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Abstract

Ž .We investigate the dynamics of two point-like particles through the third post-Newtonian 3PN approximation of general
relativity. The infinite self-field of each point-mass is regularized by means of Hadamard’s concept of ‘‘partie finie’’.
Distributional forms associated with the regularization are used systematically in the computation. We determine the
stress-energy tensor of point-like particles compatible with the previous regularization. The Einstein field equations in
harmonic coordinates are iterated to the 3PN order. The 3PN equations of motion are Lorentz-invariant and admit a

Ž .conserved energy neglecting the 2.5PN radiation reaction . They depend on an undetermined coefficient, in agreement with
Ž .an earlier result of Jaranowski and Schafer. This suggests an incompleteness of the formalism in this stage of development¨

at the 3PN order. In this Letter we present the equations of motion in the center-of-mass frame and in the case of circular
orbits. q 2000 Elsevier Science B.V. All rights reserved.

A cardinal problem in gravitational physics is that
of the dynamics of binary systems of point particles.
In general relativity, this problem is tackled by means
of the post-Newtonian approximation, or formal ex-
pansion when the speed of light c goes to infinity.
By definition, the nPN approximation refers to the
terms in the equations of motion that are smaller
than the Newtonian force by a factor of order 1rc2 n.
For the motion of two non-spinning point particles,
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the 1PN approximation was obtained first by Lorentz
w xand Droste 1,2 . Subsequently, Einstein, Infeld and

w xHoffmann 3 re-derived the 1PN order using their
famous ‘‘surface-integral’’ method. In the eighties,

w xDamour and Deruelle 4,5 , starting from a ‘‘post-
Minkowskian’’ iteration scheme developed by Bel et

w xal. 6 , were able to compute the equations of motion
up to the 2.5PN order, at which the gravitational-
radiation reaction effects first take place. The moti-
vation was to firmly establishing the rate at which
the orbit of the binary pulsar PSR 1913q16 decays
because of gravitational-radiation emission. The
2.5PN approximation was then obtained by Schafer¨
w x7,8 using an ‘‘ADM Hamiltonian’’ approach initi-
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w xated by Ohta et al. 9,10 . Furthermore, Kopeikin et
w xal. 11,12 derived the same result within their ‘‘ex-

Žtended-body’’ method without any need of a regu-
.larization . More recently, the 2.5PN equations of

motion as well as 2.5PN gravitational field were
w xderived by Blanchet, Faye and Ponsot 13 applying

a direct ‘‘post-Newtonian’’ iteration of the field
w xequations. Finally, Jaranowski and Schafer 14,15¨

investigated within the Hamiltonian approach the
3PN order and found some ambiguities linked to the
regularization of the self-field of point masses. As
for them, the 3.5PN terms in the equations of motion

w xare well-known 16–18 ; they are associated with
higher-order radiation reaction effects.

The motivation for working out the 3PN equa-
tions of motion is not the timing of the binary pulsar
anymore, but the detection of gravitational radiation
by future experiments such as LIGO and VIRGO.
Indeed, the 3PN equations are needed in particular to
construct accurate 3.5PN templates for detecting and
analyzing the waves generated by inspiralling com-

w xpact binaries 19–23 . Currently, we know the com-
w xplete templates up to the 2.5PN order 24–26 , plus

the contribution therein of non-linear effects to the
w x3.5PN order 27 , plus all the terms in the vanishing

w xmass-ratio limit to the 5.5PN order 28,29 . In this
Letter, we outline our derivation of the 3PN equa-
tions of motion, based on the direct post-Newtonian

w xapproach of 13 , and we present the result in the
case, appropriate to inspiralling compact binaries, of
circular orbits. We confirm by means of a well-de-
fined regularization a la Hadamard the finding of`

w xJaranowski and Schafer 14,15 that there remains at¨
the 3PN order an undetermined coefficient appearing

Žin front of a quartically non-linear term proportional
4.to G .

Ž .Consider the class FF of functions F x that are
smooth on R3 except at two isolated points y and1

y , around which they admit a power-like singular2

expansion of the form

;ngN , F x s r a f n qo r nŽ . Ž . Ž .Ý 11 a 1 1
a FaFn0

when r ™0 , 1Ž .1

< < Ž .where r s xyy , n s xyy rr , and where the1 1 1 1 1

powers a are supposed to be real, to range in dis-

Ž .crete steps: ag a , and to be bounded fromi i g N

below: a Fa. The coefficients f of the various0 1 a

powers of r in this expansion are smooth functions1

of the unit vector n . We refer to the coefficients f1 1 a

with a-0 as the singular coefficients of F around
1; their number is always finite. Moreover, we have
the same type of expansion around the other point
Ž . w xwhen r ™0 . The Hadamard ‘‘partie finie’’ 30 of2

F at the location of the singular point 1 is equal to
the angular average of the zeroth-order coefficient in
Ž .1 , i.e.

dV1
F s f n , 2Ž . Ž . Ž .H1 0 14p 1

Ž .with dV sdV n the usual solid angle element.1 1

The partie finie is ‘‘non-distributive’’ in the sense
Ž . Ž . Ž . Ž .that FG / F G in general. Besides 2 , we1 1 1

Ž .define also the partie finie Pf of the divergent
integral Hd3 x F, assuming that F decreases suffi-

< <ciently rapidly when x™q` so that the divergen-
cies come only from the singular points 1 and 2.

w xWith full generality 30,31 ,

Pf d3 x FHs , s1 2

s lim d3 x FH½ 3s™0 Ž . Ž .R _BB s jBB s1 2

saq3 F
q4p Ý až /aq3 r1aq3-0 1

s
3q4p ln r F q1l2 . 3Ž .Ž .1 1ž / 5s1

The first term is the finite integral over R3 deprived
Ž . Ž .from the two spherical balls BB s and BB s with1 2

radius s and centred on the two singularities. The
extra terms are such that they exactly cancel out the

Ždivergent part of the integral when s™0 the nota-
tion 1l2 indicates the same extra terms but refer-

.ring to the other singularity point . The logarithmic
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terms depend on two arbitrary positive constants s1

and s that come from the arbitrariness in the choice2

of unit length for measuring s; hence, the partie finie
Ždepends on both s and s as indicated by the1 2

. Ž .notation Pf . Applying 3 to the case of a gradi-s , s1 2

w xent E F, we find 33i

Pf d3 x E Fsy4p ni r 2F q1l2 . 4Ž .Ž .H i 1 1 1

In words, the integral of a gradient is equal to the
sum of the surface integrals surrounding the two
singularities, in the limit where the surface areas

Ž .shrink to zero and following the regularization 2 .
Thus, the integral of a gradient is not zero in general,
which shows that the ‘‘ordinary’’ derivative E F isi

not adequate for applying to point-particles a formal-
ism initially valid for continuous sources, since in
the latter case the integral of a gradient does never
contribute. To define a ‘‘better’’ notion of deriva-
tive, we must construct the distributional forms asso-
ciated with the functions in the class FF.

For any FgFF, we consider the ‘‘pseudo-func-
tion’’ Pf F defined as the linear form on FF such that

² : 3
;G g FF, Pf F,G s PfHd x FG, the duality
bracket denoting here the result of the action of Pf F
on the function G. The product of pseudo-functions
is defined to be the ordinary pointwise product that

Ž .we use in physics, i.e. Pf FPPf GsPf FG . With
w x Ž .the help of the Riesz 34 delta-function d xyy´ 1

w Ž . x ´y3s ´ 1y´ r4p r , which belongs to the class1
w x ŽFF, we construct 33 the pseudo-function Pf d in1

. ² :the limit ´™0 ; by definition: ;FgFF, Pf d ,F1
Ž .s F . Clearly Pf d generalizes the standard Dirac1 1

Ž .distribution d ' d x y y to the case of the1 1

Hadamard regularization of the functions in FF. Fur-
thermore, consistently with the product of pseudo-

Ž .functions, we construct the object Pf Fd which is1
² Ž . : Ž .such that ;GgFF, Pf Fd ,G s FG . A trivial1 1

consequence of the non-distributivity of the
Ž . Ž .Hadamard partie finie is that Pf Fd / F Pf d in1 1 1

general cases. The derivative of the pseudo-function
Ž .Pf F is then obtained from the requirements that i

the ‘‘rule of integration by parts’’ is satisfied, i.e.
² Ž . : ² Ž . : Ž .;F,GgFF, E Pf F ,G sy E Pf G ,F , ii thei i

derivative reduces to the ‘‘ordinary’’ one in the case
where all the singular coefficients of F vanish.
These requirements imply in particular that
² Ž . :E Pf F ,1 s0, i.e. the integral of a gradient isi

Ž . Ž .zero. A derivative operator satisfying i and ii is
w xgiven by 33

1iE Pf F sPf E Fq4p n r fŽ .i i 1 11 y12ž
1

q f d q1l2 5Ž .Ý y2yk 1k /r1kG0 1

Ž .assuming for simplicity that the f ’s have agZ .1 a

This derivative reduces to the standard distributional
w xderivative of Schwartz 31 when applied on smooth

w xfunctions with compact support. We refer to 33 for
the construction of the most general derivative opera-

Ž . Ž . Ž .tor satisfying i , ii and, in addition, iii the rule of
w Ž .xcommutation of derivatives not obeyed by 5 . One

can show however that it does not satisfy in general
the Leibniz rule for the derivative of a product. The

Ž .derivative 5 is sufficient in the derivation of the
w xresults below. See 33 for details about the Hadamard

regularization and the associated pseudo-functions.
In the post-Newtonian application we are led to

Ž .consider the partie finie, in the sense of 3 , of the
3 Ž . < X <Poisson integral of F, i.e. PfHd x F x rxyx ;

more specifically, we are interested in the regular-
Ž .ized value, in the sense of 2 , of the latter Poisson

integral at the location of the singular point 1, i.e.
X < X < w xwhen r s x yy ™0. We obtain 331 1

d3 x
Pf FH Xs , s1 2ž /< <xyx 1

X3d x r1 2sPf Fy4p ln y1 r FŽ .Hs , s 1 11 2 ž /r s1 1

r r12 122s4p ln r F q4p lnŽ .X 1 1ž / ž /r s1 2

=
r 3

2
F q PPP 6aŽ .ž /r1 2

Ž < <. Ž .with r s y yy . The first term in 6a repre-12 1 2

sents simply what we get by replacing formally xX by
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y inside the integrand of the Poisson integral. The1

second term is due to the presence of some loga-
X Žrithms ln r in the expansion of the integral. An1

adaptation of the previous formalism, detailed in
w x33 , is needed to take these logarithms into account,
as well as the presence of the integrable singularity

X . Xx . As, at last, the ln r can be gauged away, we1
Žregard it as a constant, taking some finite value even

X .though r ™0 . We check, on the other hand, that1

the true constant s cancels out between the two1
Ž . Xterms of 6a , so that the result depends only on ln r1

and ln s . The complete dependence of the partie2
Ž .finie on these constants is shown in 6a , with the

convention that the dots indicate the terms indepen-
dent of the constants.

The Einstein field equations relaxed by the condi-
w mntion of harmonic coordinates i.e. E h s0 withn

mn mn mn mn'h s yg g yh ; gsdet g ; h s diag-mn

Ž .xy1,1,1,1 read as

16p G
mn mn mn 2w xI h s yg T qL h ,E h ,E h , 7Ž . Ž .4c

where T mn is the matter stress-energy tensor and
L mn a complicated functional of h which is at least

Ž 2 . Ž mn .of order O h and where Ish E E . We startm n

Ž .by constructing a post-Newtonian solution of 7 ,
Ž .initially valid in the case of a continuous ‘‘fluid’’

matter tensor T mn , and parametrized by some appro-
priate potentials. We define a ‘‘Newtonian’’ poten-

y1w x y1tial VsI y4p Gs where I denotes theR R
Ž 00 i i. 2standard retarded integral and ss T qT rc ;

we also introduce a 1PN ‘‘gravitomagnetic’’ poten-
y1w x 0 itial V sI y4p Gs where s sT rc; somei R i i

ˆ ˆ ˆ ˆ2PN potentials X, R and W , e.g. W si i j i j
y1

I y4p G s yd s yE VE V where s sŽ .R i j i j k k i j i j
i j ˆ ˆ ˆT ; and finally some 3PN potentials T , Y and Z .i i j

ˆIn particular, the potential W generates the non-lin-i j
y1 ˆ 3w x Ž .ear term I W E V , involving a cubic G con-R i j i j

ˆ Žtribution, which is part of the potential X many
ˆ ˆ .other cubic terms are contained in T and Y . With ai

specific choice of potentials we can arrange that all
Ž 4.the quartic G terms in the metric appear in ‘‘all-

integrated’’ form. Since V is dominantly Newtonian,
it needs to be evaluated at the 3PN order but, for

y1 ˆw xinstance, the term I W E V , inside the 2PNR i j i j
ˆpotential X, needs only a relative 1PN precision.

The metric is expressed as a functional of all these
potentials; and with our particular choice of poten-
tials, it turns out not to be too complicated.

An important point is now to determine the ex-
pression of the matter stress-energy tensor T mn ap-
propriate to the description of point-particles. We
demand that the dynamics of point-masses follows
from the variation, with respect to the metric, of the
action

Ipoint - particle

q`
m nsym c dt y g Õ Õ q1l2 , 8Ž . Ž .(H1 mn 1 11

y`

m Ž .where Õ s c,dy rdt is the coordinate velocity of1 1

particle 1. We can check that to the 3PN order all the
Ž Xmetric coefficients g belong to FF treating ln rmn 1

. Ž . Ž .as a constant ; so g in 8 denotes the value ofmn 1
Ž . wthe metric at 1 in the sense of 2 or, rather, in the

sense of a Lorentz-covariant Hadamard regulariza-
xtion defined below . The stationarity of the action

with respect to a metric variation within the class FF
Ž .i.e. d g gFF yields the stress-energy tensormn

m Õ mÕn d1 1 1 1mnT s Pfpoint - particle
r s 2 ž /'ygy g Õ Õ rcŽ .( rs 1 11

q1l2 , 9Ž .
ŽŽ . .'where the pseudo-function Pf 1r yg d is of1

Ž . wthe type Pf Fd defined before. From the rule of1

multiplication of pseudo-functions we find that the
Ž .matter source term in 7 involves the pseudo-func-

Ž . x'tion Pf yg d . To obtain the equations of motion1

of the particle 1 we integrate the matter equations of
motion = T mn s0 over a volume surroundingn point - particle

Ž .1 exclusively , and use the properties of pseudo-
functions. The equations turn out to have the same
form as the geodesic equations, not with respect to
some smooth background but with respect to the
regularized metric generated by the two bodies.
Namely,

g Õn E g Õn Õld 1Ž . Ž .mn 1 m nl 1 11 1s ,
r s r sdt 2ž /y g Õ Õ y g Õ ÕŽ . Ž .( (rs 1 1 rs 1 11 1

10Ž .
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where all the quantities at 1 are evaluated using the
regularization. Let us emphasize that the equations of

Ž .motion 10 are derived from the specific expression
Ž .9 of the stress-energy tensor; had we used another

ŽŽ . .'expression, e.g. by replacing Pf 1r yg d ™1

Ž . Ž . Ž'1r yg Pf d inside 9 which is forbidden by1 1
.the non-distributivity of Hadamard’s partie finie , we

would have obtained some different-looking, and a
priori uncorrect, equations.

Ž .The regularization 2 is defined stricto sensu
within the spatial slice ts const., and therefore
should prevent, at some stage, the equations of mo-

Žtion from being Lorentz invariant recall that the
harmonic-gauge condition preserves the Lorentz in-

.variance . It is known that regularizing within the
slice ts const. yields the correct, Lorentz-invariant,

w xequations of motion up to the 2PN level 13 . We
find that the breakdown of the Lorentz invariance

Ž .due to the regularization 2 occurs precisely at the
3PN order. Therefore, starting at this order, we must
in fact apply a Lorentz-covariant regularization in
Ž . Ž . Ž .8 , 9 , 10 . Evidently, the good thing to do is to
apply the Hadamard regularization in the frame at
which the particle is instantaneously at rest. Let us

X m mŽ . nconsider the Lorentz boost x sL V x , where Vn

denotes the constant boost velocity. We replace all
the quantities in the original frame by their equiva-
lent expressions, developed to the 3PN order, in the

Ž . Ž .new frame. Notably, the trajectories y t , y t and1 2
Ž . Ž .velocities v t , v t are replaced by certain func-1 2
X XŽ X. X Ž X.tionals of x and the new trajectories y t , y t1 2

XŽ X . X Ž X. Ž X X 0 .and velocities v t , v t where t sx rc . We1 2

apply the Hadamard regularization within the slice
tX s const., keeping V as a constant ‘‘spectator’’
vector. Finally, we re-express all the quantities back

Ž .into the original frame at the point 1 r ™0 , under1
XŽ X. Ž .the condition that v t s0 and equivalently Vs1

Ž .v t . This ensures that the new frame is indeed the1

rest frame of the particle 1 at the instant t. Now the
3PN equations of motion are Lorentz invariant.

ˆAll the potentials V, V , W , PPP and theiri i j

gradients are computed at the point 1, using the
regularization of Poisson-type integrals defined by

Ž .formulas like 6a . All the derivatives appearing
inside the non-linear sources of the potentials are
considered as distributional and evaluated following

Ž .the prescription 5 . We carefully take into account
the fact that the distributional derivative does not

Žobey the Leibniz rule it does satisfy it only in an
‘‘integrated’’ sense, thanks to the rule of integration

.by parts . An important feature of the equations at
the 3PN order is the occurence of some logarithms.

Ž .From 6a we know that they are necessarily of the
Ž X . Ž .type ln r rr and ln r rs in the equations of12 1 12 2

Ž .motion of body 1; interestingly, the ln r rs ap-12 2

pears only in a quartic-interaction term proportional
to G4 m m3 . Thus, at this stage, the 3PN equations1 2

X Žof 1 depend on the constants ln r and ln s and1 2
.idem for the equations of 2 . Under the form we

obtain them, the equations do not yet admit a con-
Žserved energy of course we are speaking only about

the conservative part of the acceleration, which ex-
cludes the radiation-reaction potential at 2.5PN or-

.der . However, we find that a conserved energy
Ž X .exists if and only if the logarithmic ratios ln r rs2 2

Ž X .and ln r rs are adjusted in such a way that1 1

rX 159 m qm2 1 2
ln s ql and 1l2 , 11Ž .ž /s 308 m2 2

Žwhere l is a single numerical constant. If and only
. Ž .if the condition 11 is realized, the equations admit

an energy and, in fact, a Lagrangian formulation; in
this case, they depend on some arbitrary constant l.

Ž .The dependence upon the masses in 11 is a priori
allowed. Therefore, the formalism introduces at this

w Ž .point an undetermined constant l. Using 11 , the
equations of motion depend also on the constants
ln rX and ln rX , but it can be checked that the latter1 2

xdependence is pure gauge.
Finally, having in view the application to inspi-

ralling compact binaries, we present the 3PN relative
acceleration and center-of-mass energy in the case of
circular orbits. The acceleration reads as

dv 1 112 2syv y q F qO , 12Ž .12 reac5 7ž /dt c c

where y sy yy is the relative separation in12 1 2

harmonic coordinates, v sdy rdt the relative ve-12 12
32 3 3 4Ž .locity, and F sy G m nrr v the standardreac 12 125

radiation-reaction force at the 2.5PN order. The mass
parameters are msm qm , msm m rm and ns1 2 1 2

Ž .mrm. The content of the 3PN approximation in 12
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lies in the relation between the orbital frequency v

< <and the coordinate distance r s y . With gs12 12

Gmrr c2 denoting a small post-Newtonian parame-12

ter, we get

Gm
412 2 2v s 1q y3qn gq 6q nqn gŽ . Ž .43 ½r12

r1267759 41 2q y10q y q p q22ln X840 64 ž /ž r0

44 19 2 3 3 4q l nq n qn g qO g . 13Ž .Ž .3 2 5/
The logarithm at 3PN depends on a constant rX

0

defined as the ‘‘logarithmic’’ barycenter of the two
X X X Ž . Xconstants r and r , namely ln r s m rm ln r q1 2 0 1 1

Ž . X Xm rm ln r . The constant r can be eliminated by2 2 0

a change of coordinates. The center-of-mass energy
E of the particles, such that dErdts0 as a conse-

Žquence of the conservative equations of motion ne-
.glecting F , is obtained asreac

1 7 12Esy mc g 1q y q n gŽ .2 4 4½
7 49 1 2352 2q y q nq n g q yŽ .8 8 8 64ž

r12106301 123 22 222q y p q ln y l nX6720 64 3 3ž /r0

27 52 3 3 4q n q n g qO g . 14Ž .Ž .32 64 5/
At last, by substituting the expression of g in terms
of the orbital frequency v following from the in-

Ž .verse of 13 , we find that the 3PN energy in invari-
ant form is given by

1 3 12Esy mc x 1q y y n x� Ž .2 4 12

27 19 1 2 2q y q ny n xŽ .8 8 24

675 209323 205 1102q y q y p y l nŽ 64 4032 96 9

155 352 3 3 4y n y n x qO x , 15Ž . Ž .4.96 5184

Ž 3.2r3 Ž .with xs Gmvrc . In the form 15 the loga-
Ž X .rithm ln r rr cancels out. We can compare di-12 0

rectly this result with the one obtained by Jaranowski
w x Ž Ž . w x.and Schafer 14,15 see Eq. 5.13 in 32 . We find¨

that there is perfect agreement provided that v sstatic
11 1987 41y ly and v s , where v andkinetic static3 840 24

v are the two ‘‘ambiguous’’ parameters foundkinetic

by Jaranowski and Schafer. Thus, our undetermined¨
Ž .constant l defined by 11 is related to the ambigu-

ous parameter v , while the other ambiguitystatic

v takes a unique value1. Let us stress that in thekinetic

present formalism we do not meet any ambiguity in
the sense of Jaranowski and Schafer. Rather, the¨
formalism is well-defined thanks in particular to the
rules we employ for handling the pseudo-functions

w xassociated with the Hadamard regularization 33 . All
the integrals encountered in the problem have been
given a precise mathematical sense, and are com-
puted by means of a uniquely defined prescription.
Yet, the appearance of the undetermined constant l

suggests that the present formalism might be physi-
cally incomplete, at least in this present stage of
development. Notice that the constant l enters only

4 2 2Ž .the term proportional to G m m m qm in the1 2 1 2

3PN energy, and that for general orbits, the energy
contains also 164 other terms which are all uniquely
determined. The details of these calculations will be
published elsewhere.
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