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SUMMARY

We present an approximate formalism for the equations of evolution of a moderately
relativistic self-gravitating fluid which takes into account the dominant (quantitative
and qualitative) new effects entailed by Einstein’s theory. This (first plus second-and-
a-half) post-Newtonian scheme is equivalent to known results of the literature, but
casts them in an explicitly ‘quasi-Newtonian’ form, so that it becomes as easy to imple-
ment on a computer as a Newtonian-gravity code for non-relativistic hydrodynamics
(in particular, all the relativistic non-localities are reduced to Poisson equations with
compact-supported sources). We complete this scheme by a correspondingly accurate
post-Newtonian gravitational waveform extraction formalism which goes beyond the
‘standard quadrupole equation’ in including the first relativistic corrections to the
emission of gravitational radiation in a form which can be easily implemented numeri-
cally. We view our formalisms as simple and robust tools allowing one, with only a
minimal computer investment, to study the most important quantitative and qualita-
tive characteristics of the three-dimensional gravitational dynamics, and wave genera-
tion, of a wide range of semi-relativistic sources, such as the collapse of a star to the

neutron star stage, or the coalescence of neutron star binaries.

1 INTRODUCTION

In view of the rapid progress in the development of a world-
wide network of gravitational wave detectors, it is an urgent
task to perform detailed general relativistic calculations of
the generation of gravitational waves by catastrophic events
such as the gravitational collapse of a star, or the coalescence
of a binary system. The completion of the program of com-
puting the emission of gravitational waves by such highly
dynamical, strongly self-gravitating, material sources will
require the development of fully general relativistic three-
dimensional (3D) numerical codes for the evolution of the
combined matter + gravitational field system. At present,
only 2D general relativistic codes have been fully imple-
mented (Stark & Piran 1986a,b; Nakamura, Oohara &
Kojima 1987). On the other hand, we have learned from the
work of the last decade that, even in the Newtonian regime,
the dynamics of the collapse, and of the various bounces and
ejections, is very difficult to follow with precision because
the collapse is highly sensitive to many of the physical para-
meters of the problem (initial state, equation of state, neu-
trino transfer), as well as to the precision of the numerical
simulation of the physics involved in the collapse. Therefore,

one expects that in many cases the main difficulties and
uncertainties will come from a detailed treatment of the
hydrodynamical aspects of the problem (equation of state,
choice of hydrodynamical variables, bounces, shocks ...),
rather than from its gravitational aspects.

Having this in mind, we propose in this paper an approxi-
mate relativistic formalism which

(i) is as easy to implement on a computer as a Newtonian-
gravity (3D) code, but which

(ii) takes into account the dominant new effects entailed by
Einstein’s theory, both in the evolution of the matter and in
the generation of gravitational radiation.

We hope that this formalism will constitute a simple and
robust ready-to-use tool allowing the owners of Newtonian
3D codes to study the gravitational dynamics of many semi-
relativistic sources without having to invest in a sophisticated
fully fledged general relativistic 3D code.

We shall not consider in the following gravitational
collapses leading to the formation of a black hole. This is a
very interesting, but very difficult, problem which, up to now,
has been amenable only to a simplified treatment involving
axisymmetric configurations, and a polytropic equation of
state (Stark & Piran 1986a,b). We shall rather have in mind
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gravitational collapses leading to the formation of neutron
stars, through some complicated dynamical evolution involv-
ing, perhaps, rapid rotation, fission, bounces, wild oscilla-
tions, etc. Such intricate, and fully three-dimensional,
evolutions are likely to be efficient, and information-rich,
generators of gravitational waves. In such cases the gravita-
tional fields created by the collapse can be considered as
being always ‘moderately strong’, the typical relativistic
gravitational parameter GM/c?R never exceeding, say, 10
per cent, so that one expects the orbital velocities to stay also
mildly relativistic: v/c ~{(GM/c?R)*<30 per cent. Now, if
this is the case, the effects of order (GM/c*R)? or (v/c)* will
stay smaller than 1 per cent and one will often be entitled to
neglect them in view of the many other uncertainties present
in the other aspects of the modelling (e.g. the equation of
state).

Now, such an approximation to General Relativity, which
neglects terms of relative order (GM/c?R)*~(v/c)* in the
equations of motion, is known under the name of (first) post-
Newtonian (1 PN) approximation. It has been developed by
many authors, starting with the basic work of Fock (1959),
and found its way into several textbooks (Weinberg 1972;
Misner, Thorne & Wheeler 1973). The 1 PN approximation
already takes into account, at their lowest significant order,
most of the specifically general relativistic effects, namely

(i) the ‘gravito-magnetic’ effects (interaction between mass
currents),

(ii) the ‘gravito-tensorial’ effects (linked to the curvature of
space) and

(i) the non-linear effects (gravity generates gravity).

The main incompleteness of the 1 PN approximation con-
cerns the propagation effects (linked to the finite velocity of
propagation of gravity). Indeed, it misses the gravitational
radiation damping effects which start at order O(v3/c3).
These effects are quantitatively much smaller, but they are
qualitatively new, and should be included because they cause
cumulative effects which have an important influence on the
overall dynamical evolution of the matter. Therefore we shall
add to the 1 PN approximation the effects of gravitational
radiation damping which come from the so-called second-
and-a-half post-Newtonian (23 PN) approximation (Thorne
1969; Chandrasekhar & Esposito 1970; Burke 1971; see
Damour 1987 for a review and references). Note that, for
convenience, we use here a slightly inconsistent terminology
in which ‘1 PN’ refers to the sum of Newtonian and first-
post-Newtonian [O(v?/c?)] terms, while 25 PN’ (or 2.5 PN)
refers only to the O(v3/c3) terms. On the other hand we
shall not try to explicitly include the intermediate effects
[O(v*/c*)] coming from the second post-Newtonian (2 PN)
approximation (Chandrasekhar & Nutku 1969) because they
can be considered as bringing only some quantitatively small
corrections to the effects already included at the 1 PN level,
without giving rise to any qualitatively new physical effects
(see, however, the recent study of orbital 2 PN effects in
binary pulsars by Damour & Schéfer 1987, 1988).

Recently a promising new approach to the numerical
simulation of gravitational collapse has been proposed
(Bonazzola & Marck 1986, 1989). It is based on the use of
pseudo-spectral methods for dealing with the spatial depen-
dence of the various variables (while the time evolution is still
treated by finite differencing). The use of such numerical

schemes allows one to get a high precision in the computa-
tion of spatial derivatives, and in the inversion of the Lap-
lacian. In view of this, the specific aims of the present work
will be first to reformulate the system of equations describing
the evolution of the matter in the 1 PN+ 23 PN approxima-
tion of General Relativity in a form

(a) which is explicitly that of a first-order evolution system,

2] fugly o) (1)
it
where the (spatially non-local) functionals F,[ug] may
involve the spatial derivatives of the ug(y, ¢)’s, but not their
time derivatives (nor any non-locality in time);

(b) such that the computation of the spatially non-local
functionals F, involves nothing more complicated than solv-
ing usual Poisson equations,

AU=(localized source), and (1.2)

(c) which never involves taking the inverse of the matter
density.

Then, our second task will be to complete the preceding
post-Newtonian matter-evolution system by a correspond-
ingly accurate post-Newtonian gravitational wave generation
formalism, written in a form which can be easily numerically
implemented.

As will be seen in the course of this work the preceding
tasks are far from being trivial to perform, in spite of the
existence in the literature of several post-Newtonian hydro-
dynamics, and post-Newtonian gravitational wave generation
formalisms. The principal tools that will allow us to meet all
the requirements listed above are: (1) the use of suitable
matter variables (playing the role of a matter density and a
velocity field); (2) the choice of an adapted coordinate sys-
tem; (3) the systematic use of a mathematical trick to reduce
the gradient of an iterated Poisson operator, 9;,A "2, to a com-
bination of usual Poisson operators, A~ !, acting on localized
sources, and, finally, (4) the use of a new post-Newtonian
gravitational wave generation formalism which has been
recently developed within the multipolar post-Minkowskian
approximation method for radiative gravitational fields
(Blanchet & Damour 1986, 1989).

Concerning the interplay between the use of an adapted
coordinate system and the choice of suitable matter vari-
ables, it should be pointed out from the start that the optimal
presentation turns out (even in the general, possibly dissipa-
tive, case) to be closely related to the general relativistic
Hamiltonian approach of Arnowitt, Deser & Misner (1960,
1962), by which we mean the core of their work which was to
develop a reduced canonical formalism describing only the
‘true dynamical degrees of freedom’ of the matter + gravita-
tional field system [note, however, that in order to prevent
the appearance of the inverse of the matter density, we shall
use a specific linear momentum variable which has been
found useful in several other investigations of relativistic
hydrodynamics (Lichnerowicz 1955; Carter & Gaffet 1988;
Carter 1989)]. This close link is not surprising as the
Arnowitt-Deser-Misner (ADM) Hamiltonian approach
leads, by definition, to first-order evolution systems, like
equation (1.1), and favours, by construction, elliptic
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equations, like equation (1.2). The usefulness of the ADM
approach (and of the ADM coordinate conditions) when
dealing with gravitational radiation damping effects had been
already pointed out by one of us in the context of the general
relativistic N-body problem (Schifer 1985).

Finally, let us make it clear that the formulation proposed
here is not supposed to be the final word on 3D general rela-
tivistic hydrodynamics. Clearly a lot of effort should continue
to be directed towards including the fully fledged general
relativistic description of the gravitational field in numerical
simulations of stellar collapse. However, we do hope, not
only that the formulation proposed here can be useful in the
short term (before the availability of fully relativistic 3D
schemes), but also that, even in the long term, it will continue
to be a useful and versatile tool: e.g. as a testing bench for
numerical codes, as an economical way to see the effects on
the evolution of a change in the equation of state, and also as
a short cut to get the main characteristics of the evolution,
together with a first estimate of the most significant physical
quantities (e.g. the emitted gravitational waveform).

In Section 2 we show how the space-time metric and the
equations of relativistic hydrodynamics at the first post-
Newtonian (1 PN) approximation can be written in a con-
veniently compact explicit form when introducing some
suitable variables. In Section 3 we add in the effects of gravi-
tational radiation reaction (2.5 PN level). In Section 4 we
motivate the choice of a preferred set of matter variables,
(rx,S,w;), and we show how to reduce all the spatial non-
localities of the 1 PN+2.5 PN approximation to Poisson
equations with compact-supported sources. We then present,
in a fully explicit and logically ordered way, our complete set
of evolution equations for a perfect relativistic fluid in Sec-
tion 5. Finally, we complete this evolution scheme by giving
in Section 6 a corresponding first post-Newtonian gravita-
tional waveform extraction formalism. Appendix A contains
some useful general formulae of the thermodynamics of
relativistic fluids, while Appendices B and C discuss, respec-
tively, the 3+ 1 split of various quantities and the reduced
Hamiltonian formalism for relativistic perfect fluids.

2 POST-NEWTONIAN HYDRODYNAMICS

Let us consider the general relativistic gravitational field
generated by some material source, i.e. the solution g,, (with
signature — + + +) of the Einstein equations,

1 8nG
R/w_a Rguv=7— T;w, (21)

where T,, denotes the stress-energy tensor of the matter,
satisfying some suitable no-incoming-radiation condition.
The post-Newtonian expansion of g,, is a combined weak-
field-near-zone expansion in powers of the dimensionless
number & ~(U/c?)Y?~ R/cT, where U~ GM/R is a charac-
teristic gravitational potential, R a characteristic dimension
and T a characteristic time of variation of the source. It is
convenient to use the powers of ¢! for ordering the succes-
sive post-Newtonian approximations. The so-called first
post-Newtonian (1 PN) approximation consists of keeping
the following terms in the various components of the space-
time metric g,,:800=—1+c ..)+c7%...), go=c73(...),

=0d,+c %...). The knowledge of these various terms
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allows one to compute the first relativistic corrections
[O(e?)= O(v?/c?)] in the equations of motion of the matter
(written in terms of the coordinate time, t=x%/c), and to
interpret them in operational terms through the space-time
metric. ‘
The 1 PN approximation has been investigated by many
authors (see e.g. Chandrasekhar 1965; Will 1981; Caporali
1981). However, its results are often presented in a not very
transparent way, and for the restricted case of a perfect fluid
source. As a useful starting point for the present work, we
shall now present a compact formulation of the 1PN
approximation, valid for any kind of material source (i.e. any
structure of T#*). We shall work in the ‘standard post-
Newtonian gauge’ (Will 1981), i.e. in coordinates such that

0,80,—109,8;=0(c™%), (2.2a)
ajgij_%ai(gjj_goo)= O(c™4). (2.2b)
In such coordinates, the 1 PN metric can be written as
U2 1 2 2 1
goo=—e " +0(_6)= —l+5U-> U2+O(_6) ;
c c c c
(2.3a)
1 1
8i=——5A4,t0 ('3) > (2.3b)
c c
2 1

In the above set of equations (2.3), the ‘scalar potential’ Uis a
Newtonian-like potential,

Ulx,t)=+ GJ da’x' -, (2.4)

satisfying a Poisson equation with compactly supported
source,

AU= —-41Go, (2.5)

where the source o is the following combination of com-
ponents of the stress—energy tensor of the material source:

HT™+ T*)+ O(c™ )= g(= T+ T3+ 0(c™%),
(2.6)

where g denotes —det (g,,) and where T%=0(c*?),
T%=0(c*!) and T7=0(c" so that ¢ is defined to post-
Newtonian accuracy, (...)+ ¢~ 4...), by equation (2.6). The
quantity o plays here the role of an ‘active gravitational mass
density’ which generates the scalar part of the near-zone
gravitational field. As shown recently (Blanchet & Damour
1989), it plays also an important role in the generation of the
gravitational wave field (see Section 6). The usual post-
Newtonian results, to be found in the literature, get more
complicated expressions for g, because of their use of a
different basic ‘mass density’.

In the set of equations (2.3), the ‘vector potential’ A,
satisfies
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G._ . 0U 1
AA;=—-16a—T"+——+0|5|, 2.7
' 67 c ot ox' (cz) (2.7a)
where ¢~ T%= O(c°) when ¢~ ! =0, so that
A=4U+39,X + O(c2), (2.7b)
where
AU;=-4aGc™'T%+ O(c™?), (2.8)

and where the non-compactly supported source term 9,U
has been dealt with by introducing the superpotential X (also
denoted — y ) defined by

X(x,t)=+ G[ d*'|x—x'| o(x, 2), (2.9a)
and satisfying a Poisson equation with non-compact source

AX=+2U. (2.9b)

We shall, however, see below how to compute A; by means
only of Poisson equations with sources having compact
support. Before dealing with the equations of motion of the
matter, let us note that the formulation (2.3) is closely related
to the (harmonic gauge) one used by Blanchet & Damour
(1989): they differ only by a shift of order ¢™* (proportional
to 9,X) in the time coordinate, a shift which leaves
unchanged the 1 PN equations of motion. However, the
Newtonian-like structure of the standard-1 PN-gauge metric
coefficients, equations (2.5) and (2.7), turns out to be better
suited to our present purpose than the Minkowskian-like
structure of the harmonic-gauge metric (this feature will
become even more important at the 2.5 PN level, see Section
3 below).

The Einstein equations (2.1) imply the covariant con-

servation of energy and momentum,
v, T,=0. (2.10)

It is convenient to write the spatial (= i) components of
equation (2.10) as,

ol NgT?)+ o,{gT) =75, (2.11)
where
FE=1gT"d.g,, (2.12)
Using the formulae (2.3), together with
2 1
J§=1+? U+O(—z), (2.13)
C

it is immediate to find that the ‘gravitational force density
reads

i a0 1
FE = T+ T™) U~c 3T"’6,A,-+O(;;). (2.14)

Note that o=c¢ ) T%+ T*) appears again in equation
(2.14), playing now the role of a ‘passive gravitational mass
density’. Note also that the space integral of # %" vanishes
to 1 PN order,

Jd3xg.,g-mv=J’d3X(UaiU"C_3TOjaiAf>=O+ O

%) . (215)
C

as is easily checked from the definitions (2.5) and (2.7) of U
and A, and from the lowest-order conservation of energy,

9,0+ d{c™' T = 0(c™2), (2.16)

which follows from the time component of equation (2.10).
If we now define a ‘momentum density’ of the matter by

ni:=c_1\/§T?, (2.17)

where the symbol a:= b means that a is defined as being b,
we can write the equations of motion of the matter as (see
also Section 4 and Appendix C)

0.+ 9(gTh)=00,U~c *m,0,A,+ O(c™%). (2.18)
] ] ]

The usefulness of the quantity s; shows up not only in the
simplicity of equation (2.18), but also in the fact that
equation (2.15) implies the conservation to post-Newtonian
order of the ‘total momentum’

J d’x7,=const+ 0(21;) . (2.19)

It can be checked that, in the special case of a perfect fluid,
and at the 1 PN approximation, the ‘momentum density’
(2.17) coincides with the quantity denoted G;by Fock (1959;
equation 79.18), and s, by Chandrasekhar (1965), Chan-
drasekhar & Nutku (1969) and Caporali (1981).

Up to this point, our results have been valid for an arbi-
trary structure of the source. However, in order to deduce
from equation (2.18) some explicit evolution equation for the
matter distribution we need to choose a specific matter
model. Let us consider a perfect fluid, corresponding to a
stress-energy tensor having the structure

T#=r(c*+ h)u u’+ pg", (2.20)
with
gouw=—1, (2.21)
and
Vv, (ru*)=0 (2.22)

(conservation of rest-mass; r being, say, the proper baryon
density, n, times some baryon mass m).

In equation (2.20) the coefficient of u#u?, usually written
as the sum, e + p, of the proper relativistic energy density, e,
and of the proper pressure, p, has been decomposed in a
rest-mass contribution, rc?, and an enthalpy part, with

h=e+p_cz=[e—rcz]+p

r r

, (2.23)

denoting the (proper) specific enthalpy (enthalpy per unit
rest-mass, minus the constant rest-mass contribution).

An equation of state for the fluid can be defined by giving,
for example, the energy e as a function of the rest-mass
density, r (or baryon density, n), and of the specific entropy, S
(entropy per unit rest-mass, i.e. m™~! the entropy per baryon),

e=e(r,S). (2.24)

As discussed in more detail in Appendix A, the first law of
thermodynamics and the additivity property of extensive
quantities imply
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p(r,S)=r(3—i)s—e, (2.25)
so that one can write

de=(c*+h) dr+rTdsS, (2.26)
or, equivalently,

dp=rdh—rTdS. (2.27)

As is well known (see also Appendix A), the projection along
u* of the covariant conservation law (2.10), together with the
‘first law of thermodynamics’ (2.26), implies that S is constant
along each flow line:

ua,5=0. (2.28)

Moreover, having now in hand a specific structure for the
stress-energy tensor, equation (2.20), we can render more
precise the equations of motion (2.18) by writing down the
structure of ygT. It is easily seen from equation (2.20) that

JeTi=v'n,+[gpo’, (2:29)
where

; u o dx

h=c—=— 2.30
v cu(, ” ( )

is the coordinate-time three-velocity of the fluid.
Therefore, the relativistic Euler equations (2.18) can be
written as

0= = 0jfv'm)+ FI™+ FI, (2.31a)
with a ‘pressure force density’,

Fre=—0(gp), (2.31b)
and a ‘gravitational force density’,

Fr= aaiU—é 7m0:A;+ O (%) . (2.31¢)

The rather simple equation (2.31) (to be completed by the
link between v’ and x;, see below) brings out in a compact
manner the structure of 1 PN hydrodynamics. The matter
conservation law (2.22) can also be more explicitly written as
an evolution equation by introducing the ‘coordinate rest-
mass density’

r*:=\/§u0r. (2.32)
One gets

0,rx= — 0(ry V). (2.33)
Similarly the entropy transport equation (2.28) reads
9,8=—vi9s. (2.34)

Equations (2.31), (2.33) and (2.34) constitute formally a
system of five evolution equations for the five degrees of
freedom of a fluid: three velocity components, mass density
and entropy. However, they must still be cast in the form of
equation (1.1), i.e. we must still express the right-hand sides
of equations (2.31), (2.33) and (2.34) as explicit functionals
of the matter variables. Moreover, we wish, for numerical
purposes, to satisfy also the requirements (b) and (c) of
Section 1 (see equation 1.2). As all these requirements will
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have to be still satisfied after inclusion of gravitational radia-
tion damping effects, let us first tackle the latter effects
before implementing the requirements (a), (b) and (c) of
Section 1.

3 GRAVITATIONAL RADIATION REACTION

The gravitational radiation damping effects enter at the
second-and-a-half post-Newtonian (2.5 PN) approximation,
i.e. through terms O(c™3) in the equations of motion. How-
ever, the explicit expression of the ¢~> terms to be added in,
say, equation (2.18) depends on the coordinate system. The
expressions derived by Burke (1971), Thorne (1969) or
Chandrasekhar & Esposito (1970) are not suited to our
present purpose because they add, in the right-hand side of
equation (2.31a), time derivatives of the quadrupole moment
of the system of such a high-order (the fifth) that it becomes
very difficult to satisfy the requirements (a) and (b) of Section
1 (even after reducing to only fourth-order derivatives by
shuffling some terms in the left-hand side of equation (2.31a).
However, it has been shown by Schifer (1983, 1985, 1989)
that there existed some coordinate systems where the radia-
tion reaction force was taking a form involving lower order
time derivatives of the quadrupole moment, which will turn
out to be better adapted to our purpose (for the links
between the various forms of the radiation reaction, and for
references to other works on this problem, see the review by
Damour 1987). More precisely, we shall assume that we are
using, everywhere in this work, the coordinate system intro-
duced by Arnowitt, Deser & Misner (1960), as defined by
the conditions

0,8;—39,8;=0, (3.1a)

(3.1b)

where 77 denotes the canonical conjugate to the three-metric
8ij»

7= = Jyy“y"(K s~ Kgu). (3.2a)

In equation (3.2a) y denotes the determinant, and y¥ the
inverse, of the three-metric g;, and K; denotes the extrinsic
curvature tensor of the three-surface ¢=const (and
K=yYK;), where

K= =4~ g")%c~13,g,~ D go;~ D,gos)

=0,

(3.2b)

D, being the spatially covariant derivative defined by the
three-metric g; (see Appendices B and C for more details
about, respectively, the 3+1 split of the metric, and the
ADM Hamiltonian formalism).

The gauge conditions (3.1) are well tuned to the ADM
description of the true dynamical degrees of freedom of the
gravitational field (Arnowitt, Deser & Misner 1962). Recent
work by Schifer (1985, 1989) has shown that the ADM
Hamiltonian formalism was quite convenient for tackling the
post-Newtonian approximation, and especially the gravita-
tional damping effects. Note that, at the 1 PN order, the
gauge conditions (3.1) imply equations (2.2), so that the
ADM gauge (3.1) is a generalization (to all higher orders) of
the ‘standard 1 PN gauge’.

Gravitational radiation reaction effects in ADM gauge can
be incorporated in two ways. The simple-minded way con-
sists of completing equations (2.3) by the first time-asym-
metric (‘reaction’) contributions to the metric coefficients in
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the ADM gauge. To be precise about what we mean by ‘time-
asymmetric’, let us take for the present purpose ry, S and v’
as basic matter variables. Then, the conservation laws (2.33)
and (2.34) are independent of the metric, and the solution
(containing no incoming radiation) of Einstein equations
(2.1), with (2.20), (2.24), (2.30) and (2.32), expressed as a
functional of r,, S and v, can be expanded, in the near-zone,
in powers of ¢~ !. The coefficients of the lowest orders in ¢!
(1 PN and 2 PN approximations) are found to be symmetric
under time reversal, while the first time-asymmetric contri-
butions appear at the 2.5 PN level and are found to be
(Schafer 1985, 1989)

reac _ 4 G ij 1
8w =*+z ot )Ui+0(;§), (3.3a)
g"’“°—0+0( ) (3.3b)
reac 4 G 1
i =_g—5Q {( )+0(7), (3.3¢)

where Q(,,3 ' is the third time-derivative of the (traceless)
quadrupole moment of the matter (see equation 3.11 below)
and Uy the Newtonian ‘tensor potential’ of 7.,

(x'= 2" = x")

, 3.4
x—x[ (3.4a)

Ul(x,t)= GJ d’x're(x, 1)

which can be expressed in terms of the superpotential Xy as

U = U*éll a,]X* (3.4b)
(Ux and X being defined by equations 2.4 and 2.9a with ¢
replaced by ry).

The time-asymmetric metric coefficients have two effects
on the evolution of the matter: they contribute a time-asym-
metric O(c™3) term to the ‘gravitational force density’ (2.12),
namely

2G
Fre= \/§T"” 08 === re QW Uk + O ( ) (3.5)

S5¢

and they contribute also a time-asymmetric O{c~) term in
the relation expressing s; (defined by equation 2.17) as a
functional of ry, v?and S, namely

alre, S, v/ —gfea°r*vj+ (0] (—1—7)
c

%"Gg oy )r*u'+0(cl) (3.6)

On the other hand, the effective pressure in equation (2.31b),

Jép(r,s>=&p(@ : s) ,

does not contribute any O(c" ) reaction force. Indeed, as all
the ‘scalar parts’ of g}, (i.e. goo° and the trace g ) are zero
at the ¢~5 level, the same is true of Yg and u%[ry, S, v/]F,
(For the same reason, there are no O(c™>) contributions to

Z 7 in equation (3.5) of the form ( ‘Z@TOO %0, U).

An equivalent but more sophisticated way, which will turn
out to be better adapted to our needs, of introducing the
radiation reaction effects, is to place ourselves fully within
the (reduced) Hamiltonian formalism of Arnowitt et al.
(1962). In this canonical approach the basic independent
dynamical variables are ry, S and 7, (linked by definition to
the velocny in ADM gauge by equation 2.17) for the matter,
and h;' and "7 for the gravitational field (transverse-
traceless parts of g; and 7% in ADM gauge). Then, the solu-
tion of the (¢= const)-hypersurface constraint equations,

1 8nG
Jg 2—§J§R62— = JgTé =0, (3.7)

together with the coordinate conditions (3.1), determine the
reduced Hamiltonian,

Hred= H[r*’S5 T, h};T: ﬂijTT]’ (3.8)

which governs the evolution of both the matter and the (true
degrees of freedom of the) gravitational field. For more
details about this approach, and references to recent
developments, see Appendix C. In this formalism the radia-
tion reaction effects come from the coupling between the
matter, and the gravitational field, degrees of freedom, which
leads to a ‘reaction’ contribution to the Hamiltonian equal to

1
H = == | @xn™(Z ’+—aU oUx], 3.9
2J' i\ T anG T (3:9)

in which 4" should be replaced by equation (3.3c) only
after having varied H™*[ry, S, ;). In other words, the equa-
tions of motion of the matter are derived from equation (3.9)
by assuming zero Poisson brackets between the matter
variables and hTTreac [indeed, the Hamiltonian (3.9) describes
the interaction of the material system with any long-wave-
length gravitational wave (in TT gauge), while the replace-
ment (3.3c) means that one considers the back action of the
wave generated by the material system itself]. Using the
(Lie-)Poisson brackets of Appendix C, one finds that, in this
formalism, the radiation reaction effects in the dynamics of
the matter (ie. in the evolution equations for r,, S and x,)
consist of

(i) adding the term & 1, equation (3.5), in the right-hand
side of d,7;,= ..., and

(i1) adding a term in the relation, v'= 0H/Jdx;, expressing
v'as a functional of x;

6 Hreac

= — hTTreac z[_j=
) i
T Is

0 re, S, 7] = +25 001 % (3.10)
5c T

These results are completely equivalent to the ones obtained
above [taking into account 7,=ryevi+ O(c™?). The sign
difference between (3.6) and (3.10) comes from the fact that
one is considering two inverse functions, st[v] versus v[n].

Finally, let us note that the appearance in the right-hand
sides of the evolution equations for ry, S and x; of the third
time-derivative of the Newtonian quadrupole moment of the
matter distribution,

Q,~,~(t)=Jd3xr*(x,t)(xix/—§x26ij)+0(213) R (3.11)
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is liable to introduce numerical instabilities (Bonazzola &
Marck, private communication) because the evolution would
no longer be first-order in time (in the sense of equation 1.1).
However, as we shall exphcltly exhibit below one can get rid
of these three derivatives, i.e. express oY i in terms of the
instantaneous state of the matter distribution, by using both
the equations of motion and the relation

QUx+0,U=0(c?)

between the Newtonian potentials of 7y and ;.

Note, however, that this reduction would not work as
simply for four derivatives, in which case it would be neces-
sary to introduce new Newtonian-like potentials. This shows
that the ADM-gauge description of radiation damping is
better adapted to our aim than, e.g. the Burke-Thorne
description.

(3.12)

4 CHOICE OF MATTER VARIABLES AND
REDUCTION TO COMPACT-SUPPORT
POISSON EQUATIONS

At this stage it seems that our preferred choice of matter
variables would be ry, S and 7, which satisfy simple-looking
evolution equations at the 1 PN + 2.5 PN approximation. By
going through the definitions of the various objects involved,
it is easy to see that we can satisfy the requirement (a) (equa-
tion 1.1) of Section 1. However, we wish also to satisfy the
requirements (b) and (c). Now, the choice of x; as basic
momentum variable is not compatible with requirement (c).
Indeed, as m;= ryv'+ O(c™?), the inverse relation v{n] intro-
duces many inverse factors of 7, which can be quite annoying
in a numerical calculation of objects whose mass is essen-
tially concentrated in bounded domains. To solve this
problem we shall choose as fundamental matter variables ry,
S and the ‘momentum per unit rest-mass’ (in ADM co-
ordinates),

wi=—. (4.1)

In the Newtonian limit w; becomes equal to the three-
velocity v’ See Appendix B for the exact expression of v'in
terms of w; (which will be needed for use in the right-hand
sides of the evolution equations 2.33,2.34 and 4.12).

Using the definitions (2.17) and (2.32) for, respectively, &
and ry, and the perfect fluid structure (2.20), one finds that
w; can also be written as

h
(1 + 2) cu;, (4.2)
i.e. as the spatial components of the space-time covector
h
(1 + 2) U, (4.3)

The quantity w, was introduced by Lichnerowicz (1955)
under the name of ‘current vector’ (the relativistic enthalpy
factor 1+ h/c? being called by him ‘index of the fluid’). It has
been emphasized recently by Carter (1989) (see also Carter
& Gaffet 1988) that the covectorial character of w, was
important, that w, was to be thought of as a ‘momentum-
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energy covector’ per unit rest-mass, and that its use as a one-
form, together with the Cartan calculus, was leading to
simple and elegant results in fluid dynamics. Let us only
quote the covariant formulation of the evolution equation for
w, (under our perfect fluid assumptions 2.20, 2.22, 2.25, and
hence 2.28)

cu’(d,w,— d,w,)=T9,S, (4.4a)
or in Cartan language
i, dw=c"1TdS. (4.4b)

The formulation (4.4) could also constitute a starting point
for deriving our looked-for evolution system. However, it
happens that the formal simplicity of equation (4.4) hides
some internal complexities, which show up in the fact that
when going from equation (4.4a), for u=1i, to our result
(2.31) many cancellations take place (the same remark
applies to the formally elegant Hamiltonian formulation of
Appendix C).

Before tackling the issue of the reduction of the post-
Newtonian ‘superpotentials’ to a numerically more tractable
Newtonian-potential form, some consequences of the use of
the variable w,, equation (4.1), have to be discussed. Indeed,
when using the variable 7, there appeared in the evolution
equation for s, equation (2.31a), a ‘pressure force density’,
equation (2.31b), corresponding to the effective pressure,

p™'=lgp(r,5)=Igp ’—S) (45)
Ju
To 1 PN order one has (with w?: = w,w,)
Jg=1+5 U*+0( ) (4.6)
r 11 1
=ngo=[l—?(5w2+3U*)+0(?) ]r*, (4.7)
so that

[1+ +0( Hp (48)

where we recall that the O(c™#) terms are free of any time-
asymmetric O(c~°) contributions, and where

I« | Opx dlog p«
== ==, 4.10
T P*(a’*)s (alogr* s ( )
D« denoting p(ry, S).

Now, because the rest-mass conservation law (2.33) holds
exactly, the replacement 7, = ry w;leads to
o+ 0,(vim;)=ry[0,w; +v/0Ow,]. (4.11)

Therefore, the evolution equation (2.31a) (in which F ¥
contains & ;" as given by equation 3.5) becomes

g—gl’av

I'x

1
8w——v’6w———6,p +— (4.12)
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The 7, ' factor in front of the gravitational force density is of
no concern as each term of F¥" is proportional to the
density. As for the pressure force term,

press
Epress:= 7 LI _l aipeff, (4.13)
Fx Vs
it reads
0p(re,S) 1 1
Epress= _ (1 +__a_2) M———i& aia + 0(_4)' (414)
Cc £ C Iy ¢

The most delicate term (when ry— 0) in F/™ is the one pro-
portional to 9,p«/r«. However, the first law of thermo-
dynamics in the form (2.27) yields

O

Ix

= aih*_ T*O,S, (4.15)

where the index * means that the corresponding thermo-
dynamic functions of r and S, p(r,S), k(r,S), T(r,S) (as
derived from the equation of state e=e(r,S); see e.g.
equation 2.25) are to be evaluated for r=ry

Px:=D(rs,S), ha:=h(ry,S), Ty:=T(ry,S). (4.16a,b,c)

This shows the important role played by the enthalpy 4,
in the dynamics of the matter. In the Newtonian case
(Bonazzola & Marck, in preparation), it has been found
useful to replace the equation of state for 4,

h=h(r,S), (4.17)

(which could bring extra numerical errors because of the
wide range of variation of r, of the power-law type depen-
dence of % on r, and of the spatially global nature of the
pseudo-spectral expansions) by a propagation equation. As
our use of the variables 7y and /. = h(rg,S) allows us to be
technically very close to the usual Newtonian equations, it is
easy to implement this idea in the post-Newtonian case.
Namely, we can replace the equation (4.16b) by

a,h*= _Uiaih*_n*h*aivi, (418)

where the information contained in the (power-law type)
equation of state (4.17) is replaced by giving oneself the
‘index’ of Ay versus ry,

Nx:=(01og hy/dlog ry)s, (4.19)
as a function of r, and S, or of /4 and S,
Nx=1(r«,S)or ny=n(hy,S). (4.20)

In the simple case of a polytropic equation of state of index
y(= yx of equation 4.10), the index 7 of equation (4.19) is
equal to y — 1 (see Appendix A).

Having taken care of requirements (a) and (c) of Section 1
by a combined optimum choice of gauge and matter vari-
ables (as shown by our explicit implementation below), it
remains to take care of our requirement (b): i.e. to reduce all
the spatial non-localities to Poisson equations with compact-
support sources. The quantities that create problems are the
‘vector potential’ A;, equation (2.7), and the ‘tensor potential’
Us, equation (3.4b), appearing in the reaction force density
(3.5). The troublesome parts of these potentials are, respec-
tively, proportional to 9,0,X and 9,0,X (the distinction

between X and X, i.e. using as basic matter density ¢ or ry,
is not important in our discussion), where we recall that (for
any o with spatially compact support)

Ut)=+G | ax 250 (421a)
Ix—x|

AU= - 4xGo, (4.21b)

while

X(x,1)=+ GJ &’x'|x—x'| o(x, 1), (4.22a)

AX=+2U. (4.22b)

Let us now show how one can reduce the evaluation of the
spatial gradient of X, ,X (which, a priori, is the solution of a
non-compact-supported Poisson equation, Ad,X=29,U) to
compact-supported Poisson equations. This aim is achiev-
able by means of the identity

9. X=(x'"—a"Y\U-A"Y(x'=a)AU], (4.23)

where a' are any space-independent (but possibly time-
dependent) quantities. Equation (4.23) is easily proven by
differentiating the right-hand side of equation (4.22a) with
respect to x' (or, formally, by taking the Laplacian of both
sides of equation 4.23). Note that both terms on the right-
hand side of equation (4.23) depend on the choice of an
arbitrary origin x'=a(¢) in space, although their sum is
independent of this choice. In the following, we shall take for
simplicity a’=0, although one should keep in mind the free-
dom of using a/(¢)#0, in the case for instance where the
material source consists of two well-separated blobs (e.g.
binary coalescence) and where it might be advantageous to
use two different a”s corresponding roughly to the centres of
mass of the two nearly disconnected supports of AU.

Finally, let us mention that, for disposing of the time-
derivative appearing in A, (ie. 9,0,Xy), it is sufficient to
notice the fact that the source of 9,Uy, namely 9,7, can be
replaced by — 9,(ryv?), or with sufficient precision (because
A,enters only at 1 PN order) by — 9,;,= — 9(rew,).

5 EVOLUTION SYSTEMFOR 1PN+ 2.5PN
HYDRODYNAMICS

We have introduced in Sections 2-4 all the ideas and tools
necessary for implementing satisfactorily the requirements
listed in the introduction. Putting together the results of
Sections 2-4, and of Appendix B, we shall now present in a
logically ordered way (adapted to numerical implementation)
our optimal complete set of evolution equations for a perfect
relativistic fluid, at the combined first post-Newtonian plus
second-and-a-half post-Newtonian approximation. For the
sake of clarity, we shall separate our presentation in several
subsections.

5.1 Basic independent matter variables
We propose two possible choices: a minimal set consisting of

ry = the coordinate rest-mass density (equation 2.32),
S =the entropy per unit rest-mass,
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w;=the linear momentum per unit rest-mass (equation
4.2),

or an extended set consisting of

s, S, w;and
h 4= the enthalpy per unit rest-mass (equation 2.23).

In the second case the (power-law like) equation of state
giving (in the first case) Ay as a function of ry and S, is
replaced by a (tamer) equation of state giving the index
ne=(0log hy/dlog ry)s, together with an evolution
equation for h,. Note that, as in the second case Ay is con-
sidered as an independent variable on the same footing as 7,
and S, there is some redundancy freedom in the way of
writing the remaining necessary equations of state.

The evolution system will be written explicitly in the form

% = Elralys 1), S(y,2), wiy, 1), haly, 1))
‘”g”h Fylraly, ), S(y, ), wiy, 1), aly, 0]
) oty ), Sty ) i), . )
Qﬁ*é;"_’h Fylr«ly,t), S(y, ), wily,2), haly, 1)}

where the functionals appearing in the right-hand sides will
be computable from the knowledge all over space of the
values of the basic matter variables at time ¢, by means either
of algebraic and differential operations or by solving some
Poisson equations with sources of compact support. When
using the minimal set of matter variables, it will be sufficient
to ignore the evolution equation for /4, and to use instead the
algebraic relation, Ay = h(7y,S).

5.2 Algebraic equations

One will need to know, in the following equations,

=l ae(r*’S)

Te:=T(rg,S R 5.1
* (r*’ ) P OS ( )
n*:=p(r*’S)=ae(r*’S)_e(r*,S)’ (5‘2)
Fx ar* 14
dlog p(r. ,S‘
Y*Z=% (5.3)
dlog ry
dlog r«
the last equation being replaced by
S )
= h(ry, 5)= 24005 2 (5.4)

b
Orx

if one uses the minimal set of matter variables.
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In the simple case of a polytrope, i.e. an equation of state

e(r,S)=cm+@ r?,
y—1

the above quantities read

o1

Ta=k(S)rh ‘=y7 B, (5.2p)
Yx=7, (5.3p)
nx=7—1, (5.4p

he=k(S) yz o (5.4p)
5.3 Primary Poisson equations

AUy= —47Gry, (5.5)
AU;=—4aGrew, (5.6)
AC=—4nGx'd rew,). (5.7)

See equations (5.11) and (5.14) below for the two remaining
secondary Poisson equations.

5.4 1 PN quantities

Here w? denotes 67w, w,.

a=2Uy— 7:(3w2+3U,), (5.8)
B=iW+ hy+3Uy, (5.9)
AU,= —4aGry0, (5.11)
A=4U+;C;—3x'0,U, (5.12)
5.5 2.5 PN quantities
P=2 J A’xri[3w,0,Us—2w,(0;hs — T:c0;S)
+x'w, 0, Us—x'0,U], (5.13a)
E;]=%sz+%Pji‘%5UPss- (5.13b)

Alternatively the STF operation of equation (5.13b) could be
done on the integrand of equation (5.13a). When the equa-
tions of motion are satisfied, it can be checked that the third
time derivative of the Newtonian quadrupole moment of the
system (defined, say, by equation 6.1 below) differs from the
quantity Q[,f ! introduced here only by corrections of the
order of O(1/c?) (see equation 6.6 below). However, one
must be careful, in the following, to distinguish Q[,f I#), which
is a functional of the instantaneous state of the matter
defined as being exactly the right-hand side of equation
(5.13b) (with equation 5.13a), from Q\:=d>Q,/dt’ (they
differ both in their functional nature, and in their precise
numerical value). The quantity Q[,f] is the one which enters
into the 2.5 PN quantities of our scheme
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AR= —4nGQ[3] 974 (5.14)
Us=%G[R Q[3] la Ul (5.15)

5.6 Velocity and forces

i 1 4G
v'= = Bt Acks w08 (5.16)
5¢°
TESS a 1
c
1
( )aU*+ o;U,— 2 w,0;A,, (5.18)
reac 1
F; =3 9,Us. (5.19)
5.7 Evolution system
O = = 9rxv’), (5.20a)
9,8S=—v09,S, (5.20b)
dw;==v° QWi+ FI™+ F; ™+ Fi™, (5.20c)
ath*= _Uiaih* - n*h*a,-vi. (5.20(1)

5.8 Exactly conserved quantities

The above-defined evolution system guarantees (if it is
exactly satisfied) the constancy of the total rest-mass

My :=[d?xry=const. (5.21)
and of the total linear momentum,
P;:= [ d?xryw;= const. (5.22)

The conservation of P; follows from the separate exact
vanishing of the space integral of each of the four terms
appearing in the right-hand side of the evolution equation for
TETEW;,

0= — 0,V 1)+ re FU + 1o F | N+ r o F° (5.23)

This can be checked by explicit calculations for # ™
and F 7, using straightforward techniques (explicit intro-
duction of the Poisson kernels, |x —x'| 7!, and/or integration
by parts). For & 7" this follows immediately from equations
(4.13)-(4.14) [under the condition that the thermodynamic
identity (4.15) is indeed satisfied if one evolves hy separ-
ately]. Another way to prove (and understand) the exact con-
servation of P,=[d’x m, is to remark that the Hamiltonian
H'[ry, S, 7, t] exhibited in Appendix C (equation C15) is
invariant under spatial translations. On the other hand, it is
neither invariant under spatial rotations nor under time
translations, because of the coupling to Q I#). Instead, one
finds that the total angular momentum,

Jit):=[d*x(x'm;— ¥ ), (5.24)
and the total 1 PN energy,
E\(£):= H\[r«(2),8(2), m{1t)], (5.25)

with H, defined in equation (C12a,d) of Appendix C, will
slowly evolve according to

ﬂZG

3] (3]
1,— 051, 5.26
i s(Qil— Q' L), (5.26)
dEl [3]
—= , 5.27
dr Q” dr L (5.27)
where Q[:f] is the quantity defined by equations (5.13) and

where

1;:=STF{2 [ d®re[w;w;+ x10; Uy} (5.28)

When the equations of motion are satisfied, the integral /i
eqlual to d*Q ,j/ ar’+ 0(1 /c?) (see equation 6.5 below), whlle

=4’ Q;/dt’ + O(1/c?) (equation 6.6). One then recovers,
modulo fractional corrections of the order of O(1/c?), the
familiar ‘quadrupole formulae’ for the losses of energy and
angular momentum. (Beware of a misprint inverting the two
and three dots on the quadrupole moments in the angular
momentum loss formulae of Schifer 1985). Note, however,
that, within our precisely defined scheme, equations (5.26)
and (5.27) must hold exactly [and not only within O(c~2)
fractional corrections].

The conservation of rest-mass and linear momentum,
equations (5.21) and (5.22), as well as the loss equations,
(5.26) and (5.27), for J; and E, can constitute useful checks
of the numerical accuracy with which the evolution system
(5.20) is integrated. Other useful, and stronger, checks come
from the exact local identity

0,A;—30,U;=0, (5.29)
or from the approximate one,

1
6,U,,+a,-U,.=O(Z§). (5.30)

5.9 Alternative possibilities

The (1 PN) ‘gravitational mass density’, o, which is given in
terms of the above-defined quantities by

0 1
a=r*|:1 +_c2+ 0(?“)]
13
=r*[1+? (EW

plays an important role, both in the 1 PN gravitational force
density, equation (2.31c), and in the generation of gravita-
tional waves (see next section). Therefore, it might be worth
pointing out that if one uses as basic matter variables o, S and
7, one obtains an evolution system which is, in some aspects,
simpler than the one written above. We shall not write it
down explicitly here as it can be straightforwardly obtained
from the formulae given above. In such a o — 7, scheme only
one ‘Newtonian’ potential is required

AU= -4aGo,

—U*+h*+2n*)+0(%) }, (5.31)

(5.32)

instead of Uy and U,, and the 1 PN gravitational force
density reads simply
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F ™Mo, n)=00,U- pE: nJa A, (5.33)
However, the simple Newtonian-like rest-mass conservation
equation (2.33) is replaced by the more complicated propa-

gation equation

_ , 9
d,0=— ai(v’a)+£§ [0,<U.<+ 20'9,U—3v' ;ap

+(2—3y)m9,<v'}, (5.34)

where the thermodynamic quantities can be evaluated at

=0 (e.g m:=p(0,5)/0). Also in this scheme our require-
ment (c) of Section 1 is not fulfilled as there are many 1/0
factors. This last remark suggests that it might also be
interesting to introduce the variable w;:=x;/0, and to con-
sider a 0— S — w; scheme.

6 POST-NEWTONIAN GENERATION OF
GRAVITATIONAL WAVES

6.1 The standard quadrupole formalism

An often-employed estimation of the generation of gravita-
tional waves by a self-gravitating fluid consists of computing
the Newtonian quadrupole of the matter distribution,

Qj(t):= [ dxry(x, 1)(x'¥ =30 %x?), (6.1)

for use in the ‘standard Einstein-Landau-Lifshitz quadru-
pole equation’,

2G

HFx) =3 Puuln) ZQkx ~rfe), (6.22)

giving the leading O(r~!) term in the wave zone expansion
(r—o0, t—r/c fixed) of the radiative gravitational field. In
equation (6.2a) r=|x|=(8,x%/)'/>, n=x/r and Py,(n)
denotes the transverse-traceless projection operator on to
the plane orthogonal to the outgoing wave direction, n, acting
on symmetric cartesian tensors, namely

Pijk/(n)=(5 —n; ”k)(a n nl) 2(5,, nn )(5“ n.n,). (6.2b)
This standard quadrupole equation gives the Jowest order
term in the slow-motion expansion of the radiative field, and
is consistent with computing the dynamics of the fluid at
the lowest order slow-motion approximation, i.c. at the
Newtonian approximation. At the same approximation, it is
possible to evaluate directly the first three time-derivatives of
Q,(t) in terms of compact support integrals of Newtonian
functionals of the source, by using the conservation of rest-
mass and the Newtonian equations of motion. Indeed, by
repeated use of the formula (which is an exact consequence
of equation 2.33)

%Jd xra(x,t)F(x, t)= Jd *xrx(x,t)(0,F+v'0.F) (6.3)

together with some of the results obtained in the previous
sections, and some integrations by parts, one finds succes-
sively
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dQ‘f STF{ J’d3xr*xivj], (6.4)
dd—%)l STF[ Jd3xr*(vivj+xi6,U)]+0(%), (6.5)

il Q" STF{2Jd3xr*[3u"a,U— 2u'ﬁ3+x"v"ak,.U

Tx

—xiaijij+O(%), (6'6)

where the notation STF means ‘take the symmetric trace-free
part of’, i.e. explicitly for any (in general non-symmetric) two-
index object AY,

STF{AT}: =} AV + A/~ 10745, (6.7)

and where, in equation (6.6), U, denotes, as above the
Newtonian potential of the mass current r,v*.

Note that equation (6.5) allows one to evaluate the wave
field (6.2) directly in terms of the state of the material source
at only one time (the retarded time u=t—r/c), without
having to evaluate numerically any time derivatives, and that,
moreover, the integral appearing in its right-hand side has a
compact support. It could be useful to the practitioners of the
‘all Newtonian’ gravitational wave generation formalism
recalled here. [The formula (6.5) has not been considered by
Finn (1989) who compared the accuracy of several ways of
numerically computing d*Q/dt*.]

Equation (6.6) (which has been already implemented in
Section 5, equation 5.13) has played an important role in our
general scheme in allowing us to eliminate all time deriva-
tives on the right-hand side of the evolution equations with
gravitational radiation damping. As the application of a
further time-derivative to equation (6.6) would generate
terms not expressible by means of the potentials introduced
above, we see why it has been important to use a convenient
coordinate system where it was sufficient to evaluate expli-
citly (at Newtonian order) only the third time-derivative of
the quadrupole moment.

6.2 Post-Newtonian wave generation formalisms

While the just recalled standard quadrupole formalism is
consistent with Newtonian hydrodynamical codes, our post-
Newtonian hydrodynamical formalism requires for con-
sistency to be completed by a corresponding post-Newtonian
gravitational wave generation formalism, i.e. a scheme taking
into account the relativistic corrections to equation (6.2) up
to the relative order v?/c? (1 PN order). Epstein & Wagoner
(1975) and Thorne (1980), have derived such 1 PN wave
generation formalisms. However, their schemes make an
essential use of the effective stress-energy distribution of the
gravitational field, i.e. a pseudo-tensor 7#* which is non-zero
outside the material source, and which has a rather slow fall-
off (~r~*) at spatial infinity. As a consequence their final
results contain divergent (ie. non-absolutely convergent)
integrals which, besides casting doubt on the mathematical
soundness of the type of formal expansions used, make them
totally unsuited to numerical implementation (however,
when handling them analytically with sufficient care, it has
been possible to extract finite answers from these ill-defined
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integrals when applying them to particular systems, see e.g.
Wagoner & Will 1976; Turner & Will 1978; Wagoner 1979).
However, a new post-Newtonian gravitational wave genera-
tion formalism involving only compact-support integrals has
been recently developed (Blanchet & Damour 1989). In this
formalism the first post-Newtonian [ O(v?/c?)] corrections to
the standard quadrupole equations (6.1)—(6.2) are explicitly
given as integrals over the stress-energy distribution, T#, of
the material source alone (see Blanchet & Schifer 1989 for a
recent application of this formalism to binary systems). We
shall now show how to implement numerically this 1 PN
gravitational wave generation formalism which will con-
sistently complete the 1 PN matter evolution formalism pre-
sented above.

First, the leading term in the wave-zone expansion of the
gravitational wave amphtude R, in some suitable ‘radiative
coordinate system’, is decomposed in ‘radiative multipoles’
(Thorne 1980)

2G
‘R

@a 1 a4
—= Pu(N )[Ikld+_N Iak(;+3

(z)ra
RPN T, X)= ” eaid Ny

1 @Wag 1 3rag
+ 12c2 NaNbI:;;kl-FZf gab(kJ;z)lac Nch

1 1
;;)} (T—R/C)‘I'O(F), (6.8)

where (})(t)Ed"l/dt”, Xy =HX,,+ X,), and Py, is given by
equation (6.2b). For the definition of the wave-zone co-
ordinate system X“=(cT,X‘) see Blanchet (1987), in the
1 PN application below we can, for simplicity, mentally
identify X* with x*, the coordinate system used above in the
near-zone [indeed, the difference between X* and x* starts
formally only at the 1.5 PN level, i.e. O(c™3)]. Similarly,
although Blanchet & Damour (1989) were using harmonic
coordinates for the near-zone description of the source, their
results can be transcribed without changes in the ADM x*
coordinates used above because the two coordinate systems
differ only by a O(c~*) shift [proportional to the time deriva-
tive of the superpotential (2.9a)] in the time coordinate.

A generation formalism consists of giving the explicit
expression of each of the ‘radiative multipole moments’, 15,
15, I, J3¢, J5, appearing in equation (6.8) as a functional
of the matter variables. For a 1 PN generation formalism, it is
sufficient to know the radiative mass quadrupole moment,
1 f,"‘d, with 1 PN accuracy, and the other moments (mass

4 rad
octupole, Iy ,,,(, mass 2*pole, I} ,,k,, current quadrupole, J;",
and current octupole, ,,,f ) with ‘Newtonian’ accuracy. The
latter 0 PN-accurate functionals, written in terms of our basic
matter variables, r4 and w;, are (Thorne 1980)

+0

STF | [ . 1

In)="" [ d3xr*(x,t)x’x’x"+0(-7)], (6.92)
ijk | ¢
STF | [ L

I541)= d xralx, 1)x'dxx'+ 0| 5 1, (6.9b)
ijkl ¢’
TF | [ : 1
il

TF
J?,ﬁi(t)= S, " H dxr(x, 1) XX “ x W, + O
y

iz) } (6.10b)
C

in which the symbol STF means ‘taking the symmetric and
trace-free part with respect to the indices below’. Consis-
tently with the 0 PN accuracy, one could also use as mass
density in equations (6.9) either ¢, equation (5.31), or ¢=2T %,
equation (6.24), which both have more gravitational physics
content than the plain coordinate rest-mass density, ry (by
contrast, equations 6.10 are already expressed in terms of
the momentum density 7;=ryw;). The STF projection can
be decomposed in symmetrizing and trace-subtracting. The
symmetrization, say S, must be performed first. For the mass
moments, equations (6.9), this first operation is not necessary
as x'x/xk, etc. ..., are already symmetric. For the current
moments, equations (6.10), one must use, with y'= g“x%w,,

S(xiy))=3xiy + x/y’), (6.11a)
S(xix/yk) =Y xx/y*+ xIxky' + x*xiys), (6.11b)
Then, the trace-free part of a symmerric tensor, S7-, is given
by
TE(SY)=S7—307S%, (6.12a)
TE(§) = Sk — 3 §1Sks + §/k S5+ §higis) (6.12b)

TF(S:]I(I) I]kl (61]Sklss+ 61kSI/ss+ 611S/kss+ 6le1/ss+ é‘l/Stkss
+ SMSIS) (ST GM+ Sk U+ 515K S, (6.12¢)

The two operations TF or S can be either performed on
the integrands, or on the resulting integrals, in equations
(6.9)-(6.10). An alternative way of proceeding would be to
use the tensorial spherical harmonics representation of the
multipole moments (see Thorne 1980). Note that, when
using the Cartesian representation of symmetric and trace-
free (STF) tensors, the number of independent components
of an [index STF tensor, /;;, ;, is (in three dimensions)
only 2/+ 1. A convenient way of tabulating only the minimal
independent algebraic content of I, , (with i,
i...=1,2,3) can be to tabulate the mdependent compo-
nents of the following two-dimensionally reduced subtensors
of I:'1,,,.., and I3, . , Where a,, a,, ... run only over
1, 2. As these 2D tensors are symmetric (but not trace-free in
2D) they have, respectively, /+ 1 and / independent compo-
nents which are very easily listed, e.g.

Iabcd:IHll’IlllZ’ 11122’ 11222’ 12222'

All the 3D components of I; ; containing more than one
index 3 will be then obtained from the above irreducible set
by using the zero 3D-trace condition, e.g.

Is3i=—1;— Iy,

Let us now turn to the 1 PN-accurate mass quadrupole
equation for I, It has been obtained (Blanchet &
Damour 1989) as the following rather simple functional
of the 1PN-accurate gravitational mass density,
0=c AT+ T%)1+ O(c™*)], and of the (0 PN) momentum
density 7;=c 'T%[1 + O(c™ )

i 20
21¢?

2
1 d Jd3xa(x e

1791 = | d’xo(x,1)%’
,,()[ x0(x, t)x 120 a7
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d i 1
XE[J d3X.7tk(X, t>x1k+ 0(?)’ (613)
where
. P P X2 i
J?"ESTF(x'x’)=x’x’—§ 07, (6.14a)
™= STF(x'x'x") = x'x'x* —g (8x"+ 6"x'+ 6"¥).  (6.14b)

As the numerical computation of time derivatives can be
less accurate (and more time consuming) than the computa-
tion of an ‘instantaneous’ funictional of the matter variables at
the time ¢, we shall now show how to transform away the
explicit time derivatives in the result (6.13). This can be
achieved by, first, letting the time derivatives act on to the
integrands, according to (d,= ¢~ !9,)

19’ T"(x,1) 5., N
-C—zaijcﬂxicz X'#=— = d’x 0, T"x %,

where o is sufficiently accurately given by ¢ 2T in the
1 PN corrections, and

1 a TOk ¢ . 1 .
2 Jda (x >)2uk= -5 J d’x9,T™ %™, (6.15b)
¢ c ¢

(6.15a)

and, then, by using the Newtonian (0 PN) balance equations
of energy and momentum

1
9T + 9, T = OH,

p (6.16a)
1
T +oT"=F L+ 0(—2J, (6.16b)
C
which imply
00 T" = 0uyT" = (T pran- (6.16¢)

Note that, in equation (6.16b), F g,av contains only the
(Newtonian) gravitational force density (equation 2.31c), the
pressure force density being incorporated in 9,T% (see
equation 2.29). The relations (6.16) lead to decompose

17 into three parts,

1
13%0)= Ey(t)+ Si(t)+ Gifr) + 0(;3), (6.17)
where E;is the contribution of the energy density,
T"(x,1) .;
E,0): Jd x (x T o (6.18)
¢

S the contribution of the (kinetic + internal) stresses (includ-
ing the 1 PN term ¢~ 27 * contained in o),

1
2

S,-,-(t):=c

oo, 1 i 2 S
[ d’x lT‘“f"Jrﬁ ak,T“x%e"+2—(1) aT" 3"

(6.19a)
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1 3 alj kil "'J 20 kl 4 aijk
_- s x+___ =T a ij
CZde{T 12 T o &)=

(6.19b)

(the second form being obtained by integrating by parts some
of the compact-support integrals of equation 6.19a), and
where G(¢) denotes the contribution of the gravitational
force density

1 4 20 y (6.20a)
G0<t):=;§Jd3 {__ al<g.gravx ]_H g-:rav Ik}
20
=53Jd3 {+— g.lg(ravak( Al]) N1 g-l;ra\AUk]
(6.20b)

Straightforward calculations (using equations 6.14, or the
general formulae of appendix A of Blanchet & Damour
1986) lead then to

1 11 5.
5,.,=STF = | d’x sz"—-x'kak’ (6.21)
j |c 21 7
where
Ti:=STRT#)=Ti-{T*8% (6.22)
and
STF | 1 1, , .
G,‘j= ij [?Jd3x[ﬁ : g_érav__ x/ g.grav:| }.
(6.23)

It is interesting to note that the trace of T 7 (which means in
particular the pressure) does not contribute to S ;.

6.3 Application to the (1 PN) hydrodynamics case

All the results (6.13)-(6.23) are valid for an arbitrary struc-
ture of the material source. If we now specialize to the
perfect fluid case, the stress-energy tensor (2.20) yields

(using the notation of Section 5)
1 11 1

— T00=V*|:1+'—2 (—w2 IT % ]4‘0(—4), (624)
c“\2 c

(6.25)

; 1
T/ =reww;+pyd,+ 0(—2),
c

[

so that T'¥ comes only from the trace-free part of the kinetic-
energy tensor,

o 1

7= T, + 0(?), (6.26a)

where

W,.:=STRw,w,) = w,w.—3iw?0,, (6.26D)
y J J y

and

g-grav r*a U*+0( ) (6.27)
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In summary, one can complete the 1 PN hydrodynamical
formalism of Section 5 by a corresponding 1 PN gravita-
tional wave extraction formalism defined by equation (6.8),
with a 1 PN radiative quadrupole moment given by

1
I3 =E;+S;+ G+ 0 (?), (6.28)
F . 11
E,.j=ST, {J’d}xr*x'x’[1+~2 ~w2—U*+h*—n*)“,
y c\2
(6.28a)
STF re (11 5 4
=" | x| e | 16:280)
STF ¥, 11 i 17 iJ
ety {3l ostan]
(6.28¢)

with the notation of equation (6.26b) and with 0 PN mass
(2% and 2*pole) and current (22 and 2°-pole) radiative
moments given by equations (6.9) and (6.10). The outgoing
gravitational wave amplitude is obtained from the radiative
moments by several time differentiations which must be car-
ried out numerically. Note, however, that thanks to equation
(6.3), the first time differentiation acting on the dominant
‘Newtonian’ quadrupole can be replaced by

;dt [STFJ d3xr*xixj] = STF[2 J d3xr*x"vf],

with v’ given by the formulae of Section 5 in terms of 4 and
w;. The same equation (6.3) can be used to effect several
other time differentiations, along the lines of equations
(6.4)-(6.6) (as for the latter equations, one can make use of
the Newtonian equations of motion in all the 1 PN correction
terms).
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APPENDIX A: THERMODYNAMICS OF
RELATIVISTIC FLUIDS

For convenience, we gather together here the main formulae
of the relativistic thermodynamics of ideal fluids. Following
Carter (1989), we shall consider here the general multi-
species case, as defined by an equation of state of the form

e=e(r,sy,), (A1)

where r is a proper total rest-mass density (i.. the baryon
number density multiplied by a reference baryon mass, m), s
is the proper entropy density, and y, (a=2, 3, ...) is a set of
(number or rest-mass) densities of, say, some nuclear species.
A formal simplification in the formulae would be reached by
defining y,=sand y, =r(or y, = r/m), and letting a=0, 1, 2,
3, ..., but we wish here to be as explicit as possible.

Let us write that the variation of the energy contained in a
proper volume V, d(eV'), is linked to the corresponding
variations of rest-mass, entropy, species numbers and
volume by the first law of thermodynamics,
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d(eV )=ud(rV )+ Td(sV )+ ud(y,V )— pdV, (A2)

where T is the temperature, p the pressure and x4 and u®
some chemical potentials. Equation (A2) implies

=Oe(r(;f,ya)’ T=ae(:;:,ya) ’ ﬂa=0e(;ys“,ya), (A3)
and
e+p=ur+ Ts+u%y,. (Ad)
Hence,
de =pudr+ Tds + u°dy,, (A5)
dp=rdu+sdT+y,du’. (A6)

If one now considers e as a function of 7, of the specific
entropy, S:=s/r, and of the specific numbers of species (or
fractional rest-mass) Y,:=y,/r,

e=e(r,S,Y,), (A7)
the above thermodynamical relations take the form,

de=Hdr+rTdS +ru‘dy,, (A8)
dp=rdH—rTdS —ru*dy,, (A9)

where we have introduced the relativistic enthalpy

+tp

H:="P TS+ 'Y, =P+ h (A10)
r

(h = H — ¢? being the enthalpy minus the rest-mass contribu-
tion used in the text).

The simplest case is that of a polytropic equation of state
defined by

k(S)

e(r,S)=rc*+——= 7, (Alla)
y—1
- p=k(S)rr=(y—1)e—rc?), (Al1b)
h=H-c"=k(S) ylr"_', (Allc)
y—

with some constant ‘polytropic index’ y (which could also be
taken as a function of S).

Let us now consider the perfect-fluid contribution to the
total stress-energy tensor of a general (possibly non-perfect,
or acted upon by external forces) relativistic fluid,

T#'=(e+p)uu”+ pg", (A12)

where g,,u“u”= —1, and where p is assumed to satisfy

equation (A4). The divergence of (A12) can be decomposed
according to,

vV, T#=&u+ F* withu, 7 +#=0. (A13)
The total energy creation rate, &= —u,V,T# is then given
by

&= uV (r”)+ TV (sw?)+ uV (yu”)

=HV (ru*)+ rTwV S+ ruu*V. Y,

v Lo (A14)
while the relativistic force, F#=(8%+ u"u,)V,T", is given

by
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Fr=(e+pu’V u*+ (g +u u")\V,p. (A15)
Using equation (A9), i.e.

\Y%

2PV H-TV,S—u'V,Y, (A16)

r

one can rewrite equation (A15) in the form
V| v v a g-
u'V,(Hu,) =V (Hu,)]=(0,+uu"[TV,S +uV,Y,]+—*.
,
(A17)

The set of equations presented here shows how to modify the
formalism presented in the text when considering a perfect
fluid (€= #,=0) having a multi-variable equation of state,
e=e(r,S,Y,).

APPENDIX B: 3 +1 SPLIT

The four-dimensional metric, g,,, is conveniently split into
three-dimensional objects, (a, 8, v;) relative to the slicing of
the space-time in the ¢= const. space-like hypersurfaces

ds’=g,,dx* dx’= — a¥dx’)*+ y,(dx'+ ' dx°)(dx/+ B/ dx").
uv /3

(B1)
Explicitly,
i 1 ‘
Boo= _[az__ BB, 800 = _? s (B2a)
_ i, B B2b
gOi_+ﬂi’ 8 _+a2’ ( )
&=V 8=v'— /iﬁ , (B2c)
where
B'=v"B, v'v,=09;. (B3)

The determinant g= —det(g,,) is then given in terms of
y = +det(y;) by

Jg=aly. (B4)
In terms of this 3+ 1 split the normalization condition

g"u,u,= —1reads

1 . ..
—— (o= Bul +y"uu=—1, (BS)

in which one can insert

i (86)
to get
iy 2
0= Ly )™ (B7)
a
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Using now (equation 2.32 and 4.2)
re=rlgu’, (B8)
=[1+c7?h(r,S)cw, (B9)

together with (B4) and (B7), we see that ris defined implicitly
as a function of ry, Sand w; (assuming the metric known) by

i
r=r*y~l/2(1+ 7 bl (B10)

-1
c 1+c_2h(r,S)]2) '

Then the three-velocity, vi= cu'/u’, is obtained from

h=h[rry,S,w,),S], and from the relation
v
u,~=g,-#u"=u0 vi—+Bi =c'w/(1+c ?h), (B11)
c
as the following function of r,, Sand w;,
- oy’ — ¢’ (B12)

1+ R e zy*’w w]'"?

The equations presented here, together with the values of
the metric coefficients discussed in the text, allow one to
compute the 1PN+2.5PN functionals of 7y, S and w,
needed in Section 5.

APPENDIX C: REDUCED HAMILTONIAN
FORMALISM FOR RELATIVISTIC FLUIDS

Several recent works (Kiinzle & Nester 1984; Holm 1985;
Bao, Marsden & Walton 1985) have investigated the con-
strained Hamiltonian formalism for relativistic fluids. We are
here interested in the corresponding ‘reduced’ Hamiltonian
formalism, obtained in the manner of Arnowitt et al. (1962)
by solving the constraints in terms of the true dynamical
degrees of freedom of the full system: fluid + gravitational
field. The latter quantities consist of the matter variables, T,
S, m, and of the gravitational field ones, A4j', &/TT. The
matter variables denote the same quantities as introduced in
the text (equations 2.32 and 2.17), and in the Hamiltonian
approach they have the following Poisson brackets

{re(x,1), 7 (x’,t)}=0, (Cla)

{re(x,1), S(x, £)} = (Clb)

{S(x,1), S(x, )}= (Clc)

{mix,1),8(x, 1)} aS(x:i )6(x—X’), (C1d)
ox

{0, 1)l )= =25l )05 =)} (Cle)
X

{mx, 1), Jt,(x',t)}=n,-(x',t)a%,,6(x—x') (X, t) ai d(x—x).

(C1f)

Note that the brackets C1 have a universal structure
independent of the metric, and even of any special relativistic
effects. A simple way to see why, and to derive them, is to

deduce them from the canonical brackets of some underlying
Lagrange-variables description of the fluid

ra(x,1)=r[q"(x, )] det [M:I’ (C2a)
ox

S(X, t) = SL[‘IA(X, t)]9 (Czb)

JT:‘(X’ t)= _% PA(X’ t)’ (CZC)

where g*, A=1, 2, 3 are Lagrange-fields (9,q" + v'd,q*=0)
and P, their associated canonical momenta

{q’(x, 1), Py(x, 1)} = 03 O(x—X). (C2d)

The Poisson brackets (C1) are closely linked with the
structure of the three-dimensional diffeomorphism group.
This shows up, for example, in the following general formula
(considered at a fixed time)

[J dBXSini’ F[r*’S, nj]}
OF oF oF
=J'd3 [6*f5r* 6SXES+6 fg]l’,], (C3)

where F is a functional of ry(x), S(x), 7;(x) (with Fréchet
derivatives 6F/0ry, etc....) and where £, denotes the Lie
derivative along the 3D vector £9/dx' of, respectively, a
(spatial) density, a scalar and a covectorial density. For fuller
discussions of the geometric significance of the ‘Lie-Poisson’
(-*Kirillov-Kostant’) brackets (C1) see e.g. Arnold (1966),
Zakharov & Kuznetsov (1984), Holm (1985), Bao et al.
(1985), and references therein.

The gravitational variables h,-T,T and #/TT are the trans-

verse and traceless (TT) parts of, respectively,

7~ 0{ =g;— 9;) and

== Jyy v Kep = VoY “Kea), (C4a)
1

K;=—alj=~—[c"'0y,~ D~ DB, (C4b)

Y 20

(with D;y; = 0) in the ADM (1960) coordinate system defined
by

(C5a)
(C5b)

a]( Vi~ %6,'/6 My =
0,;77=0.
The gravitational variables are canonically conjugate

[modulo the (flat-space) TT projection and a factor 16 G/
¢?), i.e. their only non-zero brackets are

{h?(x, 1), 7"x, 1)) = 162 G/c? 6,-TjT"’(x -x'). (Ce6)

The general canonical evolution equation for possibly
explicitly time-dependent phase-space functionals,

dF _OF

oo TIEH) (C7)

together with the Poisson brackets, (C1), implies the follow-
ing equations of motion for the fluid
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ot = ai(é.m "*), (C8a)
aS O0H

FYR) iaiS, (C8b)
o, O0H OH OoH O0H
—_—= =g |l— x| —ad|— —0a.|— +—3a.S8.

Py 65( om Jt,) 0; ( 6:@.) 7, 0, ( 6r*)r* 55 9,S. (C8c)

To obtain the reduced Hamiltonian appearing in equations
(C8) one must solve the energy and momentum constraints
that appear in the 3+1 split of the 4D action (using the
Lagrange-variables description (C2) (Kiinzle & Nester
1984), and choosing units such that 16xG=1=c)

A=[d'x/g[R(g) 1= dif d’x[x"8,;+ Prd,q"
—a ¥ — B ]+ surface terms. (C9)

Note that P,d,g* can be rewritten, using equation (C2c)
and the Lagrange-transport equation, d,q*+v'9,g*=0, as
s’ This shows that the canonical conjugate of s; is the
coordinate three-velocity (a result, vi=0H/dm, already
apparent in equations C8).

The energy and momentum constraints read

0= =~y R(y)+y {a'm,~ )

)—e(r,S)]

+ e}iﬂmaner( r*9S1 Tis )’/k), (ClOa)

0=#=-2Dn'— m, (C10b)
where H# e = @2y 2T % can be expressed in terms of ry,
S, 7; and y* by means of equations (B7)-(B10). The Hamil-
tonian H is obtained by solving the constraints (C10)
together with the coordinate conditions (C5), and by insert-
ing the result in the surface term giving the ADM energy
(Regge & Teitelboim 1974)
E= § szi( asgis_ aigss)‘ (Cl 1)

Keeping the 1 PN terms in the matter Hamiltonian, and
the lowest order terms involving the gravitational wave
degrees of freedom, the result is found to be (Schéfer 1989)
(withc=1)

H= Hl [r*9S7 ni] + HZ[r*’ TTiy h;r] + H3[h"];T’ U'IT]’ (C12)

1
H, =J d3xe[r*,S]—J d’x = re Uy
2 £

1 2 173 G ,
+Jd3x§’:—(1—h* 3U,— 4”) Z”d%‘d&
* 14"

x[7 i, ¥, 1) | (¥~ Y~ x")x, )X, t)]’

x—x|

1+2h*+43ﬁ—U*)

lx—x'’
(C12a)
Hz———Jd3 hﬁ[ . ’+4—G-aU*a U*}, (C12b)
*
1 3 1 TT\2 iTT\ 2
H3=16nG d’x Z(akhi/) +(x" )" | (C12c)
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The notation used in equations (C12) is the same as in
Section 5, notably Ay = de(ry,S)/0rs— c?, AUx= —47Gry.
It is straightforward to check that the double integral (G/
4 ([ d*x d3x[...]) appearing in H,, equation (C12a), can be
written as
5[ d3x7(x,t)Afx,1), (C124)

with A; defined by equations (5.6), (5.7) (where ryw,=m,)
and (5.12). For the terms of order higher than the ones
written in equations (C12) (2 PN terms and higher order
couplingto &) see Schafer(1989)

The equatlons of motion for 4" and 7¥™T deduced from
equations (C12) (with C6 and C7) lead to the following
inhomogeneous wave equation for h
162G [nm, }TT

TT _

Oh; = o r,,; 4 GaU*a Uy (C13)
where TT means taking the transverse-trace-free projection.
The solution of this equation, in the case where one assumes
the absence of any free incoming radiation impinging on the
system, is simply the retarded integral of its right-hand side.
When considered in the near-zone of the system, the latter
retarded integral for h}T can be expanded in powers of the
light-crossing delay ~|x—x'|/c. This leads to a post-
Newtonian expansion whose first term is O(c¢™*) and time-
symmetric, and whose second term ([O(c™3) and
time-asymmetric| represents the lowest order effect of the
radiation reaction. The latter ‘reaction’ term is only a func-
tion of time, and can be written as (Schifer 1985)

( hiTjT)reac - Q[3]( ), (C14)

where use has been made of the Newtonian equations of
motion to express A™*, originally given in terms of the time
derivative of the integral [; of equation (5.28), in terms of the
quantity introduced in equations (5.13).

As the gravitational degrees of freedom were held fixed in
the fluid equations of motion (C8), we see that the fluid
motion, at the 1 PN +radiation reaction level, is deducible
(via the same equations C8) from the time-dependent
Hamiltonian obtained by inserting (C14) into (C12b) and by
discarding (C12c¢), namely

Hi[ry, S, n]+— o« )Jd3x

H'[r*,S,ni,t] 5

’+——6U*0 U*} (C15)

Fx 4nG

A long but straightforward calculation allows one to check
that inserting H', equation (C15), into equations (C8) leads
exactly [and not only modulo O(c™*) terms| to the
1 PN +2.5 PN results obtained in the text, Section 5 (see
Schifer 1989 for extension to higher order approximations).
The conservation laws of the fluid are most conveniently
discussed from this Hamiltonian point of view, starting from
the symmetries (or lack thereof) of H' under space transla-
tions, time translations and space rotations, and using, e.g.
equations (C3) and (C7) (see subsection 5.6 for the results;
note that twice the trace-free part of the integral appearing in
the second term of the right-hand side of equation C15 is
exactly equal to I, as defined by equation 5.28 of the text).
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