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Gravitational-wave inspiral of compact binary systems to 7Õ2 post-Newtonian order
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The inspiral of compact binaries, driven by gravitational-radiation reaction, is investigated through 7/2
post-Newtonian~3.5PN! order beyond the quadrupole radiation. We outline the derivation of the 3.5PN-
accurate binary’s center-of-mass energy and emitted gravitational flux. The analysis consistently includes the
relativistic effects in the binary’s equations of motion and multipole moments, as well as the contributions of
tails, and tails of tails, in the wave zone. However, the result is not fully determined because of some physical
incompleteness, present at the 3PN order, of the model of point particle and the associated Hadamard-type
self-field regularization. The orbital phase, whose prior knowledge is crucial for searching and analyzing the
inspiral signal, is computed from the standard energy balance argument.
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A few years ago it was recognized@1# that improved
waveform modeling is crucial to construct templates
searching and measuring gravitational waves from inspi
ing compact binaries with laser-interferometric detect
such as the Laser Interferometric Gravitational Wave Ob
vatory ~LIGO! and VIRGO. Since a large number of orbit
cycles are observable in the frequency band of the detec
the measurement, using the technique of matched filter
will be extremely sensitive to those parameters that affect
inspiral rate and thus the orbital phase evolution. The orb
phase~which is driven by gravitational-radiation reaction! is
therefore the crucial quantity to be monitored for these
periments. Measurement-accuracy analyses@2# have shown
that a very high post-Newtonian~PN! prediction, probably
the third post-Newtonian, or even the 3.5PN one~i.e., 1/c7!,
in the case of neutron-star binaries, would be required. O
then would the templates be accurate enough over mos
the inspiral phase, with reduced cumulative phase lags
that the phasing errors are not significant when one attem
to extract the values of the binary’s parameters~essentially
the masses and spins! from the data. Having in hand suc
high-order post-Newtonian expressions, one could apply
summation methods to further improve the convergence
the post-Newtonian series and make it even more accu
for searches as well as parameter estimations@3,4#. In this
Rapid Communication, to provide the essential theoret
input for gravitational-wave data analysis@1–4#, we compute
the orbital phase of compact binaries, in both the time a
frequency domains, in the adiabatic approximation, at 3.5
order. Numerical relativity or approaches such as@4# could
describe the plunge and merger phases. The latter appr
starts from the post-Newtonian expansion and goes bey
the adiabatic approximation. Appropriate to the inspiral
gime @1#, we treat the compact bodies as structureless, n
spinning point particles, moving on quasicircular orbits. S
effects are known up to 2.5PN order@5# and may be added i
necessary.

The first ingredient in the theoretical analysis is the eq
tion of motion of the binary, which is used primarily for th
0556-2821/2002/65~6!/061501~5!/$20.00 65 0615
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calculation of the center-of-mass energyE that is conserved
in the absence of gravitational-radiation reaction. Recen
the equation of motion of compact binaries at 3PN order
been obtained by means of two different methods, w
equivalent results. Jaranowski and Scha¨fer @6# and Damour,
Jaranowski, and Scha¨fer @7,8# employ the Arnowitt-Deser-
Misner ~ADM ! Hamiltonian formalism of general relativity
while Blanchet and Faye@9,10# and de Andrade, Blanche
and Faye@11# proceed with the post-Newtonian iteration
the Einstein field equations in harmonic coordinates. Si
the binary’s orbit would have been circularized by the rad
tion reaction, the equation of motion is of the form

dv i /dt 52v2xi1c25F reac
i , ~1!

wherexi5y1
i 2y2

i is the vector separation between the tw
particles,v i5dxi /dt the relative velocity, andv the orbital
angular frequency~v52p/P, whereP is the period!. We
denote byF reac

i the standard radiation reaction—a resisti
force opposite to the relative velocity, which arises dom
nantly at 2.5PN order. Through 3PN order, the orbital f
quency is related to the distancer 5uxu in harmonic coordi-
nates~via the post-Newtonian parameterg5Gm/rc2! by @9#

v25
Gm

r 3 „11~231n!g1~61 41
4 n1n2!g2

1$2101@2 67759
840 1 41

64 p2122 ln~r /r 08!

1 44
3 l#n1 19

2 n21n3%g3
…. ~2!

Mass parameters are the total massm5m11m2 and the
symmetric mass ration5m1m2 /m2 satisfying 0,n<1/4
~the reduced mass is thenm5mn!. The 3PN coefficient de-
pends on two arbitrary constants: a length scaler 08 entering
the logarithm and the constantl. It was shown in Ref.@9#
that r 08 is merely linked with the choice of harmonic coord
nates and has therefore no physical meaning, as it can
eliminated by a change of gauge. By contrast,l represents a
©2002 The American Physical Society01-1
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physical indeterminacy, in the form of a purely numeric
constant~e.g., a rational fraction!, and is probably associate
with an incompleteness of the Hadamard-type method
regularizing the infinite self-field of point particles@10#,
which is used to cope with the model of compact obje
idealized by Dirac functions~for general, noncircular orbits
it is impossible to reabsorbl into a redefinition of the gauge
constantr 08!. The presence ofl may be associated with th
fact that many integrals composing the equation of moti
when takenindividually, start depending, from 3PN order, o
the internal structure of the bodies, even in the limit whe
their size tends to zero. However, when considering thefull
equation of motion, we finally expectl to be independent o
the internal structure of the compact bodies. The constal
is equivalent to the static ambiguity parametervstatic intro-
duced in Refs.@6#, @7#, in the sense thatl52 3

11 vstatic
21987/3080.Recently, the valuevstatic50 has been ob-
tained by means of a dimensional regularization supplem
ing the ADM-Hamiltonian formalism@8#. This result would
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mean thatl521987/3080~but we keepl unspecified in
this discussion!.

From now on we shall use in place of the angular f
quency v the dimensionless variablex5(pGm f/c3)2/3,
where f 52/P5v/p is the frequency of the gravitationa
wave signal at the dominant harmonic. By inverting Eq.~2!
one findsg in terms of the variablex, which we shall now
consider as an alternative ordering post-Newtonian par
eter,

g5x„11~12 1
3 n!x1~12 65

12 n!x21$11@2 10151
2520 2 41

192p2

2 22
3 ln~r /r 08!2 44

9 l#n1 229
36 n21 1

81 n3%x3
…. ~3!

As the 3PN equation of motion for general orbits deriv
from a Lagrangian@11# ~neglecting the radiation reaction!,
one can straightforwardly compute the associated 3PN c
served energy. The result, when specialized to circular orb
reads
E52 1
2 mc2g„11~2 7

4 1 1
4 n!g1~2 7

8 1 49
8 n1 1

8 n2!g21$2 235
64 1@ 106301

6720 2 123
64 p21 22

3 ln~r /r 08!2 22
3 l#n1 27

32 n21 5
64 n3%g3

….
~4!

The good thing to do next is to reexpress this energy in terms of the post-Newtonian parameterx. Indeed, asx is directly
related to the orbital period, the energy will be form invariant~the same in different coordinate systems!. We find @7,9#

E52 1
2 mc2x$11~2 3

4 2 1
12 n!x1~2 27

8 1 19
8 n2 1

24 n2!x21~2 675
64 1@ 209323

4032 2 205
96 p22 110

9 l#n2 155
96 n22 35

5184n
3!x3%. ~5!
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As expected, the latter expression is free of the unphys
gauge constantr 08 . Since it can be checked that for circul
orbits there are no terms of orderx7/2, the energy~5! is in
fact valid up to 3.5PN order. In the test-mass limitn→0, we
recover the energy of a particle with massm in a Schwarzs-
child background of massm, i.e., Etest5mc2@(122x)(1
23x)21/221#, when developed to 3.5 PN order.

The second ingredient in this analysis concerns the gr
tational waveform generated by the compact binary. M
precisely, we need to compute the binary’s total energy fl
at infinity, or gravitational luminosityL, in the post-
Newtonian approximation. This calculation should take in
account the relativistic corrections linked with the descr
tion of the source~multipole moments!, as well as the non-
linear effects in the propagation of the waves from the sou
to the far zone. We have applied here a particular wa
generation formalism@12–14#, valid for slowly moving
sources, in which the exterior field is parametrized by so
al

i-
e
x

-

e
-

e

specific multipole moments, formally valid to any pos
Newtonian order@14#, and where the observables at infini
are connected to the source moments by some nonli
~post-Minkowskian! functional relations, taking into accoun
the various effects of tails~see, e.g.,@13#!. The formalism has
already been specialized to the case of inspiral waveform
the 2.5 PN level by Blanchet, Damour, and Iyer@15#. Fur-
thermore, a different formalism, devised by Will and Wis
man @16#, was independently applied to this problem a
reached equivalent results, reported jointly in Ref.@17#, at
2PN order. The crucial input of any post-Newtonian comp
tation of the flux is the mass quadrupole moment~indeed the
required post-Newtonian precision of the higher moment
smaller!. The 3PN quadrupole moment for circular bina
orbits, say,I i j 5m @Ax̂i j 1B(r 2/c2) v̂ i j #, where we neglect a
2.5PN term and denote, e.g.,x̂i j 5xixj2

1
3 d i j r

2, has been ob-
tained recently by Blanchet, Iyer, and Joguet@18#, who find
the result
A511~2 1
42 2 13

14 n!g1~2 461
15122 18395

1512 n2 241
1512n

2!g21$ 395899
13200 2 428

105 ln~r /r 0!1@ 139675
33264 2 44

3 ln~r /r 08!2 44
3 j2 88

3 k#n

1 162539
16632 n21 2351

33264n
3%g3, ~6a!

B5 11
21 2 11

7 n1~ 1607
378 2 1681

378 n1 229
378n2!g1$2 357761

19800 1 428
105 ln~r /r 0!1@2 75091

5544 1 44
3 z#n1 35759

924 n21 457
5544n

3%g2. ~6b!
1-2
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Note the two types of logarithms entering these formulas
3PN order. One type involves the same scaler 08 as in the
equation of motion@see Eqs.~2!–~4!#; the other one contain
a different length scaler 0 , which is exactly the constan
present in the general formalism of Refs.@12–14#. As we
know that the constantr 08 is pure gauge, it will disappea
from our physical results at the end. As forr 0 , it merely
represents a convenient scale entering the definition of
source multipole moments in Ref.@14# and should cancel ou
when considering the complete multipole expansion of
field exterior to the source. On the other hand, besides
harmless constantsr 08 and r 0 , there are three unknown d
mensionless parameters in Eqs.~6!: j, k, andz. These pa-
rameters are analogous to the constantl in the equations of
motion ~see Ref.@18# for their definition in the general cas
of noncircular orbits!. They probably reflect an incomplete
a
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l
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,
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ness of the standard Hadamard self-field regularization u
in @18#. It is possible that the more sophisticated regulari
tion proposed in Ref.@10# could determine some~but maybe
not all! of these parameters. However, we shall see that
the case of circular orbits, the energy flux depends only
one combination of them,u5j12k1z, and furthermore
that this constantu enters the energy flux at exactly the sam
level asl, so that the luminosity given by Eq.~9! below
depends on one and only one combination ofu and l @to
compute the flux one needs the time derivatives of the m
ment ~6!, andl comes from replacing the accelerations
the equations of motion~1!, ~2!#. More work should be done
to determine the values ofu andl.

Through 3.5PN order, the result concerning the ‘‘insta
taneous’’ part of the total energy flux, i.e., that part which
generated solely by the multipole moments of the source~not
counting the tails!, is @18#
To the
dy been
Linst5~32c5/5G!n2g5
„11~2 2927

336 2 5
4 n!g1~ 293383

9072 1 380
9 n!g21$ 53712289

1108800 2 1712
105 ln~r /r 0!

1@2 332051
720 1 123

64 p21 110
3 ln~r /r 08!144l2 88

3 u#n2 383
9 n2%g3

…, ~7!

whereu5j12k1z. The first term represents the Newtonian energy flux coming from the usual quadrupole formalism.
latter instantaneous part of the flux, we must add the nonlinear tail effects in the wave zone, which have alrea
calculated to 3.5PN order in Ref.@13# @see Eqs.~5.5a! and ~5.9! there#. We find

Ltail5~32c5/5G!n2g5$4pg3/21~2 25663
672 2 109

8 n!pg5/21@2 116761
3675 1 16

3 p22 1712
105 C2 856

105 ln~16g!1 1712
105 ln~r /r 0!#g3

1~ 90205
576 1 3772673

12096 n1 32147
3024 n2!pg7/2%, ~8!
ge,

n
b-

the
co-
ts.
whereC50.577... denotes the Euler constant. What we c
here Ltail is in fact a complicated sum of ‘‘tails,’’ ‘‘tail
squares,’’ and ‘‘tails of tails,’’ as determined in Ref.@13#. It is
quite remarquable that so small an effect as a ‘‘tail of ta
which constitutes the whole 3PN coefficient in Eq.~8!,
should be relevant to the present computation, which
aimed at preparing the ground for a forthcoming experime
As we can see, the constantr 0 drops out from the sum of the
instantaneous~7! and tail~8! contributions—which is norma
and constitutes a first test of the calculation. However,
ll

’

is
t.

e

gauge constantr 08 does not seem to disappear at this sta
but that is simply due to our use in Eqs.~7!, ~8! of the
post-Newtonian parameterg, which depends via the equatio
of motion on the choice of harmonic coordinates. After su
stituting the frequency-related parameterx in place ofg; i.e.,
making consistent use of the relation~3!, we find thatr 08 does
cancel as well—which represents another test, showing
consistency between the two computations, in harmonic
ordinates, of the equation of motion and multipole momen
Finally we obtain
L5~32c5/5G!n2x5$11~2 1247
336 2 35

12 n!x14px3/21~2 44711
9072 1 9271

504 n1 65
18 n2!x21~2 8191

672 2 535
24 n!px5/21~ 6643739519

69854400 1 16
3 p2

2 1712
105 C2 856

105 ln~16x!1@2 11497453
272160 1 41

48 p21 176
9 l2 88

3 u#n2 94403
3024 n22 775

324n3!x31~2 16285
504 1 176419

1512 n1 19897
378 n2!px7/2%.

~9!
of

ory
The last test~but not the least! is that Eq.~9! is in perfect
agreement, in the test-mass limitn→0 for one of the bodies
with the result following from linear black-hole perturbation
obtained by Ref.@19# ~see also Refs.@20#!. In particular, the
rational fraction 6643739519/69854400, which is a sum
other fractions appearing in both Eqs.~7! and~8!, comes out
exactly the same as in the black-hole perturbation the
@19#.
1-3
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TABLE I. Contributions to the accumulated numberN5(1/p)(f ISCO2fseismic) of gravitational-wave
cycles. Frequency entering the bandwidth isf seismic510 Hz; terminal frequency is assumed to be at t
Schwarzschild innermost stable circular orbitf ISCO5c3/(63/2pGm). The 3PN term depends on the unknow

parameterû5u2
7
3 l ~we haveû5u11987/1320using the value ofl following from vstatic50!.

231.4M ( 10M (11.4M ( 2310M (

Newtonian 16031 3576 602
1PN 441 213 59

1.5PN 2211 2181 251
2PN 9.9 9.8 4.1

2.5PN 212.2 220.4 27.5
3PN 2.510.5û 2.210.4û 2.110.4û

3.5PN 21.0 21.9 20.9
e-
e

s

ie

w

the
We shall now deduce the laws of variation of the fr
quency and phase using a balance equation as a fundam
tenet. Namely, we postulate that

dE/dt52L, ~10!

where the binary’s gravitational binding energyE is given by
Eq. ~5!, and where the total gravitational-radiation lumino
ity L is the one obtained in Eq.~9!. For justification of the
validity of the energy balance equation~10! in post-
Newtonian approximations, for either point-particle binar
or extended weakly self-gravitating fluids, see Refs.@21#,
06150
ntal

-

s

@22#. Using the previous formulas forE andL, we transform
Eq. ~10! into an ordinary differential equation forv or,
rather, the parameterx. For convenience we adopt a ne
~dimensionless! time variable defined by

t5nc3~ tc2t !/~5Gm!, ~11!

where tc denotes the instant of coalescence, at which
frequency tends formally to infinity~evidently, the approxi-
mation breaks down well before this point!. The solution of
the latter differential equation reads
the
e have

wave
uency
x5 1
4 t21/4

„11~ 743
40321 11

48 n!t21/42 1
5 pt23/81~ 19583

2540161
24401

193536n1 31
288n2!t21/21~2 11891

537601
29

1920n!pt25/8

1$2 10052469856691
60085960704001

1
6 p21 107

420C2 107
3360 ln~t/256!1@ 15335597827

39016857602 451
3072p

22 77
72 l1 11

24 u#n

2 15211
442368n

21 25565
331776n

3} t23/41~2 113868647
4335206402

141389
483840n1 275201

3870720n
2!pt27/8

…. ~12!

Next we compute the binary’s instantaneous phase, defined as the anglef, oriented in the sense of the motion, between
separation of the two bodies and, say, the direction of the ascending node of the orbit within the plane of the sky. W
df/dt5v, which translates, in our notation, intodf/dt5(25/n)x3/2, and we can immediately integrate with the result

f52n21
„t5/81~ 3715

80641 55
96 n!t3/82 3

4 pt1/41~ 9275495
144506881

284875
258048n1 1855

2048n
2!t1/81~2 38645

1720322
15

2048n!p ln~t/t0!

1$ 831032450749357
576825222758402

53
40 p22 107

56 C1 107
448 ln~t/256!1@2 123292747421

4161798144 1 2255
2048p

21 385
48 l2 55

16 u#n

1 154565
1835008n

22 1179625
1769472n

3} t21/81~ 188516689
1734082561

140495
114688n2 122659

516096n
2!pt21/4

…. ~13!

The constantt0 is related to a constant phase that is simply fixed by the initial conditions when the frequency of the
enters the detector’s bandwidth. Finally it can be useful to dispose of the expression of the phase in terms of the freqx.
For this we have

f52~1/32!n21$x25/21~ 3715
10081 55

12 n!x23/2210px211~ 15293365
1016064 1 27145

1008 n1 3085
144 n2!x21/21~ 38645

1344 1 15
16 n!p ln~x/x0!

1~ 12348611926451
18776862720 2 160

3 p22 1712
21 C2 856

21 ln~16x!1@2 15335597827
12192768 1 2255

48 p21 3080
9 l2 440

3 u#n

1 76055
6912 n22 127825

5184 n3)x1/21~ 77096675
2032128 1 1014115

24192 n2 36865
3024 n2!px}, ~14!
1-4
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wherex0 is determined by the initial conditions~like t0!. As
a rough estimate of the relative importance of each of
various post-Newtonian terms for LIGO/VIRGO-type dete
tors, we give in Table I their contributions to the accumula
numberN of gravitational-wave cycles~see also Table I in
Ref. @17# for the contributions of spin-orbit and spin-sp
effects!. The result forN3PN is given as a function of the
combination of parametersû5u2 7

3 l that enters Eq.~14!.
As we can see,if û is of the order of unity, we reach with th
3PN or 3.5PN approximation an acceptable level of, sa
few cycles, which roughly corresponds to the demand wh
was made by data analyst in the case of neutron-star bin
@1,2#. Indeed, the above estimation suggests that the
glected 4PN terms will yield some systematic errors that a
at most, of the same order of magnitude, i.e., a few cyc
,

.
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and perhaps much less. However, this conclusion is q
sensitive to the exact value ofû. If û is of the order of 10, we
find that the 3PN term is nearly as important numerically
the previous 2PN approximation. Finally, in order to defi
the theoretical template of the compact binary inspiral, o
should insert the previous 3.5PN-accurate expressions o
frequency and phase into the two polarization waveformsh1

andh3 . A standard practice is to neglect inh1 andh3 all
the harmonics but the dominant onef at twice the orbital
frequency~i.e., the so-called restricted post-Newtonian a
proximation!, but it is better to define the template by mea
of the 2PN-accurate polarization waveforms calculated
Ref. @23#.
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HPRN-CT-2000-00137.
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