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ABSTRACT

The blind signal separation (BSS) problem has a distinctive
feature: the unknown parameter being an invertible matrix,
the parameter set is a multiplicative group and the observa-
tions can be modeled by a transformation model. For this
reason, it is possible to design on-line algorithms which are
very simple and still offer excellent performance (typically:
Newton-like performance at a gradient-like cost). This pa-
per presents two apparently different approaches to deriv-
ing these algorithms from the maximum likelihood princi-
ple. One approach (relative gradient) starts with focus on
the group structure and eventually introduces the statisti-
cal structure. The other approach (natural gradient) applies
to any statistical manifold and is eventually made tractable
by exploiting the group structure. The relationship between
these approaches is explained.

1. BACKGROUND.

1.1. Source separation.

Blind source separation (BSS) or independent component
analysis (ICA) aims at computing a linear decomposition of
a random vector � into components which are ‘as indepen-
dent as possible’. The simplest underlying model is������� (1)

where � is an unobserved �
	�� vector of independent com-
ponents and �������� ��� which denotes the general linear
group on ��� i.e. ����� ��� is the set of ��	�� invertible matri-
ces.

1.2. Maximum likelihood.

Assume that the probability distribution of the source vector� has a density � ��� � with respect to Lebesgue measure on��� ; then in model (1), the log-density of � is��� �"! �#��$%� � � ��� � � �&�('*)+� �-, ��� ��. � .
(2)
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Supérieure des Télécommunications

where
. � .

denotes the absolute value of /1032 �&� � . The deriva-
tive of the log-density is found to be4 �5�6�"! �&��$%� �4 � � , � '*798 �&� '") � �
where 7 denotes transposition and 8;: � �=<> � �@?1� is the
vector-to-matrix mapping:8 �#A ��B+CED�GF��&A � A 7 ,IH � (3)

with F : ��� <> ��� the vector-to-vector mapping:F��#A � BJCED� , 4 �5�6� � �K� �4 � L
If M samples N �O�&P �RQTSU#V ) are available and assumed to be in-
dependently distributed, the maximum likelihood estimate
(MLE) W�YX[Z of � for model (1) then is solution of the esti-
mating equation [1]:�M S\ U#V ) 8 �#A U � ��] with A U � W� '*)X[Z � U L (4)

For the sake of robustness, one may also maximize the like-
lihood after spatial whitening (or ‘sphering’). The resulting
ML estimate, under the constraint that the estimated vectorA U is spatially white, is a solution of the estimating equa-
tion (4) with 8 �&A � replaced by8_^ �&A � B+CED�`AaA 7 ,bH �(ced �#A � A 7 , A d �#A � 7 (5)

which is the class of functions considered in [2].

1.3. Adaptive algorithms.

We consider adaptive BSS algorithms which update an �f	g�
‘separating matrix’ h i.e. an estimate of the inverse of �
such that the ‘output’ A_� h � provides (after convergence)
an estimate of the source vector � . A very general class of
such algorithms ish U#i ) � h U ,kj Umln �#� URo h U �
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where ln �#� o hp� is a matrix-valued function and NJj U Q is a
sequence of positive learning steps. We shall not concern
ourselves with the sequence of learning steps but only with
the design of appropriate function ln �#� o h[� . Without loss
of generality, we set ln �&� o hp� � n � h � o h[�qh so that the
learning rule is rewritten in a ‘multiplicative fashion’ ash U#i ) �sr H � ,bj U n �&A Uto h U �EuTh U
with A U � h U � U .

A very important special case is when function
n

does
not depend on its second parameter. Then, we simply writen �#A o h[� � n �&A � and the learning rule becomesh U#i ) �sr H � ,bj U n �&A U �EuTh U (6)

This class (6) of algorithms is uniquely determined by the
mapping

n : �-� <> ���@?1� and enjoys the desirable property
of ‘equivariance’: its performance as an adaptive separator
is independent of the particular value of the mixing matrix� and in particular it is independent of the condition number
of � [2, 3, 4].

1.4. Equivariant on-line likelihood maximization.

The stationary points of the equivariant adaptive algorithm (6)
are characterized by the conditionv n �#A � �w] with A_� h �
while the stationary points (4) of the likelihood are charac-
terized by�M S\ U#V ) 8 �&A U � �w] with A U � W� '*)X[Z � U L
The similarity between these equations suggests that an ap-
propriate

n
function for an adaptive algorithm is 8 which

is obtained by differentiating the log-likelihood; however, a
‘regular’ stochastic gradient algorithm for maximizing the
log-likelihhod does not result in an equivariant procedure
like (6); in order to derive a ‘good’ function

n
related to

ML estimation, one must use alternate definitions of the
gradient taking into account the statistical structure of the
BSS problem.

In this paper, we review the ‘natural gradient’ [5] and the
‘relative gradient’ [2]. Both approaches recast the adaptive
BSS problem as a trajectory on a manifold and yield simple
equivariant algorithms in the form (6). We also describe
how these two approaches are related.

2. NATURAL GRADIENT

This section recalls the natural gradient approach, the result-
ing algorithm for adaptive BSS and how it can be reduced
(at some cost) to a simple learning rule.

2.1. Gradient algorithm in a statistical manifold.

We repeat here the arguments of Amari [5]. Consider the
problem of maximizing a function x �#y � with yI �{z by a
hill-climbing technique. At a given starting point y , the di-
rection | y of steepest ascent may be found as the maximizer
of x �#y c | y � for all }+| y }�~������ . Of course, this is the di-
rection of the gradient �T���� and the corresponding algorithm
is to change y by adding to it the increment | ym� j ����T� for
some small jk� ] : yp��y c j 4 x4 y�L
In many problems, the parameter y is arbitrary in the sense
that it results from choosing one possible parameterization
of, say, a linear system. Reparameterization does not change
the optimization problem but it does change in general the
behavior of the gradient algorithm based on it because the
constraint }3| y }�~�� is usually not invariant by reparameter-
ization. In many instances however, it exists a ‘meaningful’
local metric }3| y }+� � � | y 7t� | y
with � a positive matrix possibly depending on y . In this
case, one should update y by the increment | y most increas-
ing x among all increments of a given size: }+| y } � ~G� .
This approach results in the gradient algorithmy���y c j ��'*) 4 x4 y o
which includes as a special case Newton algorithms when� is minus the Hessian of x at current point y .

A statistical manifold is a smooth parametric family
! �&��$9y �

of probability distributions seen as a differentiable manifold
and equipped with the Fisher information matrix � � :� � B+CED� v � 4 �5�6�"! �&� o y �4 y 4 �5�6��! �#� o y �4 y 7
as the local metric. The argument of previous paragraph
apply with x �&y � � �5�6�"! �&� o y � and � � � � . This makes a
lot of sense because the effect of multiplication by � '")� is to
make the update larger in directions in which the variations
of y have less statistical significance. The resulting update
is

| y�� je� v � 4 ��� ��! �#� o y �4 y 4 �5�6�"! �&� o y �4 y 79� '") 4 ��� �"! �#� o y �4 y
(7)

and, for ‘small’ steps, is invariant under reparameterization.
This is termed the ‘natural gradient learning’ [5] and is the
Fisher method of scoring when j � � .
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2.2. Natural gradient in a group

Natural gradient updates, as introduced in previous section,
can be considered in any parametric model (see several ex-
amples in [5]) but may be difficult to implement because
they usually require the estimation and the inversion of the
Fisher information matrix. However, in the particular case
of BSS, the group structure comes nicely into play: calcula-
tions [5] show that the updating rule (7) applied to the BSS
likelihood yields an on-line algorithm which is precisely in
the form of (6) with function

n �&A � given byn �#A � ��� v�� 8 �K� � 8 �K� � 7t� '*) 8 �#A � (8)

In eq. (8), an bar � denotes the vectorization of a matrix

into a column vector (
n B+CED��� 0J� � n � ), function 8 is as de-

fined in (3) and
v��

denotes expectation under the model,
that is for � distributed with a density � �K� � as in eq. (2) for
instance. In essence, what happens is that all parameter-
dependent quantities are ‘shifted’ to the origin by action of
the group (the same phenomenon occurs in optimal cumu-
lant matching for BSS [6]). As a result, and this is a key
point is that matrix

v � 8 ��� � 8 ��� � 7 is fixed: it does not de-
pend on the model parameters; further, it can be explicitly
inverted thanks to its block-diagonal structure (see [1, 7]
and [2] when 8 � ��� � 8_^ � ��� as in eq. (5)).

Another point is that
v � 8 �K� � 8 �K� � 7 being a positive ma-

trix it can be replaced by H ��� (the � � 	
� � identity matrix)
without affecting the local stability of the algorithm. This
simplification reduces

n �&A � to
n �#A � � 8 �#A � which is the

starting point of next section.

3. RELATIVE GRADIENT

We consider first the generic problem of optimizing a func-
tion x �&y � whose parameter y belongs to a continuous group 

. We exhibit gradient algorithms in the group and then
specialize the idea to the BSS problem where the unknown
parameter is an invertible matrix and

  �¡���g� ��� .
3.1. Gradient algorithm in a group.

Let
 

be a
!

-dimensional continuous group with composi-
tion law ¢ and unit element £ . Denote ¤ : �{z <>  

a smooth
mapping from a neighborhood of ] in ¥Yz to a neighborhood
of £ in

 
and such that ¤ �&] � � £ . Such a map can be used to

parameterize the neighborhood of the unit element £ in the
group. The parameterization is just ¦ > ¤ � ¦O� where ¤ � ¦O�
is a transformation ‘close’ to the identity whenever ¦ is a
‘small’ vector of �Oz . The mapping ¤ can also be used to
parameterize the neighborhood of any other element of the
group by a simple ‘shift’ i.e. ¦ > ¤ � ¦O��¢ y maps a neighbor-
hood of ] in �Oz to a neighborhood of y in

 
. This defines

a system of local coordinates at each point y in
 

. It can

be used in particular in adaptive algorithm for updating a
‘current value’ of y � into y � i ) asy � i ) � ¤ � j*¦ � ��¢ y � (9)

where j is a a learning step and ¦O� is the direction of the
update. We now examine how such a direction is obtained
in a gradient algorithm.

We consider a gradient technique for the maximization
of a function x :   <> � defined on the group. For a
given map ¤ parameterizing the neighborhood of the iden-
tity, define the relative gradient of x at y as the

! 	m� vector§[¨ x �&y � : §p¨ x �#y � � 4 x � ¤ � ¦O��¢ y �4 ¦ ©©©© ª V"« (10)

which characterizes the first order (in ¦ ) change of x �&y �
when y is shifted by ¤ � ¦O� . A relative gradient algorithm
for maximizing x �#y � by the scheme (9) is to update in the
direction of the relative gradient (10): the relative gradient
algorithm in the group updates y � into y � i ) byy � i ) � ¤ � j §[¨ x �#y � �9��¢ y � (11)

with j a positive learning step. In problems similar to BSS,
this rule yields uniform performance algorithms. An ab-
stract treatment is given in [8] (illustrated by the group of
translation-scale transforms) but due to lack of space, only
the BSS model is described here. The idea can also be used
with the convolutive group [9] (blind equalization) but some
approximations are then necessary in practice).

3.2. Relative gradient in a statistical group.

We now specialize to the BSS problem i.e. y¬�� '") � h ,  �w���g� ��� , £ � H � ,
! � � � . The simplest parameterization

of ���g� ��� around £ � H � is¤3® : � �@?¯� <> ���g� ��� o ¤+® � ¦O��B+CED� H �(c ¦ L (12)

The corresponding relative gradient is denoted
§ ®°BJCED� §[¨²±

;
it is the gradient defined in [2]. One finds:§ ® ��� �"! �#��$%� � � , 8 �&A � with A³�w� '") ��� h �
with 8 defined in (3) Combining this with eqs. (12) and (11)
yields exactly the equivariant algorithm (6) with

n �&A � �8 �&A � which thus appears as a stochastic relative gradient
algorithm for maximizing the BSS likelihood.

How does the relative gradient algorithm change when
another parameterization ¤ is used in place of ¤ ® ? For a
given parameterization ¤ of the neighborhood of £ , let ´
denote the � � 	�� � derivative matrix´ � 4 ¤ � ¦O�4 ¦ ©©©© ª V*« (13)
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where, as in eq. (8), a bar denotes the vectorization of a
matrix. It is readily checked that

§_¨
is related to

§ ® by§[¨ � ´ 7 § ® L
Using the derivative (13), the first-order Taylor expansion of
the parameterization is ¤ � ¦O�gµ H ��c ´ ¦ . For small enough
learning steps, the resulting stochastic relative gradient al-
gorithm is again found to be in the form (6) with

n �&A � given
by n �&A � � ´¶´ 7 8 �#A � L (14)

Matrix ´¶´ 7 being positive, the local stability conditions
are identical for

n �#A � � 8 �&A � and for
n �#A � given by (14).

Equivariance is also preserved because ´ is a constant ma-
trix.

The statistical structure of the BSS model may be used
to select a particular parameterization. For instance, one
may choose ¤ � ¦O� in such a way that the Kullback divergence· r ¤ � ¦O� � } � u between the distribution of � and the distribu-
tion of ¤ � ¦O� � is equal at first order to the Euclidean norm of¦ . Simple expansions show that if· r ¤ � ¦O� � } � u � �¸ }3¦�}3� ce¹ � }3¦�}3��� o
then the derivative matrix ´ should satisfy´¬´ 7º� � vg� 8 ��� � 8 ��� � 7 � '") L
This is precisely the factor which appears in the natural gra-
dient algorithm at eq. (8).

4. DISCUSSION AND CONCLUSIONS

The BSS problem can be solved on-line by equivariant al-
gorithms, depending only a field

n �#A � . Two apparently dif-
ferent ideas –relative gradient and natural gradient– lead to
such algorithms (i.e. to a particular field

n �&A � ) by consider-
ing a stochastic gradient ascent of the log-likelihood.

The natural gradient builds upon the Riemannian struc-
ture of the model (statistical manifold). It uniquely deter-
mines the field but is usually difficult to implement; the
group structure of the BSS problem, however, gives a much
simpler structure (8) to the field. This can be further sim-
plified to

n �#A � � 8 �#A � i.e.
n �#A � � 8 �#A � which is the

‘canonical’ solution offered by relative gradient approach.
The relative gradient builds upon the Lie structure of the

model (continuous group). It is determined by any param-
eterization of the neighborhood of the identity. The sim-
plest parameterization yields the field

n �#A � � 8 �&A � ; a sta-
tistically significant parameterization yields the same solu-
tion (8) as the natural gradient.
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