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A class of generically nonmetric couplings between nongravitational fields and the gravitational field is
introduced. It is shown that these couplings violate the weak equivalence principle at a level (a priori)
smaller than the current Eotvos-type experimental limits.
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Metric theories of gravity, i.e. , theories embodying the
Einstein equivalence principle, have deserved a privileged
status among alternative theories for nearly eighty years.
The prime example of a metric theory is of course
Einstein's general relativity, but other famous examples
include the 1914 Nordstr)m-Einstein-Fokker conformally
flat theory [1,2], the Jordan-Brans-Dicke scalar-tensor
theory [3,4], and the Rosen bimetric theory [5] (see Ni
[6] and Will [7] for reviews on these and other theories).
In a metric theory, the nongravitational fields of all types
are coupled, in a universal way, to a single curved space-
time metric g„, associated with gravity (g„, is called the
physical metric), in the local Lorentz frames of which the
standard special-relativistic laws of physics are valid
[8,9]. This coupling to gravity, which is referred to as the
metric coupling, consists merely in the minimal replace-
ment, in the Lagrangian density of special relativity
(written in generally covariant form), of the Minkowski
metric g„, by the physical metric g„,. Metric theories of
gravity differ from each other in their gravitational field
equations, which include different types of fields, besides
the physical metric, associated with gravity [8,9]. Gen-
eral relativity is essentially the unique theory possessing
only the metric as a gravitational field.

The primary motivation underlying the postulates of
metric theories of gravity is an empirical one. Indeed, the
Einstein equivalence principle on which these theories are
based has received numerous and precise experimental
confirmations. Notably, the experiments performed by
Roll, Krotkov, and Dicke [10] and by Braginsky and
Panov [1 I] (following pioneering work by Eotvos, Pekar,
and Fekete [12]), have verified that the equivalence prin-
ciple is obeyed for typical metals to two parts in 10''
(Dicke experiment) and to one part in 10' (Braginsky
experiment). A priori the latter experiments test only
that aspect of the equivalence principle known as the
weak equivalence principle or principle of universality of
free fall but, according to a conjecture first proposed by
Schiff [13], they also provide evidence for the full Ein-
stein equivalence principle, and thus for the metric-
coupling postulates.

However, we show in this Letter that the empirical
motivation for considering only metric theories of gravity
may not be fully justified at present. We introduce a
large class of generically nonmetric couplings to gravity,
which thus do not in general satisfy the Einstein

equivalence principle nor the weak equivalence principle.
These couplings are obtained by an appropriate insertion
of the gravitational field —a second-rank tensorial field—into the Lagrangian density of special relativity. The
usual metric coupling to gravity belongs to this class, but
appears as a simple, although notable, member of it. Our
interest in the couplings of this class lies in the a priori
very small violation of the (weak) equivalence principle
that they predict. Indeed, we compute, in the restricted
case of an electromagnetically bound matter system and
using as the dominant gravitational potential that of the
Sun at the level of the Earth, that the equivalence-
principle violation is numerically equal, for gold and
aluminum, to 1.2X10 ' times a constant b2 depending
on the coupling in question. (We have b2=0 in the case
of the metric coupling. ) Using the galactic potential as
the dominant potential, we get a violation of the order of
10 bq. Thus, all couplings in this class that have a not
too large value of b2 seem a priori viable with respect to
current Eotvos-type experiments, although only marginal-
ly viable if we use the galactic potential and make the
comparison with the Braginsky experiment. All these
couplings can potentially yield currently viable (in this
respect) nonmetric theories of gravity. Note that this
small level of weak-equivalence-principle violation should
certainly be detected by future experiments testing the
principle in space, like the STEP experiment [14]. (This
experiment is now under assessment phase as a joint
ESA-NASA mission. )

We can understand the small magnitude of the
equivalence-principle violation as follows. First of all, the
nonmetric couplings we consider have the property of be-
ing metric at first order in the field (in a sense made pre-
cise below). For such couplings, the passive gravitational
to inertial mass ratio of a body in an exterior gravitation-
al field differs from unity by a correction which is dom-
inantly linear in the gravitational potential U/c . Second,
for a body made of charged particles and electromagnetic
fields with negligible weak and strong interactions, the
correction in the mass ratio is made, at dominant order,
of two contributions, one involving the specific electro-
static energy of the body, and one involving its specific
magnetostatic energy [15,16]. In our computation, both
contributions have b2 in front of them so that they are
zero in the metric-coupling case. However, the first elec-
trostatic contribution has also, in addition to b2, a factor
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in front of it which is proportional to y
—1, where y is the

usual Eddington-Robertson [17] post-Newtonian parame-
ter. Note that the use of the parameter y makes sense
here because our couplings are metric to first order in the
field. Thus, if the couplings are to yield the correct obser-
vational deflection of electromagnetic waves by the Sun
and the correct Shapiro time delay, y

—
1 will be very

small (at present ~y
—

I
~

~2&& IO ) and the electrostatic
contribution in the gravitational to inertial mass ratio will

be strongly suppressed with respect to the magnetostatic
contribution. Specific magnetostatic energies are smaller
than specific electrostatic energies by a factor of about
10 for typical metals (Haugan and Will [16])and thus
one finally has, if y I, the above quoted violation (if y is

equal to ~ 2X10 the violation is 10 times larger).
Let us denote by [18]

&NG = ~NG[n„, qA]

the special-relativistic Lagrangian density describing the
dynamics of the nongravitational fields in the absence of
gravity. It is a functional of the flat spacetirne metric

rip„(x), of the nongravitational fields qA(x) (labeled by
the integer A), and of the spacetime derivatives of imp, ,

and qA. The Lagrangian density (I) is a scalar density
with respect to arbitrary coordinate transformations. By
inserting into (I) the physical metric gp„ in place of the
fiat metric tip„and by Posing gp, =gp, +hp, (in the arbi-
trary coordinate system we use), we get the Lagrangian
density of the metric coupling to gravity in the form

but in which the a„'s are arbitrary coefticients for n ~ 2.
For n =0 and 1 we impose

The first constraint of (6) is imposed in order that ENG
reduces to XN~ in the absence of gravity, and the second
one ensures that the couplings have the correct Newtoni-
an limit when the 00 component of hp, , satisfies in this
limit h00=2U/c, where U is the Newtonian potential
&this can always be assumed, after a possible redefinition
of the field variable). It follows from these two con-
straints (6) that the general coupling (5) can be put into

metric form at first order in the field in the sense

LNG =.ENG[ilp, +hp„qA]+0(h ) . (7)

The function f(s) can be written as the formal series

f(s) =g( —) "a„(d/ds) "8(s), where 6 is the Dirac distri-
bution. The general coupling (5) then reads

LNG = dsf(s) JNOG[rlp„+s/. i„„qA] (9)

Thus, gp, +hp, appears as an approximate physical
metric.

It is interesting to note [19] that a nonperturbative rep-
resentation can be given to the general coupling (5).
Indeed, we introduce a function, or distribution, f(s) of
the real variable s, and satisfy for any n,

p+oo, ff5
ds

' f(s) =a-„—oo

+NG +NG[tlpv+/ipv~qA] . (2) and the two constraints (6) become

Hereafter we regard the gravitational field as being de-
scribed by the symmetric second-rank tensor held hp,
Let us expand the right-hand side of Eq. (2) in perturba-
tion series about h„„=0; i.e., let us consider the formal
weak-field expansion of the metric coupling. After dis-

carding a total divergence, we get

ar ar
~gp v r)rip v r)r)k rip v

a.r+ K.r)cr

which acts in Eq. (3) with fixed hp„and qA.
The class of couplings to gravity we consider in this

Letter is the class of couplings which admit a formal
weak-field expansion analogous to the expansion (3),
namely,

' n

Iipv XNG[ilpv, qA]
(metric) 1 ' ~ 0

n=p & ~ ~gpv

where 8/8r)p„ is the variational derivative operator that is

defined by

dsf(s) = dssf(s) = I (10)

We can now adopt Eqs. (9),(10) as the defining equations
of our class of couplings, where f(s) is any function, or
distribution, which is sufficiently well behaved so as to
give to the definition a well-defined mathematical mean-

ing. The form (9) of the coupling will be valid in a re-

gime of strong gravitational fields.
The usual metric coupling (2) belongs to the class of

couplings (5),(6) or (9),(10) and is characterized by
a„=I!n! or f(s) =6(s —

I ). Obviously, the other cou-

plings of' the class are nonmetric but we can easily hnd

some approximate metric couplings by using adequate
functions of'5 which are picked around the value s =1. In

this way we can define a subfamily of "Gaussian" non-

metric couplings by choosing, for any a, the function

f(s) =(2rra ) '~ exp[ —(s —
I ) /2cr ] These cou.plings

tend to the metric coupling when o. 0. However, more
fundamentally nonrnetric couplings can also easily be ob-
tained. For instance, a linear coupling (linear in the
gravitational field) follows from the choice f(s) =6(s)
—d6(s)/ds (hence a„=0 tor n ~ 2). In this case one has

XNG Z a~ Apv
6

=o " ~g„,
XNG [rip, qA ] (5) 6LNgg (linear) ~ P

NG && pt
c$ gp t!

560



VOLUME 69, NUMBER 4 PHYSICAL REVIEW LETTERS 27 JULY 1992

which can be rewritten as

~((incur) ~p + 'J rl
h TpNG NG pv (i 2)

b~ (exp)

g (exp) ~p + h
NG

NG NG pv
Bg„,

or, equivalently,

(13)

X'"&)=r' + "h e"NG NG pv

where we have introduced the stress-energy tensor T""
=(2/4 —rl)bXNG/brj„„of the nongravitational fields in

special relativity. The linear coupling has been adopted
in several nonmetric theories, including the Fierz-Pauli
theory [20] and the Capella-Naida theory [21l. (The
coupling used in the Belinfante-Swihart theory [22,23]
does not belong to our class of couplings. ) Another ex-
ample of a fundamentally nonmetric coupling, which is
more interesting (in the author's opinion) than the linear
coupling, can be obtained by assuming a„=l for any n,
or by using the truncated exponential function f(s)=Y(s)e ' where Y(s) is the usual Heaviside step func-
tion. Then the Lagrangian density, XNd' say, satisfies
the equation

r,'G= — ( —
g J".J.")'"+(1/c)JlA„

—(4—rl/16)r))1 "~rl" F„„Fp (is)

where J~» and je, are the conserved mass and charged
currents of the particles and where F„„=(i„A, 8„A„. —
We insert this expression into Eq. (5) and perform the
diA'erentiations with respect to the metric holding J~+, j~+,

and A„ fixed. We assume that the gravitational field h„,
takes a static and isotropic form of the type

2U 2yU
hpp 2 ' hpi =0, hrj 2 bij

C c
(16)

(physical) stress-energy distribution of the matter fields

in the presence of the gravitational field itself. Evidently,
the coupling term in Eq. (14) represents a nonlinear in-

teraction of the gravitational field with this physical dis-

tribution. The metric coupling, the Gaussian coupling,
the linear coupling, and the "exponential" coupling have,

respectively, b2=0, b2=cr, b2= —1, and b2=+1 in the
notation of Eq. (19) below.

We now outline the computation of the dominant
equivalence-principle violation as predicted by the cou-

plings defined by Eqs. (5),(6) or by Eqs. (9),(10). We
consider a matter system made of charged particles and
electromagnetic fields described in special relativity by
the Lagrangian density

P + OO

ds e 'XNG [ri„,+sh„„q~], (i4) where y is the usual post-Newtonian parameter, and that
the coordinate system is Minkowskian for the metric:

where the second equality holds modulo a total diver- rl„,=diag( —1, 1, 1, 1). Finally we neglect all terms which
gence, and where 8"'=(2/4 —rl)b'XN'g /farl„„ is the are at least of formal order 0(c 6). The result of the

computation is then the standard THep expression [15]

' ljt'2

XNG= —p.c' T —H, +—J".A„+c*" 8z

where pe =Jx, /c, v'= Jx, /pe, E; =F;p,

2U U' 1T =1 — b2 +0—
2 C4 C6

II

U2H=l+
2 +(2y+1)b2 +0

6

8'
' 6'E f'+0

P ) c'

8; = —,
'

e;,2, Fjf„and where the functions T, H, e, and p are given by

(i8a)

(18b)

e =1+(y+ 1) U

C

——()+1)()-3)(b,+ i) +01 U2

2 (18c)

p =1 —(@+1) +—(y+1)(3y —1)(b2+1) +0U 1 U 1

2 4 6 (18d)

The constant b2 in these expressions is given by

b2 =202 —1, (19)
where a2 is the coefficient of the quadratic nonlinearity in the Lagrangian, or the second-order moment of the function f
[see Eqs. (5) and (8)l. Note that our class of couplings naturally yields the THep expression without coupling to the
pseudoscalar field suggested by Ni [24] (see Coley [251 for another nonmetric formalism which does not fit into our
work). We can now compute, following Refs. [15], [21],and [7], the passive gravitational mass to inertial mass ratio of
a (neutral) test body in the external field (16). The result is
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)71p E, E„,= I+2b2(y+ I ) (y —I) —", +(3y+ I) 7 '

2)')II {.
' (2o)

W e have retained here only the dominant contributions,
and E, and E„, are the electrostatic and magnetostatic
self-energies of the body [we use the conventions of Eq.
(2. 118) of Ref'. [7]]. Inserting into this expression

!y—I!(2x 10 as required by solar system observa-
tions, the values of specific electrostatic and magnetostat-
ic energies given in Haugan and Will [16], and the Sun
potential Uo/c =9.8x lo, we arrive at

t7:lp

)HI
& AU

=- IO
Pl I Ai e

=+1.2x10 ' b~,
Al nl

(21)
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