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High-Order Contrasts for Independent Component Analysis
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This article considers high-order measures of independence for the inde-
pendent component analysis problem and discusses the class of Jacobi al-
gorithms for their optimization. Several implementations are discussed.
We compare the proposed approaches with gradient-based techniques
from the algorithmic point of view and also on a set of biomedical data.

1 Introduction

Given an n × 1 random vector X, independent component analysis (ICA)
consists of finding a basis of Rn on which the coefficients of X are as inde-
pendent as possible (in some appropriate sense). The change of basis can
be represented by an n × n matrix B and the new coefficients given by the
entries of vector Y = BX. When the observation vector X is modeled as a
linear superposition of source signals, matrix B is understood as a separat-
ing matrix, and vector Y = BX is a vector of source signals. Two key issues
of ICA are the definition of a measure of independence and the design of
algorithms to find the change of basis (or separating matrix) B optimizing
this measure.

Many recent contributions to the ICA problem in the neural network
literature describe stochastic gradient algorithms involving as an essential
device in their learning rule a nonlinear activation function. Other ideas
for ICA, most of them found in the signal processing literature, exploit the
algebraic structure of high-order moments of the observations. They are of-
ten regarded as being unreliable, inaccurate, slowly convergent, and utterly
sensitive to outliers. As a matter of fact, it is fairly easy to devise an ICA
method displaying all these flaws and working on only carefully generated
synthetic data sets. This may be the reason that cumulant-based algebraic
methods are largely ignored by the researchers of the neural network com-
munity involved in ICA. This article tries to correct this view by showing
how high-order correlations can be efficiently exploited to reveal indepen-
dent components.

This article describes several ICA algorithms that may be called Jacobi
algorithms because they seek to maximize measures of independence by a
technique akin to the Jacobi method of diagonalization. These measures of
independence are based on fourth-order correlations between the entries
of Y. As a benefit, these algorithms evades the curse of gradient descent:
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they can move in macroscopic steps through the parameter space. They also
have other benefits and drawbacks, which are discussed in the article and
summarized in a final section. Before outlining the content of this article, we
briefly review some gradient-based ICA methods and the notion of contrast
function.

1.1 Gradient Techniques for ICA. Many online solutions for ICA that
have been proposed recently have the merit of a simple implementation.
Among these adaptive procedures, a specific class can be singled out: al-
gorithms based on a multiplicative update of an estimate B(t) of B. These
algorithms update a separating matrix B(t) on reception of a new sample
x(t) according to the learning rule

y(t) = B(t)x(t), B(t + 1) = (
I − µtH(y(t))

)
B(t), (1.1)

where I denotes the n × n identity matrix, {µt} is a scalar sequence of pos-
itive learning steps, and H: Rn → Rn×n is a vector-to-matrix function. The
stationary points of such algorithms are characterized by the condition that
the update has zero mean, that is, by the condition,

EH(Y) = 0. (1.2)

The online scheme, in equation 1.1, can be (and often is) implemented in
an off-line manner. Using T samples X(1), . . . , X(T), one goes through the
following iterations where the field H is averaged over all the data points:

1. Initialization. Set y(t) = x(t) for t = 1, . . . , T.

2. Estimate the average field. H = 1
T

∑T
t=1 H(y(t)).

3. Update. IfH is small enough, stop; else update each data point y(t) by
y(t) ← (I − µH)y(t) and go to 2.

The algorithm stops for a (arbitrarily) small value of the average field: it
solves the estimating equation,

1

T

T∑
t=1

H(y(t)) = 0, (1.3)

which is the sample counterpart of the stationarity condition in equation
1.2.

Both the online and off-line schemes are gradient algorithms: the map-
ping H(·) can be obtained as the gradient (the relative gradient [Cardoso &
Laheld, 1996]or Amari’s natural gradient [1996]) of some contrast function,
that is, a real-valued measure of how far the distribution Y is from some
ideal distribution, typically a distribution of independent components. In
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particular, the gradient of the infomax—maximum likelihood (ML)contrast
yields a function H(·) in the form

H(y) = ψ(y)y† − I, (1.4)

where ψ(y) is an n × 1 vector of component-wise nonlinear functions with
ψi(·) taken to be minus the log derivative of the density of the i component
(see Amari, Cichocki, & Yang, 1996, for the online version and Pham &
Garat, 1997, for a batch technique).

1.2 The Orthogonal Approach to ICA. In the search for independent
components, one may decide, as in principal component analysis (PCA),
to request exact decorrelation (second-order independence) of the compo-
nents: matrix B should be such that Y = BX is “spatially white,” that is, its
covariance matrix is the identity matrix. The algorithms described in this
article take this design option, which we call the orthogonal approach.

It must be stressed that components that are as independent as possible
according to some measure of independence are not necessarily uncorre-
lated because exact independence cannot be achieved in most practical ap-
plications. Thus, if decorrelation is desired, it must be enforced explicitly;
the algorithms described below optimize under the whiteness constraint
approximations of the mutual information and of other contrast functions
(possibly designed to take advantage of the whiteness constraint).

One practical reason for considering the orthogonal approach is that off-
line contrast optimization may be simplified by a two-step procedure as
follows. First, a whitening (or “sphering”) matrix W is computed and ap-
plied to the data. Since the new data are spatially white and one is also
looking for a white vector Y, the latter can be obtained only by an orthonor-
mal transformation V of the whitened data because only orthonormal trans-
forms can preserve the whiteness. Thus, in such a scheme, the separating
matrix B is found as a product B = VW . This approach leads to interesting
implementations because the whitening matrix can be obtained straightfor-
wardly as any matrix square root of the inverse covariance matrix of X and
the optimization of a contrast function with respect to an orthonormal ma-
trix can also be implemented efficiently by the Jacobi technique described
in section 4.

The orthonormal approach to ICA need not be implemented as a two-
stage Jacobi-basedprocedure; it also exists as a one-stagegradient algorithm
(seealsoCardoso&Laheld,1996).Assume that the relative/natural gradient
of some contrast function leads to a particular function H(·) for the update
rule, equation 1.1,with stationary points given by equation 1.2.Then the sta-
tionarypoints for theoptimizationof the samecontrast functionwith respect
to orthonormal transformations are characterized by EH(Y) − H(Y)† = 0
where the superscript † denotes transposition. On the other hand, for zero-
mean variables, the whiteness constraint is EYY† = I, which we can also
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write as EYY† − I = 0. Because EYY† − I is a symmetric matrix matrix while
EH(Y) − H(Y)† is a skew-symmetric matrix, the whiteness condition and
the stationarity condition can be combined in a single one by just adding
them. The resulting condition is E{YY† − I + H(Y) − H(Y)†} = 0. When it
holds true, both the symmetric part and the skew-symmetric part cancel;
the former expresses that Y is white, the latter that the contrast function is
stationary with respect to all orthonormal transformations.

Thus, if the algorithm in equation 1.1optimizes a given contrast function
with H given by equation 1.4, then the same algorithm optimizes the same
contrast function under the whiteness constraint with H given by

H(y) = yy† − I + ψ(y)y† − yψ(y)†. (1.5)

It is thus simple to implement orthogonal versions of gradient algorithms
once a regular version is available.

1.3 Data-BasedVersus Statistic-BasedTechniques. Comon(1994)com-
pares the data-based option and the statistic-based option for computing
off-line an ICA of a batch x(1), . . . , x(T) of T samples; this article will also
introduce amixed strategy (seesection4.3).In the data-based option, succes-
sive linear transformations are applied to the data set until some criterion of
independence is maximized. This is the iterative technique outlined above.
Note that it is not necessary to update explicitly a separating matrix B in this
scheme (although one may decide to do so in a particular implementation);
the data themselves are updated until the average field 1

T

∑T
t=1 H(y(t)) is

small enough; the transform B is implicitly contained in the set of trans-
formed data.

Another option is to summarize the data set into a smaller set of statistics
computed once and for all from the data set; the algorithm then estimates
a separating matrix as a function of these statistics without accessing the
data. This option may be followed in cumulant-based algebraic techniques
where the statistics are cumulants of X.

1.4 Outline of the Article. In section 2, the ICA problem is recast in the
framework of (blind) identification, showing how entropic contrasts readily
stem from the maximum likelihood (ML) principle. In section 3, high-order
approximations to the entropic contrasts aregiven, and their algebraic struc-
ture is emphasized. Section4describes different flavors of Jacobi algorithms
optimizing fourth-order contrast functions. A comparison between Jacobi
techniques and a gradient-based algorithm is given in section 5 based on a
real data set of electroencephalogram (EEG) recordings.
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2 Contrast Functions and Maximum Likelihood Identification

Implicitly or explicitly, ICA tries to fit a model for the distribution of X that
is a model of independent components: X = AS, where A is an invertible
n×n matrix and S is an n×1vector with independent entries. Estimating the
parameter A from samples of X yields a separating matrix B = A−1. Even if
the model X = AS is not expected to hold exactly formany real data sets, one
can still use it to derive contrast functions. This section exhibits the contrast
functions associated with the estimation of A by the ML principle (a more
detailed exposition can be found in Cardoso, 1998). Blind separation based
on ML was first considered by Gaeta and Lacoume (1990) (but the authors
used cumulant approximations as those described in section 3), Pham and
Garat (1997), and Amari et al. (1996).

2.1 Likelihood. Assume that the probability distribution of each entry
Si of S has a density ri(·).1 Then, the distribution PS of the random vector
S has a density r(·) in the form r(s) = ∏n

i=1 ri(si), and the density of X for a
given mixture A and a given probability density r(·) is:

p(x; A, r) = | det A|−1r(A−1x), (2.1)

so that the (normalized) log-likelihood LT(A, r) of T independent samples
x(1), . . . , x(T) of X is

LT(A, r)
def= 1

T

T∑
t=1

log p(x(t); A, r)

= 1

T

T∑
t=1

log r(A−1x(t)) − log | det A|. (2.2)

Depending on the assumptions made about the densities r1, . . . , rn, several
contrast functions can be derived from this log-likelihood.

2.2 Likelihood Contrast. Under mild assumptions, the normalized log-
likelihood LT(A, r), which is a sample average, converges for large T to its
ensemble average by law of large numbers:

LT(A, r) = 1

T

T∑
t=1

log r(A−1x(t)) − log | det A|

−→T→∞ Elog r(A−1x) − log | det A|, (2.3)

1 All densities considered in this article are with respect to the Lebesgue measure on
R or Rn.
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which simple manipulations (Cardoso, 1997) show to be equal to −H(PX)−
K(PY|PS). Here and in the following, H(·) and K(·|·), respectively, denote
the differential entropy and the Kullback-Leibler divergence. Since H(PX)

does not depend on the model parameters, the limit for large T of −LT(A, r)
is, up to a constant, equal to

φML(Y)
def= K(PY |PS). (2.4)

Therefore, the principle of MLcoincides with the minimization of a specific
contrast function, which is nothing but the (Kullback) divergence K(PY |PS)

between the distribution PY of the output and a model distribution PS.
The classic entropic contrasts follow from this observation, depending

on two options: (1) trying or not to estimatePS from the data and (2) forcing
or not the components to be uncorrelated.

2.3 Infomax. The technically simplest statistical assumption about PS

is to select fixed densities r1, . . . , rn for each component, possibly on the
basis of prior knowledge. ThenPS is a fixed distributional assumption, and
the minimization of φML(Y) is performed only over PY via Y = BX. This
can be rephrased: Choose B such that Y = BX is as close as possible in
distribution to the hypothesized model distribution PS, the closeness in
distribution being measured in the Kullback divergence. This is also the
contrast function derived from the infomax principle by Bell and Sejnowski
(1995). The connection between infomax and ML was noted in Cardoso
(1997), MacKay (1996), and Pearlmutter and Parra (1996).

2.4 Mutual Information. The theoretically simplest statistical assump-
tion about PS is to assume no model at all. In this case, the Kullback mis-
match K(PY |PS) should be minimized not only by optimizing over B to
change the distribution of Y = BX but also with respect toPS. For each fixed
B, that is, for each fixed distribution PY , the result of this minimization is
theoretically very simple: the minimum is reached when PS = P̄Y , which
denotes the distribution of independent components with each marginal
distribution equal to the corresponding marginal distribution of Y. This
stems from the property that

K(PY |PS) = K(PY |P̄Y) + K(P̄Y |PS) (2.5)

for any distribution PS with independent components (Cover & Thomas,
1991).Therefore, the minimum inPS of K(PY |PS) is reached by takingPS =
P̄Y since this choice ensures K(P̄Y |PS) = 0. The value of φML at this point
then is

φMI(Y)
def= min

PS

K(PY |PS) = K(PY |P̄Y). (2.6)
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We use the index MI since this quantity is well known as the mutual in-
formation between the entries of Y. It was first proposed by Comon (1994),
and it can be seen from the above as deriving from the ML principle when
optimization is with respect to both the unknown system A and the distri-
bution of S. This connection was also noted in Obradovic and Deco (1997),
and the relation between infomax and mutual information is also discussed
in Nadal and Parga (1994).

2.5 Minimum Marginal Entropy. An orthogonal contrast φ(Y) is, by
definition, to be optimized under the constraint that Y is spatially white:
orthogonal contrasts enforce decorrelation, that is, an exact “second-order”
independence. Any regular contrast can be used under the whiteness con-
straint, but by taking the whiteness constraint into account, the contrast
may be given a simpler expression. This is the case of some cumulant-based
contrasts described in section 3. It is also the case of φMI(Y) because the mu-
tual information can also be expressed as φMI(Y) = ∑n

i=1 H(PYi ) − H(PY);
since the entropy H(PY) is constant under orthonormal transforms, it is
equivalent to consider

φME(Y) =
n∑

i=1

H(PYi ) (2.7)

to be optimized under the whiteness constraint EYY† = I. This contrast
couldbecalledorthogonalmutual information,or themarginal entropycon-
trast. The minimum entropy idea holds more generally under any volume-
preserving transform (Obradovic &Deco, 1997).

2.6 Empirical Contrast Functions. Among all the above contrasts, only
φML or its orthogonal version are easily optimized by a gradient technique
because the relative gradient of φML simply is the matrix EH(Y) with H(·)
defined in equation 1.4.Therefore, the relative gradient algorithm, equation
1.1,canbeemployed using either this function H(·) or its symmetrized form,
equation 1.5, if one chooses to enforce decorrelation. However, this contrast
is based on a prior guess PS about the distribution of the components. If
the guess is too far off,the algorithm will fail to discover independent com-
ponents that might be present in the data. Unfortunately, evaluating the
gradient of contrasts based on mutual information or minimum marginal
entropy is more difficult because it does not reduce to the expectation of
a simple function of Y; for instance, Pham (1996) minimizes explicitly the
mutual information, but the algorithm involves a kernel estimation of the
marginal distributions of Y. An intermediate approach is to consider a para-
metric estimation of these distributions as in Moulines, Cardoso, and Gas-
siat (1997) or Pearlmutter and Parra (1996), for instance. Therefore, all these
contrasts require that the distributions of components be known, or approx-
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imated or estimated. As we shall see next, this is also what the cumulant
approximations to contrast functions are implicitly doing.

3 Cumulants

This section presents higher-order approximations to entropic contrasts,
some known and some novel. To keep the exposition simple, it is restricted
to symmetric distributions (for which odd-order cumulants are identically
zero) and to cumulants of orders 2 and 4. Recall that for random variables

X1, . . . , X4,second-order cumulants areCum(X1, X2)
def= EX̄1X̄2 where X̄i

def=
Xi − EXi and the fourth-order cumulants are

Cum(X1, X2, X3, X4) =
EX̄1X̄2X̄3X̄4 − EX̄1X̄2EX̄3X̄4 − EX̄1X̄3EX̄2X̄4 − EX̄1X̄4EX̄2X̄3. (3.1)

The variance and the kurtosis of a real random variable X are defined as

σ 2(X)
def= Cum(X, X) = EX̄2,

k(X)
def= Cum(X, X, X, X) = EX̄4 − 3E2X̄2, (3.2)

that is, they are the second- and fourth-order autocumulants. A cumulant
involving at least two different variables is called a cross-cumulant.

3.1 Cumulant-Based Approximations to Entropic Contrasts. Cumu-
lants are useful in many ways. In this section, they show up because the
probability density of a scalar random variable U close to the standard nor-
mal n(u) = (2π)−1/2 exp−u2/2 can be approximated as

p(u) ≈ n(u)

(
1 + σ 2(U) − 1

2
h2(u) + k(U)

4!
h4(u)

)
, (3.3)

where h2(u) = u2 − 1 and h4(u) = u4 − 6u2 + 3, respectively, are the second-
and fourth-order Hermite polynomials. This expression is obtained by re-
taining the leading terms in an Edgeworth expansion (McCullagh, 1987).
If U and V are two real random variables with distributions close to the
standard normal, one can, at least formally, use expansion 3.3 to derive an
approximation to K(PU|PV ). This is

K(PU|PV ) ≈ 1

4
(σ 2(U) − σ 2(V))2 + 1

48
(k(U) − k(V))2, (3.4)

which shows how the pair (σ 2, k) of cumulants of order 2and 4play in some
sense the role of a local coordinate system around n(u) with the quadratic
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form 3.4 playing the role of a local metric. This result generalizes to mul-
tivariates, in which case we denote for conciseness RU

ij = Cum(Ui, Uj) and

QU
ijkl = Cum(Ui, Uj, Uk, Ul) and similarly for another random n-vector V

with entries V1, . . . , Vn. We give without proof the following approxima-
tion:

K(PU|PV ) ≈ K24(PU|PV )
def= 1

4

∑
ij

(
RU

ij − RV
ij

)2

+ 1

48

∑
ijkl

(
QU

ijkl − QV
ijkl

)2
. (3.5)

Expression 3.5 turns out to be the simplest possible multivariate general-
ization of equation 3.4 (the two terms in equation 3.5 are a double sum over
all the n2 pairs of indices and a quadruples over all the n4 quadruples of in-
dices). Since the entropic contrasts listed above have all been derived from
the Kullback divergence, cumulant approximations to all these contrasts
can be obtained by replacing the Kullback mismatch K(PU|PV ) by a cruder
measure: its approximation is a cumulant mismatch by equation 3.5.

3.1.1 Approximation to the Likelihood Contrast. The infomax-ML contrast
φML(Y) = K(PY |PS) for ICA (see equation 2.4) is readily approximated by
using expression 3.5. The assumption PS on the distribution of S is now
replaced by an assumption about the cumulants of S. This amounts to very
little: all the cross-cumulants of S being 0 thanks to the assumption of inde-
pendent sources, it is needed only to specify the autocumulants σ 2(Si) and
k(Si). The cumulant approximation (see equation 3.5) to the infomax-ML
contrast becomes:

φML(Y) ≈ K24(PY |PS) = 1

4

∑
ij

(
RY

ij − σ 2(Si)δij

)2

+ 1

48

∑
ijkl

(
QY

ijkl − k(Si)δijkl

)2
, (3.6)

where the Kronecker symbol δ equals 1 with identical indices and 0 other-
wise.

3.1.2 Approximation to the Mutual Information Contrast. The mutual in-
formation contrast φMI(Y) was obtained by minimizing K(PY |PS) over all
the distributions PS with independent components. In the cumulant ap-
proximation, this is trivially done: the free parameters forPS are σ 2(Si) and
k(Si).Eachof these scalars enters in only one term of the sums in equation 3.6
so that the minimization is achieved for σ 2(Si) = RY

ii and k(Si) = QY
iiii. In

other words, the construction of the best approximating distribution with
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independent marginals P̄Y , which appears in equation 2.5, boils down, in
the cumulant approximation, to the estimation of the variance and kurtosis
of each entry of Y. Fitting both σ 2(Si) and k(Si) to RY

ii and QY
iii, respectively,

has the effectofexactlycancelling the diagonal terms in equation3.6, leaving
only

φMI(Y) ≈ φMI
24 (Y)

def= 1

4

∑
ij�=ii

(
RY

ij

)2 + 1

48

∑
ijkl�=iiii

(
QY

ijkl

)2
, (3.7)

which is our cumulant approximation to the mutual information contrast in
equation 2.6.Thefirst term is understood as the sum over all the pairs of dis-
tinct indices; the second term is a sum over all quadruples of indices that are
not all identical. It contains onlyoff-diagonal terms, that is, cross-cumulants.
Since cross-cumulants of independent variables identically vanish, it is not
surprising to see the mutual information approximated by a sum of squared
cross-cumulants.

3.1.3 Approximation to the Orthogonal Likelihood Contrast. The cumulant
approximation to the orthogonal likelihood is fairly simple. The orthogonal
approach consists of first enforcing the whiteness of Y that is RY

ij = δij or

RY = I. In other words, it consists of normalizing the components by assum-
ing that σ 2(Si) = 1and making sure the second-order mismatch is zero.This
is equivalent to replacing the weight 1

4 in equation 3.6 by an infinite weight,
hence reducing the problem to the minimization (under the whiteness con-
straint) of the fourth-order mismatch, or the second (quadruple) sum in
equation 3.6. Thus, the orthogonal likelihood contrast is approximated by

φOML
24 (Y)

def= 1

48

∑
ijkl

(
QY

ijkl − k(Si)δijkl

)2
. (3.8)

Thiscontrast has an interestingalternate expression.Developing the squares
gives

φOML
24 (Y) = 1

48

∑
ijkl

(QY
ijkl)

2 + 1

48

∑
ijkl

k2(Si)δ
2
ijkl − 2

48

∑
ijkl

k(Si)δijklQ
Y
ijkl.

Thefirst sum above isconstantunder thewhiteness constraint (this is readily
checked using equation 3.13 for an orthonormal transform), and the second
sum does not depend on Y; finally the last sum contains only diagonal
nonzero terms. It follows that:

φOML
24 (Y)

c= − 1

24

∑
i

k(Si)Q
Y
iiii

= − 1

24

∑
i

k(Si)k(Yi)
c= − 1

24

∑
i

k(Si)EȲ4
i , (3.9)
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where · c= · denotes an equality up to a constant. An interpretation of the sec-
ond equality is that the contrast isminimizedbymaximizing the scalarprod-
uct between the vector [k(Y1), . . . , k(Yn)] of the kurtosis of the components
and the corresponding vector of hypothesized kurtosis [k(S1), . . . , k(Sn)].
The last equality stems from the definition in equation 3.2 of the kurtosis
and the constancy of EȲ2

i under the whiteness constraint. This last form is

remarkable because it shows that for zero-mean observations, φOML
24 (Y)

c=
El(Y),where l(Y) = − 1

24

∑
i k(Si)Y4

i , so the contrast is just the expectationofa
simple function of Y. We can expect simple techniques for its maximization.

3.1.4 Approximation to the Minimum Marginal Entropy Contrast. Under
the whiteness constraint, the first sum in the approximation, equation 3.7, is
zero (this is the whiteness constraint) so that the approximation to mutual
information φMI(Y) reduces to the last term:

φME(Y) ≈ φME
24 (Y)

def= 1

48

∑
ijkl�=iiii

(
QY

ijkl

)2 c= − 1

48

∑
i

(
QY

iiii

)2
. (3.10)

Again, the last equality up to constant follows from the constancy of
∑

ijkl

(QY
ijkl)

2 under the whiteness constraint. These approximations had already
been obtained by Comon (1994) from an Edgeworth expansion. They say
something simple:Edgeworth expansions suggest testing the independence
between the entries of Y by summing up all the squared cross-cumulants.

In the course of this article, we will find two similar contrast functions.
The JADE contrast,

φJADE(Y)
def=

∑
ijkl�=iikl

(
QY

ijkl

)2
, (3.11)

also is a sum of squared cross-cumulants (the notation indicates a sum is
over all the quadruples (ijkl) of indices with i �= j). Its interest is to be also a
criterion of joint diagonality of cumulants matrices. The SHIBBS criterion,

φSH(Y)
def=

∑
ijkl�=iikk

(
QY

ijkl

)2
, (3.12)

is also introduced in section 4.3 as governing a similar but less memory-
demanding algorithm. It also involves only cross-cumulants: those with
indices (ijkl) such that i �= j or k �= l.

3.2 Cumulants and Algebraic Structures. Previous sections reviewed
the use of cumulants in designing contrast functions. Another thread of
ideas using cumulants stems from the method of moments. Such an ap-
proach is called for by the multilinearity of the cumulants. Under a linear
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transform Y = BX, which also reads Yi = ∑
p bipXp, the cumulants of order 4

(for instance) transform as:

Cum(Yi, Yj, Yk, Yl) =
∑
pqrs

bipbjqbkrblsCum(Xp, Xq, Xr, Xs), (3.13)

which can easily be exploited for our purposes since the ICAmodel is linear.
Using this fact and the assumption of independence by which Cum(Sp, Sq,

Sr, Ss) = k(Sp)δ(p, q, r, s), we readily obtain the simple algebraic structure of
the cumulants of X = AS when S has independent entries,

Cum(Xi, Xj, Xk, Xl) =
n∑

u=1

k(Su)aiuajuakualu, (3.14)

where aij denotes the (ij)th entry of matrix A. When estimates Ĉum(Xi, Xj,

Xk, Xl) are available, one may try to solve equation 3.4 in the coefficients aij

of A. This is tantamount to cumulant matching on the empirical cumulants
of X. Because of the strong algebraic structure of equation 3.14, one may try
to devise fourth-order factorizations akin to the familiar second-order sin-
gular value decomposition (SVD) or eigenvalue decomposition (EVD) (see
Cardoso, 1992;Comon, 1997;De Lathauwer, De Moor, &Vandewalle, 1996).
However, these approaches are generally not equivalent to the optimization
of a contrast function, resulting in estimates that are generally not equivari-
ant (Cardoso, 1995). This point is illustrated below; we introduce cumulant
matrices whose simple structure offers straightforward identification tech-
niques, but we stress, as one of their important drawbacks, their lack of
equivariance. However, we conclude by showing how the algebraic point
of view and the statistical (equivariant) point of view can be reconciled.

3.2.1 Cumulant Matrices. The algebraic nature of cumulants is tensorial
(McCullagh, 1987),but since we will concern ourselves mainly with second-
and fourth-order statistics, a matrix-based notation suffices for the purpose
of our exposition; we only introduce the notion of cumulant matrix defined
as follows. Given a random n × 1 vector X and any n × n matrix M, we
define the associated cumulant matrix QX(M) as the n × n matrix defined
component-wise by

[QX(M)]ij
def=

n∑
k,l=1

Cum(Xi, Xj, Xk, Xl)Mkl. (3.15)

If X is centered, the definition in equation 3.1 shows that

QX(M) = E{(X†MX) XX†} − RX tr(MRX) − RXMRX − RXM†RX ,(3.16)
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where tr(·) denotes the trace and RX denotes the covariance matrix of X,
that is, [RX]ij = Cum(Xi, Xj). Equation 3.16 could have been chosen as an
index-free definition of cumulant matrices. It shows that a given cumulant
matrix can be computed or estimated at a cost similar to the estimation cost
of a covariance matrix; there is no need to compute the whole set of fourth-
order cumulants to obtain the value of QX(M) for a particular value of M.
Actually, estimating a particular cumulant matrix is one way of collecting
part of the fourth-order information in X; collecting the whole fourth-order
information requires the estimation of O(n4) fourth-order cumulants.

The structure of a cumulant matrix QX(M) in the ICA model is easily
deduced from equation 3.14:

QX(M) = A�(M)A†

�(M) = Diag
(
k(S1) a†

1Ma1, . . . , k(Sn) a†
nMan

)
, (3.17)

where ai denotes the ith column of A, that is, A = [a1, . . . , an]. In this factor-
ization, the (generally unknown) kurtosis enter only in the diagonal matrix
�(M), a fact implicitly exploited by the algebraic techniques described be-
low.

3.3 Blind Identification Using Algebraic Structures. In section3.1,con-
trast functions were derived from the ML principle assuming the model
X = AS. In this section, we proceed similarly: we consider cumulant-based
blind identification of A assuming X = AS from which the structures 3.14
and 3.17 result.

Recall that the orthogonal approachcanbe implemented byfirst sphering

explicitly vector X. Let W be a whitening, and denote Z
def= WX the sphered

vector.Without loss ofgenerality, the model can be normalized by assuming
that the entries of S have unit variance so that S is spatially white. Since

Z = WX = WAS is also white by construction, the matrix U
def= WA must be

orthonormal: UU† = I. Therefore sphering yields the model Z = US with
U orthonormal. Of course, this is still a model of independent components
so that, similar to equation 3.17, we have for any matrix M the structure of
the corresponding cumulant matrix of Z,

QZ(M) = U�̃(M)U†

�̃(M) = Diag
(
k(S1) u†

1Mu1, . . . , k(Sn) u†
nMun

)
, (3.18)

where ui denotes the ith column of U.Ina practical orthogonal statistic-
based technique, one would first estimate a whitening matrix Ŵ, estimate
some cumulants of Z = ŴX, compute an orthonormal estimate Û of U
using these cumulants, and finally obtain an estimate Â of A as Â = Ŵ−1Û
or obtain a separating matrix as B = Û−1Ŵ = Û†Ŵ.
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3.3.1 Nonequivariant Blind Identification Procedures. We first present two
blind identification procedures that exploit in a straightforward manner the
structure 3.17; we explain why, in spite of attractive computational simplic-
ity, they are not well behaved (not equivariant) and how they can be fixed
for equivariance.

The first idea is not based on an orthogonal approach. Let M1 and M2

be two arbitrary n × n matrices, and define Q1
def= QX(M1) and Q2

def=
QX(M2). According to equation 3.17, if X = AS we have Q1 = A�1A† and

Q2 = A�2A† with �1 and �2 two diagonal matrices. Thus, G
def= Q1Q

−1
2 =

(A�1A†)(A�2A†)−1 = A�A−1, where � is the diagonal matrix �1�
−1
2 . It

follows that GA = A�, meaning that the columns of A are the eigenvectors
of G (possibly up to scale factors).

An extremely simple algorithm for blind identification of A follows: Se-
lect two arbitrary matrices M1 and M2; compute sample estimates Q̂1 and
Q̂2 using equation 3.16; find the columns of A as the eigenvectors of Q̂1Q̂

−1
2 .

There is at least one problem with this idea: we have assumed invertible ma-
trices throughout the derivation, and this may lead to instability. However,
this specific problem may be fixed by sphering, as examined next.

Consider now the orthogonal approach as outlined above. Let M be some
arbitrary matrix M, and note that equation 3.18 is an eigendecomposition:
the columns of U are the eigenvectors of QZ(M), which are orthonormal
indeed because QZ(M) is symmetric. Thus, in the orthogonal approach, an-
other immediate algorithm for blind identification is to estimate U as an
(orthonormal) diagonalizer of an estimate of QZ(M). Thanks to sphering,
problems associated with matrix inversion disappear, but a deeper prob-
lem associated with these simple algebraic ideas remains and must be ad-
dressed. Recall that the eigenvectors are uniquely determined2 if and only
if the eigenvalues are all distinct. Therefore, we need to make sure that the
eigenvalues of QZ(M) are all distinct in order to preserve blind identifiabil-
ity based on QZ(M). According to equation 3.18, these eigenvalues depend
on the (sphered) system, which is unknown. Thus, it is not possible to de-
termine a priori if a given matrix M corresponds to distinct eigenvalues of
QZ(M). Of course, if M is randomly chosen, then the eigenvalues are dis-
tinct with probability 1, but we need more than this in practice because the
algorithms use only sample estimates of the cumulant matrices. A small
error in the sample estimate of QZ(M) can induce a large deviation of the
eigenvectors if the eigenvalues are not well enough separated. Again, this
is impossible to guarantee a priori because an appropriate selection of M
requires prior knowledge about the unknown mixture.

In summary, the diagonalization of a single cumulant matrix is computa-

2 In fact, determined only up to permutations and signs that do not matter in an ICA
context.
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tionally attractive and can be proved to be almost surely consistent, but it is
not satisfactory because the nondegeneracy of the spectrum cannot be con-
trolled. As a result, the estimation accuracy from a finite number of samples
depends on the unknown system and is therefore unpredictable in prac-
tice; this lack of equivariance is hardly acceptable. One may also criticize
these approaches on the ground that they rely on only a small part of the
fourth-order information (summarized in an n × n cumulant matrix) rather
than trying to exploit more cumulants (there are O(n4) fourth-order inde-
pendent cumulant statistics). We examine next how these two problems can
be alleviated by jointly processing several cumulant matrices.

3.3.2 Recovering Equivariance. Let M = {M1, . . . , MP} be a set of P ma-

trices of size n × n and denote Qi
def= QZ(Mi) for 1 ≤ i ≤ P the associated

cumulant matrices for the sphered data Z = US. Again, as above, for all i
we have Qi = U�iU† with �i a diagonal matrix given by equation 3.18. As
a measure of nondiagonality of a matrix F, define Off(F) as the sum of the
squares of the nondiagonal elements:

Off(F)
def=

∑
i�=j

(
fij

)2
. (3.19)

We have in particular Off(U†QiU) = Off(�i) = 0 since Qi = U�iU† and
U†U = I. For any matrix set M and any orthonormal matrix V , we define
the following nonnegative joint diagonality criterion,

DM(V)
def=

∑
Mi∈M

Off(V†QZ(Mi)V), (3.20)

which measures how close to diagonality an orthonormal matrix V can
simultaneously bring the cumulants matrices generated by M.

To each matrix set M is associated a blind identification algorithm as
follows: (1)finda sphering matrixW towhiten in the data X intoZ = WX;(2)
estimate the cumulant matrices QZ(M) for all M ∈ M by a sample version of
equation 3.16;(3)minimize the jointdiagonality criterion, equation 3.20, that
is, make the cumulant matrices as diagonal as possible by an orthonormal
transform V ; (4) estimate A as A = VW−1 or its inverse as B = V†W or the
component vector as Y = V†Z = V†WX.

Such an approach seems to be able to alleviate the drawbacks mentioned
above.Finding the orthonormal transform as the minimizer ofa set ofcumu-
lant matrices goes in the right direction because it involves a larger number
of fourth-order statistics and because it decreases the likelihood of degener-
ate spectra. This argument can be made rigorous by considering a maximal
set of cumulant matrices. By definition, this is a set obtained whenever M
is an orthonormal basis for the linear space of n × n matrices. Such a ba-
sis contains n2 matrices so that the corresponding cumulant matrices total
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n2 × n2 = n4 entries, that is, as many as the whole fourth-order cumulant
set. For any such maximal set (Cardoso & Souloumiac, 1993):

DM(V) = φJADE(Y) with Y = V†Z, (3.21)

where φJADE(Y) is the contrast function defined at equation 3.11. The joint
diagonalization of a maximal set guarantees blind identifiability of A if
k(Si) = 0 for at most one entry Si of S (Cardoso &Souloumiac, 1993). This is
anecessarycondition forany algorithmusingonly second-and fourth-order
statistics (Comon, 1994).

Akeypoint ismade by relationship3.21.Wemanaged to turn an algebraic
property (diagonality) of the cumulants of the (sphered) observations into
a contrast function—a functional of the distribution of the output Y = V†Z.
This fact guarantees that the resulting estimates are equivariant (Cardoso,
1995).

The price to pay with this technique for reconciling the algebraic ap-
proach with the naturally equivariant contrast-based approach is twofold:
it entails the computation of a large (actually, maximal) set of cumulant
matrices and the joint diagonalization of P = n2 matrices, which is at least
as costly as P times the diagonalization of a single matrix. However, the
overall computational burden may be similar (see examples in section 5) to
the cost of adaptive algorithms. This is because the cumulant matrices need
to be estimated once for a given data set and because it exists as a reason-
ably efficient joint diagonalization algorithm (see section 4) that is not based
on gradient-style optimization; it thus preserves the possibility of exploit-
ing the underlying algebraic nature of the contrast function, equation 3.11.
Several tricks for increasing efficiency are also discussed in section 4.

4 Jacobi Algorithms

This section describes algorithms for ICA sharing a common feature: a Ja-
cobi optimization of an orthogonal contrast function as opposed to opti-
mization by gradient-like algorithms. The principle of Jacobi optimization
isapplied toadata-basedalgorithm,a statistic-basedalgorithm,and amixed
approach.

The Jacobi method is an iterative technique of optimization over the
set of orthonormal matrices. The orthonormal transform is obtained as a
sequenceofplane rotations.Eachplane rotation isa rotation applied to apair
of coordinates (hence the name: the rotation operates in a two-dimensional
plane). IfY is an n×1vector, the (i, j)th plane rotation by an angle θij changes
the coordinates i and j of Y according to[

Yi

Yj

]
←

[
cos(θij) sin(θij)

− sin(θij) cos(θij)

] [
Yi

Yj

]
, (4.1)

while leaving theother coordinates unchanged.Asweep isonepass through
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all the n(n − 1)/2 possible pairs of distinct indices. This idea is classic in
numerical analysis (Golub & Van Loan, 1989); it can be considered in a
wider context for the optimization ofany functionofan orthonormal matrix.
Comon introduced the Jacobi technique for ICA (see Comon, 1994 for a
data-based algorithm and an earlier reference in it for the Jacobi update of
high-order cumulant tensors). Such a data-based Jacobi algorithm for ICA
works through a sequence of Jacobi sweeps on the sphered data until a
given orthogonal contrast φ(Y) is optimized. This can be summarized as:

1. Initialization. Compute a whitening matrix W and set Y = WX.

2. One sweep. For all n(n − 1)/2 pairs, that is for 1 ≤ i < j ≤ n, do:

a. Compute the Givens angle θij, optimizing φ(Y) when the pair
(Yi, Yj) is rotated.

b. Ifθij < θmin,do rotate the pair (Yi, Yj) according to equation 4.1.

3. If no pair has been rotated in previous sweep, end. Otherwise go to 2
for another sweep.

Thus, the Jacobi approach considers a sequence of two-dimensional ICA
problems. Of course, the updating step 2b on a pair (i, j) partially undoes
the effect of previous optimizations on pairs containing either i or j. For this
reason, it is necessary to go through several sweeps before optimization is
completed.However,Jacobialgorithmsareoftenveryefficientand converge
in a small number of sweeps (see the examples in section 5), and a key point
is that each plane rotation depends on a single parameter, the Givens angle
θij, reducing the optimization subproblem at each step to a one-dimensional
optimization problem.

An important benefit of basing ICA on fourth-order contrasts becomes
apparent: because fourth-order contrasts are polynomial in the parameters,
the Givens angles can often be found in close form.

In the above scheme, θmin is a small angle, which controls the accuracy
of the optimization. In numerical analysis, it is determined according to
machine precision. For a statistical problem as ICA, θmin should be selected
in suchaway that rotationsbya smaller angle arenot statistically significant.

In our experiments, we take θmin to scale as 1/
√

T, typically: θmin = 10−2√
T

.

This scaling can be related to the existence of a performance bound in the
orthogonal approach to ICA(Cardoso, 1994).This value does not seem to be
critical, however, because we have found Jacobi algorithms to be very fast
at finishing.

In the remainder of this section, we describe three possible implemen-
tations of these ideas. Each one corresponds to a different type of contrast
function and to different options about updating. Section 4.1 describes a
data-based algorithm optimizing φOML(Y); section 4.2 describes a statistic-
based algorithmoptimizingφJADE(Y);section4.3presents a mixedapproach
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optimizing φSH(Y); finally, section 4.4 discusses the relationships between
these contrast functions.

4.1 A Data-BasedJacobiAlgorithm:MaxKurt. Westart bya Jacobi tech-
nique for optimizing the approximation, equation 3.9, to the orthogonal
likelihood. For the sake of exposition, we consider a simplified version of
φOML(Y) obtained by setting k(S1) = k(S2) = . . . = k(Sn) = k, in which
case the minimization of contrast function, equation 3.9, is equivalent to the
minimization of

φMK(Y)
def= −k

∑
i

QY
iiii. (4.2)

This criterion is also studied by Moreau and Macchi (1996), who propose a
two-stage adaptive procedure for its optimization; it also serves as a start-
ing point for introducing the one-stage adaptive algorithm of Cardoso and
Laheld (1996).

Denote Gij(θ) the plane rotation matrix that rotates the pair (i, j) by an
angle θ as in step 2b above. Then simple trigonometry yields:

φMK(Gij(θ)Y) = µij − kλij cos(4(θ − 	ij)), (4.3)

where µij does not depend on θ and λij is nonnegative. The principal deter-
mination of angle 	ij is characterized by

	ij = 1

4
arctan

(
4QY

iiij − 4QY
ijjj , QY

iiii + QY
jjjj − 6QY

iijj

)
, (4.4)

where arctan(y, x) denotes the angle α ∈ (−π, π] such that cos(α) = x√
x2+y2

and sin(α) = y√
x2+y2

. If Y is a zero-mean sphered vector, expression 4.3

further simplifies to

	ij = 1

4
arctan

(
4E

(
Y3

i Yj − YiY
3
j

)
, E

(
(Y2

i − Y2
j )

2 − 4Y2
i Y

2
j

) )
. (4.5)

The computations are given in the appendix. It is now immediate to mini-
mize φMK(Y) for each pair of components and for either choice of the sign
of k. If one looks for components with positive kurtosis (often called super-
gaussian), the minimization of φMK(Y) is identical to the maximization of
the sum of the kurtosis of the components since we have k > 0 in this case.
The Givens angle simply is θ = 	ij since this choice makes the cosine in
equation 4.2 equal to its maximum value.

We refer to the Jacobi algorithm outlined above as MaxKurt. A Matlab
implementation is listed in the appendix, whose simplicity is consistent
with the data-based approach. Note, however, that it is also possible to use
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the same computations in a statistic-based algorithm. Rather than rotating
the data themselves at each step by equation 4.1, one instead updates the
set of all fourth-order cumulants according to the transformation law, equa-
tion 3.13, with the Givens angle for each pair still given by equation 4.3. In
this case, the memory requirement is O(n4) for storing all the cumulants as
opposed to nT for storing the data set.

The case k < 0 where, looking for light-tailed components, one should
minimize the sum of the kurtosis is similar.Thisapproachcould beextended
to kurtosis of mixed signs but the contrast function then has less symmetry.
This is not included in this article.

4.1.1 Stability. What is the effect of the approximation of equal kurtosis
made to derive the simple contrast φMK(Y)? When X = AS with S of inde-
pendent components, we can at least use the stability result of Cardoso and
Laheld (1996),which applies directly to this contrast. Define the normalized
kurtosis as κi = σ−4

i k(Si). Then B = A−1 is a stable point of the algorithm
with k > 0 if κi + κj > 0 for all pairs 1 ≤ i < j ≤ n. The same condition also
holds with all signs reversed for components with negative kurtosis.

4.2A Statistic-Based Algorithm: JADE. This section outlines the JADE
algorithm (Cardoso & Souloumiac, 1993), which is specifically a statistic-
based technique. We do not need to go into much detail because the general
technique follows directly from the considerations of section 3.3. The JADE
algorithm can be summarized as:

1. Initialization. Estimate a whitening matrix Ŵ and set Z = ŴX.

2. Form statistics. Estimate a maximal set {Q̂Z
i } of cumulant matrices.

3. Optimize an orthogonal contrast. Find the rotation matrix V̂ such that
the cumulant matrices are as diagonal as possible, that is, solve V̂ =
arg min

∑
i Off(V†Q̂Z

i V).

4. Separate. Estimate A as Â = V̂Ŵ−1 and/or estimate the components
as Ŝ = Â−1X = V̂†Z.

This is a Jacobi algorithm because the joint diagonalizer at step 3 is found
by a Jacobi technique. However, the plane rotations are applied not to the
data (which are summarized in the cumulant matrices) but to the cumu-
lant matrices themselves; the algorithm updates not data but matrix-valued
statistics of the data. As with MaxKurt, the Givens angle at each step can
be computed in closed form even in the case of possibly complex matrices
(Cardoso & Souloumiac, 1993). The explicit expression for the Givens an-
gles is not particularly enlightening and is not reported here. (The interested
reader is referred to Cardoso &Souloumiac, 1993,and may request a Matlab
implementation from the author.)
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A key issue is the selection of the cumulant matrices to be involved in the
estimation. As explained in section 3.2, the joint diagonalization criterion∑

i Off(V†Q̂Z
i V) is made identical to the contrast function, equation 3.11, by

using a maximal set of cumulant matrices. This is a bit surprising but very
fortunate. We do not know of any other way for a priori selecting cumu-
lant matrices that would offer such a property (but see the next section).
In any case, it guarantees equivariant estimates because the algorithm, al-
though operating on statistics of the sphered data, also optimizes implicitly
a function of Y = V†Z only.

Before proceeding, we note that true cumulant matrices can be exactly
jointly diagonalized when the model holds, but this is no longer the case
when we process real data. First, only sample statistics are available; second,
the model X = AS with independent entries in S cannot be expected to
hold accurately in general. This is another reason that it is important to
select cumulant matrices such that

∑
i Off(V†Q̂Z

i V) isa contrast function.
In this case, the impossibility of an exact joint diagonalization corresponds
to the impossibility of finding Y = BX with independent entries. Making
a maximal set of cumulant matrices as diagonal as possible coincides with
making the entries of Y as independent as possible as measured by (the
sample version of) criterion 3.11.

There are several options for estimating a maximal set of cumulant matri-
ces.Recall that sucha set isdefinedas {QZ(Mi)|i = 1, n2}where {Mi|i = 1, n2}
is any basis for the n2-dimensional linear space ofn×n matrices. Acanonical
basis for this space is {epe†

q|1 ≤ p, q ≤ n}, where ep is a column vector with a
1 in pth position and 0’s elsewhere. It is readily checked that

[QZ(epe
†
q)]ij = Cum(Zi, Zj, Zp, Zq). (4.6)

In other words, the entries of the cumulant matrices for the canonical basis
are just the cumulants ofZ.Abetter choice is to consider a symmetric/skew-
symmetric basis. Denote Mpq an n ×n matrix defined as follows: Mpq = epe†

p

if p = q, Mpq = 2−1/2(epe†
q+eqe†

p) if p < qand Mpq = 2−1/2(epe†
q−eqe†

p) if p > q.
This is an orthonormal basis ofRn×n.Wenote that becauseof the symmetries
of the cumulants QZ(epe†

q) = QZ(eqe†
p) so that QZ(Mpq) = 2−1/2QZ(epe†

q) if

p < q and QZ(Mpq) = 0 if p > q. It follows that the cumulant matrices
QZ(Mpq) for p > q do not even need to be computed. Being identically
zero, they do not enter in the joint diagonalization criterion. It is therefore
sufficient to estimate and to diagonalize n+n(n−1)/2(symmetric) cumulant
matrices.

There isanother idea to reduce the sizeofthe statisticsneeded to represent
exhaustively the fourth-order information. It is, however, applicable only
when the model X = AS holds. In this case, the cumulant matrices do have
the structure shown at equation 3.18, and their sample estimates are close
to it for large enough T. Then the linear mapping M → QZ(M) has rank n
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(more precisely, its rank is equal to the number of components with nonzero
kurtosis) because there are n linear degrees of freedom for matrices in the
form U�U†, namely, the n diagonal entries of �. From this fact and from
the symmetries of the cumulants, it follows that it exists n eigenmatrices
E1, . . . , En, which are orthonormal, and satisfies QZ(Ei) = µiEi where the
scalar µi is the corresponding eigenvector. These matrices E1, . . . , En span
the range of the mapping M → QZ(M), and any matrix M orthogonal to
them is in the kernel, that is, QZ(M) = 0.This shows that all the information
contained in QZ can be summarized by the n eigenmatrices associated with
the n nonzero eigenvalues. By inserting M = uiu†

i in the expressions 3.18
and using the orthonormality of the columns of U (that is, u†

i uj = δij), it is
readily checked that a set of eigenmatrices is {Ei = uiu†

i }.
The JADE algorithm was originally introduced as performing ICA by a

joint approximate diagonalization of eigenmatrices in Cardoso and Soulou-
miac (1993),whereweadvocated the joint diagonalization ofonly the n most
significant eigenmatrices ofQZ as a device to reduce the computational load
(even though the eigenmatrices are obtained at the extra cost of the eigende-
composition of an n2 × n2 array containing all the fourth-order cumulants).
The number of statistics is reduced from n4 cumulants or n(n + 1)/2 sym-
metric cumulant matrices of size n×n to a set ofn eigenmatrices of size n×n.
Such a reduction is achieved at no statistical loss (at least for large T) only
when the model holds. Therefore,we do not recommend reduction to eigen-
matrices when processing data sets for which it is not clear a priori whether
the model X = AS actually holds to good accuracy. We still refer to JADE
asthepr ocess of jointly diagonalizing a maximal set of cumulant matrices,
even when it is not further reduced to the n most significant eigenmatrices.
It should also be pointed out that the device of truncating the full cumu-
lant set by reduction to the most significant matrices is expected to destroy
the equivariance property when the model does not hold. The next section
shows how these problems can be overcome in a technique borrowing from
both the data-based approach and the statistic-based approach.

4.3 A Mixed Approach: SHIBBS. In the JADEalgorithm, a maximal set
of cumulant matrices is computed as a way to ensure equivariance from
the joint diagonalization of a fixed set of cumulant matrices. As a benefit,
cumulants are computed only once in a single pass through the data set,
and the Jacobi updates are performed on these statistics rather than on the
whole data set. This is a good thing for data sets with a large number T of
samples. On the other hand, estimating a maximal set requires O(n4T) oper-
ations, and its storage requires O(n4) memory positions. These figures can
becomeprohibitive when looking for a large number of components. In con-
trast, gradient-based techniques have to store and update nT samples. This
section describes a technique standing between the two extreme positions
represented by the all-statistic approach and the all-data approach.
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Recall that an algorithm is equivariant as soon as its operation can be
expressed only in terms of the extracted components Y (Cardoso, 1995).
This suggests the following technique:

1. Initialization. Select a fixed set M = {M1, . . . , MP} of n × n matrices.
Estimate a whitening matrix Ŵ and set Y = ŴX.

2. Estimate arotation. Estimate the set {Q̂Y(Mp)|1 ≤ p ≤ P} of P cumulant
matrices and find a joint diagonalizer V of it.

3. Update. IfV is close enough to the identity transform, stop. Otherwise,
rotate the data: Y ← V†Y and go to 2 .

Suchan algorithm is equivariant thanks to the reestimation of the cumulants
ofY after updating. It is in somesensedata based since the updating in step 3
is on the data themselves. However, the rotation matrix to be applied to the
data is computed in step 2 as in a statistic-based procedure.

What would be a good choice for the set M? The set of n matrices M =
{e1e†

1, . . . , ene†
n} seems a natural choice: it is an order of magnitude smaller

than the maximal set, which contains O(n2) matrices. The kth cumulant
matrix in such a set is QY(eke†

k), and its (i, j)th entry is Cum(Yi, Yj, Yk, Yk),
which is just an n × n square block of cumulants of Y. We call the set of n
cumulant matrices obtained in this way when k is shifted from 1 to n the
set of SHIfted Blocks for Blind Separation (SHIBBS), and we use the same
name for the ICA algorithm that determines the rotation V by an iterative
joint diagonalization of the SHIBBS set.

Strikingly enough, the small SHIBBSset guarantees a performance iden-
tical to JADEwhen themodelholds for the following reason. Consider the final
step of the algorithm where Y is close to S if it holds that X = AS with S
of independent components. Then the cumulant matrices QY(epe†

q) are zero
for p �= q because all the cross-cumulants of Y are zero. Therefore, the only
nonzero cumulant matrices used in the maximal set of JADEare those corre-
sponding to ep = eq, i.e.precisely those included inSHIBBS.Thus theSHIBBS
set actually tends to the set of “significant eigen-matrices” exhibited in the
previous section. In this sense, SHIBBS implements the original program
of JADE—the joint diagonalization of the significant eigen-matrices—but it
does so without going through the estimation of the whole cumulant set
and through the computation of its eigen-matrices.

Does the SHIBBS algorithm correspond to the optimization of a con-
trast function? We cannot resort to the equivalence of JADE and SHIBBS
because it is established only when the model holds and we are looking
for a statement independent of this later fact. Examination of the joint di-
agonality criterion for the SHIBBS set suggests that the SHIBBS technique
solves the problem of optimizing the contrast function φSH(Y) defined in
equation 3.12. As a matter of fact, the condition for a given Y to be a fixed
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point of the SHIBBS algorithm is that for any pair 1 ≤ i < j ≤ n:∑
k

Cum(Yi, Yj, Yk, Yk) (Cum(Yi, Yi, Yk, Yk)

− Cum(Yj, Yj, Yk, Yk)
) = 0, (4.7)

and we can prove that this is also the stationarity condition of φSH(Y). We
do not include the proofs of these statements, which are purely technical.

4.4 Comparing Fourth-Order Orthogonal Contrasts. We have consid-
ered two approximations, φJADE(Y) and φSH(Y), to the minimum marginal
entropy/mutual information contrast φMI(I), which are based on fourth-
order cumulants and can be optimized by Jacobi technique. The approxi-
mation φME

24 (Y) proposed by Comon also belongs to this category. One may
wonder about the relative statistical merits of these three approximations.
The contrast φME

24 (Y) stems from an Edgeworth expansion for approximat-
ing φME(Y), which in turn has been shown to derive from the ML principle
(see section 2). Since ML estimation offers (asymptotic) optimality proper-
ties, one may be tempted to conclude to the superiority ofφME

24 (Y).However,
this is not the case, as discussed now.

First, when the ICA model holds, it can be shown that even though
φME

24 (Y) and φJADE(Y) are different criteria, they have the same asymptotic
performance when applied to sample statistics (Souloumiac & Cardoso,
1991). This is also true of φSH(Y) since we have seen that it is equivalent to
JADE in this case (a more rigorous proof is possible, based on equation 4.7,
but is not included).

Second, when the ICA model does not hold, the notion of identification
accuracy does not make sense anymore, but one would certainly favor an
orthogonal contrast reaching its minimum at a point as close as possible
to the point where the “true” mutual information φME(Y) is minimized.
However, it seems difficult to find a simple contrast (such as those consid-
ered here) that would be a good approximation to φME(Y) for any wide
class of distributions of X. Note that the ML argument in favor of φME

24 (Y)

is based on an Edgeworth expansion that is valid for “almost gaussian”
distributions—those distributions that make ICA very difficult and of du-
bious significance: In practice, ICA should be restricted to data sets where
the components show a significant amount of nongaussianity, in which case
the Edgeworth expansions cannot be expected to be accurate.

There is another way than Edgeworth expansion for arriving at φME
24 (Y).

Consider cumulant matching: the matching of the cumulants of Y to the
corresponding cumulants of a hypothetical vector S with independent com-
ponents. The orthogonal contrast functions φJADE(Y), φSH(Y), and φME

24 (Y)

can be seen as matching criteria because they penalize the deviation of the
cross-cumulants of Y from zero (which is the value of cross-cumulants of
a vector S with independent components, indeed), and they do so under
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the constraint that Y is white—that is, by enforcing an exact match of the
second-order cumulants of Y.

It is possible to devise an asymptotically optimal matching criterion by
taking into account the variability of the sample estimates of the cumulants.
Such a computation is reported in Cardoso et al. (1996) for the matching
of all second- and fourth-order cumulants of complex-valued signals, but a
similar computation is possible for real-valued problems. It shows that the
optimal weighting of the cross-cumulants depends on the distributions of
the components so that the “flat weighting” of all the cross-cumulants, as
in equation 3.10, is not the best one in general. However, in the limit of “al-
most gaussian” signals, the optimal weights tend to values corresponding
precisely to the contrast K24(Y|S) defined in equation 3.5. This is not unex-
pected and confirms that the crude cumulant expansion used in deriving
equation 3.5 is sensible, though not optimal for significantly nongaussian
components.

It seems from the definitions of φJADE(Y), φSH(Y), and φME
24 (Y) that these

different contrasts involve different types of cumulants. This is, however,
an illusion because the compact definitions given above do not take into
account the symmetries of the cumulants: the same cross-cumulant may be
counted several times in each of these contrasts. For instance, the definition
of JADE excludes the cross-cumulant Cum(Y1, Y1, Y2, Y3) but includes the
cross-cumulant Cum(Y1, Y2, Y1, Y3), which is identical. Thus, in order to
determine if any bit of fourth-order information is ignored by any particular
contrast, a nonredundant description should begiven.All thepossiblecross-
cumulants come in four different patterns of indices: (ijkl), (iikl), (iijj), and
(ijjj). Nonredundant expressions in terms of these patterns are in the form:

φ[Y] = Ca

∑
i<j<k<l

eijkl + Cb

∑
i<k<l

(eiikl + ekkil + ellik)

+ Cc

∑
i<j

eiijj + Cd

∑
i<j

(
eijjj + ejjji

)
,

where eijkl
def= Cum(Yi, Yj, Yk, Yl)

2 and the Ci’s are numerical constants. It
remains to count how many times a unique cumulant appears in the redun-
dant definitions of the three approximations to mutual information con-
sidered so far. We give only the result of this uninspiring task in Table 1,
which shows that all the cross-cumulants are actually included in the three
contrasts, which therefore differ only by the different scalar weights given
to each particular type. It means that the three contrasts essentially do the
same thing. Inparticular,when the number n ofcomponents is largeenough,
the number of cross-cumulants of type [ijkl] (all indices distinct) grows as
O(n4), while the number of other types grows as O(n3) at most. Therefore,
the [ijkl] type outnumbers all the other types for large n: one may conjecture
the equivalence of the three contrasts in this limit. Unfortunately, it seems



High-Order Contrasts for Independent Component Analysis 181

Table 1: Number of Times a Cross-Cumulant of a Given Type Appears in a
Given Contrast.

Constants Ca Cb Cc Cd

Pattern ijkl iikl iijj ijjj

Comon ICA 24 12 6 4
JADE 24 10 4 2
SHIBBS 24 12 4 4

difficult to draw more conclusions. For instance, we have mentioned the
asymptotic equivalence between Comon’s contrast and the JADE contrast
for any n, but it does not reveal itself directly in the weight table.

5 A Comparison on Biomedical Data

The performance of the algorithms presented above is illustrated using
the averaged event-related potential (ERP) data recorded and processed
by Makeig and coworkers. A detailed account of their analysis is in Makeig,
Bell, Jung, and Sejnowski (1997). For our comparison, we use the data set
and the “logistic ICA” algorithm provided with version 3.1of Makeig’s ICA
toolbox.3 The data set contains 624 data points of averaged ERP sampled
from 14EEGelectrodes. The implementation of the logistic ICAprovided in
the toolbox is somewhat intermediate between equation 1.1 and its off-line
counterpart: H(Y) is averaged through subblocks of the data set. The non-
linear function is taken to be ψ(y) = 2

1+e−y − 1 = tanh y
2. This is minus the

log-derivative ψ(y) = − r′(y)

r(y)
of the density r(y) = β 1

cosh(y/2)
(β is a normal-

ization constant). Therefore, this method maximizes over A the likelihood of
model X = AS under the assumptions that S has independent components
with densities equal to β 1

cosh(y/2)
.

Figure 1 shows the components YJADE produced by JADE (first col-
umn) and the components YLICA produced by the logistic ICA included
in Makeig’s toolbox, which was run with all the default options; the third
column shows the difference between the components at the same scale.
This direct comparison is made possible with the following postprocess-
ing: the components YLICA were normalized to have unit variance and were
sorted by increasing values of kurtosis. The components YJADE have unit
variance by construction; they were sorted and their signs were changed to
match YLICA. Figure 1 shows that YJADE and YLICA essentially agree on 9 of
14 components.

3 Available from http://www.cnl.salk.edu/∼scott/.
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JADE Logistic ICA Difference

Figure 1: The source signals estimated by JADE and the logistic ICA and their
differences.
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Another illustration of this fact is given by the first row of Figure 2. The
left panel shows the magnitude |Cij| of the entries of the transfer matrix C
such that C YLICA = YJADE. This matrix was computed after the postpro-
cessing of the components described in the previous paragraph: it should
be the identity matrix if the two methods agreed, even only up to scales,
signs, and permutations. The figure shows a strong diagonal structure in
the northeast block while the disagreement between the two methods is
apparent in the gray zone of the southwest block. The right panel shows

the kurtosis k(YJADE
i ) plotted against the kurtosis k(YLICA

i ). A key observa-
tion is that the two methods do agree about the most kurtic components;
these also are the components where the time structure is the most visible.
In other words, the two methods essentially agree wherever an human eye
finds the most visible structures. Figure 2 also shows the results of SHIBBS
and MaxKurt. The transfer matrix C for MaxKurt is seen to be more di-
agonal than the transfer matrix for JADE, while the transfer for SHIBBS is
less diagonal. Thus, the logistic ICA and MaxKurt agree more on this data
set. Another figure (not included) shows that JADE and SHIBBSare in very
close agreement over all components.

These results are very encouraging because they show that various ICA
algorithms agree wherever they find structure on this particular data set.
This isvery much in support of the ICAapproach to the processingofsignals
for which it is not clear that the model holds. It leaves open the question
of interpreting the disagreement between the various contrast functions in
the swamp of the low kurtosis domain.

It turns out that the disagreement between the methods on this data
set is, in our view, an illusion. Consider the eigenvalues λ1, . . . , λn of the
covariance matrix RX of the observations. They are plotted on a dB scale
(this is 10log10 λi) in Figure 3. The two least significant eigenvalues stand
rather clearly below the strongest ones with a gap of 5.5 dB. We take this as
an indication that one should look for 12 linear components in this data set
rather than 14, as in the previous experiments. The result is rather striking:
by running JADE and the logistic ICA on the first 12 principal components,
an excellent agreement is found over all the 12 extracted components, as
seen on Figure 4. This observation also holds for MaxKurt and SHIBBS as
shown by Figure 5.

Table 2 lists the number of floating-point operations (as returned by Mat-
lab) and the CPU time required to run the four algorithms on a SPARC 2
workstation. The MaxKurt technique was clearly the fastest here; however,
it was applicable only because we were looking for components with posi-
tive kurtosis. The same is true for the version of logistic ICA considered in
this experiment. It is not true of JADE or SHIBBS, which are consistent as
soon as at most one source has a vanishing kurtosis, regardless of the sign
of the nonzero kurtosis (Cardoso & Souloumiac, 1993). The logistic ICA
required only about 50% more time than JADE. The SHIBBS algorithm is
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Figure 2: (Left column) Absolute values of the coefficients |Cij| of a matrix relat-
ing the signals obtained by two different methods. A perfect agreement would
be for C = I: deviation from diagonal indicates a disagreement. The signals are
sorted by kurtosis, showing a good agreement for high kurtosis. (Right column)
Comparing the kurtosis of the sources estimated by two different methods.
From top to bottom: JADE versus logistic ICA, SHIBBSversus logistic ICA, and
maxkurt versus logistic ICA.



High-Order Contrasts for Independent Component Analysis 185

1 14

−20

−10

0

10

20

Figure 3: Eigenvalues ofthe covariance matrix RX of the data in dB (i.e.,
10log10(λi)).

Table 2: Number of Floating-Point Operations and CPU Time.

Flops CPU Secs. Flops CPU Secs.

Method 14 Components 12 Components

Logistic ICA 5.05e+07 3.98 3.51e+07 3.54
JADE 4.00e+07 2.55 2.19e+07 1.69
SHIBBS 5.61e+07 4.92 2.47e+07 2.35
MaxKurt 1.19e+07 1.09 5.91e+06 0.54

slower than JADE here because the data set is not large enough to give it
an edge. These remarks are even more marked when comparing the figures
obtained in the extraction of 12 components. It should be clear that these
figures do not prove much because they are representative of only a partic-
ular data set and of particular implementations of the algorithms, as well
as of the various parameters used for tuning the algorithms. However, they
do disprove the claim that algebraic-cumulant methods are of no practical
value.

6 Summary and Conclusions

The definitions of classic entropic contrasts for ICA can all be understood
from an ML perspective. An approximation of the Kullback-Leibler diver-
gence yields cumulant-based approximations of these contrasts. In the or-
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JADE Logistic ICA Difference

Figure 4: The 12 source signals estimated by JADE and a logistic ICA out of the
first 12 principal components of the original data.
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Figure 5: Same setting as for Figure 2 but the processing is restricted to the first
12 principal components, showing a better agreement among all the methods.
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thogonal approach to ICA where decorrelation is enforced, the cumulant-
based contrasts canbeoptimized with Jacobi techniques, operating on either
the data or statistics of the data, namely, cumulant matrices. The structure
of the cumulants in the ICA model can be easily exploited by algebraic
identification techniques, but the simple versions of these techniques are
not equivariant. One possibility for overcoming this problem is to exploit
the joint algebraic structure of several cumulant matrices. In particular, the
JADE algorithm bridges the gap between contrast-based approaches and
algebraic techniques because the JADE objective is both a contrast function
and the expression of the eigenstructure of the cumulants. More generally,
the algebraic nature of the cumulants can be exploited to ease the optimiza-
tion of cumulant-based contrasts functions by Jacobi techniques. This can
be done in a data-based or a statistic-based mode. The latter has an increas-
ing relative advantage as the number of available samples increases, but it
becomes impractical for large numbers n of components since the number
of fourth-order cumulants grows as O(n4). This can be overcome to a cer-
tain extent by resorting to SHIBBS, which iteratively recomputes a number
O(n3) of cumulants.

An important objective of this article was to combat the prejudice that
cumulant-based algebraic methods are impractical. We have shown that
they compareverywell to state-of-the-art implementationsofadaptive tech-
niques on a real data set.

More extensive comparisons remain to be done involving variants of the
ideas presented here. A technique like JADE is likely to choke on a very
large number of components, but the SHIBBS version is not as memory
demanding. Similarly, the MaxKurt method can be extended to deal with
components with mixed kurtosis signs. In this respect, it is worth under-
lining the analogy between the MaxKurt update and the relative gradient
update, equation 1.1, when function H(·) is in the form of equation 1.5.

A comment on tuning the algorithms: In order to code an all-purpose
ICA algorithm based on gradient descent, it is necessary to devise a smart
learningschedule.This isusuallybasedonheuristicsand requires the tuning
of some parameters. In contrast, Jacobi algorithms do not need to be tuned
in their basic versions. However, one may think of improving on the regular
Jacobi sweep through all the pairs in prespecified order by devising more
sophisticated updating schedules. Heuristics would be needed then, as in
the case of gradient descent methods.

We conclude with a negative point about the fourth-order techniques
described in this article. By nature, they optimize contrasts correspond-
ing somehow to using linear-cubic nonlinear functions in gradient-based
algorithms. Therefore, they lack the flexibility of adapting the activation
functions to the distributions of the underlying components as one would
ideally do and as is possible in algorithms like equation 1.1. Even worse,
this very type of nonlinear function (linear cubic) has one major drawback:
potential sensitivity to outliers. This effect did not manifest itself in the ex-
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amples presented in this article, but it could indeed show up in other data
sets.

Appendix: Derivation and Implementation of MaxKurt

A.1 Givens Angles for MaxKurt. An explicit form of the MaxKurt con-
trast as a functionof theGivensangles isderived. Forconciseness,wedenote
[ijkl] = QY

ijkl and we define

aij = [iiii] + [jjjj] − 6[iijj]

4
bij = [iiij] − [jjji] λij =

√
a2

ij + b2
ij. (A.1)

The sum of the kurtosis for the pair of variables Yi and Yj after they have
been rotated by an angle θ depends on θ as follows (where we set c = cos(θ)

and s = sin(θ)):

k(cos(θ)Yi + sin(θ)Yj) + k(− sin(θ)Yi + cos(θ)Yj) (A.2)

= c4[iiii] + 4c3s[iiij] + 6c2s2[iijj] + 4cs3[ijjj] + s4[jjjj] (A.3)

+ s4[iiii] − 4s3c[iiij] + 6s2c2[iijj] − 4sc3[ijjj] + c4[jjjj] (A.4)

= (c4 + s4)([iiii] + [jjjj]) + 12c2s2[iijj] + 4cs(c2 − s2)([iiij] − [jjji]) (A.5)

c= −8c2s2 [iiii] + [jjjj] − 6[iijj]

4
+ 4cs(c2 − s2)([iiij] − [jjji]) (A.6)

= −2sin2(2θ)aij + 2sin(2θ) cos(2θ)bij
c= cos(4θ)aij + sin(4θ)bij (A.7)

= λij
(
cos(4θ) cos(4	ij) + sin(4θ) sin(4	ij)

) = λij cos(4(θ − 	ij)). (A.8)

where the angle 4	ij is defined by

cos(4	ij) = aij√
a2

ij + b2
ij

sin(4	ij) = bij√
a2

ij + b2
ij

. (A.9)

This is obtained by using the multilinearity and the symmetries of the cu-
mulants at lines A.3 and A.4, followed by elementary trigonometrics.

If Yi and Yj are zero-mean and sphered, EYiYj = δij, we have [iiii] =
QY

iiii = EY4
i − 3E2Y2

i = EY4
i − 3 and for i �= j: [iiij] = QY

iiij = EY3
i Yj as well as

[iijj] = QY
iijj = EY2

i Y
2
j − 1. Hence an alternate expression for aij and bij is:

aij = 1

4
E

(
Y4

i + Y4
j − 6Y2

i Y
2
j

)
bij = E

(
Y3

i Yj − YiY
3
j

)
. (A.10)

It may be interesting to note that all the moments required to determine
the Givens angle for a given pair (i, j) can be expressed in terms of the two
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variables ξij = YiYj and ηij = Y2
i − Y2

j . Indeed, it is easily checked that for a
zero-mean sphered pair (Yi, Yj), one has

aij = 1

4
E

(
η2

ij − 4ξ2
ij

)
bij = E

(
ηijξij

)
. (A.11)

A.2 A Simple Matlab Implementation of MaxKurt. A Matlab imple-
mentation could be as follows, where we have tried to maximize readability
but not the numerical efficiency:

function Y = maxkurt(X) %
[n T] = size(X) ;
Y = X - mean(X,2)*ones(1,T); % Remove the mean
Y = inv(sqrtm(X*X’/T))*Y ; % Sphere the data
encore = 1 ; % Go for first sweep
while encore, encore=0;

for p=1:n-1, % These two loops go
for q=p+1:n, % through all pairs

xi = Y(p,:).*Y(q,:);
eta = Y(p,:).*Y(p,:) - Y(q,:).*Y(q,:);
Omega = atan2( 4*(eta*xi’), eta*eta’ - 4*(xi*xi’) );

if abs(Omega) > 0.1/sqrt(T) % A ‘statistically small’
% angle

encore = 1 ; % This will not be the
%last sweep

c = cos(Omega/4);
s = sin(Omega/4);
Y([p q],:) = [ c s ; -s c ] * Y([p q],:) ; % Plane

% rotation
end

end
end

end
return
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