfactory because the first term is N independent Keplerian Hamiltonians, the second is the
relativistic corrections induced by the central BH, the third term is the pairwise interactions between the stars,
while the last term is the kinetic energy of the central BH. As discussed next, once averaged over the fast
Keplerian motions, the first and last terms become irrelevant constants.
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1.2 Orbit-average

Because the BH is supermassive, the dominant terms in Eq. (1.3) are the interactions of the stars with the BH.
These correspond to a collection of 2-body Keplerian problems, which are explicitly integrable. Therefore, to
easily characterise this fast motion, one performs a new change of canonical coordinates towards appropriate
angle-action coordinates, (θ,J), namely the orbital elements or Delaunay variables (Binney & Tremaine, 2008).

As illustrated in the left panel of Fig. 1.1, we define the orbital elements as

(θ,J) = (M,É,Ω,Λ, L, Lz), (1.4)

with M the mean anomaly, i.e. the angle associated with the fast orbital motion, É the argument of the peri-
centre, and Ω the longitude of the ascending node. The conjugate actions (Λ, L, Lz) are given by

Figure 1.1: Keplerian orbits around a supermassive BH. Left: FromMurray & Dermott (1999). Illustration of the
Keplerian orbital elements. Right: From Gillessen et al. (2017). Detailed observations of the Keplerian dynamics
of the S-stars in the vicinity of SgrA* (∼10mpc). At leading order, the orbits take the form of closed ellipses.

Λ = m
√
GM"a; L = Λ

√
12 e2; Lz = L cos(I), (1.5)

with a the orbit’s semi-major axis, e its eccentricity, and I its inclination. Here, L stands for the norm of the
angular momentum vector, Lz its projection along the z-axis, and Λ the circular angular momentum.

Within Delaunay variables, Eq. (1.3) simply becomes

H = HKep +HGR +Hæ +
1

2M"

[ N∑

i=1

pi

]2
, (1.6)

with

HKep = 2
N∑

i=1

m3
i (GM")

2

2Λ2
i

; HGR =

N∑

i

mi Φ
i
GR; Hæ = 2

N∑

i<j

Gmimj

|ri 2 rj |
. (1.7)

Here, HKep describes the dynamics of N Keplerian orbits, HGR is the BH’s relativistic corrections, while Hæ

captures the pairwise interactions among the stars.
The Hamiltonian HKep is said to be degenerate because it only depends on the actions {Λi}i. As a result,

under this Hamiltonian, all variables but Mi are conserved, and the mean anomaly evolves with the (fast)
Keplerian orbital frequency

ΩKep(a) =

√
GM"

a3
. (1.8)

This Keplerian motion can equivalently be described using the eccentric anomaly, E, or the true anomaly, f .
These follow from Kepler’s equation with

M = E 2 e sin(E); r = a(12 e cos(E)) =
a(12 e2)

1 + e cos(f)
;

dM

dE
=

r

a
;

dM

df
=

r2

a2
1:

12 e2
, (1.9)

and offer simple expressions of the orbital radius, i.e. the distance from the central BH. The right panel of
Fig. 1.1 illustrates such Keplerian motions, as currently observed around SgrA*.
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If the BH is supermassive, i.e. ifM"kMæ, the dynamics is dominated byHKep and the evolution of all other
variables is much slower. We may then average the stellar dynamics over these fast orbital motions, through
the so-called secular approximation. One introduces the orbit-averaged Hamiltonian

〈
H
〉
=

∫ 2Ã

0

dM1

2Ã
...

dMN

2Ã
H, (1.10)

where ï · ð stands for an average over all unperturbed stellar orbits. Phrased differently, stars are smeared out
along their unperturbed Keplerian orbits, hence becoming massive wires (see, e.g., Touma et al., 2009).

Since ïHð is independent of theMi, the associated actions Λi are conserved andHKep in Eq. (1.6) averages
to a constant. Upon expanding, the last term in Eq. (1.6) consists of products of the orbit-averaged stellar
momenta ïpið and the orbit-averaged stellar kinetic energies ïp2

i ð. In our barycentric frame, one has ïpið=0
and ïp2

i ð=(m2
iGM"/Λi)

2 by virtue of the virial theorem. Because constant terms depending only on Λi do not
induce any dynamics, they can be omitted. Equation (1.6) becomes

〈
H
〉
=

〈
HGR

〉
+
〈
Hæ

〉
. (1.11)

The orbit-averagedHamiltonian fromEq. (1.11) describes the dynamics ofN gravitationally coupledKeplerian
wires, also subject to relativistic precession. Each wire is characterised by the five quantities {É,Ω,Λ, L, Lz},
of which Λ is conserved for the orbit-averaged dynamics. Equation (1.11) is the cornerstone on which all the
coming sections will build on.

1.3 Dynamical processes

Let us now discuss the key dynamical timescales in galactic nuclei, as illustrated in Fig. 1.2.

Figure 1.2: Hierarchy of timescales in a galactic nucleus: (1) the dynamical time; (2) the precession time; (3) the
vector resonant relaxation time; (4) the scalar resonant relaxation time; (5) the non-resonant relaxation time.

• Dynamical time. On account of its mass, the central BH dominates the nucleus’ mean potential. At leading
order, it therefore imposes a Keplerian motion to any star orbiting within the BH’s sphere of influence.
These motions take the form of closed ellipses which can be described by their orbital elements, as defined
in Eq. (1.4), and are currently monitored for the S-cluster around SgrA*, see the right panel of Fig. 1.1. This
Keplerian timescale being so short, e.g., >16 yr for S2 (Gillessen et al., 2017), one is led to smearing out the
stars along the Keplerian ellipses, as in Eq. (1.11).

• Precession time. On longer timescales, the gravitational potential self-consistently generated by the stel-
lar cluster as well as the relativistic corrections imposed by the BH, namely the Schwarzschild preces-
sion (see, e.g., Merritt, 2013) cause the ellipses to precess in their planes. This drives the evolution of É,
e.g., >3×104 yr for S2 (Gravity Collaboration et al., 2020).

• Vector resonant relaxation. Subsequently, because of the non-spherically symmetric fluctuations in the
galactic nucleus, as well as because of the relativistic corrections induced by a spinning BH, namely the
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Lense–Thirring precession (see, e.g., Merritt, 2013), the ellipses’ orbital orientations get reshuffled, e.g.,
>1Myr for S2 (Kocsis & Tremaine, 2011). This process is called vector resonant relaxation (VRR) (Kocsis

& Tremaine, 2015). In that limit, the orbit’s angular momenta change in orientations, L̂=L/|L|, without

changing in magnitude |L̂| (equivalently in e), nor in energy Λ (equivalently in a).

• Scalar resonant relaxation. On longer timescales, resonant torques between in-plane precessing orbits
lead to an efficient diffusion of the ellipses’ eccentricity. This process is called scalar resonant relaxation
(SRR) (Rauch & Tremaine, 1996), as the quantity that diffuses is the norm of the orbits’ angular momenta
(i.e. e), e.g., >10Myr for S2 (Bar-Or & Fouvry, 2018).

• Non-resonant relaxation. Finally, on even longer timescales, rather than being driven by the interaction
between Keplerian ellipses, a star will see its evolution being driven by nearby pairwise interactions. It is
only through the cumulative contributions from these localised scatterings that stars can ultimately relax in
Keplerian energy (i.e. in a), through a process called non-resonant relaxation (NR) (Bahcall & Wolf, 1976;
Cohn & Kulsrud, 1978; Shapiro & Marchant, 1978; Bar-Or et al., 2013; Vasiliev, 2017). It is generically the
slowest relaxation timescale in galactic nuclei, e.g., >1Gyr for S2 (Kocsis & Tremaine, 2011).

1.4 Relaxation timescales

We now present a first heuristic estimation of the timescales associated with each of these processes (inspired
by Rauch & Tremaine, 1996; Alexander, 2017). The fastest timescale in a galactic nucleus is the Keplerian
motion induced by the central BH. Following Eq. (1.8), we therefore introduce the Keplerian time

TKep c
√

a3

GM"

. (1.12)

Because of their self-generatedmass potential (and neglecting relativistic corrections for simplicity), Keplerian
wires also process within their plane on the precession time

Tp c QTKep, (1.13)

with Q=M"/Mæk1, where MæcNm stands for the total enclosed stellar mass.

We now use the angular momentum vector, L=L L̂, of an arbitrary star as the tracer of relaxation. Fol-
lowing Eq. (1.5), its typical amplitude is Lcm

:
GM"a, while the typical torque between two stars is Gm2/a.

Assuming that the system is on average symmetric, only Poisson shot noise from the other stars can source the

dynamics of L̂. As such, the typical instantaneous torque felt by a given star is then

Ä =
:
N

Gm2

a
. (1.14)

Once this torque estimated, we introduce the ballistic time, Tbal, as the time needed for L to change by a non-
trivial amount for a given and fixed torque Ä . One has

Tbal c
L

Ä
c

:
N QTKep. (1.15)

We also introduce the coherence time, Tc, as the time required for Ä to change by a non-trivial amount.
Phrased differently, recalling that Ä is a stochastic variable, the coherence time corresponds to the characteristic
decay time of the correlation function t 7³ïÄ(t) Ä(0)ð, i.e. how long one should wait for the system to have
reshuffled enough so that Ä(t) is not correlated anymore with its initial value, Ä(0). It is important to stress that
Tc depends on the considered relaxation process, as we now detail:

• For VRR, the randomisation is due to the stars’ out-of plane orientation dynamics. Since there is no mean
potential that drives it, it is only the noise, i.e. the stochastic torque Ä itself, that can get the stars to move
out of their planes. As such, the associated coherence time, TVRR

c , is proportional to the ballistic time, Tbal.

• For SRR, the loss of coherence in the noise arises as soon as wires have sufficiently precessed within their
orbital planes. The decoherence is therefore driven by the "constructive" in-plane precession, so that the
coherence time, T SRR

c , scales like the precession time, Tp.

• For NR, nearby velocity deflections typically last TKep, so that the noise decorrelates every TKep, i.e. after
every collision. Yet, since one must integrate over all impact parameters, this boosts the coherence time by
an amount ln(Λ), the Coulomb logarithm (see, e.g., §7.4.4 in Binney & Tremaine, 2008).
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All in all, we obtain the following coherence times

TVRR
c c Tbal; T SRR

c c Tp; TNR
c c ln(Λ)TKep. (1.16)

We are now set to estimate the typical timescale for each of these relaxation processes. We consider a generic
diffusion equation sourced by a time-correlated noise. Up to tcTc of each process, one is in the ballistic regime.
The torque can be considered constant, and the angular momentum typically increases by the amount

∆L
∣∣
bal

c Ä Tc c L
Tc

Tbal

, (1.17)

following Eq. (1.15). On longer timescales, tkTc, the random walk undergone by L can be mimicked as an
usual Brownian motion. More precisely, every Tc, L undergoes a random kick of amplitude ∆L|bal. Adding
these kicks in quadrature, after a time t the angular momentum has therefore changed by an amount

∆L(t) c ∆L
∣∣
bal

√
t

Tc

c L

√
t

T 2
bal/Tc

. (1.18)

Overall, we therefore get that the typical diffusion time, T , required for the angular momentum to change by
a non-trivial amount reads

T =
T 2
bal

Tc

. (1.19)

This is an important relation. Equation (1.16) finally gives us the estimates of the timescales

Tp c QTKep; TVRR c
:
N QTKep; TSRR c N QTKep; TNR c N

Q2

ln(Λ)
TKep, (1.20)

with Q=M"/Mæ. We recover the expected ordering of timescales TKepjTpjTVRRjTSRRjTNR, as hinted
in Fig. 1.2. A goal of the coming sections is to develop appropriate kinetic frameworks to obtain more precise
and quantitative estimates for these different dynamical processes, in particular SRR (§2) and VRR (§3).
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2 Scalar Resonant Relaxation

The work presented in this section is based on Bar-Or & Fouvry (2018); Tep et al. (2021); Fouvry et al.
(2022).

In this section, our focus is SRR, the most efficient mechanism to change a star’s angular momentum in a
galactic nucleus. We first place this process on firm theoretical grounds (§2.1) and then investigate its role in
explaining the thermal distribution of stellar eccentricities observed around SgrA* (§2.2). Finally, we devise an
efficient multipole integration scheme for the dynamics of Keplerian wires around a supermassive BH (§2.3).

2.1 Kinetic theory

Following the seminal work from Rauch & Tremaine (1996), SRR lacked a formal self-consistent description
for many years. Previous attempts at modeling this process used either ad hoc methods (Hopman & Alexan-
der, 2006; Eilon et al., 2009; Madigan et al., 2011; Antonini & Merritt, 2013; Merritt, 2015), or N -body simula-
tions (Perets et al., 2009; Merritt et al., 2011; Hamers et al., 2014). Only recently have several studies (Bar-Or &
Alexander, 2014; Sridhar & Touma, 2016; Fouvry et al., 2017) laid the foundations for a self-consistent theory
of SRR. In this section, we build upon these works, following Bar-Or & Fouvry (2018). We show that for an
isotropic spherical system, SRR can quantitatively be described as a diffusion process, and derive the associated
diffusion coefficients from first principles.

2.1.1 Mean-field dynamics

We consider a test star of mass mæ on a Keplerian orbit of semi-major axis a and eccentricity e around a su-
permassive BH of massM", embedded within a spherically symmetric stellar cluster of mean density Ä(r) and
isotropic velocity distribution. We track the long-term evolution of the star’s eccentricity through the dimen-
sionless angular momentum

h =
√

12 e2. (2.1)

Following an orbit-average over the fast Keplerian motion (Eq. 1.10), the test wire undergoes on longer
timescales an in-plane precession described by

dÉ

dt
= Ωp(a, h) = ΩGR(a, h) + ΩM(a, h). (2.2)

Here, Ωp(a, h) describes the total precession frequency of the wire’s pericentre. It is sourced by the relativistic
corrections from the central BH, i.e. the Schwarzschild precession (Merritt, 2013), ΩGR(a, h), as well as by the
mass precession imposed by the mean background stellar cluster, ΩM(a, h).

More precisely, the relativistic precession reads

ΩGR(a, h) = 3
rg
a

1

h2
ΩKep(a), (2.3)

with the (fast) Keplerian frequency, ΩKep(a) (Eq. 1.8), as well as the gravitational radius rg=GM"/c
2. This

precession is said to be prograde as one always has ΩGR(a, h)>0. The mass precession, induced by the back-
ground stellar cluster, is given by (see, e.g., Tremaine, 2005)

ΩM(a, h) =
ΩKep(a)

ÃM"e

∫ Ã

0

df Mæ[<r(f)] cos(f), (2.4)

with f the true anomaly and Mæ(<r) the stellar mass enclosed within the radius r. This precession is retro-
grade, i.e. ΩM(a, h)<0, for any positive-definite spherical mass distribution.

2.1.2 Eccentricity relaxation

The diffusion of h is sourced by the potential fluctuations generated by the background stellar cluster. This clus-
ter is expected to be dynamically old, i.e. has been orbiting around SgrA* for a time much longer than the SRR
time. As a consequence, wemay assume that all its orbital elements are fully relaxed. To bemore precise, let us
introduce the background cluster’s distribution function (DF), F =F (Λ, L, Lz, É,Ω) so that FdΛdLdLzdÉdΩ
is proportional to the stellar mass enclosed within the phase space volume element dΛdLdLzdÉdΩ. We then
assume that: (i) the cluster is spherically symmetric, i.e. F =F (Λ, L); (ii) the cluster has a thermal distribution

9
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of angular momentum (Bar-Or & Alexander, 2016), i.e. F =F (Λ). Assumption (ii) entails two crucial conse-
quences. First, SRR does not drive any dynamical friction (Bar-Or & Fouvry, 2018), and the efficiency of a
star’s relaxation is independent of its mass. Second, SRR is unaffected by gravitational polarisation (Bar-Or &
Fouvry, 2018), i.e. one may safely limit oneself to the (bare) coupling coefficients, (see Eq. 2.10).

In that limit, the test star’s eccentricity follows a diffusion equation of the form (Bar-Or & Alexander, 2016)

"P (h, t|a)
"t

= 1
2

"

"h

[
hDhh(a, h)

"

"h

(
P (h, t|a)

h

)]
, (2.5)

where P (h, t|a) is the probability distribution function (PDF) of the test star’s angular momentum, h, for a
given semi-major axis a, as a function of time, normalised so that

∫
dhP (h, t|a)=1. In Eq. (2.5), we neglect the

diffusion in a (hence Daa=0), which is minor compared to that in angular momentum (Bar-Or & Alexander,
2016): the test star diffuses at fixed semi-major axis. We also neglect the BH’s loss-cone region, that would
drive a small exiting flux at low h. The steady state of Eq. (2.5) is given by the thermal solution, P (h|a)=2h,
i.e. the eccentricity PDF also followed by the background stars.

The diffusion coefficient in angular momentum, Dhh(a, h), is the sum of two contributions

Dhh(a, h) = DRR
hh (a, h) +DNR

hh (a, h), (2.6)

where DRR
hh (a, h) captures the contribution from SRR, while DNR

hh (a, h) is associated with NR. We now detail
the content of each of these coefficients.

2.1.3 Resonant diffusion coefficients

An important source of eccentricity relaxation stems from long-range resonant couplings between in-plane
precessing wires. When sourced by a spherically symmetric background, the SRR diffusion coefficients read

DRR
hh (a, h) =

4ÃG2

L2
c

+>∑

k=1

+>∑

k2=2>
k2 ;=0

k2
∫
da2dh2 Ftot(a

2, h2)
∣∣Akk2(a, h, a2, h2)

∣∣2 ¶D[kΩp(a, h)2k2Ωp(a
2, h2)], (2.7)

with Lc=
:
GM"a the star’s specific circular angular momentum, following Eq. (1.5). We do not reproduce

here the derivation of Eq. (2.7) and refer to Bar-Or & Fouvry (2018) for a detailed presentation.
In Eq. (2.7), we introduced the DF, Ftot(a

2, h2), describing the orbital distribution of the background cluster,
whose potential fluctuations are responsible for the long-term diffusion of stellar eccentricities. It is defined as

Ftot(a, h) =
∑

i

m2
iNi(a) fi(h|a), (2.8)

where the sum over i runs over all the sub-populations of the background cluster. Each population is charac-
terised by an individual mass,mi, while Ni(a) is the number of stars per unit semi-major axis a, and fi(h|a) is
the conditional PDF of h for a given a normalised so that

∫
dhfi(h|a)=1. With such a convention, our assump-

tion of a thermal eccentricity distribution simply translates to fi(h|a)=2h.
Equation (2.7) involves the coupling coefficients |Akk2(a, h, a2, h2)|2. They describe the efficiency of the grav-

itational coupling between the wires (a, h) and (a2, h2) through the resonance (k, k2). They read

∣∣Akk2(a, h, a2, h2)
∣∣2 = 16Ã2

3max∑

3=0

|yn3 |2|yn
2

3 |2
(23+1)3

∣∣K3
kk2(a, h, a2, h2)

∣∣2, (2.9)

with the harmonic truncation 3max, and the constant coefficients yn3 =Y n
3 (Ã

2
, Ã
2
), where the complex spherical

harmonics are definedwith the convention
∫
dr̂ |Y n

3 (r̂)|2=1. This equation also involves the in-plane SRR (bare)
coupling coefficients, K3

kk2 , which read

K3
kk2(a, h, a2, h2) =

∫ Ã

0

dM

Ã

∫ Ã

0

dM 2

Ã
cos(kf) cos(k2f 2)

Min[r, r2]3

Max[r, r2]3+1
, (2.10)

with M, f (resp. M 2, f 2) the mean and true anomaly of orbit (a, h) (resp. (a2, h2)), as defined in Eq. (1.9).
In regard to symmetries, one finds: (i) K3

kk2 is non-zero only when |k|, |k2|f3, as well as (32k) and (32k2)
both even; (ii) |Akk2 |2= |A±k±k2 |2, i.e. the strength of the coupling is independent of the sign of the resonance
numbers.

In Eq. (2.10), the Min-Max terms stem from the usual Legendre expansion of the Newtonian interaction
potential, see Eq. (2.34). The computation of K3

kk2 is the overall bottleneck of the SRR calculation. Following
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Eq. (1.9), it is convenient to perform the integral from Eq. (2.10) w.r.t. the true anomalies f and f 2. Fortu-
nately, because its integrand is quasi-separable, the two-dimensional integral from Eq. (2.10) can efficiently be
performed using a standard multipole approach. We postpone to §2.3.2.2 the presentation of this algorithm.

Once the coupling coefficients estimated, we rely on Eq. (2.7) to estimate the diffusion coefficients. For a
given wire (a, h) and a given resonance pair (k, k2), this amounts to finding all the wires (a2, h2) for which the
resonance condition kΩp(a, h)=k2Ωp(a

2, h2) is satisfied. We refer to §A in Tep et al. (2021) for details on how to
efficiently solve this resonance condition. In the left panel of Fig. 2.1, we illustrate the typical dependence of the
precession frequency, Ωp(a, h), in orbital space. In that figure, we find that for circular orbits and large semi-
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Figure 2.1: From Tep et al. (2021). Left: Precession frequencies, |Ωp(a, h)|, for the Top-Heavy model from
Eq. (2.11). The yellow dots represent the orbital parameters of the 7 S-stars (S1, S2, S4, S6, S8, S9, S12) (Gillessen
et al., 2017), whose main-sequence ages have recently been constrained (Habibi et al., 2017). The white region
on the left represents the central BH’s loss cone. Right: For the same model, contribution to the SRR diffusion
coefficients of the different resonances (k, k2), for a given semi-major axis, a=10mpc, computed with 3max=10.

major axis, i.e. h³1 and ak1, the precession is dominated by the mass precession and is therefore retrograde,
i.e. Ωp<0, while for low h and low a, the precession is dominated by relativistic precession and is therefore
prograde, i.e.Ωp>0. Lines of constant precession frequencies correspond to the resonant lines alongwhich the
diffusion coefficients from Eq. (2.7) are computed. Finally, the precession of very eccentric orbits is dominated
by the diverging relativistic corrections. This is responsible for the "Schwarzschild barrier" (Merritt et al., 2011;
Bar-Or & Alexander, 2016) that explains the drastic reduction of the SRR diffusion coefficients as wires get
more and more eccentric.

In the right panel of Fig. 2.1, we illustrate the contributions from the various resonance pairs (k, k2) to the
total SRR diffusion coefficients. These are typically dominated by (k, k2)=(1, 1) (for small and large h) and
(k, k2)=(1,21) (for intermediate h). For intermediate eccentricities, higher order resonances also contribute.
We refer to Fig. 2.10 for a quantitative comparison of Eq. (2.7) with measurements in numerical simulations.

We conclude this section by pointing out a few key connexions between Eq. (2.7) and the generic inhomo-
geneous Balescu–Lenard (BL) equation, reproduced in §A:

• Following the average fromEq. (1.10), the (fast) actionΛ is conserved by SRR. Thiswould occur in Eq. (A.1)
if one replaces the mean-field Hamiltonian, H0, by its average, ïH0ð=

∫
d¹fH0, over some fast angle ¹f .

• The galactic nucleus was assumed to be spherically symmetric, so that Ωz="ïHð/"Lz=0. To remove this
degeneracy, one averages the system’s DF w.r.t. Lz , see, e.g., Hamilton et al. (2018) for the case of globular
clusters. This additional symmetry is responsible for (i) the factors h present in the Fokker–Planck (FP)
Eq. (2.5); (ii) the development in spherical harmonics in Eq. (2.9).

• Because collective effects are absent in nuclei with thermal distribution of eccentricities, the coupling coef-
ficients from Eq. (2.10) are formally equivalent to the generic Landau coupling coefficients from Eq. (A.7).
There, the true anomaly, f , is the angle somewhat naturally associated with the pericentre precession.

2.1.4 Non-resonant diffusion coefficients

As detailed in introduction, a star also relaxes in eccentricity via NR. In that case, it is the slow build-up of
nearby scatterings that ultimately drives the diffusion of the star’s orbital parameters. In order to evaluate the
associated diffusion coefficient, DNR

hh (a, h), we use the exact same approach as in Bar-Or & Alexander (2016).
Because it does not involve any resonance condition, NR is much less demanding to compute than SRR. We
do not reproduce here any detailed expressions, but simply report on the key steps of that calculation:

• At a given phase space location (r,v), we compute the local velocity diffusion coefficients, ï¶vð(r,v) and
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ï(¶v)2ð(r,v), as given in Eq. (7.83a) in Binney & Tremaine (2008)1. This calculation is greatly simplified
by our assumption that the background cluster is fully relaxed, i.e. the cluster follows an isotropic DF,
F =F (Λ). In practice, we set the Coulomb logarithm of a given background family to ln(Λi)=ln(M"/mi).

• We translate these velocity diffusion coefficients into energy and angular momentum ones, e.g., ï¶Eð(r,v).
• Local kicks accumulate as the star moves along its Keplerian wire. Following an orbit-average, one obtains

then the associated orbit-averaged diffusion coefficients, e.g., ï∆Eð=
∫

dM
2Ã

ï¶Eð.
• Having obtained the first- and second-order diffusion coefficients in the test star’s energy and angular

momentum, we finally obtain the associated diffusion coefficients in (a, h)-space through an appropriate
change of variables (Risken, 1989). In particular, we get ï(∆h)2ð(a, h)=DNR

hh (a, h).

In the left panel of Fig. 2.2, we illustrate the NR coefficients for a typical model of SgrA*. Contrary to SRR,
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Figure 2.2: From Tep et al. (2021). Left: SRR (full lines) and NR (dashed lines) diffusion coefficients for the
same model as in Fig. 2.1, with a=10mpc and 3max=10. Different colors correspond to different values of µ" the
power-law index of the IMBH’s population, see Eq. (2.11). Right: Total diffusion coefficients,Dhh(a, h), in orbital
space, using the same model and convention as in Fig. 2.1.

NR’s efficiency is mostly independent of the stars’ eccentricities. Reassuringly, we find that both coefficients
go to 0 as h³1 (circular orbits), while the SRR ones get drastically reduced for very eccentric orbits (Merritt
et al., 2011; Bar-Or & Alexander, 2016). As such, for small enough h, NR dominates over SRR.

In the right panel of Fig. 2.2, we illustrate the overall dependence of the total diffusion coefficients from
Eq. (2.6), i.e. both the SRR and NR contributions, in the whole (a, h) orbital space. In that figure, one clearly
notes the presence of resonance lines associatedwith SRR: this rugged but accurate aspect can be linked to that
of the isocontours of the resonance frequencies from the left panel of Fig. 2.1. One also notes that the bulk of
the currently observed S-stars lie in a region of orbital space where the diffusion of eccentricities is dominated
by SRR. It is therefore essential to account for these resonant mechanisms to accurately describe the dynamical
fate of the S-stars’ eccentricities. This is the topic of §2.2.

2.1.5 Prospects

Stellar relaxation around a supermassive BH is a classical problem of dynamics. Understanding this process is
crucial for (i) the long-term steady-state stellar distribution of galactic nuclei andmass segregation therein (see,
e.g., Gillessen et al., 2017); (ii) short-term transient phenomena such as tidal disruption events (TDEs), GW
emissions, and hypervelocity stars (Hills, 1988; Koposov et al., 2019); (iii) and the distribution of unique source
populations such as young stars, X-ray binaries, and radio pulsars, to name a few (Alexander, 2017). All these
phenomena depend upon relaxation in energy and in angular momentum.

The relaxation in energy is well described by NR, in particular for an isotropic DF. There, the only poorly
determined quantity is the Coulomb logarithm, which has only a small effect on diffusion. Despite the ap-
proximations made in the derivation of these diffusion coefficients (e.g., Nelson & Tremaine, 1999), these NR
coefficients are in good agreement with the ones measured in direct N -body simulations (Bar-Or et al., 2013).

Relaxation in angular momentum is dominated by SRR (Rauch & Tremaine, 1996; Hopman & Alexander,
2006), as demonstrated in the numerical works of Eilon et al. (2009); Merritt et al. (2011). The foundation
for a concrete kinetic theory of SRR was put forward independently by Bar-Or & Alexander (2014); Sridhar &
Touma (2016); Fouvry et al. (2017), via essentially equivalent approaches. In this section, we built upon Bar-Or
&Alexander (2014); Fouvry & Bar-Or (2018) and presented a calculation of the SRR diffusion coefficients from

1All these expressions can be recovered fromEq. (A.1) using the homogeneous assumption (θ,J) 7³(r,v) (see, e.g., Chavanis, 2013b).
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first principles, without any free parameters. This concludes the long journey, started by Rauch & Tremaine
(1996), of bringing SRR to the same level of completeness as NR.

We close this section by mentioning a few venues for future improvements.

• The treatment presented here is limited to SRR in a spherical and isotropic background distribution, for
which collective effects can be ignored (see, e.g., Nelson&Tremaine, 1999). Building uponTremaine (2005);
Polyachenko et al. (2020), one should explore the role of gravitational polarisation and dynamical friction
in anisotropic systems.

• Vasiliev (2015) has shown how to apply NR in non-spherically symmetric systems. It would be physically
enlightening to relax the assumption of spherical symmetry and investigate its impact on SRR.

• Here, we assumed that the central BH dominates the potential. This assumption breaks down close to the
BH’s radius of influence, where the contribution of the underlying stellar population is comparable to that
of the BH. Some of these limitations could be mitigated in future studies, and tested against futureN -body
simulations that now approach realistic number of stars in galactic nuclei (Panamarev et al., 2019).

• The ability to calculate SRR diffusion coefficients provides us with the opportunity to make more realistic
estimates of the astrophysical impact of SRR in galactic nuclei. As SRR can efficiently drive the evolution of
angular momentum, it may contribute to the supply rate of stellar objects into the BH’s loss-cone, e.g., via
extreme mass ratio inspirals (EMRIs) and TDEs. Yet, this contribution is significant only if the loss-cone is
close to the orbital region where SRR dominates over NR. This should be investigated in detail.

2.2 Eccentricity relaxation around SgrA*

In this section, we leverage the previous characterisation of SRR to constrain hidden features of SgrA*’s galactic
centre, focusing on the relaxation of stellar eccentricities. Indeed, as emphasised in Gillessen et al. (2017) (see
fig. 13 therein), the S-cluster orbiting SgrA* (for ac10mpc) has been observed with a significantly relaxed
distribution of eccentricities. Detailed spectroscopic observations (Habibi et al., 2017) also provide us with
well constrained main-sequence ages for these same stars.

The age of the young B-stars at a distance of >10 mpc from the BH is comparable to the resonant relax-
ation time, implying that SRR may have played an important role in their dynamical structure (Hopman &
Alexander, 2006). Hence, any credible diffusion mechanism has to be efficient enough to drive a significant
eccentricity relaxation of the S-stars within their lifetime – see Chen & Amaro-Seoane (2014) for an alternate
scenario. Equivalently, one may use this constraint as a dynamical probe to further characterise the properties
of the unresolved old stellar and a putative dark cluster, which both drive the relaxation of the S-stars them-
selves (see, e.g., Generozov & Madigan, 2020). Following Merritt et al. (2009); Antonini & Merritt (2013),
Monte–Carlo simulations have similarly shown that the presence of stellar mass BHs around SgrA* reduces
the resonant relaxation time near the present-day location of the S-stars to >10 Myr, which is of the order
of the age of the S-stars (Habibi et al., 2017). In this section, we use kinetic theory to constrain the range of
cluster models that are compatible with the observational requirement of having significantly relaxed S-stars’
eccentricities.

2.2.1 Model’s assumptions

In Eq. (2.6), we quantified the twomain processes (SRR andNR) throughwhich stars can relax in eccentricities
in galactic nuclei. We now use these processes as dynamical probes in the context of the recent observation of
the S-stars’ eccentricities within SgrA*.

For the observational data, we use the orbital parameters listed in Gillessen et al. (2017). Specifically, we
use the (a, h) coordinates for 7 of those stars (S1, S2, S4, S6, S8, S9, S12), for which Habibi et al. (2017) provides
us with main-sequence ages. These ages are a measure of the total time that the diffusion has had to operate
in Eq. (2.5). For simplicity, we assume that on these timescales, NR did not drive any significant diffusion of
the S-stars’ energies, i.e. the stars’ semi-major axes, a, are kept fixed.

Regarding the initial conditions for the stars’ eccentricities, we investigate two possible scenarii: (i) binary
tidal disruptions (Hills, 1988; Gould & Quillen, 2003), i.e. large initial eccentricities; (ii) an episode of disc
formation (Alexander, 2005; Levin, 2006; Koposov et al., 2019), i.e. small initial eccentricities. In practice, we
assume that the S-stars are initialised following a Gaussian distribution centred around h(t=0)=0.2 (with
width 0.02) tomimic binary disruptions (Generozov&Madigan, 2020), or h(t=0)=0.9 (samewidth) tomimic
in-situ formation. For alternative scenarii, we refer to Madigan et al. (2009); Perets et al. (2007).

Let us now also make key assumptions regarding the background old stellar cluster. Following the conven-
tion from Eq. (2.8), we assume that it is composed of various sub-populations of different individual masses
mi with a total mass Mi(<a0) enclosed within a physical radius a0. In addition, we also assume that each
population follows a thermal distribution in eccentricity, i.e. fi(h|a)=2h in Eq. (2.8), and infinite power-law
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distribution in semi-major axes, so thatMi(<a)=Mi(<a0)(a/a0)
32µi . We also treat the S-stars as test stars, i.e.

they do not contribute to the system’s mean potential and do not interact with one another.
Assuming a two-family background composed of stars and another heavy sub-populations (e.g., IMBHs),

we then have a total of 7 free parameters for the available models, namely the power indices (µæ, µ"), the in-
dividual masses (mæ,m"), the total enclosed masses (M(<a0),M"(<a0)), as well as the initial eccentricity of
the S-stars, h0=h(t=0). These models are complemented with the observed constraints on the 7 considered
S-stars, namely their observed semi-major axis, eccentricity, and main-sequence age.

We start our investigation with the two-family model of Generozov &Madigan (2020). Using a0=0.1 pc, it
contains both stars and IMBHs following

{

mæ = 1M»,

m" = 50M»,

{

Mæ(<a0) = 7.9×103 M»,

M"(<a0) = 38×103 M»,

{

µæ = 1.5,

µ" = 1.8,
(2.11)

where the stars’ parameters follow Schödel et al. (2017). We also note that such a model is compatible with the
current constraints associated with S2’s pericentre shift (Gravity Collaboration et al., 2020).

2.2.2 Methodology

Having picked a set of initial conditions for the S-stars, and a model for the background clusters, we are now
in a position to compute the associated eccentricity diffusion coefficients. In order to determine whether or
not such a model is compatible with the observational constraint of a significant eccentricity relaxation of the
S-stars, we proceed as follows.

We first compute the SRR and NR diffusion coefficients for each a of the considered S-stars. As the semi-
major axes are conserved, we can integrate Eq. (2.5) forward in time separately for each S-star, using themethod
of lines (see Tep et al., 2021, for details). Once these integrations performed, we compare the reached PDF in h
to the observed data of the S-cluster, determiningwhether or not the backgroundmodel allowed for an efficient
enough relaxation of the S-stars’ eccentricities.

Let us denote a model with α, i.e. the collection of the 7 parameters of the background clusters and the
S-stars’ initial eccentricity. The likelihood of a given model is then defined as

L(α) =
∏

k

P (hk, Tk|ak), (2.12)

where k=1, · · · , 7 runs through the 7 S-stars mentioned before, and Tk is the star’s main-sequence age. To
compare different models to one another, we finally introduce the likelihood ratio

¼R(α) = 2 ln
(

Lmax/L(α)
)

> 0, (2.13)

with Lmax the maximum value of L(α)within the range of models probed. The smaller ¼R the more likely the
model. As detailed in §F of Tep et al. (2021), these ratios can also be translated into confidence levels.

2.2.3 Results

As an illustration of the present method, we first consider the Top-Heavy model from Eq. (2.11), and let the
individual masses mæ and m" vary. We impose the natural constraint m"gmæ while fixing the total enclosed
masses Mæ(<a0) and M"(<a0). This is presented in Fig. 2.3 with the associated confidence levels, for the two
scenarii of initial conditions.

As expected, in Fig. 2.3, we recover that the larger the individual masses, the larger the underlying Poisson
shot noise, and therefore the more efficient the diffusion process and the faster the relaxation of the S-stars.
Conversely, Fig. 2.3 shows that models with small individual masses cannot explain the S-cluster’s eccentricity
PDF. As such, a relatively massive set of background sources orbiting around SgrA* is required to trigger a
fast enough orbital diffusion of the observed stars within their lifetime. Finally, we can compare both panels
of Fig. 2.3 that correspond to different initial conditions for the S-stars. As already highlighted in Fig. 2.2, the
smaller h0, i.e. the more eccentric the stellar initial conditions, the slower the relaxation of the S-stars.

The global shape of the likelihood contours presented in Fig. 2.3 clearly illustrates the known dynamical
degeneracy in flipping the stars and IMBHs of the samemass, as the efficiency of relaxation is solely connected
to the amplitude of the Poisson shot noise generated by the cluster as a whole. Finally, we note that all the
likelihood landscapes present an absolute minimum. This suggests that, having diffused only a finite time, the
observed eccentricity distribution of the S-stars is not fully thermal.

In order to increase the observed stellar sample and tighten the inferred model’s constraints, we present
in Fig. 2.4 the same measurements as in Fig. 2.3 but using 30 additional S-stars (as in fig. 13 of Gillessen et al.
(2017)) Their individual ages was fixed to T =7.1Myr, i.e. the average age of the 7 S-stars whose ages have
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Figure 2.3: From Tep et al. (2021). Confidence regions for the Top-Heavy model (Eq. 2.11) as one varies the
individual masses (mæ,m") using the likelihood ratio from Eq. (2.13) applied to the 7 observed S-stars. We
assume either a large initial eccentricity (h0=0.2, left), or a small one (h0=0.9, right). The cyan line corresponds
tom"=100M», above which the heavy objects are usually considered to be IMBHs.»R
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Figure 2.4: From Tep et al. (2021). Same as Fig. 2.3, except that the sample of stars has been expanded with 30
other S-stars (Gillessen et al., 2017), assuming a common age T =7.1 Myr.

been measured (Habibi et al., 2017). As expected, we recover that a larger sample of observed stars leads to
narrower contours around the likelihood maximum, making the presence of a second population of massive
objects all the more mandatory. Finally, we also note that since the expanded sample of 37 stars contains stars
with semi-major axes larger than that of the initial 7 S-stars, i.e. stars whose relaxation is slower, the location of
the likelihoodmaximum in Fig. 2.4 gets displaced to largermasses as one increases the observed stellar sample.

We stop here the quantitative application of SRR to constrain SgrA* and refer to §3.4 in Tep et al. (2021) for
prospective experiments regarding future surveys (Do et al., 2019).

2.2.4 Prospects

In this section, we used the explicit kinetic theory of SRR to assess the dynamical structure of SgrA*’s stellar
cluster. In particular, we emphasised how the recent observations of the thermal distribution of eccentricities
of the S-stars in conjunction with computations of the eccentricity diffusion coefficients can be effectively lever-
aged to place constraints on putative IMBHs around SgrA*. Finally, investigating a simple two-population
model, we showed how the presence of a heavy sub-population is mandatory to source an efficient enough
relaxation of the S-stars’ eccentricities.

Let us conclude this section by discussing some venues for future developments.
• First, our model for the old stellar cluster is over-simplistic. We assumed for example that the background

cluster is spherically symmetric. However, in §3.3we show that in systemswith a largemass spectrum, VRR
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can lead to equilibria distribution where the massive components follow a strongly anisotropic structure.
Surely, such a structure must affect the efficiency of the eccentricity relaxation it sources.

• Weassumed that the S-stars’ semi-major axeswere fixed throughout their eccentricity diffusion. One should
investigate whether any additional diffusion in a, sourced by NR, could affect the present constraints.

• Here, we focused our interest on the innermost S-stars (ac10mpc), which are known to have significantly
relaxed in eccentricity. Admissible models must then source an efficient enough eccentricity diffusion. A
similar approach may be used for the S-stars further out, which have only partially relaxed in eccentricity,
so that admissible models must source a slow enough diffusion in these outer regions. Leveraging both
constraints simultaneously, one should ultimately be in a position to effectively bracket models of clusters.

• Finally, future observations will undoubtedly prove useful in placing these investigations on firmer
grounds. First, GRAVITY is currently tracking in detail the trajectory of S2 (Gravity Collaboration et al.,
2020). Any deviations of S2 from its expected mean-field trajectory will bear imprints from the potential
fluctuations on the scale of S2’s orbit. Similarly, the observation of stars on scales even smaller than S2’s will
carry essential information on SgrA*’s stellar cluster even closer to the central BH. Finally, on larger scales,
future observations by upcoming thirty-meter telescopes (Pott et al., 2018; Davies et al., 2018; Do et al.,
2019) will allow for a finer characterisation of the S-stars current distribution, P (a, h, t). The dependence
of P w.r.t. a strongly depends on the stellar formation mechanism, while its dependence w.r.t. h constrains
the scale, i.e. the a, at which the S-stars diffuse less and less efficiently towards the thermal eccentricity
distribution.

2.3 Simulations

In galactic nuclei, the central BH creates a gigantic range of timescales: from a few years for the fast Keplerian
motion (even a fewminutes for stars near the event horizon) up to a Hubble time for NR in the MW’s nucleus.
Direct numerical simulations of galactic nuclei remain therefore very challenging. These were first performed
with gridmethods (see, e.g., Jacobs & Sellwood, 2001; Kazandjian & Touma, 2013). And, it is only recently that
an effective direct simulation of a galactic nucleus with N=106 has been presented (Panamarev et al., 2019),
and even in this case most of the stars lie outside the central BH’s sphere of influence. Conversely, simulations
in the very relativistic regime are still limited to a small number of particles, Nc10223, should they use direct
N -body methods (Merritt et al., 2011) or effective ones (see, e.g., Madigan et al., 2011; Hamers et al., 2014).

To circumvent these difficulties, one has to resort to additional assumptions. Traditionally, the secular ap-
proximation (Eq. 1.10) smears out the stars along their underlying fast Keplerian motion, in other words, one
replaces stars with Keplerian wires. This is in particular at the heart of Gauss’ method (Touma et al., 2009)
which provides an efficient algorithm to compute the force between two suchwires. Themain benefit from this
approach is that any explicit average over the fast orbital motion offers a reduction in the range of timescales in
the system. These methods can then explore longer timescales beyond the reach of naive direct methods. Yet,
most of these approaches suffer from relying on the computation of all the individual forces between objects,
i.e. these methods come with a complexity scaling like O(N2) with N the total number of stars.

In this section, we show how amultipole expansion (Hénon, 1964; Aarseth, 1967; Hénon, 1973; van Albada
& van Gorkom, 1977; Fry & Peebles, 1980; Villumsen, 1982; White, 1983; McGlynn, 1984; Meiron et al., 2014;
Dehnen, 2014) yields a numerical scheme to integrate the long-term dynamics of Keplerian wires with a com-
plexity scaling like O(NK32max), with K a parameter independent of N , and 3max the maximum harmonics
considered in the multipole expansion. We also show that the system is equivalent to 2N classical spin vectors,
and devise integration schemes that exactly comply with the associated geometric constraints.

2.3.1 Equations of motion

The orbit-averaged Hamiltonian from Eq. (1.11) describes the dynamics of N gravitationally coupled Keple-
rian wires. Each wire is characterised by the five quantities (É,Ω,Λ, L, Lz) of whichΛ is conserved through the
orbit-averaged dynamics. Of course, the equations of evolutions for the four other coordinates can be obtained
from Hamilton’s canonical equations of motion. Such calculations are rather involved because they involve
computing the corresponding derivatives of r(É,Ω, L, Lz) at fixed (M,Λ). Furthermore, the associated equa-
tions can become degenerate, e.g., at I=0 (equatorial orbits), e=0 (circular orbits), or e=1 (radial orbits). An
equivalent alternative is to work directly with the forces acting on the wires, as we now pursue.

Rather than integrating the motion w.r.t. the orbital elements, we keep track of the wire dynamics through
the dimensionless vectors

h =
r× p

Λ
; e =

p× (r× p)

m2GM"
2 r̂, (2.14)
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where a hat denotes a unit vector as usual. Here, h is the angular momentum vector scaled to the circular
angular momentum at the same energy, and e is the eccentricity vector, which points in the direction of the
wires’ pericentre and has magnitude |e|=e.

While only four orbital elements É,Ω, L, Lz evolve, the two vectors (h, e) have six dynamical variables in
total. The two associated degeneracies are captured by the two identities

h·e = 0; h2 + e2 = 1. (2.15)

2.3.1.1 Orbit-averaged rates of change

Using Eq. (2.14), one can compute ḣ and ė from derivatives w.r.t. the canonical variables r and p. Focusing
only on the self-interacting term ïHæð in Eq. (1.11), one obtains (see §3.1 in Fouvry et al., 2022)

ḣi =
1

Λi

∑

j ;=i

Gmimj

〈
ri×Fij

〉
, (2.16a)

ėi =
ai
Λ2
i

∑

j ;=i

Gmimj

〈
Fij×(ri×pi) + pi×(ri×Fij)

〉
, (2.16b)

with ï·ð the orbit-average over the unperturbed orbits, and the shorthandFij=F(ri2rj)withF(r)="|r|21/"r.
The expressions fromEq. (2.16) satisfy the constraints fromEq. (2.15) for any conservative fieldFij (Touma

et al., 2009). However, carrying out the orbit averages requires numerical treatment. The resulting numerical
average inevitably carries a small error with the consequence that the constraints from Eq. (2.15) are no longer
exactly honoured. While in general small numerical errors in conserved quantities are not a serious problem,
this particular situation is awkward, since the conditions from Eq. (2.15) are essential for the interpretation of
(hi, ei) as wires. It is therefore paramount to construct numerical expressions for ḣi and ėi that, despite their
discretisation errors, keep the constraints from Eq. (2.15) valid to machine precision.

To achieve that goal, we note that Eq. (2.16) is equivalent to the Milankovitch’s equations (Milankovitch,
1939; Tremaine et al., 2009; Rosengren & Scheeres, 2014)

ḣi = 2
1

Λi

(
hi×

"ïHæð

"hi

+ ei×
"ïHæð

"ei

)
, (2.17a)

ėi = 2
1

Λi

(
hi×

"ïHæð

"ei
+ ei×

"ïHæð

"hi

)
, (2.17b)

with the averaged Hamiltonian ïHæð expressed as a function of hi, ei (and the constant Λi).
These relations are equivalent to the canonical equations ofmotion, butmuchmore useful. First, the vectors

h and e are well-defined for all orbits, even with zero eccentricities. Equation (2.17) also ensures that the
constraints from Eq. (2.15) and the conservation of the total energy are explicitly satisfied for any ïHæð, i.e.

d(h2
i + e2i )

dt
= ḣi ·hi + ėi ·ei = 0, (2.18a)

d(hi ·ei)

dt
= ḣi ·ei + ėi ·hi = 0, (2.18b)

dïHæð

dt
=

∑

i

{
"ïHæð

"hi

·ḣi +
"ïHæð

"ei
·ėi

}
= 0. (2.18c)

These properties suggest an alternative, fully conservative approach to numerically computing the rates ḣi

and ėi. Instead of discretising the orbit averages in Eq. (2.16), we first discretise the orbit average for ïHæð and
subsequently use Milankovitch’s relations (Eq. 2.17) to obtain ḣi and ėi.

2.3.1.2 Reformulation as a spin system

Following Klein (1924), we introduce the vectors

bi+ = hi + ei; bi2 = hi 2 ei, (2.19)

so that the identities from Eq. (2.15) simply become

|bi±| = 1. (2.20)

This is an important rewriting since the system of N wires is now fully described by 2N unit vectors b=bi±.
The dynamics of these vectors is simply

ḃ± = ḣ± ė. (2.21)
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Since the vectors b remain on the unit sphere, this equation can be expressed as a precession

ḃ = B(b) = Ω×b. (2.22)

The precession vectorsΩ are not uniquely determined through Eq. (2.21) since a component parallel to b does
not affect ḃ. The most conservative choice for Ω – in the sense that |Ω|2 is minimised – is therefore

Ω = b×ḃ, (2.23)

for which Ω·b=0, i.e. b moves along a great circle for constant Ω.
One can easily rewrite Milankovitch’s equations (2.17) in terms of the vectors b, to obtain

ḃ =
2

Λ

"ïHæð

"b
× b. (2.24)

Comparing with Eq. (2.22), one could be tempted to identify 2Λ21"ïHæð/"b with Ω. However, the gradient
of the Hamiltonian is not unique since, owing to the constraints from Eq. (2.20), ïHæð is only determined up
to additive terms of the form (12b2) H̃ , with H̃ an arbitrary function. Such terms alter the gradient but have
no effect on ḃ, reflecting the gauge invariance of Eq. (2.24).

We are now set to compute the rates of change for each wire (§2.3.2.1), and to perform the time integration
of their dynamics (§2.3.3). Throughout these sections, we test our algorithm in three systems, namely a simple
analytical "Pair" Hamiltonian of twowires, Kozai–Lidov oscillations ofN=2 stars (whose orbits do not overlap
radially) around a central BH, and a N=104 stellar cluster mimicking SgrA*. We refer to Fouvry et al. (2022)
for the detailed description of these setups.

2.3.2 Rates of changes

To compute the rates of change ḣ and ė, we proceed in two steps: (i) we replace in Eq. (1.10) the averaging
integrals with discrete sums (§2.3.2.1); (ii) we approximate the forces using spherical harmonics (§2.3.2.2). We
refer to §B in Fouvry et al. (2022) for explicit expressions of the contributions to ḣ and ė from ïHGRð, namely
the Schwarzschild and Lense–Thirring precessions.

2.3.2.1 Discretised rates of change

In order to numerically calculate the orbit averages (Eq. 1.10), we approximate them by discretemidpoint sums
overK positions along each orbit2, namely

mi

∫ 2Ã

0

dMi

2Ã
f(Mi)³

K∑

k=1

µik f(Mik), (2.25)

for any function f(M). In other words, each eccentric wire of mass mi is replaced by K nodes of masses µik.
Placing the nodes’ mean anomalies, Mik, uniformly (Gürkan & Hopman, 2007) is not the best idea, not only
because it requires solving Kepler’s Eq. (1.9) for each node, but also because it poorly samples the pericentric
passage, in particular for large eccentricity, which hampers the convergence w.r.t. K. Instead, we place the
nodes uniformly in eccentric anomaly

Mik = Ek 2 ei sin(Ek) with Ek = (k 2 1
2 )∆E, (2.26)

with∆E=2Ã/K. As such, the nodes are placed symmetrically w.r.t. the pericentre, but there is no node exactly
at that position. To complete the discretisation from Eq. (2.25), we finally specify the nodes’ masses

µik =
mi

2Ã

dMi

dE
∆E =

mi

K

(
12 ei cos(Ek)

)
. (2.27)

The discretised potential energy of node k on wire i subsequently reads

×ik = µik Èik with Èik = 2

N∑

j ;=i

K∑

l=1

Gµjl

|rik 2 rjl|
. (2.28)

The total interaction energy between the wires is then computed as

〈
Hæ

〉
= 1

2

N∑

i=1

K∑

k=1

×ik. (2.29)

2Adopting a different value ofK for each wire, e.g., depending on eccentricity, is a straightforward extension.
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It is key here to emphasise that ïHæðdepends onhi and ei through the nodes positions rik but also through their
masses µik. This latter dependence occurs through the eccentricity ei in Eq. (2.27) because of our sampling of
the nodes in eccentric rather than mean anomaly. Via Milankovitch’s Eq. (2.17), the dependence through µik

induces the rates of change (see §A in Fouvry et al., 2022)

ḣi

∣∣
µ
= 0, (2.30a)

ėi
∣∣
µ
=

1

Λi

(
hi×êi

) K∑

k=1

µi Èik cos(Ek) (2.30b)

with µi=mi/K the mean node mass on the wire. We emphasise that these rates of changes would have been
missed if one had mistakenly directly discretised the forces acting on the wires, following Eq. (2.16).

The rates of change induced by the dependence of ïHæð through rik read (see §A in Fouvry et al., 2022)

ḣi

∣∣
r

=
ai
Λi

[
êi×

(
Ci2eiFi

)
+
(
hi×êi

)
×Si

]
, (2.31a)

ėi
∣∣
r

=
ai
Λi

[
Fi×hi 2 eiSi +

1

ei

[
Si ·êi 2Ci ·

(
hi×êi

)]
êi

]
, (2.31b)

with Fi=
∑

k fik, Ci=
∑

k fik cos(Ek), and Si=
∑

k fik sin(Ek). Here, we introduced

fik = 2
"×ik
"rik

=

N∑

j ;=i

K∑

l=1

Gµik µjl F(rik2rjl), (2.32)

which is the gravitational force acting on node k of wire i and generated by the nodes of all other wires.
Upon close inspection, one can rewrite Eq. (2.31a) as

ḣ
∣∣
r

=
1

Λi

K∑

k=1

rik×fik, (2.33)

which is identical to the discretisation of Eq. (2.16a) and implies the conservation of the total angular mo-
mentum, Ltot=

∑
i Λihi. This was expected from Noether’s theorem since our discretisation of the wires is

invariant under spatial rotations. We emphasise that the rates from Eq. (2.31) satisfy exactly ḣi ·hi+ėi ·ei=0

and ḣi ·ei+ėi ·hi=0, as required.
FromEqs. (2.30) and (2.31), we note that the computation of ḣi and ėi requiresO(N2K2) computations. As

shown in the coming section, this can be reduced toO(NK32max)when approximating |rik2rjl| by its expansion
in spherical harmonics up to order 3max. To this end, it is advantageous to introduce the decomposition

fik = fallik 2 f selfik with fallik =

N,K∑

{j,l};={i,k}

Gµikµjl F(rik2rjl), f selfik =

K∑

l ;=k

Gµikµil F(rik2ril). (2.34)

Here, fallik captures the contributions from all other nodes on all wires, while f selfik captures the contributions
from the other nodes on the same wire.

We end this section by stressing that our algorithm for fallik and f selfik must compute the exact same wire
self-gravity so that when computing the difference fik= fallik 2f

self
ik these erroneous non-physical contributions

exactly cancel. This is important, since the wire self-gravity can be substantial: it diverges logarithmically with
the numberK of nodes in the case of the exact (unsoftened) Newtonian gravity.

2.3.2.2 Multipole expansion

In order to accelerate the computation of the O(N2K2) pairwise node interactions, we expand the Newtonian
interaction kernel, |r2 r2|21, in spherical harmonics via

1

|r2 r2|
=

+>∑

3=0

3∑

m=23

{
U3m(r)T3m(r2) if r < r2,

T3m(r)U3m(r2) if r2 < r.
(2.35)

Here, we introduced the real-valued upper and lower solid spherical harmonics, U3m(r)?r3 Y3m(r̂) and
T3m(r)?r23+1 Y3m(r̂), with detailed conventions and recurrences spelled out in §C of Fouvry et al. (2022).

At this stage, we note that there exist essentially two flavours of code based on spherical harmonic expan-
sion: (i) codes in which the radial forces are evaluated using a basis-function expansion (see, e.g., Hernquist
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& Ostriker, 1992; Saha, 1993); (ii) codes in which the radial forces associated with a given spherical harmonic
are evaluated exactly (see, e.g., Villumsen, 1982) using formulas involving the usual factor r3min/r

3+1
max, here

absorbed into the definitions of U3m and T3m. Our goal here is to follow this second avenue and tailor it to
the case of Keplerian wires. The expansion from Eq. (2.35) is isotropic, even when truncated at order 3max.
Hence, by virtue of Noether’s theorem, it conserves the system’s total angular momentum Ltot. However, this
expansion is not invariant under translation, so that the total linear momentum is typically not conserved in
spherical harmonic codes. Fortunately, as already highlighted in Eq. (1.10), Keplerian wires do not induce any
force on the central object. This ensures, by design, the conservation of the system’s total linear momentum.

Inserting the multipole expansion from Eq. (2.35) into Eq. (2.34), we have

fallik =

N,K∑

j,l

∑

3,m

Gµikµjl

{
U3m(rjl)'T3m(rik) if rjl < rik,

T3m(rjl)'U3m(rik) if rjl > rik,
(2.36)

with an analogous expression for f selfik . The crucial difference between this expression and Eq. (2.34) is that the
dependence on the positions rik and rjl has been factorised. Hence, the gradient terms depending on rik can
be taken outside of the sum over nodes after splitting it into an inner and outer part. This gives

fallik =
∑

3,m

µikP3m(rik)'T3m(rik) +
∑

3,m

µikQ3m(rik)'U3m(rik). (2.37)

In that expression, we introduced the prefix sums

P3m(r) =
∑

j,l;rjl<r

Gµjl U3m(rjl); Q3m(r) =
∑

j,l;rjl>r

Gµjl T3m(rjl), (2.38)

which correspond to the multipoles of the distribution of all nodes inside and outside of radius r, respectively.
We point out that the expansion from Eq. (2.35) can also be used to define a cluster’s total truncated total

energy, Etot(3max,K), via Eq. (1.11), which we compute efficiently using the same algorithm as for the wire
forces. In the limit 3max³+>, i.e. in the absence of any multipole expansion, Eq. (1.11) provides us with the
full total energy, Edirect

tot , which can be computed via a direct O(N2K2) sum over all node-node couplings.
To compute the rates of change in Eq. (2.37), we begin by sorting the nodes into ascending order of radius3.

Since the nodes on each wire are already sorted when created, this sorting can be made in O(NK ln(N)) op-
erations and is completely subdominant in the total operation budget of our code. Once the nodes sorted in
radius, the multipoles P3m and Q3m can straightforwardly be computed by increasing and decreasing recur-
rences. Using ³={i, k} to denote the wires, we follow the algorithm

1 Sort all nodes in radius r³.
2 Set fall³ = 0 for all nodes ³.
3 Set P3m = 0.

4 For all nodes ³ in order of increasing radius r³:
4.1 For all (3,m):

4.1.1 fall³ ± fall³ + µ³P3m'T3m(r³).
4.1.2 P3m ± P3m +Gµ³U3m(r³).

5 Set Q3m = 0.
6 For all nodes ³ in order of decreasing radius r³:

6.1 For all (3,m):
6.1.1 fall³ ± fall³ + µ³Q3m'U3m(r³).
6.1.2 Q3m ± Q3m +Gµ³T3m(r³). (2.39)

The total operation count of the algorithm (2.39) is O(NK32max) with 3max the maximum harmonic order
considered. The same algorithm, but restricted to the nodes from only one wire, calculates f self³ for that wire,
and again requiresO(NK32max) operations for all wires. This is the main benefit for the present method which,
at the cost of discretised orbit averages and (truncated) harmonic expansions, has a computational complexity
scaling linearly with the total number of wires.

The computations of {ḣ, ė}all and {ḣ, ė}self are completely independent (and of similar computational dif-
ficulty), so that they can be performed in parallel. Similarly, the recurrences over P3m and Q3m, i.e. steps 4
and 6 in (2.39), are independent one from another (and of similar computational difficulty), so that they can
also be performed in parallel. As a consequence, one can easily parallelise the previous algorithm over four
cores. Further parallelisation requires the parallel computation of the prefix sums from Eq. (2.38). This is more
complex, but not impossible, e.g., using the parallel scan algorithm from Ladner & Fischer (1980).

3For self-gravity to be correctly removed, it is mandatory for the radius sortings used to compute fall
ik

and f
self
ik

to be consistent.
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2.3.2.3 Convergence of the force calculations

In Fig. 2.5, we illustrate the dependence of the relative error in the truncated total energy, Etot(3max,K), as a
function of K. Similar plots for ḣ and ė can be found in Fouvry et al. (2022). For the Kozai–Lidov system, for
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Figure 2.5: From Fouvry et al. (2022). Relative error in the truncated total energy, Etot(3max,K), as a function of
the number of nodesK for fixed multipole truncation order 3max. Errors are computed w.r.t. to calculations with
Kmax=100 for the Kozai–Lidov simulations (left panel) andKmax=20 480 for cluster simulations (right panel).
Colored regions correspond to the 16% and 84% levels over 500 independent realisations.

a fixed value of 3max, we find that the error decreases exponentially as e2K . This is a direct consequence of
the absence of any radial overlap between the two stellar orbits at play. In that case, the double orbit-average
integral from Eq. (1.10) naturally splits into the product of two 1D integrals, which the multipole algorithm
from Eq. (2.38) catches. Importantly, the integrands of each of these 1D integrals are 2Ã-periodic w.r.t. the
eccentric anomaly. In that case, the midpoint sampling from Eq. (2.26) ensures an exponential convergence
w.r.t. the number of nodesK (Trefethen & Weideman, 2014).

For the clusters composed of N=104 stars, given that the orbits exhibit a wide range of eccentricities
(0fef0.99), radial overlaps are ubiquitous and the exponential convergence w.r.t.K does not hold anymore.
More precisely, for a fixed value of 3max, the error onEtot(3max,K) decreases likeK22.5. For the rates of change,
we find that ḣ converges in K22.5, while ė converges in K21.5 (see fig. 1 in Fouvry et al. (2022)). We believe
that this difference in the rates of convergence stems from the fact that the discontinuity in Eq. (2.36) is only in
the radial force, which does not enter the equation for ḣ.

In Fig. 2.6, we investigate the relative errors inEtot(3max,K) as a function of 3max for a fixed number of nodes
K. Similar plots for ḣ and ė can be found in Fouvry et al. (2022). For the Kozai–Lidov simulations, we find that
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Figure 2.6: From Fouvry et al. (2022). Relative error in the truncated total energy, Etot(3max,K), as a function
of the multipole truncation order 3max for a fixed number of nodes (K=100 for Kozai–Lidov andK=20 480 for
the cluster), using the same convention as in Fig. 2.5. The full total energy, Edirect

tot , was computed by a direct
summation of Eq. (1.7) usingK=20 480 for the Kozai–Lidov simulations andK=1000 for the clusters.

the error decreases exponentially in e21.6 3max . Such a rapid convergence stems from the absence of any radial
overlap between the two stellar orbits. More precisely, glancing back at Eq. (2.35), the radial dependence of a
typical term of the Legendre expansion is (rmin/rmax)

3f¸3, with ¸=1/5 the largest distance ratio that occurs as
the inner and outer stars run through their orbits. As a consequence, when truncated at order 3max, the typical
error is expected to scale like ¸3maxce21.6 3max , matching the numerical measurement from Fig. 2.6.

In that same figure, we note that the convergence w.r.t. 3max is much slower for theN=104 clusters. This is
a consequence of the very slow convergence of the Legendre expansion from Eq. (2.35) in any regime where
the wires overlap in radius. Here, we empirically find that Etot(3max,K) converges roughly like 321.5

max . This is
compatible with the asymptotic scalings predicted in §B5 of Kocsis & Tremaine (2015) in the context of VRR.
Indeed, for radially overlapping non-coplanar orbits, which mostly compose the present N=104 clusters, a
given harmonic 3 gives a contribution to the total truncated energy scaling like 322.5. Once summing over all
the harmonics 0f3f3max, this ultimately leads to a relative error in Etot(3max,K) scaling like 321.5

max . We finally
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emphasise that the truncation of the present multipole approach effectively softens the interaction potential,
thereby avoiding the singularities that would otherwise occur when wires cross.

2.3.3 Time integration

In our application, the state of the system is described by the N sets y = {b+,bi}i. Given a timestep Ä , an
integration scheme is a mapping yn ³ yn+1 where subscripts denote different time slices. Standard Runge–
Kutta integration of the three-dimensional vectors b generically leads to violations of the constraints |b|=1.
Instead, we resort here to integration schemes that, by construction, exactly comply with these constraints. For
convenience, we define the velocity field, B(y)= ḣ± ė, so that the equations of motion simply read ḃ=B(y).

2.3.3.1 Explicit Lie group methods

For a fixed value of the precession vectorΩ=b×B (see Eq. 2.23), and an initial condition b0, Eq. (2.22) can be
integrated exactly for a duration t, via Rodrigues’ rotation formula, to the new location

b(t) = cos(Ωt)b0 + sin(Ωt) Ω̂×b0 + [12cos(Ωt)] (b0 ·Ω̂) Ω̂

= ×[tΩ] ç b0, (2.40)

with |b(t)|= |b0|. In order to exactly preserve the constraints |b|=1, explicit integration schemes analogous to
Runge–Kutta methods can be devised via Lie group methods (see, e.g., §IV.8 in Hairer et al., 2006) by concate-
nating appropriately rotations with precession vectors obtained at various intermediate stages. In practice, we
use Munthe–Kaas integrators for their simplicity (Munthe-Kaas, 1999). To do so, one rewrites the dynamics
as

b(t) = ×[U(t)] ç b0, (2.41)

which imposes that U(t) evolves according to

U̇ = d×21
U
ç
{
Ω(×[U] ç b0)

}
, (2.42)

withΩ(b)=b×B(b) following Eq. (2.23). Here, d×21
U

is the inverse of the differential of the rotation map (see
Theorem 3 in Munthe-Kaas, 1999). It generically reads

d×21
U
çΩ =

+>∑

k=0

Bk

k!
adkU çΩ, (2.43)

with Bk the Bernoulli numbers and adkU the k-th power of the adjoint operator. In the present context, this
operator simply reads

ad0U çΩ = Ω; adkU çΩ = U×
(
adk21

U
çΩ

)
. (2.44)

A Munthe–Kaas scheme proceeds then by using a classical Runge–Kutta scheme applied to U(t) and "cor-
recting" the intermediate precession vectorswith d×21

U
appropriately truncated (Theorem IV.8.5 inHairer et al.,

2006). For a second-order scheme, one can use d×21
U
çΩ=Ω, from which one constructs the two-stage explicit

midpoint rule (coined MK2). Starting from an initial state bn, it proceeds via

Ω1 = Ω(bn),

b2 = ×[ Ä2Ω1] ç bn,

Ω2 = Ω(b2),

bn+1 = ×[ÄΩ2] ç bn. (2.45)

Naturally, the rotations are performed over all the elements of y simultaneously.
To construct higher order methods, one has to account for the fact that the rotations from Eq. (2.40) do not

commute, i.e. better approximations of d×21
U

have to be used. Here, we present a four-stage scheme (coined
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MK4) based on the classical fourth-oder Runge–Kutta scheme. It reads

Ω̃1 = Ω(bn),

b2 = ×[ Ä2 Ω̃1] ç bn,

Ω̃2 = d×21
Ä
2 Ω̃1

çΩ(b2),

b3 = ×[ Ä2 Ω̃2] ç bn,

Ω̃3 = d×21
Ä
2 Ω̃2

çΩ(b3),

b4 = ×[ÄΩ̃3] ç bn,

Ω̃4 = d×21

ÄΩ̃3

çΩ(b4),

bn+1 = ×[Ä( 16Ω̃1+
1
3Ω̃2+

1
3Ω̃3+

1
6Ω̃4)] ç bn, (2.46)

where d×21
U

is truncated at second order in U so that Eq. (2.43) becomes

d×21
U
çΩ = Ω2 1

2U×Ω+ 1
12U×(U×Ω). (2.47)

The schemes from Eqs. (2.45) and (2.46) are (i) explicit; (ii) conserve |b|=1 exactly4; (iii) require two or
four computations of the derivatives, respectively; (iv) are, respectively, second- and fourth-order accurate.
Because they are direct translations of usual Runge–Kutta methods, it is straightforward to design Munthe–
Kaas schemes of higher order.

2.3.3.2 Symplectic scheme

Following McLachlan et al. (2014), we also consider an integrator based on the spherical midpoint method
(coined MD2). It is based on the implicit relation

bn+1 2 bn

Ä
= B

(
bn+1+bn

|bn+1+bn|

)
. (2.48)

This implicit relation is solved via the fixed-point iteration

b
(0)
n+1 = bn; b

(k+1)
n+1 = bn + Ä B

(
bn+b

(k)
n+1

|bn+b
(k)
n+1|

)
, (2.49)

terminating when ||b(k+1)
n+1 2b

(k)
n+1||f÷, for a given tolerance ÷. Naturally, these iterations are performed for all

the elements of y simultaneously. In practice, we impose ÷=2.2×10215, which typically requires 5–12 iterations.
The scheme from Eq. (2.48) is (i) second-order accurate; (ii) implicit; (iii) exactly conserves the constraints

from Eq. (2.20)5; (iv) symplectic (McLachlan et al., 2014); (v) and conserves Ltot=
∑

i Λihi, as it is a global
linear invariant. Because MD2 is a symmetric scheme, one can use symmetric composition techniques (see,
e.g., §V.3.2 in Hairer et al., 2006) to devise higher order symplectic integrators.

The MK2, MK4, MD2 schemes conserve the constraints for the vectors (h, e) to machine precision, which as
far as we know, none of the previous studies (e.g., Touma et al., 2009; Hamers & Portegies Zwart, 2016) have
managed.

2.3.3.3 Convergence of the time integrations

As a first check of the sanity of the present algorithm, we compare in the left panel of Fig. 2.7 the time-evolution
of the Kozai–Lidov system as predicted by the multipole approach and a direct integration of the associated 3-
bodyproblem. Bothmethods predict similar oscillations of the inner star6. On average, themultipole approach,
owing to its explicit orbit-average, used a timestep >105 times larger than the one of the direct integration.

In order to further assess the performance of the integration schemes, we now consider a simple analytical
two-body "Pair" Hamiltonian (see §D in Fouvry et al., 2022). In the right panel of Fig. 2.7, we illustrate the
dependence of the relative error in Etot after a finite time as a function of Ä . We find that MK2 and MD2 are
second-order accurate, with a finite-time error in O(Ä2), while MK4 is fourth-order accurate.

In Fig. 2.8, for the same Hamiltonian, we investigate the long-time trends for the errors in Etot and Ltot. As
expected, the explicit schemes show errors growing like t. There are twomain improvements in the symplectic

4We systematically re-normalise via b←b/|b| after every evaluation of Eq. (2.40) to prevent a drift of |b| from round-off errors.
5The fixed-point outcome from Eq. (2.49) is systematically renormalised via b←b/|b| to prevent a drift of |b| from round-off errors.
6When represented in Fig. 2.7, the MK2, MK4 and MD2 integrations are indistinguishable.
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Figure 2.7: From Fouvry et al. (2022). Left: Illustration in the Kozai–Lidov simulations of the evolution of the
inner star’s eccentricity, ein, as well as its inclination w.r.t. the outer star, ĥin ·ĥout. Full lines correspond to the
multipole integration (with the MK4 scheme fromEq. 2.46), while dashed lineswere obtained by direct integration
using the IAS15 integrator (Rein & Spiegel, 2015). Right: Relative error in the total energy Etot w.r.t. its initial
value after a fixed time, as a function of the considered integration timestep. Colored regions are the 16% and
84% levels over 500 independent realisations of the "Pair" Hamiltonian.
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Figure 2.8: From Fouvry et al. (2022). Relative error in the total energy Etot (left) and angular momentum Ltot

(right) w.r.t. their initial values, as a function of the number of timesteps, t/Ä , using the same convention as in
the right panel of Fig. 2.7.

scheme: (i) the error in Etot is bounded on long timescales; (ii) the error in Ltot only grows via the accu-
mulation of round-off errors. Figure 9 of Fouvry et al. (2022) presents similar measurements for the cluster
simulations, and reaches the same conclusions.

Finally, in Fig. 2.9, we illustrate the error-cost relation in the cluster simulations. The cost of a given simula-
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Figure 2.9: From Fouvry et al. (2022). Error-cost relation for the cluster simulations withN=104 particles. Sim-
ulations were performed with (i) the symplectic scheme (MD2; star symbols), or the explicit ones (MK2 and MK4;
circle symbols); with (ii) different integration timesteps Ä/Ädyn?2−k×10−3 (0fkf7; different colors); (iii) up
to different finite times, T/Ädyn=0.128× 2−k (0fkf5): the larger T , the thicker the line. The cost of a given
simulation is estimated via ï#forcesð/(Ä/Ädyn) with ï#forcesð the average number of force evaluations per inte-
gration timestep, e.g., two for MK2. Median errors in Etot(3max,K) (left) and Ltot (right) are estimated over 128
realisations. See fig. 10 in Fouvry et al. (2022) for detailed definitions.

tion is estimated via ï#forcesð/(Ä/Ädyn), with ï#forcesð the average number of force evaluations per integration
timestep and Ädyn the shortest dynamical time of the clusters at hand (see §F in Fouvry et al., 2022). While the
explicit schemes always perform a constant number of force evaluations per timestep, the symplectic scheme
requires from 5 evaluations (smallest Ä) up to 12 (largest Ä). As one reduces Ä , the error in Etot(3max,K)
keeps shrinking illustrating that our discretisation scheme indeed corresponds to a Hamiltonian system, see
Eq. (2.18c). Finally, for the present rather short integrations, at a given cost, the explicit scheme outperforms
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the symplectic one regarding the conservation of Etot(3max,K), while the converse holds regarding Ltot.

2.3.4 Application to SgrA*

We conclude this section by using the precedent method to simulate a typical N=104 cluster around SgrA*.
In particular, we use these simulations to validate the SRR diffusion coefficients derived in Eq. (2.7). Details
for the measurements and predictions are given in §F of Fouvry et al. (2022).

In Fig. 2.10, we present the (finite-time) eccentricity diffusion coefficients, Dhh={[∆h(T )]2}/T , where {·}
stands for an ensemble-average, and we used a finite time T =25 kyr, along with 3max=10 and K=100. This

2×10-1 100
h

10-2

10-1

Dhh[1/Myr]

Cluster
Semi-major axis [mpc]

7.2< a<8.8

9.0< a<11.0

11.7< a<14.3

15.3< a<18.7

19.8< a<24.2

25.2< a<30.8

Figure 2.10: From Fouvry et al. (2022). (Finite-time) diffusion coefficientsDhh={[∆h(T )]2}/T , with h=
:
12e2,

in a galactic nucleus mimicking SgrA*. Wires are split in different bins of semi-major axes (a) in milliparsecs,
representedwith different colors. The dashed curves correspond to the SRR theoretical predictions fromEq. (2.7)
corrected for finite-time effects (see Eq. 24 in Bar-Or & Fouvry, 2018). The thick curves correspond to the numer-
ical measurements performed in the multipole simulations and their associated bootstrap errors.

figure shows a good agreement between the diffusion coefficients inferred from the numerical simulations and
the ones inferred from kinetic theory. It is likely that the remaining (slight) mismatch stems from the difficulty
of measuring/predicting long-term diffusion coefficients on such a short finite-time, T , see Eq. (24) in Bar-Or &
Fouvry (2018). Overall, Fig. 2.10 illustrates the sanity of the present algorithm which reproduced the intricate
resonant dynamical interactions of Keplerian wires in a galactic nucleus. Of course, Fig. 2.10 is only a first
illustration of the physical mechanisms that can be investigated with the multipole method.

2.3.5 Discussion

The present multipole approach differs from the alternate Gauss’ method (Touma et al., 2009) which does not
rely on a harmonic expansion. In a nutshell, Gauss’ method computes all the pairwise interactions between
the wires, i.e. it has a computational complexity scaling quadratically in the number of wires. More precisely,
it scales likeO(N2KG)withKG the typical number of points used to perform the second orbit-average, which
cannot be performed analytically. Gauss’ method has several strengths: (i) it is very well suited to perform
time integrations of orbit-averaged problemswith a small number of wires; (ii) because the computation of the
orbit-averaged force between two wires is a numerically expensive calculation, i.e. a computational complexity
inO(KG), thismethod can significantly benefit fromparallelisation; (iii) because it relies on the computation of
pairwise interactions, Gauss’ method lends itself nicely to multi-timestep approach contrary to the multipole
method; (iv) Gauss’ method is straightforward to apply in the case of a softened interaction (Touma et al.,
2009), which the presentmultipole approach implicitely introduces through its harmonic truncation. However,
one the main drawback of Gauss’ method is that its computational difficulty gets prohibitively large as N gets
larger, an aspect that the present multipole method alleviates by design.

2.3.6 Prospects

In this section, we described amultipole expansionmethod to perform orbit-averaged simulations of Keplerian
wires in galactic nuclei. This algorithm has two main advantages: (i) by performing an explicit orbit average
over the fast Keplerian motion, it greatly reduces the range of dynamical times in the system; (ii) by relying on
a multipole expansion of the pairwise interaction, it benefits from a computational complexity scaling linearly
with the total number of particles.

The present code is only a first step towards the development of ever faster integration methods for the
dynamics of galactic nuclei, here seen as archetypes of systems that suffer from global resonance conditions in
their orbital frequencies. Let us conclude by mentioning some venues for future works.
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• As already discussed, the present algorithm can naturally be parallelised over four cores. Further paralleli-
sation requires the computation of Eq. (2.38) in parallel. This asks for further developments.

• Even after the orbit average over the fast Keplerian motion induced by the central BH, the range of dynam-
ical times in a typical nucleus still remains very significant. This is a consequence of the divergence of the
relativistic precession for very eccentric wires, as well as of the wide ranges of semi-major axes and indi-
vidual masses these systems comprise. Even with the present method, long time integrations still remain
challenging. One likely solution for some of these difficulties would be to implement different timesteps
for different wires. This is no easy feat, since to compute the prefix sums from Eq. (2.38), it is essential to
scroll through the entire population of nodes.

• The present algorithm has problems with nodes at very similar radii. Indeed, the multipole expansion
from Eq. (2.35) fails to converge in the limit ri³rj even if |ri 2 rj |>0, i.e. even if the nodes are spatially
well separated. We expect that such an issue can be cured by reverting to direct summation of the forces
for nodes with near-identical radii. This only requires a slight modification of the present algorithm. This
change would also call for the inclusion of force softening to avoid artificially large forces between nodes
that are much closer to one another than their respective wire-companions. Overall, such improvements
are expected to increase the numerical accuracy and stability of the scheme.
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3 Vector Resonant Relaxation

The work presented in this section is based on Fouvry et al. (2019b,c); Giral Martínez et al. (2020); Magnan
et al. (2021); Fouvry (2022).

In this section, we focus on VRR, the process through which stars’ orbital orientations vary. VRR plays a
crucial role in warping accretion (Bregman & Alexander, 2012) and stellar discs (Kocsis & Tremaine, 2011),
enhancing binary mergers rate (Hamers et al., 2018), dissolving stellar discs (Bartko et al., 2009; Lu et al.,
2009; Yelda et al., 2014), or aligning IMBHs’ orientations (Szölgyén & Kocsis, 2018). Here, our goal is first to
characterise the stochastic VRR Hamiltonian driving the random walk of stellar orientations (§3.1) and the
separation of nearby orbits (§3.2). As for numerical approaches, we detail how entropy methods allow for the
characterisation of the VRR’s non-trivial thermodynamical equilibria (§3.3) and howmultipole methods offer
efficient integration schemes (§3.4). Finally, we tailor the BL kinetic theory to the axisymmetric limit of VRR
(§3.5).

3.1 Statistics of VRR

In this first section, we set out to characterise VRR in the limit of an isotropic distribution of stars. To do so,
we first present in §3.1.1 the fundamental equations of VRR. In §3.1.2, we characterise the properties of the
system’s potential fluctuations, as inferred from estimates of correlations at the initial time. This allows us
then to describe in §3.1.3 the random walk of a test particle’s orientation and to develop an effective stochastic
equation of motion to efficiently mimic it. Finally, in §3.1.4, we detail the fundamental self-consistency existing
between the potential fluctuations and the orientations’ random walks they induce.

3.1.1 VRR Hamiltonian

We consider a set ofNk1 stars orbiting a supermassive BH, that we call the background bath of particles. For
example, they represent SgrA*’s unresolved stellar populations (low mass stars, IMBHs) which all contribute
to the clumpiness of the gravitational potential. Provided that one considers the dynamics of stars on timescales
longer than the in-plane precession, but shorter than the relaxation time for eccentricity (by SRR) and energy
(by NR), one can orbit average the stars along their respective mean anomalies and pericentre phases: stars
are smeared out into annuli (left panel of Fig. 3.1). Each annuli is characterised by the conserved parameters

Figure 3.1: Left: FromGiralMartínez et al. (2020). Illustration of the interaction between two annuliwith different
orbital parameters K=(m, a, e). The coupling between the two annuli depends on the relative angle, cos(×),
between the two normals. Right: From Fouvry et al. (2019c). Typical correlated random walks in orientations
on the unit sphere undergone by stellar orientations during VRR. Particles are colored according to their semi-
major axis (from red for small a to yellow for large a). Given that the angular momentum L(K) is an increasing
function of a, particles with larger a see their orientations evolve slower.

K = (m, a, e), (3.1)

wherem is the star’s individual mass, a its semi-major axis, and e its eccentricity. Importantly, the norm

L(K) = m
√
GM"a(12 e2). (3.2)

of the angular momentum vector of each annuli is conserved. In that limit, the only remaining dynamical
quantity is the instantaneous orbital orientation that we denote L̂. As such, VRR describes the dynamics of a
set of long-range coupled unit vectors L̂i.

27
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Following Eq. (1.11), the system’s total Hamiltonian reads1

HVRR = 2

N∑

i<j

〈
Gmimj

|ri(t)2 rj(t2)|

〉

t,t2
, (3.3)

where the sum over (i, j) runs over all the pairs of particles and the double orbit-average ï·ðt,t2 operates over the
fast Keplerian motion and in-plane precession of both particles with ri(t) and rj(t

2) describing their respective
unperturbed in-plane trajectories. Building upon a harmonic expansion, Kocsis & Tremaine (2015) shows that
the system’s total Hamiltonian can be rewritten as

HVRR = 2
N∑

i<j

+>∑

3g2
even

23+1

4Ã
H3

[
Ki,Kj

]
P3

(
L̂i ·L̂j

)

= 2
N∑

i<j

+>∑

3g2
even

3∑

m=23

H3

[
Ki,Kj

]
Y3m(L̂i)Y3m(L̂j), (3.4)

with the real surface spherical harmonics, Y3m(L̂), normalised so that
∫
dL̂|Y3m(L̂)|2=1. Equation (3.4) involves

the (symmetric) coupling coefficients, H3[Ki,Kj ], which only depend on the stars’ conserved parameters.
They generically read

H3

[
K,K2

]
=

4ÃGmm2

23+ 1
|P3(0)|2

∫ Ã

0

dM

Ã

∫ Ã

0

dM 2

Ã

Min[r, r2]3

Max[r, r2]3+1
; J3

[
K,K2

]
=

1

L[K]
H3

[
K,K2

]
, (3.5)

with P3 the Legendre polynomials, andM andM 2 the mean anomalies of both orbits. We also introduced the
"specific" coupling coefficients, J3

[
K,K2

]
. We emphasise two important symmetries of these coefficients: (i)

H3[K,K
2]=H3[K

2,K]; (ii)H3[K,K
2]=J3[K,K2]=0 for any odd 3. In order not to have to invert Kepler’s equa-

tion, it is convenient to perform the integrals from Eq. (3.5) w.r.t. the eccentric anomalies E and E2 (Eq. 1.9).
Naturally, benefiting from the quasi-separability of the Min-Max ratio, one can use the same multipole ap-
proach as in §2.3.2.2 to compute efficiently these coefficients. Figure 3.2 illustrates the typical shape of these
coupling coefficients. We note that a given particle is strongly coupled to particles that share similar conserved

Figure 3.2: From Giral Martínez et al. (2020). Illustration of the coupling coefficients, J3[K,K2], for 3=10
(left) and 3=40 (right). Here, we chose (a, e)=(40, 0.15), and the vertical axes have been commonly arbitrarily
rescaled. One can note that a given orbit mostly couples with orbits with similar semi-major axes.

parameters, in particular similar semi-major axes. Moreover, as 3 increases, the amplitude of the coupling
coefficient, J3, reduces (see §B of Kocsis & Tremaine, 2015, for detailed scalings).

The instantaneous state of the bath is characterised by its discrete DF

F b(L̂,K, t) =
N∑

i=1

¶D(L̂2 L̂i(t)) ¶D(K2Ki), (3.6)

which follows the normalisation
∫
dL̂dKF b=N . Describing VRR amounts to describing the time-evolution of

F b(L̂,K, t).
The bath’s DF can naturally be expanded in spherical harmonics as

F b(L̂,K, t) =
∑

³

F b
³(K, t)Y³(L̂), (3.7)

1In Eq. (3.3), we neglected the Lense–Thirring precession, as it is negligible for the S-cluster (see, e.g., fig. 1 in Kocsis & Tremaine,
2011)
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with the shorthand notation ³={3,m}. In Eq. (3.7), we introduced the "magnetisations", F b
³(K, t), as

F b
³(K, t) =

∫
dL̂F b(L̂,K, t)Y³(L̂). (3.8)

When expanded in spherical harmonics, the system’s evolution follows (Fouvry et al., 2019c)

"F b
³(K, t)

"t
= 2

∑

µ,¶

∫
dK2Q³µ¶[K,K

2]F b
µ (K

2, t)F b
¶ (K, t), (3.9)

with the time-independent coupling tensors Q³µ¶[K,K2]=J3µ [K,K2]E³µ¶ , and E³µ¶ the (real) Elsasser coef-
ficients (James, 1973). See §B of Fouvry et al. (2019c) for a detailed presentation of these coefficients. Equa-
tion (3.9) is an exact writing of the fundamental evolution equation for VRR. Its difficulty stems from being
a quadratic matrix differential equation in the fields F b

³(K, t). The right panel of Fig. 3.1 illustrates typical
trajectories on the unit sphere during VRR: the motions are large-scale and time-correlated.

3.1.2 Noise correlation

Rather than describing the exact fate of all the particles, one can aim at characterising the statistical properties
of the magnetisations F b

³(K, t). This was the purpose of Fouvry et al. (2019c).
Because they are generated byNk1 particles, it is reasonable to assume thatF b

³(K, t) are Gaussian random
fields. Assuming that the system’s dynamics is stationary in time, we may then fully characterise these fields
by their correlation function

Cb
³´(K,K

2, t2 t2) =
〈
F b
³(K, t)F

b
´ (K

2, t)
〉
, (3.10)

where ï·ð stands for the average over realisations of the system, i.e. over the initial conditions of the bath.
Importantly, we assume that the background bath is isotropic on average, so that ïF b

³ð=0 for any 3³>0.
The bath correlation function is even w.r.t. time, and generically decreases on a timescale larger than some

coherence time Tc. As a result, as a first approximation, it is reasonable to replace Cb
³´(K,K

2, t2t2) by a Gaus-
sian function tailored to match the function’s behaviour for tjTc. More precisely, one can compute the ex-
pectations for Cb

³´(K,K
2, 0) and "2Cb

³(K,K
2, t)/"t2|t=0. Such a calculation can be carried out explicitly using

Eq. (3.9), and our assumption that the system is isotropic on average, making the computation of ensemble
averages tractable. We refer to §D of Fouvry et al. (2019b) for details on this calculation. One obtains

Cb
³´(K,K

2, t2 t2) = ¶³´ ¶D(K2K2)Cb
3³(K, t) with Cb

3 (K, t) = n(K) e2
A3³

2
(t/Tc(K))2 . (3.11)

with the coefficientA3=3(3+ 1). Here, n(K) is the DF of the stars’ parameters, normalised to
∫
dL̂dKn(K)=N .

Equation (3.11) fully characterises the statistical properties of the potential fluctuations generated by the
background particles. We note that the amplitude of the temporal correlation is proportional to the back-
ground stellar density, n(K). Because the system is isotropic on average, these correlations are diagonal when
expanded in spherical harmonics, and only depend on the index 3. Finally, Eq. (3.11) also involves, Tc(K), the
coherence time of the noise that reads

1

T 2
c (K)

=

∫
dK2 n(K2)

∑

3

B3 J 2
3

[
K,K2

]
, (3.12)

with the constant coefficient B3=3(3+1)(23+1)/(8Ã). The coherence time characterises the typical time one
has to wait for the bath to reshuffle enough so that its fluctuations become statistically independent. In the left
panel of Fig. 3.3, we compare the prediction from Eq. (3.11) with numerical measurements (see §C of Fouvry
et al., 2019c, for details).

3.1.3 Random walk

We have just characterised the noise fluctuations resulting from the coupled motions ofN particles. Assuming
that its statistics is given by the correlation function fromEq. (3.11), we now investigate the stochastic dynamics
of one given test particle embedded in that noisy environment. Such a random walk is illustrated in the left
panel of Fig. 3.4.

Throughout this section, we place ourselves in the test particle limit, i.e. the test particle is of zero mass
so that its dynamics is fully determined by the time-dependent density of the background particles, and we
neglect any backreaction of the test particle onto the background. We denote the parameters of the test particle
withKt and its instantaneous orientation with L̂t. Similarly to Eq. (3.6), we introduce the single particle DF

F t(L̂, t) = ¶D(L̂2L̂t(t)), (3.13)
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Figure 3.3: From Fouvry et al. (2019c). Left: Correlation of the 3=2 noise fluctuations (Eq. 3.10). The black
line is the numerical measurement with the gray lines illustrating the 10% and 90% spreads over the available
realisations. The red line is the Gaussian prediction from Eq. (3.11), while the purple line is the updated pre-
diction using the self-consistency relation from Eq. (3.27). Right: Correlated randomwalk of test particles, Ct

3(t)
(Eq. 3.18). This figure illustrates the two successive regimes of diffusion, namely ballistic (? t2 for tjTt) fol-
lowed by diffusive (? t for tkTt). The remaining mismatch stems from non-ergodic effects, see §F in Fouvry
et al. (2019c).

Figure 3.4: From Fouvry et al. (2019c). Left: Typical correlated random walk in orientation undergone by a
test particle during VRR in self-consistentN -body simulations Right: Randomwalk generated from the effective
Langevin Eq. (3.22), for a test particle with the same parameters as in the left panel.

which is expanded in spherical harmonics via

F t(L̂, t) =
∑

³

Y³(L̂)F
t
³(t) with F t

³(t)=Y³(L̂t(t)). (3.14)

In practice, since the spherical harmonics 3=1 are such that F t
(1,m)(t)> L̂t(t), characterising the random walk

of the test particle requires the knowledge of F t
³(t) for 3³=1.

The evolution equation for F t
³(t) immediately follows from Eq. (3.9), and reads

"F t
³(t)

"t
= 2

∑

¶

Qt
³¶(t)F

t
¶ (t) with Qt

³¶(t) =
∑

µ

∫
dKQ³µ¶[Kt,K]F b

µ (K, t). (3.15)

Here, F b
µ (K, t) are the background magnetisations, as defined in Eq. (3.8), while Qt

³¶(t) is a time-dependent
forcing driving the test particle’s dynamics.

Equation (3.15) takes the form of a time-dependent linear matrix differential equation for the test particle’s
magnetisations, F t

³(t). In order to guarantee well-behaved asymptotics for large times, we approach the resolu-
tion of Eq. (3.15) usingMagnus series (see Blanes et al., 2009, for a review). In that framework, one generically
solves for the motion of the test particle as

F t
³(t) =

∑

¶

[
eΩ(t)

]
³¶
F t
¶ (0), (3.16)

where the matrix Ω(t) is constructed from the series expansion Ω(t)=
∑
kg1 Ω

(k)(t), whose first terms are

Ω(1)(t) = 2
∫ t

0

dsQt(s), (3.17a)

Ω(2)(t) = 1
2

∫ t

0

ds1

∫ s1

0

ds2
[
Qt(s1),Q

t(s2)
]
, (3.17b)
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with [A,B]=AB2BA the matrix commutator.
Similarly to Eq. (3.10), we are interested in computing the correlation

Ct
³´(t2 t2) =

〈
F t
³(t)F

t
´(t

2)
〉
. (3.18)

Using the Magnus series from Eq. (3.16), we can rewrite this correlation function as

Ct
³´(t) =

∑

¶

〈[
eΩ(t)

]
³¶

〉 〈
F t
¶ (0)F

t
´(0)

〉
. (3.19)

To obtain Eq. (3.19), we used two key assumptions. (i)Within the test particle limit, the independence hypothe-
sis (Corrsin, 1959) allows us to separate the average over the test particle’s initial condition and the background
particles. (ii) We assumed that the noise is stationary in time, hence fixing our time origin in t2=0.

Assuming that the test particle is initially uniformly distributed on the unit sphere, one naturally has
ïF t
¶ (0)F

t
´(0)ð = ¶¶´/(4Ã). To compute the remaining average in Eq. (3.19), we restrict ourselves to terms that

are at most second order inQt. In practice, this is done by truncating the Magnus series in Eq. (3.17) at second
order in the noise, and using the cumulant theorem to compute ensemble averages. We refer to §E in Fouvry
et al. (2019c) for details and only give here the final result. One gets Ct

³´(t)=¶³´C
t
3³
(t) with

Ct
3(t) =

1

4Ã
exp

{
2 1

2A3³
∑

3

B3

∫
dKJ 2

3

[
Kt,K

]∫ t

0

dt1

∫ t

0

dt2 C
b
3 (K, t12t2)

}

=
1

4Ã
exp

{
2 1

2A3³
∑

3

B3

∫
dKn(K)J 2

3

[
Kt,K

] 2T 2
c (K)

A3
Ç
[√

A3/2 (t/Tc(K))
]}
. (3.20)

To get the second line, we replaced the bath correlation, Cb
3 (K, t), with the Gaussian ansatz from Eq. (3.11)

and introduced the dimensionless function

Ç(Ä) =

∫ Ä

0

dÄ1

∫ Ä

0

dÄ2 e
2(Ä12Ä2)

2

= e2Ä
2 2 1 +

:
Ã Ä erf(Ä) c

{
Ä2 Ä j 1,:
Ã Ä Ä k 1.

(3.21)

In Eq. (3.20), it is interesting to note that the function Ç captures the expected two regimes of relaxation. On
short timescales, tjTc, the correlation Ct

3 decays like a Gaussian and the motion of the test particle is ballistic,
i.e. (∆L̂)2? t2. On such short timescales, the test particle’s random walk is analogous to the one induced by a
time-independent fluctuation. On long timescales, tkTc, the correlation decays exponentially and the motion
of the test particle is diffusive, i.e. (∆L̂)2? t. On these timescales, the test particle’s random walk is analogous
to the one induced by fluctuations that are ¶D-correlated time, as in classical Brownian motion. In the right
panel of Fig. 3.3, we compare Eq. (3.20) with numerical measurements (see Fouvry et al., 2019b, for details).

Because it involves a sum over the harmonics 3 and an integral over K, Eq. (3.20) remains difficult to im-
plement. We conclude this section by presenting a simpler toy model that generates stochastic motions with
correlation properties similar to the ones of Eq. (3.20). We assume that the motion of the test particle is gener-
ated by an effective dipolar (3=1) Gaussian noise. More precisely, it follows the Langevin equation

dL̂t

dt
= Γt η(t)× L̂t with

ù
ú
û

〈
¸i(t)ð = 0,
〈
¸i(t) ¸j(t

2)
〉
= ¶ij e

[(t2t2)/Tt]
2

.
(3.22)

with η(t) a 3D Gaussian noise. Our goal is now to tailor the amplitude, Γt, and coherence time, Tt, to match
the behaviour of the test particle correlation from Eq. (3.20) on short and long timescales (Hamers et al., 2018).

Following the same steps as in Eq. (3.16), one can easily compute the correlation function, Ctoy
³´ (t), of a test

particle whose dynamics is imposed by Eq. (3.22). One finds Ctoy
³´ (t)=¶³´C

toy
3 (t) with

Ctoy
3 (t) =

1

4Ã
exp

{
2 1

2A3³ Γ2
t T

2
t Ç[t/Tt]

}
. (3.23)

By matching the ballistic and diffusive regimes of Eq. (3.23) with the ones of Eq. (3.20), we get the relations

Γ2
t =

1

T 2
c (K)

, (3.24a)

T 2
t =

1

Γ2
t

∑

3

B3√
A3/2

∫
dKn(K)J 2

3

[
Kt,K

]
Tc(K). (3.24b)
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where the bath coherence time, Tc(K), was already introduced in Eq. (3.12).
Equation (3.23) is an important result, as it offers a simple analytical description of the statistical properties

of the random walk of a test particle’s orientation, jointly induced by all the background particles. The test
particle’s random walk is characterised by the two quantities (Γt, Tt) that both depend on the test particle’s
parameters,Kt. On the one hand, the torque amplitude, Γt, controls the amplitude of the test particle’s initial
ballistic motion. As such, the torque time, 1/Γt, represents the typical time it would take the test particle to
explore the unit sphere for a given and frozen value of the background noise. On the other hand, the coherence
time, Tt, describes the typical time one has to wait for the torque amplitude to reach a statistically different
value, i.e. to decorrelate itself. It is therefore the timescale after which the test particle leaves the ballistic
regime and enters the diffusive one. These two regimes are visible in the right panel of Fig. 3.3.

One strength of the present formalism is that, following Eq. (3.24), one now has at one’s disposal explicit
expressions for these two parameters. These coefficients are time-independent and can easily be computed
for various cluster models (by varying n(K)) and test particles (by varying Kt). In addition, because the
time correlation of the Gaussian noise, η(t), is explicitly known, it is straightforward to generate noise realisa-
tions (Romero & Sancho, 1999). These time series can then be used in Eq. (3.22) to generate effective random
walks. This is illustrated in the right panel of Fig. 3.4.

3.1.4 Noise self-consistency

In the previous sections, we proceeded in two successive steps. First, in §3.1.2, we used estimates of the deriva-
tives of the correlation function of the noise at the initial time to obtain Eq. (3.11), a simple ansatz for the
time-dependence of the correlation function of the noise generated byN background particles. Then, in §3.1.3,
we used this noise as a source term driving the stochastic dynamics of a test particle, leading to Eq. (3.20). Yet,
if the test particle is now taken to be one background particle, its orientation randomwalk and the background
fluctuations sourcing it have to be self-consistent. This is what we now explore.

We start from Eq. (3.10) and replace F b
³(K, t) by its discrete definition from Eq. (3.6). One gets

Cb
³´(K,K

2, t2t2) =
∑

i,j

〈
¶D(K2Ki) ¶D(K

22Kj)Y³(L̂i(t))Y´(L̂j(t))

〉
. (3.25)

We now assume that each background particle can be treated as a test particle, and that their long-termmotions
are decorrelated from one another. Only the contributions from i=j remain, and, paying a careful attention to
normalisation, Eq. (3.25) becomes

Cb
³´(K,K

2, t) = ¶D(K2K2) 4Ã n(K)Ct
³´(K, t), (3.26)

where Ct
³´(K, t) is the test particle’s correlation defined in Eq. (3.18). Luckily, we have already solved for this

correlation function for an arbitrary background perturbation in Eq. (3.20). Reinjected into Eq. (3.26), we get

Cb
3 (K, t) = n(K) exp

{
2 1

2A3
∑

32

B32

∫
dK2 J 2

32
[
K,K2

]∫ t

0

dt1

∫ t

0

dt2 C
b
32(K

2, t12t2)
}
, (3.27)

where Cb
3 (K, t)was introduced in Eq. (3.11). Equation (3.27) takes the form of a self-consistent integral equa-

tion satisfied by the correlation function, Cb
3 (K, t).

Following Taylor & McNamara (1971), this self-consistency can be further clarified by defining

Rb
3 (K, t) =

1
2

∫ t

0

dt1

∫ t

0

dt2 C
b
3 (K, t12t2). (3.28)

from which we get

d2Rb
3 (K, t)

dt2
= n(K) exp

{
2A3

∑

32

B32

∫
dK2 J 2

32
[
K,K2

]
Rb
32(K

2, t)

}
. (3.29)

Equation (3.29) is the important result of this section. It highlights the intrinsic non-linearity of the VRR prob-
lem and its mandatory self-consistency. Yet, as it couples both different harmonics (via

∑
32) and different

orbital parameters (via
∫
dK2), such a differential equation is too intricate to be easily solved explicitly.

Fortunately, one can still proceed iteratively to obtain improved approximations of the noise correlation
function. To do so, one starts from the Gaussian dependence obtained in Eq. (3.11). This (motivated) ansatz
is then reinjected in the r.h.s. of Eq. (3.27) to obtain a new approximation of the noise correlation function that
has both a ballistic and diffusive part. Such a procedure is illustrated in Fig. 3.3, where we show how one can
better match the late-time properties of the system’s noise through this iterative process.
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3.1.5 Prospects

In this section, we illustrated how one can describe self-consistently the statistical properties of the stochastic
evolution of a star’s orientation in a galactic nucleus during VRR. The main difficulty of the present derivation
lies in the system being fundamentally degenerate, i.e. having a vanishingmean-fieldHamiltonian, ïHVRRð=0
(§3.1.1). As a result, the system is non-Markovian, i.e. correlated in time and orientation.

Placing ourselves in the limit of an isotropic distribution of orientations, we circumvented some of these
difficulties in §3.1.2 by characterising the statistical properties of the potential fluctuations present in the cluster.
In §3.1.3, we used this result to describe the randomwalk of a test particle embedded in this stochastic system,
recovering both the ballistic and diffusive regimes. In §3.1.4, we highlighted the fundamental self-consistency
that exists between the spontaneous fluctuations in the system and the associated randomwalk in orientations.

Of course, the present statistical description is only a first step towards a complete theory of VRR, and we
conclude this section by listing below some possible tracks for future developments.
• In §3.1.3, we described the dynamics of one test star’s orientation. In order to investigate how a substructure

like a disc slowly dissolves (Kocsis & Tremaine, 2011), the next logical step is to describe the joint dynamics
of a pair of nearby test stars. This is the focus of §3.2.

• If one were to replace the test star by a binary, then the exact statistical properties of the VRR random walk
in orientation can lead to enhanced rates of mergers for the binary itself (Hamers et al., 2018). As such, ever
more reliable and precise description of the VRR dynamics should allow for more accurate prescriptions
on the rate of binary mergers expected to originate from galactic nuclei.

• Here, we relied extensively on the isotropic assumption, and as such neglected any effects associated with
anisotropic clustering in orientation (see, e.g., Szölgyén et al., 2021). Predicting such non-trivial equilibrium
distributions is the topic of §3.3.

• Finally, here we focused our interest on galactic nuclei, i.e. systems dominated by a central mass. Provided
that one updates accordingly the coupling coefficients, J3[K,K2], similar investigations can naturally be
pursued in the context of spherical globular clusters (see, e.g., Meiron & Kocsis, 2018; Roupas, 2020).

3.2 Neighbour separation

In the previous section, we characterised the correlated randomwalks undergone by a test particle’s orientation
when embedded in an isotropic bath of background particles. Rather than focusing on a single test particle,
let us now tackle the dual problem of embedding within the same bath two test particles sharing similar ori-
entations and orbital parameters. Our goal is to obtain precise estimates of the efficiency with which these two
particles diffuse away from one another. We call this process "neighbour separation". This process is the one
that can drive the spontaneous dilution of stellar discs in galactic nuclei (see, e.g., Kocsis & Tremaine, 2011),
as illustrated in Fig. 3.5. Ultimately, such a dilution should prove paramount to constrain SgrA*’s dynamical

Figure 3.5: From Giral Martínez et al. (2020). Time sequence (from left to right and top to bottom) of the spon-
taneous dilution of a population of neighbouring test particles differing initially both in orientations and orbital
parameters. Characterising the efficiency of "neighbour separation" is mandatory to constrain the survivability
of SgrA*’s observed clockwise stellar disc.
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content from its observed clockwise stellar disc (Bartko et al., 2009; Yelda et al., 2014; Gillessen et al., 2017).
We are interested in the efficiency with which two nearby particles diffuse away from one another, as illus-

trated in the left panel of Fig. 3.6. Compared with §3.1.3, the main difficulty now stems from the fact that these
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Figure 3.6: From Giral Martínez et al. (2020). Left: Separation between two neighbour test particles in aN -body
simulation. Their paths follow each other closely initially but eventually diverge away from one other. Right:
Typical random walks of the angle cos(×) between pairs of test particles (with the same orbital parameters) in
N -body simulations. The orientations typically decorrelate after a few∆t, as defined in Eq. (3.40).

two neighbour particles, even though of zero mass, are not independent as they evolve within the same back-
ground noise. As a result, in constrast to Eq. (3.18), we are not interested in the correlation of the harmonics
at different times for the same particle, but rather in the correlation of the harmonics of two different particles
at the same time. We therefore define the "neighbour" correlation function

Cn
³´(t) =

〈
F 1
³(t)F

2
´ (t)

〉
, (3.30)

where, following Eq. (3.14), F i³(t) (i=1, 2) is the instantaneous magnetisation of particle i. For an isotropic
background noise and isotropic initial conditions, the addition theorem for spherical harmonics offers a simple
interpretation of Eq. (3.30). Indeed, one has

Cn
³´(t) =

¶³´
4Ã

〈
P3³(cos(×(t)))

〉
, (3.31)

with P3 the Legendre polynomials and ×(t) the instantaneous angle between the two particles. Since P1(x)=x,
the case 3³=1 is of prime importance as it directly gives the angular separation between the two test particles.
Higher order harmonics are connected to higher order moments of cos(×). Our goal here is to characterise
the random walk undergone by ×(t), as illustrated in the right panel of Fig. 3.6. In Eq. (3.30), we emphasise
that the test particle limit is assumed, so that any self-gravity among the test particles is neglected. This is
an important limitation of the upcoming calculation, as self-gravity within a stellar disc (see figs. 6 and 7 in
Kocsis & Tremaine, 2011) enhances the disc’s coherence and reduces the efficiency with which it can dissolve.
Accounting for self-gravity is, surely, no easy task, and deserves further investigations.

In order to compute the correlation from Eq. (3.30), we follow the same approach as in Eq. (3.16). We write

Cn
³´(t) =

∑

µ,¶

〈[
eΩ1(t)

]
³µ

[
eΩ2(t)

]
´¶

〉 〈
F 1
µ (0)F

2
¶ (0)

〉
. (3.32)

In that expression, we followed Eq. (3.17) and introduced Ωi(t) the Magnus matrix specific to particle i. We
also enforced, once again, that the statistics of the background noise is independent of the initial locations of
the test particles. This allows us to separate the averages in Eq. (3.32).

We assume that the initial conditions for the test particles are isotropic: while the location of the two test
particles are correlated with one another, the distribution of any given test particle is statistically uniform on
the unit sphere. The second average from Eq. (3.32) can then generically be written as

〈
F 1
µ (0)F

2
¶ (0)

〉
=
¶³´
4Ã

Dµ , (3.33)

where, by isotropy, the diagonal matrixD sees its entriesDµ depend only on 3µ . In the case where the test par-
ticles are launchedwith a fixed initial angular separation, ×0, one findsD3=P3(cos(×0)). This further simplifies
to D=I, when the two test particles are systematically launched with the exact same initial orientations.

Having characterised the test particles’ initial conditions, we now go back to the first term from Eq. (3.32).
Owing to symmetries, we write

Cn
³´(t) =

〈[
eΩ1(t) D e2Ω2(t)

]
³´

〉
. (3.34)
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At this stage, we emphasise the two origins of the separation undergone by the test particles: (i) their initial
angular separation, as captured by D; (ii) their difference in orbital parameters, as captured by Ω1 ;=Ω2.

The main difficulty in the computation of the ensemble average from Eq. (3.34) comes from the non-
commutativity of the matrix exponential. Similarly to Eq. (3.19), we perform a truncation at second-order
in the bath fluctuations. Following §D of Giral Martínez et al. (2020), one ultimately gets

Cn
³´(t) = ¶³´ D3³ C

+
3³
(t)C2

3³
(t). (3.35)

In that expression, C+
3 (t) (resp. C

2
3 (t)) captures the separation of the two test particles sourced by their differ-

ences in initial orientations (resp. in conserved parameters). They read

C+
3 (t)=exp

{
2
∑

3,3µ

D3³2D3µ

(23³+1)D3³

(
EL3³33µ

)2
∫
dKn(K)J3

[
K1,K

]
J3[K2,K]

2T 2
c (K)

A3
Ç
[√

A3/2(t/Tc(K))
]}
, (3.36a)

C2
3 (t)= exp

{
2 1

2A3³
∑

3

B3

∫
dKn(K)

(
J3

[
K1,K

]
2J3

[
K2,K

])2 2T 2
c (K)

A3
Ç
[√

A3/2 (t/Tc(K))
]}
, (3.36b)

with EL3³33µ the "isotropic" Elsasser coefficients (see §B in Fouvry et al., 2019c). Writing Eq. (3.36) as exponen-
tials guarantees a physically admissible behaviour at late times, where correlations must tend to zero.

These generic expressions become clearer for small angular separations. If the two test particles are initially
separated by a small angle ×0, one has D3=P3(cos(×0)), and at first order in (12cos(×0)), Eq. (3.36) becomes

C+
3 (t) = exp

{
2 1

2A3(12cos(×0))Ψ
+
[
K1,K2, t

]}
; C2

3 (t) = exp

{
2 1

2A3Ψ
2
[
K1,K2, t

]}
. (3.37)

The function Ψ+ (resp. Ψ2) captures the effects from orientation (resp. parameter) separation. They read

Ψ+
[
K1,K2, t

]
=

∑

3

B3 (A322)

∫
dKn(K)J3

[
K1,K

]
J3

[
K2,K

] 2T 2
c (K)

A3
Ç
[√

A3/2(t/Tc(K))
]
, (3.38a)

Ψ2[K1,K2, t] =
∑

3

B3

∫
dKn(K)

(
J3

[
K1,K

]
2 J3

[
K2,K

])2 2T 2
c (K)

A3
Ç
[√

A3/2 (t/Tc(K))
]
. (3.38b)

The prediction fromEq. (3.37) is self-similar in the sense that the only dependence on the considered harmonics
3 is carried by A3, which is factored in the exponent. Equation (3.38) also offers a simple interpretation of the
dynamical mechanisms driving the separation of neighbours, as we now discuss.

A first source of separation originates from any misalignment in the test particles’ orientations, as cap-
tured by Ψ+. This term does not vanish even when the two test particles have the same orbital parameters.
The smaller the initial separation, i.e. the smaller (12cos(×0)), the longer it takes neighbours to separate. In
particular, C+

3 becomes unity when cos(×0)³1, i.e. when the two test particles share the exact same initial
orientation. We note thatΨ+ also involves an extra (A322) because separation are sensitive to tides, not forces.

On top of this first effect, a second source of separation stems from the difference in the test particles’
parameters, as captured byΨ2. This transpires in the coupling factor (J3[K1,K]2J3[K2,K])2 which highlights
that the test particles couple to the bath differently. The closer K1 and K2, the slower the induced separation,
with C2

3 becoming unity whenK1=K2, i.e. when the underlying annuli of the two test particles are identical.
We emphasise once again the generality of Eq. (3.35) that captures jointly three contributions to neighbour

separation: (i) the orbital distribution of background particles, via n(K); (ii) the orbital differences of the two
test particles, viaK1 andK2; (iii) the difference in their initial orientation, viaD. In all these expressions, time
is measured in units of the coherence time Tc(K) (Eq. 3.12), which sets the typical timescale for that process.

We may now test the prediction of Eq. (3.35) against tailored numerical simulations (see §F in Giral
Martínez et al., 2020, for the setup) using the method from §3.4. Our main result is illustrated in the left panel
of Fig. 3.7. Because of the very slow separation of nearby particles, Eq. (3.35) does not provide a good match
to the late-time decorrelation of test particles with initially very similar orientations. In that same figure, we
also illustrate that particles with different orbital parameters separate faster, as expected.

Despite this underwhelming comparison, we note however that on the coherence time, i.e. for tr∆t (to be
defined in Eq. 3.40), the analytical prediction matches the numerical measurements. This is expected because
Eq. (3.35) stems from a second-order Taylor expansion around t=0. Yet, in its present form, Eq. (3.35) is
unable to describe the separation of test particles sharing very similar orientations and orbital parameters,
as this correlation follows a plateau that only decays on very long timescales. Fortunately, this failure of the
analytical prediction can be alleviated by using an appropriate "piecewise" Markovian approach, as we now
explore.
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Figure 3.7: From Giral Martínez et al. (2020). Left: Average angular separation, ïcos(×)ð, between nearby test
particles with the same orbital parameters. The "Analytical" prediction corresponds to the direct application of
Eq. (3.35) while the curve "∆K" illustrates the separation in numerical simulations for test particles with different
orbital parameters. Right: Zoom of the left panel, highlighting the "Piecewise" prediction from Eq. (3.45).

3.2.1 Piecewise Markovian prediction

Regardless of the initial similarity between the test particles, Eq. (3.35) works well on short timescales, that it
when trTc(K). As a result, a reasonable way to fix the late-time behaviour of our prediction is to construct
a sequence of short-time predictions, following for each of them Eq. (3.35). Let us therefore pick a timelapse
∆t (whose precise value is specified later on) and construct a piecewise prediction of ïcos(×)ð in timelapses of
duration ∆t. Doing so, we therefore construct a sequence

cos(×0) ³ ...³ cos(×n) = cos(×(t=n∆t)) (3.39)

of angular separation between the two test particles. In order to construct the prediction for a given timelapse,
say n∆t³(n+1)∆t, we follow Eq. (3.35) using cos(×n) as the initial angular separation between the two test
particles and t=∆t as the duration for which Eq. (3.35) is pushed forward in time.

We emphasise that such a protocol is not equivalent to making a single prediction for the whole time series
using only cos(×0) as the initial separation in Eq. (3.35). Because the current angular separation, cos(×n), is now
used in Eq. (3.35) as an initial condition for the n-th timelapse, the piecewise approach neglects any correlation
that exists in the background noise between various timelapses. Indeed, in Eq. (3.32), we assumed that the
initial conditions of the test particles are independent from the background bath. In the present piecewise
approach, we neglect any such correlations. This is our Markovian assumption, a key ingredient.

In a sense, the piecewise approach relies on ideas similar to explicit integration methods, such as Euler
method. Rather than approximating the solution with a single perturbative expansion around its initial con-
ditions, we construct the solution step by step. The key difference here is that Eq. (3.15) is stochastic, i.e. the
noise driving the separation is time-correlated. By proceeding with successive timelapses, we unavoidably
neglect part of this correlation. If one were to take∆t arbitrarily small, the VRR fluctuations would be treated
as uncorrelated in time. This drastically differs from the large-scale coherent flows imposed by VRR.

The choices for ∆t are therefore limited. On the one hand, to capture most of the noise correlation, one
needs∆tsTc. On the other hand, in order for each timelapse to be accurately predicted, one needs to take∆t
as small as possible. Given these two constraints, a natural choice is to take ∆t of the order of Tc. For a given
pair of particles, we therefore define the separation timestep as

∆t = Max
[
Tc(K1), Tc(K2)

]
. (3.40)

Having decided upon a timelapse ∆t, we can now construct typical sequences of angular separation as in
Eq. (3.39). This requires us to estimate the statistics of the transition cos(×n)³cos(×n+1). Building upon our
Markovian assumption, we write

〈
cos(×n+1)

〉
=

∫
d(cos(×n)) Än(cos(×n))

〈
cos(×n+1)

∣∣ cos(×n)
〉
. (3.41)

In that expression, ïcos(×n+1)| cos(×n)ð follows fromEq. (3.35) evaluated after a time t=∆t for two test particles
exactly separated by the angle cos(×n) at the start of the timelapse. In Eq. (3.41), we also introduced Än as the
PDF of cos(×n). In practice, this PDF is not known, so that without further approximation, the integral from
Eq. (3.41) cannot be explicitly computed.

The simplest way around this difficulty is to rely on a first-order development of ïcos(×n+1)| cos(×n)ð
near cos(×n)c1, i.e. in the limit of small angular separations. This is a calculation that we already started in
Eq. (3.37). As detailed in §G of Giral Martínez et al. (2020), one obtains the linear relation

〈
cos(×n+1)

∣∣ cos(×n)
〉
= À0 + À1 cos(×n). (3.42)



3.2. NEIGHBOUR SEPARATION 37

The constant coefficients, Àk, follow the simple expression
ù
ú
û
À0 = 2e2È

−

È+,

À1 = e2È
−
(
1 + È+

)
,

with

{
È+ = Ψ+

[
K1,K2,∆t

]
,

È2 = Ψ2
[
K1,K2,∆t

]
,

(3.43)

following Eq. (3.38). We are now in a position to compute the average from Eq. (3.41) to obtain
〈
cos(×n+1)

〉
= À0 + À1

〈
cos(×n)

〉
. (3.44)

This is the key relation of the piecewise approach, which offers an explicit relation between successive values
of ïcos(×n)ð. Equation (3.44) is an arithmetico-geometric relation, which can easily be solved. Given an initial
condition ïcos(×0)ð, the sequence of expectations for the subsequent timelapses, t=n∆t, ng0, reads

〈
cos(×n)

〉
= q +

(
À1
)n (〈

cos(×0)
〉
2 q

)
, (3.45)

with q=À0/(12À1). While it depends on the discrete time index n, Eq. (3.45) can still be viewed as a continuous
function of time, provided one makes the replacement n³ t/∆t.

In the right panel of Fig. 3.7, we compare the piecewise prediction from Eq. (3.45) against numerical mea-
surements. While the match is not ideal, the piecewise prediction still manages to describe the slow initial
separation of the neighbour particles, while the straightforward application of the analytical prediction from
Eq. (3.35) failed at it. Because Eq. (3.45) was obtained through a perturbative expansion for small separa-
tions, it can only be confidently used for separations satisfying ïcos(×)ðs0.8. Fortunately, this corresponds
to >37ç, which is more than enough to investigate the dynamical dilution of SgrA*’s clockwise disc, whose
typical angular separation is 16ç (Gillessen et al., 2017).

3.2.2 Application

We conclude this section with a brief application of "neighbour separation" to a galactic nucleus mimicking
SgrA*. We illustrate in particular how this process allows one to probe the underlying kinematic properties of
the unresolved nucleus by requiring consistency with a given level of neighbour dilution.

Following Gillessen et al. (2017), we take the mass of the central BH to beM"=4.3×106M», and its radius
of influence to be 2 pc. For simplicity, we assume that the background old stellar cluster is made of a single-
mass population of individual mass, mæ=1M», with a thermal distribution of eccentricity, P (e|a)=2e and a
power-law distribution for the semi-major axes, fa(a)?a22µ . See §J in Giral Martínez et al. (2020) for details.

In such a scale-free configuration, one can show that the bath’s coherence time, Tc(K) (Eq. 3.12), follows
the simple dependence (see Eq. 33 in Giral Martínez et al., 2020)

Tc(a, e) c 8.8× 1

ΩKep(a)

1√
N(<a)

M"√
ïm2ð

√
12e2, (3.46)

withΩKep(a) the Keplerian frequency fromEq. (1.8),N(<a)?a32µ the average number of starswithin a sphere
of radius a from the centre and

√
ïm2ð the cluster’s mass spectrum. From Eq. (3.46), we recover the expected

trends that the larger the spread in mass and the larger the eccentricity, the shorter the coherence time.
To mimic SgrA*’s clockwise stellar disc (see, e.g., Gillessen et al., 2017), we consider test stars that share the

same orbital parameters, at=50mpc and et=0.1. We crudely assume these stars are Tæ=10Myr old (Habibi
et al., 2017). For simplicity, we do not account for any separation stemming from differences in the test par-
ticles’ orbital parameters, which would further reduce the timescales predicted below. From Gillessen et al.
(2017), we know that the current angular dispersion of the clockwise disc is approximately ï×discðc16ç, i.e.
ïcos(×disc)ðc0.96. This is within the range of applicability of the piecewise prediction (right panel of Fig. 3.7).
For a given model and initial condition, we define the dilution time, Tdil, via the implicit relation

ïcos(×[t=Tdil])ð = ïcos(×disc)ð. (3.47)

Once the average angular separation between the test stars has reached such a large value, wemay consider that
the stellar disc has effectively been dissolved by the VRR fluctuations. For a background model to be accepted,
one must ensure that TdilcTæ.

The left panel of Fig. 3.8 illustrates the variation of the dilution time as one varies the power index of the
background stellar cusp, µæ, as well as the initial angular separation, ïcos(×0)ð. Naturally, the smaller the initial
separation, ïcos(×0)ð, the longer it takes for the initially coherent disc to dissolve. The same figure also shows
that the cuspier the density profile, the faster the dilution. This is a direct consequence of Eq. (3.46): the larger
µæ, the larger N(<a), therefore the smaller the coherence time, Tc(K), hence the faster the dilution. Of course,
the numerical values used here are somewhat ad hoc and would definitely require more careful selections.
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Figure 3.8: From Giral Martínez et al. (2020). Dependence of the diffusion time, Tdil, of a tentative clockwise
stellar disc embedded in a background stellar cluster. Left: As a function of the initial angular separation ×0 and
the power-law index, µæ, of the stellar population without any IMBHs. Right: As a function of the power index
µæ (resp. µ•) of the stellar (resp. IMBH) population.

Yet, Fig. 3.8 shows how the present formalism could be used to place constraints on the parameters of the
unresolved background stellar cluster (here through its index µæ) as well as on the formation channels of stars
in galactic nuclei (here through the size of their initial angular dispersion, ×0).

Let us finally consider the case where the background cluster is composed not only of old stars but also of
IMBHs of individual massm"=100M». We assume that the total enclosedmass within the sphere of influence
remains the same with a total IMBHmass fraction of 20%. In practice, within the old unresolved stellar cluster,
NR has had the time to lead to mass segregation so that one expects for the old stars and the IMBHs not the
share the same power index (Bahcall &Wolf, 1977). This is briefly explored in the right panel of Fig. 3.8 where
we illustrate the dependence of the dilution time as one varies independently the power-law indices of both
populations. In that figure, we recover that cuspier profiles lead to more efficient separations, the effect being
most visible for the IMBHs because of the larger Poisson fluctuations they generate.

3.2.3 Prospects

In this section, we illustrated how to quantitatively describe the two-point statistical properties of the neighbour
separation induced by VRR. We placed ourselves in the limit of an isotropic distribution of background stars,
whose potential fluctuations slowly stir neighbour particles away from one another. A key result was obtained
in Eq. (3.35) which highlighted the two main effects sourcing the separation of nearby particles, namely their
difference in orientations and in conserved orbital parameters. Relying on a development for small angular
separation and a Markovian assumption, this estimator was subsequently improved in Eq. (3.45) to construct
a piecewise prediction for the rate of neighbour separation. Finally, in §3.2.2, for the sake of illustration, we
presented a first application of this formalism to determine the ease with which young stellar discs, such as
the one observed within SgrA*, can spontaneously dissolve under the effects of the stochastic VRR dynamics.
In particular, we emphasised how the initial distribution of angular separation, the profile of the background
unresolved cluster, as well as the possible presence of IMBHs all influence the efficiency of a disc’s dilution.

The present section has only addressed some aspects of what a definite theory of VRR should achieve. Let
us now conclude by listing interesting future developments.
• We relied extensively on isotropy both for the perturbing background fluctuations as well as for the test par-

ticles’ initial conditions. Any effects associated with anisotropic clusterings in orientations was neglected.
As explored in §3.3, non-spherical structures can spontaneously arise in long-term thermodynamical equi-
libria therefore affecting the statistics of the fluctuations and the efficiency of neighbour separation.

• As discussed in Eq. (3.30), we neglected the self-gravity between neighbouring test particles. Accounting
for this additional interaction should increase the coherence of the test particles’ population and therefore
reduce the efficiency of a disc’s dilution. Yet, given the complexity of the present stochastic dynamics,
accounting for this self-gravitating coupling surely sounds like an analytical and technical challenge.

• We focused on an isotropic description of the dilution process. Strikingly, simulations such as in Fig. 3.2
exhibit clear elongations of the tracer distribution. It would be of interest to quantify, e.g., through three-
point correlations, the rate with which these elongations arise. This could be leveraged as a supplementary
observational constraint for future observations of SgrA* (Do et al., 2019).

• As long as one updates accordingly the coupling coefficients, J3, VRR also occurs in globular clusters (see,
e.g., Meiron & Kocsis, 2018), ultimately leading to the mixing (in orientation) of neighbouring stars. In
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the light of GAIA’s exquisite data, this stochastic process could prove important to understand how co-eval
stars mix in the crowded environment of globular clusters.

• Building upon §3.2.2, a natural next step is to quantitatively apply this framework to SgrA*, in particular
regarding two constraints: (i) the innermost S-stars seem to have an isotropic distribution of orientations;
(ii) some of the outer stars seem to belong to a disc-like structure (see, e.g., Gillessen et al., 2017). As a
consequence, the neighbour separation must be, on the one hand, efficient enough to mix the inner stars
and, on the other hand, inefficient enough to allow for the outer disc’s survival. Ultimately such a program
should allow one to place constraints on SgrA*’s possible population of IMBHs.

3.3 Thermodynamical equilibrium

Sufficiently close to the central BH, VRR can occur on a timescale much shorter than the stellar ages them-
selves (see fig. 1 in Kocsis & Tremaine, 2015). As such, one may expect that the observed distribution of stellar
orientations corresponds to some statistical equilibrium. Determining the outcome of this long-term rearrange-
ment has been the focus of recent efforts (Roupas et al., 2017; Takács & Kocsis, 2018; Szölgyén & Kocsis, 2018;
Touma et al., 2019; Tremaine, 2020a,b; Gruzinov et al., 2020; Máthé et al., 2022). These various works offered
new clues on the fascinating properties of these long-range interacting systems such as negative temperature,
negative heat capacity, and phase transition. In particular, Szölgyén & Kocsis (2018) showed that in clusters
with a wide range of stellar populations (i.e. various masses and semi-major axes), VRR can lead to the spon-
taneous formation of a narrow disc through the angular segregation of the most massive stars.

This is the problem that we consider in this section. Our goal is to investigate the impact of a cluster’s
orbital diversity, e.g., its mass distribution or initial orientation distribution, on its long-term distribution of
orientations. Rather than directly integrating the VRR evolution equations to let the cluster relax on its own
(see §3.4), we focus on predicting the cluster’s endstates by directly maximising its entropy. More precisely, we
develop and implement an explicit and efficient optimisation procedure to infer a cluster’s thermodynamical
equilibrium. Such a roadmapwas already started out by Roupas et al. (2017) in the limit of a single-population
system with a quadrupolar interaction. This was later improved by Takács & Kocsis (2018) which, while still
restricting themselves to a single-population considered harmonic expansion beyond the quadrupole. Here,
we expand these works to multi-population clusters and emphasise the critical role played by the diversity of
orbits and masses to allow for non-trivial anisotropic equilibria.

3.3.1 Equilibrium configurations

Rather than focusing on describing the details of "F b/"t, see Eq. (3.6), one may solely focus on characterising
the expected long-term equilibrium configurations reached through VRR. This is given by

F eq(L̂,K) = lim
t³+>

〈
F b(L̂,K, t)

〉
, (3.48)

where ï·ð stands for an ensemble average over independent realisations of the system. Following Eq. (3.4),
we note that the Hamiltonian of VRR is such that (i) the phase space domain for L̂ is of finite volume; (ii)
for K ;=K2, there is no divergence of the VRR interaction energy for L̂= L̂2. As such, the VRR dynamics does
not present the typical peculiarities of the statistical mechanics of self-gravitating systems such as the evap-
oration of stars, the formation of binaries, the gravothermal instability, and the absence of a true statistical
equilibrium (see, e.g., Chavanis, 2006). As a consequence, VRR systems always possess well-defined statistical
equilibria.

On long timescales, the only information retained by the cluster are its invariants. These are:
• The number density of stars with orbital parameters K

N(K) =

∫
dL̂F eq(L̂,K), (3.49)

that satisfies the normalisation
∫
dKN(K)=N , the total number of particles.

• The total energy

Etot =
1
2

∫
dL̂dKF eq(L̂,K) ·(L̂,K), (3.50)

where ·(L̂,K) stands for the energy of a particle of orientation L̂ and orbital parameterK, as given by

·(L̂,K) = 2
∑

³

∫
dK2 H³

[
K,K2

]
F eq
³ (K2)Y³(L̂), (3.51)

where the magnetisations F eq
³ (K) follow from Eq. (3.8).
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• The total angular momentum

Ltot =

∫
dL̂dKL(K) L̂F eq(L̂,K), (3.52)

with L(K) the norm of the angular momentum, given by Eq. (3.2).
In the microcanonical ensemble (i.e. for an isolated cluster), for a given set of invariants {N(K), Etot,Ltot},

the admissible equilibrium configurations are obtained by extremising Boltzmann’s entropy

S = 2kB
∫
dL̂dKF eq(L̂,K) ln

[
F eq(L̂,K)

]
, (3.53)

with kB the Boltzmann constant, under the previous conservation constraints. Such amaximisation generically
yields (see, e.g., Roupas et al., 2017)

F eq(L̂,K) = N(K)
e2´ ·(L̂,K)+L(K)γ·L̂

∫
dL̂2 e2´ ·(L̂

2,K)+L(K)γ·L̂2

, (3.54)

where ´ and γ are the Lagrange multipliers respectively associated with the total energy and total angular
momentum conservation. See §A in Magnan et al. (2021) for a derivation of Eq. (3.54).

For a given galactic nucleus, the total angular momentum vector Ltot provides us with one specific direc-
tion which we always chose to be the +z axis. Unfortunately, this does not imply that the thermodynamical
equilibria of VRR necessarily have an axial symmetry around Ltot, since a spontaneous symmetry breaking
could occur, e.g., through the flaring of the stellar disc (see fig. 6 in Kocsis & Tremaine, 2011). Nonetheless,
for simplicity, we assume here that VRR does not exhibit any such symmetry breaking. We restrict ourselves
to axisymmetric DFs, i.e. systems such that

"K, "3, "m ;= 0, F eq
3m(K) = 0. (3.55)

From there, we can make the simplifications Ltot³Ltot>0, and γ³µ>0. This assumption greatly reduces
the number of spherical harmonics to consider and therefore significantly alleviates the numerical complex-
ity. However, we stress that this assumption is not always physically motivated. It is verified in the single-
population and single-harmonic case (see fig. 1 in Roupas et al., 2017) or for null inverse temperature case in
multi-population systems (see §C3 in Magnan et al., 2021), but it does not hold in some other regimes, as em-
phasised by the finding of awarpedVRR disc (see fig. 6 in Kocsis & Tremaine, 2011). Overall, the axisymmetric
assumption constitutes an important limitation of the present approach, and deserves to be challenged in fu-
ture studies. To comply with this approach, the numerical average of Eq. (3.48) is carried out over realisations
which are all rotated to have their Ltot aligned along +z.

3.3.2 Self-consistency

While Eq. (3.54) is fully generic, it comes with the difficulty that one needs to impose self-consistency to it.
Indeed, F eq(L̂,K) involves the one-particle energy, ·(L̂,K), which via Eq. (3.51) and the magnetisations from
Eq. (3.8) involves F eq(L̂,K) itself. Within the present microcanonical ensemble, imposing the cluster’s total
energy, angular momentum, and orbital distribution ultimately sets up the cluster’s temperature (via ´), rate
of rotation (via µ), and shape (via F eq

30 (K))2.
To effectively solve such a generic problem, we discretise the cluster as a finite set of stellar populations,

indexed by k and described by the orbital parameters Kk. We then write F eq(L̂,K)=
∑
k Fk(L̂) ¶D(K2Kk)

with Fk(L̂) the distribution of orientation of the kth population and Nk=
∫
dL̂Fk(L̂) (see Eq. 3.49) its number

of stars. After this discretisation, a cluster’s configuration is fully characterised by its set of order parameters

θ = (´, µ, {F3,k}), (3.56)

with F3,k=
∫
dL̂Y30(L̂)Fk(L̂) the axisymmetric 3-magnetisation of the kth population, see Eq. (3.8).

For a given initial condition, i.e. a given (Etot, Ltot, {Nk}), the cluster’s equilibrium configurations are ob-
tained for the parameters θ that are joint roots of the consistency functions

CE =
(
Etot 2 Etot

[
F eq(θ)

])
/Etot;

CL =
(
Ltot 2 Ltot

[
F eq(θ)

])
/Ltot;

"3, "k, CF3,k
=

(
F3,k 2 F3,k

[
F eq(θ)

])
/(Nky3), (3.57)

2There are infinitely many harmonics, 3, but in practice we found it acceptable to stop at 3max=10, see §D2 in Magnan et al. (2021).
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with y3=
√
(23+1)/(4Ã) and F eq=F eq(θ) following Eq. (3.54). To place these constraints on equal footing,

the cost functions C=(CE , C3, CF3,k
) are dimensionless and rescaled to be of order unity. In order to find

roots of the highly multi-dimensional function θ 7³C[θ], similarly to Takács & Kocsis (2018), we use Newton–
Raphson’s method (see, e.g., Press et al., 2007). Starting from a configuration θn, we proceed with the iteration

θn+1 = θn 2 J21[θn]C[θn], (3.58)

where (J[θ])ij = "Ci/"¹j is the Jacobian of the cost functions. Importantly, because C (see Eq. 3.57) has a
simple analytical form, its Jacobian is straightforward to compute, as detailed in §B of Magnan et al. (2021).

To finalise our algorithm, it only remains to specify an appropriate choice for the initial condition θ0 of the
iteration process. Given the technical difficulty of setting up an optimisation routine with thousands of degree
of freedom, we limit ourselves to only predicting the clusters’ global thermodynamical equilibria. In practice,
for systems with Ltot ;=0, these systems are expected to be found along the series of equilibria associated with
the branch that has a solution for ´=0 (see Fig. 3.11). As a consequence, our iterative approach is to first find
the equilibrium for ´=0 and Ltot given. This is a much easier problem because there are no self-gravitating
contribution to account for. Once this starting point obtained, wemove along the associated series of equilibria
by iteratively changing the target Etot, while keeping the same Ltot. Although such an iterative approach
allows us to smoothly deal with optimisation problems with a large number of degrees of freedom, it cannot
be used to determine any of the clusters’ other thermodynamical equilibria (unstable or metastable), as it is,
by design, limited to the dominant branch that goes through ´=0. We refer to §C of Magnan et al. (2021) for
details.

3.3.3 A typical equilibrium distribution

We are now set to use our entropy optimisation algorithm to investigate typical equilibrium distribution of
orientations in galactic nuclei. Our fiducial model is the same as in Szölgyén & Kocsis (2018). We assume that
stars are formed through a series of distinct episodes of star formation or infall events. More precisely, for a
given realisation we generate a total of 16 discs, each composed of 512 stars. For each disc, its orientation is
drawn uniformly on the unit sphere, while stars within a disc all lie within the same small polar cap. Finally,
for a given star, its orbital parametersK=(m, a, e) are drawn frompower-law PDFs proportional to (m22, a0, e)
within the domainsmmax/mmin=100, amax/amin=100 and (emin, emax)=(0, 0.3). We recall that realisations are
always rotated to have their Ltot aligned along+z. We illustrate in the left panel of Fig. 3.9 a typical realisation
of such a protocol and refer to §3.1 in Magnan et al. (2021) for further details.

Figure 3.9: From Magnan et al. (2021). Left: Typical initial condition for the stellar orientations. Each of the
Ndisc=16 dense patches of stars are scattered uniformly on the unit sphere and mimic distinct episodes of star
formation or infall events. Stars are colored according to the norm of their angular momentum vector (Eq. 3.2),
with the smaller norm in blue and the largest one in red. Right: Same protocol as for the left panel except that
the orientations of the discs are drawn from a von Mises–Fischer PDF with concentration »=5 (Eq. 3.62).

Once an initial stellar distribution has been drawn, one can compute its two key invariants, Etot and |Ltot|.
In practice, we keep track of these two invariants through the dimensionless quantities

E = 2 Etot

N2Gm2
min/amin

; s =
|Ltot|∑
i L(Ki)

, (3.59)

which we respectively call the cluster’s binding energy and spin. In the left panel of Fig. 3.12, we present the
typical distribution of (E, s) for a large number of clusters drawn from our fiducial procedures. Clusters exhibit
a wide range of binding energy and spin which in turn impacts the diversity of thermodynamical equilibria.

Let us now investigate in detail the particular case of a cluster with invariants (E, s)=(2×1023, 0.2), i.e. a
typical cluster realisation. We then maximise entropy and determine this cluster’s equilibrium configuration,
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F eq(L̂,K). For a given realisation, we define L̂z= L̂·L̂tot and estimate the system’s DF, F eq(m, L̂z), integrated
over all semi-major axes and eccentricities. To highlight non-spherically symmetric structures, we finally define

F̂eq(m, L̂z) =
F eq(m, L̂z)

MaxL̂z

[
F eq(m, L̂z)

] , (3.60)

such that each mass bin has its maximum equal to unity. The resulting equilibrium is illustrated in Fig. 3.10.
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Figure 3.10: From Magnan et al. (2021). Left: Thermodynamical equilibrium, F̂eq(m, L̂z) (Eq. 3.60), as a func-
tion of mass and orientation with (E, s)=(2×10−3, 0.2). Right: Same as the left panel, where each colored line
corresponds to a different mass bin. The orientation’s anisotropy between the different masses is clearly visible.

As is clearly visible, heavy particles tend to have their unit angular momentum vector, L̂, oriented towards
the North pole, which implies that the associated stars tend to orbit near the equatorial plane, a conclusion
already reached in Szölgyén & Kocsis (2018) using a Monte–Carlo approach. Having the heavy particles, e.g.,
the IMBHs orbit close to the same orbital plane can drastically impact the rate of their pairwise mergers in
galactic nuclei. For the heaviest stars, we also note the presence of an additional over-density near the South
pole indicating the presence of a counter-rotating equatorial disc. As expected from the conservation of angular
momentum, this component is naturally less populated than the main prograde disc.

As one considers lighter particles, the anisotropy fades away and the lightest particles do not show
any strong sign of spontaneous orientation alignment. Because we have the full equilibrium distribution,
F eq(L̂,K), at our disposal, we may also study its dependence w.r.t. the semi-major axis and eccentricity. In
that regard, we find a (weaker) dependence of F eq w.r.t. a, so that the disc predicted in Fig. 3.10 is slightly
thinner for medium semi-major axes (Máthé et al., 2022). Finally, we find that, in essence, F eq is independent
of e. This was to be expected since the coupling coefficients, H3[K,K

2] (Eq. 3.5), and the norm of the angular
momentum,L(K) (Eq. 3.2), onlyweakly depend on e, especially for the chosen quasi-circular orbits, 0fef0.3.

3.3.4 Impact of the initial conditions

As highlighted in the left panel of Fig. 3.12, even when drawn from the same protocol, clusters exhibit a signifi-
cant diversity in their binding energies and spins, i.e. a diversity in their invariants. Let us therefore investigate
the dependence of the equilibria w.r.t. these invariants.

In Fig. 3.11, we present series of equilibria (caloric curves) giving the inverse temperature, ´, as a function
of the normalised total energy, 2E, for various total angular momentum (i.e. various s). The temperature
generically increases with the energy, except in a small region of negative specific heat. For any value of the
spin, there also exists a region of negative temperature. Both effects were already pointed out in Roupas et al.
(2017); Takács&Kocsis (2018). We refer to §C1 inMagnan et al. (2021) for further discussion. Wenote however
that these behaviours arise outside of the astrophysical regime of the left panel of Fig. 3.12. In the right panel of
Fig. 3.11, we present the dependence of the angular frequency µ w.r.t. the total angular momentum s for fixed
values of the binding energy E. The angular frequency is always found to increase with the cluster’s spin.

Within the domain of invariants spanned by the left panel of Fig. 3.12, all equilibria are found be qualita-
tively similar, but differ in the strength of their anisotropy. To characterise the level of anisotropy, we define
the angular size, ¹c, of the northern polar cap that contains a fraction fc of the heavy particles’ unit angular
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Figure 3.11: From Magnan et al. (2021). Left: Equilibrium inverse temperature, ´, as a function of the cluster’s
normalised total energy, 2E, with ´−1
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Figure 3.12: From Magnan et al. (2021). Left: Distribution of the spin and binding energy, (s, E) (Eq. 3.59), of
clusters drawn following the fiducial protocol from the left panel of Fig. 3.9. Right: Segregation angle, ¹c, as a
function of cluster’s invariants, (s, E), the total spin and binding energy.

momentum L̂. More precisely, ¹c follows from the implicit constraint
∫

mgmc

dK

∫

L̂zgcos(¹c)

dL̂F eq(L̂,K)

∫

mgmc

dK

∫
dL̂F eq(L̂,K)

= fc, (3.61)

noting that anti-aligned stars are not accounted for. Equivalently, ¹c is also the angular size of the equatorial disc
that contains a fraction fc of the heavy particles. In practice, we used the mass thresholdmc=10mmin with the
fraction fc=50%. We illustrate in the right panel of Fig. 3.12 the dependence of ¹c w.r.t. the cluster’s invariants
(s, E). We observe the crucial role played by these two invariants in driving the spontaneous alignment of
the orbital orientations of the heaviest particles. The more bound the cluster and the larger its total angular
momentum, the thinner the disc of heavy particles in the relaxed equilibrium.

Let us now step out and explore the impact of the distribution of the orbital stellar parameters themselves
on the clusters’ thermal equilibria. Keeping all other parameters the same, we draw (m, a) according to power
law distributions (mµm , aµa) but varying the power law indices (µm, µa) between different realisations. Their
impact on the average segregation rate of the heavy particles, ï¹cð, is illustrated in the left panel of Fig. 3.13. We
find that the slope µm has the strongest effects, with clusters containing fewer heavy stars segregating in a disc
twice thinner than the fiducial cluster. The semi-major axis power law index also impacts the segregation rate:
clusters with larger semi-major axes display a stronger mass segregation. Such trends may possibly be used in
the future to estimate indirectly the stellar and compact objects’ initial mass function in galactic centres.

To conclude this section, we briefly investigate the impact of the dispersion of the stars’ initial orientations
on the thermodynamical equilibria. Rather than drawing the initial orientations of the discs uniformly on the
unit sphere, we draw them along some biased direction to reflect the preferential infall of new star-forming gas
along specific directions, e.g., imposed by past gaseous accretion events. More precisely, we assume that the
orientation of each disc is drawn according to the Von Mises–Fisher PDF Wood (1994)

P (L̂) =
»

4Ã sinh(»)
e»L̂z , (3.62)
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Figure 3.13: FromMagnan et al. (2021). Left: Dependence of the average segregation angle, ï¹cð, with the power
law indices (µa, µm) of the initial distributions in semi-major axes and masses. Right: Dependence of ï¹cð w.r.t.
the concentration parameter » (Eq. 3.62) for three different mass distributions.

with » the PDF’s concentration. The case »=0 (resp. »=5) is illustrated in the left (resp. right) panel of Fig. 3.9.
The larger », the smaller the spread of the PDF on the unit sphere.

In the right panel of Fig. 3.13, we illustrate the dependence of the average segregation angle, ï¹cð, as a
function of ». Narrower initial distributions of orientations lead to stronger segregations of the heavy stars at
equilibrium. This is expected since the more concentrated the distribution of initial orientation, the larger the
values of s and E, which both correlate positively with the segregation strength (Fig. 3.12). To emphasise this
conclusion, the right panel of Fig. 3.13 illustrates the thickness of the asymptotic massive disc as a function of
the initial mass function slope, µm. Similarly to the left panel of Fig. 3.13, at fixed initial anisotropy, the steeper
the slope, the stronger the mass segregation. Overall, investigations as in Fig. 3.13 should prove useful to place
some constraints on the origin of SgrA*’s surrounding stellar cluster, in particular in the light of the "paradox
of youth" (Ghez et al., 2003; Genzel et al., 2010).

3.3.5 Prospects

In this section, we relied on a maximum entropy method to assess the internal stellar structure of galactic
nuclei and their underlying distribution of orbital orientations. Building upon Roupas et al. (2017); Takács &
Kocsis (2018), we expanded their approach tomulti-populations clusters and showedhow to jointly account for
the constraints of energy, angular momentum, stellar mass, and orbital parameter conservation to efficiently
characterise a cluster’s expected thermodynamical equilibrium. In particular, as pointed out in Szölgyén &
Kocsis (2018) using a Monte–Carlo approach, we recovered in Fig. 3.10 the spontaneous alignment of the
heavier stellar components such as IMBHs. The more bound the stellar cluster and the larger its spin, the
thinner the asymptotic disc obtained via VRR. Benefiting from the versatility of the present method, we used
it to explore the dependence of these structures w.r.t. the cluster’s initial conditions such as the distribution
of masses and semi-major axes or the initial spread in orientations (Fig. 3.13). Ultimately, these explorations
should pave the way for systematic explorations of the impact of a given formation model on the long-term
fate of galactic nuclei.

As for future prospects, we may mention:
• We assumed from the start that stellar eccentricities were conserved during VRR, hence neglecting the

contributions from SRR whose signature is clearly visible in the S-cluster distribution, see §2.3.4. As hinted
in Szölgyén et al. (2021), allowing the eccentricities to also vary during the orientations’ relaxation can
impact the system’s equilibrium. Similarly, stars can also change of semi-major axes through NR whose
possible impact on the outcome of VRR deserves to be investigated in detail.

• As highlighted in Fig. 3.10, VRR may lead to highly non-spherical distribution of orientations. Naturally,
such a non-trivial end-state distribution must impact the efficiency with which newly formed stellar discs
can spontaneously dilute, as explored in §3.2.

• We limited ourselves to axisymmetric equilibria. At a significantly larger numerical cost, one could extend
the present approach to non-axisymmetric distributions, i.e. self-consistently account for themagnetisations
F eq
3m with m ;=0. This was already partially tackled in Roupas et al. (2017), yet in the limit of a single-

population systemwith a quadrupolar interaction. Fortunately, in that case, as soon as |Ltot| ;=0, the global
maximum of entropy were always found to be axisymmetric.

• In Eq. (3.4), we averaged the cluster’s Hamiltonian over both the (fast) Keplerian motion and the (slower)
in-plane precessions. Lifting this second average, it would be of interest to determine self-consistent equi-
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libria for Keplerian elliptic wires around a supermassive BH (Gruzinov et al., 2020; Tremaine, 2020b) and
characterise the impact of a cluster’s invariants on the amount of orientation anisotropy.

• The generic VRR Hamiltonian from Eq. (3.4) also applies to globular clusters, as long as they are assumed
to remain on average spherically symmetric. In that context, one could use stellar metallicities or ages as
additional tracers of the system’s relaxation.

• By design, entropy maximisation can only predict the overall end-state of VRR, i.e. its thermodynamical
limit. It cannot estimate of the time required for the equilibrium to be reached. To circumvent this issue,
one could: (i) Use direct time integrations of the system’s dynamics to let the cluster relax. This is touched
upon in §3.4; (ii) Derive an explicit kinetic theory for the cluster, assuming a sufficiently symmetric orbital
distribution. This is explored in §3.5 for a single-population axisymmetric cluster.

• Finally, following recent surveys (Gillessen et al., 2017; Habibi et al., 2017), planned upgrade on the
VLTI (Eisenhauer, 2019; Gravity Collaboration et al., 2021), as well as the future thirty-meter class tele-
scopes such as ELT (Pott et al., 2018; Davies et al., 2018) and TMT (Do et al., 2019), the astrophysical
community will soon have at its disposal a wealth of orbitally-resolved stars around SgrA*. Character-
ising their orbital distribution will place stringent constraints on the properties of the (likely present)
un-observed IMBHs and the impact of their distribution of orientations on their in-situ merger rates.

3.4 Simulations

The numerical study of VRR is challenging because its Hamiltonian (Eq. 3.4) requires explicit orbit-averages
that smear out the stars along their in-plane motions. This greatly complicates the computation of the system’s
pairwise interactions as it now involve pairs of long-range coupled annuli rather than pairs of stars. In this
section, we walk in the footsteps of §2.3 and set out to illustrate how a multipole expansion (Hénon, 1964,
1973; van Albada & van Gorkom, 1977; Villumsen, 1982; Meiron et al., 2014; Dehnen, 2014) tailored to the
VRR Hamiltonian offers an efficient numerical scheme that can integrate the long-term evolution of annuli
with a complexity scaling like O(NK32max) with N the total number of stars, K a number of sampling nodes
independent of N , and 3max the maximum harmonics considered in the multipole expansion.

3.4.1 Equations of motion

Following our double orbit-average the canonical variables for a given annulus are (Eq. 1.5)
(
Ω, Lz

)
=

(
×, L[K] cos(Ó)

)
, (3.63)

with L[K] the norm of the angular momentum vector (Eq. 3.2) and (Ó, ×) the usual spherical coordinates. We
also dropped the index i to shorten the notation. Importantly, the VRR dynamics is submitted to the constraint

∣∣L̂
∣∣ = 1. (3.64)

Hamilton’s equation naturally read Ω̇="HVRR/"Lz and L̇z=2"HVRR/"ΩwithHVRR given by Eq. (3.4). The
conservation of L[K] ultimately leads to the evolution equation for L̂

dL̂

dt
=

1

L[K]

"HVRR

"L̂
×L̂ (3.65)

Equation (3.65) is the VRR equivalent of Milankovitch’s Eq. (2.24). We emphasise that HVRR benefits from a
gauge invariance associated with the constraints from Eq. (3.64). As a consequence, similarly to Eq. (2.22), we
rewrite Eq. (3.65) as

dL̂

dt
= Ω(L̂)× L̂, (3.66)

with the conservative choice Ω= L̂×(dL̂/dt).
Starting from Eq. (3.4), one easily gets an explicit expression for dL̂i/dt, namely

dL̂i
dt

= 2
1

L[Ki]

N∑

j=1

+>∑

3g2
even

23+1

4Ã
H3

[
Ki,Kj

]
P 2
3

(
L̂i ·L̂j

)
L̂j×L̂i

= 2
1

L[Ki]

N∑

j=1

+>∑

3g2
even

3∑

m=23

H3

[
Ki,Kj

]
Y3m(L̂j)X3m(L̂i), (3.67)
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withH3[K,K
2] introduced in Eq. (3.5) and the real vector spherical harmonicsX3m(L̂)=("Y3m(L̂)/"L̂)×L̂.

Of course, the similarities of the present setup with the case considered in §2.3 are numerous. We point
out two important simplifications in the VRR case. First, one could be concerned that Eq. (3.67) includes the
non-physical self-interaction contribution from the case j= i. Fortunately, this is not a problem, because this
particular term does not contribute to the dynamics since L̂i×L̂i=0. As a consequence, contrary to Eq. (2.34),
one does not need to filter out these self-interaction components. This simplifies the numerical implementation.

Second, because the stellar parametersK=(m, a, e) are conserved by the VRR dynamics, the nodes’ masses
(see Eq. 2.25) are kept exactly fixedduring the evolution. As a consequence, subtle contributions as in Eq. (2.30)
are absent from the VRR problem. Phrased differently, the discretisation of the VRR Hamiltonian and the
computation of the rates of change commute with one another.

3.4.2 Rates of change

In order to numerically compute Eq. (3.67), we follow the same approach as in Eq. (2.26) by discretising the
radial integral from Eq. (3.5) withK nodes uniformly sampled in eccentric anomaly. One gets

dL̂i
dt

= 2
4ÃG

Li

N∑

j=1

K∑

k,l=1

∑

3,m

µ3 Y3m(L̂j)X3m(L̂i)µik µjl
Min[rik, rjl]

3

Max[rik, rjl]3+1
, (3.68)

with the shortened notations Li=L(Ki), µ3= |P3(0)|
2/(23+ 1), and the effective mass µik=mirik/ai (see

Eq. 2.27). This can be cast as

dL̂i
dt

= 2
4ÃG

Li

K∑

k=1

µik ωik with ωik =

N,K∑

j,l

∑

3,m

µ3 Y3m(L̂j)X3m(L̂i)µjl
Min[rik, rjl]

3

Max[rik, rjl]3+1
. (3.69)

Notations can be further condensed by writing

ωik =
(
Pik +Qik

)
·Xik, (3.70)

where the scalar product stands for the summation over all harmonic indices. We also introduced

Xik =

{
µ3X3m(L̂i)

}

(3,m)

, (3.71)

as well as the prefix sums

Pik=
{
P 3mik

}
(3,m)

=

{ ∑

j,l;rjl<rik

µjlY3m(L̂j)
r3jl

r3+1
ik

}

(3,m)

; Qik=
{
Q3mik

}
(3,m)

=

{ ∑

j,l;rjl>rik

µjlY3m(L̂j)
r3ik
r3+1
jl

}

(3,m)

, (3.72)

following Eq. (2.38). We point out that we did not include the contribution {j, l}={i, k}. Such a choice is
allowed because nodes of the same wire do not source any evolution on one another (see Eq. 3.67). Removing
this contribution allows for the definition of Pn andQn to remain somewhat symmetric.

The last step of the algorithm is, in essence, the same as in §2.3.2.2. More precisely, one first sorts the nodes,
³={i, k}, by increasing radii. The P 3mn and Q3mn are then determined through the recurrences

P 3m1 = 0; P 3m³+1 =

(
r³
r³+1

)3+1(
P 3m³ +

µ³
r³

Y 3m³

)
for 1 f ³ < NK, (3.73a)

Q3mNK = 0; Q3m³21 =

(
r³21

r³

)3 (
Q3m³ +

µ³
r³

Y 3m³

)
for 1 < ³ f NK. (3.73b)

We conclude this section bydiscussing a fewproperties of the presentmethod. First, the computations ofPn

andQn can each be performed in a single pass, ensuring an overall complexity of the algorithm inO(NK32max).
These two recurrences are also independent fromone another so that they can natively be performed in parallel.
This ensures a straightforward parallelisation over two cores. The relations from Eq. (3.73) are also expected to
be numerically well-behaving because their respective geometric prefactors, (r³/r³+1)

3+1 and (r³21/r³)
3, are

always smaller than unity. A final appeal of this approach is its memory imprint that scales linearly with N .
In particular, nodes associated with the same annulus share the exact same orbital orientation: the spherical
harmonics and their gradients only need to be computed once for each annulus.

In Fig. 3.14, we illustrate the dependence of the rates of change dL̂/dt as a function of K and 3max for the
same cluster as in Fig. 3.15. For a fixed value of 3max, we find that dL̂/dt converges in K22.5. This matches
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Figure 3.14: From Fouvry (2022). Relative error in dL̂/dt for one realisation of the system considered in Fig. 3.15
with N=2048. Colored regions are the 16% and 84% levels among the stars. Left: Relative error as function of
K, the number of nodes, for fixed values of 3max w.r.t. calculations with K=20 480. Right: Relative error as a
function of 3max, the maximum harmonic index, for a fixed valueK=20 480 w.r.t. calculations with 3max=400.

the rate obtained for Etot in Fig. 2.5. This comes as no surprise since Eq. (3.68) does not suffer from any
discontinuities. For a fixed value of K, we find that dL̂/dt converges roughly like 321.3

max . This is compatible
with the asymptotic scalings derived in §B of Kocsis & Tremaine (2015). Indeed, for radially overlapping non-
coplanar orbits, which mostly compose the present cluster, a given harmonic 3 gives a contribution of order
322 (see Eq. (B75) in Kocsis & Tremaine, 2015). Once summing over all harmonics 0f3f3max, this ultimately
leads to an error scaling like 321

max in qualitative agreement with Fig. 3.14.

3.4.3 Time integration

In Eq. (3.66), we have show that the time evolution of the unit angular momentum vector takes the simple form

dL̂i
dt

= Ωi×L̂i, (3.74)

with Ωi= L̂i×(dL̂i/dt). This precession equation ensures that |L̂i|=1 throughout the evolution. Fortunately,
this corresponds to the exact same geometrical constraints than the ones of the SRR problem (see §2.3.1.2). As
a consequence, it is straightforward to apply the integration schemes from §2.3.3 to the present VRR case. We
refer to §2.3.3.3 for the presentation of these integrators and the associated convergence tests.

3.4.4 Application

To conclude this section, we use direct time integrations to recover the spontaneous formation of stellar
discs in galactic nuclei, as already investigated in §3.3 using there a maximum entropy method. We con-
sider the exact same cluster as in Fig. 3.3.3. More precisely, we set N=2048, 3max=10, K=20. Defining
Ädyn=[a3min/(Gmmin)]

1/2, we set the integration timestep to Ä=5×1024Ädyn and integrate up to T =103Ädyn
using the MK2 scheme (see Eq. 2.45) for a total of 100 independent realisations. With such choices, the final
relative errors in Ltot (resp. Etot) are typically of the order of 10210 (resp. 1027).

In Fig. 3.15, we illustrate the ensemble-averaged outcome of these time integrations. It is reassuring to note

F
ñ
eq(m,L

ñ
z)

0 0.2 0.4 0.6 0.8 1.0

1 10 100

-1.0

-0.5

0.0

0.5

1.0

m /mmin

Lñ z

m /mmin

1 10 100

-1.0 -0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

L
ñ
z

Fñ e
q
(m
,L
ñ z

)

Figure 3.15: Same as Fig. 3.10 but here the relaxed DF, F̂eq(m, L̂z), is obtained by directly integrating the VRR
equations of motion via a multipole method. The similarities with Fig. 3.10 is striking and one recovers the
spontaneous alignment of the massive stars within the same orbital plane.
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that we recover in Fig. 3.15 the exact same results as in Fig. 3.10, albeit more noisy because of the Poisson shot
noise from every individualN -body realisations. We refer to §3.3.3 for a physical discussion of these equilibria.

3.4.5 Discussion

The present multipole approach differs from an alternative integration scheme presented in Kocsis & Tremaine
(2015). In a nutshell, their method relies on rewriting the VRR Hamiltonian as a large collection of two-body
problems. As such, stellar orientations are integrated forward in time by resolving, in the appropriate order,
series of two-body precessions. A key gain from this splitting approach is that each two-body problem can be
integrated exactly for an arbitrary duration. This ensures the exact conservation of each angular momentum
vector aswell as of the cluster’s total angularmomentumvector. This alsomakes the overall scheme symplectic.
Rates of change are computed via the first line of Eq. (3.67), i.e. by evaluating Legendre polynomials and not
spherical harmonics. However, to do so, Kocsis & Tremaine (2015) has to pre-compute initially all the coupling
coefficients, {J3[Ki,Kj ]}(i,j), that must be stored for the entire duration of the simulation. This is one of the
main drawback of that approach whose computational complexity and memory imprint scale likeO(N23max).
These two problems are fully alleviated by the present multipole approach. Fortunately, Kocsis & Tremaine
(2015) could still make some of these difficulties less cumbersome because their algorithm can be parallelised
somewhat easily and can also benefit from multi-timesteps schemes.

3.4.6 Prospects

In this section, we detailed how one may use a multipole approach to perform efficient double orbit-averaged
simulations of stellar orientations in galactic nuclei. The present approach has three main advantages: (i) By
relying on explicit orbit-averages, the cluster’s fast dynamical timescales are naturally integrated upon. This
drastically reduces the range of dynamical times sustained by the system; (ii) The multipole method has a
computational complexity and memory imprint that both scale linearly with the total number of stars; (iii)
The integration schemes exactly conserve the system’s intrinsic geometric constraints, while the symplectic
integrator MD2 (see Eq. 2.48) also conserves the total angular momentum vector to round-off errors.

Yet, the algorithm described here deserves further investigations in various directions:
• The present code naturally parallelises over two cores. Further parallelisations are more delicate as they

require to parallelise the recurrences from Eq. (3.73). One could rephrase those as traditional prefix sums
and use standard parallel-scan algorithms (Ladner & Fischer, 1980). Similarly, to accommodate even wider
ranges of dynamical timescales, it would be worthwhile to adapt the algorithm tomulti-timesteps schemes.

• Throughout this manuscript, we focused on galactic nuclei. Yet, VRR also occurs in spherically symmetric
globular clusters (Meiron & Kocsis, 2018). The associated Hamiltonian is formally identical to Eq. (3.3)
and only asks for an appropriate update of the effective mass µ(r) (see Eq. 2.27).

3.5 Kinetic theory in axisymmetric clusters

Long-range interacting systems, such as galactic nuclei, generically undergo an evolution in two stages. First,
a fast (collisionless) violent relaxation (Lynden-Bell, 1967) during which the system reaches a quasistationary
state (i.e. a steady state of the collisionless dynamics) dynamically frozen for the mean-field dynamics. Then,
as a result of the finite number of particles, the system undergoes a slow (collisional) relaxation that drives
it towards its thermodynamical equilibrium. This second stage is generically described by the BL equation
(see §A) recently generalised to inhomogeneous systems (Heyvaerts, 2010; Chavanis, 2012). By design, these
formalisms account simultaneously for inhomogeneity (i.e. non trivial orbital structures), collective effects (i.e.
spontaneous amplification of perturbations) and non-local resonant couplings.

In this section, we present an explicit application of the BL framework to VRR. First, in §3.5.1, in order to
simplify the problem at hand, we present our model of an axisymmetric single-population system. In §3.5.2,
we derive the appropriate BL equation for that system. Finally, in §3.5.3, we apply this formalism to recover
the diffusion coefficients as well as the scaling of the relaxation rate w.r.t. the number of particles.

3.5.1 Axisymmetric limit

We consider a population ofN annuli sharing all the same orbital parameterK. Starting from the generic VRR
Hamiltonian from Eq. (3.4), the system’s specific Hamiltonian takes the short form

H =

N∑

i<j

µU(L̂i ·L̂j) +

N∑

i=1

Uext(L̂i), (3.75)
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where all stars share the same individual mass µ=Mæ/N , with Mæ the total stellar mass. Equation (3.75)
involves the pairwise interaction potential U(L̂, L̂2)=U(L̂·L̂2), which we develop in Legendre polynomials as

U(L̂·L̂2) = 2
∑

3

³3 P3(L̂·L̂
2). (3.76)

Here, the coefficients ³3 follow naturally from the coupling coefficients, H3[K,K], of Eq. (3.4) and depend on
the particular choice of the orbit. Finally, in Eq. (3.75), we introduced Uext(L̂) as an imposed external potential,
e.g., to represent the Lense–Thirring precession (see, e.g., Merritt, 2013) imposed by the central BH.

The phase space for L̂ is two-dimensional. A natural choice of (specific) canonical coordinates is then
w=(×, cos(Ó)=u) with (Ó, ×) the usual spherical coordinates. The equations of motion of particle i read

d×i
dt

=
"H

"ui
;

dui
dt

= 2
"H

"×i
. (3.77)

Given its generality, the Hamiltonian from Eq. (3.75) encompasses a wide class of long-range interacting
systems: (i)U=2³1P1 describes classical Heisenberg spins (see, e.g., Gupta &Mukamel, 2011; Barré &Gupta,
2014); (ii) U=2³2P2 is the Maier–Saupe model for liquid crystals (Maier & Saupe, 1958; Roupas et al., 2017);
(iii) U=2

∑
3 ³23P23 corresponds to VRR in single-population clusters (e.g., Takács & Kocsis, 2018).

In the coming section, we place ourselveswithin the axisymmetric limit and assume that the system’smean-
field Hamiltonian is independent of ×. In that case, we show how the inhomogeneous BL equation straightfor-
wardly applies to this regime and derive the associated kinetic equation.

3.5.2 Kinetic equation

We assume that the present single-population cluster is characterised by a mean DF, F (L̂), normalised to∫
dL̂F =Mæ. Following Eq. (3.75), the mean specific Hamiltonian of a particle in that system generically reads

H0(L̂) =

∫
dL̂2 U(L̂·L̂2)F (L̂2) + Uext(L̂)

=
∑

3

h3P3(u) + Uext(u), (3.78)

where we assumed that the system’s DF and external potential were axisymmetric, i.e. F (L̂)=F (u) and
Uext(L̂)=Uext(u), and introduced the coefficients h3=22Ã³3

∫
duP3(u)F (u). Because H0(L̂)=H0(u), the Pois-

son bracket satisfies [F (u), H(u)]=0, i.e. any axisymmetric DF is a steady state for the mean field dynamics.
ThemeanHamiltonian,H0=H0(u) is also integrable, since the action J=u is conserved along the unperturbed
orbits, while the associated angle ¹=× is 2Ã-periodic and evolving with the frequency Ω(u)=dH0/du.

Investigating the system’s long-term evolution amounts then to describing the slow distortions of the sys-
tem’smeanDF, F (u), assumed to remain axisymmetric and linearly stable throughout its evolution. Benefiting
from the generic framework of long-range kinetic theory (see §A), deriving the kinetic equation for F (u) is im-
mediate. One only needs to proceed by analogies, as we now detail.

The interaction potential from Eq. (3.76) can generically be written under the separable form

U(L̂, L̂2) = 2
∑

p

È(p)(L̂)È(p)7(L̂2), (3.79)

where the natural potential basis elements are indexed by p=(3,m). They read

È(p)(L̂) = C3 Y
m
3 (L̂), (3.80)

where Y m3 (L̂) are the complex spherical harmonics, normalised so that
∫
dL̂Y m3 Y m

27
32 =¶332¶mm2 and we intro-

duced (C3)
2=4Ã³3/(23+1). Following Eq. (A.2), it is straightforward to check that the basis elements, È(p),

form a biorthogonal basis. As defined in Eq. (A.5), their Fourier transform w.r.t. the angle ¹=× reads

È
(p)
k (u) =

∫
d×

2Ã
e2ik× C3 Y

m
3 = ¶mk c

m
3 (u), (3.81)

with cm3 (u)?Pm3 (u) spelled out explicitly in Fouvry et al. (2019b).
We can now inject Eq. (3.81) into the generic expression of the system’s response matrix (Eq. A.6) to obtain

Mpp2(É) = 2Ã ¶m
2

m

∫
du

m"F/"u

É 2mΩ(u)
cm7
3 (u) cm

2

32 (u). (3.82)
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We refer to §A for a discussion of M(É). Following Eq. (A.4), the dressed susceptibility coefficients read

Èd
kk2(u, u

2, É) = 2¶k
2

k

∑

3,32g|k|

ck3 (u)
[
Ik 2Mk(É)

]21

332
ck732 (u), (3.83)

where we introduced the matrices
[
Ik
]
332

= ¶3
2

3 ;
[
Mk(É)

]
332

= M[3,k],[32,k](É). (3.84)

Having characterised the system’s linear response, we can now tailor the BL framework (Eq. A.1) to our
case. Indeed, assuming that the system is linearly stable and that its frequency profile is non-degenerate (i.e.
"Ω/"u=0 only in isolated points), the system’s long-term evolution is given by

"F (u)

"t
= 2Ã2µ

"

"u

[∫
du2

∣∣Èd
tot(u, u

2,Ω(u))
∣∣2 ¶D

[
Ω(u)2 Ω(u2)

]( "

"u
2

"

"u2

)
F (u)F (u2)

]
, (3.85)

with the total dressed susceptibility coefficients

∣∣Èd
tot(u, u

2, É)
∣∣2 = 2

∑

kg1

k
∣∣Èd
kk(u, u

2, kÉ)
∣∣2. (3.86)

Collective effects can be switched off by imposing M(É)=0, i.e. by replacing the dressed susceptibility coef-
ficients, Èd

kk2(u, u
2, É), with their bare analogs, Èkk2(u, u2) (Eq. A.7). This gives the inhomogeneous Landau

equation (Chavanis, 2013b).
Finally, we recall that Eq. (3.85) can be recast as a Fokker-Planck equation via

"F

"t
= 2

"

"u

[
D1(u)F (u)

]
+

1

2

"2

"u2
[
D2(u)F (u)

]
, (3.87)

with the first- and second-order diffusion coefficients

D1(u) =
1

2

"D2

"u
+ 2Ã2µ

∫
du2

∣∣Èd
tot

∣∣2 ¶D
[
Ω(u)2 Ω(u2)

] "F
"u2

, (3.88a)

D2(u) = (2Ã)2 µ

∫
du2

∣∣Èd
tot

∣∣2 ¶D
[
Ω(u)2 Ω(u2)

]
F (u2). (3.88b)

In practice, for a given value of u, one carries out the integrals
∫
du2 in Eq. (3.88b) by finding the resonant actions

uæ satisfying Ω(uæ)=Ω(u), which allows for the replacement ¶D(Ω(u)2Ω(u2))=
∑
uæ

¶D(u
22uæ)/|"Ω/"u

2|u2=uæ
.

Because of its prefactor µ=Mæ/N , the BL equation describes the system’s long-term self-consistent evolution
at first order in 1/N . Of course, the similarities between Eq. (3.88b) and the SRR diffusion coefficients derived
in Eq. (2.7) are obvious: both are archetypes of long-range resonant dynamics. In the present axisymmetric
case, we emphasise in Eq. (3.85) that (i) the orbital space is one-dimensional, as visible in the one-dimensional
integral

∫
du2; (ii) symmetry limits resonances to k=k2, as imposed by the Kronecker symbol in Eq. (3.83).

As a consequence, if ever the system’s mean frequency profile, u 7³Ω(u), is monotonic, the resonance con-
dition ¶D[Ω(u)2Ω(u2)] only allows for local resonances, i.e. u2=u. This immediately leads to a zero flux and
"F/"t=0 in Eq. (3.85). In that case, the system cannot relax under 1/N effects and undergoes a kinetic block-
ing (Chavanis & Lemou, 2007; Chavanis, 2013a; Barré & Gupta, 2014; Lourenço & Rocha Filho, 2015). As such,
the system can only relax under weaker finite-N effects associated with higher-order correlations. We refer
to Fouvry et al. (2019a, 2020) for an explicit derivation of a 1/N2 kinetic equation for 1D homogeneous sys-
tems with an arbitrary potential of interaction in the absence of collective effects. Still, even if the total flux
vanishes, the diffusion coefficients D1(u) and D2(u) remain non-zero, and do not suffer from this "conspir-
acy". Conversely, if the frequency profile is non-monotonic, non-local resonances, u2 ;=u, are allowed, the flux
is non-zero, and the system can relax at order 1/N . We illustrate these various effects in the coming section.

3.5.3 Application

We refer to Fouvry et al. (2019b) for details on the evaluation of Eq. (3.85) and the associated numerical simula-
tions. We also emphasise that the test scenarios investigated below do not correspond directly to Hamiltonians
that are permitted by the astrophysical VRR problem, but are rather generically appropriate for the long-term
dynamics of long-range interacting particles on a sphere in the axisymmetric limit.

Following Gupta & Mukamel (2011), we first consider a system driven by interactions of the form

U(x) = 2³1P1(x); Uext(u) = Dextu
2, (3.89)
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with ³1 and Dext given in Fouvry et al. (2019b). Following Eq. (3.78), we find that Ω(u)=dH0/du is a first
degree polynomial in u, i.e. the frequency profile is monotonic. As for the DF, we consider the waterbag

F (u) = C Θ
[
sin(a)2 |u|

]
, (3.90)

with ¹[x] the Heaviside function and C a normalisation constant. In practice, we carefully pick sin(a) so that
the system is linearly stable (Gupta & Mukamel, 2011). The gradient of the DF from Eq. (3.90) involves Dirac
deltas which makes the computation of the response matrix immediate as one can get rid of the integral from
Eq. (3.82) (see §B in Fouvry et al., 2019b). Yet, because of these infinite gradients, the system also supports
neutral modes, i.e. modes with a zero growth rate (Chavanis et al., 2005). These lead to localised divergences
in the system’s dressed diffusion coefficients. In the left panel of Fig. 3.16, we illustrate the prediction for such
diverging coefficients aswell asmeasurements fromdirectN -body simulations (see §C of Fouvry et al., 2019b).
Overall, we recover a good agreement between the kinetic theory and the numerical simulations.
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Figure 3.16: FromFouvry et al. (2019b). Second-order diffusion coefficient,N×D2(u), as predicted byEq. (3.88b)
in the absence (Landau) or presence (BL) of collective effects and compared with N -body simulations (that
naturally include collective effects). Left: For the waterbag DF from Eq. (3.90). As a result of the presence of
neutral modes (see §B in Fouvry et al., 2019b), the BL diffusion coefficients locally diverge, as indicated by the
vertical dashed lines. Right: Same as the left panel but for the smooth DF from Eq. (3.91).

Keeping the same interactions as in Eq. (3.89), one can avoid neutral modes by considering the smooth DF

F (u) = C e2(u/Ã)4 , (3.91)

We confirm in §D of Fouvry et al. (2019b) that such a DF is linearly stable. In the right panel of Fig. 3.16, we
illustrate the diffusion coefficients for that system and recover a good agreement.

Glancing back at Eq. (3.85), we argued that a system with a monotonic frequency profile undergoes a
kinetic blocking and cannot relax under 1/N effects. We illustrate this effect in Fig. 3.17 for the waterbag DF
fromEq. (3.90). More precisely, inspired by Lourenço&Rocha Filho (2015), we estimate the dependence of the
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Figure 3.17: From Fouvry et al. (2019b). Dependence of the relaxation rate with the number of particles for
the waterbag DF from Eq. (3.90) that has a monotonic frequency profile yielding a kinetic blocking. Left: Time
dependence of m4(N, t) for simulations with N ∈{6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32}×102 (from light to dark
colors) averaged over 100 realisations (dots) and the associated fits (curves). The horizontal lines represent the
values m4 used to measure the crossing times. Right: Dependence of the crossing time tN with the number
of particles for different m4 (light to dark colors). Errors bars are estimated by bootstrap resamplings over the
available realisations. The lines correspond to power-law fits.

relaxation rate w.r.t.N using the quantitym4(N, t)={(u2 {u})4}with {x} the average over all the particles of
a given realisation. For a given value ofN , the time series ofm4(N, t) is averaged over the available realisations,
as illustrated in the left panel of Fig. 3.17. Finally, for a given threshold value m4, we determine the crossing
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time tN such that m4(N, tN )=m4. Should the BL equation (3.85) have a non-vanishing flux, one expects the
scaling tN ?N . The dependence of N 7³ tN for the waterbag DF is illustrated in the right panel of Fig. 3.17.
In the range 6×102fNf32×102, we measure the scaling tN ?N1.92±0.09, which is expected to even further
converge to tN ?N2 for larger values ofN (Lourenço & Rocha Filho, 2015). The present system indeed suffers
from a kinetic blocking: non-local resonant couplings are impossible within a monotonic frequency profile.

In order to recover the 1/N scaling predicted by the BL equation, wemust consider amodel in which higher
harmonics (3=3 or higher) contribute to the pairwise interaction. We consider therefore

U(x) = 2³1P1(x)2 ³3P3(x); Uext(u) = Dextu
2, (3.92)

with ³1, ³3 and Dext spelled out in Fouvry et al. (2019b). In that case, Eq. (3.78) gives that Ω(u) is a non-
monotonic second degree polynomial in u. As for the axisymmetric DF, we take

F (u) = C e2(u2u0)
2/(2Ã2), (3.93)

with Ã given in Fouvry et al. (2019b). In the left panel of Fig. 3.18, we illustrate this DF alongwith its associated
density profile. Importantly, we point out that in the vicinity of the DF’s maximum, the frequency profile
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Figure 3.18: From Fouvry et al. (2019b). Left: Illustration of the DF from Eq. (3.93) and the associated non-
monotonic frequency profile, Ω(u). In the region of the DF’s maximum, the resonance condition Ω(u2)=Ω(u)
has two solutions, allowing for non-local resonant couplings. Right: Same as in Fig. 3.17, but for the DF from
Eq. (3.93) that has a non-monotonic frequency profile, preventing any kinetic blocking.

is non-monotonic allowing for non-local resonances that ultimately drive a non-zero flux in Eq. (3.85). In
the right panel of Fig. 3.18, we estimate the scaling of the relaxation rate of the DF from Eq. (3.93) w.r.t. the
number of particles. In the range 6×102fNf32×102, we find tN ?N1.1±0.06 in sensible agreement with the
prediction from the BL equation. Because this system supports non-local orbital resonances, it relaxes much
more efficiently than kinetically-blocked systems.

3.5.4 Prospects

In this section, we focused our interest on describing the long-termprocess of VRR in the limit of an axisymmet-
ric distribution of orbits. Once one has recognised that this system’s evolution equations are formally identical
to the ones governing a generic long-range interacting system, the derivation of the associated kinetic equa-
tion becomes straightforward. In the present case, the reduced number of dimensions of phase space imposes
additional geometric constraints to the system’s dynamics, in particular allowing only for resonances k=k2.
This greatly simplifies the underlying kinetic equation. We illustrated how, in the presence of a monotonic
frequency profile, a kinetic blocking occurs and the system cannot relax under 1/N effects. This blocking gets
lifted with a non-monotonic frequency profile, for which non-local resonant couplings are possible.

As for future developments, we mention:
• In the presence of a monotonic frequency profile, the system is kinetically blocked and its dynamics is only

sourced by 1/N2 effects. Building upon Fouvry et al. (2020), it would surely be enlightening to derive
an appropriate 1/N2 kinetic equation describing three-body correlations in 1D inhomogeneous systems.
Surely, this is no easy endeavour if one also aims at accounting for collective effects.

• The present resonant theory assumes that there does not exist any global resonance condition satisfied by all
the orbits. While such an assumption is generically valid in galactic nuclei, it it incorrect within a constant
density core where all mean-field orbits are (i) exactly closed; (ii) undergo no precession; and (iii) share
the exact same orbital frequency. Such fundamentally degenerate systems deserve further investigations.
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4 Conclusion

Galactic nuclei are fascinating self-gravitating systems because of the wealth of dynamical processes they
encompass. It is indeed rare to encounter a system where dynamical times range over more than 16 orders of
magnitude from a couple of minutes (close to the event horizon) up to a Hubble time (e.g., for the relaxation
of semi-major axes). Describing stellar dynamics in galactic nuclei requires therefore to setup appropriate
approximations to describe the processes of interest. This was the focus of this manuscript.

In §2, we focused on SRR, i.e. the relaxation of stellar eccentricities. We presented a first-principles deriva-
tion of the appropriate kinetic theory (§2.1) emphasising its fundamental connexion with the BL equation. We
subsequently applied this framework to SgrA* (§2.2) using the observed thermal distribution of the S-stars’
eccentricities to constrain SgrA*’s background stellar cluster. Finally, we devised an efficient multipole integra-
tion scheme (§2.3) to simulate the dynamics of Keplerian wires around a supermassive BH, while accounting
for this system’s key geometric constraints.

In §3, we turned our interest to VRR, i.e. the relaxation of stellar orbital orientations. We first developed
a stochastic framework to describe the statistics of the potential fluctuations driving the random walks of the
stellar orientations (§3.1). We expanded this formalism to the process of "neighbour separation" (§3.2) high-
lighting its importance to constrain the survivability of SgrA*’s clockwise stellar disc. We showed how entropy
methods can predict the non-trivial thermodynamical equilibria of VRR (§3.3). We also devised an efficient
structure-preserving multipole integration scheme to simulate the dynamics of Keplerian annuli around a su-
permassive BH (§3.4). Finally, leveraging once again the versatility of the BL equation, we developed an explicit
kinetic theory for VRR in axisymmetric clusters emphasising these systems’ possible kinetic blockings (§3.5).

We conclude this manuscript by mentioning three main venues for future works that could pave the way
for important developments in our understanding of stellar dynamics in galactic nuclei.

Kinetic theory
• Linear response and collective effects. In §2.1, we characterised SRR in the limit of a thermal background

eccentricity distribution. When this limit is not satisfied, galactic nuclei amplify fluctuations via collective
effects and source a resonant dynamical friction. What is the importance of linear response?

• Non-axisymmetry. In §3.1 and §3.2, we characterised the statistics of VRR in the limit of a spherically sym-
metric background distribution, while in §3.3, we restricted the entropymethod to axisymmetric equilibria.
What is the precise impact of non-axisymmetries on VRR?

• Simultaneous relaxations. Following the estimates from Eq. (1.20), we treated VRR, SRR, and NR as separate
processes. Of course, this is only an assumption and their respective timescale separation is only approxi-
mate. What is the impact of joint diffusions in L̂, h, and a when all processes operate?

Numerical methods

• More efficient schemes. Even though they offer a complexity scaling linearly in the total number of stars,
the multipole schemes presented in §2.3 and §3.4 still suffer from the wide range of timescales present in
galactic nuclei. How can one introduce multi-timesteps and further parallelise these methods?

• Time integration of kinetic equations. In §2.1 and §3.5, we presented effective resonant kinetic theories. How-
ever, we limited ourselves to only computing the associated diffusion coefficients for some given initial
conditions. How can one integrate self-consistently these non-linear kinetic equations forward in time?

Application to SgrA*

• VRR and clockwise stellar disc. In §3.2, we characterised how efficiently stars with similar orientations diffuse
away from another through VRR. How much can one constrain SgrA*’s background stellar content from
the observation of SgrA*’s clockwise stellar disc?

• Leveraging constraints together. When constraining SgrA*’s stellar cluster, we treated the constraints stem-
ming from SRR andVRR as independent. What are themodels of SgrA* that are simultaneously compatible
with these seemingly different dynamical constraints?

• Preparing future observations. Future observations of SgrA*’s galactic nucleus will offer ever more precise
estimates of the PDF, P (L̂, h, a), of the yound stellar cluster. How should one use such detailed statistical
information to constrain SgrA*’s cluster and the likely IMBHs therein?
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A Balescu–Lenard equation

In this Appendix, we reproduce the main results regarding the inhomogeneous BL equation. In recent
years, this equation has been derived via various complementary approaches. We mention in particular:
(i) Heyvaerts (2010) via the BBGKY hierarchy; (ii) Chavanis (2012) through the Klimontovich equation;
(iii) Fouvry & Bar-Or (2018) via Novikov theorem; (iv) Hamilton (2021) via Rostoker’s principle. We do not
present any detailed derivation of the BL equation and limit ourselves to presenting it under its most generic
form. Once this generic formalism available, it can subsequently be tailored to galactic nuclei as in §2.1 to
derive the master equation of SRR around a supermassive BH or as in §3.5 for VRR in axisymmetric galactic
nuclei,

We consider a generic Hamiltonian system in 2d dimensions and write the phase space coordinates as
w=(q,p). We consider a system composed of N particles of individual mass m=Mtot/N embedded within
a given external potential, Uext(w), and coupled one to another through a long-range interaction potential,
U(w,w2)1. In the absence of perturbations, the system is assumed to be in an integrable stable steady state
for which there exist some angle-action coordinates w=(θ,J) (Binney & Tremaine, 2008). Within these
coordinates, Jeans’ theorem allows us to write the system’s DF as F (w, t)=F (J, t), which we normalise as∫
dwF =Mtot. Similarly, the system’s mean Hamiltonian, H0(w)=Uext(w)+

∫
dw2U(w,w2)F (w2) is integrable.

It reads H0(w)=H0(J) with the associated orbital frequencies Ω(J)="H0/"J.
As a result of the finite number of particles, the system’s orbital structure gets slowly distorted. To first

order in 1/N , this dynamics is generically given by the inhomogeneous BL equation

"F (J)

"t
= 2Ã(2Ã)dm

"

"J
·

[∑

k,k2

k

∫
dJ2

∣∣Èd
kk2(J,J2,k·Ω(J))

∣∣2

× ¶D[k·Ω(J)2 k2
·Ω(J2)]

(
k2
·
"

"J2
2 k·

"

"J

)
F (J)F (J2)

]
. (A.1)

The BL equation is the master equation describing the irreversible long-term relaxation of inhomogeneous
long-range interacting systemsdriven by resonant couplings between collectively dressed intrinsic Poissonfluc-
tuations. It conserves the total mass, the total energy, and satisfies an H-theorem for Boltzmann entropy (see,
e.g., Chavanis, 2012).

Equation (A.1) involves the dressed coupling coefficients, Èd
kk2(J,J2, É), that describe the efficiency with

which orbits J and J2 may resonantly couple to one another through the resonance (k,k2) at the frequency É.
Importantly, these coefficients also account for the system’s spontaneous collective polarisation, i.e. orbits are
dressed. To be computed, these coefficients require the introduction of a biorthogonal basis of potentials and
densities (È(p)(w), Ä(p)(w)) that we define with the convention (Kalnajs, 1976)

È(p)(w) =

∫
dw2 U(w,w2) Ä(p)(w2);

∫
dw Ä(p)(w)È(q)7(w) = 2¶pq. (A.2)

Once basis elements at our disposal, the pairwise interaction, U(w,w2), is cast under the separable form

U(w,w2) = 2
∑

p

È(p)(w)È(p)7(w2). (A.3)

The dressed susceptibility coefficients, Èd
kk2(J,J2, É), then read

Èd
kk2(J,J2, É) = 2

∑

p,q

È
(p)
k

(J)
[
I2M(É)

]21

pq
È
(q)7
k2 (J2), (A.4)

where we introduced the Fourier transform of the basis elements w.r.t. the dynamical angle θ as

È
(p)
k

(J) =

∫
dθ

(2Ã)d
È(p)(w) e2ik·θ. (A.5)

Equation (A.4) also involves the identity matrix I and the response matrix

Mpq(É) = (2Ã)d
∑

k

∫
dJ

k·"F/"J

É 2 k·Ω(J)
È
(p)7
k

(J)È
(q)
k

(J). (A.6)

1For 3D self-gravitating systems, one usually has Uext=
1

2
v
2 (kinetic energy) and U(x,x2)=−G/|x−x

2| (Newtonian interaction).
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This matrix fully captures the system’s linear response. Because it involves a resonant denominator, its ef-
fective numerical implementation is a challenge (see, e.g., Fouvry & Prunet, 2022). A system is said to be
linearly unstable if there exists a complex frequency, É=É0+i¸ (with ¸>0), for whichM(É) admits an eigen-
value equal to 1. In that case, the system supports an unstable mode of pattern speed É0 and growth rate
¸ (see, e.g., §5.3 of Binney & Tremaine, 2008). Phrased differently, M(É) generically describes the system’s
linear stability around the mean integrable state F (J) through the linearised collisionless Vlasov equation,
"¶F/"t+ [¶F,H0] + [F, ¶H(¶F )] with [f, h]= "f

"θ ·
"h
"J2

"f
"J ·

"h
"θ the Poisson bracket.

In the absence of collective effects2, one may neglect M(É) in Eq. (A.4). In that limit, the dressed coupling
coefficients, Èd

kk2(J,J2, É), become the (frequency-independent) bare coupling coefficients, Èkk2(J,J2). These
are the Fourier transform of the pairwise interaction w.r.t. the canonical angles (Chavanis, 2013b) and read

Èkk2(J,J2) =

∫
dθ

(2Ã)d
dθ2

(2Ã)d
U(w,w2) e2i(k·θ2k

2·θ2). (A.7)

Equation (A.7) is the generic version of the SRR (resp. VRR) coupling coefficients from Eq. (2.10) (resp.
Eq. 3.5).

2This is in particular the case for SRR in galactic nuclei with a thermal distribution of eccentricities, P (h|a)=2h, see §2.1.
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