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Innermost circular orbit of binary black holes at the third post-Newtonian approximation
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The equations of motion of two point masses have recently been derived at the third post-Ney&Bhan
approximation of general relativity. From that work we determine the location of the innermost circular orbit
(ICO), defined by the minimum of the binary’s 3PN energy as a function of the orbital frequency for circular
orbits. We find that the post-Newtonian series converges well for equal masses. Spin effects appropriate to
corotational black-hole binaries are included. We compare the result with a recent numerical calculation of the
ICO in the case of two black holes moving on exactly circular orffilical symmetry. The agreement is
remarkably good, indicating that the 3PN approximation is adequate to accurately locate the ICO of two black
holes with comparable masses. This conclusion is reached with the post-Newtonian expansion expressed in the
standard Taylor form, without using resummation techniques such asappdaximants and/or effective-one-
body methods.
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The aim of this article is to compute the innermost circu- Post-Newtonian computations of the motion of point par-
lar orbit (ICO) of point-particle binaries in post-Newtonian ticles face the problem of the regularization of the infinite
approximations, and to compare the result with numericagelf-field of the particles. The regularization scheme of Had-
simulations. For the present purpose, the ICO is defined agmard, in “standard” form, was originally adopted in the
the minimum, when it exists, of the binary’s energy function ADM-Hamiltonian approacli3]. Then an “improved” ver-
E(Q) of circular orbits, whereQ) denotes the orbital fre- Sion of this regularization was defined in Reffg] and ap-
quency. The definition is motivated by our comparison withPlied to the computation of the harmonic-coordinates equa-
the numerical work, because this is precisely that minimuntions of motion[6]. Unfortunately, it has been shown that the
which is computed numerically.The energy function is Hadamard regularization, either in standard or improved
given by the invariant quantity associated with tmmserva- form, leaves unspecified one and only one numerical coeffi-
tive part of the post-Newtonian dynamics, i.e. ignoring thecient in the 3PN equations of motiom,gc in the ADM-
radiation reaction effects. It can be argued, because the r&lamiltonian approach, and in the harmonic-coordinates
diation reaction damping is neglected, that the importance oformalism. The parametes;c can be seen as due to some
the ICO does not lie so much on its strong physical signifi-‘ambiguity” of the standard Hadamard regularization, while
cance, but on the fact that it represents a very useful refei appears rather like a parameter of “incompleteness” in the
ence point on the definition of which the post-Newtonian andmproved versior{7] of this regularization. However, these

numerical methods agree. constants turned out to be equivalent, in the sensd 6h&|
The question of the conservative dynamics of compact

binary systems has been resolved in recent years at the third A= — iw o &87 (1)

post-Newtonian3PN) approximation, corresponding to the 11 s 3080

order 1£° beyond the Newtonian force. After the previous
work of Refs.[1,2], Jaranowski and Scfex [3] and Damour, It has been argued in Reff9] that the numerical value of
Jaranowski and Scher [4] have applied at 3PN order the ®staic cOUld be=—29, because for such a value some differ-
Arnowitt-Deser-Misner-(ADM- )Hamiltonian formalism of ~ent “resummation” techniques, when they are implemented
general relativity. On the other hand, extending the methodt the 3PN order, give approximately the same numerical
of Ref.[5], Blanchet and Faygs,7] performed a 3PN itera- result for the ICO. Even more, it was sugges{&d that
tion of the equations of motiofinstead of a Hamiltonianin ~ ®saic Might be precisely equal tawk ;= — % + & 2=
harmonic coordinates. In the latter approaches, the compact9.34 (corresponding to\* =1.90). But, more recently, a
objects are modelled by point particles, described solely bgomputation ofwgy,i. has been performed by means of a
two mass parameters; andm,. The end results are physi- dimensional regularization, instead of the Hadamard regular-
cally equivalent in the sense that there exists a unique trangzation, within the ADM-Hamiltonian formalisni10], with
formation of the particle’s dynamical variables that changeghe result
the 3PN harmonic coordinates Lagrangian of de Andrade,
Blanchet and Fayg8] into another Lagrangian, whose Leg- e = 0\ = — &872 064 @)
endre transform is identical with the 3PN ADM-coordinates statie 3080 o
Hamiltonian of Damour, Jaranowski and Sferd 4].
We adopt in this article the latter value as our preferred one,
but in fact it is convenient to keep the ambiguity parameter
Yn particular, we do not define the ICO as a point of dynamicalunspecified, and to investigate the behavior of the solutions
(general-relativistig unstability. for different values of\ or wgyggc. FOr instance, we shall
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keep an eye on the values’,,~=—9.34 and also\ TABLE I. Nur.nericallvalues of the sequence of coefficients of
— 0 wgui= — 2.37. The latter case corresponds to the spelN® Post-Newtonian series composing the energy funcgon

cial instance where certain logarithmic constants associated .

with the Hadamard regularization in harmonic coordinates Newtonian 1 PN 2PN SPN

do not depend on the masd€g. Notice that the resul?) is =1 ,, . -0 1 —0.77 —278 —0.97
quite different fromw¥, = —9.34: this suggests, according ,—go 1 ~0.75 —337 —1055

to Ref.[9], that different resummation techniques, viz. Pade
approximants[11] and effective-one-body method42],
which are designed to “accelerate” the convergence of thevhich is equivalent, via the energy and angular-momentum
post-Newtonian series, do not in fact converge toward thdalance equations, to the same relation but between the cor-
same “exact” solution(or, at least, not as fast as expegted responding gravitational-wave fluxes at infinity. From Eg.
Let us now compute the ICO of two point particlgsod-  (5), we see that the points of extremum f6randJ are the
eling black holes at the 3PN order thanks to the previous same. In the limitv— 0, Egs.(3) and(4) reduce to the 3PN
body of works[1—8]. The circular-orbit binding energ (in approximations of the known energy and angular momentum
the center-of-mass frameand angular momentuid are de-  of a test particle in the Schwarzschild background:
duced either from the 3PN harmonic-coordinates Lagrangian

Scl
[8] or, equivalently, from the 3PN ADM-coordinates Hamil- E h(Q): W[1-2(MQ)23[1—3(MQ)23] 12— 1},
tonian[4] (we neglect the 2.5PN radiation dampinghese M
functions are expressed in invariant fofthe same in differ- (6a)
ent coordinate systemsi.e. with the help of the angular e
orbital frequency(). The 3PN energyper unit of total mass J h(Q): (MQ) Y 1-3(M Q)23 12 (6b)
M), describing “irrotational” circular-orbit binaries, is M? '
E(Q) v 23 3 v 23 We recall that in this case the location of the ICO is given by
™ML _2_1_2>(MQ) MOEE=6"32 with EXS=vM(,BB-1) and I
2 =vM 2\/1—2.
+( _ 2_7+ 1_9V_ V_) (MQ)4’3+( _ @ The straightforward post-Newtonian method we follow in
8 8 24 64 this article can be justified by the following arguments. At
the location of the ICO we shall find thd Q¢ is of the
+ 209323_ gﬁwz_ E))\ v order of 10%. Therefore, we expect that the 1PN approxima-
4032 96 9 tion will grossly correspond to a relative modification of the
155 35 binding energy of the order af?~(MQ,c0)??, i.e. 20%;
__,,2__,,3)(MQ)2]_ (3) and similarly that the 2PN and 3PN approximations will
96 5184 yield some effects of magnitude about 5% and 1%, respec-

tively. Consequently the post-Newtonian method should be
adequate in the regime of the ICO, provided that it is imple-
mented up to the 3PN order, so as to be accurate enough. On
the other hand, we see that the 1PN order should yield a
rather poor estimate of the position of the 1CO.

Let us now confirm these estimates with the numerical
values for the post-Newtonian coefficients in the energy

All over this paper we pos&=c=1. Mass parameters are
M=m;+m,, and the symmetric mass ratio=m;m,/M?
such that @< v<1%, with »=3 in the equal-mass case and
—0 in the test-mass limit for one of the bodies. The 3PN
angular momentum, scaled b§?, reads

I =p(MQ)" 13 1+ §+ v (MQ)?3 function (3). As we see from Table I, in the case of compa-
M2 2 6 rable masses and of our preferred valRefor the ambiguity
5 parameter, the absolute values of the post-Newtonian coeffi-
n ( 2_7_ an V_) (MQ)43 cients are roughly of the order of ofthey do not apparently
8 8 24 increase with the order of approximatjomhis means that

the previous estimates are essentially correct. In particular
@+ [ _ 209323+ 4_1772+ %x} » the 3PN approximation should be close to the “exact” value
16 5040 24 9 for the ICO. The post-Newtonian series seems to “converge
well” (in the case where=; and wgy;=0), with a “con-
+ 3_1V2+ (MQ)Z]. (4  vergence radius” of the order of one, i.e. at a much higher
24 1296 frequency than the frequency of the IC@y contrast, we

J’_

1/3

The variations of the energy and angular momentum of the———
binary on the circular orbit during the inspiral phase obey the 2Actually the post-Newtonian series could be only asymptotic

evolutionary(or “thermodynamic’) law (hence divergent but nevertheless it should give good results pro-
dE dJ vided that the series is truncated near some optimal order of ap-
- _0_= (5) proximation. In this article we assume that 3PN is not too far from
dQ daQ’ that optimum.
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recover in Table | the well-known resulsee, e.g[13,14))
that in the perturbative case—0 the post-Newtonian series
converges slowly: the coefficients increase roughly by a fac-
tor 3 at each post-Newtonian order, reflecting the fact that the
radius of convergence of the seriessisThis is clear from
the exact expressio(6a), in which the pole at the valug
corresponds to the light ring of the Schwarzschild metric. 1
Thus the post-Newtonian method is not very appropriate to
the casev=0, where even the 3PN order would rather 1]
poorly approximate the ICO. The situation is therefore the
following: in the case of comparable masses, we do not have
the exact solution, but fortunately the straightforward post-
Newtonian approach is expected to be accurate; in the per

Ico

A V)

turbative limit v=0, the post-Newtonian series is poorly

convergent, but gladly this does not matter because we know *

the exact result§b).

Having thus justified the validity of our approximation,
we look for the point at which botlE(£2) and J()) take
some minimal value€,co=E(Q,c0) and Jico=3(Qco).
As we see from Eq(3), at the 3PN ordeE({2) is a polyno-
mial of the fourth degree in the frequency parameter
=(MQ)?3, Therefore, the value of the minimunxo
=(MQ,c0)?® must be a real positive solution of an alge-
braic equation of the third degrém general:

1+ ax+ Bx2+ yx3=0. (7)
The coefficients are straightforwardly obtained from E).
as

a(v)=—-5- 5 (8a)
81 57 V2 -
Bv)=—g+gr-g, (8b)
\|__ 075 [209323 205 , 440
Y N=" 95t 008 " 22" 9 MY
155 , 35 .
247 " 1206" (80

The regularization constant enters only the third-degree
monomial(3PN ordey. Let us describe, in a qualitative way,
the existence of solutions of E¢¢). We find that the equa-

tion does not always admit a unique real positive solution,
nor even several of them. This depends, for a given choice of,o expression of 4(

the mass ratiov, on the constank. When\ happens to be
smaller that some “critical” valuexy(v), depending orv,
there isno (real positive solution, and therefore there is no
ICO at the 3PN order. Whex is between\ o(») and another
“critical” value \,(v), also depending om, we obtaintwo

> A7 2 4

FIG. 1. The possible solutions as a function of the regularization
constant\.There is no solution wheR<\y(v), two possible solu-
tions when Ag(v)<N<\i(v) [which become degenerate at
=\o(v)], and a unique solution when, (v)<\. The upper branch,
existing between y(v) and the vertical asymptote at=x,(v), is
actually a maximum of the energy.

solution: X,co, and this is a minimum of the energy. The
latter regime, where the circular-orbit energy admits a unique
extremum, which is a minimurflike for the Schwarzschild
metric), is the simplest on the physical point of view. The
interesting values ol are located in the regime whepe
=\4(v) (for irrotational binaries We summarize our dis-
cussion in Fig. 1.

It is not difficult to determine analytically the functions
No(v) and\1(v). Indeed\(v) represents simply the mini-
mal value of the functiox,co— \(v,X,co) (see Fig. L Us-
ing also Eq.(7), we readily find the mathematical relation
defining A o(v):

A=No(v)=y(v,N)
_ 2 2 -3 3/2_ 3 9 9
= 57| [a”(1) =3BV "= (v) + S a(v) B(v) |, (9)

from which the explicit expression ofy(v) can be found
using Egs.(8). On the other hand, the function;(v) is
determined by the cancellation of the third-degree coefficient
in the equation(7), i.e.

A=N(v)&ey(v,\)=0. (10

v) then follows from using Eq(8c).
For allowed values of €]0,5], we find that both\ o( ») and
N1(v) are increasing functions of, with maximal values

No(3)=—2.2 and\,(3)=—0.96, and satisfy\o(v)— —
and\ ;(v)— —«~ whenv—0. Furthermore, we always have

real positive solutions. In this case, the energy function adiq(v)<\1(v). This analysis shows that in the case of our

mits two extrema, a minimum and a maximum. The maxi-

1987

3050=—0.64, as well as in the cases

preferred valuex =

mum occurs at a higher frequency than the minimum of thevhere wg,i= —9.34 andA =0, the energy functiorkE((2)

ICO, and is to be discarded on physical groufitie corre-

given by Eq.(3), for any mass ratiov, admits a unique ex-

sponding frequency is generally too high, e.g. higher tharremum, which is a minimum, at son{e,- (for corotating

M~1, for being of physical interest Finally, when\ is
larger than\;(v), there is one and only one real positive

binaries we shall find a minimum and also a maximum at
very high frequency We show in Fig. 2 the graph &((})
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E(@)M posed “helical” symmetry constitutes an important physical
restriction to binary systems moving @xactlycircular or-
bits. By helical symmetry we mean that the space-time is
endowed with a Killing vector field of the typke=(d/dt)
+Q(aldp), wheredl/dt and d/d¢ denote, respectively, the
time-like and space-like vectors that coincide asymptotically
with the coordinate vectors of an asymptotically inertial ob-
server. A crucial advantage of the helical symmetry, espe-
cially in view of the comparison we want to make with the
post-Newtonian calculation, is that the orbital frequeficis
unambiguously defined as the rotation rate of the Killing
vector. Thanks to these approximations, Gourgoulhon,
Grandclenent and Bonazzolfl5,16 were able to obtain
numerically the energy and angular momentum along the
binary's evolutionary sequence, i.e. maintaining E§)
along the sequence, and to determine the minimum of these

MQ functions or ICO.

0.06  0.08 0T 014 0.16  0.18 The numerical calculation reported in Ref45,16 has
been performed in the case afrotatingblack holes, which
FIG. 2. The 3PN energy functidB((2) for equal-mass binaries gre spinning with the orbital angular velocify. We must
and wggaic=0. therefore include within our post-Newtonian treatment the
effect of spins appropriate to two Kerr black holes rotating
for equal masses andq,= 0. Anticipating on our discus- at the orbital rate). By combining the formula of
sion below, it is interesting to compare Fig. 2 with the resultChristodoulou and Ruffinim2:m§,+ 52/(4m§r), with the
of the numerical simulation provided by the Fig. 16 in Ref. known relation between the black-hole spin and its angular
[16]. velocity*: S=2m3Q[1+ 1—(S?/m?%], we obtain the total
In Table Il we present the values of the calculated fre-massm and spinS of each of the corotating black holes in

quency{co, the corresponding enerdyico and angular  terms of their irreducible massy,, ,
momentumJ,co, at the 1PN and 2PN orders, and at the 3PN

order in the three cases wheigic=0, A=0, and wgasic my,

=—9.34. The 1PN and 2PN approximations are defined by = =m+2m> Q% (11a

the obvious truncation of Eq$3) and(4). Notice how close V1—4(mi Q)

together already are the 2PN and 3PN approximatibos/-

ever, the 1PN order seems to be quite inadequatet us am3 Q 3

now show that the 3PN approximation, in standard form Szm:“mmﬂ- (11b
Iirr

(Taylor approximants appears to be very good to locate the
turning point of the ICO, in the sense that the prediction forT
that point is close to the recent result of numerical relativity.C
A novel approach to the problem of the numerical com-
putation of binary black holes in the pre-coalescence stag
has been proposed and implemented by Gourgoulhon,
Grandclenent and Bonazzol&15,16. This approach uses
multi-domain spectral methodd7], and is based on two
approximations, the first one is essentially “technical,” the
other one is “physical.” The technical assumptigwhich
could be relaxed in future woyks the conformal flatness of
the spatial metric:yiJ-:‘lf“éij. On the other hand, an im-

he irreducible masses are precisely the ones which are held
onstant along the evolutionary sequences calculated nu-
merically in Refs.[15,16. Therefore our first task is to re-
lace all the masses parametrizing the shit-E, where
=m;+m, is the total rest mass energy akds the 3PN
binding energy given by Eq3), by their equivalent expres-
sions, following Eq.(113, in terms of the two irreducible
masses. It is clear that the leading contribution is that of the
kinetic energy of the spins and will come from the replace-
ment of the rest mass enerfyy; from Eq. (119 we see that
this effect will be of ordef)? in the case of corotating bina-
ries, which means by comparison with E@) that it is

l .
TABLE Il. Parameters for the ICO of equal-mass<z) binary equivalent to an “orbital” effect at the 2PN order. Higher-

tems. . . . .
systems order corrections in Eq(118 will behave at least like*
MQco Eico Jico
M M2
3 . - . B
_ The importance of the effect of spins in corotating systems of
1PN 0522 0.0405 0.621 neutron stars, for which the ICO is usually determined by the hy-
2PN 0.137 —0.0199 0.779 drodynamical instability rather than by the effect of general relativ-
3PN wgtaic=0 0.129 —0.0193 0.786 ity, is well known[18].
3PNA=0 0.116 —0.0184 0.798 “More precisely the angular velocity is defined as the one of the
3PN wgpaic= —9.34 0.095 —0.0166 0.824 outgoing photons that remain forever at the location of the horizon;

see Eq(33.42h in Ref.[19].
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S e e B B LA p i B TABLE Ill. Parameters for the ICO of corotational equal-mass
binary systems.
C ZPNcorot i
-0.015 |- ®e 3PN . E
L 4 ICO
* NUMERICAL ] Mico ™
[ 3PN ] orot
—002 % 2PN ] 1PN 0.522 —0.0405
L ] 2PNt 0.081 —0.0145
3PN ) atic= 0 0.091 —0.0153

—0.025 - —

r 1 systems. Considering all the contributions present with the
-0.03 |- ] 3PN accuracy, we thus obtain three terms=@&)(MQ)?
coming from the kinetic energy of the corotating spins;
(—2v+ %) (MQ)®3 due to a coupling between the spin ki-
netic energy and the orbital energy: & v+ 121?)(MQ)®?3

due to the S.O. interactiof12). Numerically the kinetic en-

Eco/M

-0.035 - -

_004 | 1PN°°.'°‘ ] ergy of the spins will dominate the other effects. Hence the
i 1PN 1 supplementary energy that is due specifically to the corota-
r 1 tion reads
-0.045 PR YT Y [N YN TN T TN [ W ST ST S N ST S T TN AN SN TN ST Y TN M N
o} 0.1 0.2 0.3 C.4 0.5 0.6 Ecorox Q )
MQICO T:(2_6v)(MQ)2

FIG. 3. Results forE oo versusQ,co in the equal-mass case.
The asterisk marks the result calculated by numerical relativity. The +
points indicated by 1PN, 2PN and 3PN are computed from(8g.

and correspond to irrotational binaries. The points denoted byl_ o . . .
1PNt 2 PNFOrt and 3PNP™ come from the sum of Eq$3) and he total binding energy of the corotating binary is the sum

(13), and describe corotational binaries. Both 3PN are ®hre  Of Egs.(3) and(13). Notice that we must now understand all
shown forwgi=0. the masses in Eq¢3) and (13) as being the irreducible
massegwe no longer indicate the superscripts “ipf"which

and correspond to the 5PN order at least, negligible for thétay constant when the binary evolves following ES).
present purpose. In addition there will be a subdominant con- In Table Ill we present our results féjco and() o of a
tribution, of order(2®? or 3PN, coming from the replacement corotational binary. SincE®", given by Eq(13), is at least
of the masses into the “Newtonian” part,Q2??, of the bind-  of order 2PN, the result for 1PR° s the same as for 1PN
ing energyE [see Eq(3)]. At the 3PN approximation we do in the irrotational case; then, obviously, 2PK takes into
not need to replace the masses into the post-Newtonian cogccount only the leading 2PN corotation efféce. the ki-
rections inE. Our second task is to include the relativistic netic energy of the spifiswhile 3PN involves also, in
spin-orbit (S.0) interaction. In the case of spirg andS,  particular, the corotational S.O. coupling at 3PN order. In
aligned parallel to the orbital angular momentgand right-  Fig. 3 we plotE ¢ versus(),co, computed with and without
handed with respect to the sense of motithe S.O. contri- the corotation effect, and compare the values with the result
bution to the energy read20,21] obtained by numerical relativity under the assumption of he-
lical symmetry[16]. As we can see the 3PN points, and even
4 mi S, the 2PN ones, are rather close to the numerical value. As
§W+ v|i— expected, the best agreement is for the 3PN approximation
my and in the case of corotatidni.e. the point 3PKP™ How-
2 ever, the 1PN approximation is clearly not precise enough,
4 mj S, o R o
4| - =4 ,,)_ ) (12) but this is not very surprising in this highly relativistic re-
gime where the orbital velocity reachas~(MQ,co)*?
~0.5. Summarizing, we find that the location of the ICO
As can immediately be infered frorS=4m®Q, which is  computed by numerical relativity, under the helical-
deduced from Eq(11b),” in the case of corotating black symmetry approximation, is in good agreement with post-
holes the S.O. effect is of order 3PN and therefore must b&lewtonian predictions. This was already pointed out in Ref.
retained at the present accurduyth this approximation, the [16] from the comparison with Padend effective-one-body
masses in Eq.12) can be chosen to be the irreducible opes (EOB) methods. This constitutes an appreciable improve-
By contrast, the spin-spifS.S) interaction turns out to be
much smaller, equivalent to the 5PN order for corotating———
%We have checked that our best value, given by ®PNis not
significantly modified numerically when we add the higher-order
5The moment of inertia of the Kerr black hole in the limit of slow spin effects in Eq(13) up to the 5PN order, i.e. including, in par-
rotations isl =4m?3, in accordance with Eq2.61) in Ref.[22]. ticular, the S.S. interaction.

18
- —p+132|(MQ)®R, (13

3

Eso=—vM(MQ)%3

124009-5
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-0.014 T T T T T T 0.86 T T T T T T T T T
i | s EOB (Weeie=—9.34) ]
L | ] static -
-0.015 |- @ EOB (Wuoi=—9.34) - 085 r ]
[ ] 084 [ * NUMERICAL 3
-0.016 — L ]
i 3PN (waere=—9.34 1 083 | ]
[ EOB (Wyoie=0)w @ (o ) ] I 3PN (Wyaie=—9.34) ]
2 o017 | « NUMERICAL ] o g . sotc ]
L:? r 1 ~ 0.82 -EOB (wstuﬁc=o) [ ] 7]
£ . ]
-0.018 - - 081 | .
L 3PN (A=0) : 1
L ]
-0.019 L j—method (Waw.=0) a 3PN (wmﬁfo); 0.8 :_ oJPN ()\=O) _:
i o | r ]
r e—method (W.u=0) A. 078 I j=method (wm‘k=o) 4 3PN (wsmﬁc=0)_-
-0.02 ° ]
F 2PN — e—method (Wae=0) 4
[ ®2PN
0021 e b Lo b b L e L
0.06 0.07 0.08 0.09 0.1 0.1 0.12 013 0.14 0.15 0.77 PRI BRI BTN B R SRS BT BT BT
MQ '0.06 0.07 008 0.09 0.1 0.11 012 013 0.14 0.15
(o]

MQco
FIG. 4. Results forlE g in terms of Q¢ in the equal-mass
case. Thee andj methods are Padapproximants at the 3PN order. ~ FIG. 5. Same as Fig. 4 but for the angular momentiyg .
EOB refers to the effective-one-body approach at the 3PN ordet,
The points marked by 2PN and 3PN correspond to the standara
Taylor post-Newtonian serieghis work. The results for Pade
EOB and Taylor are for irrotational binaries.

uilt, respectively, on the energy and angular momerftam
or the case at hand—equal-mass binaries—there is appar-
ently no improvement from using Pa@@proximants. Nev-
ertheless, it is true that in the test-mass limit:0 the Pade
series converges rapidly toward the exact refidf]. For
ment of the previous situation, because we recall that thénstance, the Padeonstructed in this case from the 2PN
earlier estimates of the ICO in post-Newtonian theory,approximation of the energy already coincides with the exact
MQ,c0=0.06 andE,co/M=—0.009[23], and in numerical ~expression for the Schwarzschild metrgiven by Eq.(6a)].
relativity, MQ,co=0.17 and E,co/M=—0.024 [24,25, But, the results of Figs. 4 and 5 suggest that this interesting
strongly disagree with each other, and do not match with théeature of the Padapproximants is lost when we turn on
present 3PN resultsee Ref[16] for further discussion and cons[der the equal-mass case;. Notice also that the
Let us emphasize that our computation has been based @'N versions of these Padehich are given in Table | of
the standard post-Newtonian approximation, expanded in thB&f-[9], differ much more significantly from the correspond-

. 3PN ones than in the case of Taylor. For instance, the
usual way as a Taylor series in the frequency-related para ng X '
eterx=(MQ)?3 [see Eqs(3), (4) and (13)], without using PN e-method yields the value§l (),co=0.09 andEco/M

any resummation techniques. In Figs. 4 and 5 we display our... 0.016, which, respectively, differ by about 36% and 22%

Taylor-series-based values fBifeo andJ,es (they are indi- with the frequency and energy given by themethod at 3PN.

cated by the marks 2PN and 3PNind contrast them with !P the caseh of Tqylor% the sarpehflg“uées z?]re or_lly GZ‘%?Qd 3%.

some results obtained by means of resummation techniquer?us’ on the point of view of the “Cauchy criterium,the

at the 3PN order: Padapproximantg11.9) and EOB meth- aylor series seems to converge better that the Bpgeoxi-

ods[12,9]. All these results agree rather well with each Other,mants(for equal masses

and, as we have seen, even the 2Fblylor) approximation It is a pleasure to thank Eric Gourgoulhon for informative

does well. discussions, and Alessandra Buonanno and Gilles Esposito-
A point we make is that the sophisticated Pagproxi-  Farese for useful remarks.

mants give about the same results as the standard post-

Newtonian expansion, based on the much simpler Taylor ap-—

proximants: indeed, see in Figs. 4 and 5 the points referred to’The Cauchy criterium for the serieSa, is the fact that

as thee andj methods, which are 3PN Padesummations |a,—a,|—0 for anyn andm.
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