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Abstract. This paper is motivated by the current development of several space missions (e.g. ACES on
International Space Station) that will use Earth-orbit laser cooled atomic clocks, providing a time-keeping ac-
curacy of the order of 5 10−17 in fractional frequency. We show that to such accuracy, the theory of frequency
transfer between Earth and Space must be extended from the currently known relativistic order 1/c2 (which has
been needed in previous space experiments such as GP-A) to the next relativistic correction of order 1/c3. We find
that the frequency transfer includes the first and second-order Doppler contributions, the Einstein gravitational
red-shift and, at the order 1/c3, a mixture of these effects. As for the time transfer, it contains the standard
Shapiro time delay, and we present an expression also including the first and second-order Sagnac corrections.
Higher-order relativistic corrections, at least O(1/c4), are numerically negligible for time and frequency transfers
in these experiments, being for instance of order 10−20 in fractional frequency. Particular attention is paid to
the problem of the frequency transfer in the two-way experimental configuration. In this case we find a simple
theoretical expression which extends the previous formula (Vessot et al. 1980) to the next order 1/c3. In the
Appendix we present the detailed proofs of all the formulas which will be needed in such experiments.

Key words. relativity – reference systems – time

1. Introduction

Recent advances in laser cooling of atoms have led to the
development of a number of highly accurate atomic clocks
(Caesium and Rubidium fountains) which have improved
time-keeping accuracy by an order of magnitude during
the nineties to currently ≈10−15 in fractional frequency
(Laurent et al. 1999; Bize et al. 1999). For further im-
provement of accuracy, the fountain clocks are limited by
gravity, and therefore several experiments are planned for
the near future that will fly laser cooled atomic clocks on
board terrestrial satellites. One of these is ESA’s Atomic
Clock Ensemble in Space (ACES) mission (Salomon &
Veillet 1996) planned for 2005. This mission will place a
laser cooled caesium clock together with a hydrogen maser
on board the International Space Station. When com-
bined with equally accurate time/frequency transfer sys-
tems that allow the comparison between space and ground
clocks, the experiment should become a useful tool for a
number of applications in metrology, fundamental physics,
atmospheric studies, geodesy etc.
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Therefore the ACES mission will include sufficiently
stable optical and microwave time and frequency transfer
systems to allow the comparison of the clocks with neg-
ligible noise contribution from the transfer system itself.
At the required accuracy this condition calls for two-way
systems that exchange electromagnetic pulses in two direc-
tions in order to eliminate or reduce a number of unwanted
effects associated with the instrumental delays, the prop-
agation within the ionosphere and troposphere, etc. The
Time Transfer by Laser Light (T2L2) system (Fridelance
et al. 1996) uses optical pulses that are emitted on the
ground, reflected by the satellite and received back on the
ground. The events of emission and reception are dated
on the ground clock, and the event of reflection on the
satellite clock. The microwave system is expected to ex-
change pulses in both directions and date all events of
emission and reception. It will also measure the frequency
of the emitted and received pulses on board and on the
ground. Additionally it is expected to include two down-
link signals at different frequencies in order to allow the
cancellation of the residual ionospheric effect.

At the required uncertainties a fundamentally rel-
ativistic modelling of the experiment is indispensable.

Article published by EDP Sciences and available at http://www.aanda.org or 
http://dx.doi.org/10.1051/0004-6361:20010233

http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20010233


L. Blanchet et al.: Relativistic time and frequency transfer to order c−3 321

Indeed the relativistic effects when comparing two clocks
separated by an altitude of ≈400 km (as is the case for
ACES) can amount to several parts in 10−11, which ex-
ceeds the expected uncertainties of the clocks (≈5 10−17)
by several orders of magnitude. Evidently, a relativistic
treatment of distant clock comparisons using electromag-
netic signals becomes necessary whenever the uncertain-
ties of such experiments become smaller than the size of
the relativistic corrections. This has already been the case
for the gravity probe A (GP-A) experiment (Vessot et al.
1980), and is more generally the case since the advent of
the Global Positioning System (GPS) which is now exten-
sively used for distant clock comparisons.

The first theoretical treatments of such comparisons
in a relativistic framework were performed by Jaffe &
Vessot (1976), Ashby & Allan (1979), Vessot et al. (1980),
Allan & Ashby (1985), and Klioner (1993). Subsequent
new methods with improved uncertainties, such as the
Two Way Time Transfer (TWTT) (Hetzel & Soring 1993)
and the Laser Synchronization from Stationary Orbit
(LASSO) (Veillet & Fridelance 1993), have led to the need
for more accurate theoretical treatments that include some
higher order terms (Petit & Wolf 1994, 1997; Wolf & Petit
1995; Klioner & Fukushima 1994). The latter papers treat
in some detail the synchronization (time transfer) between
distant clocks using electromagnetic signals and the rela-
tion between the proper time of a clock on the Earth or on
board terrestrial satellites and the geocentric coordinate
time, TCG. The relativistic theory for frequency transfer
has been revisited recently by Ashby (1998), leading to
results similar to those presented in Sect. 4.2. In the per-
spective of the expected uncertainties of the ACES and
other similar experiments, for time as well as frequency
transfer, a re-examination of these formalisms has proved
necessary. This is the subject of the present paper.

Essentially we shall compute the relativistic transfers
of time and frequency, including all the terms up to the
order 1/c3. The coordinate time transfer up to this order
is well known as it consists of the standard Shapiro time
delay. Concerning the frequency transfer, we find that the
formula for the one-way transfer is rather complicated.
Our main result will concern the formula for the two-
way frequency transfer, up to order 1/c3. This formula
appeared previously in the paper by Ashby (1998) but
without a detailed derivation. In this paper, we derive this
formula and, more generally, we present a self-contained
derivation of all the formulae needed in this context. These
formulae will be of direct use in the ACES experiment,
and a fortiori in more precise future experiments. Higher-
order relativistic corrections are negligible with respect to
the projected uncertainties associated with ACES.

The numerical applications made in this paper con-
cern the ACES mission with a transfer from the Space
Station A orbiting at the altitude H = 400 km to a
ground station located at B. For the velocities involved
we use vA = 7.7 103 m/s and vB = vground = 465 m/s;
for the gravitational potentials, UB/c

2 = 6.9 10−10

and UA/c
2 = 6.5 10−10; and for the Earth parameters

GME = 3.98 1014 m3/s2 and RE = 6.37 106 m. We con-
sider that the experimental uncertainties of ACES will be
at the level of 5 ps for time transfer and 5 10−17 for fre-
quency transfer.

The paper is organized in such a way that the main
text summarizes all the results needed by an experimen-
tal team in setting up a relativistic time and/or frequency
transfer, with all the proofs and theoretical details rele-
gated to the Appendix. In Sect. 2 we treat the problem of
the transformation from proper time to coordinate time
TCG at a level sufficient for ground clocks and the ACES
space clock. In Sect. 3 we give the expressions required for
time transfer (including Sagnac terms), and in Sect. 4 for
frequency transfer. Both the one-way and two-way trans-
fers are considered in each case.

2. Proper time in terms of coordinate time

Throughout this work we use the geocentric inertial (non-
rotating) coordinate frame GRS: Geocentric Reference
System. Thus, x0/c = t = TCG is the geocentric coor-
dinate time1, and x = (xi) are the GRS harmonic spatial
coordinates, for which the spatial metric is conformally
flat to order 1/c2. In these coordinates the metric interval
including all the terms up to the order 1/c2 reads

ds2 ≡ −c2dτ2

= −
(

1− 2U
c2

)
c2dt2 +

(
1 +

2U
c2

)
δijdxidxj , (1)

where U is the total Newtonian potential, with the conven-
tion that U ≥ 0 (IAU 1991), and where δijdxidxj = dx2

denotes the Euclidean space metric. The Solar-system
barycentric coordinates, centred on the barycenter of
the Solar system, are denoted T = TCB: solar system
barycentric coordinate time, and X i: solar system spatial
(harmonic) coordinates. The proper time of a clock A lo-
cated at the GRS coordinate position xA(t), and moving
with the coordinate velocity vA = dxA/dt, is

dτA
dt

= 1− 1
c2

[
v2

A

2
+ UE(xA)

+V (XA)− V (XE)− xiA∂iV (XE) + xiAQi

]
. (2)

Here, UE denotes the Newtonian potential of the Earth at
the position xA of the clock in the GRS frame, and V is
the sum of the Newtonian potentials of the other bodies
(mainly the Sun and the Moon), either at the position XE

of the Earth center of mass in barycentric coordinates, or
at the clock location XA. The three terms involving the

1 The relation between t and the terrestrial time TT (re-
alized by the International Atomic Time, TAI) is given by
dt/dTT = 1 + Lg where Lg is a defining constant fixed in
IAU resolution B1.9 (IAU 2000) as Lg = 6.969290134 10−10;
this value was chosen to be close to the previous definition
Lg = W0/c

2 (IAU 1991) where W0 is the Earth potential (grav-
itational plus centrifugal) at the reference geoid close to the
mean surface of the oceans.
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potential V represent the tidal field of the other bodies at
the position of the clock. [To a good approximation (in-
troducing errors of much less than 10−18) one can write
V (XA) ≈ V (XE + xA). Then, as usual, the tidal field at
the position xA can be approximated using a Taylor ex-
pansion by the standard expression 1

2x
i
Ax

j
A∂ijV (XE) again

neglecting terms smaller than 10−18.] The terms due to the
tides of the other bodies (i.e. involving V ) are small for
the ground station and the low orbit of ACES (of order
2 10−17) and are either negligible or easily evaluated if re-
quired (depending on the final clock accuracies reached).
The last term in (2) is due to the non-geodesic acceleration
of the center of mass of the Earth that is induced by the
mass quadrupole of the Earth2, and which is numerically
of the order of 3 10−11 m/s2. This term is negligible in the
case of the envisioned experiments: numerically |QixiA/c2|
amounts to less that 10−20.

Thus, for application to ACES, and more generally
to any experiment at a level of uncertainty greater than
5 10−17 on a satellite at similar altitude as ACES, we can
keep only the first three terms in the relation (2) between
the proper time τA and the coordinate time t:

dτA
dt

= 1− 1
c2

[
v2

A

2
+ UE(xA)

]
. (3)

Note that at this level of uncertainty it is crucial to take
into account in the relation (3) the non-sphericity (oblatic-
ity) of the Earth Newtonian potential. In fact, it is even
not sufficient to model the Earth potential with a J2-term
taking into account the quadrupolar deformation. Rather,
the potential UE(xA) should be computed according to
the detailed procedures of Wolf & Petit (1995), and Petit
& Wolf (1997). For example, for a clock B fixed on the
Earth surface, the relativistic correction term appearing
in the coordinate/proper time relation (3) is given with
the required precision by

v2
B

2
+ UE(xB) = W0 −

∫ HB

0

g dH , (4)

where W0 is the Earth potential at the reference geoid
(W0 = 62636856 m2/s2), where g denotes the (gravita-
tional plus centrifugal) Earth acceleration, and where HB

is the geometric height of the clock above the reference
geoid. Note that this procedure is limited by the uncer-
tainty in the determination of W0 which at present gives
rise to an error of about 1 part in 1017 in dτB/dt. For un-
certainties below that level, it is expected that, inversely,
clock comparisons with highly accurate space clocks will
yield the best estimate of the potential on the ground.

2 To a sufficient approximation we have

Qi = − 1

2ME
IjkE ∂ijkV (XE) ,

where IjkE is the Earth quadrupole moment (see e.g. Brumberg
& Kopejkin 1990 for details).

3. Coordinate time transfer

3.1. One-way signal transmission

Let A be the emitting station, with GRS position xA(t),
and B the receiving station, with position xB(t). We de-
note by tA the coordinate time at the instant of emission
of a light signal, and by tB the coordinate time at the in-
stant of reception. We put rA = |xA(tA)|, rB = |xB(tB)|
and RAB = |xB(tB) − xA(tA)|, where | | is the Euclidean
norm associated with the metric δij . Up to the order 1/c3

the coordinate time transfer TAB ≡ tB − tA is given by

TAB =
RAB

c
+

2GME

c3
ln
(
rA + rB +RAB

rA + rB −RAB

)
, (5)

where the logarithmic term represents the Shapiro time
delay3 (Shapiro 1964). See the Appendix for several
derivations of the Shapiro time delay and for an alter-
native expression given by (A.40). In the case of zenithal
geometry, i.e. propagation of the signal along the local ver-
tical (for which |xB−xA| = |rB − rA|), between the orbit
of ACES at 400 km (assumed in all numerical examples
below) and the ground, the Shapiro time delay is 2 ps. In
the case of zero elevation, it is 11 ps.

In a real experiment, the position of the receptor B
may be recorded at the time of emission tA rather than
at the time of reception tB, i.e. we may have more di-
rect access to xB(tA) rather than xB(tB), and the for-
mula (5) gets modified by some Sagnac correction terms
consistently to the order 1/c3. In this case the formula
becomes

TAB =
DAB

c
+
DAB.vB(tA)

c2

+
DAB

2c3

(
v2

B +
(DAB.vB)2

D2
AB

+DAB.aB

)
+

2GME

c3
ln
(
rA + rB +DAB

rA + rB −DAB

)
, (6)

where DAB = xB(tA)−xA(tA) is the “instantaneous” co-
ordinate distance between A and B at the instant of emis-
sion at A (we have DAB = |DAB|), where vB(tA) denotes
the coordinate velocity of the station B at that instant,
and where aB is the acceleration of B (in all the small
correction terms of order 1/c3 one can use, independent
of the required order, the quantities at the instants tA or
tB). The second term in (6) represents the Sagnac term of
order 1/c2 and can amount to 200 ns at low elevation; the
third term or Sagnac of order 1/c3 is about 5 ps at low
elevation (to be compared with the Shapiro term, which
is 11 ps).

3.2. Two-way time transfer

One signal is emitted from the satellite A at instant tA and
received by the ground station B at instant tB. A second

3 In the case of a general metric theory of gravity, the factor
two in front of the Shapiro time delay should be replaced by
1 + γ where γ is the standard PPN parameter.
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Fig. 1. Two-way time transfer in the non-rotating frame

signal (prime) is emitted by the ground B at instant tB′
and received on A at tA′ (see Fig. 1). The two transmission
times are

TAB = tB − tA, (7)
TB′A′ = tA′ − tB′ . (8)

Furthermore, we denote the intervals of time between
emission and reception on board the satellite A and at
the station B by

tAA′ = tA′ − tA, (9)
tB′B = tB − tB′ . (10)

From these definitions we deduce the quantity ∆t which
is required for synchronization, namely

∆t = tA − tB′ =
1
2

(tB′B − tAA′ + TB′A′ − TAB) . (11)

Notice that ∆t is known because it is expressed in terms
of the two transmission times TAB and TB′A′ which are
computed from the theoretical formulas (5) or (6) valid
for the one-way time transfer, and in terms of the time
intervals tAA′ and tB′B which are measured on the satellite
and on the ground respectively4.

4. Frequency transfer

4.1. One-way transfer

The frequency transfer between two clocks requires the
determination of the ratio fA/fB between the proper fre-
quencies fA and fB delivered by the clocks on the satellite
(A) and on the ground (B). In practice this is achieved
using a transmission of photons from A to B and the for-
mula

fA

fB
=
(
fA

νA

)(
νA

νB

)(
νB

fB

)
, (12)

where νA is the proper frequency of the photon as mea-
sured on A (instant of emission tA), and νB the proper

4 In the case of the time transfer by laser light T2L2 to be
operated on ACES we have tAA′ = 0 since the signal is reflected
instantaneously.

frequency of the same photon on B at tB. The first bracket
in (12) is measured on A, the second bracket is given by
the theoretical formula (13) below, and the third one is
measured on B. In the one-way transfer of photons, as
derived in the Appendix, we have

νA

νB
=

1− 1
c2

[
UE(rB) + v2

B
2

]
1− 1

c2

[
UE(rA) + v2

A
2

] qA
qB
· (13)

For convenience in the notation, we henceforth denote the
radial vectors (in GRS coordinates) by rA = xA(tA) and
rB = xB(tB); and, as before, we have rA = |rA| and rB =
|rB|, as well as the coordinate velocities vA = vA(tA) and
vB = vB(tB). To the required order 1/c3, the last factor
in (13) is obtained from

qA = 1 − NAB.vA

c

− 4GME

c3
(rA + rB)NAB.vA +RAB

rA.vA
rA

(rA + rB)2 −R2
AB

, (14)

qB = 1 − NAB.vB

c

− 4GME

c3
(rA + rB)NAB.vB −RAB

rB.vB
rB

(rA + rB)2 −R2
AB

, (15)

with RAB = rB − rA, RAB = |RAB| and NAB =
RAB/RAB. See the Appendix for the derivation of these
formulas. Note that the result (14)–(15) has been obtained
in the Appendix assuming that the field of the Earth is
spherically symmetric. Indeed, the J2-terms in the factor
qA/qB do not exceed 4 10−17.

In the case of ACES, the various contributions in
the one-way frequency transfer (13)–(15) are numerically
as follows. First-order Doppler effect: for the satellite
|NAB.vA/c| ≤ 2.6 10−5; for the ground |NAB.vB/c| ≤
1.6 10−6. Second-order Doppler effect: v2

A/(2c
2) ≤

3.4 10−10 for the satellite; v2
B/(2c

2) ≤ 1.3 10−12 for the
ground. Gravitational red-shift (Einstein) effect: UA/c

2 ≡
UE(rA)/c2 = 6.5 10−10; UB/c

2 = 6.9 10−10. The terms
of order 1/c3 are less than 3.6 10−14 for the satellite and
2.2 10−15 for the ground.

4.2. Two-way frequency transfer

A “tracking” signal is sent from the ground station B at
instant tB′ , received on the satellite A at instant tA and
instantaneously re-emitted by a satellite transponder to-
ward B where it is received at instant tB. The down-link
“clock” signal is emitted simultaneously with the tracking
signal at the transponding instant tA, and received at tB
(see Fig. 2) (Vessot et al. 1980). In the two-way frequency
transfer the ratio νA/νB in (12), needed for frequency com-
parison, is given by

νB

νA
=

1
2

(
νB

νB′

)
+ ∆AB +

1
2
· (16)

The ratio (νB/νB′) = (νB/νB′)station is measured at the
ground station B, while ∆AB is computed by means of the
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tB’
tB

tA

Fig. 2. Two-way frequency transfer in the non-rotating frame

theoretical formula (derived in the Appendix)

∆AB =
1
c2

[
UAB −

1
2
v2

AB −RAB.aB

](
1 +

NAB.vAB

c

)
+
RAB

c3
(−vA.aB +RAB.bB + 2vB.aB − vB.∇UB) .

(17)

The difference of potentials between ground and satellite
reads UAB = UB − UA where UA ≡ UE[rA(tA)] and UB ≡
UE[rB(tB)] (note that UAB > 0); the gradient is ∇UB =
∂UE(rB)/∂rB; the relative velocity is vAB = vA(tA) −
vB(tB); the acceleration of the ground is aB = aB(tB);
the derivative of acceleration is bB = daB/dt.

In the case of ACES we find the following numerical
contributions. For the three dominant terms appearing at
the order 1/c2,

∆Einstein =
UAB

c2
= 4.6 10−11 ; (18)

∆2d−order Doppler =
∣∣∣− 1

2c2
v2

AB

∣∣∣ ≤ 3.3 10−10 ; (19)

∆acceleration =
∣∣∣− 1

c2
RAB.aB

∣∣∣ ≤ 7 10−13 . (20)

In the third term, or “acceleration” term, we have assumed
that the station B is located at the equator, and we have
used the upper bound (RAB)max ω2

E rB/c
2, where ωE is

the Earth’s angular velocity of rotation. Now, according
to (17), in order to reach the 1/c3 precision, the three
previous terms are to be corrected by a factor that looks
exactly like a first-order Doppler effect. Numerically, we
have∣∣∣∣NAB.vAB

c

∣∣∣∣ ≤ 2.7 10−5 , (21)

so this first-order Doppler factor induces a correction of
the frequency shift at the minimal level 8.2 10−15, which
is measurable by ACES. Finally the four last terms in (17)
are purely of order 1/c3. They amount respectively to the
maximal values ≤2 10−17, 3.5 10−19, and much less for
the last two terms. These last four terms are in general
negligible for ACES. The terms which are neglected in the
formula (17), which are at least O(1/c4), are numerically

of the order of 10−20 or less, too small to be detected by
ACES.

In summary, the formula (17) and its derivation in the
Appendix constitute the main results of this paper. To the
dominant order 1/c2 the expression was first derived by
Vessot et al. (1980) who used it in their GP-A experiment.
To the order 1/c3 the formula (17) appears in a recent
paper by Ashby (1998) but without detailed derivation.
The final expression (17) is relatively simple, as compared,
for instance, to the corresponding expression valid for the
one-way frequency transfer [see (13)–(15)]. We find indeed
that many of the scalar products between NAB and some
velocities, though present in the intermediate steps of the
calculation, drop out from the final result. The exception
is for the factor in (17) which is made of the combination
1 + NAB.vAB/c and which can be nicely interpreted as
a modification, at the level 1/c3, of the dominant term
of order 1/c2 by a first-order Doppler effect. The set of
equations for time and frequency transfers given in this
paper should be sufficient for the analysis of the planned
clock experiments in Earth orbit, at the level 5 10−17 in
fractional frequency.

Appendix A: Theory

This Appendix presents several equivalent derivations of
the formulas for the time and frequency transfers in the
ACES experiment. Some of the basic material needed in
these derivations is not new and can be found in standard
textbooks such as Misner et al. (1973), and Will (1981).
On the other hand, the problem of the propagation of light
in a gravitational field has been solved in a general way
at the linearized approximation: see Kopeikin & Schäfer
(1999) for a complete investigation and an entry to the
literature. Here we use the explicit solution of the photon
motion, the optical distance function for stationary space-
times (Buchdahl 1970, 1979), and the differentiation of the
well-known Shapiro (1964) formula.

We shall first consider the transfer of coordinate geo-
centric time t; for this purpose it is sufficient to approx-
imate the gravitational field of the Earth as spherically
symmetric (monopolar), and to neglect tidal terms, hence
UE = GM/r. However, as we have seen in Sect. 2, higher
spherical harmonics in the Earth potential are needed in
the relation between coordinate and proper time. We de-
note the mass of the Earth by M = ME, the Cartesian
geocentric coordinates by (t, r), with t = TCG and r = x
agreeing to this approximation with the geocentric spa-
tial coordinates (r = |r|). Using spherical coordinates
{t, r, θ, ϕ} associated in the standard way to the geocen-
tric coordinates (0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π), we can write
the 1PN metric as

ds2 = −f(r)c2dt2 + g(r)
[
dr2 + r2dθ2 + r2 sin2 θdϕ2

]
,

(A.1)

where to this order

f(r) = 1− 2U
c2

= 1− 2GM
rc2

, (A.2)
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g(r) = 1 +
2U
c2

= 1 +
2GM
rc2

, (A.3)

As said above, the monopolar approximation to the Earth
potential is sufficient for our purpose in most of this
Appendix.
Photon equations of motion. In the geometric optics ap-
proximation, where the photon’s wavelength is much
smaller than the typical size of the electromagnetic wave
packet, as well as of the space-time radius of curva-
ture, the photon’s wave vector is null, kµkµ = 0, and
is hypersurface-orthogonal, kµ = ∂µS. The differential
equation for the trajectory of the ray is kµ = dxµ/dp =
gµν(x)∂νS(x). We have 0 = ∇µ(kνkν) = 2kν∇µkν =
2kν∇νkµ, where we have used the fact that ∇µkν is sym-
metric as a consequence of kµ = ∂µS, so we find that
kν∇νkµ = 0, which is the geodesic equation, a more use-
ful form of which reads

dkµ
dp

=
1
2
kρkσ∂µgρσ . (A.4)

Here, p denotes an affine parameter along the trajectory,
and the photon’s null wave vector kµ is such that

kµ =
dxµ

dp
; kµ = gµνk

ν ; 0 = kµk
µ , (A.5)

(kµ is future directed, k0 = ckt > 0).
Although the metric (A.1)–(A.3) is spherically-

symmetric, it is convenient to suppose that the motion of
the photon takes place in an arbitrary plane, not necessar-
ily the equatorial plane θ = π/2. For instance, we can con-
sider that θ = 0 represents the Earth’s rotation axis, and
that the emitted signal comes from a satellite moving on
any orbit with inclination angle i with respect to the equa-
tor. Since the metric is stationary and axi-symmetric, we
find immediately the first integrals kt = −Ê and kϕ = L̂,
where Ê and L̂ denote two constants along the trajectory
(with Ê > 0 to ensure k0 > 0). Relating kt and kϕ to the
contravariant components of the wave vector, kt = dt/dp
and kϕ = dϕ/dp, yields the two integrals of motion

Ê = f(r)c2
dt
dp

, (A.6)

L̂ = g(r)r2 sin2 θ
dϕ
dp
· (A.7)

Next, the equation corresponding to the θ-coordinate
reads dkθ/dp = g(r)r2 sin θ cos θ(kϕ)2. Inserting in this
equation kϕ = dϕ/dp as deduced from (A.7), and
noting that g(r)r2 = gθθ, we obtain d(k2

θ)/dp =
2L̂2 cos θ/ sin3 θdθ/dp. This equation shows that kθ is
a function of the θ-coordinate only, and we get k2

θ =
b̂2 − L̂2/ sin2 θ where b̂ is a new constant of the motion.
Hence,

r4g2(r)
(

dθ
dp

)2

= b̂2 − L̂2

sin2 θ
· (A.8)

Finally, since gµνkµkν = 0 along a light ray, we get from
the previous integrals of motion,

g2(r)
(

dr
dp

)2

=
g(r)
f(r)

Ê2

c2
− b̂2

r2
· (A.9)

It can be checked that the equation concerning the r-
coordinate, i.e. dkr/dp = 1/2kρkσ∂rgρσ, is now auto-
matically satisfied. Thus, the photon motion depends on
the constants Ê, b̂ and L̂; however, by eliminating the
affine parameter p in favor of the coordinate time t we
can parametrize the motion by only two constants, say
b = b̂c/Ê and L = L̂c/Ê. Finally, the solution reads

dr
cdt

= εr
f

g

√
g

f
− b2

r2
, (A.10)

r2 dθ
cdt

= εθ
f

g

√
b2 − L2

sin2 θ
, (A.11)

r2 dϕ
cdt

=
f

g

L

sin2 θ
· (A.12)

We have introduced the signs εr and εθ of dr/dt and
dθ/dt. Because the metric (A.1) is spherically-symmetric,
one could rotate the coordinates so that the plane of the
motion is simply the equatorial plane θ = π/2. This would
correspond to bequatorial = L, and in that case ϕ would
simply be the polar angle within the orbital plane. In our
more general situation, it is not difficult to find the equa-
tion of the orbital plane. We introduce the angle α defined
by

cosα =
b cos θ√
b2 − L2

; sinα = εθ

√
b2 sin2 θ − L2

b2 − L2
· (A.13)

In terms of α we can integrate the equation for the az-
imuthal angle ϕ in the form

tan(ϕ− ϕ1) =
b

L
tanα , (A.14)

where ϕ1 is an arbitrary constant. Clearly this is the
equation of the orbital plane. Its line of node is de-
fined by the direction ϕ = ϕ1 − π/2 in the equatorial
plane, and the inclination angle i of the orbit is such that
sin i =

√
1− L2/b2. The angle α is the polar angle in

the orbital plane, oriented in the sense of the motion (we
have dα2 = dθ2 + sin2 θdϕ2). Introducing the Euclidean
orthonormal basis er, eθ, eϕ associated with the spheri-
cal coordinates {r, θ, ϕ}, the position and velocity of the
photon read

r = rer , (A.15)

dr
cdt
≡ n

√
f(r)
g(r)

=
dr
cdt
er + r

dα
cdt
eα , (A.16)

where eα, namely the unit vector in the direction of in-
creasing α within the orbital plane, is given by

eα = εθeθ

√
1− L2

b2 sin2 θ
+ eϕ

L

b sin θ
· (A.17)
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In (A.16) we have introduced the unit tangent vector n
along the photon’s path, which is directly related to the
contravariant components of the wave vector: ni = ki/|k|,
where |k| is the Euclidean norm, so that n2 = δijn

inj = 1.
From the facts that kµ is a null vector and that the line
element (A.1) is diagonal and spatially conformally flat,
we can check that |k| =

√
f/g k0, from which we deduce

that the covariant components ki are also proportional to
ni, viz

ki
k0

= −
√
g

f
ni = − g

f

ki

k0
· (A.18)

From its definition (A.16), and from the solution of the
motion, we find that the tangent vector n is given by

n = εr

√
1− f

g

b2

r2
er +

b

r

√
f

g
eα . (A.19)

Next, the equations of motion for r(t) and α(t) in the
orbital plane are

dr
cdt

= εr
f

g

√
g

f
− b2

r2
, (A.20)

r2 dα
cdt

= b
f

g
· (A.21)

The differential equation for the trajectory is

dr
dα

= εrr

√
g

f

r2

b2
− 1 . (A.22)

Photon trajectory. The trajectory at the relativistic order
1/c2 (and even at order 1/c3), which is the solution of
(A.22), is an hyperbola whose focus is the center of the
Earth, with impact parameter b and total deviation angle
4GM/c2b. The equation of the path reads

cos(α− α0) =
b

r
− 2GM

c2b
, (A.23)

where the angle α0 represents the direction of the peri-
astron, at which the distance of closest approach is r0,
which, to order 1/c2, is given by

r0 = b− 2GM
c2
· (A.24)

The tangent vector along the trajectory can be expressed
in terms of the vectors eα0 and er0 , corresponding to the
position (r0, α0) of the periastron:

n = eα0 −
2GM
c2r0

sin(α− α0)er0 . (A.25)

As for the radial Eq. (A.20) it reads, after being expressed
in terms of r0 rather than b,

cdt = εr
rdr√
r2 − r2

0

[
1 +

2GM
c2r

(
1 +

r0
r + r0

)]
· (A.26)

This is readily integrated as

c|t− t0| =
√
r2 − r2

0

+
2GM
c2

[√
r − r0
r + r0

+ ln
(
r +

√
r2 − r2

0

r0

)]
,

(A.27)

where t0 denotes the instant of passage at the periastron.
On the other hand, the trajectory is obtained as

|α− α0| = arctan

(√
r2 − r2

0

r0

)
+

2GM
c2r0

√
r − r0
r + r0

, (A.28)

where α0 is the angle at the periastron.
Coordinate time transfer. We consider from now on a
transfer from an emission point A along the trajectory
to some reception point B. We introduce the Euclidean
vectorial distance between the two points, defined as the
difference of the coordinate positions of the points in the
GRS coordinate system:

RAB = rB − rA ; RAB = |RAB| ; NAB = RAB/RAB .

(A.29)

The position of the emitting point A is taken at the time
of emission tA, rA = rA(tA), and similarly rB = rB(tB).
Notice that the norm RAB is simply the Euclidean norm;
thus, RAB represents the “straight line” distance between
A and B. In practice it is very useful to express all quan-
tities in terms of such Euclidean notions of distance and
direction as RAB and NAB. Once we have fixed our coor-
dinate system to be (t,x), we can forget about the curved
geometry (A.1) and reason as if we were in flat space-time.

Clearly, with the two points A and B being given, the
trajectory is entirely determined. In particular, the radial
coordinate r0 of the periastron is uniquely fixed as a func-
tion of rA, rB and RAB. Neglecting terms in 1/c2, we find

r2
0 =

1
4R2

AB

(
R2

AB − (rA − rB)2

)(
(rA + rB)2 −R2

AB

)
.

(A.30)

The unit vector NAB is given as

NAB = eα0 −
2GM
c2r0

rB − rA
RAB

er0 . (A.31)

On the other hand, the unit tangent to the trajectory at
the emission point A (say) is given from (A.25) as

nA = eα0 −
2GM
c2r0

sin(αA − α0)er0 . (A.32)

The difference between the two vectors (A.31) and (A.32)
is a small quantityO(1/c2). It is not difficult, with the help
of our solution for the trajectory [cf. (A.23)–(A.25) and
(A.30)], to obtain the relation between these two vectors
(always working consistently to the order 1/c2):

nA = NAB

+
4GM
c2rA

RAB

(rA + rB)2 −R2
AB

(
rA − (NAB.rA)NAB

)
.

(A.33)
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The coordinate time transfer from A to B, denoted TAB =
tB− tA, follows from the Eq. (A.27). By expressing it with
the help of the previous notation, notably of the “straight
line” distance RAB, we obtain the simple formula

TAB =
RAB

c
+

2GM
c3

ln
(
rA + rB +RAB

rA + rB −RAB

)
· (A.34)

The second term, purely of order 1/c3, is the Shapiro log-
arithmic time delay.

The right side of (A.34) depends only on the spatial
positions of the emission and reception points, i.e. rA and
rB, and not on the instants tA and/or tB. Indeed, for sta-
tionary space-times, the time t − tA elapsed from some
emission instant tA does not depend on tA but only on
the spatial coordinates rA and r, so there exists a func-
tion V such that c(t − tA) = V (rA, r). This function is
the so-called optical point characteristic of the station-
ary space-time, or optical distance between pairs of points
(Buchdahl 1970, 1979). In our case, we have

V (rA, r) = RA +
2GM
c2

ln
(
rA + r +RA

rA + r −RA

)
, (A.35)

where RA = r − rA, RA = |RA|. Note that along the
light ray from rA to r, the function S defined by S(t, r) =
−ct + V (rA, r) stays constant (S = −ctA). Therefore S
represents the phase of the signal and can be used to define
the wave-vector as kµ = ∂µS. For this choice k0 = −1 and
ki = ∂iV . Using (A.35) we get

ki
k0

= −N i
A −

4GM
c2

(rA + r)N i
A −RA

ri

r

(rA + r)2 −R2
A

, (A.36)

where N i
A = RiA/RA. This is in complete agreement

with (A.18) and (A.33).
Given the simplicity of the result (A.34) for the time

transfer when expressed in terms of the Euclidean distance
RAB, one can guess that the formula can be derived di-
rectly by integrating ds2 = 0 along the path from A to
B. Let us show how this works. With the post-Newtonian
metric (A.1)–(A.3) we have, along the photon’s path,

c dt =
(

1 +
2GM
rc2

)
|dr| , (A.37)

where |dr| is the Euclidean norm of the vector dr = dx.
Introducing RA = r − rA as a new spatial coordinate
along the path, we have |dr| = (dR2

A +R2
AdN2

A)1/2 where
RA = |RA| and NA = RA/RA. But we know from (A.33)
that NA differs from the unit tangent nA at the emission
point by a small term O(1/c2). So, when r varies (the
origin point A on the path being fixed), we have dNA =
O(1/c2) and therefore we see that dN2

A = O(1/c4) makes
a negligible contribution. This shows that to order 1/c2

inclusively the time transfer can be calculated “along the
straight line”; we have

dt =
(

1 +
2GM
rc2

)
dRA

c
, (A.38)

and the total time transfer reads

TAB =
RAB

c
+

2GM
c3

∫ RAB

0

dRA

r
· (A.39)

To find the closed-form expression of the integral, we insert
r = (R2

A + 2RA.rA + r2
A)1/2 which can be approximated,

since NA = nA +O(1/c2) and the integral already enters
a small quantity, by r = (R2

A + 2RAnA.rA + r2
A)1/2. Next

we perform the integration over RA from A to B, and we
are allowed to replace nA = NAB + O(1/c2) within the
result. Finally we find (see e.g. Will 1981)

TAB =
RAB

c
+

2GM
c3

ln
(
rB + rB.NAB

rA + rA.NAB

)
· (A.40)

This expression for the Shapiro time delay is slightly dif-
ferent from the previous form (A.34) but can easily be
reconciled with it. To this end one makes use of the iden-
tities

rB + rB.NAB =
(rB +RAB)2 − r2

A

2RAB
, (A.41)

rA + rA.NAB =
r2
B − (rA −RAB)2

2RAB
, (A.42)

which show that (A.34) and (A.40) are indeed totally
equivalent. However, in practice, we shall prefer to use the
formula (A.34) rather than (A.40) because of its structural
simplicity.
Sagnac terms. The formula (A.34) gives the time transfer
from the point rA ≡ rA(tA) at the emission instant tA, to
the reception point rB ≡ rB(tB) at the reception instant
tB. But in fact, in the application to ACES, the useful
time basis in the experiment is that provided by the clock
at the point A (i.e., in the satellite) which records the
instant of emission tA. Therefore, it is more convenient to
re-express the time transfer (A.34) in terms of the position
of the reception point B as it was at the instant tA rather
than at tB, i.e. when it was instantaneous with the instant
of emission at A (in the GRS coordinate system). Thus,
we introduce the “instantaneous” coordinate distance

DAB = rB(tA)− rA(tA) ; DAB = |DAB| , (A.43)

and perform a consistent series expansion when 1/c tends
to zero. We know from (A.34) that the time transfer
TAB = O(1/c). Therefore, with the required accuracy, we
can write RAB = DAB + TABvB(tA) + 1

2T
2
ABaB(tA) +

O(1/c3), where aB is the acceleration. The successive rel-
ativistic approximations are obtained by working out this
formula iteratively together with (A.34). In this way we
obtain

TAB =
DAB

c
+
DAB.vB(tA)

c2

+
DAB

2c3

(
v2

B +
(DAB.vB)2

D2
AB

+DAB.aB

)
+

2GM
c3

ln
(
rA + rB +DAB

rA + rB −DAB

)
, (A.44)
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where all quantities are measured at the emission instant
tA recorded by the on-board clock. The formula involves
the Sagnac terms of first (1/c2) and second (1/c3) orders,
as well as the Shapiro time delay [of course, consistently
with the approximation, one can use indifferently in the
Shapiro term either the distance DAB or RAB, and either
rB(tB) or rB(tA)].
One-way frequency transfer. In the geometric optics ap-
proximation we have kµ = ∂µS and the phase difference
between two successive electromagnetic pulses is dS =
(∂µSdxµ)A = (∂µSdxµ)B, which in other words means
(kµuµdτ)A = (kµuµdτ)B where uµ = dxµ/dτ denotes the
four-velocity (such that gµνuµuν = −1). Now, dτA and
dτB are the proper periods of the same signal at A and
B and we have νA/νB = dτB/dτA. Therefore, the one-way
frequency shift of photons during the transfer from A to
B is

νA

νB
=

(kµuµ)A

(kµuµ)B
· (A.45)

Separating out temporal from spatial components, we
have kµu

µ = u0(k0 + kiv
i/c), where vi = cui/u0

denotes the coordinate velocity and where u0 =
(−gρσvρvσ/c2)−1/2. In a stationary space-time k0 is con-
stant along the trajectory, i.e. (k0)A = (k0)B = −Ê/c in
the notation (A.6); for instance, we have seen that with
the choice S(t, r) = −ct+V (rA, r), where V is the optical
distance (A.35), this constant is equal to minus one. Thus
we can write

νA

νB
=

(u0)A

(u0)B

1 +
(
ki
k0

)
A

viA
c

1 +
(
ki
k0

)
B

viB
c

· (A.46)

Next, we found in (A.18) that the covariant components
of the wave vector ki are proportional to the unit tangent
vector ni. Using this we can further infer that

νA

νB
=

(u0)A

(u0)B

1−
√

g(rA)
f(rA)

nA.vA
c

1−
√

g(rB)
f(rB)

nB.vB
c

· (A.47)

Within the first factor u0 is the coordinate time vs proper
time ratio, which has been computed in Eq. (3). Thus,
from (u0)A/(u0)B = (dτ/dt)B/(dτ/dt)A, we get

(u0)A

(u0)B
=

1− 1
c2

[
UE(rB) + v2

B
2

]
1− 1

c2

[
UE(rA) + v2

A
2

] , (A.48)

where UA and UB are the Newtonian potentials at the
levels A and B. The factor (A.48) comprises the Einstein
gravitational red-shift and the second-order Doppler ef-
fects, which are both of order 1/c2. We recall from Sect. 2
that at the level of accuracy of ACES, the potentials
in (A.48) must take into account the oblaticity of the
Earth.

Now the second factor in the right-hand-side of (A.47)
is nothing but the ratio of coordinate periods of the same

signal at A and B, namely dtB/dtA; it contains the first-
order Doppler effect (∼1/c) and the third-order (∼1/c3)
terms we are looking for. For the computation of this fac-
tor at the level 5 10−17 we do not need to consider the J2 of
the Earth potential, and we can approximate UE = GM/r.
In order to obtain a useful formula, we have only to substi-
tute for the tangent vectors nA and nB their expressions
in terms of the unit direction NAB into (A.47). The re-
quired relation between these vectors was found in (A.33).
Alternatively, one can use directly the formula (A.36).
Finally, our end-result for the one-way frequency trans-
fer with 1/c3 accuracy reads

νA

νB
=

(u0)A

(u0)B

qA
qB

, (A.49)

where the ratio qA/qB is given by the formulas (14)–(15)
in the text.

The previous expressions were obtained using our ex-
plicit solution (A.23)–(A.25) for the photon’s trajectory.
However, there is a simpler way to obtain the ratio qA/qB,
which is based on the fact that since it is equal to the
ratio of coordinate times: qA/qB = dtB/dtA, it can be
computed directly by differentiating the coordinate time
transfer TAB = tB − tA with respect to the emission time
tA. The time transfer to order 1/c3 is given by the sim-
ple formula (A.34) containing the Shapiro term. Thus, we
must consider

d
dtA

(tB − tA) =

d
dtA

{
RAB

c
+

2GM
c3

ln
(
rA + rB +RAB

rA + rB −RAB

)}
· (A.50)

The differentiation is to be performed taking into account
the fact that the coordinate distance between A and B
depends on both the emission and reception times, i.e.
RAB = |rB(tB)− rA(tA)|. Thus we have for instance

dRAB

dtA
= NAB.

(
vB

dtB
dtA
− vA

)
. (A.51)

We find that the ratio qA/qB = dtB/dtA as obtained from
the Eq. (A.50) agrees exactly with the one given by the
expressions (14)–(15).
Two-way frequency transfer. In this method the “tracking”
signal is emitted from the ground station at point B′ and
coordinate time tB′ , is received by the satellite at point
A and time tA and immediately transponded back to the
ground station where it arrives at point B and time tB.
(A generalization of the formulae to the case where there
is a time delay between reception and re-emission at A is
also possible.) The “clock” signal is emitted at A, simul-
taneously with the tracking signal when it is transponded
at A, and transmitted to B. This technique, called the
Doppler-cancelling technique, permits us to suppress the
first-order Doppler effect and to drastically limit the un-
certainties linked with the atmospheric contributions (see
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e.g. Kleppner et al. 1970). The ratio of the signal frequen-
cies to be inserted in (12) follows from

νB

νA
=

1
2

(
νB

νB′

)
station

+ ∆AB +
1
2
, (A.52)

where (νB/νB′)station is measured at the ground station,
and where ∆AB is given theoretically by

∆AB =
(
νB

νA

)[
1− 1

2

(
νA

νB′

)]
− 1

2
· (A.53)

The ratios νB/νA and νA/νB′ are given by the formu-
las (13)–(15), valid for the one-way transfer, that we must
simply insert into (A.53) in order to get the result. The
only problem is to correctly express all the quantities as-
sociated with the up-link from the ground station B′ at
tB′ to the satellite A at tA, in terms of the same quanti-
ties associated with the down-link back from the satellite
A to the station B at tB (see Fig. 2). Notably we need to
express the unit vector NB′A in terms of the unit vector
NAB on the way back, as well as the velocity and accel-
eration vB(tB) and aB(tB) of the ground station at tB.
Neglecting O(1/c3) we find

NB′A = − NAB

{
1 +

2
c
NAB.vB

+
1
c2
[
4(NAB.vB)2 − 2v2

B − 2RAB.aB

]}
+

2
c
vB

(
1 +

1
c
NAB.vB

)
− 2
c2
RABaB . (A.54)

We need also the velocity of the station at emission,
vB′(tB′), in terms of its velocity, acceleration and deriva-
tive of acceleration at reception, vB(tB), aB(tB) and
bB(tB). We get

vB′ = vB −
2
c
RABaB +

2
c2
[
(RAB.vB)aB +R2

ABbB

]
.

(A.55)

These relativistic expansions being fully taken into ac-
count, we obtain finally, after a long computation, the
formula (17) in the text, which is

∆AB =
1
c2

[
UAB −

1
2
v2

AB −RAB.aB

](
1 +

NAB.vAB

c

)
+

RAB

c3
(−vA.aB +RAB.bB + 2vB.aB − vB.∇UB) ,

(A.56)

where UAB = UB − UA and vAB = vA − vB. All the

quantities at A or B are expressed at the corresponding
instants tA or tB respectively.
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