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Innermost circular orbit of binary black holes at the third post-Newtonian approximation

Luc Blanchet
Gravitation et Cosmologie (GReCO), Institut d’Astrophysique de Paris, CNRS, 98bis boulevard Arago, 75014 Paris, France

~Received 21 December 2001; revised manuscript received 28 January 2002; published 31 May 2002!

The equations of motion of two point masses have recently been derived at the third post-Newtonian~3PN!
approximation of general relativity. From that work we determine the location of the innermost circular orbit
~ICO!, defined by the minimum of the binary’s 3PN energy as a function of the orbital frequency for circular
orbits. We find that the post-Newtonian series converges well for equal masses. Spin effects appropriate to
corotational black-hole binaries are included. We compare the result with a recent numerical calculation of the
ICO in the case of two black holes moving on exactly circular orbits~helical symmetry!. The agreement is
remarkably good, indicating that the 3PN approximation is adequate to accurately locate the ICO of two black
holes with comparable masses. This conclusion is reached with the post-Newtonian expansion expressed in the
standard Taylor form, without using resummation techniques such as Pade´ approximants and/or effective-one-
body methods.
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The aim of this article is to compute the innermost circ
lar orbit ~ICO! of point-particle binaries in post-Newtonia
approximations, and to compare the result with numer
simulations. For the present purpose, the ICO is defined
the minimum, when it exists, of the binary’s energy functi
E(V) of circular orbits, whereV denotes the orbital fre
quency. The definition is motivated by our comparison w
the numerical work, because this is precisely that minim
which is computed numerically.1 The energy function is
given by the invariant quantity associated with theconserva-
tive part of the post-Newtonian dynamics, i.e. ignoring t
radiation reaction effects. It can be argued, because the
diation reaction damping is neglected, that the importanc
the ICO does not lie so much on its strong physical sign
cance, but on the fact that it represents a very useful re
ence point on the definition of which the post-Newtonian a
numerical methods agree.

The question of the conservative dynamics of comp
binary systems has been resolved in recent years at the
post-Newtonian~3PN! approximation, corresponding to th
order 1/c6 beyond the Newtonian force. After the previou
work of Refs.@1,2#, Jaranowski and Scha¨fer @3# and Damour,
Jaranowski and Scha¨fer @4# have applied at 3PN order th
Arnowitt-Deser-Misner-~ADM- !Hamiltonian formalism of
general relativity. On the other hand, extending the met
of Ref. @5#, Blanchet and Faye@6,7# performed a 3PN itera
tion of the equations of motion~instead of a Hamiltonian! in
harmonic coordinates. In the latter approaches, the com
objects are modelled by point particles, described solely
two mass parametersm1 andm2. The end results are phys
cally equivalent in the sense that there exists a unique tr
formation of the particle’s dynamical variables that chang
the 3PN harmonic coordinates Lagrangian of de Andra
Blanchet and Faye@8# into another Lagrangian, whose Leg
endre transform is identical with the 3PN ADM-coordinat
Hamiltonian of Damour, Jaranowski and Scha¨fer @4#.

1In particular, we do not define the ICO as a point of dynami
~general-relativistic! unstability.
0556-2821/2002/65~12!/124009~7!/$20.00 65 1240
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Post-Newtonian computations of the motion of point p
ticles face the problem of the regularization of the infin
self-field of the particles. The regularization scheme of Ha
amard, in ‘‘standard’’ form, was originally adopted in th
ADM-Hamiltonian approach@3#. Then an ‘‘improved’’ ver-
sion of this regularization was defined in Refs.@7# and ap-
plied to the computation of the harmonic-coordinates eq
tions of motion@6#. Unfortunately, it has been shown that th
Hadamard regularization, either in standard or improv
form, leaves unspecified one and only one numerical coe
cient in the 3PN equations of motion,vstatic in the ADM-
Hamiltonian approach, andl in the harmonic-coordinate
formalism. The parametervstatic can be seen as due to som
‘‘ambiguity’’ of the standard Hadamard regularization, whi
l appears rather like a parameter of ‘‘incompleteness’’ in
improved version@7# of this regularization. However, thes
constants turned out to be equivalent, in the sense that@6,4,8#

l52
3

11
vstatic2

1987

3080
. ~1!

It has been argued in Ref.@9# that the numerical value o
vstatic could be.29, because for such a value some diffe
ent ‘‘resummation’’ techniques, when they are implemen
at the 3PN order, give approximately the same numer
result for the ICO. Even more, it was suggested@9# that
vstatic might be precisely equal tovstatic* 52 47

3 1 41
64 p2.

29.34 ~corresponding tol* .1.90). But, more recently, a
computation ofvstatic has been performed by means of
dimensional regularization, instead of the Hadamard regu
ization, within the ADM-Hamiltonian formalism@10#, with
the result

vstatic50⇔l52
1987

3080
.20.64. ~2!

We adopt in this article the latter value as our preferred o
but in fact it is convenient to keep the ambiguity parame
unspecified, and to investigate the behavior of the soluti
for different values ofl or vstatic. For instance, we shal

l
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LUC BLANCHET PHYSICAL REVIEW D 65 124009
keep an eye on the valuesvstatic* .29.34 and alsol
50⇔vstatic.22.37. The latter case corresponds to the s
cial instance where certain logarithmic constants associ
with the Hadamard regularization in harmonic coordina
do not depend on the masses@6#. Notice that the result~2! is
quite different fromvstatic* .29.34: this suggests, accordin
to Ref. @9#, that different resummation techniques, viz. Pa´
approximants@11# and effective-one-body methods@12#,
which are designed to ‘‘accelerate’’ the convergence of
post-Newtonian series, do not in fact converge toward
same ‘‘exact’’ solution~or, at least, not as fast as expecte!.

Let us now compute the ICO of two point particles~mod-
eling black holes! at the 3PN order thanks to the previo
body of works@1–8#. The circular-orbit binding energyE ~in
the center-of-mass frame!, and angular momentumJ, are de-
duced either from the 3PN harmonic-coordinates Lagrang
@8# or, equivalently, from the 3PN ADM-coordinates Ham
tonian @4# ~we neglect the 2.5PN radiation damping!. These
functions are expressed in invariant form~the same in differ-
ent coordinate systems!, i.e. with the help of the angula
orbital frequencyV. The 3PN energy~per unit of total mass
M ), describing ‘‘irrotational’’ circular-orbit binaries, is

E~V!

M
52

n

2
~MV!2/3H 11S 2

3

4
2

n

12D ~MV!2/3

1S 2
27

8
1

19

8
n2

n2

24D ~MV!4/31S 2
675

64

1F209323

4032
2

205

96
p22

110

9
l Gn

2
155

96
n22

35

5184
n3D ~MV!2J . ~3!

All over this paper we poseG5c51. Mass parameters ar
M5m11m2, and the symmetric mass ration5m1m2 /M2

such that 0,n< 1
4 , with n5 1

4 in the equal-mass case andn
→0 in the test-mass limit for one of the bodies. The 3P
angular momentum, scaled byM2, reads

J~V!

M2
5n~MV!21/3H 11S 3

2
1

n

6D ~MV!2/3

1S 27

8
2

19

8
n1

n2

24D ~MV!4/3

1S 135

16
1F2

209323

5040
1

41

24
p21

88

9
lGn

1
31

24
n21

7

1296
n3D ~MV!2J . ~4!

The variations of the energy and angular momentum of
binary on the circular orbit during the inspiral phase obey
evolutionary~or ‘‘thermodynamic’’! law

dE

dV
5V

dJ

dV
, ~5!
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which is equivalent, via the energy and angular-moment
balance equations, to the same relation but between the
responding gravitational-wave fluxes at infinity. From E
~5!, we see that the points of extremum forE andJ are the
same. In the limitn→0, Eqs.~3! and ~4! reduce to the 3PN
approximations of the known energy and angular momen
of a test particle in the Schwarzschild background:

ESch~V!

M
5n$@122~MV!2/3#@123~MV!2/3#21/221%,

~6a!

JSch~V!

M2
5n~MV!21/3@123~MV!2/3#21/2. ~6b!

We recall that in this case the location of the ICO is given
MV ICO

Sch5623/2, with EICO
Sch5nM (A8/921) and JICO

Sch

5nM2A12.
The straightforward post-Newtonian method we follow

this article can be justified by the following arguments.
the location of the ICO we shall find thatMV ICO is of the
order of 10%. Therefore, we expect that the 1PN approxim
tion will grossly correspond to a relative modification of th
binding energy of the order ofv2;(MV ICO)2/3, i.e. 20%;
and similarly that the 2PN and 3PN approximations w
yield some effects of magnitude about 5% and 1%, resp
tively. Consequently the post-Newtonian method should
adequate in the regime of the ICO, provided that it is imp
mented up to the 3PN order, so as to be accurate enough
the other hand, we see that the 1PN order should yiel
rather poor estimate of the position of the ICO.

Let us now confirm these estimates with the numeri
values for the post-Newtonian coefficients in the ene
function ~3!. As we see from Table I, in the case of comp
rable masses and of our preferred value~2! for the ambiguity
parameter, the absolute values of the post-Newtonian co
cients are roughly of the order of one~they do not apparently
increase with the order of approximation!. This means that
the previous estimates are essentially correct. In partic
the 3PN approximation should be close to the ‘‘exact’’ val
for the ICO. The post-Newtonian series seems to ‘‘conve
well’’ ~in the case wheren5 1

4 andvstatic50), with a ‘‘con-
vergence radius’’ of the order of one, i.e. at a much high
frequency than the frequency of the ICO.2 By contrast, we

2Actually the post-Newtonian series could be only asympto
~hence divergent!, but nevertheless it should give good results p
vided that the series is truncated near some optimal order of
proximation. In this article we assume that 3PN is not too far fro
that optimum.

TABLE I. Numerical values of the sequence of coefficients
the post-Newtonian series composing the energy function~3!.

Newtonian 1 PN 2PN 3PN

n5
1
4 vstatic50 1 20.77 22.78 20.97

n50 1 20.75 23.37 210.55
9-2
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INNERMOST CIRCULAR ORBIT OF BINARY BLACK . . . PHYSICAL REVIEW D65 124009
recover in Table I the well-known result~see, e.g.@13,14#!
that in the perturbative casen→0 the post-Newtonian serie
converges slowly: the coefficients increase roughly by a f
tor 3 at each post-Newtonian order, reflecting the fact that
radius of convergence of the series is1

3 . This is clear from
the exact expression~6a!, in which the pole at the value13
corresponds to the light ring of the Schwarzschild met
Thus the post-Newtonian method is not very appropriate
the casen50, where even the 3PN order would rath
poorly approximate the ICO. The situation is therefore
following: in the case of comparable masses, we do not h
the exact solution, but fortunately the straightforward po
Newtonian approach is expected to be accurate; in the
turbative limit n50, the post-Newtonian series is poor
convergent, but gladly this does not matter because we k
the exact results~6!.

Having thus justified the validity of our approximation
we look for the point at which bothE(V) and J(V) take
some minimal valuesEICO5E(V ICO) and JICO5J(V ICO).
As we see from Eq.~3!, at the 3PN orderE(V) is a polyno-
mial of the fourth degree in the frequency parameterx
[(MV)2/3. Therefore, the value of the minimum,xICO
5(MV ICO)2/3, must be a real positive solution of an alg
braic equation of the third degree~in general!:

11ax1bx21gx350. ~7!

The coefficients are straightforwardly obtained from Eq.~3!
as

a~n!52
3

2
2

n

6
, ~8a!

b~n!52
81

8
1

57

8
n2

n2

8
, ~8b!

g~n,l!52
675

16
1F209323

1008
2

205

24
p22

440

9
lGn

2
155

24
n22

35

1296
n3. ~8c!

The regularization constantl enters only the third-degre
monomial~3PN order!. Let us describe, in a qualitative wa
the existence of solutions of Eq.~7!. We find that the equa
tion does not always admit a unique real positive soluti
nor even several of them. This depends, for a given choic
the mass ration, on the constantl. Whenl happens to be
smaller that some ‘‘critical’’ valuel0(n), depending onn,
there isno ~real positive! solution, and therefore there is n
ICO at the 3PN order. Whenl is betweenl0(n) and another
‘‘critical’’ value l1(n), also depending onn, we obtaintwo
real positive solutions. In this case, the energy function
mits two extrema, a minimum and a maximum. The ma
mum occurs at a higher frequency than the minimum of
ICO, and is to be discarded on physical grounds~the corre-
sponding frequency is generally too high, e.g. higher th
M 21, for being of physical interest!. Finally, when l is
larger thanl1(n), there is one and only one real positiv
12400
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solution: xICO , and this is a minimum of the energy. Th
latter regime, where the circular-orbit energy admits a uniq
extremum, which is a minimum~like for the Schwarzschild
metric!, is the simplest on the physical point of view. Th
interesting values ofl are located in the regime wherel
>l1(n) ~for irrotational binaries!. We summarize our dis-
cussion in Fig. 1.

It is not difficult to determine analytically the function
l0(n) andl1(n). Indeed,l0(n) represents simply the mini
mal value of the functionxICO→l(n,xICO) ~see Fig. 1!. Us-
ing also Eq.~7!, we readily find the mathematical relatio
definingl0(n):

l5l0~n!⇔g~n,l!

5
2

27F @a2~n!23b~n!#3/22a3~n!1
9

2
a~n!b~n!G , ~9!

from which the explicit expression ofl0(n) can be found
using Eqs.~8!. On the other hand, the functionl1(n) is
determined by the cancellation of the third-degree coeffici
in the equation~7!, i.e.

l5l1~n!⇔g~n,l!50. ~10!

The expression ofl1(n) then follows from using Eq.~8c!.

For allowed values ofnP]0,1
4 ], we find that bothl0(n) and

l1(n) are increasing functions ofn, with maximal values

l0( 1
4 ).22.2 andl1( 1

4 ).20.96, and satisfyl0(n)→2`
andl1(n)→2` whenn→0. Furthermore, we always hav
l0(n),l1(n). This analysis shows that in the case of o
preferred valuel52 1987

3080.20.64, as well as in the case
wherevstatic529.34 andl50, the energy functionE(V)
given by Eq.~3!, for any mass ration, admits a unique ex-
tremum, which is a minimum, at someV ICO ~for corotating
binaries we shall find a minimum and also a maximum
very high frequency!. We show in Fig. 2 the graph ofE(V)

FIG. 1. The possible solutions as a function of the regularizat
constantl.There is no solution whenl,l0(n), two possible solu-
tions when l0(n)<l,l1(n) @which become degenerate atl
5l0(n)#, and a unique solution whenl1(n)<l. The upper branch,
existing betweenl0(n) and the vertical asymptote atl5l1(n), is
actually a maximum of the energy.
9-3
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LUC BLANCHET PHYSICAL REVIEW D 65 124009
for equal masses andvstatic50. Anticipating on our discus-
sion below, it is interesting to compare Fig. 2 with the res
of the numerical simulation provided by the Fig. 16 in R
@16#.

In Table II we present the values of the calculated f
quencyV ICO , the corresponding energyEICO and angular
momentumJICO , at the 1PN and 2PN orders, and at the 3
order in the three cases wherevstatic50, l50, andvstatic
529.34. The 1PN and 2PN approximations are defined
the obvious truncation of Eqs.~3! and~4!. Notice how close
together already are the 2PN and 3PN approximations~how-
ever, the 1PN order seems to be quite inadequate!. Let us
now show that the 3PN approximation, in standard fo
~Taylor approximants!, appears to be very good to locate t
turning point of the ICO, in the sense that the prediction
that point is close to the recent result of numerical relativ

A novel approach to the problem of the numerical co
putation of binary black holes in the pre-coalescence st
has been proposed and implemented by Gourgoulh
Grandclément and Bonazzola@15,16#. This approach use
multi-domain spectral methods@17#, and is based on two
approximations, the first one is essentially ‘‘technical,’’ t
other one is ‘‘physical.’’ The technical assumption~which
could be relaxed in future work! is the conformal flatness o
the spatial metric:g i j 5C4d i j . On the other hand, an im

TABLE II. Parameters for the ICO of equal-mass (n5
1
4 ) binary

systems.

MV ICO
EICO

M

JICO

M2

1PN 0.522 20.0405 0.621
2PN 0.137 20.0199 0.779
3PN vstatic50 0.129 20.0193 0.786
3PN l50 0.116 20.0184 0.798
3PN vstatic529.34 0.095 20.0166 0.824

FIG. 2. The 3PN energy functionE(V) for equal-mass binaries
andvstatic50.
12400
t
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y
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posed ‘‘helical’’ symmetry constitutes an important physic
restriction to binary systems moving onexactlycircular or-
bits. By helical symmetry we mean that the space-time
endowed with a Killing vector field of the typel m5(]/]t)
1V(]/]w), where]/]t and ]/]w denote, respectively, the
time-like and space-like vectors that coincide asymptotica
with the coordinate vectors of an asymptotically inertial o
server. A crucial advantage of the helical symmetry, es
cially in view of the comparison we want to make with th
post-Newtonian calculation, is that the orbital frequencyV is
unambiguously defined as the rotation rate of the Killi
vector. Thanks to these approximations, Gourgoulh
Grandclément and Bonazzola@15,16# were able to obtain
numerically the energy and angular momentum along
binary’s evolutionary sequence, i.e. maintaining Eq.~5!
along the sequence, and to determine the minimum of th
functions or ICO.

The numerical calculation reported in Refs.@15,16# has
been performed in the case ofcorotatingblack holes, which
are spinning with the orbital angular velocityV. We must
therefore include within our post-Newtonian treatment t
effect of spins,3 appropriate to two Kerr black holes rotatin
at the orbital rateV. By combining the formula of
Christodoulou and Ruffini:m25mirr

2 1S2/(4mirr
2 ), with the

known relation between the black-hole spin and its angu
velocity4: S52m3V@11A12(S2/m4)#, we obtain the total
massm and spinS of each of the corotating black holes i
terms of their irreducible massmirr ,

m5
mirr

A124~mirrV!2
.mirr12mirr

3 V2, ~11a!

S5
4mirr

3 V

A124~mirrV!2
.4mirr

3 V. ~11b!

The irreducible masses are precisely the ones which are
constant along the evolutionary sequences calculated
merically in Refs.@15,16#. Therefore our first task is to re
place all the masses parametrizing the sumM1E, where
M5m11m2 is the total rest mass energy andE is the 3PN
binding energy given by Eq.~3!, by their equivalent expres
sions, following Eq.~11a!, in terms of the two irreducible
masses. It is clear that the leading contribution is that of
kinetic energy of the spins and will come from the replac
ment of the rest mass energyM; from Eq. ~11a! we see that
this effect will be of orderV2 in the case of corotating bina
ries, which means by comparison with Eq.~3! that it is
equivalent to an ‘‘orbital’’ effect at the 2PN order. Highe
order corrections in Eq.~11a! will behave at least likeV4

3The importance of the effect of spins in corotating systems
neutron stars, for which the ICO is usually determined by the
drodynamical instability rather than by the effect of general rela
ity, is well known @18#.

4More precisely the angular velocity is defined as the one of
outgoing photons that remain forever at the location of the horiz
see Eq.~33.42b! in Ref. @19#.
9-4
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INNERMOST CIRCULAR ORBIT OF BINARY BLACK . . . PHYSICAL REVIEW D65 124009
and correspond to the 5PN order at least, negligible for
present purpose. In addition there will be a subdominant c
tribution, of orderV8/3 or 3PN, coming from the replacemen
of the masses into the ‘‘Newtonian’’ part,}V2/3, of the bind-
ing energyE @see Eq.~3!#. At the 3PN approximation we do
not need to replace the masses into the post-Newtonian
rections inE. Our second task is to include the relativist
spin-orbit ~S.O.! interaction. In the case of spinsS1 and S2
aligned parallel to the orbital angular momentum~and right-
handed with respect to the sense of motion! the S.O. contri-
bution to the energy reads@20,21#

ES.O.52nM ~MV!5/3F S 4

3

m1
2

M2
1n D S1

m1
2

1S 4

3

m2
2

M2
1n D S2

m2
2G . ~12!

As can immediately be infered fromS.4m3V, which is
deduced from Eq.~11b!,5 in the case of corotating blac
holes the S.O. effect is of order 3PN and therefore mus
retained at the present accuracy@with this approximation, the
masses in Eq.~12! can be chosen to be the irreducible one#.
By contrast, the spin-spin~S.S.! interaction turns out to be
much smaller, equivalent to the 5PN order for corotat

5The moment of inertia of the Kerr black hole in the limit of slo
rotations isI 54m3, in accordance with Eq.~2.61! in Ref. @22#.

FIG. 3. Results forEICO versusV ICO in the equal-mass case
The asterisk marks the result calculated by numerical relativity.
points indicated by 1PN, 2PN and 3PN are computed from Eq.~3!,
and correspond to irrotational binaries. The points denoted
1PNcorot, 2PNcorot and 3PNcorot come from the sum of Eqs.~3! and
~13!, and describe corotational binaries. Both 3PN are 3PNcorot are
shown forvstatic50.
12400
e
n-
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systems. Considering all the contributions present with
3PN accuracy, we thus obtain three terms: (226n)(MV)2

coming from the kinetic energy of the corotating spin
(2 2

3 n1n2)(MV)8/3 due to a coupling between the spin k
netic energy and the orbital energy; (2 16

3 n112n2)(MV)8/3

due to the S.O. interaction~12!. Numerically the kinetic en-
ergy of the spins will dominate the other effects. Hence
supplementary energy that is due specifically to the coro
tion reads

Ecorot~V!

M
5~226n!~MV!2

1S 2
18

3
n113n2D ~MV!8/3. ~13!

The total binding energy of the corotating binary is the su
of Eqs.~3! and~13!. Notice that we must now understand a
the masses in Eqs.~3! and ~13! as being the irreducible
masses~we no longer indicate the superscripts ‘‘irr’’!, which
stay constant when the binary evolves following Eq.~5!.

In Table III we present our results forEICO andV ICO of a
corotational binary. SinceEcorot, given by Eq.~13!, is at least
of order 2PN, the result for 1PNcorot is the same as for 1PN
in the irrotational case; then, obviously, 2PNcorot takes into
account only the leading 2PN corotation effect~i.e. the ki-
netic energy of the spins!, while 3PNcorot involves also, in
particular, the corotational S.O. coupling at 3PN order.
Fig. 3 we plotEICO versusV ICO , computed with and without
the corotation effect, and compare the values with the re
obtained by numerical relativity under the assumption of
lical symmetry@16#. As we can see the 3PN points, and ev
the 2PN ones, are rather close to the numerical value.
expected, the best agreement is for the 3PN approxima
and in the case of corotation:6 i.e. the point 3PNcorot. How-
ever, the 1PN approximation is clearly not precise enou
but this is not very surprising in this highly relativistic re
gime where the orbital velocity reachesv;(MV ICO)1/3

;0.5. Summarizing, we find that the location of the IC
computed by numerical relativity, under the helica
symmetry approximation, is in good agreement with po
Newtonian predictions. This was already pointed out in R
@16# from the comparison with Pade´ and effective-one-body
~EOB! methods. This constitutes an appreciable impro

6We have checked that our best value, given by 3PNcorot, is not
significantly modified numerically when we add the higher-ord
spin effects in Eq.~13! up to the 5PN order, i.e. including, in par
ticular, the S.S. interaction.

TABLE III. Parameters for the ICO of corotational equal-ma
binary systems.

MV ICO
EICO

M

1PNcorot 0.522 20.0405
2PNcorot 0.081 20.0145
3PNcorot vstatic50 0.091 20.0153

e

y
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LUC BLANCHET PHYSICAL REVIEW D 65 124009
ment of the previous situation, because we recall that
earlier estimates of the ICO in post-Newtonian theo
MV ICO.0.06 andEICO /M.20.009@23#, and in numerical
relativity, MV ICO.0.17 and EICO /M.20.024 @24,25#,
strongly disagree with each other, and do not match with
present 3PN results~see Ref.@16# for further discussion!.

Let us emphasize that our computation has been base
the standard post-Newtonian approximation, expanded in
usual way as a Taylor series in the frequency-related par
eterx5(MV)2/3 @see Eqs.~3!, ~4! and ~13!#, without using
any resummation techniques. In Figs. 4 and 5 we display
Taylor-series-based values forEICO andJICO ~they are indi-
cated by the marks 2PN and 3PN!, and contrast them with
some results obtained by means of resummation techni
at the 3PN order: Pade´ approximants@11,9# and EOB meth-
ods@12,9#. All these results agree rather well with each oth
and, as we have seen, even the 2PN~Taylor! approximation
does well.

A point we make is that the sophisticated Pade´ approxi-
mants give about the same results as the standard
Newtonian expansion, based on the much simpler Taylor
proximants: indeed, see in Figs. 4 and 5 the points referre
as thee and j methods, which are 3PN Pade´ resummations

FIG. 4. Results forEICO in terms of V ICO in the equal-mass
case. Thee and j methods are Pade´ approximants at the 3PN orde
EOB refers to the effective-one-body approach at the 3PN or
The points marked by 2PN and 3PN correspond to the stan
Taylor post-Newtonian series~this work!. The results for Pade´,
EOB and Taylor are for irrotational binaries.
or.
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built, respectively, on the energy and angular momentum@9#.
For the case at hand—equal-mass binaries—there is ap
ently no improvement from using Pade´ approximants. Nev-
ertheless, it is true that in the test-mass limitn→0 the Pade´
series converges rapidly toward the exact result@11#. For
instance, the Pade´ constructed in this case from the 2P
approximation of the energy already coincides with the ex
expression for the Schwarzschild metric@given by Eq.~6a!#.
But, the results of Figs. 4 and 5 suggest that this interes
feature of the Pade´ approximants is lost when we turn onn
and consider the equal-mass casen5 1

4 . Notice also that the
2PN versions of these Pade´, which are given in Table I of
Ref. @9#, differ much more significantly from the correspon
ing 3PN ones than in the case of Taylor. For instance,
2PN e-method yields the valuesMV ICO.0.09 andEICO /M
.20.016, which, respectively, differ by about 36% and 22
with the frequency and energy given by thee method at 3PN.
In the case of Taylor, the same figures are only 6% and
Thus, on the point of view of the ‘‘Cauchy criterium,’’7 the
Taylor series seems to converge better that the Pade´ approxi-
mants~for equal masses!.

It is a pleasure to thank Eric Gourgoulhon for informati
discussions, and Alessandra Buonanno and Gilles Espo
Farèse for useful remarks.

7The Cauchy criterium for the series(an is the fact that
uan2amu→0 for anyn andm.
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FIG. 5. Same as Fig. 4 but for the angular momentumJICO .
@1# T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Prog. The
Phys.50, 492 ~1973!; 51, 1220~1974!; 51, 1598~1974!.

@2# G. Scha¨fer, Ann. Phys.~N.Y.! 161, 81 ~1985!.
@3# P. Jaranowski and G. Scha¨fer, Phys. Rev. D57, 7274 ~1998!;
60, 124003~1999!; Ann. Phys.~Leipzig! 9, 378 ~2000!.
@4# T. Damour, P. Jaranowski, and G. Scha¨fer, Phys. Rev. D62,

021501~R! ~2000!; 63, 044021~2001!.
@5# L. Blanchet, G. Faye, and B. Ponsot, Phys. Rev. D58, 124002
9-6



um

.

a-
J.

s.

ys.

A.

K.

,

INNERMOST CIRCULAR ORBIT OF BINARY BLACK . . . PHYSICAL REVIEW D65 124009
~1998!.
@6# L. Blanchet and G. Faye, Phys. Lett. A271, 58 ~2000!; Phys.

Rev. D63, 062005~2001!.
@7# L. Blanchet and G. Faye, J. Math. Phys.41, 7675~2000!; 42,

4391 ~2001!.
@8# V. de Andrade, L. Blanchet, and G. Faye, Class. Quant

Grav.18, 753 ~2001!.
@9# T. Damour, P. Jaranowski, and G. Scha¨fer, Phys. Rev. D62,

084011~2000!.
@10# T. Damour, P. Jaranowski, and G. Scha¨fer, Phys. Lett. B513,

147 ~2001!.
@11# T. Damour, B.R. Iyer, and B.S. Sathyaprakash, Phys. Rev

57, 885 ~1998!.
@12# A. Buonanno and T. Damour, Phys. Rev. D59, 084006~1999!.
@13# C. Cutler, T.A. Apostolatos, L. Bildsten, L.S. Finn, E.E. Flan

gan, D. Kennefick, D.M. Markovic, A. Ori, E. Poisson, G.
Sussman, and K.S. Thorne, Phys. Rev. Lett.70, 2984~1993!.

@14# E. Poisson, Phys. Rev. D52, 5719~1995!; 55, 7980~1997!.
@15# E. Gourgoulhon, P. Grandcle´ment, and S. Bonazzola, Phy

Rev. D65, 044020~2002!.
12400
D

@16# P. Grandcle´ment, E. Gourgoulhon, and S. Bonazzola, Ph
Rev. D65, 044021~2002!.

@17# P. Grandcle´ment, S. Bonazzola, E. Gourgoulhon, and J.-
Marck, J. Comput. Phys.170, 231 ~2001!.

@18# M.D. Duez, T.W. Baumgarte, S.L. Shapiro, M. Shibata, and
Uryu, Phys. Rev. D65, 024016~2002!.

@19# C.W. Misner, K.S. Thorne, and J.A. Wheeler,Gravitation
~Freeman, San Francisco, 1973!.

@20# B.M. Barker and R.F. O’Connell, Gen. Relativ. Gravit.11, 149
~1973!.

@21# L.E. Kidder, C.M. Will, and A.G. Wiseman, Phys. Rev. D47,
R4183~1993!.

@22# K.S. Thorne, R.H. Price, and D.A. Macdonald,Black Holes:
The Membrane Paradigm~Yale University Press, New Haven
1986!.

@23# L.E. Kidder, C.M. Will, and A.G. Wiseman, Phys. Rev. D47,
3281 ~1993!.

@24# H.P. Pfeiffer, S.A. Teukolsky, and G.B. Cook, Phys. Rev. D62,
104018~2000!.

@25# T.W. Baumgarte, Phys. Rev. D62, 024018~2000!.
9-7


