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The inspiral of compact binaries, driven by gravitational-radiation reaction, is investigated through 7/2
post-Newtonian(3.5PN order beyond the quadrupole radiation. We outline the derivation of the 3.5PN-
accurate binary’s center-of-mass energy and emitted gravitational flux. The analysis consistently includes the
relativistic effects in the binary’s equations of motion and multipole moments, as well as the contributions of
tails, and tails of tails, in the wave zone. However, the result is not fully determined because of some physical
incompleteness, present at the 3PN order, of the model of point particle and the associated Hadamard-type
self-field regularization. The orbital phase, whose prior knowledge is crucial for searching and analyzing the
inspiral signal, is computed from the standard energy balance argument.
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A few years ago it was recognizdd] that improved calculation of the center-of-mass enefgyhat is conserved
waveform modeling is crucial to construct templates forin the absence of gravitational-radiation reaction. Recently,
searching and measuring gravitational waves from inspiralthe equation of motion of compact binaries at 3PN order has
ing compact binaries with laser-interferometric detectorsdeen obtained by means of two different methods, with
such as the Laser Interferometric Gravitational Wave Obserequivalent results. Jaranowski and Sehd6] and Damour,
vatory (LIGO) and VIRGO. Since a large number of orbital Jaranowski, and Scfex [7,8] employ the Arnowitt-Deser-
cycles are observable in the frequency band of the detectorMlisner (ADM) Hamiltonian formalism of general relativity,
the measurement, using the technique of matched filteringVhile Blanchet and Fayg9,10] and de Andrade, Blanchet,
will be extremely sensitive to those parameters that affect thand Faye[11] proceed with the post-Newtonian iteration of
inspiral rate and thus the orbital phase evolution. The orbitathe Einstein field equations in harmonic coordinates. Since
phase(which is driven by gravitational-radiation reactjos  the binary’s orbit would have been circularized by the radia-
therefore the crucial quantity to be monitored for these extion reaction, the equation of motion is of the form
periments. Measurement-accuracy analj&dshave shown i pi i
that a very high post-Newtonia(PN) prediction, probably dv'/dt=— X' +C"°F oy, ()
the third post-Newtonian, or even the 3.5PN dhe., 1t’), i _
in the case of neutron-star binaries, would be required. Oni/NereX'=y;—Y, is the vector separation between the two
then would the templates be accurate enough over most #@rticles,v'=dx/dt the relative velocity, ana the orbital
the inspiral phase, with reduced cumulative phase lags, sahgular frequencyw=2m/P, whereP is the period. We
that the phasing errors are not significant when one attemp@€note byF ... the standard radiation reaction—a resistive
to extract the values of the binary’s paramet@ssentially force opposite to the relative velocity, which arises domi-
the masses and Spbnﬁ'om the data. Having in hand such nantly at 2.5PN order. ThrOUgh 3PN order, the orbital fre-
high-order post-Newtonian expressions, one could apply requency is related to the distance:|x| in harmonic coordi-
summation methods to further improve the convergence oRates(via the post-Newtonian parametgrGm/rc?) by [9]
the post-Newtonian series and make it even more accurate
for searches as well as parameter estimat{@p4]. In this
Rapid Communication, to provide the essential theoretical
input for gravitational-wave data analy$is—4], we compute

Gm
w2=r—3(1+(—3+ v)y+(6+ G v+1?)y?

the orbital phase of compact binaries, in both the time and +H{—10+[— 557 + G m?+22In(r/rg)
frequency domains, in the adiabatic approximation, at 3.5PN s o 2. 3 3
order. Numerical relativity or approaches such[4could + N+ FriEvhyd). 2

describe the plunge and merger phases. The latter approach

starts from the post-Newtonian expansion and goes beyorfdass parameters are the total mamss-m;+m, and the

the adiabatic approximation. Appropriate to the inspiral re-Symmetric mass ratio-=m;m,/m? satisfying 0<v<1/4

gime[1], we treat the compact bodies as structureless, norithe reduced mass is then=muv). The 3PN coefficient de-

spinning point particles, moving on quasicircular orbits. Spinpends on two arbitrary constants:  a length scglentering

effects are known up to 2.5PN ordé&] and may be added if the logarithm and the constant It was shown in Ref[9]

necessary. thatr( is merely linked with the choice of harmonic coordi-
The first ingredient in the theoretical analysis is the equanates and has therefore no physical meaning, as it can be

tion of motion of the binary, which is used primarily for the eliminated by a change of gauge. By contrastepresents a
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physical indeterminacy, in the form of a purely numericalmean that\ =—1987/3080(but we keep\ unspecified in
constante.g., a rational fractionand is probably associated this discussion

with an incompleteness of the Hadamard-type method for From now on we shall use in place of the angular fre-
regularizing the infinite self-field of point particlfl0], quency o the dimensionless variable=(7Gmf/c3)??,
which is used to cope with the model of compact objectswhere f =2/P=w/x is the frequency of the gravitational-
idealized by Dirac functiongfor general, noncircular orbits, wave signal at the dominant harmonic. By inverting E2).

it is impossible to reabsork into a redefinition of the gauge one findsy in terms of the variable, which we shall now
constantrg). The presence of may be associated with the consider as an alternative ordering post-Newtonian param-
fact that many integrals composing the equation of motiongter,

when takerindividually, start depending, from 3PN order, on

the internal structure of the bodies, even in the limit where y=x(1+(1-3v)x+(1-%
their size tends to zero. However, when consideringftitie - , 220 2 a3
equation of motion, we finally expeatto be independent of = ZIn(r/rg) = $NJv+ 07+ 51 0°1¢). 3

the internal structure of the compact bodies. The constant

is equivalent to the static ambiguity parameigy,. intro-  As the 3PN equation of motion for general orbits derives
duced in Refs.[6], [7], in the sense thah=— Fw.ie from a Lagrangiarf11] (neglecting the radiation reactipn
—1987/3080.Recently, the valuevg,;=0 has been ob- one can straightforwardly compute the associated 3PN con-
tained by means of a dimensional regularization supplemenserved energy. The result, when specialized to circular orbits,
ing the ADM-Hamiltonian formalism8]. This result would reads

41 2
192 T

E=—3uc?y(l+(—i+iv)y+(—5+Fr+502) Y +H{— F+[ %55 — & m + FIn(rirg) = F\ v+ 52+ 5v°hy).

4

The good thing to do next is to reexpress this energy in terms of the post-Newtonian parantetkred, asc is directly
related to the orbital period, the energy will be form invarigthe same in different coordinate systemafe find[7,9]

_ 1.2 3 27 | 19 12\y2 815 205
E=—-suc X{1+(_Z_12V)X+( T r— )X+ (- F+[ %5 __6772_%))\]7/_195657/2_5?347/3))(3}' (5

As expected, the latter expression is free of the unphysicapecific multipole moments, formally valid to any post-
gauge constant). Since it can be checked that for circular Newtonian ordef14], and where the observables at infinity
orbits there are no terms of ordef?, the energy(5) is in  are connected to the source moments by some nonlinear
fact valid up to 3.5PN order. In the test-mass limit:0, we  (post-Minkowskian functional relations, taking into account
recover the energy of a particle with massn a Schwarzs- the various effects of tailsee, e.g/[,13]). The formalism has
child background of massn, i.e., Es=uc?[(1—2x)(1  already been specialized to the case of inspiral waveforms at
—3x)~¥2—1], when developed to 3.5 PN order. the 2.5 PN level by Blanchet, Damour, and Ijé6]. Fur-

The second ingredient in this analysis concerns the gravithermore, a different formalism, devised by Will and Wise-
tational waveform generated by the compact binary. Moreman [16], was independently applied to this problem and
precisely, we need to compute the binary’s total energy fluxeached equivalent results, reported jointly in Réf7], at
at infinity, or gravitational luminosity£, in the post- 2PN order. The crucial input of any post-Newtonian compu-
Newtonian approximation. This calculation should take intotation of the flux is the mass quadrupole momg@ndeed the
account the relativistic corrections linked with the descrip-required post-Newtonian precision of the higher moments is
tion of the sourcégmultipole momentg as well as the non- smalle). The 3PN quadrupole moment for circular binary
linear effects in the propagation of the waves from the sourcerbits, say/l;; = u [AX;+ B(rzlcz)v”] where we neglect a
to the far zone. We have applied here a particular wave2.5PN term and denote, e.§;;=XX; — 35,Jr has been ob-
generation formalism[12—-14, valid for slowly moving tained recently by Blanchet, lyer, and JogL[w], who find
sources, in which the exterior field is parametrized by soméhe result

— 1 13 461 18395 241 428 139675 44 44 88
A=1+(—m—uv)y+t(— 15— Ts12V— 1512V —TosIn(r/ro) +[5azss — 3 IN(rlrg) — 5 é—F kv

162539, 2, 2351 31 3
+ Tee32 ¥t 332647 }’}’ ) (6a)

[N

111 1607 1681, 229 2 357761 , 42 75091 |, 44 35759 457 3.2
B=3i—5v+ (3 —3svtsmsv)yHi— Tos00 T 1oeiN(r/ro) +[ — Saas + 5 v+ %50 +5544V Tye. (6b)

.
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Note the two types of logarithms entering these formulas ahess of the standard Hadamard self-field regularization used
3PN order. One type involves the same sadjeas in the in [18]. It is possible that the more sophisticated regulariza-
equation of motiosee Eqs(2)—(4)]; the other one contains tion proposed in Ref.10] could determine soméut maybe
a different length scale,, which is exactly the constant Not all of these parameters. However, we shall see that, in
present in the general formalism of Refé2-14. As we the case of circular orbits, the energy flux depends only on
know that the constant), is pure gauge, it will disappear ON€ combination of themg=¢+2«+{, and furthermore
from our physical results at the end. As fog, it merely that this constan# enters the energy flux at exactly the same

represents a convenient scale entering the definition of thlevel ash, so that the luminosity given by Eq9) below

; . Sepends on one and only one combinationfaénd \ [to
source multipole moments in R¢fl4] and should cancel out compute the flux one needs the time derivatives of the mo-

when considering the complete multipole expansion of thg, o (6), and\ comes from replacing the accelerations by

field exterior to the source. On the other hand, besides thfhe equations of motioft), (2)]. More work should be done
harmless constants, andrg, there are three unknown di- tg determine the values @fand\.

mensionless parameters in E@): ¢ «, and{. These pa- Through 3.5PN order, the result concerning the “instan-
rameters are analogous to the constain the equations of taneous” part of the total energy flux, i.e., that part which is
motion (see Ref[18] for their definition in the general case generated solely by the multipole moments of the so(mog

of noncircular orbits They probably reflect an incomplete- counting the tailg is [18]

Lins= (326°15G) v?y*(1+ (= 555 — §v) y+ (%5555 + 6°») ¥* +{ Tiss00 — 105 IN(1/70)

+[ = B+ E P+ 0n(r /v o)+ 4AN = F 0]v— 3P yd), @)

wheref= ¢+ 2k + {. The first term represents the Newtonian energy flux coming from the usual quadrupole formalism. To the
latter instantaneous part of the flux, we must add the nonlinear tail effects in the wave zone, which have already been
calculated to 3.5PN order in RdfL3] [see Eqgs(5.59 and(5.9) therg. We find

Liaii=(32%/5G) v?y*{4my¥2+ (= B33P = g2v) ™2+ [ 156780+ B = 57 C— 552 In(16y) + 562 In(r/rg) ]

90205 , 3772673, 32147 2 71
+ (%576 1 “2006 v+ 3024 V) TY 2}: (8)

whereC=0.577... denotes the Euler constant. What we calgauge constant, does not seem to disappear at this stage,
here L, is in fact a complicated sum of “tails,” “tail but that is simply due to our use in Eq&), (8) of the
squares,” and “tails of tails,” as determined in R¢L3]. Itis  post-Newtonian parametes which depends via the equation
quite remarquable that so small an effect as a “tail of tail,” of motion on the choice of harmonic coordinates. After sub-
which constitutes the whole 3PN coefficient in E®), stituting the frequency-related parameten place ofy; i.e.,
should be relevant to the present computation, which isnaking consistent use of the relatit8), we find thatr ) does
aimed at preparing the ground for a forthcoming experimentcancel as well—which represents another test, showing the
As we can see, the constagtdrops out from the sum of the consistency between the two computations, in harmonic co-
instantaneoué7) and tail(8) contributions—which is normal ordinates, of the equation of motion and multipole moments.
and constitutes a first test of the calculation. However, théd=inally we obtain

_ 5 2,5 1247 _ 35 312 44711, 9271 | 652\ 2 8191 535 5/2, (6643739519, 16 2

L=(32c>/5G) vX>{1+(— 536 — BV)XTA4TX"+ (— 5575 + 5oz v+ 18 V)X (— 575 — 32 V) X+ (Pgossaao0 T 57
1712 856 11497453, 41 _2 , 176y _ 88 94403 2 775 3y,3 16285 , 176419 , 19897 2\ 7/

— 505 C— 108 IN(16X) +[ — 572160 t 28 T+ 5 A= 3 0]lv— S22 v — 52V )X"+ (— T500 + 1512 ¥+ 378 V) X 2}

(€)

The last testbut not the leastis that Eq.(9) is in perfect rational fraction 6643739519/69854400, which is a sum of
agreement, in the test-mass linnit>0 for one of the bodies, other fractions appearing in both E¢%) and(8), comes out
with the result following from linear black-hole perturbations exactly the same as in the black-hole perturbation theory
obtained by Ref[19] (see also Ref420]). In particular, the [19].
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TABLE |. Contributions to the accumulated numh&f=(1/7)(disco— Pseismid Of gravitational-wave
cycles. Frequency entering the bandwidthf issni= 10 Hz; terminal frequency is assumed to be at the
Schwarzschild innermost stable circular orhijcg=c%/(6¥>7Gm). The 3PN term depends on the unknown

parameterd= 6— 2\ (we haved= 6+1987/1320using the value ok following from wgi=0).

2X1.4Mg 10Mo+1.4M¢ 2X10M o

Newtonian 16031 3576 602
1PN 441 213 59
1.5PN —211 —181 -51
2PN 9.9 9.8 4.1
2.5PN -12.2 —20.4 -75

3PN 2.5+0.50 2.2+0.40 2.1+0.40
3.5PN -1.0 -1.9 -0.9

We shall now deduce the laws of variation of the fre-[22]. Using the previous formulas fd& and £, we transform
guency and phase using a balance equation as a fundameni). (10) into an ordinary differential equation fo® or,
tenet. Namely, we postulate that rather, the parametet. For convenience we adopt a new

(dimensionlesstime variable defined by
dE/dt=-L, (10
— 3

where the binary’s gravitational binding eneigys given by T=vC(te=D/(5Gm), (11)
Eqg. (5), and where the total gravitational-radiation luminos-
ity £ is the one obtained in Eq9). For justification of the wheret. denotes the instant of coalescence, at which the
validity of the energy balance equatiol0) in post- frequency tends formally to infinityevidently, the approxi-
Newtonian approximations, for either point-particle binariesmation breaks down well before this poinThe solution of
or extended weakly self-gravitating fluids, see R¢fl], the latter differential equation reads

_1_-1/4 743 |, 11 -1/4_ 1 ___—3/8 19583 |, 24401 31 .2\ _—1/2, (_ 11891, 29 -5/8
X=3T 1+ (so::+ V)7 5TT + (540161 To3836V T 288 V) T +(— 535760+ To20 V) TT

10052469856691, 1 2 , 107~ __ 107 15335597827 451 _2 77 11
+{_ 5008596070400 T 8 T~ T 720C — 3360 IN(7/256) + [ 501685760 — 30727 — 2N+ 25 0]V

_ 15211 2, 25565 _ 3y, _—3/4, (_ 113868647 141389 275201 2 -7/
ar3esV T 330776V} T + (— 733520640 283840V T 3870720V ) TT 8) (12

Next we compute the binary’s instantaneous phase, defined as thedarmiented in the sense of the motion, between the
separation of the two bodies and, say, the direction of the ascending node of the orbit within the plane of the sky. We have
d¢/dt=w, which translates, in our notation, inthp/d7=(—5/v)x%? and we can immediately integrate with the result

_ _ . —1/.5/8, /3715 55 3/8__ 3 1/4 9275495 |, 284875 1855 2y, 1/8, (_ 38645 _ 15
d=—v (77 ( 3064 T 9 V)T 27T+ (Tiss0688T 5580467 T 2048 V) T+ (— 172032~ 7048 V) ™ IN( 7/ 7))
831032450749357 53 _2 107 107 123202747421, 2255_2 , 385y _ 55
+{ 57682522275840 40 11 5 C+ 248 IN(7/256) +[ — 4161708124 + 5048 T a5 N — 15 0]V

154565 2 1179625 3y _—1/8_ (188516689, 140495 122659 2 —1/4
+ 1g35008Y" — 1769472V 1 T + (1734082561 Tiac8aY ~ sis00eV ) TT ). (13

The constantr, is related to a constant phase that is simply fixed by the initial conditions when the frequency of the wave
enters the detector’s bandwidth. Finally it can be useful to dispose of the expression of the phase in terms of the ftequency
For this we have

_ -1 —5/2 3715 55 —3/2 -1 15293365 27145 3085_2 —-1/2 38645 15
d=—(LI32)v {Xx >+ (Tgoa+ 13 ¥)X "= 107X "+ (Fo1e064 T Toos ¥+ 1az V)X '+ (Fzar + 2 v) m IN(X/X)

12348611926451 160 _2 1712~ _ 856 _ 15335597827, 2255 _2 , 3080y _ 440
+ (5776862720 3 T 71 C— 57 In(16x) +[ 2102768 T 48 M + 59 A= O]y

+ 76055 2 12 8251/3)X1/2+ ( 77096675+ 1014115 36865 2

7
6912 V 5184 2032128 24102 V™ 3024 V) WX}, (14
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wherex, is determined by the initial conditior(ike 75). As  and perhaps much less. However, this conclusion is quite
a rough estimate of the relative importance of each of thgensitive to the exact value 6f If 8 is of the order of 10, we
various post-Newtonian terms for LIGO/VIRGO-type detec-find that the 3PN term is nearly as important numerically as
tors, we give in Table | their contributions to the accumulatedthe previous 2PN approximation. Finally, in order to define
number\ of gravitational-wave cyclegsee also Table | in the theoretical template of the compact binary inspiral, one
Ref. [17] for the contributions of spin-orbit and spin-spin should insert the previous 3.5PN-accurate expressions of the
effecty. The result forN3py is given as a function of the frequency and phase into the two polarization wavefonms
combination of parameter8=6— I\ that enters Eq(14). andhy. A standard practice is to neglectimn. andh, all

As we can sedf @ is of the order of unity, we reach with the the harmor_ucs but the dominant _omeat twice the or_b|tal
3PN or 3.5PN approximation an acceptable level of, say, z;rquenc_y(l.e., the so-called restricted post-Newtonian ap-
few cycles, which roughly corresponds to the demand Whickprommahor), butitis better to dgfme the template by means
was made by data analyst in the case of neutron-star binari% ftheZSZPN—accurate polarization waveforms calculated in
[1,2]. Indeed, the above estimation suggests that the ne~€ -[23].

glected 4PN terms will yield some systematic errors that are, G.F. acknowledges financial support of the EU-Network
at most, of the same order of magnitude, i.e., a few cyclesfiPRN-CT-2000-00137.
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