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Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order

Luc Blanchet, Guillaume Faye, and Be´nédicte Ponsot
Département d’Astrophysique Relativiste et de Cosmologie, Centre National de la Recherche Scientifique (UPR 176),

Observatoire de Paris, 92195 Meudon Cedex, France
~Received 30 April 1998; published 29 October 1998!

We derive the gravitational field and equations of motion of compact binary systems up to the 5/2 post-
Newtonian approximation of general relativity~where radiation-reaction effects first appear!. The approximate
post-Newtonian gravitational field might be used in the problem of initial conditions for the numerical evolu-
tion of binary black-hole space-times. On the other hand, we recover the Damour-Deruelle 2.5PN equations of
motion of compact binary systems. Our method is based on an expression of the post-Newtonian metric valid
for general~continuous! fluids. We substitute into the fluid metric the standard stress-energy tensor appropriate
for a system of two pointlike particles. We remove systematically the infinite self-field of each particle by
means of the Hadamard finite part regularization.@S0556-2821~98!08820-1#

PACS number~s!: 04.25.Nx
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I. INTRODUCTION

The two purposes of the present paper are~1! to obtain
the gravitational field generated by a system of two pointl
particles up to the so-called 5/2 post-Newtonian~2.5PN! or-
der included, i.e., the order (v/c)5 wherev denotes a typica
value of the orbital velocity of the system; the 2.5PN fie
may be useful for setting up initial conditions for the nume
cal study of the coalescence of two compact~neutron stars or
black holes! objects@1,2#; ~2! to derive from the gravitationa
field the Damour-Deruelle@3–7# equations of motion of
~compact! binary systems at the same 2.5PN order. Beca
the 2.5PN term in the equations of motion represents
dominant contribution of the radiation reaction force, t
Damour-Deruelle equations play a crucial role in theore
cally accounting for the decreasing of the orbital period
the binary pulsar PSR 1913116 @9–12#.

In addition, the present paper is motivated by the curr
development of the future gravitational-wave observato
such as the Laser Interferometric Gravitational Wave Ob
vatory ~LIGO! and VIRGO. Specifically the aim is to deriv
with sufficient post-Newtonian precision the dynamics of
spiralling compact binaries~which are among the most inte
esting sources to be detected by LIGO and VIRGO!. Numer-
ous authors@13–18# have shown that the orbital phase
inspiralling compact binaries should be computed for ap
cations in LIGO-VIRGO up to~at least! the 3PN relative
order. Resolving this problem requiresin particular the bi-
nary’s equations of motion at 3PN order, since they per
one to derive the binary’s 3PN energy entering the left-ha
side of the energy balance equation on which rests the d
vation of the phase. They are also needed for the comp
tion of the 3PN gravitational flux entering the right-hand si
of the balance equation. Thus the 2.5PN equations of mo
derived in@3–7# and in the present paper are not quite s
ficient for the problem of inspiralling compact binaries, b
the method we propose should permit one to tackle in fut
work the problem of the generalization to the next 3PN or
~see@8# for an attempt at solving this problem!.

The dynamics of a binary system of pointlike particl
modelling compact objects was investigated successfully
0556-2821/98/58~12!/124002~20!/$15.00 58 1240
e

-

se
e

i-
f

t
s
r-

-

i-

it
d
ri-
ta-

n
-
t
e
r

p

to 2.5PN order by Damour, Deruelle, and collaborators@3–
7#, using basically a post-Minkowskian approximatio
scheme~i.e., G→0!.

In a first paper by Belet al. @3# ~see also@19#!, the gravi-
tational field and the equations of motion are obtained
algebraically closed form to the second post-Minkowsk
order (G2): the field equations in harmonic coordinates a
solved at first order by integrating the matter stress-ene
tensor suitable to pointlike sources~i.e., involving delta func-
tions!, and then the second-order gravitational field is co
structed by iteration. The divergences which arise due to
assumption of pointlike particles are cured by means o
regularization process based on the Hadamard finite part@20#
~see@21# for an introduction to the mathematical literature!.
The equations of motion are obtained equivalently from
harmonicity condition to be satisfied by the metric, from t
conservation of the~regularized! stress-energy tensor, o
from the regularized geodesic equations.

In sequential papers@4,5# the post-Minkowskian equa
tions of motion are developed up to the orderG2/c5, i.e.,
neglecting any term of the order 1/c6 when c→` and any
term of the orderG3 whenG→0. However, it is well known
@22,23# that in order to obtain the complete equations
motion to the dominant 2.5PN order of the radiation reacti
the latter precision is not sufficient because of the occurre
of terms coming from the third post-Minkowskian metr
(G3) which contribute to both 2PN (1/c4) and 2.5PN (1/c5)
approximations. These terms of ordersG3/c4 and G3/c5

have been added by Damour@6,7#, thereby completing the
2.5PN binary equations of motion. Let us refer to the abo
derivation of the dynamics of a binary system as the ‘‘po
Minkowskian’’ approach.

When obtaining the cubic terms within the pos
Minkowskian approach@6,7# the two objects are not de
scribed by standard delta functions but rather by a Ri
kernel @24# depending on some complex parameterA. For
nonzeroA this kernel has an infinite spatial extension, b
reduces to the Dirac distribution whenA→0. The metric is
defined by complex analytic continuation from th
A-dependent post-Minkowskian iteration. The physical eq
tions of motion corresponding to pointlike particles are o
©1998 The American Physical Society02-1
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BLANCHET, FAYE, AND PONSOT PHYSICAL REVIEW D58 124002
tained from theA-dependent metric by taking the lim
A→0 at the end of the computation. It has been proved@6,7#
that the limit exists up to the 2.5PN approximation~no poles
;1/A develop to this order@25#!.

The motion of two particles to the 2PN order~neglecting
the radiation-reaction 2.5PN terms! is conservative; i.e.,
there exist ten integrals of motion corresponding to the Ne
tonian notions of energy, linear momentum, angular mom
tum, and center-of-mass position. It has been shown@26,7#
that the constants of motion can be recovered by variatio
a generalized Lagrangian depending on the positions, ve
ties, and accelerations of the bodies~recall that generically,
i.e., in most coordinate systems, a 2PN Lagrangian depe
upon accelerations@27#!. Adding up the radiation-reaction
terms, one finds that the previously obtained binary’s 2
energy decreases with time, and that there is quantita
agreement with the standard quadrupole formula@28,7# and
with the observations of the binary pulsar@9–12#.

Moreover, there have been two other lines of work wh
led to the complete 2.5PN dynamics of binary systems. O
of these alternative approaches is based on the cano
Hamiltonian formulation of general relativity and the mod
of pointlike sources. Such a ‘‘Hamiltonian’’ approach w
developed at the 2PN level in early works@29,30# ~see also
@31,32#! but completely understood only later@27# ~see@33#
for a review!. Schäfer @34,35# completed the Hamiltonian
approach to include the 2.5PN radiation-reaction ter
~more recently the 3.5PN radiation-reaction terms have a
been worked out@36#!. The other method gives up the mod
of pointlike sources and assumes from the start that the
bodies are extended, spherically symmetric, and made
perfect fluid. Within such an ‘‘extended-body’’ approach t
2.5PN equations of motion were found@37,38# to be the
same as obtained within the other treatments dealing w
pointlike particles~in particular the equations depend on
on the two masses of the bodies, but not on their inter
structure nor compactness!.

In the present paper, we add what constitutes essentia
fourth approach to the derivation of the 2.5PN motion
binary systems, which can be qualified as ‘‘po
Newtonian,’’ in contrast with the post-Minkowskian, Hami
tonian, and extended-body approaches. With respect to
post-Minkowskian approach@3–7# we have essentially two
differences.

~1! Instead of implementing a post-Minkowskian alg
rithm to the third order and performing afterwards the po
Newtonian reexpansion, we start directly from a po
Newtonian metric developed to 2.5PN order and which
valid for any continuous matter stress-energy distribut
~‘‘fluid’’ !. Note, however, that our post-Newtonian metric
defined in terms ofretarded~Minkowskian! potentials, and
most importantly matches a far-zone metric satisfying
correct boundary conditions at infinity, in particular the n
incoming radiation condition@39#.

~2! Instead of assuming a fictitious stress-energy ten
defined by means of analytic continuation using the Ri
kernel and letting the analytic-continuation factor go to ze
at the end of the computation@6,7#, we substitute directly
into the ‘‘fluid’’ metric the stress-energy tensor of pointlik
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particles. This entails divergences which are cured syst
atically by means of the Hadamard regularization@20,21# ~in
this respect we follow@3#!.

By implementing the post-Newtonian approach, we
cover the Damour-Deruelle equations of motion@4–7#. To
the investigated order we find that the post-Newtonian
proach is well defined and rather systematic.

About the gravitational field~metric! generated by the two
particles, we obtain an algebraically closed form valid eve
where in space-time up to the 2.5PN order@40#. Indeed, the
most difficult term present in the metric at this order is
cubically nonlinear term which can be explicitly evaluat
@41,42#. This yields the other motivation of the present p
per, namely, to provide the metric coefficients at 2.5PN or
~in harmonic coordinates! in the form of some explicit, fully
reduced functionals of the positions and~coordinate! veloci-
ties of the two masses. Let us point out that, very likely, t
possibility of writing such a closed-form expression of t
metric breaks down at the next 3PN order, where there
main some Poisson-type integrals which probably canno
expressed in terms of simple functions.

The plan of the paper is as follows. We start in Sec.
with the expression~derived in Appendix A! of the 2.5PN
metric valid for general fluid systems. In Sec. III we expla
our method for applying the fluid metric to the case of poi
like particles. The metric potentials involve three types
terms which are evaluated respectively in Secs. IV, V, a
VI ~the most difficult, cubic, term being obtained in Sec. V!.
The results for the potentials are relegated to Appendix B
Sec. VII we present our expression for the binary’s gravi
tional field. In Sec. VIII we finally obtain the~Damour-
Deruelle! binary equations of motion.

II. 2.5PN METRIC FOR GENERAL FLUID SYSTEMS

At the basis of our investigation is the expression of t
metric generated by an arbitrary matter distribution descri
by the stress-energy tensorTmn @43#. We assume thatTmn

has a spatially compact support, and physically correspo
to a slowly moving, weakly stressed, and self-gravitati
system, in the sense, respectively, thatuT0i /T00u;«,
uTi j /T00u;«2, andU/c2;«2, whereU denotes the Newton
ian potential and« represents a small post-Newtonian para
eter going to zero when the speed of light tends to infin
(«;1/c). Throughout this paper we denote a po
Newtonian term of order«n by means of the shorthan
O(n).

Following @44# it is convenient to define a mass densitys
which agrees in the case of stationary systems with the T
man mass density to 1PN order. As it turns out, introduc
such a mass density~and in addition the associated retard
potential! permits one to formulate the 2.5PN metric in
rather simple fashion. Defining also some current and st
densities we pose

s[
T001Tii

c2 , ~2.1a!
2-2
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GRAVITATIONAL FIELD AND EQUATIONS OF MOTION . . . PHYSICAL REVIEW D 58 124002
s i[
T0i

c
, ~2.1b!

s i j [Ti j . ~2.1c!

The covariant conservation of the matter stress-energy te
(¹nTmn50) entails the equations of motion and continui
which read~with relative 1PN precision in the equation o
continuity but only Newtonian precision in the equation
motion!

] ts1] is i5
1

c2 ~] ts i i 2s] tU !1O~4!, ~2.2a!

] ts i1] js i j 5s] iU1O~2!, ~2.2b!

where U is given by the standard Poisson integral:U
5D21$24pGs%.

Actually, it is advantageous to use, rather than the ins
taneous potentialU, a correspondingretarded potential V
given by the retarded integral of the same sources:

V~x,t !5hR
21$24pGs%[GE d3z

ux2zu
s~z,t2ux2zu/c!.

~2.3!

To Newtonian order we haveV5U1O(2) @45#. Similarly
let us introduce the following other retarded potentials@46#:

Vi5hR
21$24pGs i%, ~2.4a!

Ŵi j 5hR
21$24pG~s i j 2d i j skk!2] iV] jV%, ~2.4b!

R̂i5hR
21H 24pG~Vs i2Vis!22]kV] iVk2

3

2
] tV] iVJ ,

~2.4c!

X̂5hR
21H 24pGVs i i 12Vi] t] iV1V] t

2V

1
3

2
~] tV!222] iVj] jVi1Ŵi j ] i j

2 VJ . ~2.4d!

In addition, we shall often consider the trace of the poten
Ŵi j ; i.e.,

Ŵii 5hR
21$8pGs i i 2] iV] iV%. ~2.4e!

We are now able to express the usual covariant metricgmn

in terms of these retarded potentials to order 2.5PN,
which we mean neglecting all the terms of orderO(8) in
g00, O(7) in g0i , andO(6) in gi j . We impose the harmonic
or De Donder coordinate conditions, i.e.,]n@A2ggmn#50,
whereg andgmn are the determinant and the inverse of t
matrix gmn . Actually, since we are working with an approx
mate post-Newtonian metric, the harmonic conditions n
only to be satisfied approximately. To 2.5PN order we ha
]n@A2gg0n#5O(7) and]n@A2ggin#5O(6).
12400
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With these definitions the 2.5PN metric in harmonic c
ordinates takes the form

g005211
2

c2 V2
2

c4 V21
8

c6 F X̂1ViVi1
V3

6 G1O~8!,

~2.5a!

g0i52
4

c3 Vi2
8

c5 R̂i1O~7!, ~2.5b!

gi j 5d i j S 11
2

c2 V1
2

c4 V2D1
4

c4 Ŵi j 1O~6!.

~2.5c!

For the sake of completeness, this rather simple resu
proved in Appendix A. The simplicity in the formulation i
due to our introduction of the mass densitys as well as the
use of retarded potentials@44,39#.

In the form ~2.5! the metric contains only ‘‘even’’ terms
explicitly ~using the standard post-Newtonian terminolog!,
which are terms with even powers of 1/c in g00 andgi j , and
odd powers ing0i . Indeed the ‘‘odd’’ terms, which are re
sponsible for radiation-reaction forces, are all hidden into
definitions of the retarded potentials~2.3! and~2.4!, and can
be made explicit by expanding the retarded arguments w
Taylor’s formula. It is important in this respect to recall fro
@39# that Eqs.~2.5! come from the post-Newtonian expan
sion ~valid only in the near zone! of some radiative metric
defined globally in space-time and satisfying the n
incoming radiation condition at past null infinity. Hence th
‘‘odd’’ terms in the post-Newtonian metric~2.5! correspond
physically to the radiation-reaction forces acting on an i
lated system~with no source located at infinity!.

At 2.5PN order the harmonic-coordinate conditions a
equivalent to the following differential identities:

] tH V1
1

c2F1

2
Ŵii 12V2G J 1] i H Vi1

2

c2 @R̂i1VVi #J 5O~4!,

~2.6a!

] tVi1] j H Ŵi j 2
1

2
d i j ŴkkJ 5O~2!. ~2.6b!

These relations are in turn equivalent to the 1PN continu
equation and Newtonian equation of motion given by E
~2.2!.

The potentialsV and Vi are generated by the compac
supported source densitiess and s i . Similarly Ŵi j and R̂i
involve a part generated by a compact-supported source
also a part whose source is a sum of quadratic product
potentialsV or Vi and their space-time derivatives. We sh
refer to the former part ofŴi j andR̂i as the compact~‘‘C’’ !
part and to the latter as the ‘‘]V]V’’ or, sometimes, ‘‘qua-
dratic’’ part. As for X̂, it consists of C and]V]V parts like
for Ŵi j andR̂i , but it also contains a term of different struc
ture, generated by the product ofŴi j and] i j

2 V @last term in
Eq. ~2.4d!#. This term itself can be split into two contribu
tions arising, respectively, from the C and]V]V parts of
2-3
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BLANCHET, FAYE, AND PONSOT PHYSICAL REVIEW D58 124002
Ŵi j . Since the C part ofŴi j is a compact-supported poten
tial similar to V and Vi , the corresponding term inX̂ has
actually the same structure as a]V]V potential. On the other
hand, the]V]V part of Ŵi j generates an intrinsically mor
complicated term inX̂ we shall refer to as the noncompa
~‘‘NC’’ ! or ‘‘cubic’’ part of the potentialX̂. Precisely, our
definitions are

Ŵi j 5Ŵi j
~C!1Ŵi j

~]V]V! , ~2.7a!

R̂i5R̂i
~C!1R̂i

~]V]V! , ~2.7b!

X̂5X̂~C!1X̂~]V]V!1X̂~NC!.
~2.7c!

The compact parts are linear and quadratic functionals of
matter variables~2.1!. They read as

Ŵi j
~C!5hR

21$24pG~s i j 2d i j skk!%, ~2.8a!

R̂i
~C!5hR

21$24pG~Vs i2Vis!%,
~2.8b!

X̂~C!5hR
21$24pGVs i i %. ~2.8c!

The ]V]V or ‘‘quadratic’’ parts involve both quadratic an
cubic contributions. They are

Ŵi j
~]V]V!5hR

21$2] iV] jV%, ~2.9a!

R̂i
~]V]V!5hR

21H 22]kV] iVk2
3

2
] tV] iVJ , ~2.9b!

X̂~]V]V!5hR
21H 2Vi] t] iV1V] t

2V1
3

2
~] tV!2

22] iVj] jVi1Ŵi j
~C!] i j

2 VJ . ~2.9c!

Finally the only noncompact part is a cubic functional giv
by

X̂~NC!5hR
21$Ŵi j

~]V]V!] i j
2 V%. ~2.10!

In practice the latter term is the most delicate to evalua
Our terminology is slightly improper, as the so-called]V]V
or quadratic potentials are, as well as the NC potential, g
erated by noncompact-supported sources, and involve s
contributions which are actually cubic in the matter va
ables.

III. APPLICATION TO POINTLIKE PARTICLES

To apply the general 2.5PN metric presented in the p
vious section to the case of a point-mass binary we use
matter stress-energy tensor@47#

Tmn~x,t !5m1~ t !v1
m~ t !v1

n~ t !d„x2y1~ t !…11↔2. ~3.1!
12400
e

e.

n-
me

-
he

In our notation the symbol 1↔2 means the same term bu
with the labels 1 and 2 exchanged;d denotes the three
dimensional Dirac distribution; the trajectories of the tw
masses~in harmonic coordinates! are denoted byy1(t) and
y2(t); the two coordinate velocities arev1(t)5dy1(t)/dt,
v2(t)5dy2(t)/dt and v1

m[(c,v1), v2
m[(c,v2); m1 repre-

sents an effective time-dependent mass of body 1 define

m1~ t !5S m1

Aggrs

v1
rv1

s

c2

D
1

, ~3.2!

m1 being the~constant! Schwarzschild mass, withgrs the
metric andg its determinant@47#. Another useful notation is

m̃1~ t !5m1~ t !F11
v1

2

c2G , ~3.3!

wherev1
25v1

2. Both m1 andm̃1 reduce to the Schwarszchil

mass at Newtonian order:m15m11O(2) and m̃1
5m11O(2). Then the mass, current, and stress densi
~2.1! for two particles read

s5m̃1d~x2y1!11↔2, ~3.4a!

s i5m1v1
i d~x2y1!11↔2, ~3.4b!

s i j 5m1v1
i v1

j d~x2y1!11↔2.
~3.4c!

The stress-energy tensor of point masses depends on
values of the metric coefficients at the very location of t
particles. However, the metric coefficients there become
finite and, consequently, we must supplement the mode
stress-energy tensor~3.1! by a prescription for giving sens
to the notion of the field sitting on the particle. In oth
words, we need a regularization procedure in order to
move the infinite self-field of pointlike sources. The choi
of one or another regularization procedure represents~a pri-
ori! an integral part of the choice of physical model for d
scribing the particles. In the present paper we shall emp
the Hadamard regularization@20,21# based on the finite par
of functions admitting a special~‘‘tempered’’! type of singu-
larity. For a discussion and justification of the use of t
Hadamard regularization in the context of equations of m
tion in general relativity see@3,5,34,42,8,48#.

Let us consider the class of functionsF depending on the
field point x as well as on two source pointsy1 andy2 , and
admitting, when the field point approaches one of the sou
points ~r 15ux2y1u→0 for instance!, an expansion of the
type

F~x;y1 ,y2!5 (
2k0<k<0

r 1
k f k~n1 ;y1 ,y2!1O~r 1! ~3.5!

~wherekPZ!. We define the value of the functionF at the
source point 1~and similarly at the source point 2! to be the
so-called Hadamard finite part, which is the average, w
2-4
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GRAVITATIONAL FIELD AND EQUATIONS OF MOTION . . . PHYSICAL REVIEW D 58 124002
respect to the directionn15(x2y1)/r 1 , of the approach to
point 1, of the term with zeroth power ofr 1 in Eq. ~3.5!.
Namely @49#,

~F !1[F~y1 ;y1 ,y2![E dV~n1!

4p
f 0~n1 ;y1 ,y2!. ~3.6!

Furthermore, we use the Hadamard finite part to give a se
to the spatial integral of the product ofF and the Dirac delta
function at point 1~sinceF is singular on the support of th
Dirac function!. Indeed, we define

E d3xF~x;y1 ,y2!d~x2y1![~F !1 , ~3.7!

where (F)1 is given by Eq.~3.6!.
As a ~trivial! example of the use of the Hadamard reg

larization, consider the potentialsV and Vi to Newtonian
order, given by

V5
Gm1

r 1
1O~2!11↔2, ~3.8a!

Vi5
Gm1

r 1
v1

i 1O~2!11↔2. ~3.8b!

They are infinite at point 1, but after applying the rule~3.6!
we find

~V!15
Gm2

r 12
1O~2!, ~3.9a!

~Vi !15
Gm2

r 12
v2

i 1O~2!, ~3.9b!

where r 125uy12y2u is the distance between the particl
@50#. Of course (V)1 agrees with the standard Newtonia
result. Applying the rule~3.7! we have, for instance,

1

2 E d3xsV5
Gm1m2

r 12
1O~2!, ~3.10!

also in agreement with the Newtonian result.
We shall derive the binary equations of motion in t

so-called order-reduced form, by which we mean that in
final result all accelerations~and time derivatives of accel
erations! are replaced consistently with the approximation
the explicit functionals of the positions and velocities
given by the~lower-order! equations. So in order to deriv
the 2.5PN equations of motion~and also the metric!, we use
the less accurate 1.5PN equations, given in harmonic c
dinates by
12400
se

-

e

r-

dv1
i

dt
52

Gm2

r 12
2 n12

i H 11
1

c2 F25
Gm1

r 12
24

Gm2

r 12
1v1

212v2
2

24~v1v2!2
3

2
~n12v2!2G J

1
Gm2

c2r 12
2 v12

i @4~n12v1!23~n12v2!#1O~4!, ~3.11!

with n125uy12y2u/r 12 andv125v12v2 ; scalar products are
denoted with parentheses, e.g., (n12v1)5n12.v1 . The accel-
eration of body 2 is obtained by exchanging the labels 1
2 ~remembering thatn12 and v12 change sign in this opera
tion!.

IV. COMPACT PARTS OF POTENTIALS

In this section we derive the compact-supported potent
V andVi , and the compact-supported parts of the other
tentials,Ŵi j

(C) , R̂i
(C) , and X̂(C) defined by Eqs.~2.8!, for a

binary system described by the stress-energy tensor~3.1! and
the regularization~3.6!. We needV to relative 2.5PN order,
Vi to 1.5PN order, and the other compact potentials to 0.5
order only. The main task is the computation ofV, to which
we focus mainly our attention. By Taylor expanding
2.5PN order the retardation inside the integral~2.3! and us-
ing the mass densitys in the form ~3.4a!, we get

V5GH m̃1

r 1
2

1

c
] t~m̃1!1

1

2c2 ] t
2~m̃1r 1!2

1

6c3 ] t
3~m̃1r 1

2!

1
1

24c4 ] t
4~m̃1r 1

3!2
1

120c5 ] t
5~m̃1r 1

4!J 1O~6!11↔2.

~4.1!

We recall that the effective massm̃1 given by Eqs.~3.2! and
~3.3! is a function of time only.

We start by derivingm̃1 to 2.5PN order. Inserting the
metric coefficients~2.5! into the expressions~3.2! and~3.3!,
we obtain

m̃15m1H 11
1

c2 F2~V!11
3

2
v1

2G
1

1

c4 F22~Ŵii !11
1

2
~V2!11

1

2
~V!1v1

2

24~Vi !1v1
i 1

7

8
v1

4G J 1O~6!, ~4.2!

where all the potentials are to be evaluated at the locatio
body 1, using the rule~3.6!. We proceed iteratively. The firs
step consists in inserting into Eq.~4.2! the potentialV at
body 1 to Newtonian order~or, rather, 0.5PN order!, which
is simply the Newtonian result~3.9a!. This yields m̃1 to
1.5PN order:
2-5
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m̃15m1H 11
1

c2 F2
Gm2

r 12
1

3

2
v1

2G J 1O~4!. ~4.3!

Since the time derivative ofm̃1 starts at 1PN order, namely

m8 15
Gm1m2

c2r 12
2 @22~n12v1!2~n12v2!#1O~4!, ~4.4!

we see that the first odd power of 1/c in V arises at 1.5PN
order. Furthermore, using the constancy of the center
mass velocity, one can check that the first odd term in
gradient of V arises at 2.5PN order~it contributes to the
dominant radiation-reaction force!. From Eqs.~4.1! and~4.3!
we deduce the value of (V)1 up to 1.5PN order:

~V!15
Gm2

r 12
H 11

1

c2 F2
3Gm1

2r 12
12v2

22
1

2
~n12v2!2G J

1
4G2m1m2

3c3r 12
2 ~n12v12!1O~4!. ~4.5!

In addition to (V)1 , we need (Vi)1 already given by Eq.
~3.9b!, and the value at point 1 of the trace ofŴi j to 0.5PN
order. The traceŴii is much simpler than the potential itsel
and from Eq.~2.4e! we derive the expression

Ŵii 5D21H 8pGS s i i 2
1

2
sVD J 2

1

2
V2

1
2G

c

d

dt E d3xS s i i 2
1

2
sVD1O~2!. ~4.6!

Under this form all integrals are compact supported; at
order, we can insertV5U1O(2). The oddterm O(1) is a
mere function of time. From Eq.~4.6! we get immediately

~Ŵii !15
Gm2

r 12
FGm1

r 12
2

Gm2

2r 12
22v2

2G2
2G2m1m2

cr12
2 ~n12v12!

1O~2!. ~4.7!

The effective massm̃1 at 2.5PN order is readily obtaine
from the previous relations:

m̃15m1H 11
1

c2 F2
Gm2

r 12
1

3

2
v1

2G
1

1

c4 FGm2

r 12
S 1

2
v1

224~v1v2!12v2
21

1

2
~n12v2!2

2
1

2

Gm1

r 12
1

3

2

Gm2

r 12
D1

7

8
v1

4G
1

8G2m1m2

3c5r 12
2 ~n12v12!J 1O~6!, ~4.8!

from which we straightforwardly deduceV to 2.5PN order.
The only point is to compute the numerous~up to five! time
derivatives ofr 1 . This gives rise to many terms dependin
12400
f-
e

is

on the acceleration and its time derivatives, which we red
order by order by means of the binary 1.5PN equations
motion ~since an acceleration already arises in the 1PN te
of V!. Once fully reduced, the result forV is still lengthy,
and so we relegate it~together with all the relevant results fo
the potentials! to Appendix B.

The potentialVi to 1.5PN order and the other compa
potentialsŴi j

(C) , R̂i
(C) , andX̂(C) to 0.5PN order are obtaine

in the same way. As an example we give

Ŵi j
~C!5

Gm1

r 1
~v1

i v1
j 2d i j v1

2!1
G2m1m2

cr12
2 @n12

( i v12
j ) 2d i j ~n12v12!#

1O~2!11↔2. ~4.9!

V. QUADRATIC PARTS OF POTENTIALS

By the definition~2.9! the quadratic or]V]V potentials
have their sources made of quadratic products of~derivatives
of! the compact-supported potentialsV, Vi , andŴi j

(C) . All
the ]V]V potentials are to be computed to 0.5PN ord
which means in particular that we can replace in the sour
V andVi by the Newtonian-like potentialsU andUi @but we
must beware of the fact thatŴi j

(C) given by Eq.~4.9! involves
a 1/c correction#. For all the ]V]V potentials we proceed
similarly. We work out the sources using Eqs.~3.8! and~4.9!
and obtain some ‘‘self’’-terms, proportional tom1

2 and m2
2,

together with some ‘‘interaction’’ terms, proportional t
m1m2 . Time derivatives are changed to spatial derivativ
thanks to] t(1/r 1)5v1

i ]1i(1/r 1) and ] t
2(1/r 1)5a1

i ]1i(1/r 1)
1v1

i v1
j ]1i j (1/r 1), a1

i denoting the acceleration and]1i the
partial derivative with respect toy1

i . In the interaction terms
we leave the spatial derivatives unexpanded, whereas, in
self-terms, they are developed and ‘‘factorized’’ out in fro
of the terms. In the latter operation, we should remember
within the standard distribution theory the second spatial
rivative of 1/r 1 involves a distributional term@51,21,48#:

DS 1

r 1
D524pd~x2y1!, ~5.1a!

] i j
2 S 1

r 1
D5

3n1
i n1

j 2d i j

r 1
3 2

4p

3
d i j d~x2y1!. ~5.1b!

Two examples of such a treatment of sources are

] iV] jV5
G2m1

2

8
~]1i j

2 1d i j D1!S 1

r 1
2D

1G2m1m2]1i]2 j S 1

r 1r 2
D1O~2!11↔2, ~5.2a!
2-6
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V] t
2V5G2m1

2F1

8
~4a1

i ]1i13v1
i j ]1i j

2 2v1
2D1!S 1

r 1
2D

2
4p

3

v1
2

r 1
d~x2y1!G1G2m1m2~a1

i ]1i1v1
i j ]1i j

2 !

3S 1

r 1r 2
D1O~2!11↔2. ~5.2b!

We apply the Poisson integral on the source terms tre
in the previous manner. Consider first the distribution
terms, such as the one in the self-part ofV] t

2V. Although this
term is ill defined, because involving the product of the Dir
distribution d(x2y1) by 1/r 1 which is singular whenx
→y1 the Poisson integral is computed unambiguously w
the help of the Hadamard regularization~3.7!, yielding zero
in this case:

D21F2
4p

r 1
d~x2y1!G5E d3z

ux2zuuz2y1u
d~z2y1!

5S 1

ux2zuuz2y1u D
z5y1

50. ~5.3!

For the computation of all nondistributional terms in t
]V]V potentials, we take the example of

Ŵi j
~]V]V!5hR

21$2] iV] jV%

5D21$2] iV] jV%1
1

4pc

d

dt E d3x$2] iV] jV%

1O~2!, ~5.4!

whose ‘‘source’’ is given by Eq.~5.2a!. The Poisson integra
of the self-terms can be readily deduced fromD(ln r1)
51/r 1

2; on the other hand, that of the interaction terms
obtained by solving the elementary Poisson equation

Dg5
1

r 1r 2
. ~5.5!

A solution is known@52#:

g5 ln S, S[r 11r 21r 12. ~5.6!

The computation of the 1/c term in Eq. ~5.4! involves
essentially the spatial integral of 1/r 1r 2 . Since it is divergent
due to the bound at infinity~i.e., whenr[uxu→`!, we first
compute the finite integral defined by integration over a b
of constant finite radiusR. By writing the integrand as
1/r 1r 25Dg and using the Gauss theorem, we transform
integral into a surface integral over the sphere of radiusR:

E
uxu<R

d3x

r 1r 2
5E

uxu<R
d3xDg5E

r 5R
dV~r 2] rg!, ~5.7!

with ] r[ni] i . Into the latter surface integral we can repla
the functiong by its expansion at infinity computed from
12400
ed
l

c

h

s

ll

e

Eqs. ~5.6!: g5 ln(2r)1@2(ny1)2(ny2)1r12#/2r 1O(1/r 2).
Neglecting the terms which die out in the limitR→`, we
get

2
1

4p E
uxu<R

d3x

r 1r 2
52R1

r 12

2
1OS 1

RD . ~5.8!

As we can see, the divergent part of the integral is simpl
constant, which will therefore vanish after application of t
spatial derivatives]1i]2 j in front of the term. This shows tha
we are allowed to use in this computation the finite coe
cient on the right-hand side of Eq.~5.8!, which is nothing but
the finite part in the sense of Hadamard of the initially dive
gent integral@53#. Settingy15y2 in Eq. ~5.8!, we infer that
the divergent integral of 1/r 1

2 can be replaced by zero. The
Eq. ~5.8! together with the last fact leads to

2
1

4p E d3x] iV] jV5
G2m1m2

r 12
~n12

i j 2d i j !1O~2!.

~5.9!

Gathering those results, we thereby obtain the looked-for
tential as

Ŵi j
~]V]V!52

G2m1
2

8 S ] i j
2 ln r 11

d i j

r 1
2 D 2G2m1m2igj

1
G2m1m2

cr12
2 Fn12

( i v12
j ) 2

1

2
~3n12

i j 2d i j !~n12v12!G
1O~2!11↔2, ~5.10!

where we haveigj[]1i]2 jg. The first two terms are in
agreement with a result of@42#. All the ]V]V potentials are
calculated in this way to obtain the complete expressions
potentials presented in Appendix B.

Ending this section we list some formulas which are u
ful in the derivation of the]V]V potentials, and even else
where. The first-order spatial derivatives ofg read

ig[]1ig5
2n1

i 1n12
i

S
, ~5.11a!

gi[]2ig5
2n2

i 2n12
i

S
, ~5.11b!

] ig52 ig2gi5
n1

i 1n2
i

S
, ~5.11c!

and second-order spatial derivatives are~with n12
i j [n12

i n12
j !

i j g[]1i j
2 g52

n12
i j 2d i j

r 12S
2

n1
i j 2d i j

r 1S
2

~n12
i 2n1

i !~n12
j 2n1

j !

S2 ,

~5.12a!

gi j []2i j
2 g52

n12
i j 2d i j

r 12S
2

n2
i j 2d i j

r 2S
2

~n12
i 1n2

i !~n12
j 1n2

j !

S2 ,

~5.12b!
2-7
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igj[]1i]2 jg5
n12

i j 2d i j

r 12S
1

~n12
i 2n1

i !~n12
j 1n2

j !

S2 .

~5.12c!

Contracting with the Kroneckerd i j , the relations~5.12! be-
come i i g5D1g51/r 1r 12, gii 5D2g51/r 2r 12, and, more in-
terestingly,

igi5
1

2 S 1

r 1r 2
2

1

r 2r 12
2

1

r 1r 12
D . ~5.13!

This simple result is a straightforward consequence of
helpful formulas

11~n1n2!

S
5

r 11r 22r 12

2r 1r 2
, ~5.14a!

12~n1n12!

S
5

r 11r 122r 2

2r 1r 12
, ~5.14b!

11~n2n12!

S
5

r 21r 122r 1

2r 2r 12
. ~5.14c!

Finally, we find the values ofg and its derivatives at the
location of body 1~say! according to the Hadamard regula
ization ~3.6!: (g)15 ln(2r12), together with

~ ig!15
n12

i

2r 12
, ~gi !152

n12
i

r 12
, ~5.15a!

~ igj !15
2d i j 12n12

i j

2r 12
2 , ~ igi !152

1

2r 12
2 ,

~5.15b!

~ i j g!15
d i j 23n12

i j

4r 12
2 , ~gi j !15

d i j 22n12
i j

r 12
2 .

~5.15c!

These formulas are extensively used when getting the po
tials at body 1~see Appendix B!.
th

in

12400
e

n-

VI. NONCOMPACT POTENTIAL

The so-called noncompact potential is defined by E
~2.10! as the retarded integral of a source composed of
product of aV-type potential andŴi j

(]V]V) , the latter poten-
tial being itself given as the retarded integral of a sou
made of a quadratic product ofV’s. Because of this purely
cubic structure, one would expecta priori that the computa-
tion of the noncompact term represents a nontrivial task,
even that it is not at all guaranteed that this term can
expressible with the help of simple algebraic functions~al-
gebraically closed form!. Rather surprisingly, the NC poten
tial turns out to accept an algebraically closed form up
0.5PN order. As a result, one can find its explicit expressi
valid for any source pointx ~the value when the source poin
sits on a particley1,2 following from the regularization pro-
cess!. To Newtonian order the closed-form expression of t
NC term has already been obtained in@41,42# by combining
some technical results derived earlier in@54,31,55#. We shall
present here a slightly different but totally equivalent form
X̂(NC) at Newtonian order, and add to this the 0.5PN corr
tion. Very likely the 1PN and higher corrections inX̂(NC) do
not admit any algebraically closed form all over space-tim
but the regularized values at the location of the two bod
can probably be carried out explicitly~these values are
needed when investigating the equations of motion!.

To 0.5PN order the noncompact potential reads

X̂~NC!5hR
21$Ŵi j

~]V]V!] i j
2 V%

5D21$Ŵi j
~]V]V!] i j

2 V%1
1

4pc

d

dt E d3x$Ŵi j
~]V]V!] i j

2 V%

1O~2!, ~6.1!

where to this orderV can be replaced by Eq.~3.8a! and
Ŵi j

(]V]V) by Eq. ~5.10!. The cubic source is easily obtaine
thanks to Eqs.~3.8a! and ~5.10!. Hence we arrive at
Ŵi j
~]V]V!] i j

2 V5
G3m1

3

2 F 1

r 1
5 1

4

3

p

r 1
2 d~x2y1!G1G3m1

2m2H p

2

d~x2y2!

r 1
2 2

1

8
] i j

2 S 1

r 2
D ] i j

2 ln r 122] i j
2 S 1

r 1
D igj J

1
G3m1

2m2

cr12
2 Fn12

i v12
j 2

1

2
~3n12

i j 2d i j !~n12v12!G]1i j
2 S 2

r 1
D1O~2!11↔2. ~6.2!
a-

We compute the Poisson integral of Eq.~6.2!. The ~ill-

defined! distributional term in the self-part (}m1
3) of Eq.

~6.2! is treated unambiguously using the rule~3.7! and does
not contribute to the Poisson integral. On the contrary
distributional term in the interaction part (}m1

2m2) is well
defined and gives a net contribution. Easy terms are obta
e

ed

from the fact thatD(1/r 1
3)56/r 1

5 andD(r 1)52/r 1 . The dif-
ficult point is to find the solutions of the two Poisson equ
tions

DK152] i j
2 S 1

r 2
D ] i j

2 ln r 1 , ~6.3a!
2-8
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DH152] i j
2 S 1

r 1
D igj . ~6.3b!

We use the same notation as in@42# except that we add a
subscript 1 to distinguish a function from its image obtain
by the exchange of bodies 1 and 2. Remarkably, the s
tions of Eqs.~6.3! can be written down everywhere in spac
time under an explicit form@41,42,56#:

K15S 1

2
D2D12D2D F ln r 1

r 2
G1

1

2
D2F ln r 12

r 2
G1

r 2

2r 12
2 r 1

2 1
1

r 12
2 r 2

,

~6.4a!

H15
1

2
D1F g

r 1
1

ln r 1

r 12
2D1S r 11r 12

2
g2

r 1

4 D G
1] i]2iF ln r 12

r 1
1

ln r 1

2r 12
G2

1

r 1
]2i@~] ig!1#2

r 2

2r 1
2r 12

2 .

~6.4b!

They are equivalent to the expressions given by Eqs.~3.48!
and~3.49! in @42#. By expanding all derivatives, we come
the completely developed forms

K152
1

r 2
3 1

1

r 2r 12
2 2

1

r 1
2r 2

1
r 2

2r 1
2r 12

2 1
r 12

2

2r 1
2r 2

3 1
r 1

2

2r 2
3r 12

2 ,

~6.5a!

H152
1

2r 1
3 2

1

4r 12
3 2

1

4r 1
2r 12

2
r 2

2r 1
2r 12

2 1
r 2

2r 1
3r 12

1
3r 2

2

4r 1
2r 12

3

1
r 2

2

2r 1
3r 12

2 2
r 2

3

2r 1
3r 12

3 ~6.5b!

~K2 and H2 are obtained by exchangingr 1 and r 2 on the
right-hand sides!. With the solutions~6.4! and~6.5!, we con-
trol the NC potential at the Newtonian approximation.

Next, we compute the spatial integral of Eq.~6.2! entering
the 0.5PN correction in the NC potential. We must evalu
essentially the spatial integrals of the two source terms
the right-hand sides of Eqs.~6.3!. We proceed as for the
integral of 1/r 1r 2 in Eqs. ~5.7! and ~5.8!. Namely, we inte-
grate over a ball of constant radiusR, and use the function
K1 to transform the volume integral into a surface integ
over the spherer 5R:

2E
uxu<R

d3x] i j
2 S 1

r 2
D ] i j

2 ln r 15E
uxu<R

d3xDK1

5E
r 5R

dV~r 2] rK1!.

~6.6!

From the developed expression ofK1 given by Eq.~6.5a!,
we getK152/rr 12

2 1O(1/r 2), which, when substituted into
the surface integral in Eq.~6.6!, yields
12400
d
u-

e
n

l

2
1

2p E
uxu<R

d3x] i j
2 S 1

r 2
D ] i j

2 ln r 15
2

r 12
2 1OS 1

RD . ~6.7!

As we can see, the integral is finite in the limitR→`, with
the value

2
1

2p E d3x] i j
2 S 1

r 2
D ] i j

2 ln r 15
2

r 12
2 . ~6.8!

The same method applied toH1 leads, sinceH15O(1/r 2),
to

2
1

2p E d3x] i j
2 S 1

r 1
D igj50. ~6.9!

We must compute now the spatial integral of 1/r 1
5 @see the

first term in Eq.~6.2!#. It is clearly infinite because of the
divergence at the boundx→y1 . By integrating 1/r 1

5 from
r 15e up to infinity, we obtain* r 1>ed

3x/r 1
552p/e2, which

is a pure constant@57#, cancelled after applying the tim
derivative in front of the 1/c term in Eq.~6.1!. The second
term in Eq.~6.1! is therefore

1

4pc

d

dt E d3x$Ŵi j
~]V]V!] i j

2 V%

52
G3m1

2m2

2cr12
3 ~n12v12!1O~2!11↔2.

~6.10!

By summing the various contributions, we find the nonco
pact potential at 0.5PN order:

X̂~NC!5
G3m1

3

12r 1
3 2G3m1

2m2H 1

8r 2r 12
2 1

1

16
K11H1J

1
G3m1

2m2

cr12
2 Fn12

i v12
j 2

1

2
~3n12

i j 2d i j !~n12v12!G]1i j
2 r 1

2
G3m1

2m2

2cr12
3 ~n12v12!1O~2!11↔2. ~6.11!

Adding the other contributions inX̂ we end up with the
complete expression reported in Appendix B.

Finally, we give the value of the noncompact potent
~6.11! at the location of body 1. From the Hadamard reci
~3.6! we find, for the functionsK1,2 andH1,2 at point 1,

~K1!15
2

3r 12
3 , ~K2!150, ~6.12a!

~H1!15
1

3r 12
3 , ~H2!152

1

r 12
3 ,

~6.12b!

so that the noncompact potential at point 1 is
2-9
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~X̂~NC!!15
G3m2

r 12
3 F2

1

2
m1

21m1m21
1

12
m2

2G
1

G3m1m2

2cr12
3 ~2m11m2!~n12v12!1O~2!. ~6.13!

VII. 2.5PN METRIC OF BINARY SYSTEMS

From the results of the previous sections, we are in
position to write down the 2.5PN harmonic-coordinate m
ric generated by two pointlike particles as a function of t
12400
e
-

coordinate positionx and a functional of the coordinate po
sitions and velocities of the particlesy1,2(t),v1,2(t) ~wheret
5const is the harmonic-coordinate slicing!:

gmn~x,t !5gmn@x;y1~ t !,y2~ t !;v1~ t !,v2~ t !#. ~7.1!

The metric is given by Eqs.~2.5! in which we insert the
expressions of the potentials as listed in Appendix B. Af
combining together identical terms we obtain@58#
g00115
2Gm1

c2r 1
1

1

c4 FGm1

r 1
@2~n1v1!214v1

2#22
G2m1

2

r 1
2 1G2m1m2S 2

2

r 1r 2
2

r 1

2r 12
3 1

r 1
2

2r 2r 12
3 2

5

2r 2r 12
D G

1
4G2m1m2

3c5r 12
2 ~n12v12!1

1

c6 H Gm1

r 1
S 3

4
~n1v1!423~n1v1!2v1

214v1
4D1

G2m1
2

r 1
2 @3~n1v1!22v1

2#12
G3m1

3

r 1
3

1G2m1m2Fv1
2S 3r 1

3

8r 12
5 2

3r 1
2r 2

8r 12
5 2

3r 1r 2
2

8r 12
5 1

3r 2
3

8r 12
5 2

37r 1
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~where we recallS5r 11r 21r 12!. The harmonic-coordinate
conditions satisfied by Eqs.~7.2! read, with this order of
approximation,]n@(2g)1/2g0n#5O(7) and ]n@(2g)1/2gin#
5O(6).

When applied to post-Newtonian initial conditions for th
numerical evolution of two compact objects@1,2# ~provided
that the initial spatial numerical grid does not extend outs
the binary near zone@40#!, the lengthy expressions~7.2! be-
come a little simpler as the orbit can be considered as ci
lar with a good approximation. In this case we ha
(n12v1)5O(5)5(n12v2), the remainderO(5) correspond-
ing to radiation-reaction effects. Obviously, all the resulti
O(5)’s can beneglected since they yield terms falling in
the uncontrolled remainders of Eqs.~7.2!. If in addition we
are working in a mass-centered frame, theny15X2y12
1O(4) and y252X1y121O(4), where X15m1 /m, X2
5m2 /m, m5m11m2 . All the remaindersO(4) become
negligible after insertion in Eqs.~7.2!. Thus, for instance,
v1

25X2
2v12

2 1O(4), and

~n1v1!5X2

r

r 1
~nv12!1O~4!, ~7.3a!
12400
e

u-

~n1v2!52X1

r

r 1
~nv12!1O~4! ~7.3b!

~plus the same formulas with bodies 1 and 2 exchanged!. We
denote byn5x/r and r 5uxu the direction and the distanc
from the center of mass;r depends on the two individua
distancesr 1,2 through the relation

r 25X1r 1
21X2r 2

22X1X2r 12
2 1O~4!. ~7.4!

The magnitude of the relative velocity isv125r 12v2PN
1O(6), where v2PN denotes the orbital frequency of th
circular motion at 2PN order, and is given by Eq.~8.6! below
@59#.

We provide also the values of the metric coefficients~7.2!
computed at body 1~since these might also be needed in t
problem of binary coalescence!, i.e.,

~gmn!1~ t !5gmn@y1~ t !;y1~ t !,y2~ t !;v1~ t !,v2~ t !#, ~7.5!

where the limitx→y1 is understood in the sense of Eq.~3.6!.
Directly from Eqs.~7.2!, or using the expressions of the po
tentials at body 1 as given in Appendix B, we get
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~gi j !15d i j 12
Gm2

c2r 12
d i j 1

Gm2

c4r 12
d i j S 2~n12v2!21

Gm1

r 12
1

Gm2

r 12
D1

Gm2

c4r 12
H n12

i j S 28
Gm1

r 12
1

Gm2

r 12
D14v2

i j J
2

4G2m1m2

3c5r 12
2 d i j ~n12v12!1

G2m1m2

c5r 12
2 $212n12

i j ~n12v12!116n12
( i v12

j ) %1O~6!. ~7.6c!

Drastic simplifications occur in the case where the orbit is circular.

VIII. 2.5PN EQUATIONS OF MOTION OF BINARY SYSTEMS

The motion of body 1 under the gravitational influence of body 2 is simply the geodesic motion taking place
post-Newtonian space-time~7.2!. Now we write the geodesic equation of body 1 in the Newtonian-like form

dP 1
i

dt
5F 1

i . ~8.1!

The ‘‘linear momentum’’ vector and ‘‘gravitational force’’~per unit of mass! are defined by
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i [
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2 S v1
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s

c2

D
1

. ~8.2!

The above quantities are computed using the regularization~3.6! which is a crucial ingredient of our point-mass model.
Inserting the 2.5PN metric~2.5! into Eqs.~8.2!, we obtain
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Next we replace into these expressions all the potentials and their gradients computed at point 1 as given in Appen~to
this order the Hadamard finite part is ‘‘distributive’’@50#!, and get bothP 1

i and F 1
i in terms of the relative separatio

y12
i 5r 12n12

i and individual velocitiesv1,2
i @alternatively we can obtainP 1

i andF 1
i directly from Eqs.~7.2!#. Then, we compute

the time derivative ofP 1
i , and order-reduce all the resulting accelerations~which appear at orders 1PN or 2PN! by means of

the 1.5PN equations of motion given by Eq.~3.11!. After insertion in Eq.~8.1! and simplification, we end with the 2.5PN
acceleration of body 1:
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We find perfect agreement with the Damour-Deruelle@4–7#
equations of motion. To emphasize the strength of this ag
ment we recall that the method employed in the present
per differs in many respects from the one originally used
@4–7# ~see the discussion in the Introduction!. In the case of
circular orbits, the equations reduce to

dv12
i

dt
52v2PN

2 y12
i 2

32G3m3n

5c5r 12
4 v12

i 1O~6!. ~8.5!

The second term represents the standard damping fo
while the orbital frequencyv2PN is the frequency of the exac
circular motion at 2PN order, related to the harmon
coordinate separationr 12 by

v2PN
2 [

Gm

r 12
3 F11~231n!g1S 61

41

4
n1n2Dg2G . ~8.6!

Our notation ism5m11m2 , n5m1m2 /m2 ~5X1X2 in the
notation of the previous section!, andg5Gm/r 12c
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APPENDIX A: DERIVATION OF THE 2.5PN
FLUID METRIC

The derivation follows almost immediately from the r
sults established in the Sec. II A of@39#. The Einstein field
equations in harmonic coordinates are written as

]nhmn50, ~A1a!

hhmn5
16pG

c4 uguTmn1Lmn~h!, ~A1b!

where h5hmn]m]n is the flat D’Alembertian operato
@hmn5diag(21,1,1,1)#, hmn[A2ggmn2hmn, andLmn de-
notes the gravitational source term which is at least quadr
in h and its space-time derivatives~see@39# for the expres-
sions of the quadratic and cubic parts ofLmn!. From@39,46#,
we have, to order 1PN,
12400
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Substituting the 1PN metric into the right-hand side of t
field equation we get
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4
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together with the gravitational source term@Eqs. ~2.12! in
@39##
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These are the needed equations, which lead, by applica
of the retarded integral on the right-hand side of the fi
equations, to
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12400
on
d
~the potentials are defined in the text!. From this, we deduce
the components of the covariant metricgmn and find the
result ~2.5!. It has been shown in Sec. III of@39# that the
post-Newtonian metric matches in the external near zone
solution extending up to the radiative zone.

APPENDIX B: COMPLETE RESULTS
FOR THE POTENTIALS

We give first all the relevant potentials~valid all over
space-time! which are used in the obtention of the 2.5P
metric ~7.2!:
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The values of the potentials at the location of body 1, following from Eq.~3.6!, are
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The gradients of the potentials computed at body 1~needed for the equations of motion! are
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