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High-Order Contrastsfor Independent Component Analysis
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Thisarticleconsider shigh-order measuresof independence for theinde-
pendent component analysisproblem and discussestheclassof Jacobi al-
gorithmsfor their optimization. Several implementations are discussed.
We compare the proposed approaches with gradient-based techniques
from the algorithmic point of view and also on a set of biomedical data.

1 Introduction

Given an n x 1 random vector X, independent component analysis (ICA)
consigts of finding abasis of R" on which the coefficients of X are asinde-
pendent as possible (in some appropriate sense). The change of basis can
be represented by an n x n matrix B and the new coefficients given by the
entries of vector Y = BX. When the observation vector X is modeled as a
linear superposition of source signals, matrix B is understood as a separat-
ing matrix, and vector Y = BX isavector of source signals. Two key issues
of ICA are the definition of a measure of independence and the design of
algorithms to find the change of basis (or separating matrix) B optimizing
this measure.

Many recent contributions to the ICA problem in the neural network
literature describe stochastic gradient algorithms involving as an essential
device in their learning rule a nonlinear activation function. Other ideas
for ICA, most of them found in the signal processing literature, exploit the
algebraic structure of high-order moments of the observations. They are of -
ten regarded asbeing unreliable, inaccurate, slowly convergent, and utterly
sensitive to outliers. As a matter of fact, it is fairly easy to devise an ICA
method displaying all these flaws and working on only carefully generated
synthetic data sets. This may be the reason that cumulant-based algebraic
methods arelargely ignored by the researchers of the neural network com-
munity involved in ICA. This article tries to correct this view by showing
how high-order correlations can be efficiently exploited to reveal indepen-
dent components.

This article describes several ICA algorithms that may be called Jacobi
algorithms because they seek to maximize measures of independence by a
technique akin to the Jacobi method of diagonalization. These measures of
independence are based on fourth-order correlations between the entries
of Y. As a benefit, these algorithms evades the curse of gradient descent:
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they can movein macroscopic stepsthrough the parameter space. They also
have other benefits and drawbacks, which are discussed in the article and
summarizedinafinal section. Before outlining the content of thisarticle, we
briefly review some gradient-based | CA methods and the notion of contrast
function.

1.1 Gradient Techniques for ICA. Many online solutions for ICA that
have been proposed recently have the merit of a simple implementation.
Among these adaptive procedures, a specific class can be singled out: al-
gorithms based on a multiplicative update of an estimate B(t) of B. These
algorithms update a separating matrix B(t) on reception of a new sample
x(t) according to the learning rule

y(® = BOx(), Bit+1) = (I — uHy(®)) B, (€

where | denotesthe n x nidentity matrix, {u} isa scalar sequence of pos-
itive learning steps, and H: R" — R™" is avector-to-matrix function. The
stationary points of such algorithms are characterized by the condition that
the update has zero mean, that is, by the condition,

EH(Y) = 0. (12

The online scheme, in equation 1.1, can be (and often is) implemented in
an off-line manner. Using T samples X(2), ..., X(T), one goes through the
following iterations wherethe field H isaveraged over all the data points:

1. Initialization. Sety(t) = x(t) fort=1,..., T.
2. Estimatethe averagefidld. 1 = 2 3" H(y(®).

3. Update. If H issmall enough, stop; else update each data point y(t) by
y(t) < (I — wH)y(t) and go to 2.

The algorithm stops for a (arbitrarily) small value of the average field: it
solves the estimating equation,

1 T
T2 Hy®) =0 @3
t=1

which is the sample counterpart of the stationarity condition in equation
12

Both the online and off-line schemes are gradient algorithms: the map-
ping H(-) can be obtained asthe gradient (therelative gradient [Cardoso &
Laheld, 1996] or Amari’ snatural gradient [1996]) of some contrast function,
that is, a real-valued measure of how far the distribution Y is from some
ideal distribution, typically a distribution of independent components. In
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particular, the gradient of theinfomax—maximum likelihood (ML) contrast
yieldsafunction H(-) in theform

Hy) = vy’ -1, (149

where ¢ (y) isan n x 1 vector of component-wise nonlinear functions with
¥i(-) taken to be minusthe log derivative of the density of thei component
(see Amari, Cichocki, & Yang, 1996, for the online version and Pham &
Garat, 1997, for abatch technique).

1.2 The Orthogonal Approach to ICA. In the search for independent
components, one may decide, as in principal component analysis (PCA),
to request exact decorrelation (second-order independence) of the compo-
nents: matrix B should besuchthat Y = BX is“spatialy white,” that is, its
covariance matrix is the identity matrix. The algorithms described in this
article take this design option, which we call the orthogonal approach.

It must be stressed that components that are as independent as possible
according to some measure of independence are not necessarily uncorre-
lated because exact independence cannot be achieved in most practical ap-
plications. Thus, if decorrelation is desired, it must be enforced explicitly;
the algorithms described below optimize under the whiteness constraint
approximations of the mutual information and of other contrast functions
(possibly designed to take advantage of the whiteness constraint).

One practical reason for considering the orthogonal approach isthat off-
line contrast optimization may be simplified by a two-step procedure as
follows. First, a whitening (or “sphering”) matrix W is computed and ap-
plied to the data. Since the new data are spatially white and one is aso
looking for awhite vector Y, thelatter can be obtained only by an orthonor-
mal transformation V of thewhitened databecause only orthonormal trans-
forms can preserve the whiteness. Thus, in such a scheme, the separating
matrix Bisfound as a product B = VW. This approach leads to interesting
implementati ons because the whitening matrix can be obtai ned straightfor-
wardly asany matrix square root of the inverse covariance matrix of X and
the optimization of a contrast function with respect to an orthonormal ma-
trix can also be implemented efficiently by the Jacobi technique described
in section 4.

The orthonormal approach to ICA need not be implemented as a two-
stage Jacobi-based procedure; it al so existsasaone-stagegradient algorithm
(seeasoCardoso & L aheld, 1996). Assumethat therel ative/natural gradient
of some contrast function leads to a particular function H(-) for the update
rule, equation 1.1, with stationary pointsgiven by equation 1.2. Thenthe sta-
tionary pointsfor the optimi zation of the same contrast functionwith respect
to orthonormal transformations are characterized by EH(Y) — HY)T = 0
wherethe superscript T denotes transposition. On the other hand, for zero-
mean variables, the whiteness constraint is EYYT = |, which we can aso
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writeasEYYT — | = 0. Because EYYT — | isasymmetric matrix matrix while
EH(Y) — HY)T is a skew-symmetric matrix, the whiteness condition and
the stationarity condition can be combined in a single one by just adding
them. The resulting condition is E{YYT — | + H(Y) — H(Y)T} = 0. When it
holds true, both the symmetric part and the skew-symmetric part cancel;
the former expressesthat Y iswhite, the latter that the contrast function is
stationary with respect to al orthonormal transformations.

Thus, if thealgorithmin equation 1.1 optimizesagiven contrast function
with H given by equation 1.4, then the same algorithm optimizes the same
contrast function under the whiteness constraint with H given by

Hy) =w —1+yyy —ypy' (15)

It is thus simple to implement orthogonal versions of gradient algorithms
oncearegular version isavailable.

1.3 Data-Based Ver susStatistic-Based Techniques. Comon (1994) com-
pares the data-based option and the statistic-based option for computing
off-linean ICA of abatch x(2), ..., x(T) of T samples; this article will also
introduceamixed strategy (seesection 4.3). Inthedata-based option, succes-
sivelinear transformationsare applied to the data set until somecriterion of
independence is maximized. Thisistheiterative technique outlined above.
Notethat it isnot necessary to update explicitly aseparating matrix Binthis
scheme (although one may decide to do so in aparticular implementation);
the data themselves are updated until the average field % Zthl H(y(t)) is
small enough; the transform B is implicitly contained in the set of trans-
formed data.

Another option isto summarizethe data set into asmaller set of statistics
computed once and for al from the data set; the algorithm then estimates
a separating matrix as a function of these statistics without accessing the
data. Thisoption may be followed in cumulant-based algebraic techniques
where the statistics are cumulants of X.

1.4 Outlineof theArticle. Insection 2, the ICA problemisrecastin the
framework of (blind) identification, showing how entropic contrastsreadily
stem from the maximum likelihood (ML) principle. In section 3, high-order
approximationsto the entropic contrastsaregiven, and their algebraic struc-
tureisemphasized. Section 4 describesdifferent flavors of Jacobi algorithms
optimizing fourth-order contrast functions. A comparison between Jacobi
techniques and a gradient-based algorithm isgiven in section 5 based on a
real data set of electroencephal ogram (EEG) recordings.
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2 Contrast Functionsand Maximum Likelihood | dentification

Implicitly or explicitly, ICA triesto fit amodel for the distribution of X that
isamodel of independent components: X = AS, where A is an invertible
nx nmatrix and Sisan n x 1vector with independent entries. Estimating the
parameter A from samples of X yields aseparating matrix B= A1, Even if
themodel X = ASisnot expected to hold exactly for many real datasets, one
can gtill useit to derive contrast functions. This section exhibitsthe contrast
functions associated with the estimation of A by the ML principle (amore
detailed exposition can be found in Cardoso, 1998). Blind separation based
on ML wasfirst considered by Gaeta and Lacoume (1990) (but the authors
used cumulant approximations as those described in section 3), Pham and
Garat (1997), and Amari et a. (1996).

2.1 Likelihood. Assume that the probability distribution of each entry
S of Shas adensity ri(-).! Then, the distribution Ps of the random vector
Shasadensity r(-) intheformr(s) = Hi”:l ri(s), and the density of X for a
given mixture A and agiven probability density r(-) is.
p(x; A, r) = | det A|"r(A™1x), 22)
so that the (normalized) log-likelihood Lt (A, r) of T independent samples
X2, ..., x(T) of Xis

1 T
Lr(A.1) € =" logp(x(t): A1)
t=1

1T
= = logr(A™x(t) — log| det A. 22
T=
Depending on the assumptions made about the densitiesry, . .., rp, several

contrast functions can be derived from this log-likelihood.
2.2 Likelihood Contrast. Under mild assumptions, the normalized log-

likelihood Lt (A, r), which is a sample average, convergesfor large T to its
ensemble average by law of large numbers:

.
Lr(A, 1) = % > “logr(A=x(t)) — log| det A|
t=1

—>T_00 Elogr(A=1x) — log| det A|, 23)

1 All densities considered in this article are with respect to the L ebesgue measure on
Ror R
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which simple manipul ations (Cardoso, 1997) show to beequal to —H (Px) —
K(Pvy|Ps). Here and in the following, H(-) and K(:|-), respectively, denote
the differential entropy and the Kullback-Leibler divergence. Since H(Px)
does not depend on the model parameters, thelimit for largeT of —Lt(A, r)
is, up to a constant, equal to

M) E K(Py[Ps). 24

Therefore, the principle of ML coincideswith the minimization of aspecific
contrast function, which isnothing but the (Kullback) divergence K (Py|Ps)
between the distribution Py of the output and amodel distribution Ps.

The classic entropic contrasts follow from this observation, depending
ontwo options: (1) trying or not to estimate Ps from the dataand (2) forcing
or not the components to be uncorrel ated.

2.3 Infomax. The technically simplest statistical assumption about Pgs
is to sdlect fixed densitiesry, ..., ry for each component, possibly on the
basis of prior knowledge. Then Psisafixed distributional assumption, and
the minimization of pM-(Y) is performed only over Py viaY = BX. This
can be rephrased: Choose B such that Y = BX is as close as possible in
distribution to the hypothesized model distribution Ps, the closeness in
distribution being measured in the Kullback divergence. This is also the
contrast function derived from theinfomax principle by Bdl and Sgjnowski
(1995). The connection between infomax and ML was noted in Cardoso
(1997), MacKay (1996), and Pearl mutter and Parra (1996).

24 Mutual Information. Thetheoretically simplest statistical assump-
tion about Ps isto assume no model at all. In this case, the Kullback mis-
match K(Py|Ps) should be minimized not only by optimizing over B to
changethedistribution of Y = BX but alsowith respect to Ps. For each fixed
B, that is, for each fixed distribution Py, the result of this minimization is
theoretically very simple: the minimum is reached when Ps = Py, which
denotes the distribution of independent components with each marginal
distribution equal to the corresponding marginal distribution of Y. This
stems from the property that

K(Py|Ps) = K(Py|Py) + K(Py|Ps) 25
for any distribution Ps with independent components (Cover & Thomas,
1991). Therefore, the minimum in Ps of K (Py|Ps) isreached by taking Ps =

Py since this choice ensures K (Py|Ps) = 0. The value of ¢ML at this point
thenis

M) &€ mMInK (Py|Ps) = K(PyIPy). 26)
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We use the index MI since this quantity is well known as the mutual in-
formation between the entries of Y. It wasfirst proposed by Comon (1994),
and it can be seen from the above as deriving from the ML principle when
optimization iswith respect to both the unknown system A and the distri-
bution of S. This connection was also noted in Obradovic and Deco (1997),
and therelation between infomax and mutual information isal so discussed
in Nadal and Parga (1994).

25 Minimum Marginal Entropy. An orthogonal contrast ¢(Y) is, by
definition, to be optimized under the constraint that Y is spatially white:
orthogonal contrasts enforcedecorrelation, that is, an exact “ second-order”
independence. Any regular contrast can be used under the whiteness con-
straint, but by taking the whiteness constraint into account, the contrast
may begivenasimpler expression. Thisisthe case of some cumulant-based
contrasts described in section 3. Itisalso the case of pM! (Y) because the mu-
tual information can also be expressed as ™' (Y) = YL, H(Py,) — H(Py);
since the entropy H(Py) is constant under orthonormal transforms, it is
equivalent to consider

n
pME(Y) =) H(Py,) @7
i=1
to be optimized under the whiteness constraint EYYT = I. This contrast

couldbecalled orthogonal mutual information, or themarginal entropy con-
trast. The minimum entropy idea holds more generally under any volume-
preserving transform (Obradovic & Deco, 1997).

2.6 Empirical Contrast Functions. Among all the above contrasts, only
#ML or its orthogonal version are easily optimized by a gradient technique
because the relative gradient of M- simply is the matrix EH(Y) with H(-)
defined in equation 1.4. Therefore, therelative gradient algorithm, equation
1.1, canbeemployed using either thisfunction H(-) or itssymmetrized form,
equation 1.5, if one choosesto enforcedecorrelation. However, this contrast
is based on a prior guess Ps about the distribution of the components. If
theguessistoofar off,  algorithmwill fail to discover independent com-
ponents that might be present in the data. Unfortunately, evaluating the
gradient of contrasts based on mutual information or minimum marginal
entropy is more difficult because it does not reduce to the expectation of
asimple function of Y; for instance, Pham (1996) minimizes explicitly the
mutual information, but the algorithm involves a kernel estimation of the
marginal distributionsof Y. Anintermediate approachisto consider apara-
metric estimation of these distributions asin Moulines, Cardoso, and Gas-
siat (1997) or Pearlmutter and Parra (1996), for instance. Therefore, all these
contrastsrequirethat the distributions of componentsbe known, or approx-
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imated or estimated. As we shall see next, thisis aso what the cumulant
approximations to contrast functions areimplicitly doing.

3 Cumulants

This section presents higher-order approximations to entropic contrasts,
some known and some novel. To keep the exposition simple, it isrestricted
to symmetric distributions (for which odd-order cumulants areidentically
zero) and to cumulants of orders 2 and 4. Recdl that for random variables
X4, ..., X4, second-order cumulantsareCum(X1, X2) & EX;X,whereX; &
Xj — EX; and the fourth-order cumulants are

Cum(Xy, Xz, X3, Xg) =
EX1X2X3X4 — EX1XoEX3X4 — EX1X3EX X4 — EX1X4EXoXa.  (3.1)

Thevariance and the kurtosis of areal random variable X are defined as

o200 € cum(x, X) = EX2,
ko) ¥ cum(x, X, X, X) = EX* — 3E2X2, (32)

that is, they are the second- and fourth-order autocumulants. A cumulant
involving at least two different variablesis called a cross-cumulant.

3.1 Cumulant-Based Approximations to Entropic Contrasts. Cumu-
lants are useful in many ways. In this section, they show up because the
probability density of ascalar random variable U closeto the standard nor-
mal n(u) = (27)~Y2exp —u?/2 can be approximated as

o2(U) -1

p(u) ~ n(u) (1—1— >

kU
et + <G R ). (33

wherehy(u) = u? — 1and hy(u) = u* — 6u? + 3, respectively, are the second-
and fourth-order Hermite polynomials. This expression is obtained by re-
taining the leading terms in an Edgeworth expansion (McCullagh, 1987).
If U and V are two real random variables with distributions close to the
standard normal, one can, at least formally, use expansion 3.3 to derive an
approximation to K(Py|Py). Thisis

1 1
K(PulPv) ~ Z(az(m - A2+ KW - k(V))2, (34)

which showshow thepair (2, K) of cumulants of order 2and 4 play in some
sense the role of aloca coordinate system around n(u) with the quadratic
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form 34 playing the role of alocal metric. This result generalizes to mul-
tivariates, in which case we denote for conciseness RiljJ = Cum(U;, Uj) and

Q”kI = Cum(U;, Uj, Uy, U)) and similarly for another random n-vector V

with entries V4, ..., V. We give without proof the following approxima-
tion:

1 2
K(PulPy) ~ Kaa(Pu[Pv) < L (R -RY)

4182 <QIJ|<| |Jk|>2' (35)

ijk

Expression 3.5 turns out to be the simplest possible multivariate general -
i zation of equation 3.4 (thetwo termsin equation 3.5 are adouble sum over
all the n? pairs of indices and aquadruples over al the n* quadruples of in-
dices). Since the entropic contrasts listed above have all been derived from
the Kullback divergence, cumulant approximations to all these contrasts
can be obtai ned by replacing the Kullback mismatch K (Py|Py) by acruder
measure: its approximation is a cumulant mismatch by equation 3.5.

3.1.1 ApproximationtotheLikdihood Contrast. Theinfomax-ML contrast
dML(Y) = K(Py|Ps) for ICA (see equation 2.4) isreadily approximated by
using expression 3.5. The assumption Ps on the distribution of Sis now
replaced by an assumption about the cumulants of S. Thisamountsto very
little: all the cross-cumulants of Sbeing 0thanksto the assumption of inde-
pendent sources, it is needed only to specify the autocumulants 02(S) and
k(S). The cumulant approximation (see equation 3.5) to the infomax-ML
contrast becomes:

1 2
PV ~ KaaPyIPe) = 3 3 (RY — o2(S)3)
ij

4%‘3 Z (Q,M k(S)Sijld)zy (36)

ijk

where the Kronecker symbol § equals 1 with identical indices and O other-
wise.

3.1.2 Approximation to the Mutual Information Contrast. The mutual in-
formation contrast ¢M'(Y) was obtained by minimizing K (Py|Ps) over all
the distributions Ps with independent components. In the cumulant ap-
proximation, thisistrivially done: thefree parametersfor Psarec(S) and
k(S). Eachof thesescalarsentersin only oneterm of thesumsin equation 3. 6
o that the minimization is achieved for ¢%(S) = RY and k(S) = QY. |
other words, the construction of the best approximating distribution W|th
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independent marginals Py, which appears in equation 2.5, boils down, in
the cumulant approximation, to the estimation of the variance and kurtosis
of each entry of Y. Fitting both ¢%(S) and k(S) to RY and QY;, respectively,
hastheeffect of exactly cancelling thediagonal termsin equation 3.6, leaving
only

oM (Y) ~ g}l (v) & Z(R{)Zu—z > (@) @37

u;éii ijKiAiiii

whichisour cumulant approximation to the mutual information contrastin
equation 2.6. Thefirst termisunderstood asthe sum over all the pairsof dis-
tinct indices; the second termisasum over all quadruplesof indicesthat are
not all identical. It containsonly off-diagonal terms, that is, cross-cumulants.
Since cross-cumulants of independent variablesidentically vanish, it isnot
surprising to seethe mutual information approximated by asum of squared
cross-cumulants.

3.1.3 Approximation to the Orthogonal Likdihood Contrast. The cumulant
approximation to the orthogonal likelihood isfairly simple. The orthogonal
approach consists of first enforcing the whiteness of Y that is Ri\j( = g or

RY = I. In other words, it consistsof normalizing the components by assum-
ingthat 02(S) = 1and making surethe second-order mismatchiszero. This
isequivalent to replacing the weight 211 in equation 3.6 by an infiniteweight,
hence reducing the problem to the minimization (under the whiteness con-
straint) of the fourth-order mismatch, or the second (quadruple) sum in
equation 3.6. Thus, the orthogonal likelihood contrast is approximated by

def 1
ML (y) X e ,]k,( \ k(S)Bukl) . 38

Thiscontrast hasaninteresti ng alternate expression. Devel oping thesquares
gives

PR (Y) = Z(Q.,M)Z + = Z KA(S)85q — Z K(S)8ij Qfy-
Ijkl Ijkl Ijkl

Thefirst sum aboveisconstant under thewhitenessconstraint (thisisreadily
checked using equation 3.13for an orthonormal transform), and the second
sum does not depend on Y; finally the last sum contains only diagonal
nonzero terms. It follows that:

C

P52 (Y) = Zk(an....

1 _
_ _2_42 KSHK(Y) = — 2, > TKSEYY, 39
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where- = - denotesan equality up toaconstant. Aninterpretation of the sec-
ond equality isthat the contrast i sminimized by maximizing the scalar prod-
uct between the vector [k(Y1), ..., k(Yn)] of the kurtosi s of the components
and the corresponding vector of hypothesized kurtosis [k(Sy), .. ., kK(Sh)]-
The last equality stems from the definition in equation 3.2 of the kurtosis
and the constancy of EY? under the whiteness constraint. Thislast formis
remarkable because it shows that for zero-mean observations, QM- (Y) =
B (Y),wherel(Y) = — 2—14 > k(S)Yi“, sothecontrastisjust theexpectationof a
simplefunction of Y. We can expect simpletechniquesfor its maximization.

3.1.4 Approximation to the Minimum Marginal Entropy Contrast. Under
thewhiteness constraint, thefirst sum in the approximation, equation 3.7, is
zero (thisisthe whiteness constraint) so that the approximation to mutual
information ™' (Y) reduces to the last term:

GMECY) ~ plE(Y) E 4—;“#”“ (@) 2 —4—;2( ) I EET)
1] 1nn I

Again, the last equality up to constant follows from the constancy of Zijk,
(Q?J(H)Z under the whiteness constraint. These approximations had already
been obtained by Comon (1994) from an Edgeworth expansion. They say
something simple: Edgeworth expansionssuggest testing theindependence
between the entries of Y by summing up all the squared cross-cumulants.

In the course of this article, we will find two similar contrast functions.
The JADE contrast,

¢JADE(Y)d:ef Z <Q¥H>2’ 1)

ijKIiikd

also is a sum of squared cross-cumulants (the notation indicates a sum is
over al the quadruples (ijkl) of indiceswithi # j). Itsinterest isto bealso a
criterion of joint diagonality of cumulants matrices. The SHIBBSccriterion,

s E > (Qu) (312)

ijKIAiikk

is also introduced in section 4.3 as governing a similar but less memory-
demanding algorithm. It also involves only cross-cumulants: those with
indices (ijkl) suchthati # jor k # I.

3.2 Cumulants and Algebraic Structures. Previous sections reviewed
the use of cumulants in designing contrast functions. Another thread of
ideas using cumulants stems from the method of moments. Such an ap-
proach is called for by the multilinearity of the cumulants. Under alinear
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transformY = BX,whichalsoreadsY; = Zp bpXp, the cumulants of order 4
(for instance) transform as:

Cum(Yi, Yj. Vi Y) = Y bBphghebsCum(Xp, Xq. Xr, Xs). (313
pars

which can easily beexploited for our purposes sincethe |CA model islinear.
Using this fact and the assumption of independence by which Cum(S,, &,
S.S) =k(&)3(p, g r, 9, wereadily obtain the simple algebraic structure of
the cumulants of X = ASwhen Shasindependent entries,

n
Cum(X;, Xj, Xk, X)) = Y K(S1)audududu, 314
u=1

where g; denotes the (ij)th entry of matrix A. When estimates @Tn(Xi, X,
Xy, X)) are available, one may try to solve equation 3.4 in the coefficients a;
of A. Thisistantamount to cumulant matching on the empirical cumulants
of X. Because of the strong algebraic structure of equation 3.14, one may try
to devise fourth-order factorizations akin to the familiar second-order sin-
gular value decomposition (SVD) or eigenval ue decomposition (EVD) (see
Cardoso, 1992; Comon, 1997; De L athauwer, De M oor, & Vandewal l e, 1996).
However, these approachesaregenerally not equivalent to the optimization
of acontrast function, resulting in estimatesthat are generally not equivari-
ant (Cardoso, 1995). Thispoint isillustrated below; we introduce cumulant
matrices whose simpl e structure offers straightforward identification tech-
niques, but we stress, as one of their important drawbacks, their lack of
equivariance. However, we conclude by showing how the algebraic point
of view and the statistical (equivariant) point of view can be reconciled.

3.2.1 Cumulant Matrices. Thealgebraic nature of cumulantsistensorial
(McCullagh, 1987), but sincewewill concern ourselvesmainly with second-
and fourth-order statistics, amatrix-based notation sufficesfor the purpose
of our exposition; we only introduce the notion of cumulant matrix defined
as follows. Given arandom n x 1 vector X and any n x n matrix M, we
define the associated cumulant matrix Qx (M) asthe n x n matrix defined
component-wise by

[T E D" Cum(Xi. X, Xie. Xi) M. (3.15)

kl=1
If X iscentered, the definition in equation 3.1 shows that

QX (M) = E{(XTMX) XX} — Rtr(MRX) — R‘'MR* — R‘'M'RX, (3.16)
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where tr(-) denotes the trace and R* denotes the covariance matrix of X,
that is, [Rx]ij = Cum(X;, Xj). Equation 3.16 could have been chosen as an
index-free definition of cumulant matrices. It shows that a given cumulant
matrix can be computed or estimated at a cost similar to the estimation cost
of acovariance matrix; thereisno need to compute the whol e set of fourth-
order cumulants to obtain the value of QX(M) for a particular value of M.
Actualy, estimating a particular cumulant matrix is one way of collecting
part of the fourth-order information in X; collecting the whol e fourth-order
information requires the estimation of O(n*) fourth-order cumulants.

The structure of a cumulant matrix QX(M) in the ICA model is easily
deduced from equation 3.14:

QX (M) = AAM)AT
A(M) = Diag (k(Sl) alMay, ... k(S a;ﬁMa,), (3.17)

wherea denotestheith columnof A, thatis, A = [ay, ..., a]. Inthisfactor-
ization, the (generally unknown) kurtosis enter only in the diagonal matrix
A(M), afact implicitly exploited by the algebraic techniques described be-
low.

3.3 Blind Identification Using Algebraic Structures. Insection3.1,con-
trast functions were derived from the ML principle assuming the model
X = AS. In this section, we proceed similarly: we consider cumulant-based
blind identification of A assuming X = AS from which the structures 3.14
and 3.17 result.

Recdll that the orthogonal approach can beimplemented by first sphering

explicitly vector X. Let W be awhitening, and denote Z WX the sphered
vector. Without loss of generality, the model can benormalized by assuming
that the entries of S have unit variance so that Sis spatially white. Since

Z = WX = WASisa sowhite by construction, the matrix U WA must be
orthonormal: UUT = |. Therefore sphering yields the model Z = USwith
U orthonormal. Of course, thisis still amodel of independent components
so that, similar to equation 3.17, we have for any matrix M the structure of
the corresponding cumulant matrix of Z,

Q*(M) = UAM)UT
AM) = Diag(k(Sl) ulMuy, ..., k(S) ulM un) , (3.19)

where u; denotes the ith column of U. practical orthogonal statistic-
based technique, one would first estimate a whitening matrix W, estimate
some cumulants of Z = WX, compute an orthonormal estimate U of U
using these cumulants, and finally obtain an estimate A of Aas A = w-iu
or obtain aseparating matrix asB = U~1W = UTW.
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3.3.1 Nonequivariant Blind Identification Procedures.  Wefirst present two
blind identification proceduresthat exploit in astraightforward manner the
structure 3.17; we explain why, in spite of attractive computational ssimplic-
ity, they are not well behaved (not equivariant) and how they can be fixed
for equivariance.

Thefirst ideais not based on an orthogonal approach. Let M1 and M»

be two arbitrary n x n matrices, and define Q1 def QXM and Q> oo

Q*X(My). According to equation 3.17, if X = ASwe have Q; = AA;AT and
Q2= AALAT with A; and A5 two diagonal matrices. Thus, G def Qngl =
(AAIAT(AALAT)™L = AAA~L, where A is the diagonal matrix A1A;% It
followsthat GA = AA, meaning that the columns of A arethe eigenvectors
of G (possibly up to scalefactors).

An extremely simple agorithm for blind identification of A follows. Se-
lect two arbitrary matrices M1 and M2; compute sample estimates Ql and
Q> using equation 3.16; find the columns of A asthe eigenvectorsof Q;Q; 2.
Thereisat least oneproblemwith thisidea: we have assumed invertible ma-
tricesthroughout the derivation, and this may lead to instability. However,
this specific problem may be fixed by sphering, as examined next.

Consider now theorthogonal approach asoutlined above. Let M besome
arbitrary matrix M, and note that equation 3.18 is an el gendecomposition:
the columns of U are the eigenvectors of Q%(M), which are orthonormal
indeed because Q4 (M) issymmetric. Thus, in the orthogonal approach, an-
other immediate algorithm for blind identification is to estimate U as an
(orthonormal) diagonalizer of an estimate of Q%(M). Thanks to sphering,
problems associated with matrix inversion disappear, but a deeper prob-
lem associated with these simple algebraic ideas remains and must be ad-
dressed. Recdll that the eigenvectors are uniquely determined? if and only
if the eigenvalues are all distinct. Therefore, we need to make sure that the
eigenvalues of Q4(M) areall distinct in order to preserve blind identifiabil -
ity based on Q%(M). According to equation 3.18, these eigenval ues depend
on the (sphered) system, which isunknown. Thus, it is not possible to de-
termine apriori if agiven matrix M corresponds to distinct eigenvalues of
Q?(M). Of course, if M israndomly chosen, then the eigenvalues are dis-
tinct with probability 1, but we need more than thisin practice because the
algorithms use only sample estimates of the cumulant matrices. A small
error in the sample estimate of Q%(M) can induce a large deviation of the
elgenvectorsif the eigenvalues are not well enough separated. Again, this
isimpossible to guarantee a priori because an appropriate selection of M
requires prior knowledge about the unknown mixture.

In summary, the diagonalization of asingle cumulant matrix iscomputa-

2 |n fact, determined only up to permutations and signs that do not matter in an ICA
context.
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tionally attractive and can be proved to be almost surely consistent, but itis
not satisfactory because the nondegeneracy of the spectrum cannot be con-
trolled. Asaresult, the estimation accuracy from afinite number of samples
depends on the unknown system and is therefore unpredictable in prac-
tice; this lack of equivariance is hardly acceptable. One may also criticize
these approaches on the ground that they rely on only a small part of the
fourth-order information (summarized in an n x n cumulant matrix) rather
than trying to exploit more cumulants (there are O(n®) fourth-order inde-
pendent cumulant statistics). We examine next how these two problemscan
be alleviated by jointly processing several cumulant matrices.

3.3.2 Recovering Equivariance. Let M = {M3, ..., Mp} beaset of P ma-

trices of size n x n and denote Q; oef Q%(M;) for 1 < i < P the associated

cumulant matrices for the sphered data Z = US. Again, as above, for dl i
we have Q; = UA;UT with A; adiagonal matrix given by equation 3.18. As
ameasure of nondiagonality of a matrix F, define Off(F) as the sum of the
squares of the nondiagonal elements:

off(m € 3 (). (3.19)
7]

We have in particular Off(UTQ;U) = Off(Aj) = Osince Q; = UA;UT and
UTU = I. For any matrix set M and any orthonormal matrix V, we define
the following nonnegative joint diagonality criterion,

D) E 3 off(VIZvv), (320)
MjeM

which measures how close to diagonality an orthonormal matrix V can
simultaneously bring the cumulants matrices generated by M.

To each matrix set M is associated a blind identification algorithm as
follows: ()fin  sphering matrix WtowhiteninthedataX intoZ = WX; (2)
estimatethe cumul ant matrices Q% (M) for all M € M by asampleversion of
equation 3.16; (3) minimizethejoint diagonal ity criterion, equation 3.20, that
is, make the cumulant matrices as diagonal as possible by an orthonormal
transform V; (4) estimate A as A = VWL or itsinverse as B = VW or the
component vector as Y = VZ = VIwxX.

Such an approach seemsto be ableto aleviate the drawbacks mentioned
above. Finding theorthonormal transform astheminimizer of aset of cumu-
lant matrices goesin theright direction becauseit involvesalarger number
of fourth-order statisticsand becauseit decreasesthelikelihood of degener-
ate spectra. Thisargument can be made rigorous by considering a maximal
set of cumulant matrices. By definition, thisis a set obtained whenever M
is an orthonormal basis for the linear space of n x n matrices. Such a ba-
sis contains n2 matrices so that the corresponding cumulant matrices total
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n? x n? = n* entries, that is, as many as the whole fourth-order cumulant
set. For any such maximal set (Cardoso & Souloumiac, 1993):

DV = pPPE(Y) with Y =VTZ, 321)

where ¢PE(Y) isthe contrast function defined at equation 3.11. The joint
diagonalization of a maximal set guarantees blind identifiability of A if
k(§) = Ofor at most oneentry § of S(Cardoso & Souloumiac, 1993). Thisis
anecessary conditionfor any algorithm using only second- and fourth-order
statistics (Comon, 1994).

A key pointismadeby relationship 3.21. Wemanagedtoturnan algebraic
property (diagonality) of the cumulants of the (sphered) observations into
acontrast function—afunctional of the distribution of the output Y = V'Z.
This fact guarantees that the resulting estimates are equivariant (Cardoso,
1995).

The price to pay with this technique for reconciling the algebraic ap-
proach with the naturally equivariant contrast-based approach is twofold:
it entails the computation of a large (actually, maximal) set of cumulant
matrices and the joint diagonalization of P = n2 matrices, which is at least
as costly as P times the diagonalization of a single matrix. However, the
overall computational burden may be similar (see examplesin section 5) to
the cost of adaptive algorithms. Thisisbecause the cumulant matrices need
to be estimated once for a given data set and because it exists as a reason-
ably efficient joint diagonalization algorithm (see section 4) that isnot based
on gradient-style optimization; it thus preserves the possibility of exploit-
ing the underlying algebraic nature of the contrast function, equation 3.11.
Several tricksfor increasing efficiency are also discussed in section 4.

4 Jacobi Algorithms

This section describes algorithms for ICA sharing a common feature: a Ja-
cobi optimization of an orthogonal contrast function as opposed to opti-
mization by gradient-like algorithms. The principle of Jacobi optimization
isappliedtoadata-based algorithm, astatisti c-based al gorithm, and amixed
approach.

The Jacobi method is an iterative technique of optimization over the
set of orthonormal matrices. The orthonormal transform is obtained as a
sequenceof planerotations. Each planerotationisarotation appliedtoapair
of coordinates (hence the name: the rotation operatesin atwo-dimensional
plane). If Y isan nx 1vector, the i, j)th planerotation by an angle6; changes
the coordinatesi and j of Y according to

Yi COS(Qij) Sin(@ij) ]|: Yi i|
[ Yj ] <_{ —sin@j) cos@yp) || Y; | 41

whileleavingtheother coordi natesunchanged. A sweepisonepassthrough
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al the n(n — 1)/2 possible pairs of distinct indices. Thisidea is classicin
numerica analysis (Golub & Van Loan, 1989); it can be considered in a
wider context for the opti mizati on of any function of an orthonormal matrix.
Comon introduced the Jacobi technique for ICA (see Comon, 1994 for a
data-based algorithm and an earlier referencein it for the Jacobi update of
high-order cumulant tensors). Such a data-based Jacobi algorithm for ICA
works through a sequence of Jacobi sweeps on the sphered data until a
given orthogonal contrast ¢ (Y) isoptimized. This can be summarized as:

1. Initialization. Compute awhitening matrix W and set Y = WX.
2. Onesweep. For all n(n — 1)/2pairs, thatisfor 1 <i < j < n, do:

a Compute the Givens angle 6;j, optimizing ¢ (Y) when the pair
(Y3, Y)) isrotated.

b. If6j < Omin, dorotatethepair (Y;, Yj) according to equation 4.1.

3. If no pair has been rotated in previous sweep, end. Otherwise go to 2
for another sweep.

Thus, the Jacobi approach considers a sequence of two-dimensional ICA
problems. Of course, the updating step 2b on apair (i, j) partially undoes
the effect of previous optimizationson pairs containing either i or j. For this
reason, it is necessary to go through several sweeps before optimization is
compl eted. However, Jacobi algorithmsareoften very efficient and converge
inasmall number of sweeps (seethe examplesin section 5), and akey point
isthat each plane rotation depends on a single parameter, the Givens angle
6jj, reducing the optimi zation subproblem at each step to aone-dimensional
optimization problem.

An important benefit of basing ICA on fourth-order contrasts becomes
apparent: because fourth-order contrasts are polynomial inthe parameters,
the Givens angles can often be found in close form.

In the above scheme, 6min isasmall angle, which controls the accuracy
of the optimization. In numerical analysis, it is determined according to
machine precision. For astatistical problem asICA, 6min should be selected
insuchaway that rotationsby asmaller anglearenot statistically significant.

In our experiments, we take Omin to scae as 1/ﬁ, typicaly: 6min = %TZ.
This scaling can be related to the existence of a performance bound in the
orthogonal approach to |CA (Cardoso, 1994). Thisvalue does not seem to be
critical, however, because we have found Jacobi algorithmsto be very fast
at finishing.

In the remainder of this section, we describe three possible implemen-
tations of these ideas. Each one corresponds to a different type of contrast
function and to different options about updating. Section 4.1 describes a
data-based algorithm optimizing ¢ ML (Y); section 4.2 describes a statistic-
based algorithm optimizing $*PE(Y); section 4.3 presentsamixed approach
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optimizing ¢37(Y); finally, section 4.4 discusses the relationships between
these contrast functions.

4.1 A Data-Based Jacobi Algorithm: MaxKurt. Westart by aJacobi tech-
nique for optimizing the approximation, equation 3.9, to the orthogonal
likelihood. For the sake of exposition, we consider a simplified version of
»OML(Y) obtained by setting k(Sy) = k(S) = ... = k(S = k, in which
case the minimization of contrast function, equation 3.9, isequivalent to the
minimization of

VK E k> QY. 42

Thiscriterion isalso studied by Moreau and Macchi (1996), who propose a
two-stage adaptive procedure for its optimization; it also serves as a start-
ing point for introducing the one-stage adaptive algorithm of Cardoso and
Laheld (1996).

Denote G;jj(9) the plane rotation matrix that rotates the pair (i, j) by an
angled asin step 2b above. Then simple trigonometry yields:

oMK (Gj(O)Y) = pij — knjj cos(A(@ — @), (4.3

where pjj does not depend on 6 and A;; isnonnegative. The principal deter-
mination of angle Qj is characterized by

1 Y Y Y Y Y
Qjj = Zarctan( i — 4Qyi Qi + Qjjj — iijj)’ 4.4

X

where arctan(y, X) denotestheangle« € (—n, 7] such that cos(a) = N

—\/% If Y is a zero-mean sphered vector, expression 4.3
ety

further simplifiesto

and sin(e) =

Q) = %arctan (4E (Y?Yj - Yin3> , E((Yiz — Y22 - 4Yi2Yj2> ) . (45)

The computations are given in the appendix. It is now immediate to mini-
mize $MK(Y) for each pair of components and for either choice of the sign
of k. If onelooksfor components with positive kurtosis (often called super-
gaussian), the minimization of pMK(Y) isidentical to the maximization of
the sum of the kurtosis of the components sincewe have k > 0in this case.
The Givens angle simply is6 = Qj; since this choice makes the cosine in
equation 4.2 equal to its maximum value.

We refer to the Jacobi algorithm outlined above as MaxKurt. A Matlab
implementation is listed in the appendix, whose simplicity is consistent
with the data-based approach. Note, however, that it isalso possibleto use
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the same computations in a statistic-based algorithm. Rather than rotating
the data themselves at each step by equation 4.1, one instead updates the
set of all fourth-order cumulants according to the transformation law, equa-
tion 3.13, with the Givens angle for each pair still given by equation 4.3. In
this case, the memory requirement isO(n*) for storing al the cumulants as
opposed to nT for storing the data set.

The case k < O where, looking for light-tailed components, one should
minimizethesum of thekurtosisissimilar. Thisapproach could beextended
to kurtosis of mixed signs but the contrast function then hasless symmetry.
Thisisnot included in thisarticle.

4.1.1 Sability. What isthe effect of the approximation of equal kurtosis
made to derive the simple contrast MX(Y)?When X = ASwith Sof inde-
pendent components, we can at least use the stability result of Cardoso and
Laheld (1996), which appliesdirectly to thiscontrast. Definethe normalized
kurtosis as ki = o7 %K(S). Then B = A~ isastable point of the algorithm
withk > Oif xj 4+« > Ofor al pairs1 <i < j < n. Thesame condition also
holdswith all signsreversed for components with negative kurtosis.

42 Statistic-Based Algorithm: JADE. Thissection outlinesthe JADE
algorithm (Cardoso & Souloumiac, 1993), which is specifically a statistic-
based technique. We do not need to go into much detail becausethe general
techniquefollowsdirectly from the considerations of section 3.3. The JADE
algorithm can be summarized as.

1. Initialization. Estimate awhitening matrix W and set Z = WX.
2. Formdatistics. Estimate amaximal set {Qiz} of cumulant matrices.

3. Optimize an orthogonal contrast. Find the rotation matrix V such that

the cumulant matrices are asdiagonal as possible, that is, solve V=
argmin’}_; Off(VIQ#V).

4. Separate Estimate A as A = VW~ and/or estimate the components
asS=A"1Xx=V'z

Thisis a Jacobi algorithm because the joint diagonalizer at step 3isfound
by a Jacobi technique. However, the plane rotations are applied not to the
data (which are summarized in the cumulant matrices) but to the cumu-
lant matricesthemsel ves, the algorithm updates not data but matrix-valued
statistics of the data. As with MaxKurt, the Givens angle at each step can
be computed in closed form even in the case of possibly complex matrices
(Cardoso & Souloumiac, 1993). The explicit expression for the Givens an-
glesisnot particularly enlightening and isnot reported here. (Theinterested
reader isreferred to Cardoso & Souloumiac, 1993, and may request aMatlab
implementation from the author.)
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A key issueisthe selection of the cumulant matricesto beinvolvedinthe
estimation. As explained in section 3.2, the joint diagonalization criterion
> Off(V*QiZV) ismade identical to the contrast function, equation 3.11, by
using amaximal set of cumulant matrices. Thisisabit surprising but very
fortunate. We do not know of any other way for a priori selecting cumu-
lant matrices that would offer such a property (but see the next section).
In any caseg, it guarantees equivariant estimates because the algorithm, al-
though operating on statistics of the sphered data, also optimizesimplicitly
afunction of Y = VZ only.

Before proceeding, we note that true cumulant matrices can be exactly
jointly diagonalized when the model holds, but this is no longer the case
whenweprocessreal data. First, only samplestatisticsareavailable; second,
the model X = AS with independent entries in S cannot be expected to
hold accurately in general. This is another reason that it is important to
select cumulant matrices such that ) ; Off(VTQiZV) is contrast function.
In this case, the impossibility of an exact joint diagonalization corresponds
to the impossibility of finding Y = BX with independent entries. Making
amaximal set of cumulant matrices as diagonal as possible coincides with
making the entries of Y as independent as possible as measured by (the
sample version of) criterion 3.11.

Thereareseveral optionsfor estimating amaximal set of cumulant matri-
ces. Recdll that suchasetisdefined as{Q%(M))|i = 1, %} where{M;|i = 1, n?}
isany basisfor then?-dimensional linear space of nx nmatrices. A canonical
basisfor thisspaceis{q)e,yl < p, g < n}, where g, isacolumn vector with a
1in pth position and O'selsewhere. It isreadily checked that

[QZ(Q)Q‘T)]U = Cum(Z;, Zj, Zp, Zg). (4.6)

In other words, the entries of the cumulant matrices for the canonical basis
arejust thecumulantsof Z. A better choiceisto consider asymmetric/skew-
symmetric basis. Denote MP an n x n matrix defined asfollows: MP = q,q;f

ifp=q MM =2"Y2(gel+ee) if p < gand MM = 27 V%(ge| —a€) if p > g
Thisisan orthonormal basisof R™". Wenotethat because of the symmetries
of the cumulants Q%(ge)) = Q*(gg)) o that Q*(MP) = 27Y/2Q% (g€ if
p < gand Q*(MP) = 0if p > q It follows that the cumulant matrices
Q4(M™) for p > g do not even need to be computed. Being identically
zero, they do not enter in the joint diagonalization criterion. It istherefore
sufficient to estimateand to diagonalizen+n(n—1) /2 (symmetric) cumulant
matrices.

Thereisanother ideatoreducethesizeof thestatisticsneeded to represent
exhaustively the fourth-order information. It is, however, applicable only
when themodel X = ASholds. Inthis case, the cumulant matrices do have
the structure shown at equation 3.18, and their sample estimates are close
to it for large enough T. Then the linear mapping M — Q4(M) hasrank n
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(moreprecisdly, itsrank isequal to the number of componentswith nonzero
kurtosis) because there are n linear degrees of freedom for matricesin the
form UuAUT, namely, the n diagonal entries of A. From this fact and from
the symmetries of the cumulants, it follows that it exists n eigenmatrices
Ei, ..., En, which are orthonormal, and satisfies Q%(E) = uiE where the
scalar uj isthe corresponding eigenvector. These matrices By, .. ., E, span
the range of the mapping M — Q#(M), and any matrix M orthogonal to
themisinthekerndl, that is, Q4(M) = 0. Thisshowsthat all theinformation
contained in Q% can be summarized by the n eigenmatri ces associated with
thenn eigenvalues. By inserting M = ujul in the expressions 3.18
and using the orthonormality of the columns of U (that is, uu, = &;), itis
readily checked that a set of eigenmatricesis{g = y; uiT}.

The JADE algorithm was originally introduced as performing ICA by a
joint approximate diagonalization of eigenmatricesin Cardoso and Soulou-
miac (1993), whereweadvocated thejoint diagonali zation of only then most
significant eigenmatrices of Q% asadeviceto reduce the computational load
(eventhough the eigenmatricesare obtai ned at the extracost of the eigende-
composition of an n? x n? array containing all the fourth-order cumulants).
The number of statistics is reduced from n* cumulants or n(n + 1)/2 sym-
metric cumulant matricesof sizen x nto aset of n eigenmatricesof sizenxn.
Such areduction is achieved at no statistical loss (at least for large T) only
when themodel holds. Therefore, we do not recommend reduction to eigen-
matriceswhen processing data setsfor whichitisnot clear apriori whether
the model X = AS actually holds to good accuracy. We still refer to JADE
as ocess of jointly diagonalizing amaximal set of cumulant matrices,
even when it isnot further reduced to the n most significant eigenmatrices.
It should also be pointed out that the device of truncating the full cumu-
lant set by reduction to the most significant matricesis expected to destroy
the equivariance property when the model does not hold. The next section
shows how these problems can be overcomein atechnique borrowing from
both the data-based approach and the stati stic-based approach.

4.3 A Mixed Approach: SHIBBS. IntheJADEagorithm, amaximal set
of cumulant matrices is computed as a way to ensure equivariance from
the joint diagonalization of a fixed set of cumulant matrices. As a benefit,
cumulants are computed only once in a single pass through the data set,
and the Jacobi updates are performed on these statistics rather than on the
whole data set. Thisisagood thing for data sets with alarge number T of
samples. Onthe other hand, estimating amaximal set requiresO(n*T) oper-
ations, and its storage requires O(n*) memory positions. These figures can
become prohibitivewhen looking for alarge number of components. In con-
trast, gradient-based techniques have to store and update nT samples. This
section describes a technique standing between the two extreme positions
represented by the all-statistic approach and the all-data approach.
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Recdl that an algorithm is equivariant as soon as its operation can be
expressed only in terms of the extracted components Y (Cardoso, 1995).
This suggests the following technique:

1. Initialization. Select a fixed setAM = {My,..., Mp} of n x n matrices.
Estimate awhitening matrix W and set Y = WX.

2. Etimatearotation. Estimate the set {QY(Mp)|1 < p < P} of P cumulant
matrices and find ajoint diagonalizer V of it.

3. Update. If V iscloseenough to theidentity transform, stop. Otherwise,
rotatethedata: Y < VY and goto 2.

Suchan agorithmisequivariant thanksto the reestimation of the cumulants
of Y after updating. Itisin somesensedatabased sincetheupdatinginstep 3
ison the data themselves. However, the rotation matrix to be applied to the
dataiscomputed in step 2 asin a statistic-based procedure.

What would be agood choice for the set M?The set of n matrices M =
{ei€], ..., &6} seemsanatural choice: it is an order of magnitude smaller
than the maximal set, which contains O(n?) matrices. The kth cumulant
matrix in such asetis QY(equ), and its (i, j)th entry is Cum(Yj, Y}, Yk, Yy,
which isjust an n x n square block of cumulants of Y. We call the set of n
cumulant matrices obtained in this way when k is shifted from 1to n the
set of SHIfted Blocks for Blind Separation (SHIBBS), and we use the same
name for the ICA algorithm that determines the rotation V by an iterative
joint diagonalization of the SHIBBS set.

Strikingly enough, the small SHIBBSset guarantees aperformance iden-
tical to JADE when themodd holdsfor thefollowing reason. Consider thefinal
step of the algorithm where Y iscloseto Sif it holds that X = ASwith S
of independent components. Then the cumulant matrices QY(qgeg) arezero
for p # qbecause al the cross-cumulants of Y are zero. Therefore, the only
nonzero cumulant matricesused in the maximal set of JADE arethose corre-
spondingtog, = g, i.ep thoseincludedin SHIBBS Thusthe SHIBBS
set actually tends to the set of “significant eigen-matrices’ exhibited in the
previous section. In this sense, SHIBBS implements the original program
of JADE—thejoint diagonalization of the significant eigen-matrices—but it
does so without going through the estimation of the whole cumulant set
and through the computation of its eigen-matrices.

Does the SHIBBS algorithm correspond to the optimization of a con-
trast function? We cannot resort to the equivalence of JADE and SHIBBS
because it is established only when the model holds and we are looking
for a statement independent of this later fact. Examination of the joint di-
agonality criterion for the SHIBBS set suggests that the SHIBBS technique
solves the problem of optimizing the contrast function ¢S7(Y) defined in
equation 3.12. As a matter of fact, the condition for agiven Y to be a fixed
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point of the SHIBBSalgorithmisthat forany pair1<i < j<n:
> cum(Yi, Y;, Yk, Yio (Cum(Yi, Yi, Yy, Yio
k
— cum(Y;, Yj, Yi. Yo)) = 0, 47

and we can prove that thisis also the stationarity condition of ¢S7(Y). We
do not include the proofs of these statements, which are purely technical.

4.4 Comparing Fourth-Order Orthogonal Contrasts. We have consid-
ered two approximations, $**PE(Y) and ¢5(Y), to the minimum marginal
entropy/mutual information contrast ¢M'(1), which are based on fourth-
order cumulants and can be optimized by Jacobi technique. The approxi-
mation g} E(Y) proposed by Comon also belongsto this category. One may
wonder about the relative statistical merits of these three approximations.
The contrast ¢2”4E(Y) stems from an Edgeworth expansion for approximat-
ing $ME(Y), which in turn has been shown to derive from the ML principle
(see section 2). Since ML estimation offers (asymptotic) optimality proper-
ties, onemay betempted to concludeto the superiority of ¢g"4E(Y). However,
thisisnot the case, as discussed now.

First, when the ICA model holds, it can be shown that even though
HME(Y) and P PE(Y) are different criteria, they have the same asymptotic
performance when applied to sample statistics (Souloumiac & Cardoso,
1991). Thisis also true of ¢S (Y) since we have seen that it is equivalent to
JADE in this case (amorerigorous proof is possible, based on equation 4.7,
but is not included).

Second, when the ICA model does not hold, the notion of identification
accuracy does not make sense anymore, but one would certainly favor an
orthogonal contrast reaching its minimum at a point as close as possible
to the point where the “true” mutual information ¢ME(Y) is minimized.
However, it seems difficult to find a simple contrast (such as those consid-
ered here) that would be a good approximation to ¢ME(Y) for any wide
class of distributions of X. Note that the ML argument in favor of ¢Xi=(Y)
is based on an Edgeworth expansion that is valid for “almost gaussian”
distributions—those distributions that make ICA very difficult and of du-
bious significance: In practice, ICA should be restricted to data sets where
the components show asignificant amount of nongaussi anity, in which case
the Edgeworth expansions cannot be expected to be accurate.

Thereisanother way than Edgeworth expansion for arriving at gME(Y).
Consider cumulant matching: the matching of the cumulants of Y to the
corresponding cumulants of ahypothetical vector Swith independent com-
ponents. The orthogonal contrast functions ¢#PE(Y), ¢S (Y), and ¢ME(Y)
can be seen as matching criteria because they penalize the deviation of the
cross-cumulants of Y from zero (which is the value of cross-cumulants of
avector Swith independent components, indeed), and they do so under
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the constraint that Y is white—that is, by enforcing an exact match of the
second-order cumulants of Y.

It is possible to devise an asymptotically optimal matching criterion by
taking into account the variability of the sample estimates of the cumulants.
Such a computation is reported in Cardoso et a. (1996) for the matching
of al second- and fourth-order cumulants of complex-valued signals, but a
similar computation is possible for real-valued problems. It shows that the
optimal weighting of the cross-cumulants depends on the distributions of
the components so that the “flat weighting” of all the cross-cumulants, as
in equation 3.10, isnot the best onein general. However, in the limit of “al-
most gaussian” signals, the optimal weights tend to values corresponding
precisaly to the contrast K24(Y|S) defined in equation 3.5. Thisis not unex-
pected and confirms that the crude cumulant expansion used in deriving
equation 3.5 is sensible, though not optimal for significantly nongaussian
components.

It seems from the definitions of $PE(Y), $57(Y), and ¢XME(Y) that these
different contrasts involve different types of cumulants. Thisis, however,
an illusion because the compact definitions given above do not take into
account the symmetries of the cumulants: the same cross-cumulant may be
counted several timesin each of these contrasts. For instance, the definition
of JADE excludes the cross-cumulant Cum(Y1, Y1, Y, Y3) but includesthe
cross-cumulant Cum(Y1, Yo, Y1, Y3), which isidentical. Thus, in order to
determineif any bit of fourth-order information isignored by any particular
contrast, anonredundant description should begiven. All thepossiblecross-
cumulants comein four different patterns of indices: (ijkl), (iikl), (iijj), and
(ijjj)- Nonredundant expressionsin terms of these patterns arein the form:

¢[YI=Ca D @u+Co Y (Gik + & + 8ik)

i<j<k<l i<k<l
+Co) @i+ Cay (& + i)
i<j i<j

where gju def Cum(Yi, Y}, Yy, Y12 and the G’sare numerical constants. It
remainsto count how many times aunique cumulant appearsin theredun-
dant definitions of the three approximations to mutual information con-
sidered so far. We give only the result of this uninspiring task in Table 1,
which showsthat all the cross-cumulants are actually included in the three
contrasts, which therefore differ only by the different scalar weights given
to each particular type. It means that the three contrasts essentially do the
samething. | n particular, when thenumber n of componentsislargeenough,
the number of cross-cumulants of type [ijK] (all indices distinct) grows as
O(n*), while the number of other types grows as O(n®) at most. Therefore,
the[ijkl] type outnumbersall the other typesfor large n: one may conjecture
the equivalence of the three contrasts in this limit. Unfortunately, it seems
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Table 1: Number of Times a Cross-Cumulant of a Given Type Appearsin a
Given Contrast.

Constants Ca G Ce Cy

Pattern ik ik i
ComonICA 24 12 6 4
JADE 24 10 4 2
SHIBBS 24 12 4 4

difficult to draw more conclusions. For instance, we have mentioned the
asymptotic equivalence between Comon'’s contrast and the JADE contrast
for any n, but it does not revea itself directly in the weight table.

5 A Comparison on Biomedical Data

The performance of the algorithms presented above is illustrated using
the averaged event-related potential (ERP) data recorded and processed
by Makeig and coworkers. A detailed account of their analysisisin Makeig,
Bell, Jung, and Sginowski (1997). For our comparison, we use the data set
and the“logistic ICA” algorithm provided with version 3.1 of Makeig'sICA
toolbox.® The data set contains 624 data points of averaged ERP sampled
from 14 EEG el ectrodes. Theimplementation of thelogistic ICA providedin
the toolbox is somewhat intermediate between equation 1.1 and its off-line
counterpart: H(Y) isaveraged through subblocks of the data set. The non-

linear function istakento be ¥/ (y) = ;25 — 1= tanh 3. Thisisminus the
_r'e

log-derivative ¥ (y) = o) of the density r(y) = ﬁm (B isanormal-
i zation constant). Therefore, thismethod maximizesover A thelikelihood of
model X = ASunder the assumptionsthat Shasindependent components
with densities equal to Bm.

Figure 1 shows the components Y#PE produced by JADE (first col-
umn) and the components YX'“A produced by the logistic ICA included
in Makeig's toolbox, which was run with al the default options; the third
column shows the difference between the components at the same scale.
This direct comparison is made possible with the following postprocess-
ing: the components Y-'®A were normalized to have unit variance and were
sorted by increasing values of kurtosis. The components Y#PE have unit
variance by construction; they were sorted and their signswere changed to
match YL'CA | Figure 1 showsthat Y#PE and YLICA essentially agree on 9 of
14 components.

3 Available from http://www.cnl .salk.edu/~scott/.
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Figure 1: The source signals estimated by JADE and the logistic ICA and their
differences.
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Another illustration of thisfact is given by the first row of Figure 2. The
left panel shows the magnitude |Cjj| of the entries of the transfer matrix C
such that CYHICA = Y#DE This matrix was computed after the postpro-
cessing of the components described in the previous paragraph: it should
be the identity matrix if the two methods agreed, even only up to scales,
signs, and permutations. The figure shows a strong diagonal structure in
the northeast block while the disagreement between the two methods is
apparent in the gray zone of the southwest block. The right panel shows

the kurtosis k(Y{""°F) plotted against the kurtosis k(Y-'CA). A key observa-
tion isthat the two methods do agree about the most kurtic components;
these also are the components where the time structure is the most visible.
In other words, the two methods essentially agree wherever an human eye
finds the most visible structures. Figure 2 also shows the results of SHIBBS
and MaxKurt. The transfer matrix C for MaxKurt is seen to be more di-
agonal than the transfer matrix for JADE, while the transfer for SHIBBSis
lessdiagonal. Thus, the logistic ICA and MaxKurt agree more on this data
set. Another figure (not included) showsthat JADE and SHIBBSarein very
close agreement over all components.

Theseresults are very encouraging because they show that various ICA
algorithms agree wherever they find structure on this particular data set.
Thisisvery muchinsupport of thel CA approachtotheprocessing of signals
for which it is not clear that the model holds. It leaves open the question
of interpreting the di sagreement between the various contrast functionsin
the swamp of the low kurtosis domain.

It turns out that the disagreement between the methods on this data
set is, in our view, an illusion. Consider the eigenvalues 11, ..., An Of the
covariance matrix RX of the observations. They are plotted on a dB scale
(thisis 10log,y Ai) in Figure 3. The two least significant eigenvalues stand
rather clearly below the strongest oneswith agap of 5.5dB. Wetakethisas
an indication that one should look for 12 linear componentsin this data set
rather than 14, asin the previous experiments. Theresult israther striking:
by running JADE and the logistic ICA on thefirst 12 principal components,
an excellent agreement is found over al the 12 extracted components, as
seen on Figure 4. This observation also holds for MaxKurt and SHIBBS as
shown by Figure5.

Table2liststhe number of floating-point operations (asreturned by Mat-
lab) and the CPU time required to run the four algorithms on a SPARC 2
workstation. The MaxKurt technique was clearly the fastest here; however,
it was applicable only because we were looking for components with posi-
tive kurtosis. The sameistrue for the version of logistic ICA considered in
this experiment. It is not true of JADE or SHIBBS, which are consistent as
soon as at most one source has a vanishing kurtosis, regardiess of the sign
of the nonzero kurtosis (Cardoso & Souloumiac, 1993). The logistic ICA
required only about 50% more time than JADE. The SHIBBS algorithm is
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Figure2: (Left column) Absolute values of the coefficients |G| of amatrix relat-
ing the signal's obtained by two different methods. A perfect agreement would
befor C = |: deviation from diagonal indicates a disagreement. Thesignalsare
sorted by kurtosis, showing agood agreement for high kurtosis. (Right column)
Comparing the kurtosis of the sources estimated by two different methods.
From top to bottom: JADE versuslogistic ICA, SHIBBSversuslogistic ICA, and
maxkurt versus logistic ICA.
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Figure 3: Eigenvalues of covariance matrix R* of the data in dB (i.e,
10log,(A))-

Table 22 Number of Floating-Point Operations and CPU Time.

Flops CPU Secs. Flops CPU Secs
Method 14 Components 12 Components
Logistic ICA 5.05e+07 398 351e+07 35
JADE 4.00e+07 255 2.19et+07 169
SHIBBS 5.61e+07 492 247e+07 235
MaxKurt 1.19e+07 1.09 5.91e+06 054

slower than JADE here because the data set is not large enough to give it
an edge. Theseremarks are even more marked when comparing the figures
obtained in the extraction of 12 components. It should be clear that these
figures do not prove much because they are representative of only apartic-
ular data set and of particular implementations of the algorithms, as well
asof the various parameters used for tuning the algorithms. However, they
do disprove the claim that algebrai c-cumulant methods are of no practical
value.

6 Summary and Conclusions

The definitions of classic entropic contrasts for ICA can al be understood
from an ML perspective. An approximation of the Kullback-Leibler diver-
gence yields cumulant-based approximations of these contrasts. In the or-
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Figure4: The 12 sourcesignalsestimated by JADE and alogistic ICA out of the
first 12 principal components of the original data.
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Figure5: Same setting asfor Figure 2 but the processing isrestricted to thefirst
12 principal components, showing a better agreement among all the methods.
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thogonal approach to ICA where decorrelation is enforced, the cumulant-
based contrastscan beoptimized with Jacobi techniques, operating on either
the data or statistics of the data, namely, cumulant matrices. The structure
of the cumulants in the ICA model can be easily exploited by algebraic
identification techniques, but the simple versions of these techniques are
not equivariant. One possibility for overcoming this problem is to exploit
thejoint algebraic structure of several cumulant matrices. In particular, the
JADE algorithm bridges the gap between contrast-based approaches and
algebraic techniques because the JADE objective is both a contrast function
and the expression of the eigenstructure of the cumulants. More generaly,
the algebraic nature of the cumulants can be exploited to ease the optimiza-
tion of cumulant-based contrasts functions by Jacobi techniques. This can
be donein adata-based or a statistic-based mode. Thelatter has an increas-
ing relative advantage as the number of available samplesincreases, but it
becomes impractical for large numbers n of components since the number
of fourth-order cumulants grows as O(n*). This can be overcome to a cer-
tain extent by resorting to SHIBBS, which iteratively recomputes a number
O(n®) of cumulants.

An important objective of this article was to combat the prejudice that
cumulant-based algebraic methods are impractical. We have shown that
they comparevery well to state-of -the-art i mplementati ons of adaptivetech-
niques on area data set.

M ore extensive comparisonsremain to be doneinvolving variants of the
ideas presented here. A technique like JADE is likely to choke on a very
large number of components, but the SHIBBS version is not as memory
demanding. Similarly, the MaxKurt method can be extended to deal with
components with mixed kurtosis signs. In this respect, it is worth under-
lining the analogy between the MaxKurt update and the relative gradient
update, equation 1.1, when function H(-) isin the form of equation 1.5.

A comment on tuning the algorithms: In order to code an all-purpose
ICA agorithm based on gradient descent, it is necessary to devise a smart
learning schedul e. Thisisusual ly based on heuristicsand requiresthetuning
of some parameters. In contrast, Jacobi algorithms do not need to be tuned
intheir basic versions. However, one may think of improving on theregular
Jacobi sweep through all the pairs in prespecified order by devising more
sophisticated updating schedules. Heuristics would be needed then, asin
the case of gradient descent methods.

We conclude with a negative point about the fourth-order techniques
described in this article. By nature, they optimize contrasts correspond-
ing somehow to using linear-cubic nonlinear functions in gradient-based
algorithms. Therefore, they lack the flexibility of adapting the activation
functions to the distributions of the underlying components as one would
ideally do and asis possible in algorithms like equation 1.1. Even worse,
thisvery type of nonlinear function (linear cubic) has one major drawback:
potential sensitivity to outliers. This effect did not manifest itself in the ex-
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amples presented in this article, but it could indeed show up in other data
sets.

Appendix: Derivation and | mplementation of MaxKurt

A.1 GivensAnglesfor MaxKurt. Anexplicit form of the MaxKurt con-
trast asafunction of the Givensanglesisderived. For conciseness, wedenote
[ijK] = Qi‘j(kI and we define

oy = (LT OUTZ 8, — iy — i) 4= £ 422 AD)

The sum of the kurtosis for the pair of variables Y; and Y; after they have
been rotated by an angle dependson 6 asfollows (whereweset c = cos(6)
and s= sin()):

k(cos(®)Yi + sin(@)Y;) + k(— sin(®)Y; + cos()Y;) (A2
= cHiiii] + 43]iij] + 6s7iiij] + 4cs7iijiil + sl (A3
+ Hiiii] — 4sdiij] + 6s2cAAiij] — 4scTiiij] + <l (A4
= (¢* + SH(iiii] + [jijih + 12sTiijj] + 4es( — S (iiif] — [jjji]) (A.5)

lo

_S@Szw + 4es(@ — D) (] — [jiiD) (A.6)

= —2sin%(2)a; + 2sin(29) cos(29)hj = cos(4h)a; + sin(do)b; (A7)
= Ajj (cos(40) cos(49j) + Sin(40) sin(4Kj)) = Ajj COS(4(0 — ). (A.8)

wherethe angle 4Q;; is defined by

2 +

o+ b JE+8

Thisis obtained by using the multilinearity and the symmetries of the cu-
mulants at lines A.3and A 4, followed by elementary trigonometrics.

If Y and Y are zero-mean and sphered, EY;Y; = §;j, we have [iiii] =

i = EY# — 3E2Y2 = EY{ — 3and fori # j: [iiij] = Q) = EY?Y, aswell as

iiij

0oS(42;j) =

iijj] = QY. = EY?Y? — 1. Hence an aternate expression for a; and b is
ijj ! : :
1
A= gE(Y-one) bE(RY-Y). e

It may be interesting to note that all the moments required to determine
the Givensanglefor agiven pair (i, j) can be expressed in terms of the two
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variables&; = Y;Yj and njj = YZ — sz. Indeed, it iseasily checked that for a

zero-mean sphered pair (Yj, Yj), one has

1
aj = iE(n% - 45”2) by = E(nij&i) - (A1)

A.2 A Simple Matlab Implementation of MaxKurt. A Matlab imple-
mentation could beasfollows, wherewehavetried to maximizereadability
but not the numerical efficiency:

function Y = maxkurt(X) %

[n T] = size(X)
Y = X - nmean(X, 2)*ones(1,T); % Renove the nean
Y = inv(sgrtmXxX*X /T))*Y ; % Sphere the data
encore = 1 ;7 % Go for first sweep
whi | e encore, encore=0;
for p=1:n-1, % These two | oops go
for q=p+l:n, % through all pairs
Xi = Y(p,1).*Y(q,1);
eta = Y(p,)*Y(p,) - Y(qv)*Y(qv)r
Onega = atan2( 4*(eta*xi’), eta*eta’ - 4*(xi*xi’) );
if abs(Orega) > 0.1/sqrt(T) %A ‘statistically small’
% angl e
encore = 1 ; % This will not be the
% ast sweep
c = cos(Omegal 4);
S = sin(Onegal4);
Y([pal.:) =[ cs; -sc] *Y([pal.:); %Plane
% rotation
end
end
end
end
return
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