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Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order
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The rate of gravitational-wave energy loss from inspiralling binary systems of compact objects
of arbitrary mass is derived through second post-Newtonian (2PN) order O((Gm/rc2)2) beyond the
quadrupole approximation. The result has been derived by two independent calculations of the (source)
multipole moments. The 2PN terms, and, in particular, the finite mass contribution therein (which
cannot be obtained in perturbation calculations of black hole spacetimes), are shown to make a
significant contribution to the accumulated phase of theoretical templates to be used in matched filtering
of the data from future gravitational-wave detectors.
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One of the most promising astrophysical sources of
gravitational radiation for detection by large-scale laser-
interferometer systems such as the U.S. LIGO or the
French-Italian VIRGO projects [1] is the inspiralling com-
pact binary. This is a binary system of neutron stars or
black holes whose orbit is decaying toward a final coales-
cence under the dissipative effect of gravitational radia-
tion reaction. For much of the evolution of such systems,
the gravitational wave-form signal is an accurately calcu-
lable "chirp" signal that sweeps in frequency through the
dectectors' sensitive bandwidth, typically between 10 and
1000 Hz. Estimates of the rate of such inspiral events
range from 3 to 100 per year, for signals detectable out to
hundreds of Mpc by the advanced version of LIGO [2].

In addition to outright detection of the waves, it will be
possible to determine parameters of the inspiralling sys-
tems, such as the masses and spins of the bodies [3—5],
to measure cosmological distances [6], to probe the non-
linear regime of general relativity [7], and to test alter-
native gravitational theories [8]. This is made possible
by the technique of matched filtering of theoretical wave-
form templates, which depend on the source parameters,
against the broadband detector output [9].

Roughly speaking, any effect that causes the template
to differ from the actual signal by one cycle over the 500
to 16000 accumulated cycles in the sensitive bandwidth

will result in a reduction in the signal-to-noise ratio. This
necessitates knowing the prediction of general relativity
for gravitational radiation damping, and its effect on the
orbital phase, to substantially higher accuracy than that
provided by the lowest-order quadrupole or Newtonian
approximation. If post-Newtonian corrections to the
quadrupole formula scale as powers of v~ = m/r (G =
c = 1), then, say, for a double neutron-star inspiral in
the LIGO/VIRGO bandwidth, with m/r typically around
10 2, corrections at least of order (m/r) —10 will
be needed in order to be accurate to one cycle out of
the 16000 cycles accumulated for this process. This
corresponds to corrections of second post-Newtonian
(2PN) order.

Although numerous corrections to the quadrupole
energy-loss formula have previously been calculated (for
a summary, see [10]),the 2PN contributions to the energy
loss rate for arbitrary masses have not been derived.
This paper presents these contributions for the first time,
discusses their significance for gravitational-wave data
analysis, and outlines the derivation.

The central result is as follows: Through 2PN order,
the rate of energy loss, dE/dt, from a binary system of
two compact bodies of mass m~ and m2, orbital separation
r, and spins Si, and S2 in a nearly circular orbit (apart from
the adiabatic inspiral) is given by
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where L is a unit vector directed along the orbital angular momentum, m = mi + m2, iI = mim2/m, yt = Si/mi,
~2 = S2/m2, and g, denotes the sum over i = 1, 2. The terms in square brackets in Eq. (1) are, respectively, at lowest
order, Newtonian (quadrupole); at order m/r, 1PN [11];at order (m/r)sl2, the nonlinear effect of "tails" (47r term) [12,13]
and spin-orbit effects [14,15]; and at order (m/r), the 2PN terms (new with this paper), and spin-spin effects [14—16].
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For the special case of a test mass orbiting a massive
black hole, perturbation theory has been used to derive an
analogous analytic formula (apart from spin-spin effects)
[12,17], and for nonrotating holes, to extend the expansion
through the equivalent of 4PN order [18). The test-

body 7I = 0 limit of Eq. (1) agrees completely with these
results to the corresponding order.

The equations of motion for circular orbits, correct to
2PN order including spin effects, yield for the orbital an-

!

gular velocity cu —= v/r and the orbital energy [10,14,19]
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Combining Eqs. (1) and (2), one can express the rate of change u9 of the angular velocity as a function of cu and get
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where the spin-orbit (P) and spin-spin (o.) parame-
ters are given by p =

—,2 g;(113m, /m + 757))L X; and
o. = (71/48) (—247X~ .Xz +721L X&L Xz). From that
one calculates the accumulated number of gravitational-
wave cycles 3V = f(f/f)df, where f = cu/~ is the fre-
quency of the quadrupolar waves, in terms of the frequen-
cies at which the signal enters and leaves the detectors'
bandwidth. In order to avoid complications caused by
spin-induced precessions of the orbital plane [15,20], we
assume that the spins are aligned parallel to the orbital an-
gular momentum (in particular, P and o. remain constant).
Using 10 Hz as the entering frequency of LIGO/VIRGO-
type detectors, set by seismic noise, and, as the exit fre-
quency, the smaller of either 1000 Hz (set by photon-shot
noise) or the frequency corresponding to the innermost
stable circular orbit and the onset of plunge (for small
mass ratio, f,„= I/63t27rm [21]), we find contributions
to the total number of observed wave cycles from the var-
ious post-Newtonian terms listed in Table I.

Newtonian
First PN
Tail
Spin-orbit
Second PN
Spin-spin

2 X 1.4M.
16 050

439(104)
—208
17P
9(3)

2o

10MO + 1.4Me

3580
212(26)
—180
14p
10(2)

3o

2 && 10Mo

600
59(14)

—51
4p

4(l)

TABLE I. Contributions to the accumulated number 3V of
gravitational-wave cycles in a LIGO/VIRGO-type detector.
Frequency entering the bandwidth is 10 Hz (seismic limit);
frequency leaving the detector is 1000 Hz for two neutron stars
(photon shot noise), and —360 and —190 Hz for the two cases
involving black holes (innermost stable orbit). Spin parameters
P and cr are defined in the text. Numbers in parentheses
indicate contribution of finite-mass (7t) effects.

Because y ~ 1 for black holes, and ~0.63—0.74 for
neutron stars (depending on the equation of state, see
[22]), P and o. are always less than -9.4 and -2.5,
respectively. However, if we consider models for the past
and future evolution of observed binary pulsar systems
such as PSR 1534 + 12 and PSR 1913 + 16, we find
(using a conservative upper limit for moments of inertia)
that g&

+' (5.2 X 10, ' '+' (6.5 X 10, and
we expect ~2 ~ 7 X 10 ". If such values are typical,
both the spin-orbit and (a fortiori) the spin-spin terms will
make negligible contributions to the accumulated phase.

Table I demonstrates that the 2PN terms, and no-
tably the finite-mass (7)-dependent) contributions therein
(which cannot be obtained by test-body approaches),
make a significant contribution to the accumulated phase,
and thus must be included in theoretical templates to be
used in matched filtering. The additional question of how
the presence of these terms will affect the accuracy of
estimation of parameters in the templates can only be an-
swered reliably using a full matched filter analysis [4,5].
This is currently in progress [23].

The remainder of this paper outlines the derivations
leading to this result. Two entirely independent calcula-
tions were carried out, using different approaches, one by
(BDI), using their previously developed generation for-
malism [24,25 ], the other by Will and Wiseman (WW),
using a formal slow-motion expansion originated by Ep-
stein and Wagoner [26]. Details of these calculations will
be published elsewhere [27].

Both approaches begin with Einstein s equations writ-
ten in harmonic coordinates (see [25] for definitions and
notation). We define the field h P, measuring the devia-
tion of the "gothic" metric from the Minkowski metric

t = diag( —1, 1, 1, 1): h p = g —gg p —7) i'. (Greek
indices range from 0 to 3, while latin indices range from
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3.) Imposing the harmonic coordinate condition
8ph ~ = 0 then leads to the field equations

h P = 16~( g)—T P + A P(h) —= 16~~ P, (4)
where denotes the fIat spacetime d'Alembertian opera-
tor, T ~ is the matter stress-energy tensor, and A ~ is an
effective gravitational source containing the nonlinearities
of Einstein's equations. It is a series in powers of h ~ and
its derivatives; both quadratic and cubic nonlinearities in
A ~ play an essential role in our calculations.

Post Mink-owski matching approach (BDI).—This ap-
proach proceeds through several steps. The first con-
sists of constructing an iterative solution of Eq. (4) in
an inner domain (or near zone) that includes the ma-
terial source but whose radius is much less than a
gravitational wavelength. Defining source densities o- =
T + T " 0; = T ' 0-.

J
= T'J, and the retarded po-

tentials V = —4~ R o., V; = 4~ p 0' and Wj'

—4~ g [o;, + (4~) '(6; VB, V —
z 6;,Bk V Bk V)], where

R denotes the usual Oat spacetime retarded integral,
one obtains the inner metric h;„ to some intermediate
accuracy O(6, 5, 6): h,„=—4V + 4(W;; —2Vz) + O(6),
h;„' = —4V; + O(5), h;„= —4W;, + O(6), where O(n)
means a term of order e" in the post-Newtonian pa-
rameter e —v/c. From this, one constructs the inner
metric with the higher accuracy O(8, 7, 8) needed for
subsequent matching as h;„= z [16'r P (V, W)] +
O(8, 7, 8), where ~ P(V, W) denotes the right-hand side of
Eq. (4) when retaining all the quadratic and cubic nonline-
arities to the required post-Newtonian order in the near
zone, and given as explicit combinations of derivatives
of V, V;, and W;j. The second step consists of con-
structing a generic solution of the vacuum Einstein equa-
tions [Eq. (4) with T P = 0] in the form of a multipolar-
post-Minkowskian expansion that is valid in an external
domain which overlaps with the near zone and extends
into the far wave zone. The construction of h 1 in
the external domain is done algorithmically as a func-
tional of a set of parameters, called the "canonical" mul-
tipole moments M;, ;, (t), S;, ;, (t) which are symmetric
and trace-free (STF) Cartesian tensors. Schematically,
h„t = + P [MI., SL,], where L —= i i, . . . t i and where the
functional dependence includes a nonlocal time depen-
dence on the past "history" of Ml(t) and SL(t). The
third, "matching" step consists of requiring that the
inner and external metrics be equivalent (modulo a
coordinate transformation) in the overlap between the
inner and the external domains. This requirement deter-
mines the relation between the canonical moments and
the inner metric (itself expressed in terms of the source
variables). Performing the matching through 2PN order
[25] thus determines ML(t) = IL[~ P] + O(5), SL(t) =
Jt[~ t'] + O(4), where the "source" moments IL and
J& are given by some mathematically well-defined (an-
alytically continued) integrals of the quantity r P(V, W)
which appeared as source of h;„. When computing theaP

source moments we neglect all finite size effects, such as

which contains a nonlocal tail integral [in which b~ =
be "~', where b is a freely specifiable parameter en-
tering the coordinate transformation x& X&: T —R =
t —)x) —2m in(ix(/b)]. The superscript (n) denotes n

time derivatives. The energy loss is given by integrat-
ing the square of Bh;, /BT over the sphere at infinity. At
2PN order this leads to

U(])U(]) + & U(])U(&) + &~ V(&)V(&)
ij k ijk 4~ ij ij

1 (]) (]) 1 (]) (])+
9072 84

Ul Jkm Ut Jkm + ij k VEJk (7)

Inserting the 2PN expression (5) of the source quadrupole
into the radiative quadrupole (6), and using the previously
derived 1PN expressions for the other multipole moments,
we end up with the energy loss (1).

Epstein Wagoner app-roach (WW). —This approach
starts by considering h P = z'(16'~ P) as a formal
solution of Eq. (4) everywhere. One then expands
the retarded integral R to leading order in 1/R in
the far zone, while the retardation is expanded in a
slow-motion approximation. Using identities, such as
r" =

z dz(roox'x')/Btz+ spatial divergences, which
result from 8p~ P = 0 (a consequence of the harmonic
gauge condition), we express the radiative field as a
sequence of Epstein-Wagoner multipole moments,

QO

iJ 2 ijkl ...k
hTT =

z nk, . . . nk IEw (t —R)TT,
"

R dt2 (8)

where IE~ "' are integrals over space of moments of
the source r P (e.g. , IE'w = J~oox'x'd3x; see [26,28]
for formulas). To sufficient accuracy for the radiative
field, the two-index moment must be calculated to 2PN
order, the three- and four-index moments to PN order,
and the five- and six-index moments to Newtonian
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spin (which to 2PN accuracy can be added separately) and
internal quadrupole effects. The final result for the 2PN
quadrupole moment reads, in the case of a circular binary,

I;~ = STF;irtm[Ar'r~ + Br v'v~], (5)

with A = 1 —4z(m/r) (1 + 39zl) — )5iz(m/r)z (461 +
18395' + 241gz) and B =

z, (1 —3g) + +37s(m/r)
X (1607 —1681' + 22971z). The final step consist of
computing from the external metric h„t the gravitational
radiation emitted at infinity. This entails introduc-
ing a (nonharmonic) "radiative" coordinate system
X~ = (T, X') adapted to the falloff of the metric at future
null infinity. The transverse-traceless (TT) asymptotic
wave form h;j can be uniquely decomposed into two
sets of STF radiative multipole moments UL, VL which
are then computed as some nonlinear functionals of the
canonical moments, and therefore of the source multipole
moments. For instance, up to O(5),

U;, (T) = I;, (T) + 2m dT'In~ I,, (T'), (6)(2) ~T —T'~ (.)
) '
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order. The moments of the compact-support source
distribution ( g—)T P are straightforward. Contrary to
what happens in the BDI calculation, where the matching
leads to mathematically well-defined formulas for the
source multipole moments, the EW moments of the
noncompact A P source are given by formally diver-
gent integrals. To deal with this difficulty we define a
sphere of radius R » A —r/e centered on the center
of mass of the system, and integrate the noncompact
moments within the sphere. Many integrations by parts
are carried out to simplify the calculations, and the
resulting surface terms are evaluated at X. and kept. The
divergent terms are proportional to R, and signal the
failure of the slow-motion expansion procedure extended
into the far zone. We discard the divergent terms. In
order to compare directly with BDI, we transform the
EW moments into STF moments using the projection
integrals given by Thorne [29]. For the quadrupole
moment, for instance, that transformation is given

by I'~ = STF;j[Ipw +
&& (1 llpw —12Isw + 4Ipw ) +

6s(23''w —32IEw +10IEw + 2IEw ')]. We find
that those STF moments agree exactly with the source
moments of BDI, e.g. , Eq. (5). Note that the formal EW
approach misses the tail effects in the wave form [see
(6)]. They must be added separately.
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