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Precision Cosmology  
with the Cosmic 
Microwave Background

T
he cosmic microwave background (CMB) is a corner-
stone of modern cosmology; extracting cosmological 
information from it requires high accuracy instru-
ments as well as a great deal of signal processing. This 
article highlights a critical step of the CMB data pro-

cessing pipeline: the construction of a likelihood function for the 
statistical exploitation of CMB data. Since this task is based on a 
sky map of CMB anisotropies, it requires some understanding of 
spherical analysis. The aim of this article is to introduce the reader 
to some of the issues related to spherical analysis for the CMB. It 
opens with a short overview of the CMB and explain how to build a 
spherical likelihood for it, starting with an idealized case of perfect 
(full-sky, noise-free) CMB observations and then moving to the 
actual computations with imperfect data using specific tools for 
signal processing on the sphere. 

Introduction
The CMB has become a “primary tool for determining the global 
properties, content, and history of the Universe” [11], with the 
most recent high precision measurements beautifully matching a 

(relatively) simple “concordance model” (see Figure 1). <AU: 
Figures 1–7 were renumbered throughout the text so that 
they appear in numerical order.> These great achievements 
are obtained by combining extensive physical models of the 
early Universe, cutting edge instrumentation, and  a lot of signal 
processing. 

A data processing pipeline for a CMB instrument includes 
steps that consist of sky scans, sky maps, spectrum estimation, 
and statistical inference about the cosmological parameters 
describing the early Universe. <AU: please check that edited 
sentence retains original meaning> These steps involve chal-
lenging signal processing tasks. This article focuses on one of 
the last steps: writing down a tractable yet accurate likelihood 
function for CMB data once they have been processed into a 
map of temperature anisotropies, such as the one depicted in 
Figure 2.  This figure, as well as all full-sky maps of this article, 
represents the celestial sphere using the Mollweide equal-area 
projection. 

[Jean-François Cardoso]
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[A focus on issues related to spherical analysis]
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From the signal processing point of view, a specific require-
ment is to perform spectral analysis on the sphere. This (maybe) 
unusual setting is the secondary focus of this article. 

Precision cosmology and the CMB
This section briefly describes the nature of the CMB and how the 
measure of its anisotropies has emerged as a pillar of modern 
cosmology. Statistical exploitation of these increasingly accurate 
measurements is outlined, which allows cosmologists to go from 
a CMB sky map to a statistical statement about, for instance, the 
flatness of the Universe. 

The CMB
If you operate a radio-telescope in the centimeter domain, you 
will find that from any point of the sky comes a faint signal with 
a very uniform (direction independent) intensity. If you are 
thorough, you may convince yourself that this is not some 
instrumental noise but an actual sky signal, the CMB, but you 
will not earn a Nobel prize, because Penzias and Wilson already 
did in 1978 for their groundbreaking 1964 observations [30] at 
the Bell Labs. 

The existence of the CMB signal was actually predicted by 
Gamow and his collaborators even before its unambiguous 
observation by Penzias and Wilson, based on the following epi-
sode of the Big Bang scenario [5]. At some time in the past, the 
Universe was hot enough to be a plasma of light nuclei (mostly 
protons), electrons and photons, closely interacting with each 
other and hence in thermal equilibrium. If such a plasma 
expands (due to the expansion of the Universe itself), it also cools 
down to the point where thermal agitation can no longer prevent 
nuclei and electrons from combining to form atoms. In that 
transition from an ionized state to a neutral state, the Universe 
turns from opaque to transparent because photons scatter much 
less off a neutral atom than off a free electron. Hence, matter 
and radiation decouple and the photons are set free to roam the 
Cosmos. Most of them have been doing so, traveling undisturbed 
since the time of last scattering. That was about 13 billion years 
ago, some 380,000 years after the Big Bang. 

At decoupling time (also called recombination), photons 
were in thermal equilibrium with matter at temperature of a 
few thousand Kelvins with a mean wavelength of the order of 
the micron. But general relativity predicts that the expansion of 
the Universe also expands the wavelength of CMB photons by 
the same factor while preserving the shape of its spectral densi-
ty. See Figure 3 and wonder at the exquisite fit between the 
spectral density of the CMB as measured by NASA’s Cosmic 
Background Explorer (COBE)-far infrared absolute spectro-
photometer in 1990 and its theoretical prediction by the Planck 
formula for the radiation/matter thermal equilibrium at tem-
perature T5 2.725 K. Very standard physics tells us that a plas-
ma (as the one described above) undergoes a phase transition 
from ionized to neutral at a temperature around 3,000 K so that 
observing the CMB today at T < 3 K teaches us very straightfor-
wardly that the Universe has expanded by a factor of about 1,000 
since recombination. 

Penzias and Wilson had already measured the mean CMB 
temperature of about 3  K uniformly on the sky but one had to 
wait for NASA’s COBE-Differential Microwave Radiometer 
(DMR) to discover long sought CMB anisotropies, that is, varia-
tions over the sky of CMB temperature. The DMR instrument 
<AU: ok to delete word “instrument?”>  aboard COBE measured 
the CMB temperature anisotropies with an angular resolution of 
about 7° and a sensitivity of a few tens of mK. Figure 4(a) shows 
a featureless sky: the CMB temperature is apparently very uni-
form over the sky. Figure 4(b) displays the temperature with its 
mean value removed, showing essentially a dipolar pattern: it is 
the Doppler effect for the instrument flying through the CMB 
sea. The most interesting patterns emerge after this dipole is 
subtracted: a red stripe along the equator is due to the micro-
wave emission from our Galaxy, the Milky Way, and, at the poles, 
tiny temperature fluctuations, of the order of a few tens of mK, 
which are mostly free from Galactic contamination. That is, 
blurred by the instrument and rescaled by cosmic expansion, 
the large-scale distribution of the temperature of the Universe 
when it was a few hundred thousand years old! 

COBE images made a splash on the front page of the New 
York Times (and in 2006, G. Smoot and J. Mather earned the 
second CMB Nobel Prize) but even more exciting, physics 
had to come from ever more accurate CMB measurements. 
Today, the best full-sky observations come from NASA’S 
Wilkinson microwave anisotropy probe (WMAP) mission with 
CMB observations at a resolution better than 1°, giving 
access to details about ten times finer than COBE’s. Figure 2 
shows a full-sky CMB map, with almost no visible Galactic 
contamination, thanks to a component separation procedure 
combining several frequency channels [13]. Measuring CMB 
anisotropies at the degree resolution (or better) is of utmost 
importance because one degree is small enough an angular 
separation to connect parts of the Universe close enough to 
be causally related. Hence, these fine features are signatures 

[Fig1]  Rescaled angular spectrum C,,(, 1 1)/2p in mk2 vs 
angular frequency (top horizontal axis, labelled ‘multipole 
moment’ here) or vs the angular size u 5p/, (bottom horizontal 
axis). Black dots: Ĉ, measurements from WMAP (grey points). 
The grey area shows the cosmic variance. Red line is the best fit 
model C(v̂Ml). Credit: NASA.
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for the physics of the early Universe. Since they correspond 
to spatial fluctuations in the energy density, the CMB anisot-
ropies can be understood as marking the seeds of large scale 
structures of the Universe. 

The Planck space mission of the European Spatial Agency 
[10], launched in May 2009, will deliver even sharper images of 
the microwave sky in nine frequency channels from 30 to 857 
GHz with a (frequency-dependent) resolution as good as 5 arc
min [9]. 

Precision cosmology
How is science extracted from a map of CMB anisotropies? 
Quantitative statements are obtained statistically by considering 
the CMB map as a (single) realization of a random process. In 
this respect, the task of theoretical cosmologists is to under-

stand how the physics of the early Universe governs the proba-
bility distribution of CMB observations to build a likelihood 
function Pr 1CMB|v 2 , where v is a set of parameters for a given 
cosmological model. If the CMB is dubbed a “pillar of cosmolo-
gy,” it is because its probability distribution is sensitive to key 
cosmological parameters. One may write informally 

	 v 5 1Vb, Vc, VL, H, c2 ,�

where Vb (Vc, VL, respectively) <AU: edit ok here?> is the (prop-
erly normalized) energy density due to ordinary matter (mostly 
baryons) (to cold dark matter and dark energy, respectively), <AU: 
edit ok here?> H is the Hubble constant.� As an example, Figure 5 
shows contours of a CMB likelihood when two parameters are var-
ied: the relative energy densities of matter Vm5Vb1Vc and of 
dark energy VL. The contours are aligned along the Vm1VL5 1 
line that correspond to a flat Universe. It is outside the scope of 
this article and beyond the skills of this author to provide a seri-
ous exposition of cosmological parameters. The interested read-
er may refer to some excellent cosmology primers from real 
cosmologists such as Wayne Hu [24], Simon White [37], Ned 
Wright [39], or Max Tegmark [34] to name a few, or from NASA 
[29]. 

Building a good probabilistic model Pr 1CMB|v 2  seems to be 
quite a feat, but it is not so difficult in the standard Big Bang 
model in which the CMB is predicted to be (a realization of) a 
Gaussian stationary field. In such a case, its probability distribu-
tion depends on the cosmological parameters only via its 
angular power spectrum C  (defined in the next section) so that 
the division of labor for the scientific exploitation of CMB data 
can be caricatured as combining the following: 

a cosmological model (or competing models) predicting the 1)	
dependence of the angular power spectrum on the cosmologi-
cal parameters: software packages, such as the Code for 
Anisotropies in the Microwave Background (CAMB) [26] or 
CMBfast [31], are responsible for implementing v S C 1v 2  

an instrument and a lot of upstream signal processing to 2)	
turn CMB data into the best possible, well-characterized 
CMB map 

a likelihood function 3)	 C S Pr 1CMB map|C 2  to express the 
probability of a given CMB map given an angular power spec-
trum C. 
There are many signal processing tasks required in the sec-

ond point to go from the exquisitely delicate measures of a radi-
ation temperature in many sky directions to producing a CMB 
map. 

One critical task is going from the time-ordered data 
obtained by scanning the sky to spherical maps, one of for each 
detector or for each frequency channel. This so-called “map 
making process” must exploit redundancy (each pixel of the 
final map is seen several times during the instrumental survey), 
must take into account possibly asymmetric instrumental 
beams (point spread functions), and must also produce a good 
characterization of the residual noise. If the instrument 
response is well characterized, mapmaking can be addressed as 
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[Fig2]  Map of the cosmic background in the Mollweide projection 
after foreground removal based on five years of observation by 
WMAP. Credit: NASA.
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[Fig3]  Solid line: Planck law of black body radiation (light in 
equilibrium with matter at temperature T) has spectral density 
depending only on T. Data points with error bars: COBE 
measurements, fitted by Planck law for T5 2.725 k with 
wonderful accuracy: here, for readability, error bars are blown 
up by a factor of 400. Credit: NASA.
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a well-posed linear problem; it is mostly the sheer size of the 
problem (multimillion pixel maps) which makes it challenging. 
See [17] (and [15] dealing with asymmetric beams) and refer-
ences therein for some approaches to mapmaking for the Planck 
mission. 

Another critical task is component separation by which the 
diversity offered by multifrequency observations is used to sort 
out the cosmic background and the astrophysical foreground 
emissions which all contribute to the signal measured at the 
detectors. The foreground emissions, both from galactic (from 
our Milky Way) and extra-galactic origins are of astrophysical 
interest but, of course, the cosmological focus is on cleaning up 
the CMB. Figure 4(c) is a sky map without foreground cleaning 
(showing strong Galactic emission at the equator), while Figure 
2 shows a CMB map after foreground removal. Component sep-
aration is a difficult task which requires combining a good sta-
tistical modeling of the data with as much prior information as 
possible. See [19] for the component separation performed by 
the WMAP team and [16] and references therein for a compari-
son of component separation methods for the Planck mission. 

This article is not intended to address all aspects of CMB data 
processing. Rather, it aims at providing the reader with a 
glimpse of the third point mentioned earlier, that is, developing 
the likelihood of angular power spectra given a spherical map. 

Spherical analysis
A full-sky CMB map may be seen as a real-valued function 
X 1j 2  defined everywhere on the unit sphere S2, where a point 
on the sphere (a direction in the sky) is represented by a 
3 3 1 unit vector j. This section introduces basic concepts of 
spherical analysis with emphasis on invariance: we look for 
invariant quantities, which are defined independently of a 
coordinate system. 

Multipole decomposition
A primary tool for exploring spherical fields is the multipole 
decomposition that reads 

	 X 1j 2 5 a
,$0

X1,2 1j 2 ,� (1) 

where index , is called the angular frequency and where the 
first components are called monopole, dipole, quadrupole, octo-
pole, … for ,5 0, 1, 2, 3, c as illustrated by Figure 6. This is 
an orthogonal decomposition, that is, es2 X1,2X1,r25 0 for , 2 , r. 
Each multipolar component X1,2 in fact is the orthogonal pro-
jection of X onto a linear subspace H, of functions. These har-
monic subspaces can be characterized as the smallest function 
spaces which are globally invariant under rotations. They have a 
very simple form at the first three frequencies: H0 is the set of 
constant functions (dim 1H0 2 5 1); H1 is the set of functions of 
the form X 1j 2 5 a†j for all fixed 3 3 1 vector a (dim 1H1 2 5 3); 
H2 is the set of functions of the form X 1j 2 5j†Aj for all fixed 
3 3 3 symmetric traceless matrices A (dim 1H2 2 5 5). More 
generally, the harmonic subspace H, can be shown to have 
dimension 2,1 1. 

A beautiful general characterization of harmonic subspaces 
is via the spherical Laplacian DS. The spherical Laplacian 

[Fig4]  COBE-DMR temperature maps in Mollweide projection. (a) Plain temperature map: no visible deviation from uniform temperature of 
To < 2.725 k. (b) After mean removal, a mostly dipolar pattern with amplitude in the mk range. (c) After dipole removal, visible anisotropies 
in the range of tens of mk. Credit: NASA.
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DS X 1j 2  at any point j is the sum of any two second derivatives 
of X 1j 2  taken in mutually orthogonal directions which are tan-
gent to the sphere at that point. The spherical Laplacian, as a 
linear operator on spherical functions, can be shown to have 
eigenvalues equal to 2, 1,1 1 2  for all integers , $ 0 and the 
harmonic subspace H, is the associated eigen-space: the set of 
all spherical functions such that DS  

X 1j 2 52, 1,1 1 2  X 1j 2 . 
An explicit basis for the harmonic subspaces is described in the 
section “Signal Processing on the Sphere,” but is not needed 
for now, as long as we focus on invariant properties. 

The multipole decomposition may also be understood as the 
result of a spherical convolution: the ,th multipole term can be 
obtained as the convolution product 

	 X1,2 1j 2 5 3
jr[S2

X 1j r 2   2,1 1
4p

 P, 1j†j r 2  ds 1j r 2 ,� (2)

where the scalar product j†j r is the cosine of the angle between 
directions j and j r and where P, 1 # 2  is the ,th Legendre polyno-
mial. Figure 7 shows the first six Legendre polynomials. 

It may be enlightening to compare to the case of a circular func-
tion X 1u 2 ,  u [ 30, 2p 2 defined on S1, the unit circle. The “circular 
Laplacian” reducing to the second derivative, its eigen-subspaces 
clearly are Hn

c 5 5acos 1nu 2 1 bsin 1nu 2 6 for n $ 0, of dimension 
wn with w05 1 and wn5 2 for n . 0. If X [ Hn

c, then 
Xs52n2X, so the corresponding eigenvalue is 2n2, which is 
almost like 2, 1,1 1 2 . Hence, on S1, the nth harmonic subspace 
Hn

c is made of all periodic functions at frequency n, is globally invari-

ant under rotations, has dimension wn and the nth harmonic com-
ponent X1n2 1u 2 is extracted by a circular convolution 

	 X1n2 1u 2 5 3
2p

0
X 1ur 2 wn

2p
cos 1n 1u 2 ur 2 2  dur� (3)

in close analogy to the spherical convolution (2). We see here 
that the Legendre polynomials somehow are to the sphere what 
cosines are to the circle. See (5) and (6) for another instance of 
this parallelism. 

Isotropic fields, angular  
correlation, and spectrum
A spherical random field is isotropic or stationary (these two 
terms are used indifferently here) if its probability distribution 
is invariant under all rotations. In particular, the correlation 
between two directions j and j r depends only on their angular 
separation 

 	 COV 1X 1j 2 ,X 1j r 2 2 5r 1j†j r 2 ,� (4) 

where, again, the scalar product j†j r is the cosine of the 
angle separating j and j r. Equation (4) defines, on the 
interval 3 2 1, 1 4, the angular correlation function r of the 
stationary field X. 

Recall how, for a stationary process on the circle, the correla-
tion function rc 1 # 2  defined by COV 1X 1u 2 , X 1ur2 2 5 rc 1u 2 u r 2  
and the discrete power spectrum Sn are related via a cosine 
transform 

	 rc 1t 2 5 a
n$0

Sn

wn

2p
cos 1nt 2 ,� (5) 

where, as in (3), w05 1 and wn5 2 for n . 0. Now, just as the 
spherical equivalent of (3) is (2), the spherical equivalent of (5) 
is to define the angular power spectrum C5 5C,6,$0 of an iso-
tropic process on the sphere via a “Legendre transform” of the 
angular correlation, that is, 

	 r 1z 2 5 a
,$0

C,
2,1 1

4p
P, 1z 2 .� (6)

How is that definition related to angular power? Since 
the multipole decomposition is orthogonal, the total energy 
||X||25 eS2 X2 of a given realization X decomposes as a sum 
over multipoles: ||X||25 a,$0

||X1,2||2. Define then the em-
pirical angular power spectrum Ĉ of X as 

	 Ĉ5 5Ĉ,6,$0 with Ĉ,5
1

2,1 1
||X1,2||2, 

= + + + + + . . .

–2.78 +3.05 +0.00e+00 +0.00e+00 –0.32 –0.84 –1.71 –1.57 +1.66+1.71+0.59+0.32

[Fig6]  Multipole decomposition of a spherical field. This is the pictorial version of (1), showing the first five multipoles.

[Fig7]  Legendre polynomials P,(z) for 0 # , # 5 on [21, 1]. 
P0(z) 5 1, P1(z) 5 z, P2(z) 5 (3z22 1) / 2, P3(z)5 (5z32 3z)/2, � 
... The ,th polynomial changes sign , times on [21, 1]. 
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that is, Ĉ, is the average energy per dimension (since 
dim 1H, 2 5 2,1 1) of the ,th multipole of X. Now, if X is a 
realization of a stationary field with angular spectrum C,, one 
can show that C,5 E 1 Ĉ, 2 , so that the angular spectrum indeed 
measures the mean (ensemble average) distribution of power 
across angular frequencies. 

Spherical likelihood
The empirical angular spectrum of a Gaussian isotropic field 
is an exhaustive statistic i.e., the probability p 1X|C 2  of any 
realization X depends on X only through its empirical spec-
trum Ĉ. Indeed, the likelihood of a power spectrum C  takes 
the form 

	 22log p 1X|C 2 5 a
,$0

12,1 1 2  a 
Ĉ,
C,
1 logC,b 1 cst.� (7)

That expression is derived in the section “Statistics in 
Harmonic Space” using spherical harmonics but could also be 
established using only arguments of spherical invariance. 

The cosmological principle postulates an isotropic and 
homogeneous Universe and therefore predicts that the CMB 
map is the realization of a stationary field on the sphere. 
Further, the standard Big Bang model also predicts normally 
distributed CMB anisotropies. The Big Bang model is also 
known as “L-CDM” model because it requires a cosmological 
constant L (or dark energy) and cold dark matter (CDM). 
Actually, that model predicts possible small deviations from 
Gaussianity, small enough to be ignored at this level of exposi-
tion. Hence, within the Gaussian isotropic framework, the like-
lihood of any model of the Universe with cosmological 
parameters v can be evaluated by confronting a theoretical 
spectrum C 1v 2  to the empirical spectrum Ĉ via (7). In other 
words, the empirical angular spectrum Ĉ of the CMB summariz-
es all cosmological information. 

WMAP measurements and  
cosmic variance
Figure 1 summarizes the spectral analysis of the CMB tempera-
ture field based on five years of WMAP observations [13]. It dis-
plays rescaled angular spectra, plotting C, , 1,1 1 2 / 2p rather 
than plain C, for the sake of readability. There is a very clean 
determination of two peaks around , < 220 and , < 550 as 
well as a pretty good capture of a third peak. The empirical spec-
trum is beautifully fitted (except maybe a puzzlingly low qua-
drupole Ĉ4 ) by the likeliest “concordance model,” involving 
only a handful of cosmological parameters. 

Here, we will be concerned with the error analysis. Figure 1 
shows error bars (in black ink) that get larger with increasing ,, 
reflecting the decreasing signal-to-noise ratio at the finest 
scales. At low ,, the signal-to-noise ratio is much larger than 
one and error bars are very small. However, the figure also 
shows a grey area of uncertainty in this part of the spectrum. 
This is the so-called “cosmic variance,” which we now discuss. 

To do so, it is enlightening to rewrite the likelihood (7) by 
noting that Ĉ/C1 log C5k 1 Ĉ/C 2 1 cst where cst does not 

depend on C and where k 1u 2 5 u2 12 log u. The k function is 
depicted in Figure 8; it is nonnegative and equivalent to 
1u2 1 2 2/2 up to third order at u5 1. Hence, the likelihood 
function (7) can be rewritten as 

	 2 2log p 1X|C 2 5 a
,

12,1 1 2  ka Ĉ,
C,
b 1 cst� (8) 

and interpreted as a measure of the mismatch between the 
empirical spectrum Ĉ and the candidate spectrum C. Equation 
(8) shows that the log-likelihood integrates the error (or mis-
match) term k 1 Ĉ,/C, 2  over the whole multipole range with a 
weight equal to 2,1 1. This reflects the increased accuracy of 
Ĉ, as an estimate of C, at higher multipoles: it is easily found 
[from (14)] that 

	 COV 1 Ĉ,/C, 2 5 2/ 12,1 1 2 � (9)

as a simple consequence of the fact Ĉ, estimates C, as an aver-
age over 2,1 1 independent terms. Note that (8) would read as 
an optimally weighted (inverse variance) mean-square error cri-
terion if k 1u 2  was replaced by its quadratic approximation 
1u2 1 2 2/2. 

Cosmologists call cosmic variance the irreducible uncertain-
ty expressed by (9). By nature, it is mostly significant for low 
values of , as seen in Figure 1. It is an ultimate limitation of 
spectral analysis based on a single realization of the random 
field. Indeed, there is no possibility to improve on it neither by 
using a better instrument (we are already assuming perfect, full-
sky, noise-free observations here) nor by averaging over many 
realizations because we have only one realization available: our 
unique Universe. 

Signal processing on the sphere
We saw that inferring cosmological parameters only requires 
knowing the empirical angular power spectrum Ĉ of the CMB, 
which is simply related to an ideal (full-sky, noise-free) CMB 
map. The section “Dealing with Imperfect Observations” briefly 
addresses the case of imperfect observations, but even with per-

0

1

0 1 4

[Fig8]  Function k(u)5 u2 12 log u (solid blue line) and its 
quadratic approximation (u2 1)2/2 (dashed red line).
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fect observations, the procedure leading to the CMB likelihood 
(7) remains an abstraction until we have the practical tools to 
estimate Ĉ,. 

So far, we have defined only rotationally invariant, coordi-
nate-free quantities. That may be conceptually pleasing, but con-
crete implementations are also needed! This section introduces 
some of the signal processing tools for practical data processing 
on the sphere. We discuss a sampling scheme, the construction 
of a Fourier basis on the sphere, and semifast algorithms for 
computing the coefficients of a spherical map in this basis. 

We use a coordinate system j 5 j 1u, f 2  where a point j on 
the sphere is labeled by a pair 1u, f 2  of angles: a longitude 
f [ 30, 2p 4  and a “colatitude” (angular distance from the 
North Pole) u [ 30, p 4. 

Sampling
Sampling on the sphere is not a trivial problem. It is exacerbat-
ed in the case of CMB studies by the fact that the pixelization 
scheme must support the high resolution of today’s experiments 
that produce multimillion-pixel maps. The Hierarchical Equal 
Area isoLatitude Pixelization (HEALPix) scheme [20] has 
become a standard in CMB studies. 

It is based on a first division of the sphere in 12 large pixels 
that can be further subdivided dyadically at the desired resolu-
tion, yielding maps of Npix5 12 3 22r pixels at resolution r (see 
Figure 9). WMAP produces maps at HEALPix resolution r5 10 
while Planck resolution will require r5 11. 

Indeed, the pixels are carefully constructed to have the same 
area and to be evenly aligned on isolatitude rings. This last 
property is critical to implement fast Fourier transforms (FFTs) 

(see below). <AU: do you mean the “A Fourier Basis: Spherical 
Harmonics” section?> Another nice property of HEALPix is its 
dyadic structure: the pixels can be arranged in memory in nest-
ed order, allowing for efficient local processing. 

However, the HEALPix scheme is not perfect in every 
respect because it lacks an exact quadrature. Again, we can 
compare to the circle case: if X 1u 2  is a properly band-limited 
function on the unit circle, its integral can be computed exactly 
from N equispaced points as 

	  3
2p

0
X 1u 2du 5 a

N

i51
X 1ui 2  v i 

using quadrature weights v i5 2p/N. A similar form 

	 3
S2

X 1u, f 2  ds 1u, f 2 5 a
Npix

i51
X 1ui, fi 2  Vi� (10) 

exists for the sphere for some band limit on X (that is, if 
X1,25 0 for , $ ,max) but the quadrature weights cannot be 
determined exactly in practice for large Npix in the HEALPix 
scheme. A good approximation of course is Vi5 4p/Npix, 
since this is the common pixel area. The HEALPix package 
provides latitude-dependent weights that improve the 
quadrature significantly. 

Many other pixelization schemes are possible but apparently 
no perfect pixelization has been found so far. Rectangular (equi-
angular) grids offer clean sampling theorems and exact quadra-
ture (see [7], for instance) but have pixels of wildly varying sizes. 
Icosahedral grids offer pixels that are quite uniform in shape  
[35] but are not arranged on isolatitude rings, preventing fast 
spherical harmonic transform (see the next section). “Igloo” 
grids, e.g., [3] and [6], may allow for fast exact quadrature or 
have approximately equal-area pixels, but they are trickier to 
arrange hierarchically. Sampling and quadrature on the sphere 
is still an active area of research. 

A Fourier basis: Spherical Harmonics
For harmonic computations, an explicit basis for each harmonic 
subspace H, is needed. Any orthobasis would do in theory, but a 
specific basis with nice computational properties can be 
obtained as follows. Recall that H, is characterized as the 
12,1 1 2-dimensional eigenspace of the spherical Laplacian DS, 
associated with eigenvalue 2 , 1,1 1 2 . Define L5 2 i 1'/'f 2  
where i is the imaginary unit, an operator related to rotations 
around the pole axis. Its eigenfunctions clearly are of the form 
X 1u, f 2 5 g 1u 2eimf for any function g 1u 2 , associated with inte-
ger eigenvalues m. Now, DS and L are commuting Hermitian 
operators so that they share a common orthogonal basis of 
eigenfunctions. Hence, it must exist, for each H,, an orthonor-
mal basis of functions for which the dependence on longitude 
factors as eimf. These are the spherical harmonics, indexed by a 
pair of integers: 5Y,m 1u, f 2  | 0 # ,,  2, # m # ,6 that form 
an orthonormal system on S2 and factor as 

	 Y,m 1u, f 2 5 P,m 1cosu 2  eimf,� (11) 

[Fig9]  HEALPix sampling. In (a), the 12 basic pixels are shown. 
Further subdivisions into npix5 12 3 22r pixels at resolution 
levels r5 1, 2, 3 are shown in (b)–(d), respectively. Figure 
courtesy of  [20]. <AU: is edited caption ok? (a)–(d) will be added to 
figure later. Also, is credit line correct? Do you have permission from 
these authors to use this figure?>
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where the P,ms are proportional to the Legendre functions [1]. 
Space limitations prevent going into more detail, but the key 
point to keep in mind is the separation of the variables u and f 
in (11). 

For our purpose, we would rather use real-valued spherical 
harmonics, denoted Y,m 1u, f 2 , with Y,05 P,0 and 

	 cYl,1m

Yl,2m
d 5G c Yl,1m

Yl,2m
d     for G5"2 c 1 1

2 i i
d

for 0 , m # ,. Unitary matrix G preserves orthonormality while 
turning the complex pair 3eimf

 e2imf 4T into the real pair 
3"2cos 1mf 2  "2sin 1mf 2 4T. Figure 10 shows, for ,5 3, the 
2,1 15 7 real spherical harmonics making an orthobasis for H3. 

Thanks to the orthonormality of spherical harmonics, we can 
now write a Fourier transform on the sphere 

	 a,m5 3
S2

 Y,m 1u, f 2  X 1u, f 2  ds 1u, f 2 , � (12)

	 X 1u, f 2 5 a
0#,

 a
2,#m#,

a,mY,m 1u,�f 2 � (13) 

more often referred to as a spherical harmonic transform. The ,th 
multipole component X1,2 1u, f 2  can be obtained by summing 
only over m with fixed , in the synthesis formula (13). However, 
this is not even needed to obtain the empirical angular spectrum: 
by orthonormality, ||X1,2||25 a2,#m#,

 a,m
2 , so that 

	 Ĉ,5
1

2,1 1
 a

m5,

m52,
a,m

2 .� (14)

That expression, which can be seen as a spherical periodogram, is 
computed at virtually no cost once the a,m coefficients are avail-
able. 

Discrete (and fast!) spherical transforms
Imaging instruments have limited resolution, producing only 
smooth, band-limited versions of the underlying field. If a smooth 
map has a well-defined band limit L, that is, a,m5 0 for , $ L, 
how should it be sampled to allow for the computation of its 
spherical harmonic coefficients a,m? Since the total number 
Nmodes of nonzero coefficients is Nmodes5 a0#,,L

12,1 1 2 5 L2, 
such a band limited map has L2 degrees of freedom and thus must 

be supported on a grid of at least L2 pixels. But is that number suf-
ficient? This is a thorny issue because the practitioner needs a 
sampling grid, which is not only efficient (not many more points 
than the bare minimum L2), but also offers accurate quadrature 
for the computation of the a,m coefficients from a discrete version 
of (12). Further, that computation must be fast because we deal 
with multimillion-pixel maps. 

As of today, efficiency, exactness, and speed are slightly conflict-
ing requirements. 

For instance, an often-quoted sampling theorem of Driscoll 
and Healy guarantees exact harmonic coefficients a,m from sam-
ples of a band-limited map on a 1u,f 2-rectangular grid of size 
2L 3 2L5 4L2 (even though that figure can be brought down to 
2L2) [7]. The HEALPix grid, and other well distributed grids, are 
probably more efficient but explicit weights for exact quadrature 
are missing. However, recent results show that weights could be 
obtained from a numerical procedure and indicate that 4/3L2 sam-
ples are the approximate practical limit needed to access harmonic 
coefficients up to frequency L [21]. 

Regarding the speed of spherical harmonic transforms, a naive 
evaluation of (12), (13) scales as L2 3 L25 L4. This is prohibitive 
at large L (without even accounting for computing Y,m at the 
sampling points). Fortunately, any sampling scheme with pixels 
located on isolatitude rings can exploit the separation of variables 
u and f in the spherical harmonics (11) and organize the compu-
tations to scale as L3. Further, if the pixels are evenly located one 
each ring, one-dimensional FFTs can be used to perform the sum-
mation over f or m. Even faster transforms can be designed by 
refining the integration in the u direction in the spirit of the dis-
crete cosine transform. <AU: please check that edited sentence 
retains original meaning> One can achieve scaling of L2log2

2 L on 
rectangular grids [7], [38], but it is still unclear whether that is 
competitive with simpler approaches when all computing costs are 
accounted for. 

Statistics in harmonic space
We can now go back to the issue of producing a likelihood for a 
realization X of a Gaussian stationary field on the sphere. 
Gaussianity of the field entails the Gaussianity of its coefficients 

–1.18 –1.11 +1.11 –1.26 –0.75 +0.75+1.26+1.18

–1.18 –1.11 +1.11 –1.26 +1.26+1.18

[Fig10]  Real spherical harmonics Y,m(u, f) for ,5 3 and, column-wise, 6m5 3, 2, 1, 0.  
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and its stationarity entails the complete decorrelation of the har-
monic coefficients 

	 COV 1a,m, a,rmr 2 5 C, d 1,, , r 2  d 1m, m r 2 � (15) 

and therefore their independence since they are Gaussian (see 
e.g., [2]). Thus, the probability density of a coefficient is 
p 1a,m 2 5 1 / 1s"2p 2  exp2 1a2

,m/2s2 2  with s25 C, or, equiva-
lently, 22log p 1a,m 2 5 a,m

2 /C,1 log C,1 cst and the log-den-
sity for the whole set, denoted a, is just the sum of the 
log-densities. Therefore, 

	 22log p 1a|C 25a
,
a
m

a,m
2 /C,1 logC,1 cst�

(16)	 5 a
,

12,1 1 2  3Ĉ,/C,1 logC, 41 cst,

where last equality uses (14). With harmonic coefficients a and 
CMB map X being related by the fixed-linear transforms (12), 
(13), their log-densities can differ only by a constant, establish-
ing the likelihood form of (7). 

Dealing with imperfect observations
The availability of spherical harmonic coefficients makes it easy 
to compute the likelihood of any angular spectrum: as we just 
saw, the cosmological information contained in a sky map is 
losslessly compressed [33] in the empirical angular spectrum Ĉ 
in the sense that this is the only statistic needed to evaluate the 
likelihood function (7). Unfortunately, the form of the CMB like-
lihood obtained at (7) is only an idealization based on the 
assumption of spherical harmonic coefficients computed from 
an perfect CMB temperature map: full sky, full resolution, noise-
free, and foreground-clean. With real CMB data, that is only 
approximately true and, since the cost of data collection and the 
greatness of the scientific objectives call for data processing of 
the highest quality, we must now turn to examining how to deal 
with imperfect observations. 

Real CMB maps
Any real instrument has finite resolution and sensitivity and 
can only produce blurred and noisy CMB maps. The simplest 
possible description of these effects is to assume that one 
observes the true CMB map convolved by an axisymmetric 
beam and contaminated by an additive Gaussian stationary 
noise. The angular spectrum of the observed map then is 
W,C,1N, where W, is the (squared) beam transfer function 
and N, is the angular spectrum of the noise. However, this is 
still a Gaussian stationary model so that the CMB likelihood 
(8) becomes 

	 22log p 1X|C 2 5 a
,max

,50

12,1 1 2  ka Ĉ,
W,C,1N,

b 1 cst. 

The only difference, with respect to (8), is the theoretical angu-
lar spectrum W,C,1N, now including beam and noise effects and 
an explicit truncation of the sum to some upper multipole above 
<AU: can you clarify “above”> that one expects W,C, V N,, i.e., 

the signal is hopelessly buried in noise. For WMAP, the upper limit 
is around ,max < 1,000 and Planck is expected to go up to 
,max < 3,000. 

However, changing C, to W,C,1N, is not accurate enough to 
represent the imperfections of the CMB map obtained with the 
best current instruments. The major complications all stem from 
some lack of isotropy: a) the beam is not exactly axisymmetric and 
furthermore, it varies over the sky so that W, is not properly 
defined; b) the noise is nonstationary; and c) only part of the sky 
can be considered as free of foreground contamination. 

Leaving point a) aside, regarding the beam, point b) is illustrat-
ed by the sky coverage achieved by WMAP during its first year of 
observation [11]. Figure 11 shows the number of times a given 
pixel is seen during the survey, which may vary from 500 to 7,000 
as a result of the sky-scanning strategy of the instrument (itself 
governed by operational constraints of the satellite). The CMB 
temperature is estimated in a given pixel with a variance that is 
essentially inversely proportional to the number of times the pixel 
is visited by the beam. Hence, the noise variance is pixel-dependent 
and Figure 11 can be seen as a map of the noise inverse variance. 
Point c) is illustrated in Figure 12, showing the extent of various 
masks that may be applied to a CMB map before attempting spec-
tral estimation. The reason for masking part of the sky is that the 
beautiful CMB map of Figure 2 appears more homogeneous than 
it probably is. Such a map, obtained after the component separa-
tion step (see the section “Precison Cosmology”) cannot be per-
fectly free of foreground contamination. Hence, as a conservative 
measure, the angular spectrum is estimated only from the pre-
sumably cleanest fraction of the sky [13]. The excluded regions, as 
illustrated by Figure 12, are mostly determined from patterns of 
galactic emission (such a coarse pattern is visible in Figure 2) but 
other very bright, point-like sources are also masked away. 

A two-scale strategy
How does one perform spectral analysis with missing (masked 
away) data and nonuniform noise that both break isotropy and 
prevent Fourier magic from operating? One may write the likeli-
hood in pixel space, as opposed to the harmonic-space version of 
(8). Indeed, if all available pixels are collected in a vector x, the 
model X 1u, f 2 5 a,m

 Y,m 1u, f 2a,m1N 1u, f 2  reads 

	 x5 Ya1 n,

where matrix Y  collects the values of the spherical harmonics at 
the sampling points 1ui, fi 2  of the available pixels and vector a 
collects the spherical harmonic coefficients a,m up to some fre-
quency ,max. Then, the covariance matrix R5 COV 1x 2  of vector x 
is 
	 R5R 1C 2 5 YCY†1N ,� (17)

where N5 COV 1n 2  is the noise covariance matrix and 
C5 COV 1a 2  is, by (15), a diagonal matrix with each value C, of 
the angular spectrum repeated 2,1 1 times along the diago-
nal. With (17), specifying how the covariance matrix of the 
observations depends on the angular spectrum C, the familiar 
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likelihood for zero-mean Gaussian observations follows imme-
diately as 

	 22log p 1x|C 2 5 x†R 1C 221x1 log det R 1C 2 1 cst.	 (18) 

Unfortunately, this so-called “pixel-based likelihood” is computa-
tionally intractable for high-resolution maps because of the sheer 
size of the matrices involved. 

The current thinking to obtain a tractable likelihood from large 
incomplete CMB maps is to consider large scales and small scales 
independently (e.g., [8] and [22]). The observed map X is decom-
posed as X5 XL1 XH where XL is a low-frequency (coarse scale) 
part and XH is a high-frequency (fine scale) part. The total likeli-
hood p 1X|C 2  is the approximated as 

	 log p 1X|C 2 < log p 1XL|CL 2 1 log p 1XH|CH 2 , 

where CL (respectively. CH) is the low-, (respectively high-,) part 
of the spectrum. Two approximations, one for each part of the like-
lihood, can be implemented, as now sketched. 

 1)	 Coarse-scale likelihood: The coarse-scale likelihood 
p 1XL|CL 2  can be computed in pixel space according to expres-
sion (18) because the low-resolution map XL can be down-
sampled to a reasonable size. For instance, if XL contains 
multipoles up to ,5 40, it can be sampled on an HEALPix grid 
at resolution r5 4 supporting Npix5 12 # 1625 3072 pixels. 
The pixel-based form (18) of the likelihood does not constrain 
the noise covariance matrix NL to have any specific form: the 
noise challenge then is not to include NL in the likelihood but 
actually to obtain NL itself by propagating the noise structure 
at the instrument level all the way to the low-resolution CMB 
map XL. 

 2)	 Fine-scale likelihood: We describe a fine-scale approxima-
tion to the cut-sky likelihood [23] based on the so-called “pseu-
dospectrum,” which is the empirical angular spectrum of a 

masked (or windowed) map. Let W 1u, f 2  be a mask or some 
w i n d o w  f u n c t i o n  a n d  c o n s i d e r 
a|,m5 eS2 X 1u, f 2W 1u, f 2Y,m 1u, f 2 , the spherical harmonic 
coefficients of the windowed map. One forms a “pseudospec-
trum” C| 

	 C|,5
1

2,1 1 a
,

m52,
a|,m

2 � (19)

and a vector C
|

 made of such pseudospectra for high enough ,. 
Since C|, depends quadratically on the underlying field X 
(assumed Gaussian stationary for now), its mean value E 1C|, 2  
is a linear function of the spectrum C of X. Therefore, it must 
exist a matrix MW, depending only on the window function W, 
such that E 1C 2 5MWC. Similarly, the covariance matrix 
SW 1C 2  of C| depends quadratically on C (but this is not reflected 
by the notation). 
Matrix MW is the identity matrix I on a full sky (W5 1) and 

is roughly approximated by fsky 3 I on a cut sky if only a frac-
tion fsky is observed. In actuality, matrix MW is not diagonal and 
its off-diagonal coefficient 3MW 4,,r measures (on average) the 
“leakage” of power from multipole , r into multipole ,, induced 
by windowing. Note that since C, scales typically as 1/,2 for the 
CMB, the most significant spectral leakage by far is from low to 
high multipoles. 

For high enough ,, the distribution of C|, is approximately 
Gaussian because C|, is the sum of a sufficiently large number of 
independent terms. The distribution of vector C| is thus approxi-
mated as Gaussian with mean MWC and covariance matrix 
SW 1C 2 . At this level of accuracy, one may even replace SW 1C 2  
with a fixed covariance matrix Sw based on a fiducial spectrum: 
Sw5SW 1Cfid 2 . The distribution of the pseudospectrum is thus 
approximated as N 1MWC,Sw 2  resulting in an approximate 
fine-scale likelihood 

	 22log p 1X|C 2 5 1C| 2MW C 2 †a
21

*
1C|2 MW C 2 1 cst.

This is tractable because both MW and S* can be computed 
for any given window function W  and fiducial spectrum Cfid 
[23]. For the sake of exposition, the additive noise has not been 
included but, needless to say, it should be done explicitly. 

[Fig11]  Nonuniform sky coverage with the WMAP probe. (a) The 
hit map, that is, the number of independent observations per 
pixel and (b) the histogram of hit counts. Credit: NASA.
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[Fig12]  More or less conservative masks used by the WMAP 
team to guard against Galactic contamination. Credit: NASA.
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Interestingly, that approach also allows for a more sophisticated 
handling of the noise by using a window function tailored to the 
noise distribution. Indeed, if a map of pixel-dependent noise 
variance is available (see Figure 11 and comments), one may 
take W 1u, f 2  to be proportional to the inverse noise variance in 
direction 1u, f 2 , thus down-weighting the noisiest pixels. The 
pseudospectrum is perturbed by such a weird window function, 
but that effect is corrected by the transfer matrix MW. Even 
though this procedure seems ad hoc, some asymptotic results 
point towards its quasi optimality [8]. 

Wavelets
Wavelets seem to be a natural tool for dealing with nonuniform 
noise and sky coverage. Indeed, several types of spherical wave-
lets have been developed in recent years with a focus on CMB 
processing. We can only briefly touch upon this topic and pro-
vide a few references; see [38] and references therein for contin-
uous wavelet transforms on the sphere and [32] for discrete 
systems based on the HEALPix grid. For papers specifically 
focused on spectral estimation using “needlets,” see, for 
instance, [27] and [18]. It is worth noting that spherical wave-
lets are being used on CMB data for other tasks than spectral 
estimation, e.g., [4], for foreground subtraction using needlets. 
For detecting non-Gaussianity in CMB maps, an early result 
[36] uses simple Mexican Hat wavelets with many follow-ups 
using more sophisticated systems, e.g., directional spherical 
wavelets [28]. 

Conclusion
Processing data from cutting-edge experiments is often chal-
lenging because new science is always expected at the instru-
mental limits (otherwise, it would have been done already�). It is 
the hope of this author that readers have been given a glimpse 
of some of the issues facing CMB data analysis. The reader must 
be aware that several complications have been left out and that 
signal processing research in this area is still in progress. For 
instance, the two-scale scheme described earlier is relatively 
well established, but it is not so clear yet how to combine fine-
scale and coarse likelihood in a better way than just coadding 
the respective log-likelihoods. Another key topic is component 
separation (CMB cleaning or foreground removal). Many com-
peting approaches are under study [16], but it will be difficult to 
single out the best one without knowing the ground truth or 
without very accurate models of all microwave emissions. 

The article is mostly illustrated by the remarkable achieve-
ments of NASA’s WMAP mission. However, more data processing 
challenges are expected with the forthcoming Planck mission 
from the European Space Agency [9]. <AU: can “forthcoming” 
be updated?> Increased angular resolution and sensitivity will 
require increased accuracy in data processing. For instance, 
spectral leakage from the most energetic low-, multipoles into 
the faintest high-, multipoles cannot be controlled without a 
detailed knowledge of the instrument’s beams. More important-
ly, Planck’s instruments will measure the polarization of CMB 
[25] with unprecedented accuracy. Spectral analysis of polarized 

fields on the sphere offers new challenges and may be the topic 
of another article in IEEE Signal Processing Magazine. 
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callouts

A critical step of the CMB data processing pipeline is the con-
struction of a likelihood function for the statistical exploitation of 
CMB data.

The CMB anisotropies can be understood as marking the 
seeds of large scale structures of the Universe.

Another nice property of HEALPix is its dyadic structure: 
the pixels can be arranged in memory in nested order, allowing 
for efficient local processing.

Imaging instruments have limited resolution, producing only 
smooth, band-limited versions of the underlying field.

As of today, efficiency, exactness, and speed are slightly conflict-
ing requirements.
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