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In previous work [L. Blanchet and A. Le Tiec, Phys. Rev. D 78, 024031 (2008)], a model of dark matter

and dark energy based on the concept of gravitational polarization was investigated. This model was

shown to recover the concordance cosmological scenario (�-cold dark matter) at cosmological scales, and

the phenomenology of the modified Newtonian dynamics at galactic scales. In this article we prove that

the model can be formulated with a simple and physically meaningful matter action in general relativity.

We also provide alternative derivations of the main results of the model, and some details on the variation

of the action.
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I. INTRODUCTION AND MOTIVATION

The concordance cosmological model �-cold dark mat-
ter (�-CDM) brilliantly accounts for the precise measure-
ments of the anisotropies in the cosmic microwave
background (CMB) [1], for the formation and growth of
large scale structure as seen in deep redshift [2] and weak
lensing [3] surveys, and for the fainting of the light curves
of very distant supernovae [4,5]. The paramount conclu-
sion is that the total mass-energy content of the Universe is
made by �b ’ 4% of ordinary (essentially baryonic) mat-
ter, �dm ’ 23% of cold dark matter (CDM), and �de ’
73% of dark energy which could be in the form of a
cosmological constant �. However, no experimental claim
of direct discovery of a CDM particle has been confirmed,
and the attempts at interpreting � in terms of fundamental
quantum mechanics have failed.

With the advent of high precision cosmic N-body simu-
lations (see [6] for a review), the cosmological model has
been extrapolated to the smaller scale of galactic systems,
and suggests the existence of a specific CDM density
profile around galaxies [7]. However, the simulated CDM
halos face severe challenges when compared to observa-
tions. Most problematic is the generic formation of cusps
of dark matter in the central regions of galaxies, while the
rotation curves seem to favor a constant density profile in
the core [8,9]. We mention also the prediction of numerous
but unseen satellites of large galaxies [10,11], and the
recent evidence [12] that tidal dwarf galaxies are domi-
nated by dark matter—a fact which is at odds with the
CDM tenets [13]. Furthermore, the most important chal-
lenge is that the CDM scenario falls short in explaining in a
natural way Milgrom’s law [14–16], namely, that the need
for dark matter arises only in regions where the typical

acceleration of ordinary matter (or, equivalently, the typi-
cal value of the gravitational field) is below some universal
constant acceleration scale a0 ’ 1:2� 10�10 m=s2. This
law manifests itself particularly in the flat rotation curves
of spiral galaxies, and in the baryonic Tully-Fisher relation.
No convincing mechanism for incorporating an accelera-
tion scale such as a0 in the N-body simulated CDM halos
has been found. Although it is possible that some of these
problems will be solved within the CDM approach [17,18],
it is very important to consider alternative solutions.
The most successful alternative approach to the problem

of dark matter in galactic halos is Milgrom’s modified
Newtonian dynamics (MOND) [14–16], which insists
that there is no dark matter and we instead witness a
violation of the Newtonian law of gravity. In MOND the
true gravitational field g experienced by ordinary matter
(stars and gas) differs from the Newtonian one, and obeys
the modified Poisson equation [19]

r � ð�gÞ ¼ �4��b: (1.1)

We use boldface notation to represent ordinary three-
dimensional vectors and pose G ¼ 1. Here �b is the den-
sity of baryonic matter, and � is the MOND function
which depends on the norm g ¼ jgj of the gravitational
field. In the regime of weak gravitational fields, g � a0,
we have �ðgÞ ¼ g=a0 þOðg2Þ, while �ðgÞ ! 1 when
g � a0, so as to recover the usual Poisson equation.
Various forms of the interpolating function � have been
proposed to fit observations in the best way [20,21].
The ability of the formula (1.1) to reproduce a wide

variety of phenomena associated with dark matter halos is
tremendous (see e.g. [22,23]). However, because (1.1) is
nonrelativistic, it does not allow one to answer questions
related to cosmology. In particular, it is a great challenge to
find a theory reproducing both MOND at galactic scales
and �-CDM at cosmological scales. A number of relativ-
istic field theories have been proposed, recovering (1.1) in
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the nonrelativistic limit, and sharing with MOND the idea
that dark matter is an apparent reflection of a fundamental
modification of gravity. The prime example of such modi-
fied gravity theories is the tensor-vector-scalar theory
(TeVeS) of Bekenstein and Sanders [24–26]. Interesting
connections between TeVeS and the class of Einstein-æther
theories [27] have been found [28–30]. Modified gravity
theories are rather complicated extensions of general rela-
tivity (GR) and are, for the moment, not connected to
fundamental physics. Moreover, they do not account for
all the mass discrepancy at the intermediate scale of galaxy
clusters [31]. To resolve this difficulty a component of hot
dark matter in the form of massive neutrinos has been
invoked [32,33]. At cosmological scales the modified grav-
ity theories also have some problems at reproducing the
observed CMB spectrum [34], even when using a compo-
nent of hot dark matter.

The approach we propose below is able to successfully
address both cosmological and galactic scales. We advo-
cate that a nonstandard form of dark matter may exist,
while keeping the standard law of gravity (GR) unchanged.
The physical belief of this alternative approach is the
striking analogy between MOND and the electrostatics of
(nonlinear isotropic) dielectric media [35]. Indeed, the
MOND equation (1.1) can be interpreted as the standard
Poisson equation if the gravitational field is sourced by
baryonic matter and by a ‘‘digravitational’’ medium play-
ing the role of dark matter. The density of ‘‘polarization
masses’’ in this medium is then �pol ¼ �r ��? (antici-

pating the notation adopted below), where�? denotes the
polarization field, which must be aligned with the local
gravitational field,

�? ¼ ��ðgÞ
4�

g: (1.2)

Here � � �� 1 denotes the ‘‘gravitational susceptibility’’
coefficient of the medium, while � can be viewed as a
‘‘digravitational’’ constant. It was argued [35] that in the
gravitational case the sign of � should be negative, in
agreement with what MOND predicts; indeed, we have
�< 1 in a straightforward interpolation between the
MOND and Newtonian regimes, hence �< 0. Further-
more, arguments were given showing that the stability of
the dipolar medium requires the existence of some
environment-dependent internal nongravitational force.
More precisely, the force has to depend on the polarization
field, i.e. the density of dipole moments.

Motivated by the previous interpretation of MOND, we
present in Sec. II an action principle for dark matter viewed
as the gravitational analogue of a polarizable dielectric
medium. In Sec. III, we show that this model is currently
viable since it is in agreement with the standard cosmo-
logical scenario at large scales and recovers MOND at
galactic scales. Some details regarding the variation of
the action are relagated to the Appendix.

II. MODEL OF DIPOLAR DARK MATTER AND
DARK ENERGY

In previous work [36] (hereafter paper I; see also [37] for
an earlier attempt) we proposed a relativistic model of dark
matter and dark energy based on a particular concept of
gravitational polarization. In contrast to modified gravity
theories, the model should be viewed as a modified matter
theory. The idea that the phenomenology of MOND could
arise from the CDM paradigm has been previously dis-
cussed [38,39]. However, here we shall consider a true
modification of the physics of dark matter, drastically
different from CDM (see also [40] for an alternative ap-
proach in a related spirit).
In paper I, we showed that this particular model of

modified dark matter permits recovering the phenomenol-
ogy of MOND in a natural way, while being in agreement
with the cosmological �-CDM model. The aim of this
article is to prove that the model can be reformulated
from a simple and physically meaningful matter action.
The dipolar medium is described as a fluid with mass

current J� ¼ �u� and endowed with a dipole moment
vector ��. Here u� ¼ dx�=d� is the timelike four-velocity

of the fluid, with d� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g��dx
�dx�

p
being the proper

time (we pose c ¼ 1). The rest mass density reads � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�J�J
�

p
, and the mass current is conserved, i.e.

r�J
� ¼ 0; (2.1)

where r� denotes the covariant derivative associated with

the metric g��. The dipole moment �� has the dimension

of a length, so that it is more like a displacement vector; the
associated polarization field then reads �� ¼ ���. We
have in mind that �� and �� are effective variables
resulting from an average performed at some macroscopic
scale.
The action of the dipolar dark matter is of the type S ¼R
d4x

ffiffiffiffiffiffiffi�g
p

L. It will be added to the Einstein-Hilbert action
for gravity and to the standard actions of all the other
matter fields (baryons, photons, neutrinos, etc.). We find
that the Lagrangian consists of three terms: a mass term �
in the ordinary sense (as for CDM), an interaction term
built from the coupling between the current J� and the
dipolar field ��, and a potential scalar function W char-
acterizing an internal force acting on the dipolar particles
and depending on the polarization field. It explicitely reads

L ¼ ��þ J� _�� �W ð�?Þ: (2.2)

Both J� and �� will be considered as dynamical variables,
to be varied independently when applying the principle of

stationary action (cf. the Appendix for details). Here _�� �
D��=d� ¼ u�r��

� denotes the proper time derivative of

the dipole moment. Note that _�� is coupled to the current
J�, like an external field would be. However, here the

dipole moment �� is an internal field. The potential W
is assumed to depend solely on the norm �? of the
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projection of the polarization field perpendicular to the

four-velocity. Thus, �? ¼ ��? where �? ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
?���

���
q

, with the usual orthogonal projector ?�� ¼
g�� þ u�u� (cf. Fig. 1). As discussed in Sec. I, the in-

troduction of such an environment-dependent potential is
motivated by the previous interpretation of the MOND
phenomenology resulting from the mechanism of gravita-
tional polarization.

A crucial point is that �� can be replaced in the coupling
term of (2.2) by its orthogonal projection �

�
? ¼ ?�

� ��

without changing the dynamics. Indeed, a short calculation

reveals that J� _�� ¼ J� _�
�
? þ r�ðJ�u���Þ, so that, be-

cause a pure divergence can be dropped from the
Lagrangian, the only physical degrees of freedom are the
three independent components of the vector �

�
?, which is

spacelike (we denote _�
�
? � D�

�
?=d�). This is to be con-

trasted with TeVeS and Einstein-æther theories which are
based on a fundamental timelike vector field.

To obtain the equation of motion of the dipolar fluid we
vary the action with respect to the dipole moment variable
��, and get

_u � ¼ �F � � ��̂
�
?W

0; (2.3)

where _u� � Du�=d� is the four-acceleration, �̂
�
? �

�
�
?=�? is the unit direction along �

�
?, and W 0 �

dW =d�?. The motion is nongeodesic because of the
internal force density F� caused by the dipole moment
��.
The variation with respect to J� yields the equation of

evolution for the dipole moment. The constraint that the
matter current is conserved, Eq. (2.1), is to be satisfied
during the variation, and we apply a convective variational
procedure (see Appendix). Defining for convenience the

‘‘linear momentum’’ �� � _�
�
? þ u�ð1þ 2�?W 0Þ, we

obtain

_�� ¼ 1

�
r�ðW ��?W 0Þ � ��

?R
�
��	u

�u	: (2.4)

This tells how the variation of the dipole moment should
differ from parallel transport along the fluid’s worldline.
The first term on the right-hand side (rhs) looks like a
pressure term, while the second term represents the ana-
logue of the standard coupling to Riemann curvature for
spinning particles in GR [41,42]. Finally, varying with
respect to the metric, we get the stress-energy tensor

T�� ¼ �ð�J�Þ � r�ð½��
?u

ð� � u��
ð�
? �u�ÞÞ

� g��ðW ��?W 0Þ: (2.5)

The rhs is made of a monopolar term associated with ��,
while the second term is (minus) the divergence of a
‘‘polarization’’ tensor and is of a dipolar nature. Being
proportional to the metric, the third term on the rhs will
be related to a fluid of dark energy. We have r�T

�� ¼ 0 as
a consequence of (2.3) and (2.4). We observe, in agreement
with our earlier argument at the level of the Lagrangian,
that all equations depend in fine only on the perpendicular
projection �

�
? ¼ ?�

� �� of the dipole moment.

The equations of motion (2.3) and evolution (2.4), and
the stress-energy tensor (2.5), turn out to be exactly the
same as in the model of paper I [see (2.20), (2.21), and
(2.24) there]. Those equations were derived starting from
the more complicated Lagrangian given by (2.7) in paper I,
and sharing some common features with the one for par-
ticles with spin moving in an arbitrary background [42].
Furthermore, they were obtained after imposing a particu-
lar choice of solution satisfying some consequence of the
initial equations (� ¼ 1 in the notation of paper I). Despite
this rather complicated way to derive them, it was found
that the equations provide the sensible physics for a suc-
cessful model of dark matter and dark energy. We have
now proved that the same equations derive directly (with-
out any further assumptions) from the remarkably simple
Lagrangian (2.2), which lends itself better to physical
interpretation.

FIG. 1 (color online). The dipolar fluid is entirely character-
ized by (i) its four-velocity u� tangent to the worldline x�ð�Þ,
(ii) its rest mass density �, and (iii) the dipole moment ��. The
polarization �? ¼ ��? is build from the norm �? of the
projection �

�
? of the dipole moment �� onto the spacelike

hypersurface �t orthogonal to u�.
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III. RECOVERING THE STANDARD
COSMOLOGICAL MODEL AND MOND

We now review the main consequences of this model,
presenting alternative versions of most arguments com-
pared to paper I. To achieve agreement with MOND and
with �-CDM (to first-order cosmological perturbations),
we have to fine-tune the potentialW in the action. Indeed,
we find thatW is ‘‘phenomenologically’’ determined up to
third order in an expansion when the polarization field�?
tends to zero. Physically, this corresponds to �? � a0,
which in turn will mean that gravity is weak, g � a0, like
in the outskirts of a galaxy or in a nearly homogeneous and
isotropic cosmology. In this regime W takes the anhar-
monic form

W ð�?Þ ¼ �

8�
þ 2��2

? þ 16�2

3a0
�3

? þOð�4
?Þ: (3.1)

The minimum is directly related to the cosmological con-
stant�, and the deviations from that minimum are fixed by
the agreement with MOND; in particular a0 parametrizes
the third-order deviation (see Fig. 2).

Let us assume, following paper I, that the theory de-
pends only on one new fundamental scale—the constant
MOND acceleration a0. When entering the MOND re-
gime,�?=a0 is of order one; thereforeW naturally scales
with a20. If W is to come from some fundamental theory,

we expect that the dimensionless coefficients in the expan-
sion (3.1) after global rescaling by a20 should be of the order
of one. In particular, � should itself be of the order of a20.
As is well known [43], the current astrophysical measure-

ments verify the ‘‘cosmic coincidence’’ that �� a20. This
is a natural consequence of our model.

A. First-order cosmological perturbations

We now turn to the application at early cosmological
time, where we consider a linear perturbation around
an homogeneous and isotropic Friedman-Lemaı̂tre-
Robertson-Walker universe. Since the dipole moment ��

?
is spacelike, it will break the spatial isotropy of the
Friedman-Lemaı̂tre-Robertson-Walker background, and
must necessarily belong to the first-order perturbation,
which we indicate by ��

? ¼ Oð1Þ. For instance, from

(3.1) we find that the internal force is also of first order,
F � ¼ 4���

? þOð2Þ. At that order, the stress-energy

tensor (2.5) simplifies very much and can be decomposed
into dark energy and dark matter components, namely,
T�� ¼ T

��
de þ T

��
dm , where the dark energy is simply given

by the cosmological constant, T��
de ¼ � �

8� g
�� þOð2Þ,

while the dark matter reads

T
��
dm ¼ �~u�~u� þOð2Þ: (3.2)

Here � � ��r��
�
? is the energy density of the dark

matter fluid, and ~u� ¼ u� þ _�
�
? � ��

?r�u
� (i.e. ~u� ¼

u� �L�?u
�, where L�? is the Lie derivative) is an effec-

tive four-velocity field, which satisfies ~u�~u
� ¼

�1þOð2Þ and the approximate conservation law
r�ð�~u�Þ ¼ Oð2Þ. This shows that, at linear order, the

dark matter cannot be distinguished from a pressureless
perfect fluid; in particular, the fluid’s motion is geodesic,
~u�r�~u

� ¼ Oð2Þ. Therefore, the model makes the same
predictions as the �-CDM cosmological model at linear
order (see paper I for more details). In particular, adjusting
the background value of � (namely �� such that � ¼ ��þ
Oð1Þ; notice that �� ¼ ��) to the measured value of dark
matter today, �dm ’ 0:23, and choosing � in such a way
that the dark energy contribution is �de ’ 0:73, we are in
agreement with the observed fluctuations of the CMB. To
be more precise, the linearized perturbation equations,
given by (3.48) and (3.49) in paper I, are identical with
those of �-CDM with no additional degrees of freedom,
since the dipole moment has been absorbed at linear order
into the effective vector field ~u� and mass density �.
Therefore, the model reproduces both the location and
the height of the peaks of the CMB.
At nonlinear order in cosmological perturbations, the

model should differ from the standard �-CDM scenario.
The fluid’s dynamics will no longer be geodesic. We expect
that the formation of large scale structures will be triggered
not by the monopolar part � of dark matter, which should
not cluster much (see below), but by the dipolar component
present in � ¼ ��r��

�
?. This should be checked per-

forming numerical simulations in cosmology.

FIG. 2 (color online). The potential W is function of the
polarization field �?. It has an anharmonic behavior in the
MOND regime �? � a0, and its minimum is given by the
cosmological constant �. The leading order nonharmonicity
is parametrized by the MOND acceleration scale a0 [cf.
Eq. (3.1)]. The Newtonian regime �? � a0 is discussed in
details in paper I.
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B. Nonrelativistic limit

Next we investigate the dipolar medium around a typical
galaxy at low redshift. For this purpose it is sufficient to
consider the nonrelativistic (NR) limit of the model, when
c ! þ1. Working at the level of the Lagrangian (2.2), we
find that L ¼ ffiffiffiffiffiffiffi�g

p
L reduces in this limit to

L NR ¼ �?

�
v2

2
þUþ g � �? þ v � d�?

dt

�
�W ð�?Þ:

(3.3)

Here v is the fluid’s ordinary velocity, �? is the dipole
moment vector, and g ¼ rU is the Newtonian gravita-
tional field with U the gravitational potential. The rest
mass density �? satisfies the usual continuity equation
@t�? þ r � J? ¼ 0, where the current reads J? ¼ �?v.
We denote by d=dt ¼ @t þ v � r the convective time de-
rivative, so that e.g. d�?=dt ¼ ��?r � v. We discarded
for convenience the rest mass term (� �?) in the NR

Lagrangian (3.3). From the coupling term J� _�� in the

Lagrangian (2.2), we recover in the NR limit (3.3) the
gravitational analogue g ��? of the coupling of the po-
larization field to an external electric field. Notice also the
extra term J? � d�?=dt in (3.3), which arises in the gravi-
tational case.

The NR equations of motion and evolution are obtained
by varying the Lagrangian (3.3) with respect to � and �0

(note that �? ¼ � � v�0), and J?. We get

dv

dt
¼ g�F ; (3.4)

d2�?
dt2

¼ F þ 1

�?

rðW ��?W 0Þ þ ð�? � rÞg; (3.5)

in agreement with the NR limits of (2.3) and (2.4). The
gravitational equation follows from adding to (3.3) the
Newtonian Lagrangian LU ¼ � 1

8�rU � rU (coming

from the NR limit of the Einstein-Hilbert action in GR)
and the contribution of baryons. Varying with respect to U
gives

r � ðg� 4��?Þ ¼ �4�ð�b þ �?Þ: (3.6)

We proposed in paper I a mechanism by which the
dipolar medium does not cluster as much as baryonic
matter during the cosmological evolution. This is sup-
ported by an exact solution of (3.4), (3.5), and (3.6), valid
in spherical symmetry, where the dipolar fluid has zero
velocity, v ¼ 0, and a constant mass density �? (see
Appendix A in paper I). The dipole moments remain at
rest because the gravitational field g is balanced by the
internal force F . From this we inferred the hypothesis of
‘‘weak-clustering’’, namely, that the typical mass density
of dipole moments in a galaxy (after cosmological evolu-
tion) is much less than the baryonic density, �? � �b, and
perhaps of the order of the mean cosmological value,�? �

��?. Furthermore the dipolar medium is essentially static,
v ’ 0. If this hypothesis is true, we have g ’ F by (3.4), so
the polarization field �? is aligned with the gravitational

field g; i.e. the medium is polarized. Using F ¼ �̂?W 0
together with the expression of the potential (3.1), we get

g ’ 4��?
�
1þ 4�

�?
a0

�
þOð�3

?Þ: (3.7)

Hence the gravitational susceptibility coefficient � ¼ ��
1 defined by (1.2) takes the appropriate form in the MOND
regime, namely �ðgÞ ’ �1þ g=a0 þOðg2Þ. We conclude
that (3.6) is equivalent to the MOND equation (1.1). (See
paper I for a discussion of the Newtonian regime g � a0.)
Note that it is crucial that we could neglect the monopolar
part �? of the dipolar medium as compared to �b, so that
galaxies appear baryonic in MOND fits of the rotation
curves. On the other hand, the monopolar dark matter �?

as we have seen plays the dominant role in a cosmological
context. It may also help explaining the missing dark
matter at the intermediate scale of galaxy clusters [31].
The weak-clustering mechanism also tells us that the

evolution of the dipole moments should be slow. In spheri-
cal symmetry, the two last terms of (3.5) cancel each other,
and we get @2t�? ¼ 4��?�? in the MOND regime. This
shows the presence of an instability, with exponentially
growing modes. However, the unstable modes will develop

on the self-gravitating time scale �g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�?

p
, which is

very long thanks to �? � �b. Using the mean cosmologi-
cal value ��? ’ 10�26 kg=m3 we get �g ’ 6� 1010 yr.

Thus this instability is not a problem classically.

IV. CONCLUSION

In conclusion, the model (i) explains the phenomenol-
ogy of MOND by the physical process of gravitational
polarization, (ii) makes a unification between the dark
matter à la MOND and the dark energy in the form of a
cosmological constant (with the interesting outcome that
�� a20), and (iii) recovers the successful standard cosmo-

logical model �-CDM at linear perturbation order.
However, the model lacks some connection to microscopic
physics and describes the dipole moments in an effective
way; notably the potential W in (3.1) is for the moment
purely phenomenological. The model should be further
tested in cosmology, by studying second-order cosmologi-
cal perturbations where we expect a departure from
�-CDM, by computing numerically the nonlinear growth
of perturbations and formation of large scale structures,
and by investigating the intermediate scale of galaxy
clusters.

APPENDIX: VARIATION OF THE ACTION
FUNCTIONAL

Here we provide some details on the derivation of the
equations of motion and evolution of the dipolar fluid.
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They derive from an action of the general form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
L½J�; ��; g���; (A1)

where as indicated the Lagrangian density L is a functional
of the matter current J�, the dipole moment �� (and its
covariant derivative r��

�), and the covariant metric g��.

We vary first the action with respect to the dipole mo-
ment ��. Notice that in our Lagrangian (2.2) the depen-
dence on r��

� is only through the covariant time

derivative _��. In that case, denoting the conjugate momen-

tum of the dipole by �� � @L=@ _��, we obtain from the

principle of stationary action

_� � þ��� ¼ @L

@�� ; (A2)

with� � r�u
�. Since the vector field �� is unconstrained,

this equation is equivalent to the standard Lagrange equa-
tion

r�

�
@L

@r��
�

�
¼ @L

@�� : (A3)

In the case at hand of the Lagrangian (2.2), we then obtain
the equation of motion of the dipolar fluid as given by (2.3).

However, the variation with respect to the current J� is
trickier because of the constraint that this current is con-
served: r�J

� ¼ 0. We adopt a convective variational ap-

proach [44–46] in which the variation 
J� is constrained to
have the form which is precisely induced by an infinitesi-
mal displacement of the flow lines of J�. Denoting 
x� the
generator of the displacement of the flow lines we have


J� ¼ 
x�r�J
� � J�r�
x

� þ J�r�
x
�; (A4)

which is automatically divergenceless: r�
J
� ¼ 0. The

variation of the action with respect to J�, using the fact that

x� is unconstrained, then yields

J�½r�p� �r�p�� ¼ 0; (A5)

with p� � @L=@J� being the momentum associated with

the current. In the case of a perfect fluid this equation is
equivalent to the usual Euler equation, where p� in that

case is the current of enthalpy [47,48]. For the Lagrangian
(2.2), Eq. (A5) yields the equation of evolution of the
dipolar fluid in the form (2.4).
Finally, the stress-energy tensor is derived by variation

of the Lagrangian with respect to the metric. We take into
account the dependence of the current J� on the metric
through the volume element

ffiffiffiffiffiffiffi�g
p

d4x, which means that

the so-called ‘‘coordinate’’ current density J�	 ¼ ffiffiffiffiffiffiffi�g
p

J�

is the relevant metric-independent variable. In addition, we
treat the change in the metric that is hidden into the

covariant time derivative _�� by means of the Palatini
formula. The result is

T�� ¼ 2
@L

@g��

þ g��ðL� J�p�Þ þ u�u� _����

þr�ðuð���Þ�� � u��ð���Þ � ��uð���ÞÞ:
(A6)

(Notice the misprint in the first dipolar term in the corre-
sponding equation (2.22) of [36].) Straightforward calcu-
lations in the case of the Lagrangian density (2.2) give the
explicit expression (2.5).
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