IV-3. Dipôle électrique

- 1. (a) On considère deux charges positives de valeur +q placées en +a et -a sur un axe x (figure 1). Exprimer, en fonction de q, a et $1/(4\pi\epsilon_0)$, l'énergie potentielle $E_{\rm p}(x,y)$ d'une charge -q placée en un point M du plan (x,y).
 - (b) En utilisant l'équipotentielle n° 2 sur la figure 1, expliciter la valeur de K (on remarquera que cette équipotentielle passe par (0,0)).
 - (c) On pose $r = ||\overrightarrow{OM}||$ et $\theta = (\overrightarrow{u}_x, \overrightarrow{OM})$. Exprimer E_p en fonction de r et θ lorsque $r \gg a$. Quelle est alors la forme des équipotentielles?
 - (d) Calculer le gradient de E_p en fonction de x et y dans la base (\vec{u}_x, \vec{u}_y) . Quels sont la direction et le sens de $\overrightarrow{\text{grad}} E_p$ par rapport aux équipotentielles?
 - (e) Dans le cas où $r \gg a$, exprimer $\overrightarrow{\text{grad}} E_{\text{p}}$ en fonction de r et θ dans la base $(\vec{u}_{\text{r}}, \vec{u}_{\theta})$, où $\vec{u}_{\text{r}} = \overrightarrow{OM}/r$ et \vec{u}_{θ} est un vecteur unitaire perpendiculaire à \vec{u}_{r} dans le sens direct.
 - (f) On appelle « lignes de champ » les courbes perpendiculaires aux équipotentielles. En considérant un petit déplacement $\mathrm{d}\vec{r} = \mathrm{d}x\vec{u}_{\mathrm{x}} + \mathrm{d}y\vec{u}_{\mathrm{y}}$ le long d'une ligne de champ, déterminer l'équation différentielle à laquelle elle obéit (on ne cherchera pas à la résoudre). Quelle est sa forme lorsque $r \gg a$?
 - (g) Représenter sur la figure 1 la forme des lignes de champ.
- 2. (a) On considère désormais deux charges +q et -q placées respectivement en +a et -a sur un axe x (figure 2). Exprimer, en fonction de K, a, x et y, l'énergie potentielle d'une charge -q placée en M.
 - (b) Dans le cas où $r\gg a$, donner l'expression de $E_{\rm p}$ en fonction de r et $\theta.$
 - (c) En coordonnées polaires, l'expression du gradient est

$$\overrightarrow{\text{grad}} E_{\text{p}} = \frac{\partial E_{\text{p}}}{\partial r} \vec{u}_{\text{r}} + \frac{1}{r} \frac{\partial E_{\text{p}}}{\partial \theta} \vec{u}_{\theta}.$$

En considérant un petit déplacement $d\vec{r} = dr\vec{u}_r + rd\theta\vec{u}_\theta$, établir dans le cas où $r \gg a$ l'équation différentielle en r et θ à laquelle obéissent les lignes de champ et la résoudre.

(d) Représenter la forme des lignes de champ sur la figure 2.

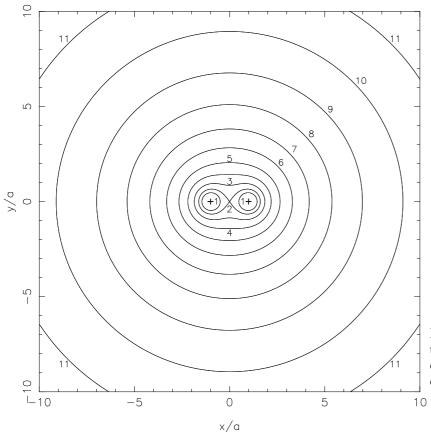


Fig. $1 - \acute{E}$ quipotentielles pour le cas d'une charge -q placée dans le champ électrostatique produit par deux charges +q situées en (a,0) et (-a,0).

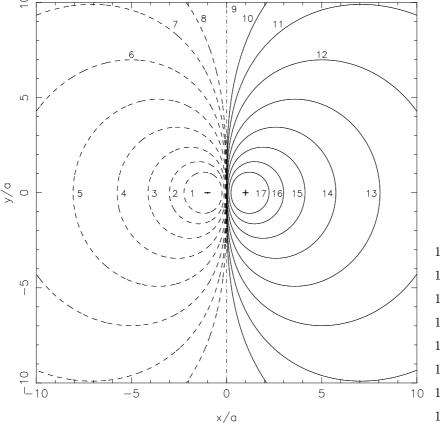


Fig. $2-\acute{E}$ quipotentielles pour le cas d'une charge -q placée dans le champ électrostatique produit par deux charges +q et -q situées respectivement en (a,0) et (-a,0).

1:
$$E_{\rm p} = 2K/a \cdot 3^{1/4}$$

2:
$$E_{\rm p} = 2K/a$$

$$3: \quad E_{\rm p} = 2K/a \cdot 3^{-1/4}$$

4:
$$E_{\rm p} = 2K/a \cdot 3^{-1/2}$$

5:
$$E_{\rm p} = 2K/a \cdot 3^{-3/4}$$

6:
$$E_{\rm p} = 2K/a \cdot 3^{-1}$$

7:
$$E_{\rm p} = 2K/a \cdot 3^{-5/4}$$

8:
$$E_{\rm p} = 2K/a \cdot 3^{-3/2}$$

9:
$$E_{\rm p} = 2K/a \cdot 3^{-7/4}$$

10:
$$E_{\rm p} = 2K/a \cdot 3^{-2}$$

11:
$$E_{\rm p} = 2K/a \cdot 3^{-9/4}$$

N.B.: Pour information, l'équipotentielle no 4 correspond à la transition entre celles en forme de cacahouète et celles de forme ovale.

1:
$$E_{\rm p} = -K/a \cdot 2^{-1}$$

2:
$$E_p = -K/a \cdot 2^{-2}$$

3:
$$E_{\rm p} = -K/a \cdot 2^{-3}$$

4:
$$E_{\rm p} = -K/a \cdot 2^{-4}$$

5:
$$E_{\rm p} = -K/a \cdot 2^{-5}$$

6:
$$E_{\rm p} = -K/a \cdot 2^{-6}$$

7:
$$E_{\rm p} = -K/a \cdot 2^{-7}$$

8:
$$E_{\rm p} = -K/a \cdot 2^{-8}$$

9:
$$E_{\rm p} = 0$$

10:
$$E_{\rm p} = K/a \cdot 2^{-8}$$

11:
$$E_{\rm p} = K/a \cdot 2^{-7}$$

12:
$$E_{\rm p} = K/a \cdot 2^{-6}$$

13:
$$E_{\rm p} = K/a \cdot 2^{-5}$$

14:
$$E_p = K/a \cdot 2^{-4}$$

15:
$$E_{\rm p} = K/a \cdot 2^{-3}$$

10
$$16$$
: $E_{
m p}=K/a\cdot 2^{-2}$

17:
$$E_{\rm p} = K/a \cdot 2^{-1}$$