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A model of dark matter and dark energy based on the concept of gravitational polarization is

investigated. We propose an action in standard general relativity for describing, at some effective or

phenomenological level, the dynamics of a dipolar medium, i.e. one endowed with a dipole moment

vector, and polarizable in a gravitational field. Using first-order cosmological perturbations, we show that

the dipolar fluid is undistinguishable from standard dark energy (a cosmological constant�) plus standard

dark matter (a pressureless perfect fluid), and therefore benefits from the successes of the �–cold-dark-

matter scenario at cosmological scales. Invoking an argument of ‘‘weak clusterization’’ of the mass

distribution of dipole moments, we find that the dipolar dark matter reproduces the phenomenology of the

modified Newtonian dynamics at galactic scales. The dipolar medium action naturally contains a

cosmological constant, and we show that if the model is to come from some fundamental underlying

physics, the cosmological constant � should be of the order of a20=c
4, where a0 denotes the modified

Newtonian dynamics constant acceleration scale, in good agreement with observations.

DOI: 10.1103/PhysRevD.78.024031 PACS numbers: 04.20.�q, 95.30.Sf, 95.35.+d

I. INTRODUCTION

In the current concordance model of cosmology (the �
–cold-dark-matter (CDM) scenario; see e.g. [1]) based on
Einstein’s general relativity (GR), the mass-energy content
of the Universe is made of roughly 4% baryons, 23%
CDM, and 73% dark energy in the form of a cosmological
constant �. The dark matter accounts for the well-known
discrepancy between the mass of a typical cluster of gal-
axies as deduced from its luminosity, and the Newtonian
dynamical mass [2]. The model has so far been very
successful in reproducing the observed cosmic microwave
background (CMB) spectrum [3] and explaining the dis-
tribution of baryonic matter from galaxy cluster scales up
to cosmological scales by the nonlinear growth of initial
perturbations [4]. Although the exact nature of the hypo-
thetical dark matter particle remains unknown, supersym-
metric extensions of the standard model of particle physics
predict well-motivated candidates (see [5] for a review).
Simulations suggest some universal dark matter density
profile around galaxies [6]. However, in that respect, the
CDM hypothesis has some difficulties [7,8] at explaining
in a natural way the distribution and properties of dark
matter at galactic scales.

The modified Newtonian dynamics (MOND) was pro-
posed by Milgrom [9–11] to account for the basic phe-
nomenology of dark matter in galactic halos, as evidenced
by the flat rotation curves of galaxies, and the Tully-Fisher
relation [12] between the observed luminosity and the
asymptotic rotation velocity of spiral galaxies. However,
if MOND serves very well for these purposes (and some

others also [8]), we know that MOND does not fully
account for the inferred dark matter at the intermediate
scale of clusters of galaxies [13–15]. In addition, MOND
cannot be considered as a viable physical model, but only
as an ad-hoc—though extremely useful—phenomenologi-
cal ‘‘recipe.’’ In the usual interpretation, MOND is viewed
(see [16] for a review) as a modification of the fundamental
law of gravity or the fundamental law of dynamics, without
the need for dark matter. The relativistic extensions of
MOND, of which the tensor-vector-scalar (TeVeS) theory
[14,17,18] is the prime example, share this view of mod-
ifying the gravity sector, by postulating some supplemen-
tary fields associated with the gravitational force, in
addition to the metric tensor field of GR (see [19] for a
review). Recently, such modified gravity theories have
evolved toward Einstein-æther-like theories [20–24].
Each of these alternatives has proved to be very success-

ful in complementary domains of validity: the cosmologi-
cal scale (and cluster scale) for the CDM paradigm and the
galactic scale for MOND. It is frustrating that two success-
ful models seem to be fundamentally incompatible. In the
present paper we shall propose a third approach, which has
the potential of bringing together the main aspects of both
�-CDM andMOND in a single relativistic model. Namely,
we keep the standard law of gravity, i.e. GR and its
Newtonian limit, but we add to the distribution of ordinary
matter some specific nonstandard form of dark matter
(described by a relativistic action in usual GR) in such a
way as to naturally explain the phenomenology of MOND
at galactic scales. Furthermore, we prove that this form of
dark matter leads to the same predictions as for the
�-CDM cosmological scenario at large scales. In particu-
lar, we find that the relativistic action for this matter model
naturally contains the dark energy in the form of a cosmo-
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logical constant �. Thus, our model will benefit from both
the successes of the �-CDM scenario, and the MOND
phenomenology.

The model will be based on the observation [25,26] that
the phenomenology of MOND can be naturally interpreted
by an effect of ‘‘gravitational polarization’’ of some dipo-
lar medium constituting the dark matter. The effect can be
essentially viewed (in a Newtonian-like interpretation
[25]) as the gravitational analogue of the electric polariza-
tion of a dielectric material, whose atoms can be modeled
by electric dipoles, in an applied electric field [27]. In the
quasi-Newtonian model of [25] the gravitational polariza-
tion follows from a microscopic description of the dipole
moments in analogy with electrostatics. It was shown that
the gravitational dipole moments require the existence of
some internal nongravitational force to stabilize them in a
gravitational field. Thanks to this internal force, an equi-
librium state for the dipolar particle is possible, in which
the dipole moment is aligned with the gravitational field
and the medium is polarized. The MOND equation follows
from that equilibrium configuration. However the model
[25] cannot be considered as viable because it is nonrela-
tivistic (NR), and involves negative gravitational-type
masses (or gravitational charges) and, consecutively, a
violation of the equivalence principle at a fundamental
level.

In a second model [26] we showed that it is possible to
describe dipolar particles consistently with the equivalence
principle by an action principle in standard GR. The action
depends on the particle’s position in space-time (as for an
ordinary particle action) and also on a four-vector dipole
moment carried by the particle. The particle’s position and
the dipole moment are considered to be two dynamical
variables to be varied independently in the action.
Furthermore, a force internal to the dipolar particle was
introduced in the form of a scalar potential function (say V)
in this action. The potential V depends on some adequately
defined norm of the dipole moment vector. Because of that
force, the particle is not a ‘‘test’’ particle and its motion in
space-time is nongeodesic. The nonrelativistic limit of the
relativistic model [26] was found to be different from the
quasi-Newtonian model [25] (hence the two models are
distinct), but it was possible under some hypothesis to
recover the same equilibrium state yielding the MOND
equation as in [25]. However, the relativistic model [26], if
considered as a model for dark matter, has some draw-
backs—notably, the mechanism of alignment of the dipole
moment with the gravitational field is unclear (so the
precise link with MOND is questionable), and the dynam-
ics of the dipolar particles in the special case of spherical
symmetry does not seem to be very physical.

In the present paper, we shall propose a third model
which will be based on an action similar to that of the
relativistic model [26] but with some crucial modifications.
First we shall add, with respect to [26], an ordinary mass

term in the action to represent the (inertial or passive
gravitational) mass of the dipolar particles. Second, the
main improvement we shall make is to assume that the
internal force derives from a potential function in the
action (call it W ) which depends not on the dipole mo-
ment itself as in [26] but on the local density of dipole
moments, i.e. the polarization field. In this new approach
we are thus assuming that the motion of the dipolar parti-
cles is influenced by the density of the surrounding me-
dium. This is analogous to the description of a plasma in
electromagnetism in which the internal force, responsible
for the plasma oscillations, depends on the density of the
plasma (cf. the expression of the plasma frequency [27]).1

Because the action [given by (2.2) with (2.7) below] will
now depend on the density of the medium, it becomes more
advantageous to write it as a fluid action rather than as a
particle action.
This simple modification of the model, in which the

potential W depends on the polarization field, will have
important consequences. First of all, the relation with the
phenomenology of MOND will become clear and straight-
forward. Second, we shall find that the motion of dipolar
particles in the central field of a spherical mass (in the
nonrelativistic limit) now makes sense physically. The
drawbacks of the previous model [26] are thus cured.
Last but not least, we shall find that the model naturally
involves a cosmological constant. Then, with the equations
of motion and evolution (and stress-energy tensor) derived
from the action, we show the following:
(1) The dipolar fluid is undistinguishable from standard

dark energy (a cosmological constant) plus standard
CDM (say a pressureless perfect fluid) at cosmo-
logical scales, i.e. at the level of first-order cosmo-
logical perturbations.2 The model is thus consistent
with the observations of the CMB fluctuations.
However, the model should differ from �-CDM at
the level of second-order cosmological
perturbations.

(2) The MOND phenomenology of the flat rotation
curves of galaxies and the Tully-Fisher relation is
recovered at galactic scales (for a galaxy at low
redshift) from the effect of gravitational polariza-
tion. There is a one-to-one correspondence between
the MOND function (say � ¼ 1þ �) and the po-
tential function W introduced in the action.

(3) The minimum of the potential function W is a
cosmological constant �. We find that if W is to

1In the quasi-Newtonian model [25] the dipolar medium was
formulated as the gravitational analogue of a plasma, oscillating
at its natural plasma frequency.

2Note, however, that while in the standard scenario the CDM
particle is, say, a well-motivated supersymmetric particle (per-
haps to be discovered at the LHC in CERN), in our case the
fundamental nature of the ‘‘dipolar particle’’ will remain
unknown.
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be considered as ‘‘fundamental,’’ i.e. coming from
some fundamental underlying theory (presumably a
quantum field theory), the cosmological constant
should be numerically of the order of a20=c

4, where

a0 denotes the MOND constant acceleration scale.
A relation of the type �� a20=c

4 between a cosmological

observable � and a parameter a0 measured from observa-
tions at galactic scales is quite remarkable and is in good
agreement with observations. More precisely, if we define
the natural acceleration scale associated with the cosmo-
logical constant,

a� ¼ c2

2�

ffiffiffiffi
�

3

s
; (1.1)

then the current astrophysical measurements yield a0 ’
1:3a�. The related numerical coincidence a0 � cH0 was
pointed out very early on by Milgrom [9–11]. The near
agreement between a0 and a� has a natural explanation
within our model, although the exact numerical coefficient
between the two acceleration scales cannot be determined
presently.

Since the present model will not be connected to any
(quantum) fundamental theory, it should be regarded
merely as an ‘‘effective’’ or even ‘‘phenomenological’’
model. We shall even argue (though this remains open)
that it may apply only at large scales, from the galactic
scale up to cosmological scales, and not at smaller scales
like in the Solar System. However, this model offers a nice
unification between the dark energy in the form of � and
the dark matter in the form of MOND (both effects of dark
energy and dark matter occurring when gravity is weak).
Furthermore, it reconciles in some sense the observations
of dark matter on cosmological scales, where the evidence
is for the standard CDM, and on galactic scales, which is
the realm of MOND. It would be interesting to study the
intermediate scale of clusters of galaxies and to see if the
model is consistent with observations. Such a study should
probably be performed using numerical methods.

The plan of this paper is as follows. In Sec. II we present
the action principle for the dipolar medium, and we vary
the action to obtain the equation of motion, the equation of
evolution, and the stress-energy tensor. In Sec. III we apply
first-order cosmological perturbations (on a homogeneous
and isotropic background) to prove that the dipolar fluid
reproduces all the features of the standard dark matter
paradigm at cosmological scales. We investigate the non-
relativistic limit of the model in Sec. IV, and show that,
under some hypothesis, the polarization of the dipolar dark
matter in the gravitational field of a galaxy results in an
apparent modification of the law of gravity in agreement
with the MOND paradigm. Section V summarizes and
concludes the paper. The dynamics of the dipolar dark
matter in the central gravitational field of a spherically
symmetric mass distribution is investigated in the
Appendix.

II. DIPOLAR FLUID IN GENERAL RELATIVITY

A. Action principle

Our model will be based on a specific action functional
for the dipolar fluid in standard GR. This fluid is described
by the four-vector current density J� ¼ �u�, where u� is
the four-velocity of the fluid, normalized to g��u

�u� ¼
�1, and where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g��J

�J�
p

represents its rest-mass

density.3 In this paper we shall conveniently rescale most
of the variables used in [26] by a factor of 2m, where m is
the mass parameter introduced in the action of [26]. Hence
we have� ¼ 2mn, where n is the number density of dipole
moments in the notation of [26]. The above current vector
is conserved in the sense that

r�J
� ¼ 0; (2.1)

where r� denotes the covariant derivative associated with

the metric g��. Our fundamental assumption is that the

dipolar fluid is endowed with a dipole moment vector field
�� which will be considered as a dynamical variable. We
have �� ¼ ��=2m where �� is the dipole moment vari-
able used in [26] (hence �� has the dimension of a length).
Adopting a fluid description of the dipolar matter rather

than a particle formulation as in [26],4 we postulate that the
dynamics of the dipolar fluid in a prescribed gravitational
field g�� is derived from an action of the type

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
L½J�; ��; _��; g���; (2.2)

where g ¼ detðg��Þ, the integration being performed over

the entire 4-dimensional manifold. This action is to be
added to the Einstein-Hilbert action for gravity, and to
the actions of all the other matter fields. The Lagrangian
L depends on the current density J�, the dipole moment

vector ��, and its covariant derivative _�� with respect to

the proper time � (such that d� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g��dx
�dx�

p
), which

is defined using a fluid formulation by

_�� � D��

d�
� u�r��

�; (2.3)

and where D=d� is denoted by an overdot. In addition, the
Lagrangian depends explicitly on the metric g�� which

serves to lower and raise indices, so that, for instance,
_�� ¼ g��

_��.

3Greek indices take the space-time values �; �; . . . ¼ 0; 1; 2; 3
and Latin ones range on spatial values i; j; . . . ¼ 1; 2; 3. The
metric signature is ð�;þ;þ;þÞ. The convention for the
Riemann curvature tensor R�

��� is the same as in [28].
Symmetrization of indices is ð��Þ � 1

2 ð��þ ��Þ and ðijÞ �
1
2 ðijþ jiÞ. In Secs. II and III we make use of geometrical units
G ¼ c ¼ 1.

4The fluid action is obtained from the particle one by the
formal prescription

P R
d� ! R

d4x
ffiffiffiffiffiffiffi�g

p
n, where the sum runs

over all the particles, and n is the number density of the fluid.
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We shall consider an action for the dipolar medium
similar to the one proposed in [26], with, however, a crucial
generalization in that the potential function therein, which
is supposed to describe a nongravitational force internal to
the dipole moment, will be allowed to depend not only on
the dipole moment variable ��, but also on the rest-mass
density of the dipolar fluid �. More precisely, we shall
assume that the potential functionW in the action depends
on the dipole moment �� only through the polarization,
namely, the number density of dipole moments, that is
defined by

�� ¼ ���; (2.4)

or equivalently �� ¼ n�� in the notation of [26]. The
dynamics of dipolar particles will therefore be influenced
by the local density of the medium, in analogy with the
physics of a plasma in which the force responsible for the
plasma oscillations depends on the density of the plasma
[27]. Our assumption is that W is a function solely of the
norm �? of the projection of the polarization field (2.4)
perpendicular to the velocity, namely,

�? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g���

�
?�

�
?

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
?�� ����

q
: (2.5)

Here, the orthogonal projection of the polarization vector
reads ��

? ¼?�
� ��, with the associated projector defined

by ?��� g�� þ u�u�. Similarly, we can define �
�
? ¼?�

�

�� and its norm �? so that the (scalar) polarization field
reads

�? ¼ ��?: (2.6)

The chosen dependence of the internal potential on �?
will result in important differences and improvements with
respect to the model of [26].

Our proposal for the Lagrangian of the dipolar fluid is

L ¼ �

�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� � _��Þðu� � _��Þ

q
þ 1

2
_��

_��

�

�W ð�?Þ; (2.7)

where the two dynamical fields are the conserved current
vector J� ¼ �u� and the dipole moment vector ��. The
fourth term is our fundamental potential which should, in
principle, result from a more fundamental theory valid at
some microscopic level. The third term in (2.7) is the same
as in the previous model [26] and clearly represents a
kineticlike term for the evolution of the dipole moment
vector. This term will tell how this evolution should differ
from parallel transport along the fluid lines. The second
term in (2.7) (also the same as in [26]) is made of the norm
of a spacelike vector and is inspired by the known action
for the dynamics of particles with spin moving in a back-
ground gravitational field [29]. The motivation for postu-
lating this term is that a dipole moment can be seen as the
‘‘lever arm’’ of the spin considered as a classical angular
momentum (see a discussion in [26]).

Finally, we comment on the first term in (2.7) which is a
mass term in an ordinary sense. The dipolar fluid we are
considering will not be purely dipolar (or mostly dipolar)
as in the previous model [26] but will involve a monopolar
contribution as well. Here we shall thus have some dark
matter in the ordinary sense. The mass term in (2.7) has
been included for cosmological considerations, so that we
recover the ordinary dark matter component at large scales
(see Sec. III). However, one can argue that the presence of
such a mass term � is not fine-tuned. Indeed, this term
corresponds to the simplest and most natural assumption
that the relative contributions of this mass density and the
second and third terms in (2.7) are comparable. In addition,
we notice that � ¼ 2mn corresponds to the inertial mass
density of the dipole particles in the quasi-Newtonian
model [25], so it is natural by analogy with this model to
include that mass contribution in the action. Notice how-
ever that, even if the dipolar fluid is endowed with a mass
density in an ordinary sense, its dynamics is well defined
only when the dipole moment is nonzero. Indeed, we
observe that the Lagrangian (2.7) becomes ill defined
when �� ¼ 0 since the second term in (2.7) is imaginary.

B. Equations of motion and evolution

In order to obtain the equations governing the dynamics
of the dipolar fluid, we vary the action (2.2) [with the
explicit choice of the Lagrangian (2.7)] with respect to
the dynamical variables �� and J�. The calculation is
very similar to the one performed in [26], but because of
the different notation adopted here for rescaled variables
(e.g. �� ¼ ��=2m), and especially because of the more
general form of the potential function, we present all de-
tails of the derivation. Varying first with respect to the
dipole moment variable ��, the resulting Euler-Lagrange
equation reads, in general terms,5

D

d�

�
@L

@ _��

�
þr�u

� @L

@ _��
¼ @L

@�� ; (2.8)

in which the partial derivatives of the Lagrangian in (2.2)

are applied considering the four variables ��, _��, J�, and
g�� as independent. For the specific case of the Lagrangian

(2.7), we get what shall be interpreted as the equation of
motion of the dipolar fluid in the form

_K � ¼ �F �; (2.9)

5We write the Euler-Lagrange equation in this particle-looking
form to emphasize the fact that the action (2.7) is a particle (or
fluid) action. Of course, this equation is equivalent to the usual
field equation

r�

�
@L

@r��
�

�
¼ @L

@�� :
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in which the left-hand side (LHS) is the proper time
derivative of the linear momentum6

K� ¼ _�� þ k�: (2.10)

Here, we introduced, like in [26], a special notation for a
four-vector k� which is spacelike, whose norm is normal-
ized to k�k� ¼ 1, and which reads

k� ¼ u� � _��

�
with � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� 2u� _�� þ _��

_��
q

:

(2.11)

The spacelike four-vector k� will not represent the linear
momentum (per unit mass) of the particle—that role will
be taken by K� which, as we shall see, will normally be
timelike; see (2.20a) below. The quantity � has an impor-
tant status in the present formalism because it represents
the second term in the Lagrangian (2.7), and we shall be
able to set it to 1 in Sec. II C as a particular way of selecting
some physically interesting solution. On the right-hand
side (RHS) of (2.9), the force per unit mass acting on a
dipolar fluid element is given by

F � ¼ �̂�
?W�? ; (2.12)

in which we denote the unit direction of the polarization

vector by �̂
�
? � �

�
?=�? ¼ �

�
?=�? and the ordinary de-

rivative of the potential W by W�? � dW =d�?. The
‘‘internal’’ force (2.12) being proportional to the spacelike
four-vector ��

? ¼?�
� ��, we immediately get the con-

straint

u�F � ¼ 0: (2.13)

We now turn to the variation of the action with respect to
the conserved current J� ¼ �u� (hence we deduce � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�J�J

�
p

and u� ¼ J�=�). The general form of the
Lagrange equation for the conserved current density reads
(see e.g. [30])7

D

d�

�
@L

@J�

�
¼ u�r�

�
@L

@J�

�
: (2.14)

For the case of the Lagrangian (2.7) at hand, we get the
following equation, later to be interpreted as the evolution
equation for the dipole moment,

_� � ¼ 1

�
r�ðW ��?W�?Þ � R�

��	u
���K	:

(2.15)

A new type of linear momentum ��—having the same
meaning as in [26]—has been introduced and defined by

�� ¼ !� � k� with

!� ¼ u�ð1þ 1
2
_��

_�� þ �?W�?Þ � u��
�F �:

(2.16)

The Riemann curvature term in the RHS of (2.15) repre-
sents the analogue of the coupling to curvature in the
Papapetrou equations of motion of particles with spin in
an arbitrary background [31]. The complete dynamics and
evolution of the dipolar fluid is now encoded into the
equations (2.9) and (2.15). Such equations constitute the
appropriate generalization for the case of a density-
dependent potential W , and in the fluid formulation, of
similar results in [26].
Notice that by contracting (2.15) with J�, the second

term in the RHS of (2.15) cancels because of the symme-
tries of the Riemann tensor, and we get

J� _�� ¼ D

d�
ðW ��?W�?Þ: (2.17)

One can readily check that this constraint (2.17) can alter-
natively be derived from the other equation (2.9) together
with the definition of �� in (2.16). On the other hand,
contracting (2.9) with u� yields u� _K� ¼ 0, which accord-

ing to the definition of K�, leads to the other constraint

u�
D

d�
½ð�� 1Þk�� ¼ 0: (2.18)

This constraint can be viewed as a differential equation for
the variable �.

C. Particular solution of the equations

Following [26], we shall solve the constraint (2.18) with
the most obvious and natural choice of solution,

� ¼ 1: (2.19)

We shall see that this choice greatly simplifies the other
equations we have. In particular, we are going to prove that
the equations of motion (2.9) and equations of evolution
(2.15), when reduced by the condition � ¼ 1, finally de-
pend only on the spacelike component of the dipole mo-
ment that is orthogonal to the velocity, namely, ��

?, so that
the timelike component along the velocity, i.e. u��

�, will
have no physically observable consequences (actually, in
that case this unphysical component turns out to be com-
plex [26]).

6The present notation is related to the one used in [26] by
K� ¼ P�=2m, k� ¼ p�=2m, F � ¼ F�=m (and �� ¼
��=2m). The quantity called � in [26] is now denoted � in
order to avoid confusion with the cosmological constant.

7This can alternatively be written with ordinary partial deriva-
tives as

u�
�
@�

�
@L

@J�

�
� @�

�
@L

@J�

��
¼ 0:
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The structure of the subsequent equations and the physi-
cal properties of the model will heavily rely on the condi-
tion� ¼ 1. Note that we could regard this condition not as
a choice of solution but rather as a choice of theory. Indeed,
we are going to pick up the simplest theory out of a whole
set of theories in which � could have some nontrivial
proper time evolution obeying (2.18). Actually, we can
view the choice � ¼ 1 as an elegant way to impose into
the Lagrangian formalism the condition that in fine the
only physical component of the dipole moment should be
�
�
?, namely, the one perpendicular to the four-velocity

field. We can imagine that it would be possible to impose
the same physical condition in a different way, for instance
by using Lagrange multipliers in the initial action. For
example, in TeVeS [14,17,18] or in Einstein-æther gravity
[20–24], a dynamical timelike vector field whose norm is
unity is introduced by this means. However, the present
situation is different because our final physical vector ��

? is

spacelike.
When the condition (2.19) holds, the two linear mo-

menta (2.10) and (2.16) simplify appreciably and we obtain

K� ¼ u�; (2.20a)

�� ¼ u�ð1þ �?W�?Þþ ?�
�

_��
?: (2.20b)

We see that the linear momentum K� is finally timelike.
These expressions depend only on the orthogonal compo-

nent ��
?, and we denote _��

? � D��
?=d�. The equations of

motion and evolution now take the simple forms

_u� ¼ �F � ¼ ��̂�
?W�? ; (2.21a)

_�� ¼ 1

�
r�ðW ��?W�?Þ � ��

?R
�
��	u

�u	: (2.21b)

Finally, the whole dynamics of the dipolar fluid only
depends on the spacelike perpendicular projection ��

? of

the dipole moment.

D. Expression of the stress-energy tensor

We vary the action (2.2) with respect to the metric g�� to

obtain the stress-energy tensor. We must first consider the
general case where � is unconstrained, and then, only on
the result, make the restriction that � ¼ 1. We properly
take into account the metric contributions coming from the

Christoffel symbols in the covariant time derivative _�� by
using the Palatini formula [32]. We are also careful that,
while the dipole moment �� should be kept fixed during
the variation, the conserved current J� will vary because of
the change in the volume element

ffiffiffiffiffiffiffi�g
p

d4x. Instead of J�,
the relevant metric-independent variable that has to be
fixed is the ‘‘coordinate’’ current density defined by J�� ¼ffiffiffiffiffiffiffi�g
p

J�. Straightforward calculations yield the expression

of the stress-energy tensor for an action of the general type
(2.2). We find

T�� ¼ 2
@L

@g��

þ g��

�
L� J�

@L

@J�

�
þ u�u� _�� @L

@ _��

þr�

�
u�u�

@L

@ _��

� u��ð� @L

@ _��Þ
� ��uð�

@L

@ _��Þ

�
;

(2.22)

in which we denote @L=@ _�� � g�	@L=@ _�	. The partial

derivatives of the Lagrangian are performed assuming that

its ‘‘natural’’ arguments J�, ��, _��, and g�� are indepen-

dent. The application to the particular case of the
Lagrangian (2.7) gives, for the moment for a general value
of �,

T�� ¼ �g��ðW ��?W�?Þ þ�ð�J�Þ

� r�ð½��Kð� � K��ð��J�ÞÞ: (2.23)

In the second term of (2.23) we see that the linear momen-
tum �� is related to the monopolar contribution to the
stress-energy tensor, while the other linear momentum K�

parametrizes the dipolar contribution in the third term.
Comparing with Eq. (2.14) of [26], we observe that a
new term, proportional to the metric g��, has been intro-
duced. This term will clearly be associated with a cosmo-
logical constant, and we shall discuss it in detail below.
One can readily verify that the conservation law r�T

�� ¼
0 holds as a consequence of the equation of conservation of
matter (2.1), and the equations of motion and evolution
(2.9) and (2.15), for general �.
In the next step we reduce the expression (2.23) by

means of the condition � ¼ 1 and get

T�� ¼�W g�� þ�ðu�u� þ �?W�? ?��

þ uð� ?�Þ
�

_�
�
?Þ�r�ð½��

?u
ð� � u��

ð�
? �J�ÞÞ: (2.24)

Again we notice that this expression depends only on the
perpendicular projection ��

? of the dipole moment.

It will be useful in the following to decompose the
stress-energy tensor (2.24) according to the general canoni-
cal form

T�� ¼ ru�u� þ P ?�� þ2Qð�u�Þ þ ���; (2.25)

where r and P represent the energy density and pressure,
where the ‘‘heat flow’’ Q� is orthogonal to the four-
velocity, i.e. u�Q

� ¼ 0, and the symmetric anisotropic

stress tensor ��� is orthogonal to the four-velocity and
traceless, i.e. u��

�� ¼ 0 and ��
� ¼ 0. We get

r ¼ u�u�T
��; (2.26a)

P ¼ 1
3 ?�� T��; (2.26b)

Q� ¼ � ?�
� u�T

��; (2.26c)

while the anisotropic stress tensor is obtained by subtrac-
tion. In the case� ¼ 1where the dipolar fluid is described
by the stress-energy tensor (2.24), we find that the energy
density, pressure, heat flow, and anisotropic stress tensor
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read, respectively,

r ¼ W ��?W�? þ �; (2.27a)

P ¼ �W þ 2
3�?W�? ; (2.27b)

Q� ¼ � _��
? þ�?W�?u

� ��	
?r	u

�; (2.27c)

��� ¼ ð13 ?�� ��̂
�
?�̂

�
?Þ�?W�? ; (2.27d)

where we denote �̂
�
? � �

�
?=�?, and where we introduced

for future use the convenient notation

� ¼ ��r	�
	
?: (2.28)

By contrast to ordinary perfect fluids, the characteristic
feature of the dipolar fluid is the existence of nonvanishing
heat flow Q� and anisotropic stresses ���. Furthermore,
we notice that the energy density r involves (via �) a
dipolar contribution given by �r	�

	
?. That contribution

will play the crucial role, as we will see in Sec. IV, when
recovering the phenomenology of MOND.

III. COSMOLOGICAL PERTURBATIONS AT
LARGE SCALES

We are going to show in this section that the model of
dipolar dark matter [i.e. based on the action (2.2) and (2.7),
with equations of motion reduced by the condition� ¼ 1]
contains the essential features of standard dark matter at
cosmological scales. We shall indeed prove that, at first
order in cosmological perturbations, it behaves like a
pressureless perfect fluid. Furthermore, we shall see that
the dipolar fluid naturally contains a cosmological constant
(the interpretation of which will be discussed below), and
is thus supported by the observations of dark energy. The
model is therefore consistent with cosmological observa-
tions of the CMB fluctuations.

A. Perturbation of the gravitational sector

We apply the theory of first-order cosmological pertur-
bations around a Friedman-Lemaı̂tre-Robertson-Walker
(FLRW) background. For every generic scalar field or
component of a tensor field, say F, we shall write F ¼
�Fþ 
F, where the background part �F is the value of F in a
FLRWmetric, while 
F is a first-order perturbation of this
background value.

The FLRWmetric is written in the usual way in terms of
the conformal time �, such that dt ¼ ad� where að�Þ is
the scale factor and t the cosmic time, as

d �s2 ¼ �g��dx
�dx� ¼ a2½�d�2 þ �ijdx

idxj�: (3.1)

Here �ij is the metric of maximally symmetric spatial

hypersurfaces of constant curvature K ¼ 0 or K ¼ �1.
The perturbed FLRW metric ds2 ¼ g��dx

�dx� will be of

the general form [33]

d s2 ¼ a2½�ð1þ 2AÞd�2 þ 2hid�dx
i þ ð�ij

þ hijÞdxidxj�: (3.2)

Making use of the standard scalar-vector-tensor (SVT)
decomposition [34,35], the metric perturbations hi and
hij are decomposed according to

hi ¼ DiBþ Bi; (3.3a)

hij ¼ 2C�ij þ 2DiDjEþ 2DðiEjÞ þ 2Eij; (3.3b)

where Di denotes the covariant derivative with respect to
the spatial background metric �ij. The vectors Bi and Ei

are divergenceless, and the tensorEij is at once divergence-
less and trace-free, i.e.

DiB
i ¼ DiE

i ¼ 0; (3.4a)

DiE
ij ¼ Ei

i ¼ 0: (3.4b)

Spatial indices are lowered and raised with �ij and its

inverse �jk. From these definitions, one can construct the
gauge-invariant perturbation variables

� � Aþ ðB0 þHBÞ � ðE00 þHE0Þ; (3.5a)

� � �C�H ðB� E0Þ; (3.5b)

�i � E0
i � Bi; (3.5c)

together with Eij which is already gauge invariant. The

prime stands for a derivative with respect to the conformal
time �, and H � a0=a denotes the conformal Hubble
parameter. We shall also use the alternative definition for
a gauge-invariant gravitational potential

X � A� C�
�
C

H

�0 ¼ �þ�þ
�
�

H

�0
: (3.6)

B. Kinematics of the dipolar fluid

The four-velocity of the dipolar fluid is decomposed into
a background part and a perturbation, u� ¼ �u� þ 
u�. We
have both �g�� �u

� �u� ¼ �1 and g��u
�u� ¼ �1. The back-

ground part is supposed to be comoving, that is, �ui ¼ 0.
This defines a zeroth order in the perturbation. In a FLRW
background this means that it will satisfy the background
geodesic equation _�u� ¼ 0. With standard notations, we
have

�u� ¼ 1

a
ð1; 0Þ; (3.7a)


u� ¼ 1

a
ð�A;
iÞ; (3.7b)

while the covariant four-velocity will be written as u� ¼
�u� þ 
u�, with

�u� ¼ að�1; 0Þ; (3.8a)


u� ¼ að�A;
i þ hiÞ: (3.8b)

The velocities of all the other fluids (baryons, photons,
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neutrinos, . . .) are decomposed in a similar way. The
perturbation of the three-velocity 
i is split into scalar
and vector parts,


i ¼ Divþ vi with Div
i ¼ 0; (3.9)

and we introduce the gauge-invariant variables describing
the perturbed motion,

V � vþ E0; (3.10a)

Vi � vi þ Bi: (3.10b)

The dipolar dark matter fluid differs from standard dark
matter by the presence of the dipole moment �

�
? (satisfying

u��
�
? ¼ 0) carried along the fluid trajectories. For the

dipole moment we also write a decomposition into a back-
ground part plus a perturbation, namely, ��

? ¼ ���
? þ 
��

?.
However, because a nonvanishing background dipole mo-
ment would break the isotropy of space, and would there-
fore be incompatible with a FLRW metric, we must make
the assumption that the dipole moment is zero in the
background, so that it is purely perturbative. Hence, we
pose

���
? ¼ 0; (3.11a)


�
�
? ¼ ð0; 	iÞ; (3.11b)

where 	i represents the first-order perturbation of the
dipole moment. Beware of our notation for which 	i is a
vector living in the background spatial metric �ij. Thus the

covariant components of the dipole moment perturbation
are 
�?� ¼ ð0; a2	iÞ where 	i � �ij	

j. Note that there is

no time component in the dipole moment perturbation
because of the constraint u��

�
? ¼ 0 which reduces to

�u�
�
�
? ¼ 0 at linear order. Like for the three-velocity field


i in (3.9), we split 	i into a scalar and a vector part,
namely,

	i ¼ Diyþ yi with Diy
i ¼ 0: (3.12)

However, unlike for v and vi, we notice that y and yi are
gauge-invariant perturbation variables. This is because the
background quantity is zero, ���

? ¼ 0; hence the perturba-

tion 
�
�
? is gauge invariant according to the Stewart-

Walker lemma [36,37].

C. Cosmological expansion of the fundamental
potential

The next step is to make more specific our fundamental
potential function W ð�?Þ entering the Lagrangian (2.7).
Such a function should be a ‘‘universal’’ function of the
polarization of the dipolar medium, described by the po-
larization scalar field

�? ¼ ��?: (3.13)

Now, we have seen that in cosmology there is no back-

ground (FLRW) value for the dipole moment; hence the

background value of the polarization field is zero: ��? ¼
0. In linear perturbations, the polarization is expected to
stay around the background value. Therefore, it seems

physically well motivated that the value ��? ¼ 0 corre-
sponds to a minimum of the potential function W , so that
�? does not depart too much from this background value,
at least in the linear perturbation regime. We therefore
assume that W ð�?Þ is given locally8 by a harmonic
potential of the form

W ð�?Þ ¼ W 0 þ 1
2W 2�

2
? þOð�3

?Þ; (3.14)

where W 0 and W 2 are two constant parameters, and we
pose W 1 ¼ 0. For linear perturbations, because �? ¼

�? is already perturbative, we shall be able to neglect
the higher order terms Oð�3

?Þ in (3.14) because these will

contribute to second order at least in the internal force
(2.12). Inserting the ansatz (3.14) into (2.12) we obtain

F � ¼ W 2�
�
? þOð�2

?Þ: (3.15)

We asserted in the previous section that the background
motion of the dipolar fluid is geodesic, i.e. _�u� ¼ 0. This is
now justified by the fact that the force (3.15) drives the
nongeodesic motion via the equation of motion (2.21a);
hence since this force vanishes in the background, the
deviation from geodesic motion starts only at perturbation
order.
In the present model the coefficientsW 0,W 2, . . . of the

expansion of our fundamental potential W ð�?Þ are free
parameters, and therefore will have to be measured by
cosmological or astronomical observations. First of all, it
is clear from inspection of the action (2.7), or from the
general decomposition of the stress-energy tensor [see
(2.27a) and (2.27b)], that W 0 is nothing but a cosmologi-
cal constant, and we find

W 0 ¼ �

8�
: (3.16)

The coefficient W 0 is thereby determined by cosmologi-
cal measurements of ‘‘dark energy.’’ As we shall show in
Sec. IV, the next two coefficients W 2 and W 3 will be
fixed by requiring that our model reproduces the phenome-
nology of MOND at galactic scales [8], and we shall find
that W 2 ¼ 4� and W 3 ¼ 32�2=a0 where a0 is the con-
stant MOND acceleration scale.
Hence, in this model the cosmological constant � ap-

pears as the minimum value of the potential function W ,
reached when the polarization field is exactly zero, that is,
on an exact FLRW background (see Fig. 3). Thus, it is
tempting to interpret� as a ‘‘vacuum polarization,’’ i.e. the
residual polarization which remains when the ‘‘classical’’
part of the polarization �? ! 0. Of course, our model is

8The domain of validity of this expansion will be made more
precise in Sec. IVB.
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only classical; hence there is no notion of vacuum polar-
ization which would be due to quantum fluctuations.
However, we can imagine that the present model is an
effective one, describing at some macroscopic level a
more fundamental underlying quantum field theory
(QFT) in which there is a nonvanishing vacuum expecta-
tion value (VEV) of a quantum polarization field giving
rise to the observed cosmological constant [38]. Then, the
constant W 0 would play the role of the VEV of this
hypothetical quantum polarization field in such a more
fundamental QFT.

D. Perturbation of the dipolar fluid equations

As for the four-velocity u� ¼ �u� þ 
u�, we consider a
linear perturbation of the rest-mass energy density of the
dipolar fluid according to � ¼ ��þ 
�. The conservation
lawr�ð�u�Þ ¼ 0 reduces in the case of the background to

�� 0 þ 3H �� ¼ 0; (3.17)

hence �� evolves like a�3. Concerning the perturbation, we
define � � ��ð1þ "Þ so that the rest-mass density contrast
reads

" ¼ 
�

��
: (3.18)

This quantity is not gauge invariant, and one can associate
with it in the usual way a gauge-invariant variable by
posing

"F � "� ��0

��

C

H
¼ "þ 3C; (3.19)

with the index F standing for ‘‘flat slicing.’’ Alternatively,
it is possible to introduce other gauge-invariant variables,
like

"N � "� 3H ðB� E0Þ ¼ "F þ 3�; (3.20)

where the index N stands for ‘‘Newtonian.’’ For the linear
perturbation, the conservation law r�ð�u�Þ ¼ 0 gives the

gauge-invariant equations

"0F þ 	V ¼ 0; (3.21a)

"0N þ 	V ¼ 3�0; (3.21b)

where 	 ¼ �ijD
iDj denotes the usual Laplacian operator.

In the following we shall choose to work only with the flat-
slicing variable "F.

According to (2.21a), the motion of the dipolar fluid
obeys the equation _u� ¼ �F �. A straightforward calcu-
lation yields the gauge-invariant expression for the four-
acceleration,

_u � ¼ 1

a2
ð0; Dið�þ V0 þHVÞ þ Vi0 þHViÞ: (3.22)

On the other hand, the force is given by (3.15) at first order
in the perturbation, in which we can use �

�
? ¼ ð0; ��	iÞ to

this order, with 	i ¼ Diyþ yi. Hence, in terms of gauge-

invariant quantities, the scalar and vector parts of the
equation of motion read

V0 þHV þ� ¼ �4� ��a2y; (3.23a)

V 0
i þHVi ¼ �4� ��a2yi: (3.23b)

Here we are anticipating the results of Sec. IV and have
replaced the constant W 2 in the expression of the force
(3.15) by its value 4� determined from the comparison
with MOND predictions.
If there was no dipole moment (i.e. y ¼ yi ¼ 0), we

would recover the standard geodesic equations for a per-
turbed pressureless perfect fluid (see e.g. [33]), and accord-
ing to (3.23b), the vector modes would satisfy ðaViÞ0 ¼ 0,
and therefore vanish like a�1. In contrast with the standard
perfect fluid case, the dipolar fluid may have nonvanishing
vector modes because of the driving term proportional to
yi. Equation (3.23a) clearly shows that the scalar modes are
also affected by a nonzero dipole moment.
The equation of evolution of the dipole moment was

given by (2.21b). Now, �� reduces to _�
�
? þ u� at first

perturbation order; hence the evolution equation gives at
that order

€�
�
? þ _u� ¼ ���

? �R�
��� �u

� �u�; (3.24)

where �R�
��� is the Riemann tensor of the FLRW back-

ground. By easy calculations we find for the derivatives of
the dipole moment variable

_�
�
? ¼ 1

a
ð0; 	i0 þH	iÞ; (3.25a)

€��
? ¼ 1

a2
ð0; 	i00 þH	i0 þH 0	iÞ: (3.25b)

The scalar and vector parts of the equation of evolution are
thus given by

y00 þH y0 ¼ �ðV 0 þHV þ�Þ; (3.26a)

y00i þH y0i ¼ �ðV 0
i þHViÞ: (3.26b)

Notice that the equation for the vector modes can be
integrated, giving the simple relation

y0i þ Vi ¼ si
a
; (3.27)

where si is an integration constant three-vector.
A comment is in order at this stage. Recall that we have

included in the original Lagrangian (2.7) a mass term in the
ordinary sense, with the most natural value of the mass
density simply given by�. This choice was made having in
mind the physical analogy with the quasi-Newtonian
model [25] where � ¼ 2mn represented the inertial mass
of the dipolar particles. Now we can see on a more tech-
nical level that such a mass term is, in fact, essential for the
model to work properly. If this mass term was set to zero in
the action, then the RHS of both Eqs. (3.26a) and (3.26b)
would be zero. Wewould then find that y0 and y0i vanish like
a�1, so that the dipole moment would, in fact, rapidly
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disappear or at least become nondynamical, and the whole
model would turn out to be meaningless.

Combining the equations of motion (3.23) and the evo-
lution equations (3.26), we obtain some differential equa-
tions for the scalar and vector contributions y and yi of the
dipole moment 	i ¼ Diyþ yi, which turn out to be de-
coupled from the equations giving V and Vi, and to be
exactly the same, viz

y00 þH y0 � 4� ��a2y ¼ 0; (3.28a)

y00i þH y0i � 4� ��a2yi ¼ 0: (3.28b)

We find it remarkable that the dipole moment decouples
from the other perturbation variables so that its evolution
depends in fine only on background quantities, namely, ��
and the scale factor a. Since the equations for the scalar
and vector modes are the same, we have also the same
equation for the dipole moment itself,

	00
i þH	0

i � 4� ��a2	i ¼ 0: (3.29)

Clearly, the solutions of (3.29) behave typically as increas-
ing and decreasing exponentials moderated by a cosmo-
logical damping term H	0

i. We can also write this
equation in terms of the cosmic time t ¼ R

ad�, namely,9

€	 i þ 2H _	i � 4� ��	i ¼ 0; (3.30)

where H � _a=a ¼ a0 is the usual Hubble parameter. We
find that Eq. (3.29) or (3.30) is the same as the equation
governing the growth of the density contrast of a perfect
fluid with vanishing pressure for the sub-Hubble modes
(say k � H) and when we neglect the contribution of other
fluids; see (3.50) below. In particular, this means that, like
for the case of the density of a perfect fluid, there is no
problem of divergence (i.e. blowing up) of the components
of the dipole moment 	i between, say, the end of the
inflationary era and the recombination. We can thus apply
the theory of first-order cosmological perturbations even
for the components of the dipole moment itself, which
should stay perturbative.

Notice that the value of the coefficient W 2 ¼ 4� used
in (3.29) or (3.30), which makes such equations identical
with the equation of growth of cosmological structures in
the standard CDM scenario, will only be determined in
Sec. IV from a comparison with MOND predictions. There
is thus an interesting interplay between the cosmology at
large scales and the gravitational physics of smaller
scales.10

E. The perturbed stress-energy tensor

Consider next the stress-energy tensor of the dipolar
fluid, which we decomposed as (2.25) with the expressions
(2.27) and (2.28). At first perturbation order, these expres-
sions reduce to

r ¼ W 0 þ �; (3.31a)

P ¼ �W 0; (3.31b)

Q� ¼ 1

a
ð0; ��	i0Þ; (3.31c)

��� ¼ 0; (3.31d)

together with

� ¼ ��ð1þ "�Di	
iÞ: (3.32)

We first note that part of the dipolar medium is actually
made of a fluid of ‘‘dark energy’’ satisfying �de ¼ �Pde ¼
W 0 ¼ �=8� where � is the cosmological constant.
Accordingly, we shall write the decomposition

T�� ¼ T��
de þ T��

dm ; (3.33)

where the stress-energy tensor associated with the cosmo-
logical constant is denoted by T

��
de , and where the other

part represents specifically a fluid of ‘‘dark matter’’ whose
stress-energy tensor is T

��
dm . Their explicit expressions read

T��
de ¼ �W 0g

��; (3.34a)

T��
dm ¼ �u�u� þ 2Qð�u�Þ: (3.34b)

Note that the dark matter part of the dipolar fluid, which
may be called dipolar dark matter, has no pressure P and no
anisotropic stresses ���, but a heat flow Q� given by
(3.31c) and an energy density � given by (3.32), or alter-
natively

� ¼ ��ð1þ "� 	yÞ: (3.35)

The background energy density is simply given by the
background rest-mass energy density, �� ¼ ��, and the cor-
responding energy density contrast is


 � 
�

��
¼ "�	y: (3.36)

It differs from the rest-mass energy density contrast "
because of the internal dipolar energy. Like for ", one
can construct several gauge-invariant perturbations associ-
ated with 
. We shall limit ourselves to the flat-slicing (F)
one defined by (recall that y is gauge invariant)


F � 
þ 3C ¼ "F � 	y; (3.37)

and whose evolution equation is


0
F þ	V þ 	y0 ¼ 0: (3.38)

Similar, gauge-invariant, density contrast variables are also
defined for the other fluids. Next, we split the dark matter
stress-energy tensor (3.34b) into a background part plus a

9In this equation, the dot stands for a derivative with respect to
the coordinate time t, and not the proper time � as everywhere
else.
10Actually, the coefficient 4� in (3.29) could be changed if we
had assumed a mass term in the action (2.7) different from � (say
2� or �=2). The simplest choice we have made (for different
reasons), that � is the correct mass term in the action, corre-
sponds also to the usual-looking evolution equation (3.29).
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linear perturbation, namely, T
��
dm ¼ �T

��
dm þ 
T

��
dm , and find

�T��
dm ¼ �� �u� �u�; (3.39a)


T��
dm ¼ 
� �u� �u� þ 2 ��
uð� �u�Þ þ 2Qð� �u�Þ: (3.39b)

We made use of the fact that the heat flow Q� is already
perturbative to replace the four-velocity in the last term by
its background value.

We are now going to show that the dipolar dark matter
stress-energy tensor is undistinguishable, at linear pertur-
bation order, from that of a perfect fluid with vanishing
pressure. To this end, we introduce the effective perturbed
four-velocity


~u� � 
u� þQ�

��
: (3.40)

Notice that ~u� ¼ �u� þ 
~u� is still an admissible velocity
field because 
~u0 ¼ �A=a by virtue of the transversality
property �u�Q

� ¼ 0. The perturbed part of the dark matter

stress-energy tensor (3.39b) can then be written in the form


T��
dm ¼ 
� �u� �u� þ 2 ��
~uð� �u�Þ; (3.41)

which, together with (3.39a), is precisely the stress-energy
tensor of a perfect fluid with vanishing pressure P, vanish-
ing anisotropic stresses ���, and a four-velocity field
~u� ¼ �u� þ 
~u�. Using the definition (3.40) of the per-
turbed four-velocity 
~u�, with the explicit expression of
the heat flow (3.31c), one can check that this perfect fluid
consistently follows a geodesic motion, i.e. 
 _~u� ¼ 0.

More explicitly, we can write the latter effective pertur-

bation of the four-velocity in the standard form 
~u� ¼
a�1ð�A; ~
iÞ, and find that the effective ordinary velocity
reads

~
 i ¼ 
i þ 	i0; (3.42)

which can be viewed as a modification of the spacelike
component of the dipolar dark matter four-velocity. This
allows one to build a new four-velocity which would be
tangent to the worldline of the effective perfect fluid
(cf. Fig. 1). In terms of scalar and vector parts, if we write
~
i ¼ Di~vþ ~vi, then

~v ¼ vþ y0; (3.43a)

~vi ¼ vi þ y0i: (3.43b)

Like for the perturbed four-velocity 
u�, we can introduce
the gauge-invariant variables

~V � ~vþ E0 ¼ V þ y0; (3.44a)

~Vi � ~vi þ Bi ¼ Vi þ y0i: (3.44b)

In terms of the gauge-invariant variables ~V, ~Vi, and 
F, the
dipolar dark matter fluid equations (3.23) and (3.38) finally
read

~V0 þH ~V þ� ¼ 0; (3.45a)

~V 0
i þH ~Vi ¼ 0; (3.45b)


0
F þ	 ~V ¼ 0: (3.45c)

These are precisely the standard evolution equations of a
perfect fluid with no pressure and no anisotropic stresses
(see e.g. [33]).
To summarize, we have proved that at first order of

perturbation theory—and only at that order—the dipolar
fluid behaves exactly as ordinary dark energy (i.e. a cos-
mological constant) plus ordinary dark matter (i.e. a per-
fect fluid). If we specify the background rest-mass energy
density �� so that �dm � 8� ��0=3H

2
0 ’ 0:23 today as evi-

denced in cosmological observations, we can assert that the
first-order cosmological perturbation theory with the dipo-
lar fluid described by the stress-energy tensor (3.33) and
(3.34) will lead to the same predictions as the standard
�-CDM scenario—and is therefore consistent with cos-
mological observations at large scales. However, at second
order of cosmological perturbations, the dipole moment
entering the stress-energy tensor cannot be absorbed in an
effective perturbed velocity field, which means that the
dipolar dark matter fluid could, in principle, be distin-
guished from a standard perturbed dark matter fluid.

FIG. 1 (color online). Sketch of the equivalence at first order
of cosmological perturbations between dipolar dark matter and
an effective perfect fluid. The dipolar dark matter has a four-
velocity u� ¼ �u� þ 
u�, and follows a nongeodesic motion
driven by the internal force F �, namely, _u� ¼ �F �. One can
construct from u� and the heat flux Q� an effective four-
velocity ~u� ¼ �u� þ 
~u� satisfying a geodesic motion, i.e.
_~u� ¼ 0. This is the four-velocity field of the effective perfect
fluid associated with dipolar dark matter.
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Working out the theory of second-order cosmological per-
turbations could thus yield distinctive features of the
present model and reveal a signature of the dipolar nature
of dark matter. We particularly have in mind effects linked
with the non-Gaussianity of the CMB fluctuations that are
associated with second-order perturbations.

F. Perturbation of the Einstein equations

The Einstein equations at first perturbation order around
the FLRW background read


G�� ¼ 8�

�

T�� þX

f


T
��
f

�
; (3.46)

where G�� � R�� � 1
2g

��R is the Einstein tensor and

where 
T�� ¼ 
T��
de þ 
T��

dm is the perturbative part of

the stress-energy tensor of the dipolar fluid given by (3.34).
The summation runs over all the other cosmological fluids

present (baryons, photons, neutrinos, . . .) which are de-
scribed by stress-energy tensors T

��
f . Separating out the

dark matter from the dark energy (using the link W 0 ¼
�=8�), we get


G�� þ�
g�� ¼ 8�

�

T��

dm þX
f


T��
f

�
: (3.47)

As we have seen in the previous section, the dark matter
fluid is entirely described at linear perturbation order by the
gauge-invariant variables ~V, ~Vi, and 
F (and the back-
ground density ��) obeying the evolution equations (3.45)
like for an ordinary pressureless fluid. We can thus imme-
diately write the gauge-invariant perturbation equations in
the standard SVT formalism (see e.g. [33]). Though these
are well known, we reproduce them here for completeness.
For the scalar modes, we have

	�� 3H 2X ¼ 4�a2
�
��
F þ

X
f

��f

F
f

�
; (3.48a)

��� ¼ 8�a2
X
f

��fwf�f ; (3.48b)

�0 þH� ¼ �4�a2
�
�� ~VþX

f

��fð1þ wfÞVf

�
; (3.48c)

HX0 þ ðH 2 þ 2H 0ÞX ¼ 4�a2
X
f

��f

�
wf
f þ c2f


F
f þ

2

3
wf	�f

�
; (3.48d)

where we have singled out the contribution of the dipolar
dark matter (cf. the variables ~V, 
F, and ��) from the other
fluid contributions described by their background density
��f , equation of state wf , adiabatic sound velocity cf , and
gauge-invariant entropy perturbation 
f . We also intro-
duced the SVT components of the perturbative part
of the anisotropic stress tensor, defined by 
�ij

f ¼
a2 ��fwf½	ij�f þDði�jÞ

f þ �ij
f � with 	ij � DiDj �

�ij	=3. The variables �f , �
i
f , and �ij

f are gauge invariant
because the background part of�ij

f vanishes in the case of a
perfect fluid. The equations for the vector and tensor modes
are

ð	þ 2KÞ�i ¼�16�a2
�
�� ~ViþX

f

��f

�ð1þwfÞVi
f

�
; (3.49a)

�i0 þ 2H�i ¼ 8�a2
X
f

��fwf�
i
f ; (3.49b)

Eij00 þ 2HEij0 þ ð2K�	ÞEij ¼ 8�a2
X
f

��fwf�
ij
f : (3.49c)

We highlight once more the fact that at first perturbation
order, the dipolar dark matter is like ordinary dark matter,
as can be seen from the fluid equations (3.45) and the

Einstein equations (3.48) and (3.49). Indeed, these sets of
equations can be evolved without any reference to the
dipole moment 	i.
Combining the dipolar dark matter equations (3.45a) and

(3.45c) with the Einstein equations (3.48a) and (3.48b), we
get the equation governing the growth of the dipolar dark
matter density contrast as


00
F þH
0

F � 4� ��a2
F ¼ 3H 2Xþ 4�a2

�X
f

��fð
F
f � 2wf	�fÞ: (3.50)

Again, we find that the growth of structures driven by
Eq. (3.45c) or equivalently (3.50) for the dipolar dark
matter of the present model is identical with that in the
standard CDM model at linear perturbation order. For sub-
Hubble modes one can neglect the first term in the RHS,
and we expect that the contribution of the dark matter
dominates that of the other fluids, so we can neglect also
the second term in the RHS of (3.50).
Interestingly, we have found in (3.29) that each of the

components of the dipole moment obeys the same equation
as (3.50) but with a RHS of exactly zero. Recall that the
dipolar dark matter density contrast is defined by (3.37) as


F ¼ "F �Di	i: (3.51)

LUC BLANCHET AND ALEXANDRE LE TIEC PHYSICAL REVIEW D 78, 024031 (2008)

024031-12



From (3.29) we see that the internal energy due to the
dipole moment satisfies the ‘‘homogeneous’’ equation
that is associated with (3.50), viz (recalling �� ¼ ��)

Di	00
i þHDi	0

i � 4� ��a2Di	i ¼ 0: (3.52)

This result indicates that, in the nonlinear regime, the
internal energy related to the dipole moment may contrib-
ute significatively to the growth of perturbations (see
Sec. IVB for more comments). Finally, it is clear that the
rest-mass density contrast obeys the same ‘‘inhomogene-
ous’’ equation, i.e.

"00F þH"0F � 4� ��a2"F ¼ 3H 2Xþ 4�a2

�X
f

��fð
F
f � 2wf	�fÞ: (3.53)

IV. DIPOLAR DARK MATTER AT GALACTIC
SCALES

In this section, we shall show that, under some well-
motivated assumptions, the dipolar dark matter naturally
recovers the phenomenology of MOND for a typical gal-
axy at low redshift. Such a link between a form of dipolar
dark matter and MOND was the primary motivation of
previous works [25,26]. We shall see that with the present
improvement of the model with respect to [26], thanks to
the fact that the fundamental potential in the action now
depends on the polarization field �? ¼ ��? (instead of
�? in the previous model [26]), the relation with MOND is
straightforward and physically appealing.

A. Nonrelativistic limit of the model

We investigate the NR limit of the dipolar fluid dynam-
ics described by Eqs. (2.21a) and (2.21b), and by the stress-
energy tensor (2.24). To do so, we consider the formal limit
c ! þ1,11 which is equivalent to the condition v 	 c,
where v is the typical value of the coordinate three-
velocity of the dipolar fluid. To consistently keep track of
the order of relativistic corrections, we systematically
write as Oðc�nÞ a typical neglected remainder.

We are interested in the dynamics of dipolar dark matter
and ordinary baryonic matter in a typical galaxy at low
redshift. Let us introduce a local Cartesian coordinate
system fct; zig, centered on this galaxy around some cos-
mological epoch, and which is inertial in the sense that it is
without any rotation, or acceleration with respect to some
averaged cosmological matter distribution at large dis-
tances from the galaxy. Such a local coordinate system
can be derived from the cosmological coordinate system
f�; xig used in Sec. III by posing

ct ¼ að�0Þð�� �0Þ; (4.1a)

zi ¼ að�0Þðxi � xi0Þ; (4.1b)

near an event occurring at cosmological time �0 and at the
galaxy’s center xi0. In the local coordinate system, the

metric developed at the lowest NR order reads

g00 ¼ �1þ 2U

c2
þOðc�4Þ; (4.2a)

g0i ¼ Oðc�3Þ; (4.2b)

gij ¼
�
1þ 2U

c2

�

ij þOðc�4Þ; (4.2c)

where U 	 c2 is a Newtonian-like potential. For the mo-
tion of massive (nonrelativistic) particles we need only to
include the contribution of U in the 00 metric coefficient.
Thanks to the standard general relativistic coupling to
gravity in the ij metric coefficient, the motion of photons
agrees with the general relativistic prediction with the
Newtonian-like potential U.
In the NR limit, the equation of motion (2.21a) is readily

seen to reduce to

dvi

dt
� gi ¼ ��̂i

?W�? þOðc�2Þ; (4.3)

where ai � dvi=dt ¼ ð@t þ vj@jÞvi is the standard

Newtonian acceleration of a fluid in the Eulerian picture,
vi being the coordinate three-velocity, and gi ¼ @iU the
nonrelativistic local gravitational field. Note that gi is
generated by both the ordinary baryonic matter and the
dipolar dark matter. Similarly, the equation of evolution
(2.21b) for the dipole moment reads in the NR limit [using
also (4.3)]

d2�i
?

dt2
� �̂i

?W�? ¼ 1

�
@iðW ��?W�?Þ

þ �j
?@jg

i þOðc�2Þ; (4.4)

where we explicitly have d2�i
?=dt

2 ¼ ð@2t þ aj@j þ
2vj@2jt þ vjvk@2jkÞ�i

?. Notice the second term in the RHS

which is a tidal term coming from the Riemann curvature
coupling in (2.21b). Finally, Eq. (2.1) reduces to the clas-
sical continuity equation

@t�þ @ið�viÞ ¼ Oðc�2Þ: (4.5)

Next, we need to be cautious about the relativistic order
of magnitude of the potential functionW appearing in the
Lagrangian (2.7). It is clear that W has the dimension
either of a mass density or an energy density, depending on
where we would reinstall the factors c in (2.7). We shall,
from now on, assume thatW is an energy density, and has
a finite nonzero limit when c ! þ1. This will be justified
when we show in (4.22) below that the coefficients W 2,
W 3, . . . in the expansion of W considered as an energy
density can be expressed solely in terms of G and the
MOND acceleration a0 (without any c’s). Therefore, our

11From now on, we reintroduce for convenience all factors of c
and G.
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assumption means that we are viewing a0 as a new funda-
mental acceleration scale a priori independent from c.
With such a hypothesis, if we reintroduce the factors of c
in the expression of the density r considered as a mass
density and given by (2.27a), we get r ¼ �þ ðW �
�?W�?Þ=c2, where � is given by (2.28). Thus, the

term ðW ��?W�?Þ=c2 becomes negligible in the for-

mal limit c ! þ1, and we have r ¼ �þOðc�2Þ. In
particular, we observe that the term W 0, which is linked
to the cosmological constant by (restoring the c’s and G)

W 0 ¼ �c4

8�G
; (4.6)

does not enter the expression of the dipolar fluid density r,
and therefore has no influence on the local dynamics of the
dipolar dark matter in the NR limit. Our assumption that
W has a finite nonzero limit when c ! þ1means that the
cosmological constant� should scale with c�4, which will
be justified later when we show that �� a20=c

4.

Thus, in the NR limit we need to consider only the mass
density of the dipolar dark matter given by �. Now, from
(2.28) we have � ¼ ��r	�

	
? which becomes, when

c ! þ1,

� ¼ �� @i�
i
? þOðc�2Þ: (4.7)

At that order the dipolar term involves only an ordinary
partial space derivative. Finally, we get the Poisson equa-
tion in the standard way as the NR limit of the 00 and ii
components of the Einstein equations, and find

	U ¼ �4�Gð�b þ �� @i�
i
?Þ þOðc�2Þ; (4.8)

where �b is the Newtonian mass density of baryonic mat-
ter. This equation can be written in the alternative form

@iðgi � 4�G�i
?Þ ¼ �4�Gð�b þ �Þ þOðc�2Þ: (4.9)

To summarize, the equations governing the dynamics of
the dipolar dark matter and the gravitational field in the NR
limit are as follows: the equation of motion (4.3), the
evolution equation (4.4), the continuity equation (4.5),
and the Poisson equation (4.9). On the other hand, baryons
and photons obey the geodesic equation, which means
dvi

b=dt ¼ @iUþOðc�2Þ for baryons, and the standard

GR formula for light deflection in a potential U for pho-
tons, where U is generated by (4.8).

B. The weak clustering hypothesis

We have shown in Sec. III that at linear perturbation
order, in a cosmological context, the dynamics of dipolar
dark matter cannot be distinguished from that of baryonic
matter or standard dark matter. We now argue that, with the
motion of dipolar dark matter being nongeodesic, its non-
linear dynamics should be different. Our main motivation
for the argument is the existence of an exact solution of the
equations governing the dynamics of the dipolar dark

matter in the NR limit. Indeed, we show in the Appendix
that, in the simple case where the baryonic matter is
modeled by a spherically symmetric mass distribution,
there is a solution to the equations for which the dipole
moments are in equilibrium (�? ¼ const), and at rest
(vi ¼ 0), with the internal force F i exactly balancing the
gravitational field gi. In such a solution, the dipolar me-
dium is uniformly distributed or, more generally, spheri-
cally symmetrically distributed, and the polarization�i

? is

aligned with the gravitational field gi; the dipolar fluid is
thus polarized. Furthermore, we show in the Appendix that
the latter solution is stable against dynamical
perturbations.
From that solution, we expect that the dipolar medium

will not cluster much during the cosmological evolution
because the internal force may balance part of the local
gravitational field generated by an overdensity (see Fig. 2
for a pictorial view of the argument). From this we infer
that the dark matter density contrast in a typical galaxy at
low redshift should be small, at least smaller than in the
standard �-CDM scenario. Such a galaxy would therefore
be essentially baryonic, with a typical mass density of the
dipolar dark matter � rather small compared to the bar-
yonic one, and perhaps around its mean cosmological
value ��. Thus, the crucial hypothesis we are making (based
on the solution in the Appendix) is that

� 	 �b; (4.10)

or perhaps that � stays essentially at a value of the order of
its mean cosmological value,

�� �� 	 �b: (4.11)

Note that for standard CDM (or baryonic matter), the
density contrast between the value of �cdm (or �b) in a
galaxy and the mean cosmological one ��cdm (or ��b) is
typically of order 105. This means that even if dipolar
dark matter clusters enough so that, for instance, ��
103 �� in a galaxy at low redshift, it would still satisfy the
condition (4.10).
Note also that with this hypothesis, the nonlinear growth

of structures in our model will not be triggered by the rest
mass � of dipolar dark matter (since it does not cluster
much), but by the internal energy �int of the dipolar
medium, which is such that � ¼ �þ �int and is explicitly
given by �int ¼ �r	�

	
? [recall (2.28)]. We have seen that,

at first cosmological perturbation order, the density con-
trast associated with �int reduces to �Di	i, and obeys the
standard evolution equation (3.52). We expect that at non-
linear order it will take over the dominant role as compared
to the rest-mass density contrast " in the formation of
structures. On the other hand, in the NR limit �int reduces
to �@i�

i
? [see (4.7)] and, as we shall see in the following

section, will be at the origin of the MOND effect.
We shall refer to the condition (4.10) [or even to the

stronger condition (4.11)] as the hypothesis of weak clus-
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tering of the dipolar dark matter fluid. Obviously, the
validity of this hypothesis cannot be addressed with the
formalism of first-order cosmological perturbations in
Sec. III, because it is a consequence of the nonlinear
cosmological evolution. The hypothesis of weak clustering
of dipolar dark matter should be validated through numeri-
cal N-body simulations.

Let us thus assume that the dipolar dark matter has not
clustered very much, and even that � might stay more or
less at the cosmological mean value �� (such that �dm ’
0:23). Because of its size and typical time scale of evolu-
tion, a galaxy is almost unaffected by the cosmological
expansion of the Universe. Therefore, the cosmological
mass density �� of the dipolar dark matter is not only
homogeneous, but also almost constant in this galaxy.
Thus, the continuity equation (4.5) reduces to @ið ��viÞ ’
0. The most simple solution obviously corresponds to a
static fluid verifying

vi ’ 0: (4.12)

It is therefore natural to consider that the dipolar dark
matter is almost at rest with respect to some averaged
cosmological matter distribution. This is supported by the
exact solution found in the Appendix, which indicates that
the dipolar dark matter in the presence of an ordinary mass

does indeed behave essentially like a static medium.
Because of the internal force, the motion is not geodesic,
and the force acts like a ‘‘rocket’’ to compensate the
gravitational field and to keep the dipolar particle at rest
with respect to ordinary matter (see Fig. 2).

C. Link with the phenomenology of MOND

Let us now show that under the weak clustering hypothe-
sis, Eqs. (4.3), (4.4), (4.5), and (4.9) naturally reproduce the
phenomenology of MOND. First of all, if (4.12) holds,
Eq. (4.3) tells us that the polarization�i

? should be aligned

with the local gravitational field gi, namely,12

gi ¼ �̂i
?W�? : (4.13)

This proportionality relation will be the crucial ingredient
for recovering MOND.
We must now further specify the fundamental potential

W entering the original action (2.7). In Sec. III, we
considered the dipolar fluid at early cosmological times,
where the polarization field was perturbative. We shall now
consider it at late cosmological times (around the value�0)

FIG. 2 (color online). Schematic view of two worldlines of baryonic matter and dipolar dark matter. The baryonic matter follows a
geodesic motion, _u� ¼ 0, and therefore collapses in the regions of overdensity. Obeying the nongeodesic equation of motion _u� ¼
�F �, the dipolar dark matter is expected to have a different behavior in the nonlinear (NL) regime. Namely, the internal force F i can
balance the gravitational field gi created by an overdensity, in order to keep the rest-mass density of dipolar dark matter close to its
mean cosmological value, �� ��, or at least far smaller than the baryonic one.

12From now on, we no longer indicate the neglected remainder
terms Oðc�2Þ. Furthermore, we assume for the discussion that
(4.12) is exactly verified, i.e. vi ¼ 0.
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but still in a regime where the polarization field is weak.
This will correspond to the outer zone of a galaxy at low
redshift, where the local gravitational field generated by
the galaxy is weak. We therefore assume that the potential
W can still be expanded in powers of �?, and we keep
only a few terms in the expansion. Next, we introduce a
fundamental acceleration scale a0 to later be identified
with the MOND constant acceleration whose commonly
accepted value is a0 ’ 1:2� 10�10 m=s2 [8]. Associated
with a0 we can define a fundamental surface density scale

� � a0
2�G

; (4.14)

whose numerical value is � ’ 0:3 kg=m2 ’ 130M
=pc2.
The numerical value of � is close to the observed upper
limit of the surface brightness of spiral galaxies—the so-
called Freeman’s law which is seen as empirical evidence
for MOND [8]. We now assert that the expansion of W
when �? ! 0 is physically valid when the condition
�? 	 � is satisfied. As will become obvious, this condi-
tion can equivalently be written g 	 a0, where g ¼ jgij is
the norm of the local gravitational field of the galaxy, and
this will correspond to the deepMOND regime (see Fig. 3).
With respect to the expansion (3.14) already used in cos-
mology, we shall be able to add an extra term. We now
write this expansion, for �? 	 �, as

W ð�?Þ ¼ W 0 þ 1

2
W 2�

2
? þ 1

6
W 3�

3
?

þO
��

�?
�

�
4
�
: (4.15)

The first term W 0 is related to the cosmological constant
� through (4.6). We now show that the next two coeffi-
cientsW 2 andW 3 are uniquely determined if we want to
recover the phenomenology of MOND. Indeed, by insert-
ing (4.15) into the relation (4.13) we obtain

gi ¼ �i
?

�
W 2 þ 1

2
W 3�? þO

��
�?
�

�
2
��
; (4.16)

which can be inverted to yield the polarization as an
expansion in powers of (the norm of) the gravitational
field. Anticipating that W 2�� a0, this expansion will
be valid whenever g 	 a0. We obtain

�i
? ¼ gi

W 2

�
1� 1

2

W 3

W 2
2

gþO
��

g

a0

�
2
��
: (4.17)

Next, following the conventions of [25,26], we introduce
the coefficient of ‘‘gravitational susceptibility’’ � of the
dipolar medium through

�i
? ¼ � �

4�G
gi: (4.18)

Inserting that definition13 into the LHS of the Poisson
equation (4.9), we find

@i½ð1þ �Þgi� ¼ �4�Gð�b þ �Þ: (4.19)

Finally, invoking our hypothesis of weak clustering (4.10),
or (4.11) in the more extreme variant, we can neglect the
mass density � of the dipole moments with respect to the
baryonic one, so we obtain the MOND equation which is
generated solely by the distribution of baryonic matter as
[39]

@ið�giÞ ¼ �4�G�b: (4.20)

The MOND function � is related to the susceptibility
coefficient by � ¼ 1þ � and can actually be interpreted
as the ‘‘digravitational’’ coefficient of the dipolar medium
[25]. Again, let us stress that in this model we do have
some distribution of dark matter� in an ordinary sense, but
we expect its contribution to become negligible in galactic
halos at low redshifts (after cosmological evolution), so
that the MOND fit of rotation curves of galaxies is un-
affected by this ‘‘monopolar’’ dark matter.14 The MOND
effect is due to the dipolar part of the dark matter given by
the internal energy �int ¼ �@i�

i
?.

FIG. 3. The minimum of the potential function W ð�?Þ,
reached when �? ¼ 0, is a cosmological constant �. Small
deviations around the minimum, corresponding to �? 	 � ¼
a0=2�G, describe the MOND regime g 	 a0.

13Note that this definition is valid in both MOND and
Newtonian regimes whenever the polarization is aligned with
the gravitational field.
14However, at the larger scale of clusters of galaxies the
monopolar part of the dipolar medium � may play a role to
explain the missing dark matter in MOND estimates of the
dynamical mass [8,40]. Note that in the present model, the
motion of photons, needed to interpret weak-lensing experi-
ments, is given by the standard general relativistic prediction;
see (4.2) with the potential U solution of the MOND
equation (4.20).

LUC BLANCHET AND ALEXANDRE LE TIEC PHYSICAL REVIEW D 78, 024031 (2008)

024031-16



Now, from astronomical observations we know that the
gravitational susceptibility � in the deep MOND regime
g 	 a0 should behave like

� ¼ �1þ g

a0
þO

��
g

a0

�
2
�
: (4.21)

The fact that � should be negative was interpreted in the
quasi-Newtonian model [25] as evidence for gravitational
polarization—the gravitational analogue of the electric
polarization in dielectric media. By inserting (4.21) into
(4.18), and comparing with the prediction of our model as
given by (4.17), we uniquely fix the unknown coefficients
therein as

W 2 ¼ 4�G; (4.22a)

W 3 ¼ 32�2 G
2

a0
: (4.22b)

This, together with W 0 fixed by (4.6), determines the
potential function W up to third order from astronomical
observations. As we see, the MOND acceleration a0 enters
at third order in the expansion, and therefore does not show
up in the linear cosmological perturbations of Sec. III. At
third order, the potential W deviates from a purely har-
monic potential, and a0 can be seen as a measure of its
anharmonicity.

To express W in the best way, we prefer using the
surface density scale � ¼ a0=2�G rather than the accel-
eration scale a0. To do so, we must introduce a purely
numerical dimensionless coefficient � to express the cos-
mological constant � (which is positive and has the di-
mension of an inverse length squared) in units of a20=c

4,

and we pose

� ¼ 3�2

�
2�a0
c2

�
2
: (4.23)

The definition of � is such that a� ¼ �a0 represents the
natural acceleration scale associated with the cosmological

constant, and is already given by (1.1) as a� ¼ffiffiffiffiffiffiffiffiffi
�=3

p
c2=2�. Then, the cosmological term (4.6) becomes

W 0 ¼ 6�3G�2�2, and we obtain

W ¼ 6�G�2

�
�2�2 þ 1

3

�
�?
�

�
2 þ 4

9

�
�?
�

�
3

þO
��

�?
�

�
4
��
: (4.24)

In the present model there is nothing which can give the
relation between � and a0; hence � is not determined.
However, if the dipolar fluid action (2.7) is intended to
describe at some macroscopic level a more fundamental
theory (presumably a QFT), we expect that the potential
W should depend only on certain more or less fundamen-
tal constants, and some dimensionless variables built from
‘‘fundamental fields.’’ Introducing the dimensionless quan-
tity x � �?=�, we can rewrite (4.24) as W ¼

6�G�2wðxÞ, where
wðxÞ ¼ �2�2 þ 1

3x
2 þ 4

9x
3 þOðx4Þ (4.25)

represents some universal function coming from some
fundamental albeit unknown physics. Therefore, we expect
that the numerical coefficients in the expansion of wðxÞ
should be of the order of 1 or, say, 10. In particular, it is
natural to expect that � should be of the order of 1 (to
within a factor 10 say), and we deduce from (4.23) that the
magnitude of � should scale approximately with the
square of the MOND acceleration, namely, �� a20=c

4.

The numerical coincidence between the measured val-
ues of � and a0 is well known [16]. The observed value of
the cosmological constant is around � ’ 0:12 Gpc�2 [33]
which, together with a0 ’ 1:2� 10�10 m=s2, corresponds
to a value for � which is very close to 1: � ’ 0:8. Thus a0
is very close to the scale a� associated with the cosmo-
logical constant, which is related to the Gibbons-Hawking
temperature TGH ¼ @a�=kc derived from semiclassical
theory on de Sitter space-time [41]. From the previous
discussion, we see that the ‘‘cosmic’’ coincidence between
� and a0 has a natural explanation if dark matter is made of
a medium of dipole moments.

D. The Newtonian regime

For the moment, we look at the explicit expression of the
potential function W in the MOND regime g 	 a0. We
would also like to get some information about this function
in the Newtonian regime g � a0. To do so, we first derive
the general expression of the gravitational susceptibility
coefficient �. Here we assume that the MOND function
� ¼ 1þ � is always less than 1. This implies �< 0, and
thus using (4.13) and (4.18) we must have W�? > 0

(where we recall that W�? � dW =d�?). Taking the

norm of (4.13) we get g ¼ W�?ð�?Þ. Next, we introduce
the function�ðgÞwhich is the inverse ofW�?ð�?Þ; i.e. it
satisfies

g ¼ W�?ð�?Þ () �? ¼ �ðgÞ: (4.26)

According to (4.18), the susceptibility � is then given as
the following function of the gravitational field g,

�ðgÞ ¼ �4�G
�ðgÞ
g

: (4.27)

This is the general relation linking � (or equivalently the
MOND function � ¼ 1þ �) to the potential function W
in the dipolar action (2.7). Of course, in the present model
W is to be considered as more fundamental than � which
is a derived quantity.
In the Newtonian regime g � a0, the MOND function

� should tend to 1, so that � vanishes in this regime. To
discuss more concretely this condition, we assume that in
the formal limit g ! þ1, the gravitational susceptibility
behaves as �� g��, with � a strictly positive real number.
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More precisely, it should behave like ����ðg=a0Þ��,
where � is a strictly positive real number. Beware that even
if this power-law behavior is a simple assumption, nothing
guaranties that it is verified. Then, when g ! þ1, we get
from (4.26) and (4.27) that

�? � Ag1��; (4.28a)

W � 1� �

2� �
Ag2�� þ �; (4.28b)

where A ¼ �a�0=4�G> 0 and � is an integration constant.

We have to distinguish several cases, depending on the
value of the exponent �:

(i) If 0<�< 1, then both the polarization �? and the
potential W diverge. This would correspond to the
curve (a) of Fig. 4.

(ii) If � ¼ 1, the polarization �? tends to a maximum
‘‘saturation’’ value �max ¼ A, and the potential W
equals the constant �. See curve (b) in Fig. 4.

(iii) If 1< �< 2, the polarization goes to zero while the
potential diverges to �1 like a power law. This
implies that W cannot be a univalued function of
�?. Therefore, there must exist two branches cor-
responding to the Newtonian and MOND regimes.

(iv) If � ¼ 2, according to (4.28b) the potential diverges
to �1 logarithmically, i.e. W ��A lng, while the
polarization still vanishes. The same conclusions as
in case (iii) apply.

(v) Finally, if � > 2, the polarization goes to zero while
the potential tends to �. The same conclusions as in
(iii) apply.

If we believe that the potentialW represents a fundamen-
tal function in the action, and that our model should,
strictly speaking, be valid in a Newtonian regime (and
not merely valid in the MOND regime), we should a priori
expect that W is a univalued function of �?. Then, the
susceptibility coefficient should be like �� g�� with 0<
� � 1 in the Newtonian regime. This would mean that the
MOND function � behaves like

�� 1� �

�
a0
g

�
�
; (4.29)

with 0<� � 1. Such rather slow transition of � toward
the Newtonian regime is consistent with the recent results
of [42] which fitted the rotation curves of the Milky Way
and galaxy NGC 3198, and of [43] which fitted 17 early-
type disc galaxies and concluded that the Newtonian re-
gime is rather slowly reached. For instance, the authors of
[42–44] agreed that � ¼ 1 yields a better fit to the data than
� ¼ 2.
The case � ¼ 1 [curve (b) in Fig. 4] corresponds to an

interesting physical situation in which the dipolar medium
saturates when g ! þ1, at the maximum value �max ¼
A, or

�max ¼ �

2
�; (4.30)

where � is the surface density scale (4.14). In this satura-
tion case, the gravitational susceptibility coefficient be-
haves as

����
a0
g
: (4.31)

However, let us remind the reader that such a slow
transition from MOND toward the Newtonian regime is a
priori ruled out by Solar System observations. Indeed,
according to the MOND equation, a planet orbiting the
Sun feels a gravitational field g obeying ð1þ �Þg ¼ gN,
where gN is the Newtonian gravitational field. Hence, if �
scales like g�1 when g � a0 like in (4.31), the gravita-
tional field experienced by planets will involve a constant
supplementary acceleration directed toward the Sun (i.e. a
‘‘Pioneer-type’’ anomaly) given by

g� gN þ �a0: (4.32)

Of course, it is striking that the order of magnitude of the
Pioneer anomaly is the same as theMOND acceleration a0.
Unfortunately, the presence of a constant acceleration such
as in (4.32) should be detected in the motion of planets, and
this is incompatible with current measurements (see e.g.
[45,46] for a discussion).
Despite the fact that a slow transition to the Newtonian

regime (like, for example, the case � ¼ 1) seems to be
favored by observations at the galactic scale [42–44], it

FIG. 4. The potential W as a function of the polarization �?
for different asymptotic behaviors of the gravitational suscepti-
bility � in the Newtonian regime g � a0. The arrows indicate
the direction of increasing gravitational field g.
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does not seem to be viable when extrapolated up to the
scale of the Solar System. In our model, we found that such
a behavior is the result of our belief that the fundamental
function W be univalued. In this respect, the validity of
the model should be limited to large scales, from the
galactic scale up to cosmological scales, i.e. in a regime
of weak gravity. At smaller scales the description in terms
of a single univalued function W should break down. But
with our model being an effective one, or even a phenome-
nological one, the question of whether the potential W is
univalued or not remains an open issue.

V. SUMMARYAND CONCLUSION

In this paper, we proposed a model of dark matter and
dark energy based on the concept of gravitational polar-
ization of a medium of dipole moments. The dynamics of
the dipolar fluid is governed by the Lagrangian (2.7) in
standard general relativity, and constitutes a generalization
of the previous model [26]. Namely, this Lagrangian in-
volves a potential function W , describing at some effec-
tive level a nongravitational internal force influencing the
dynamics of the dipolar fluid, and which depends on the
polarization field or density of dipole moments �? ¼
��? instead of merely the dipole moment itself �? in
the model [26]. This new form of the potential permits
recovering, in a most elegant way, the phenomenology of
MOND in a typical galaxy at low redshift. In addition, we
show that the model naturally contains a cosmological
constant �.

We proved in Sec. III that within the framework of the
theory of first-order cosmological perturbations, the dipo-
lar fluid behaves exactly as standard dark energy (i.e. a
cosmological constant) plus standard dark matter (i.e. a
pressureless perfect fluid). Thus, our model is consistent
with the cosmological observations at large scales. In
particular, it leads to the same predictions as the standard
�-CDM model for the CMB fluctuations. However, at
second order in the cosmological perturbations, we expect
that the dipolar dark matter should differ from a perfect
fluid because of the influence of the internal force resulting
in a nongeodesic motion. The model could thus be checked
by working out the second-order cosmological perturba-
tions and comparing with CMB fluctuations (notably the
effects linked with the non-Gaussianity).

The dynamics of the dipolar dark matter being different
from that of standard dark matter (at the level of nonlinear
perturbations), we expect the monopolar part of the dipolar
dark matter not to cluster much during the cosmological
evolution. We call this expectation the hypothesis of
‘‘weak clustering.’’ It is supported by an exact solution
worked out in the Appendix for the dynamics of dipolar
dark matter in the nonrelativistic limit and in spherical
symmetry. In this solution, the internal force balances the
local gravitational field produced by a spherical mass, so
that the dark matter remains at rest with respect to the

central mass. The weak clustering hypothesis should be
checked via N-body numerical simulations. Under that
hypothesis, we show that the Poisson equation for the
gravitational field generated by the baryonic and dipolar
dark matter reduces to the MOND equation in the regime
of weak gravitational fields g 	 a0. Our model of dipolar
dark matter therefore naturally explains all the successes of
the MOND phenomenology.
To achieve this result (in Sec. IV) we have to adjust the

fundamental potential W in the action. We find that it
should be given by an anharmonic potential, the minimum
of which, reached when �? ¼ 0, is directly related to the
cosmological constant �. It is tempting to interpret � as a
‘‘vacuum polarization’’ of some hypothetical quantum
field, when the classical part of the polarization �? ! 0.
The expansion around that minimum is fine-tuned in order
to recover MOND. In particular, we show that the MOND
acceleration a0 parametrizes the coefficient of the third-
order deviation of W from the minimum. Although fine-
tuned to fit with observations, this potential function W
offers a nice unification between the dark energy in the
form of � and the dark matter in the form of MOND (see
Fig. 3). A consequence of such unification is that the
cosmological constant should scale with the MOND accel-
eration according to �� a20=c

4. This scaling relation is in

good agreement with observations and has a very natural
explanation in our model.
To conclude, we proposed to modify the matter sector

rather than the gravity sector as in modified gravity theo-
ries [14,18,23,24]. Namely, we investigated a model of
dark matter, but of such an exotic form that it naturally
explains the phenomenology of MOND at galactic scales.
Furthermore, that form of dark matter has a simple physi-
cal interpretation in terms of the well-known mechanism of
polarization by an exterior field. More work is necessary to
test the model, either by studying second-order perturba-
tions in cosmology, or by computing numerically the non-
linear growth of perturbations and comparing with large-
scale structures.
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APPENDIX: DARK MATTER IN A CENTRAL
GRAVITATIONAL FIELD

We investigate the dynamics of the dipolar dark
matter fluid in the presence of a spherically symmetric
mass distribution of ordinary baryonic matter in the NR
limit c ! þ1. The equations to solve are the equation
of motion (4.3), the equation of evolution (4.4), the con-
tinuity equation (4.5), and the Poisson equation for the
gravitational field (4.9). Let us rewrite those equations
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here for convenience15:

dv

dt
¼ g�F ; (A1a)

@t� ¼ �r � ð�vÞ; (A1b)

r � g ¼ �4�Gð�þ �b � r ��Þ; (A1c)

d2�

dt2
¼ F þ 1

�
rðW ��W 0Þ þ ð� � rÞg; (A1d)

where the internal force reads F ¼ �̂W 0, with �̂ �
�=�.

Our aim is to solve Eqs. (A1) in the special case where
the baryonic matter is modeled by a time-independent,
spherically symmetric distribution of mass �bðrÞ, say
with compact support. Let us show that there is a simple
solution to such a set of equations, in the case where

v0 ¼ 0; (A2a)

�0 ¼ �0ðrÞ; (A2b)

which corresponds to a static fluid whose mass distribution
is time independent and spherically symmetric. We denote
such a particular solution with a lower index 0. From (A2)
we observe that the continuity equation (A1b) is immedi-
ately satisfied. In such a solution, according to (A1a) the
internal force balances exactly the gravitational field, i.e.
F 0 ¼ g0 (this is somewhat similar to the case of a non-
rotating star in hydrostatic equilibrium, where the pressure
gradient plays the role of the internal force). We deduce
that the polarization field �0 ¼ �0�0 is aligned with the
gravitational field g0. Hence, from Eq. (A1c) both �0 and
g0 are radial. We shall pose g0 ¼ �g0ðr; tÞer and �0 ¼
��0ðr; tÞer, where in our notation g0 > 0 and �0 > 0.

Furthermore, let us show that in addition the polarization
field is practically in ‘‘equilibrium,’’ i.e. �0 is not depen-
dent on time t, and neither is g0. We replace g0 by the

explicit expression of the internal force F 0 ¼ �̂0W 0
0 into

the evolution equation (A1d), use (A2a), and get

@2t �0 � �0W 0
0�̂0 ¼ rðW 0 ��0W 0

0Þ
þ ð� 0 � rÞð�̂0W 0

0Þ: (A3)

Here �̂0 ¼ �0=�0 ¼ �er, and we introduced the short-
hand notation W 0

0 � W 0ð�0Þ. Now, it turns out that the
RHS of this equation vanishes in the special case where the
polarization field is radial; hence we get

@2t�0 ¼ �0W 0
0: (A4)

In order to determine the time evolution of �0, an explicit
expression for the potential W is, in principle, required.

However, we saw in Sec. IVC that the potential W only
depends on the polarization� and the constants a0 and G.
The only time scale one can build with a0, G, and �0 is the

dipolar dark matter self-gravitating time scale �g ¼
ð�=G�0Þ1=2, or equivalently, in terms of frequency, !2

g ¼
4�G�0. Therefore, the polarization�0 can only evolve on
this time scale. For instance, in the MOND regime g 	 a0,
we have at leading order W 0

0 ¼ 4�G�0; hence (A4)
reduces to

@2t�0 ¼ !2
g�0: (A5)

The most general solution of this equation is a linear
combination of hyperbolic cosh!gt and sinh!gt. For a

monopolar dark matter mass density �0 of, say, the mean
cosmological value �� ’ 10�26 kg=m3 [in agreement with
our weak clustering hypothesis (4.11)], the typical time
scale of evolution of�0 will be larger than 6� 1010 years.
This is large enough to neglect any time variation of �0

with respect to a typical orbital time scale in a galaxy. Our
solution is therefore given by

� 0 ¼ ��0ðrÞer; (A6)

together with (A2). The dipole moments are at rest and in
equilibrium. The explicit function �0ðrÞ is determined
from the radial gravitational field g0ðrÞ as16

�0ðrÞ ¼ �ðg0ðrÞÞ; (A7)

where �ðg0Þ denotes the inverse function of W 0ð�0Þ
following the notation (4.26). The gravitational field
g0ðrÞ is determined by the Poisson equation (A1c) as

g0 � 4�G�0 ¼ GM0ðrÞ
r2

; (A8)

where M0ðrÞ ¼ 4�
R
r
0 dss

2½�bðsÞ þ �0ðsÞ� is the mass en-

closed within radius r.
The existence of this physically simple solution repre-

sents notable progress compared to the more complicated
solution found in the previous model [26] (see Sec. IV
there). Such a solution is quite interesting for the present
model because it indicates that during the cosmological
evolution (at nonlinear perturbation order) the dipolar dark
matter may not cluster very much toward regions of over-
density. Most of the effect will be in the dipole moment
vectors which acquire a spatial distribution. This is our
motivation for the ‘‘weak clustering’’ assumption (4.10)
and (4.11) stating that � 	 �b, which was used in
Sec. IVC to obtain MOND. In the present case, neglecting
�0 with respect to �b in the RHS of (A8), we recover the

15In this appendix, we adopt 3-dimensional notations with
boldface vectors, e.g. F ¼ ðF iÞ. We also remove the subscript
? from the variables �? and �? for notational simplicity. The
derivatives of the potential W with respect to its argument �
will be denoted with a prime, e.g. W 0 � W� � dW =d�.

16Note that if in this solution the polarization field �0ðrÞ ¼
�0ðrÞ�0ðrÞ is determined, the density �0ðrÞ and dipole moment
�0ðrÞ are not specified separately. For instance, the density could
be at the uniform cosmological value �� so that �0ðrÞ ¼
�0ðrÞ= ��. This degeneracy of �0ðrÞ is an artifact of our assump-
tions of spherical symmetry and staticity.
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usual MOND equation generated by the baryonic density
only. This being said, such an appealing solution may be
physically irrelevant if the spherically symmetric configu-
ration appears to be unstable with respect to linear pertur-
bations. This motivates the following study of the stability
of the previous solution.

Consider a general perturbation of the background so-
lution, namely,

� ¼ �0 þ 
�; (A9a)

v ¼ 
v; (A9b)

� ¼ � 0 þ 
�: (A9c)

We have also g ¼ g0 þ 
g andF ¼ F 0 þ 
F , where the
expression of the perturbed force in terms of the perturbed
polarization explicitly reads


F ¼ W 00
0 ð�̂0 � 
�Þ�̂0 þW 0

0

�

�

�0

�
�
�̂0 � 
��0

�
�̂0

�
:

(A10)

Assuming a Fourier decomposition for any perturbative
quantity 
X, we write for a given mode of frequency !
and wave number k,


Xðx; tÞ ¼ 
Xðk; !Þeiðk�x�!tÞ: (A11)

We want to find the relation between k � er and !, the so-
called dispersion relation, which contains all the physical
information about the behavior of the generic perturbation
(A11). Introducing this ansatz into (A1), and simplifying
the resulting equations by making use of the background
solution, we find


v ¼ i

!
ð
g� 
F Þ; (A12a)


� ¼ 1

!
ð�0k � 
v� i
v � r�0Þ; (A12b)


g ¼ 4�G
ik

k2
ð
�� ik � 
�Þ: (A12c)

These algebraic expressions can be combined to express

�, 
g, and 
v in terms of 
� only. After some algebra,
we get from the evolution equation (A1d) a relation ex-
pressing the perturbed polarization field 
� ¼ �0
� þ

��0 as

!2
� ¼ !2 
�

�0

�0 þ i!

�0

ð
v � r�0Þ�0 � i!ð
v � rÞ�0

þ ð�̂0 � 
�Þrð�0W 00
0 Þ þ�0W 00

0 ð�̂0 � 
�Þik
� ðik ��0Þ
g� ð
� � rÞg0 � �0
F : (A13)

When replacing 
�, 
g, 
v, and 
F into (A13), we obtain
a master equation for the perturbed polarization 
� which
is quite complicated. Given the complexity of the problem,
we restrict our analysis to the simplest modes in a spheri-
cally symmetric background, namely, those propagating

radially. We shall thus write k ¼ ker, and study succes-
sively the transverse and longitudinal perturbations.
First, let us consider a transverse perturbation 
�, i.e.

one which satisfies 
� � er ¼ 0. Projecting the master
equation (A13) in the direction of 
�, we get that�

!2 þW 0
0

�
1

�0

� 2

r

��

� ¼ 0; (A14)

which simply states that no transverse perturbations prop-
agating radially are allowed, i.e. 
� ¼ 0. Consider now
the case of a longitudinal perturbation 
� ¼ �
�ðr; tÞer,
where 
� can be positive or negative (with our conven-
tion, the norm of� reads� ¼ �0 þ 
�), and represents
the arbitrary amplitude of the applied linear perturbation.
After some lengthy calculations, we get the dispersion
relation

k ¼ i
@r�0

�0

�
1þ!2

!2
g

�
1þ ð4�G�W 00

0 Þ@r�0

!2 þ �0W 00
0 þ�0@rW 00

0

���1
:

(A15)

Notice first that, as the wave number k is purely imaginary,
such a perturbation cannot propagate. Second, the stability
of the background solution with respect to this perturbation
is related to the sign of k=i, so an explicit expression for the
potentialW is required to conclude. Such an expression is
available in the MOND regime g0 	 a0 using the expan-
sion (4.24). Assuming the MOND equation with a (bar-
yonic) point mass M for simplicity, i.e. Eq. (A8) with
�b ¼ M
ðxÞ and negligible �0, we find that the dispersion
relation can be recast at the leading order in the form

k ¼ i
@r�0

�0

!2
gð!2 þ!2

g � 2!2
KÞ

!4 þ 2!2
g!

2 þ!2
gð!2

g � 2!2
KÞ

; (A16)

where !2
K ¼ GM=r3 denotes the Keplerian frequency. We

now turn to the analysis of the two factors in (A16),
namely, the !-dependent and �0-dependent ones.
At a given distance r from the center of the galaxy, the

!-dependent factor becomes very large in the vicinity of
the resonant frequency

!2
R ¼ !gð

ffiffiffi
2

p
!K �!gÞ: (A17)

But we are restricting our attention to perturbations in the
MOND regimewhere g0 	 a0, which means at distances r
from the galactic center that are far larger than the MOND

radius rM � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a0

p
, or equivalently at Keplerian fre-

quencies !K 	 !M with !2
M ¼ GM=r3M. For a typical

galaxy of massM� 1011M
, and a monopolar dark matter
mass density around the mean cosmological value, i.e.
�0� ��’10�26 kg=m3, we find by reporting the constraint

!K 	 !M into (A17) the upper bound !2
R 	 ffiffiffi

2
p

!g!M,

which gives numerically !R 	 10�17s�1. Because pertur-
bations with a typical time scale 2�=! � 2� 1010 years
are out of the present scope, the!-dependent part of (A16)
reduces to a numerically small factor.
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Finally, we consider the �0-dependent part of (A16).
Consistent with the ‘‘weak clustering hypothesis’’ (4.10)
and (4.11), we are expecting the background density profile
�0 to be almost homogeneous. Thus, the factor @r�0=�0

will be of the order of the inverse of the characteristic

length scale L of variation of �0 assumed to be far larger
than the typical size ‘ of the galaxy, which implies jk �
xj & ‘=L ’ 0 in (A11). A longitudinal perturbation would
therefore keep oscillating at the frequency! without prop-
agating, and we conclude that it would be stable.
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