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Gravitational radiation reaction forces and balance equations are investigated to 3/2 post-Newtonian~1.5PN!
order beyond the quadrupole approximation, corresponding to the 4PN order in the equations of motion of an
isolated system. By matching a post-Newtonian solution for the gravitational field inside the system to a
post-Minkowskian solution~obtained in a previous work! for the gravitational field exterior to the system, we
determine the 1PN relativistic corrections to the ‘‘Newtonian’’ radiation reaction potential of Burke and
Thorne. The 1PN reaction potential involves both scalar and vectorial components, with the scalar component
depending on the mass-type quadrupole and octupole moments of the system, and the vectorial component
depending in particular on the current-type quadrupole moment. In the case of binary systems, the 1PN
radiation reaction potential has been shown elsewhere to yield consistent results for the 3.5PN approximation
in the binary’s equations of motion. Adding up the effects of tails, the radiation reaction is then written to
1.5PN order. In this paper, we establish the validity to 1.5PN order, for general systems, of the balance
equations relating the losses of energy, linear momentum, and angular momentum in the system to the corre-
sponding fluxes in the radiation field far from the system.@S0556-2821~97!00702-9#

PACS number~s!: 04.25.Nx, 04.30.Nk

I. INTRODUCTION

The old idea~in any field theory! of losses of energy and
momenta in an isolated system, due to the presence of radia-
tion reaction forces in the equations of motion, is of topical
interest in the case of the gravitational field. Notably, gravi-
tational radiation reaction forces play an important role in
astrophysical binary systems of compact objects~neutron
stars or black holes!. The electromagnetic-based observa-
tions of the Hulse-Taylor@1# binary pulsar PSR 1913116
have yielded evidence that the binding energy of the pulsar
and its companion decreases because of gravitational radia-
tion reaction@2–5#.

Even more relevant to the problem of radiation reaction
are the future gravitational-based observations of inspiralling
~and then coalescing! compact binaries. The dynamics of
these systems is entirely driven by gravitational radiation
reaction forces. The future detectors such as LIGO and
VIRGO should observe the gravitational waves emitted dur-
ing the terminal phase, starting about twenty thousands or-
bital rotations before the coalescence of two neutron stars.
Because inspiralling compact binaries are very relativistic,
and thanks to the large number of observed rotations, the
output of the detectors should be compared with a very pre-
cise expectation from general relativity@6–8#. In particular
Cutler et al. @6# have shown that oura priori knowledge of
the relativistic~or post-Newtonian! corrections in the radia-
tion reaction forces will play a crucial role in our ability to
satisfactorily extract information from the gravitational sig-
nals. Basically, the reaction forces inflect the time evolution
of the binary’s orbital phase, which can be determined very
precisely because of the accumulation of observed rotations.
The theoretical problem of the phase evolution has been ad-
dressed using black-hole perturbation techniques, valid when
the mass of one body is small as compared with the other
mass@9–14#, and using the post-Newtonian theory, valid for

arbitrary mass ratios@15–18#. It has been shown@10,11,14#
that post-Newtonian corrections in the radiation reaction
forces should be known up to at least the third post-
Newtonian~3PN! order, or relative orderc26 in the velocity
of light.

The radiation reaction forces in the equations of motion of
a self-gravitating system arise at the 2.5PN order~or c25

order! beyond the Newtonian acceleration. Controlling the
nth post-Newtonian corrections in the reaction force means,
therefore, controlling the (n12.5)th post-Newtonian correc-
tions in the equations of motion. Ifn53, this is very de-
manding, and beyond our present knowledge. A way out of
this problem is toassumethe validity of a balance equation
for energy, which permits relating the mechanical energy
loss in the system to the corresponding flux of radiation far
from the system. Using such a balance equation necessitates
the knowledge of the equations of motion up to thenPN
order instead of the (n12.5)PN one. The price to be paid for
this saving is the computation of the far-zone flux up to the
same~relative! nPN order. However, this is in general less
demanding than going to (n12.5)PN order in the equations
of motion. All the theoretical works on inspiralling binaries
compute the phase evolution from the energy balance equa-
tion. Black-hole perturbations@11–13# reachn54 in this
way, and the post-Newtonian theory@15–18# hasn52.5.

An important theoretical problem is therefore to improve
the present situation by showing the validity to post-
Newtonian order of the balance equations for energy, and
also for linear and angular momenta. This problem is equiva-
lent to controlling the radiation reaction forces at the same
post-Newtonian order. Arguably, this problem is also impor-
tant in its own~not only for applications to inspiralling com-
pact binaries!.

Radiation reaction forces in general relativity have long
been investigated~see@19# for a review of works prior the
seventies!. In the late sixties, Burke and Thorne@20–22#,
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using a method of matched asymptotic expansions, intro-
duced a quasi-Newtonian reactive potential, proportional to
the fifth time-derivative of the Newtonian quadrupole mo-
ment of the source. At about the same time, Chandrasekhar
and collaborators@23–25#, pursuing a systematic post-
Newtonian expansion in the case of extended fluid systems,
found some reactive terms in the equations of motion at the
2.5PN approximation. The reactive forces are different in the
two approaches because of the use of different coordinate
systems, but both yield secular losses of energy and angular
momentum in agreement with the standard Einstein quadru-
pole formulas~see however@26–28#!. These results, after
later confirmation and improvements@29–36#, show the va-
lidity of the balance equations toNewtonianorder, and in the
case of weakly self-gravitating fluid systems. In the case of
binary systems of compact objects~such as the binary pulsar
and inspiralling binaries!, the Newtonian balance equations
are also known to be valid, as the complete dynamics of
these systems has been worked out~by Damour and Deruelle
@37–39,19#! up to the 2.5PN order where radiation reaction
effects appear.

Post-Newtonian corrections in the radiation reaction force
can be obtained from first principles using a combination of
analytic approximation methods. The methods are~i! a post-
Minkowskian or nonlinear expansion method for the field in
the weak-field domain of the source~including the regions
far from the source!, ~ii ! a multipolar expansion method for
each coefficient of the post-Minkowskian expansion in the
domain exterior to the source, and~iii ! a post-Newtonian
expansion method~or expansion whenc→`) in the near-
zone of the source~including its interior!. Then an asymp-
totic matching~in the spirit of @20–22#! permits us to con-
nect the external field to the field inside the source. Notably,
the methods~i! and ~ii ! have been developed by Blanchet
and Damour@40–42# on foundations laid by Bonnor and
collaborators@43–45#, and Thorne@46#. The method~iii ! and
matching have also been developed within the present ap-
proach@47–49#.

The post-Newtonian correction that is due to gravitational
wave tails in the reaction force was determined first using the
latter methods@50#. The tails of waves are produced by the
scattering of the linear waves on the static spacetime curva-
ture generated by the total mass of the source~see e.g.,
@44,45#!. Tails appear as nonlocal integrals, depending on the
full past history of the system, and modifying its present
dynamics by a post-Newtonian correction of 1.5PN order in
the radiation reaction force, corresponding to 4PN order in
the equations of motion@50#. It has been shown in@42# that
the tail contribution in the reaction force is such that the
balance equation for energy is verified for this particular ef-
fect. This is a strong indication that the balance equations are
actually valid beyond the Newtonian order~1.5PN order in
this case!. For completeness we shall include this result in
the present paper.

The methods~i!–~ii ! have been implemented in@51# in
order to investigate systematically the occurence and struc-
ture of the contributions in the exterior field which are ex-
pected to yield radiation reaction effects@after application of
the method~iii ! and the relevant matching#. The present pa-
per is the direct continuation of the paper@51#, that we shall
refer here to as paper I.

Working first within the linearized theory, we investigated
in paper I the ‘‘antisymmetric’’ component of the exterior
field, a solution of the d’Alembertian equation composed of
a retarded~multipolar! wave minus the corresponding ad-
vanced wave. Antisymmetric waves in the exterior field are
expected to yield radiation reaction effects in the dynamics
of the source. Indeed, these waves change sign when we
reverse the condition of retarded potentials into the advanced
condition~in the linearized theory!, and have the property of
being regular all over the source~when the radial coordinate
r→0). Thus, by matching, the antisymmetric waves in the
exterior field are necessarily present in the interior field as
well, and can be interpreted as radiation reaction potentials.
In a particular coordinate system suited to the~exterior! near
zone of the source~and constructed in paper I!, the antisym-
metric waves define a radiation reactiontensorpotential in
the linearized theory, generalizing the radiation reaction sca-
lar potential of Burke and Thorne@20–22#.

Working to nonlinear orders in the post-Minkowskian ap-
proximation, we introduced in paper I a particular decompo-
sition of the retarded integral into the sum of an ‘‘instanta-
neous’’ integral, and an homogeneous solution composed of
antisymmetric waves~in the same sense as in the linearized
theory!. The latter waves are associated with radiation reac-
tion effects of nonlinear origin. For instance, they contain the
nonlinear tail contribution obtained previously@50#. At the
1PN order, the nonlinear effects lead simply to a redefinition
of the multipole moments which parametrize the linearized
radiation reaction potential. However, the radiation reaction
potential at 1PN order has been derived only in the external
field. Thus, it was emphasized in paper I that in order to
meaningfully interpret the physical effects of radiation reac-
tion, it is necessary to complete this derivation by an explicit
matching to the field inside the source.

We perform the relevant matching~at 1PN order! in the
present paper. Namely, we obtain a solution for the field
inside the source~satisfying the nonvacuum field equations!,
which can be transformed by means of a suitable coordinate
transformation~in the exterior near-zone of the source! into
the exterior field determined in paper I. The matching yields
in particular the multipole moments parametrizing the reac-
tion potential as explicit integrals over the matter fields in the
source. As the exterior field satisfies physically sensible
boundary conditions at infinity~viz the no-incoming radia-
tion condition imposed at past-null infinity!, the 1PN-
accurate radiation reaction potentials are, indeed, appropriate
for the description of the dynamics of an isolated system.

To 1PN order beyond the Burke-Thorne term, the reaction
potential involves a scalar potential, depending on the mass-
type quadrupole and octupole moments of the source, and a
vectorial potential, depending in particular on the current-
type quadrupole moment. The existence of such vectorial
component was first noticed in the physically restricting case
where the dominant quadrupolar radiation is suppressed@28#.

A different approach to the problem of radiation reaction
has been proposed by Iyer and Will@52,53# in the case of
binary systems of point particles. The expression of the ra-
diation reaction force is deduced, in this approach, from the
assumptionthat the balance equations for energy and angular
momentum are correct~the angular momentum balance
equation being necessary for noncircular orbits!. Iyer and
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Will determine in this way the 2.5PN and 3.5PN approxima-
tions in the equations of motion of the binary, up to exactly
the freedom left by the unspecified coordinate system. They
also check that the 1PN-accurate radiation reaction potentials
of the present paper~and paper I! correspond in their formal-
ism, when specialized to binary systems, to a unique and
consistent choice of a coordinate system. This represents a
nontrivial check of the validity of the 1PN reaction poten-
tials.

In the present paper we prove that the 1PN-accurate ra-
diation reaction force in the equations of motion of a general
system extracts energy, linear momentum, and angular mo-
mentum from the system at the same rate as given by the
~known! formulas for the corresponding radiation fluxes at
infinity. The result is extended to include the tails at 1.5PN
order. Thus we prove the validity up to the 1.5PN order of
the energy and momenta balance equations~which were pre-
viously known to hold at Newtonian order, and for the spe-
cific effects of tails at 1.5PN order!.

Of particular interest is the loss of linear momentum,
which can be viewed as a ‘‘recoil’’ of the center of mass of
the source in reaction to the wave emission. This effect is
purely due to the 1PN corrections in the radiation reaction
potential, and notably to its vectorial component~the New-
tonian reaction potential predicts no recoil!. Numerous au-
thors have obtained this effect by computing theflux of lin-
ear momentum at infinity, and then by relying on the balance
equation to get the actual recoil@54–57#. Peres@58# made a
direct computation of the linear momentum loss in the
source, but limited to the case of the linearized theory. Here
we prove the balance equation for linear momentum in the
full nonlinear theory.

The results of this paper apply to a weakly self-gravitating
system. The case of a source made of strongly self-
gravitating~compact! objects isa priori excluded. However,
the theoretical works on the Newtonian radiation reaction in
the binary system PSR 1913116 @37–39,19# have shown
that some ‘‘effacement’’ of the internal structure of the com-
pact bodies is at work in general relativity. Furthermore, the
computation of the radiation reaction at 1PN order in the
case of two point-masses@52,53# has shown agreement with
a formal reduction, by means ofd functions, of the 1PN
radiation reaction potentials, initially derived in this paper
only in the case of weakly self-gravitating systems. These
works give us hope that the results of this paper will remain
unchanged in the case of systems containing compact ob-
jects. If this is the case, the present derivation of the 1.5PN
balance equations constitutes a clear support of the usual
way of computing the orbital phase evolution of inspiralling
compact binaries@6–18#.

The plan of this paper is the following. The next section
~II ! is devoted to several recalls from paper I which are nec-
essary in order that the present paper be essentially self-
contained. In Sec. III we obtain, using the matching proce-
dure, the gravitational field inside the source, including the
1PN reactive contributions. Finally, in Sec. IV, we show that
the latter reactive contributions, when substituted into the
local equations of motion of the source, yield the expected
1PN and then 1.5PN balance equations for energy and mo-
menta.

II. TIME-ASYMMETRIC STRUCTURE OF
GRAVITATIONAL RADIATION

A. Antisymmetric waves in the linearized metric

Let De5$(x,t),uxu.r e% be the domain exterior to the
source, defined byr e.a, wherea is the radius of the source.
We assume that the gravitational field is weak everywhere,
inside and outside the source. In particulara@GM/c2,
whereM is the total mass of the source. Let us consider, in
De , the gravitational field at the first approximation in a
nonlinearity expansion. We write the componentshmn of the
deviation of the metric density from the Minkowski metric
hmn in the form @59#

hmn[A2ggmn2hmn5Gh~1!
mn1O~G2!, ~2.1!

where the coefficient of the Newton constantG represents
the linearized fieldh(1)

mn , satisfying the vacuum linearized
field equations inDe ,

hh~1!
mn5]m]lh~1!

ln 1]n]lh~1!
lm2hmn]l]sh~1!

ls . ~2.2!

We denote by h[hmn]m]n the flat space-time
d’Alembertian operator.

The general solution of Eqs.~2.2! in De can be param-
etrized ~modulo an arbitrary linearized coordinate transfor-
mation! by means of two and only two sets of multipole
moments, referred to as the mass-type moments, denoted
ML , and the current-type moments,SL @46#. The capital let-
ter L represents a multi-index composed ofl indices,
L5 i 1i 2••• i l ~see @59# for our notation and conventions!.
The multipolarity of the moments isl>0 in the case of the
mass moments, andl>1 in the case of the current moments.
TheML’s andSL’s are symmetric and tracefree~STF! with
respect to theirl indices. The lowest-order momentsM ,
Mi , andSi are constant, and equal, respectively, to the total
constant mass~including the energy of the radiation to be
emitted!, to the position of the center of mass times the mass,
and to the total angular momentum of the source. The
higher-order moments, havingl>2, are arbitrary functions
of time, ML(t) and SL(t), which encode all the physical
properties of the source as seen in the exterior~linearized!
field. In terms of these multipole moments, the ‘‘canonical’’
linearized solution of Thorne@46# reads

hcan~1!
00 52

4

c2(l>0

~2 ! l

l !
]LF1r MLS t2 r

cD G , ~2.3a!

hcan~1!
0i 5

4

c3(l>1

~2 ! l

l !
]L21F1r M iL21

~1! S t2 r

cD G
1

4

c3(l>1

~2 ! l l

~ l11!!
« iab]aL21F1r SbL21S t2 r

cD G ,
~2.3b!
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hcan~1!
i j 52

4

c4(l>2

~2 ! l

l !
]L22F1r M i jL22

~2! S t2 r

cD G
2

8

c4(l>2

~2 ! l l

~ l11!!
]aL22F1r «ab( iSj )bL22

~1! S t2 r

cD G .
~2.3c!

This solution satisfies Eq.~2.2! and the condition of har-
monic coordinates~i.e., ]nhcan(1)

mn 50). Here we impose that
the multipole momentsML(t) andSL(t) are constant in the
remote past, before some finite instant2T in the past. With
this assumption the linearized field in Eq.~2.3! ~and all the
subsequent nonlinear iterations built on it! is stationary in a
neighborhood of past-null infinity and spatial infinity~it sat-
isfies time-asymmetric boundary conditions in spacetime!.
This ensures that there is no radiation incoming on the sys-
tem, which would be produced by some sources located at
infinity.

In paper I~Ref. @51#!, the contribution in Eq.~2.3! which
changes sign when we reverse the condition of retarded po-
tentials to the advanced condition was investigated. This
contribution is obtained by replacing each retarded wave in
Eq. ~2.3! by the corresponding antisymmetric wave, half the
difference between the retarded wave and the corresponding
advanced one. The antisymmetric wave changes sign when
we reverse the time evolution of the momentsML(t) and
SL(t), say ML(t)→ML(2t), and evaluate afterwards the
wave at the reversed time2t. Thus, Eq.~2.3! is decomposed
as

hcan~1!
mn 5~hcan~1!

mn !sym1~hcan~1!
mn !antisym. ~2.4!

The symmetric part is given by

~hcan~1!
00 !sym52

4

c2(l>0

~2 ! l

l !
]LH ML~ t2r /c!1ML~ t1r /c!

2r J ,
~2.5a!

~hcan~1!
0i !sym5

4

c3(l>1

~2 ! l

l !
]L21

3H MiL21
~1! ~ t2r /c!1MiL21

~1! ~ t1r /c!

2r J
1

4

c3(l>1

~2 ! l l

~ l11!!
« iab]aL21

3H SbL21~ t2r /c!1SbL21~ t1r /c!

2r J ,
~2.5b!

~hcan~1!
i j !sym52

4

c4(l>2

~2 ! l

l !
]L22

3H Mi jL22
~2! ~ t2r /c!1Mi jL22

~2! ~ t1r /c!

2r J
2

8

c4(l>2

~2 ! l l

~ l11!!
]aL22

3H «ab~ i
Sj !bL22

~1! ~ t2r /c!1Sj !bL22
~1! ~ t1r /c!

2r J .
~2.5c!

The antisymmetric part is given similarly. However, as
shown in paper I, it can be rewritten profitably in the equiva-
lent form

~hcan~1!
mn !antisym52

4

Gc21sVreac
mn 2]mjn2]njm1hmn]ljl.

~2.6!

The second, third, and fourth terms clearly represent a linear
gauge transformation, associated with the gauge vectorjm.
This vector is made of antisymmetric waves, and reads

j05
2

c(l>2

~2 ! l

l !

2l11

l ~ l21!
]L

3H ML
~21!~ t2r /c!2ML

~21!~ t1r /c!

2r J , ~2.7a!

j i522(
l>2

~2 ! l

l !

~2l11!~2l13!

l ~ l21!
] iL

3H ML
~22!~ t2r /c!2ML

~22!~ t1r /c!

2r J
1

4

c2(l>2

~2 ! l

l !

2l11

l21
]L21

3H MiL21~ t2r /c!2MiL21~ t1r /c!

2r J
1

4

c2(l>2

~2 ! l l

~ l11!!

2l11

l21
« iab]aL21

3H SbL21
~21! ~ t2r /c!2SbL21

~21! ~ t1r /c!

2r J . ~2.7b!

Note that even though we have introduced first and second
time antiderivatives of the multipole moments, denoted e.g.,
by ML

(21)(t) andML
(22)(t), the dependence of Eq.~2.7! on

the multipole moments ranges in fact only in the time inter-
val betweent2r /c andt1r /c ~see paper I!. The first term in
Eq. ~2.6! defines, for our purpose, a radiation reaction tensor
potentialVreac

mn in the linearized theory~in this terms takes
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the values 0,1,2 according tomn500,0i ,i j ). The compo-
nents of this potential are given by@59#

Vreac
00 5G(

l>2

~2 ! l

l !

~ l11!~ l12!

l ~ l21!
]̂L

3H ML~ t2r /c!2ML~ t1r /c!

2r J , ~2.8a!

Vreac
0i 52c2G(

l>2

~2 ! l

l !

~ l12!~2l11!

l ~ l21!
]̂ iL

3H ML
~21!~ t2r /c!2ML

~21!~ t1r /c!

2r J
1G(

l>2

~2 ! l l

~ l11!!

l12

l21
« iab]̂aL21

3H SbL21~ t2r /c!2SbL21~ t1r /c!

2r J , ~2.8b!

Vreac
i j 5c4G(

l>2

~2 ! l

l !

~2l11!~2l13!

l ~ l21!
]̂ i jL

3H ML
~22!~ t2r /c!2ML

~22!~ t1r /c!

2r J
22c2G(

l>2

~2 ! l l

~ l11!!

2l11

l21
«ab~ i ]̂ j )aL21

3H SbL21
~21! ~ t2r /c!2SbL21

~21! ~ t1r /c!

2r J ~2.8c!

@see Eq.~2.19! of paper I#. By adding the contributions of the
gauge terms associated with Eq.~2.7! to the radiation reac-
tion potential~2.8! one reconstructs precisely, as stated by
Eq. ~2.6!, the antisymmetric part (hcan (1)

mn )antisymof the linear-
ized field in Eq.~2.3!.

The scalar, vector, and tensor components of Eq.~2.8!
generalize, within the linearized theory, the Burke-Thorne
@20–22# scalar potential by taking into account all multipo-
larities of waves, and, in principle, all orders in the post-
Newtonian expansion. Actually, a full justification of this
assertion would necessitate a matching to the field inside the
source, such as the one we perform in this paper at 1PN
order. At the ‘‘Newtonian’’ order, the 00 component of the
potential reduces to the Burke-Thorne potential,

Vreac
00 52

G

5c5
xixjM i j

~5!~ t !1OS 1c7D . ~2.9!

At this order the 0i andi j components make negligible con-
tributions. Recall that a well-known property of the Burke-
Thorne reactive potential is to yield an energy loss in agree-
ment with the Einstein quadrupole formula, even though it is
derived, in this particular coordinate system, within the lin-
earized theory~see@27#!. In this paper we shall show that the
same property remains essentially true at the 1PN order.
~This property is generally false for other reactive potentials
valid in other coordinate systems, for which the nonlinear

contributions play an important role.! Evaluating the reaction
potentialVreac

mn at the 1PN order beyond Eq.~2.9!, we find
that both the 00 and 0i components are to be considered, and
are given by

Vreac
00 52

G

5c5
xaxbMab

~5!~ t !

1
G

c7 F 1

189
xaxbxcMabc

~7! ~ t !2
1

70
r 2xaxbMab

~7!~ t !G
1OS 1c9D , ~2.10a!

Vreac
0i 5

G

c5 F 121x̂iabMab
~6!~ t !2

4

45
« iabx

axcSbc
~5!~ t !G1OS 1c7D .

~2.10b!

At this order thei j components of the potential can be ne-
glected.

In the next subsection we address the question of the cor-
rections to the 1PN reaction potential in Eq.~2.10! which
arise from the nonlinear contributions to the exterior field.
Answering this question means controlling the nonlinear
metric at the 3.5PN order.

B. The 3.5PN approximation in the exterior metric

The radiation reaction potential in Eqs.~2.8!–~2.10! rep-
resents the antisymmetric part of the linearized metric in a
particular coordinate system, obtained from the initial har-
monic coordinate system in which Eq.~2.3! holds by apply-
ing the gauge transformation associated with Eq.~2.7!. In
this coordinate system, the new linearized metric reads

h~1!
mn5hcan~1!

mn 1]mjn1]njm2hmn]ljl. ~2.11!

It fulfills, of course, the linearized equations~2.2!. Further-
more, sincehjm50, the harmonic coordinate condition is
still satisfied. However, we recall from paper I that the latter
new harmonic coordinate system is not completely satisfying
for general purposes, and should be replaced by a certain
modified ~nonharmonic! coordinate system. The reason is
that the gauge vector defined by Eq.~2.7! is made of anti-
symmetric waves, and consequently the metric~2.11! con-
tains both retardedand advanced waves. In particular, the
metric is no longer stationary in the remote past~before the
instant2T where the moments are assumed to be constant!.
Of course, the advanced waves which have been introduced
are pure gauge. Nevertheless, the nonstationarity of the lin-
earized metric in the remote past breaks one of our initial
assumptions, and this can be a source of problems when
performing the nonlinear iterations of the metric by this
method. Therefore, it was found necessary in paper I to re-
place the gauge vector~2.7! by a modified gauge vector,
such that the modified coordinate system has two properties.
First, it reduces in the near-zone of the source~the domain
Di defined in Sec. III!, to the unmodified coordinate system
given by Eq. ~2.7!, with a given but arbitrary post-
Newtonian precision. Second, it reducesexactlyto the initial
harmonic coordinate system in which the linearized metric
reads~2.3!, in a domain exterior to sometimelikeworld tube
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surrounding the source~in fact, a future-oriented timelike
cone whose vertex is at the eventt52T, x50). This modi-
fied coordinate system is nonharmonic. It has been suggested
to the author by T. Damour in a private communication, and
is defined in Sec. II C of paper I. By the first property, we see
that if we are interested to the field in the near zone of the
source, and work at some finite post-Newtonian order~like
the 1PN order investigated in this paper!, we can make all
computations using the unmodified gauge vector~2.7!. In-
deed, it suffices to adjust a certain constant, denotedK in
paper I, so that the modified gauge vector agrees with Eq.
~2.7! with a higher post-Newtonian precision. Thus, in the
present paper, we shall not use explicitly the modified coor-
dinate system. By the second property, we see that the stan-
dard falloff behavior of the metric at the various infinities
~notably the standard no-incoming radiation condition at
past-null infinity! are preserved in the modified coordinate
system. By these two properties, one can argue that what
only matters is theexistenceof such a modified coordinate
system, which permits us to make the connection with the
field at infinity, but that in all practical computations of the
metric in the near zone one can use the unmodified coordi-
nate system defined by Eq.~2.7!.

Based on the linearized metric~2.11! @or, rather, on the
modified linearized metric~2.29! of paper I# we built a full
nonlinear expansion,

hmn5Gh~1!
mn1G2h~2!

mn1G3h~3!
mn1•••, ~2.12!

satisfying the vacuum field equations in a perturbative sense
~equating term by term the coefficients of equal powers of
G in both sides of the equations!. The nonlinear coefficients
h(2)

mn , h(3)
mn , . . . are likeh(1)

mn in the form of multipole expan-
sions parametrized byML andSL . The construction of the
nonlinear metric is based on the method of@40#. As we are
considering multipole expansions valid inDe ~and singular
at the spatial originr50), we need to use at each nonlinear
iterations of the field equations a special operator generaliz-
ing the usual retarded integral operator when acting on mul-
tipole expansions. We denote this operator byFhR

21 to
mean the ‘‘finite part of the retarded integral operator’’~see
@40# for its precise definition!. The nonlinear coefficients
h(2)

mn , h(3)
mn , . . . are given by

h~2!
mn5FhR

21L~2!
mn~h~1!!1q~2!

mn , ~2.13a!

h~3!
mn5FhR

21L~3!
mn~h~1! ,h~2!!1q~3!

mn , . . . , ~2.13b!

where the nonlinear source termsL (2)
mn , L (3)

mn , . . . , represent
the field nonlinearities in vacuum, and depend, at each non-
linear order, on the coefficients of the previous orders. The
second termsq(2)

mn , q(3)
mn , . . . , ensure the satisfaction of the

harmonic coordinate condition at each nonlinear order~see
@40#!.

When investigating the 3.5PN approximation, we can dis-
regard purely nonlinear effects, such as the tail effect, which
give irreducibly nonlocal contributions in the metric inside

the source. These effects arise at the 4PN approximation~see
@50# and Sec. IV below!. Still there are some nonlinear con-
tributions in the metric at the 3.5PN approximation, which
are contained in the first two nonlinear coefficientsh(2)

mn and
h(3)

mn given by Eq.~2.13!. These contributions involve some
nonlocal integrals, but which ultimately do not enter the in-
ner metric~after matching!. As shown in paper I, the contri-
butions due toh(2)

mn and h(3)
mn in the 1PN radiation reaction

potential imply only a modification of the multipole mo-
mentsML andSL parametrizing the potential. We define two
new sets of multipole moments,

M̃L~ t !5ML~ t !15
G

c7
m~ t ! for l50

G

c5
mi~ t ! for l51

0 for l>2

6 1
G

c7
TL~ t !

1OS 1c8D , ~2.14a!

S̃L~ t !5SL~ t !1H G

c5
si~ t ! for l51

0 for l>2
J 1OS 1c6D ,

~2.14b!

where the functionsm, mi , andsi are given by the nonlocal
expressions

m~ t !52
1

5E2`

t

dvMab
~3!~v !Mab

~3!~v !1F~ t !, ~2.15a!

mi~ t !52
2

5
MaMia

~3!~ t !2
2

21c2E2`

t

dvMiab
~3! ~v !Mab

~3!~v !

1
1

c2E2`

t

dvE
2`

v
dwF2

2

63
Miab

~4! ~w!Mab
~3!~w!

2
16

45
« iabMac

~3!~w!Sbc
~3!~w!G1

1

c2
Gi~ t !, ~2.15b!

si~ t !52
2

5
« iabE

2`

t

dvMac
~2!~v !Mbc

~3!~v !1Hi~ t !.

~2.15c!

The functionTL(t) in Eq. ~2.14a!, and the functionsF(t),
Gi(t), andHi(t) in Eq. ~2.15!, are some local~or instanta-
neous! functions, which do not play a very important role
physically~they are computed in paper I!. Then the radiation
reaction potential at the 1PN order, in the nonlinear theory, is
given by the same expression as in Eq.~2.10!, but expressed
in terms of the new multipole moments, sayM̃[$M̃L ,S̃L%,
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Vreac@M̃#52
G

5c5
xaxbM̃ab

~5!~ t !1
G

c7 F 1

189
xabcM̃abc

~7! ~ t !2
1

70
r 2xabM̃ab

~7!~ t !G1OS 1c8D , ~2.16a!

Vi
reac@M̃#52

G

5c5 F 121 x̂iabM̃ ab
~6!~ t !2

4

45
« iabx

acS̃bc
~5!~ t !G1OS 1c6D ~2.16b!

@see Eq.~3.53! in paper I#. In the considered coordinate sys-
tem, the metric, accurate to 1PN order as concerns both the
usual nonradiative effects and the radiation reaction effects,
reads~coming back to the usual covariant metricgmn

ext)

g00
ext5211

2

c2
~Vext@M̃#1Vreac@M̃# !

2
2

c4
~Vext@M̃#1Vreac@M̃# !2

1
1

c6 6g00
ext1

1

c8 8g00
ext1OS 1

c10D , ~2.17a!

g0i
ext52

4

c3
~Vi

ext@M̃#1Vi
reac@M̃# !1

1

c5 5g0i
ext

1
1

c7 7g0i
ext1OS 1c9D , ~2.17b!

gi j
ext5d i j F11

2

c2
~Vext@M̃#1Vreac@M̃# !G

1
1

c4 4gi j
ext1

1

c6 6gi j
ext1OS 1c8D . ~2.17c!

The superscript ext is to remember that the metric is valid in
the exterior domainDe , and will differ from the inner metric
by a coordinate transformation~see Sec. III!. The Newtonian
and 1PN approximations are entirely contained in the exter-
nals potentialsVext andVi

ext, given by the multipole expan-
sions ofsymmetricwaves,

Vext@M̃#5G(
l>0

~2 ! l

l !
]LH M̃LS t2 r

cD1M̃LS t1 r

cD
2r

J ,
~2.18a!

Vi
ext@M̃#52G(

l>1

~2 ! l

l !
]L21

3H M̃ iL21
~1! S t2 r

cD1M̃ iL21
~1! S t1 r

cD
2r

J
2G(

l>1

~2 ! l l

~ l11!!
« iab]aL21

3H S̃bL21S t2 r

cD1S̃bL21S t1 r

cD
2r

J .
~2.18b!

The 2PN and 3PN approximations are not controlled at this
stage; they are symbolized in Eq.~2.17! by the terms
c2n

ngmn
ext . However, these approximations are nonradiative

~or nondissipative!, as are the Newtonian and 1PN approxi-
mations~the 1PN, 2PN, and 3PN terms are ‘‘even’’ in the
sense that they yield only even powers of 1/c in the equa-
tions of motion!. A discussion of the 4PN approximation in
the exterior metric can be found in Sec. III D of paper I.

As it stands, the metric~2.17! is disconnected from the
actual source of radiation. The multipole momentsM̃L and
S̃L are left as some unspecified functions of time. Therefore,
in order to determine the radiation reaction potentials~2.16!
as someexplicit functionals of the matter variables, we need
to relate the exterior metric~2.17! to a metric valid inside the
source, solution of the nonvacuum Einstein field equations.
We perform the relevant computation in the next section, and
obtain the multipole momentsM̃L and S̃L as integrals over
the source.

III. THE 1PN-ACCURATE RADIATION REACTION
POTENTIALS

A. The inner gravitational field

The near zone of the source is defined in the usual way as
being an inner domainDi5$(x,t),uxu,r i%, whose radiusr i
satisfiesr i.a (Di covers entirely the source!, andr i!l ~the
domainDi is of small extent as compared with one wave-
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length of the radiation!. These two demands are possible
simultaneously when the source is slowly moving, i.e., when
there exists a small parameter of the order of 1/c when
c→`, in which case we can assumer i /l5O(1/c). Further-
more, we can adjustr e and r i so thata,r e,r i ~where r e
defines the external domainDe in Sec. II!.

In this subsection we present the result of the expression
of the metric inDi , to the relevant approximation. In the
next subsection we prove that this metric matches to the
exterior metric reviewed in Sec. II. The accuracy of the inner
metric is 1PN for the usual nonradiative approximations, and
1PN for the dominant radiation reaction. Thus, the metric
enables one to control, in the equations of motion, the New-
tonian acceleration followed by the first relativistic correc-
tion, which is of orderc22 or 1PN, then the dominant
‘‘Newtonian’’ radiation reaction, of orderc25 or 2.5PN, and
finally the first relativistic 1PN correction in the reaction,
c27 or 3.5PN. The intermediate approximationsc24 and
c26 ~2PN and 3PN! are left undetermined, like in the exte-
rior metric ~2.17!. The inner metric, inDi , reads

g00
in5211

2

c2
Vin2

2

c4
~Vin!21

1

c6 6g00
in1

1

c8 8g00
in1OS 1

c10D ,
~3.1a!

g0i
in52

4

c3
Viin1

1

c5 5g0i
in1

1

c7 7g0i
in1OS 1c9D , ~3.1b!

gi j
in5d i j S 11

2

c2
VinD1

1

c4 4gi j
in1

1

c6 6gi j
in1OS 1c8D .

~3.1c!

It is valid in a particular Cartesian coordinate system (x,t),
which is to be determined by matching. As in Eq.~2.17!, the
termsc2n

ngmn
in represent the 2PN and 3PN approximations.

Note that these terms depend functionally on the source’s
variables through somespatial integrals, extending over the
whole three-dimensional space, but that they do not involve
any nonlocal integral in time. These terms are ‘‘instanta-
neous’’ ~in the terminology of@50#! and ‘‘even,’’ so they
remain invariant in a time reversal, and do not yield any
radiation reaction effects. The remainder terms in Eq.~3.1!
represent the 4PN and higher approximations. Note also that
some logarithms ofc arise starting at the 4PN approxima-
tion. For simplicity we do not indicate in the remainders the
dependence on lnc. The potentialsVin andViin introduced in
Eq. ~3.1! are given, as in Eq.~2.17!, as the linear combina-
tion of two types of potentials. With the notation
Vm
in[(Vin,Viin), where the indexm takes the values 0,i and

whereV0in[Vin, we have

Vm
in5Vm

in@sn#1Vm
reac@I#. ~3.2!

The first type of potential,Vm
in , is given by an integral of

thesymmetricpotentials, i.e., by the half-sum of the retarded
integral and of the corresponding advanced integral. Our ter-
minology, which means here something slightly different
from Sec. II, should be clear from the context. We are refer-
ring here to the formal structure of the integral, made of the
sum of the retarded and advanced integrals. However, the
real behavior of the symmetric integral under a time-reversal

operation may be more complicated than a simple invari-
ance. The mass and current densitiessm[(s,s i) of the
source are defined by

s[
T001Tkk

c2
, ~3.3a!

s i[
T0i

c
, ~3.3b!

whereTmn denotes the usual stress-energy tensor of the mat-
ter fields~with Tkk the spatial traceSd jkT

jk). The powers of
1/c in Eq. ~3.3! are such thatsm admits a finite nonzero limit
whenc→1`. The potentialsVm

in are given by

Vm
in~x,t !5

G

2 E d3x8
ux2x8u FsmS x8,t2 1

c
ux2x8u D

1smS x8,t1 1

c
ux2x8u D G . ~3.4!

To lowest order whenc→1`, Vin reduces to the usual
Newtonian potential, andVi

in to the usual gravitomagnetic
potential. It was noticed in@47# that when using the mass
densitys given by Eq.~3.3a!, the first ~nonradiative! post-
Newtonian approximation takes a very simple form, involv-
ing simply the square of the potential in the 00 component of
the metric. See also Eq.~4.5! below, where we use the post-
Newtonian expansionVin5U1] t

2X/2c21O(c24).
The fact that the inner metric contains some symmetric

integrals, and therefore some advanced integrals, does not
mean that the field violates the condition of retarded poten-
tials. The metric~3.1! is in the form of a post-Newtonian
expansion, which is valid only in the near zoneDi . It is well
known that the coefficients of the powers of 1/c in a post-
Newtonian expansion typically diverge at spatial infinity.
This is no concern of ours because the expansion is not valid
at infinity ~it would give poor results when compared to an
exact solution!. Thus, the symmetric integral~3.4! should
more properly be replaced by its formal post-Newtonian ex-
pansion, readily obtained from expanding by means of Tay-
lor’s formula the retarded and advanced arguments when
c→1`. Denoting] t

2p[(]/]t)2p we have

Vm
in~x,t !5G(

p50

1`
1

~2p!!c2pE d3x8ux2x8u2p21] t
2psm~x8,t !.

~3.5!

This expansion could be limited to the precision indicated in
Eq. ~3.1!. It involves ~explicitly! only evenpowers ofc21,
and is thus expected to yield essentially nondissipative ef-
fects. However, the dependence ofVm

in on c21 is more com-
plicated than indicated in Eq.~3.5!. Indeed, the mass and
current densitiessm depend on the metric~3.1!, and thus
depend onc21 starting at the post-Newtonian level. Even
more, the densitiessm and their time derivatives do contain,
through the contribution of the reactive potentialsVm

reac ~see
below!, some odd powers ofc21 which are associated~a
priori ! to radiation reaction effects. These ‘‘odd’’ contribu-
tions inVm

in form an integral part of the equations of motion
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of binary systems at the 3.5PN approximation@53#, but we
shall prove in Sec. IV that they do not participate to the
losses of energy and momenta by radiation at the 1PN order,
as they enter the balance equations only in the form of some
total time derivatives. The secular losses of energy and mo-
menta are driven by the radiation reaction potentialsVm

reac, to
which we now turn.

The 1PN-accurate reaction potentialsVm
reac[(Vreac,Vi

reac)
involve dominantly some odd powers ofc21, which corre-
spond in the metric~3.1! to the 2.5PN and 3.5PN approxi-
mationsc25 andc27 taking place between the~nondissipa-
tive! 2PN and 3PN approximations. Since the reactive
potentials are added linearly to the potentialsVm

in, the simple
form of the 1PN nonradiative approximation mentioned
above holds also for the 1PN radiative approximation, in this
coordinate system. TheVm

reac’s are given by exactly the same
expressions as obtained in paper I for the exterior metric@see
Eq. ~2.16! in Sec. II#, but they depend on some specific
‘‘source’’ multipole momentsI[$I L ,JL% instead of the un-
known multipole momentsM̃. Namely,

Vreac~x,t !52
G

5c5
xi j I i j

~5!~ t !

1
G

c7 F 1

189
xi jk I i jk

~7!~ t !2
1

70
x2xi j I i j

~7!~ t !G
1OS 1c8D , ~3.6a!

Vi
reac~x,t !5

G

c5 F 121x̂i jk I jk~6!~ t !2
4

45
« i jkxjmJkm

~5!~ t !G1OS 1c6D ,
~3.6b!

where we recall our notationx̂i jk5xi jk2 1
5x

2(d i j xk1d ikxj
1d jkxi) @59#. The multipole momentsI i j (t), I i jk(t), and
Ji j (t) are some explicit functionals of the densitiessm . Only
the mass quadrupoleI i j (t) in the first term ofVreacneeds to
be given at 1PN order. The relevant expression is

I i j5E d3xH x̂i js1
1

14c2
x2x̂i j ] t

2s2
20

21c2
x̂i jk] tskJ

~3.7!

@see Eq.~3.21a! for the general expression ofI L#. The mass
octupole and current quadrupoleI i jk(t) andJi j (t) take their
standard Newtonian expressions

I i jk5E d3xx̂i jks1OS 1c2D , ~3.8a!

Ji j5E d3x«km^ i x̂ j &ksm. ~3.8b!

The potentialsVreac and Vi
reac generalize to 1PN order the

scalar reactive potential of Burke and Thorne@20–22#,
whose form is that of the first term in Eq.~3.6a!. The vecto-
rial potentialVi

reacenters the equations of motion at the same
3.5PN order as the 1PN corrections inVreac. The first term
which is neglected inVreac, of orderc28 or 1.5PN, is due to
the tails of waves~see Sec. IV C!.

B. Matching to the exterior field

In this subsection we prove that the inner metric presented
above ~i! satisfies the Einstein field equations within the
source~in the near-zoneDi), and ~ii ! matches the exterior
metric ~2.17! in the intersecting region betweenDi and the
exterior zoneDe ~exterior near-zoneDiùDe).

Note that during proof~i! we do not check any boundary
conditions satisfied by the metric at infinity. Simply, we
prove that the metric satisfies the field equations term by
term in the post-Newtonian expansion, but at this stage the
metric could be made of a mixture of retarded and advanced
solutions. Only during proof~ii ! does one check that the
metric comes from the re-expansion whenc→` of a solu-
tion of the Einstein field equations satisfying some relevant
time-asymmetric boundary conditions at infinity. Indeed, the
exterior metric has been constructed in paper I by means of a
post-Minkowskian algorithm valid all over the exterior re-
gionDe , and having a no-incoming radiation condition built
into it ~indeed, the exterior metric was assumed to be station-
ary in the remote past; see Sec. II!.

The proof that Eq.~3.1! is a solution admissible inDi
follows immediately from the particular form taken by the
Einstein field equations when developed to 1PN order@47#:

h ln~2g00
in !5

8pG

c2
s1OevenS 1c6D , ~3.9a!

hg0i
in5

16pG

c3
s i1OevenS 1c5D , ~3.9b!

hgi j
in52

8pG

c2
d i js1OevenS 1c4D . ~3.9c!

The point is that with the introduction of the logarithm of
2g00

in as a new variable in Eq.~3.9a!, the equations at the
1PN order take the form oflinear wave equations. The other
point is that the neglected post-Newtonian terms in Eq.~3.9!
are ‘‘even,’’ in the sense that theexplicitpowers ofc21 they
contain, which come from the differentiations of the metric
with respect to the time coordinatex05ct, correspond for-
mally to integer post-Newtonian approximations~to remem-
ber this we have added the subscript ‘‘even’’ on the
O-symbols!. This feature is simply the consequence of the
time symmetry of the field equations, implying that to each
solution of the equations is associated another solution ob-
tained from it by a time reversal.

Because the potentialsVm
in satisfy exactly hVm

in

524pGsm , a consistent solution of Eq.~3.9! is easily seen
to be given by Eq.~3.1!, where the reactive potentialsVm

reac

are set to zero. Now the equations~3.9! are linear wave equa-
tions, so we can add linearly toVm

in any homogeneous solu-
tion of the wave equation which is regular inDi . One can
check from their definition Eq.~3.6! that the reactive poten-
tialsVm

reac form such a homogeneous solution, as they satisfy

hVreac5OS 1c8D , ~3.10a!

hVi
reac5OS 1c6D . ~3.10b!
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So we can addVm
reac to Vm

in , defining an equally consistent
solution of Eq.~3.9!, which is precisely Eq.~3.1!, modulo
the error terms coming from Eq.~3.10! and which corre-
spond to the neglected 4PN approximation.@Note thatVm

reac

comes from the expansion of the tensor potential~2.8! of the
linearized theory, which satisfiesexactly the source-free
wave equation. It would be possible to defineVm

reac in such a
way that there are no error terms in Eq.~3.10!. See Eq.~4.33!
for more precise expressions ofVm

reac, satisfying more pre-
cisely the wave equation.#

With proof ~i! done, we undertake proof~ii !. More pre-
cisely, we show that Eq.~3.1! differs from the exterior metric
~2.17! by a mere coordinate transformation inDiùDe . This
will be true only if the multipole momentsM̃L and S̃L pa-
rametrizing Eq.~2.17! agree, to the relevant order, with some
source multipole momentsI L andJL . Fulfilling these match-
ing conditions will ensure~in this approximate framework!
the existence and consistency of a solution of the field equa-
tions valid everywhere inDi and De . As recalled in the
introduction, this is part of the method to work out first the
exterior metric leaving the multipole moments arbitrary~pa-
per I!, and then to obtain by matching the expressions of
these moments as integrals over the source~this paper!.

To implement the matching we expand the inner metric
~3.1! into multipole moments outside the compact support of
the source. The comparison can then be made with Eq.
~2.17!, which is already in the form of a multipole expansion.
Only the potentialsVm

in need to be expanded into multipoles,
as the reactive potentialsVm

reac are already in the required
form. The multipole expansion of the retarded integral of a
compact-supported source is well known. For example, the
formula has been obtained in the Appendix B of@47# using
the STF formalism for spherical harmonics. The multipole
expansion corresponding to an advanced integral follows
simply from the replacementc→2c in the formula. The
script letterM will be used to denote the multipole expan-
sion.M(Vm

in) reads as

M~Vin!5G(
l>0

~2 ! l

l !
]LH FL~ t2r /c!1FL~ t1r /c!

2r J ,
~3.11a!

M~Vi
in!5G(

l>0

~2 ! l

l !
]LH GiL~ t2r /c!1GiL~ t1r /c!

2r J ,
~3.11b!

whereFL(t) andGiL(t) are some tensorial functions of time
given by the integrals

FL~ t !5E d3xx̂LE
21

1

dzd l~z!s~x,t1zuxu/c!,

~3.12a!

GiL~ t !5E d3xx̂LE
21

1

dzd l~z!s i~x,t1zuxu/c!.

~3.12b!

The function d l(z) appearing here takes into account the
delays in the propagation of the waves inside the source. It
reads

d l~z!5
~2l11!!!

2l11l !
~12z2! l ; E

21

1

dzd l~z!51

~3.13!

~see Eq.~B12! in @47#!. Note that the same functionsFL(t)
andGiL(t) parametrize both the retarded and the correspond-
ing advanced waves in Eq.~3.11!. Indeedd l(z) is an even
function of its variablez, so the integrals~3.12! are invariant
under the replacementc→2c.

Using an approach similar to the one employed in@47#,
we perform an irreducible decomposition of the tensorial
functionGiL ~which is STF with respect to itsl indicesL but
not with respect to itsl11 indices iL ), as a sum of STF
tensors of multipolaritiesl11, l , and l21. The equation
~2.17! in @47# gives this decomposition as

GiL5CiL2
l

l11
«ai^ i lDL21&a1

2l21

2l11
d i ^ i lEL21& ,

~3.14!

where the tensorsCL11, DL andEL21 ~which are STF with
respect to all their indices! are given by

CL11~ t !5E d3xE
21

1

dzd l~z!x̂,Ls i l11.~x,t1zuxu/c!,

~3.15a!

DL~ t !5E d3xE
21

1

dzd l~z!«ab^ i l
x̂L21&asb~x,t1zuxu/c!,

~3.15b!

EL21~ t !5E d3xE
21

1

dzd l~z!x̂aL21sa~x,t1zuxu/c!.

~3.15c!

Then by introducing the new definitions of STF tensors,

AL5FL2
4~2l11!

c2~ l11!~2l13!
EL

~1!, ~3.16a!

BL5 lCL2
l

c2~ l11!~2l13!
EL

~2! , ~3.16b!

and by using standard manipulations on STF tensors, we can
rewrite the multipole expansions~3.11! in the new form

M~Vin!52c] tf
01G(

l>0

~2 ! l

l !
]L

3H AL~ t2r /c!1AL~ t1r /c!

2r J , ~3.17a!
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M~Vi
in!5

c3

4
] if

02G(
l>1

~2 ! l

l !
]L21

3H BiL21~ t2r /c!1BiL21~ t1r /c!

2r J
2G(

l>1

~2 ! l

l !

l

l11
« iab]aL21

3H DbL21~ t2r /c!1DbL21~ t1r /c!

2r J ,
~3.17b!

where we denote

f052
4G

c3 (
l>0

~2 ! l

~ l11!!

2l11

2l13
]L

3H EL~ t2r /c!1EL~ t1r /c!

2r J . ~3.18!

Next the momentAL is expanded whenc→` to 1PN order,
and the momentsBL , DL to Newtonian order. The required
formula is Eq.~B14! in @47#, which immediately gives

AL5E d3xH x̂Ls1
1

2c2~2l13!
x2x̂L] t

2s

2
4~2l11!

c2~ l11!~2l13!
x̂iL] ts i J 1OevenS 1c4D ,

~3.19a!

BL5 l E d3xx̂^L21s i l &
1OevenS 1c2D , ~3.19b!

DL5E d3x«ab^ i l
x̂L21&asb1OevenS 1c2D . ~3.19c!

Here the notationOeven(c
2n) for the post-Newtonian remain-

ders simply indicates that the whole post-Newtonian expan-
sion is composed only of even powers ofc21, like in Eq.
~3.5! ~the source densitiessm being considered to be inde-
pendent ofc21), as clear from Eq.~B14! in @47#. We now
transform the leading-order term in the equation forBL using
the equation of continuity for the mass densitys. The New-
tonian equation of continuity does the needed transforma-
tion, but one must be careful about the higher-order post-
Newtonian corrections which involve some reactive
contributions. It can be checked that these reactive contribu-
tions arise only at the orderO(c27), so that the equation of
continuity reads, with evident notation,] ts1] is i
5Oeven(c

22)1O(c27). From this one deduces

BL5
d

dt H E d3xx̂LsJ 1OevenS 1c2D1OS 1c7D . ~3.20!

All elements are now in hands in order to compare, in the
exterior near-zoneDiùDe , the metrics~3.1! and~2.17!. The
‘‘source’’ multipole momentsI5$I L ,JL% are defined by the
dominant terms in Eqs.~3.19a! and ~3.19c!,

I L[E d3xH x̂Ls1
1

2c2~2l13!
x2x̂L] t

2s

2
4~2l11!

c2~ l11!~2l13!
x̂iL] ts i J , ~3.21a!

JL[E d3x«ab^ i l
x̂L21&asb. ~3.21b!

The mass-type momentI L includes 1PN corrections, while
the current-type momentJL is Newtonian. The mass moment
I L was obtained in@47#, where it was shown to parametrize
the asymptotic metric generated by the source at the 1PN
order. Whenl52 and l53 we recover the moments intro-
duced in Eqs.~3.7!–~3.8!. With Eqs.~3.19!–~3.21!, the mul-
tipole expansions~3.17! become

M~Vin!52c] tf
01G(

l>0

~2 ! l

l !
]L

3H I L~ t2r /c!1I L~ t1r /c!

2r J 1OevenS 1c4D ,
~3.22a!

M~Vi
in!5

c3

4
] if

02G(
l>1

~2 ! l

l !
]L21

3H I ~1!
iL21~ t2r /c!1I ~1!

iL21~ t1r /c!

2r J
2G(

l>1

~2 ! l

l !

l

l11
« iab]aL21

3H JbL21~ t2r /c!1JbL21~ t1r /c!

2r J
1OevenS 1c2D 1OS 1c7D . ~3.22b!

Thus, from the definition@Eq. ~2.18!# of the external poten-
tials Vm

ext, we obtain the relationships

M~Vin!52c] tf
01Vext@I#1OevenS 1c4D , ~3.23a!

M~Vi
in!5

c3

4
] if

01Vi
ext@I#1OevenS 1c2D1OS 1c7D ,

~3.23b!

from which we readily infer that the multipole expansion
M(gmn

in ) of the metric~3.1! reads, inDiùDe ,

M~g00
in !1

2

c
] tf

05211
2

c2
~Vext@I#1Vreac@I# !

2
2

c4
~Vext@I#1Vreac@I# !21

1

c6 6ḡ00
in

1
1

c8 8ḡ00
in1OS 1

c10D , ~3.24a!
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M~g0i
in !1] if

052
4

c3
~Vi

ext@I#1Vi
reac@I# !1

1

c5 5ḡ0i
in

1
1

c7 7ḡ0i
in1OS 1c9D , ~3.24b!

M~gi j
in!5d i j F11

2

c2
~Vext@I#1Vreac@I# !G1

1

c4 4ḡi j
in1

1

c6 6ḡi j
in

1OS 1c8D . ~3.24c!

Clearly the terms depending onf0 have the form of an in-
finitesimal gauge transformation of the time coordinate. We
can check that the corresponding coordinate transformation
can be treated, to the considered order, in a linearized way
@recall from Eq.~3.18! thatf0 is of orderc23#. Finally, in
the ‘‘exterior’’ coordinates

xext
0 5x01f0~xn!1OevenS 1c5D1OS 1c9D , ~3.25a!

xext
i 5xi1OevenS 1c4D1OS 1c8D , ~3.25b!

the metric~3.24! is transformed into the ‘‘exterior’’ metric

g00
ext5211

2

c2
~Vext@I#1Vreac@I# !2

2

c4
~Vext@I#1Vreac@I# !2

1
1

c6 6ḡ00
ext1

1

c8 8ḡ00
ext1OS 1

c10D , ~3.26a!

g0i
ext52

4

c3
~Vi

ext@I#1Vi
reac@I# !1

1

c5 5ḡ0i
ext1

1

c7 7ḡ0i
ext

1OS 1c9D , ~3.26b!

gi j
ext5d i j F11

2

c2
~Vext@I#1Vreac@I# !G1

1

c4 4ḡi j
ext1

1

c6 6ḡi j
ext

1OS 1c8D . ~3.26c!

This metric is exactly identical, as concerns the 1PN, 2.5PN,
and 3.5PN approximations, to the exterior metric~2.17! ob-
tained in paper I, except that here the metric is parametrized
by the known multipole momentsI instead of the arbitrary
momentsM̃. Thus, we conclude that the two metrics~3.1!
and ~2.17! match in the overlapping regionDiùDe if ~and
only if! there is agreement between both types of multipole
moments. This determinesM̃L and S̃L . More precisely, we
find thatM̃L andS̃L must be related toI L andJL given in Eq.
~3.21! by

M̃L5I L1OevenS 1c4D1OS 1c8D , ~3.27a!

S̃L5JL1OevenS 1c2D1OS 1c6D , ~3.27b!

where as usual the relation forM̃L is accurate to 1PN order,
and the relation forS̃L is Newtonian~we do also control the
parity of some neglected terms!. Satisfying the latter match-
ing solves the problem at hand, by showing that the inner
metric ~3.1!–~3.8! results from the post-Newtonian expan-
sion of a solution of the~nonlinear! field equations and a
condition of no incoming radiation.

We emphasize the dependence of the result on the coor-
dinate system. Of course, the metric~3.1!, which contains the
reactive potentials~3.6!–~3.8!, is valid only in its own coor-
dinate system. It is a well-known consequence of the equiva-
lence principle that radiation reaction forces in general rela-
tivity are inherently dependent on the coordinate system~see
e.g., @60# for a comparison between various expressions of
the radiation reaction force at the Newtonian order!. The
coordinate system in which the reactive potentials~3.6!–
~3.8! are valid is defined as follows. We start from the par-
ticular coordinate system in which the linearized metric is
given by Eq.~2.3!. Then we apply two successive coordinate
transformations. The first one is associated with the gauge
vector jm given by Eq.~2.7!, and the second one is associ-
ated withfm whose only needed component isf0 given by
Eq. ~3.18!. The resulting coordinate system is the one in
whichVm

reacis valid. ~Actually, the gauge vectorjm should be
modified according to the procedure defined in Sec. II C of
paper I, so that the good falloff properties of the metric at
infinity are preserved.!

IV. THE BALANCE EQUATIONS
TO POST-NEWTONIAN ORDER

A. Conservation laws for energy and momenta at 1PN order

Up to the second post-Newtonian approximation of gen-
eral relativity, an isolated system admits some conserved en-
ergy, linear momentum, and angular momentum. These have
been obtained, in the case of weakly self-gravitating fluid
systems, by Chandrasekhar and Nutku@24#. The less accu-
rate 1PN-conserved quantities were obtained before, notably
by Fock @61#. In this subsection we rederive, within the
present framework@using in particular the mass densitys
defined in~3.3a!#, the 1PN-conserved energy and momenta
of the system. The 1PN energy and momenta are needed in
the next subsection, in which we establish their laws of
variation during the emission of radiation at 1PN order
~hence we do not need the more accurate 2PN-conserved
quantities!.

To 1PN order, the metric~3.1! reduces to

g00
in5211

2

c2
Vin2

2

c4
~Vin!21OS 1c6D , ~4.1a!

g0i
in52

4

c3
Vi
in1OS 1c5D , ~4.1b!

gi j
in5d i j S 11

2

c2
VinD1OS 1c4D , ~4.1c!
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whereVin andVi
in are given by Eq.~3.4!. In fact, Vin and

Vi
in are given by their post-Newtonian expansions~3.5!,

which can be limited here to the terms

Vin5U1
1

2c2
] t
2X1OS 1c4D , ~4.2a!

Vi
in5Ui1OS 1c2D , ~4.2b!

where the instantaneous~Poisson-like! potentialsU, X, and
Ui are defined by

U~x,t !5GE d3x8
ux2x8u

s~x8,t !, ~4.3a!

X~x,t !5GE d3x8ux2x8us~x8,t !, ~4.3b!

Ui~x,t !5GE d3x8
ux2x8u

s i~x8,t !. ~4.3c!

SinceVin is a symmetric integral, there are no terms of order
c23 in Eq. ~4.2a! ~such a term would be a simple function of
time in the case of a retarded integral!. We shall need~only
in this subsection! a metric whose space-space components
i j are more accurate than in Eq.~4.1c!, taking into account
the next-order correction term. We introduce an instanta-
neous potential whose source is the sum of the matter
stresses, says i j5Ti j , and the ~Newtonian! gravitational
stresses,

Pi j ~x,t !5GE d3x8
ux2x8u Fs i j1

1

4pG

3S ] iU] jU2
1

2
d i j ]kU]kU D G~x8,t !.

~4.4a!

The spatial traceP[Pii is

P~x,t !5GE d3x8
ux2x8u Fs i i2

1

2
sUG~x8,t !1

U2

4
.

~4.4b!

The metric which is accurate enough for our purpose reads,
in terms of the instantaneous potentials~4.3! and ~4.4!,

g00
in5211

2

c2
U1

1

c4
@] t

2X22U2#1OS 1c6D , ~4.5a!

g0i
in52

4

c3
Ui1OS 1c5D , ~4.5b!

gi j
in5d i j S 11

2

c2
U1

1

c4
@] t

2X12U2# D1
4

c4
@Pi j2d i j P#

1OS 1c6D . ~4.5c!

The square root of~minus! the determinant of the metric is

A2gin511
2

c2
U1

1

c4
@] t

2X12U224P#1OS 1c6D .
~4.5d!

Consider the local equations of motion of the source, which
state the conservation in the covariant sense of the stress-
energy tensorTmn ~i.e.,¹mTa

m50). These equations, written
in a form adequate for our purpose, are

]mPa
m5Fa , ~4.6!

where the left-hand-side is the divergence in the ordinary
sense of the material stress-energy density

Pa
m[A2gingan

in Tmn, ~4.7!

and where the right-hand side can be viewed as the four-
force density

Fa[ 1
2A2ginTmn]agmn

in . ~4.8!

The 1PN-conserved energy and momenta follow from inte-
gration of these equations over the ordinary three-
dimensional space, which yields the following three laws
~using the Gauss theorem to discard some divergences of
compact-supported terms!

d

dt H 2E d3xP0
0J 52cE d3xF0 , ~4.9a!

d

dt H 1cE d3xP i
0J 5E d3xFi , ~4.9b!

d

dt H 1c « i jkE d3xxjPk
0J 5« i jkE d3x~xjFk1Pk

j !.

~4.9c!

The quantitiesPa
m and Fa are then determined. With Eq.

~4.5! we obtain, for the various components ofPa
m,

P0
052sc21s i i1

4

c2
@sP2s iUi #1OS 1c4D ,

~4.10a!

P i
05cs i S 114

U

c2D2
4

c
sUi1OS 1c3D , ~4.10b!

P0
i 52cs i S 124

P

c4D2
4

c3
s i j U j1OS 1c5D , ~4.10c!

P j
i5s i j S 114

U

c2D2
4

c2
s iU j1OS 1c4D . ~4.10d!

Note thatP0
i is determined with a better precision thanP i

0

~but we shall not need this higher precision and give it for
completeness!. For the components ofFa , we find

F05
1

c
s] tSU1

1

2c2
] t
2XD2

4

c3
s j] tU j1OS 1c5D ,

~4.11a!
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Fi5s] i SU1
1

2c2
] t
2XD2

4

c2
s j] iU j1OS 1c4D .

~4.11b!

ThePa
m’s andFa’s can now be substituted into the integrals

on both sides of Eq.~4.9!. This is correct because the support
of the integrals is the compact support of the source, which
is, for a slowly-moving source, entirely located within the
source’s near zoneDi , where the post-Newtonian expansion
is valid. Straightforward computations permit us to re-
express the right-hand-sides of Eq.~4.9! into the form of
total time derivatives. We do not detail here this computation
which is well known~at 1PN order!, but we present in Sec.
IV B a somewhat general formula which can be used to
reach elegantly the result@see Eq.~4.23!#. By transfering the
total time derivatives to the left-hand-sides of Eq.~4.9!, one
obtains the looked-for conservation laws at 1PN order,
namely

dE1PN

dt
5OS 1c4D , ~4.12!

dPi
1PN

dt
5OS 1c4D , ~4.13!

dSi
1PN

dt
5OS 1c4D , ~4.14!

where the 1PN energyE1PN, linear momentumPi
1PN, and

angular momentumSi
1PN are given by the integrals over the

source

E1PN5E d3xH sc21
1

2
sU2s i i

1
1

c2 F24sP12s iUi1
1

2
s] t

2X2
1

4
] ts] tXG J ,

~4.15!

Pi
1PN5E d3xH s i2

1

2c2
s] i] tXJ , ~4.16!

Si
1PN5« i jkE d3xxj H sk1

1

c2 F4skU24sUk2
1

2
s]k] tXG J .

~4.17!

The 1PN energyE1PN can also be written as@62#

E1PN5E d3xH sc21
1

2
sU2s i i

1
1

c2 FsU224s i i U12s iUi1
1

2
s] t

2X2
1

4
] ts] tXG J .

~4.18!

A similar but more precise computation would yield the
2PN-conserved quantities@24#.

B. Secular losses of the 1PN-accurate energy and momenta

As the reactive potentialsVm
reacmanifestly change sign in

a time reversal, they are expected to yield dissipative effects
in the dynamics of the system, i.e., secular losses of its total
energy, angular momentum and linear momentum. The
‘‘Newtonian’’ radiation reaction force is known to extract
energy in the system at the same rate as given by the Einstein
quadrupole formula, both in the case of weakly self-
gravitating systems@20–36# and compact binary systems
@37–39#. Similarly the reaction force extracts angular mo-
mentum in the system. As concerns linear momentum the
Newtonian reaction force is not precise enough, and one
needs to go to 1PN order.

In this subsection, we prove that the 1PN-accurate reac-
tive potentialsVm

reac lead to decreases of the 1PN-accurate
energy and momenta@computed in Eqs.~4.15!–~4.18!#
which are in perfect agreement with the corresponding far-
zone fluxes, known from the works@63,46,47# in the case of
the energy and angular momentum, and from the works@55–
57,46# in the case of linear momentum.

We start again from the equations of motion~4.6!–~4.8!,
which imply, after spatial integration, the laws~4.9! that we
recopy here:

d

dt H 2E d3xP0
0J 52cE d3xF0 , ~4.19a!

d

dt H 1cE d3xP i
0J 5E d3xFi , ~4.19b!

d

dt H 1c « i jkE d3xxjPk
0J 5« i jkE d3x~xjFk1Pk

j !.

~4.19c!

The left-hand sides are in the form of total time derivatives.
To 1PN order, we have seen that the right-hand-sides can be
transformed into total time derivatives, which combine with
the left-hand-sides to give the 1PN-conserved energy and
momenta. Here we shall prove that the contributions due to
the reactive potentials in the right-hand-sides cannot be
transformed entirely into total time derivatives, and that the
remaining terms yield precisely the corresponding 1PN
fluxes. The balance equations then follow~modulo a slight
assumption and a general argument stated below!.

The right-hand sides of Eq.~4.19! are evaluated by sub-
stituting the metric ~3.1!, involving the potentials
Vm
in5Vm

in1Vm
reac. The components of the force density~4.8!

are found to be

F05
s

c
] tVin2

4

c3
s j] tVjin1

1

c5 5F01
1

c7 7F01OS 1c9D ,
~4.20a!

Fi5s] iVin2
4

c2
s j] iVjin1

1

c4 4Fi1
1

c6 6Fi1OS 1c8D ,
~4.20b!

where we have been careful at handling correctly the uncon-
trolled 2PN and 3PN approximations, which lead to the
terms symbolized by thec2n

nFm’s. The equations~4.20! re-
duce to Eq.~4.11! at the 1PN approximation. They give the
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components of the force as linear functionals ofVin and
Viin . The remainders are 4PN at least. The same computation
using the stress-energy density~4.7! yields the term which is
further needed in Eq.~4.19c!,

« i jkPk
j 52

4

c2
« i jks jVkin1

1

c4 4Ti1
1

c6 6Ti1OS 1c8D .
~4.21!

The nTi ’s represent the 2PN and 3PN approximations.
Thanks to Eqs.~4.20! and~4.21! one can now transform the
laws ~4.19! into

d

dt H 2E d3xP0
0J 5E d3xH 2s] tVin1

4

c2
s j] tVjinJ 1

1

c4 4X

1
1

c6 6X1OS 1c8D , ~4.22a!

d

dt H 1cE d3xP i
0J 5E d3xH s] iVin2

4

c2
s j] iVjinJ 1

1

c4 4Yi

1
1

c6 6Yi1OS 1c8D , ~4.22b!

d

dt H 1c « i jkE d3xxjPk
0J 5« i jkE d3xH sxj]kVin

2
4

c2
smxj]kVmin2

4

c2
s jVkinJ

1
1

c4 4Zi1
1

c6 6Zi1OS 1c8D ,
~4.22c!

where nX, nYi , and nZi denote some spatial integrals of the
2PN and 3PN terms in Eqs.~4.20! and ~4.21!.

Consider first the piece inVm
in which is composed of the

potentialVm
in, given by the symmetric integral~3.4! or by the

Taylor expansion~3.5!. To 1PN orderVm
in contributes to the

laws ~4.22! only in the form of total time derivatives~see
Sec. IV A!. Here we present a more general proof of this
result, valid formally up to any post-Newtonian order. This
proof shows that the result is due to the very structure of the
symmetric potentialVm

in as given by Eq.~3.5!. The technical
formula sustaining the proof is

sm~x!] t
Nsn~x8!1~2 !N11sn~x8!] t

Nsm~x!

5
d

dt H (
q50

N21

~2 !q] t
qsm~x!] t

N2q21sn~x8!J , ~4.23!

wherex[(x,t) and x8[(x8,t) denote two field points~lo-
cated in the same hypersurfacet[x0/c5const!, and where
N is some integer@we recall the notationsm[(s,s i)#. The
contributions of the symmetric potential in the energy and
linear momentum laws~4.22a! and ~4.22b! are all of the
same type, involving the spatial integral ofsm(x)]aVm

in(x)
~with no summation onm anda50,i ). One replaces into this
spatial integral the potentialVm

in by its Taylor expansion

when c→` as given by Eq.~3.5!. This yields a series of
terms involving when the indexa50 the double spatial in-
tegral ofux2x8u2p21sm(x)] t

2p11sm(x8), and whena5 i the
double integral of] i ux2x8u2p21sm(x)] t

2psm(x8). By sym-
metrizing the integrand under the exchangex↔x8 and by
using the formula~4.23! whereN52p11 whena50 and
N52p whena51,2,3, one finds that the integral is indeed a
total time derivative. The same is true for the symmetric
contributions in the angular momentum law~4.22c!, which
yield a series of integrals of « i jkxj]kux
2x8u2p21sm(x)] t

2psm(x8) and « i jk ux2x8u2p21s j (x)] t
2p

3sk(x8), on which one uses the formula~4.23! where
N52p.

Thus the symmetric~inner! potentialsVm
in contribute to the

right-hand sides of Eq.~4.22! only in the form of total time
derivatives. This is true even though, as noticed earlier, the
potentialsVm

in contain some reactive~‘‘time-odd’’ ! terms,
through the contributions of the source densitiessm . As
shown here, these time-odd terms combine with the other
time-odd terms present in thesm’s appearing explicitly in
Eq. ~4.22! to form time derivatives. Such time-odd terms will
not participate ultimately to the balance equations, but they
do participate to the complete 3.5PN approximation in the
equations of motion of the system. This fact has been no-
ticed, and these time-odd terms computed for binary sys-
tems, by Iyer and Will@53# @see their Eqs.~3.8! and ~3.9!#.

The numerous time derivatives resulting from the sym-
metric potentials are then transferred to the left-hand sides of
Eq. ~4.22!. To 1PN order these time derivatives permit re-
constructing the 1PN-conserved energy and momentaE1PN,
Pi
1PN and Si

1PN. We include also the time derivatives of
higher order but they will be negligible in the balance equa-
tions ~see below!. Therefore, we have proved that the laws
~4.22! can be rewritten as

d

dt FE1PN1ŌS 1c4D G5E d3xH 2s] tV
reac1

4

c2
s j] tVj

reacJ
1

1

c4 4X1
1

c6 6X1OS 1c8D , ~4.24a!

d

dt FPi
1PN1ŌS 1c4D G5E d3xH s] iV

reac2
4

c2
s j] iVj

reacJ
1

1

c4 4Yi1
1

c6 6Yi1OS 1c8D ,
~4.24b!

d

dt FSi1PN1ŌS 1c4D G5« i jkE d3xH sxj]kV
reac2

4

c2
smxj]kVm

reac

2
4

c2
s jVk

reacJ 1
1

c4 4Zi1
1

c6 6Zi

1OS 1c8D . ~4.24c!

TheO-symbolsŌ(c24) denote the terms, coming in particu-
lar from the symmetric potentials in the right-hand-sides,
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which are of higher order than 1PN. We add an overbar on
these remainder terms to distinguish them from other terms
introduced below.

Now recall that the 2PN and 3PN approximations, includ-
ing in particular the termsnX, nYi , and nZi in Eq. ~4.24!,
are nonradiative~nondissipative!. Indeed they correspond to
‘‘even’’ approximations, and depend instantaneously on the
parameters of the source. In the case of the 2PN approxima-
tion, Chandrasekhar and Nutku@24# have proved explicitly
that 4X, 4Yi , and 4Zi can be transformed into total time
derivatives, leading to the expressions of the 2PN-conserved
energy and momenta. Here we shall assume that the same
property holds for the 3PN approximation, namely that the
terms 6X, 6Yi , and 6Zi can also be transformed into time
derivatives. This assumption is almost certainly correct. The
3PN approximation is not expected to yield any secular de-
crease of quasi-conserved quantities. It can be argued, in
fact, that the 3PN approximation is the last approximation
which is purely nondissipative. Under this~slight! assump-
tion we can now transfer the termsnX, nYi , and nZi to the
left-hand sides, where they modify the remainder terms
Ō(c24). Thus,

d

dt FE1PN1ÕS 1c4D G5E d3xH 2s] tV
reac1

4

c2
s j] tVj

reacJ
1OS 1c8D , ~4.25a!

d

dt FPi
1PN1ÕS 1c4D G5E d3xH s] iV

reac2
4

c2
s j] iVj

reacJ
1OS 1c8D , ~4.25b!

d

dt FSi1PN1ÕS 1c4D G5« i jkE d3xH sxj]kV
reac2

4

c2
smxj]kVm

reac

2
4

c2
s jVk

reacJ 1OS 1c8D , ~4.25c!

whereÕ(c24) denotes the modified remainder terms, which
satisfy, for instance,E1PN1Õ(c24)5E2PN1O(c25).

The equations~4.25! clarify the way the losses of energy
and momenta are driven by the radiation reaction potentials.
However, these equations are still to be transformed using
the explicit expressions~3.6!–~3.8!. When inserting these ex-
pressions into the right-hand sides of Eq.~4.25! one is left
with numerous terms. All these terms have to be transformed
and combined together modulo total time derivatives. Thus,
numerous operations by parts on the time variable are per-
formed @i.e., A] tB5] t(AB)2B] tA#, thereby producing
many time derivatives which are transferred as before to the
left-hand sides of the equations, where they modify the
Õ(c24)’s by some contributions of orderc25 at least~since
this is the order of the reactive terms!. During the transfor-
mation of the laws~4.25a! and ~4.25c! for the energy and
angular momentum, it is crucial to recognize among the

terms the expression of the 1PN-accurate mass quadrupole
moment I i j given by Eq.~3.7! @or Eq. ~3.21a! with l52#,
namely

I i j5E d3xH x̂i js1
1

14c2
x2x̂i j ] t

2s2
20

21c2
x̂i jk] tskJ .

~4.26!

And during the transformation of the law~4.25b! for linear
momentum, the important point is to remember that the 1PN-
accurate mass dipole momentI i , whose second time deriva-
tive is zero as a consequence of the equations of motion
@d2I i /dt

25O(c24)#, reads

I i5E d3xH xis1
1

10c2
x2xi] t

2s2
6

5c2
x̂i j ] ts j J .

~4.27a!

This moment is also a particular case, whenl51, of the
general formula~3.21a!. An alternative expression of the di-
pole moment is

I i5E d3xxi H s1
1

c2 S 12sU2s j j D J 1OS 1c4D ,
~4.27b!

which involves the Newtonian conserved mass density
@given also by the three first terms in Eq.~4.15!#. Finally, the
end results of the computations are some laws involving in
the right-hand sides some quadratic products of derivatives
of multipole moments, most importantly the 1PN quadrupole
moment ~4.26! ~the other moments being Newtonian!,
namely

d

dt FE1PN1ÔS 1c4D G52
G

c5 H 15 I i j~3!I i j
~3!

1
1

c2 F 1

189
I i jk

~4!I i jk
~4!1

16

45
Ji j

~3!Ji j
~3!G J

1OS 1c8D , ~4.28a!

d

dt FPi
1PN1ÔS 1c4D G52

G

c7 H 2

63
I i jk

~4!I jk
~3!1

16

45
« i jk I jm

~3!Jkm
~3!J

1OS 1c9D , ~4.28b!

d

dt FSi1PN1ÔS 1c4D G52
G

c5
« i jk H 25I jm~2!I km

~3!

1
1

c2 F 163I jmn
~3! I kmn

~4! 1
32

45
Jjm

~2!Jkm
~3!G J

1OS 1c8D . ~4.28c!

The remainders in the left-hand sides are such that
Ô(c24)5Õ(c24)1O(c25). The remainders in the right-
hand sides areO(c28) in the cases of energy and angular
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momentum because of tail contributions~see Sec. IV C!, but
is O(c29) in the case of the linear momentum.

The last step is to argue that the unknown terms in the
left-hand sides, namely the total time derivatives of the re-
maindersÔ(c24), are negligible as compared to the con-
trolled terms in the right-hand sides, despite their larger for-
mal post-Newtonian order (c24 vs c25 and c27). When
computing, for instance, the time evolution of the orbital
phase of inspiralling compact binaries@6–18#, one uses in
the left-hand side of the balance equation the energy valid at
the samepost-Newtonian order as the energy flux in the
right-hand side. Because the difference between the orders of
magnitude of the two sides of the equations isc25, we need
to show that the time derivative increases the formal post-
Newtonian order by a factorc25. In Eq. ~4.27! this means
dÔ(c24)/dt5O(c29) @actually,O(c28) would be sufficient
in Eq. ~4.28!, butO(c29) will be necessary in Sec. IV C#. In
the case of inspiralling compact binaries, such an equation is
clearly true, because the termsÔ(c24) depend only on the
orbital separation between the two bodies~the orbit being
circular!, and thus depend only on the energy which is con-
served at 2PN order~for noncircular orbits one would have
also a dependence on the angular momentum!. Thus the time
derivative adds, by the law of composition of derivatives, an
extra factorc25 coming from the time derivative of the en-
ergy itself. More generally, this would be true for any system
whose 2PN dynamics can be parametrized by the 2PN-
conserved energy and angular momentum. This argument
could perhaps be extended to systems whose 2PN dynamics
is integrable, in the sense that the solutions are parametrized
by some finite set of integrals of motion, including the inte-
gral of energy. Another argument, which is often presented
~see e.g.,@34#!, is that the termsdÔ(c24)/dt are negligible
when taken in average for quasiperiodic systems, for in-
stance a binary system moving on a quasi-Keplerian orbit.
The time average of a total time derivative is clearly numeri-
cally small for such systems, but it seems difficult to quantify
precisely the gain in order of magnitude which is achieved in
this way, for general systems. The most general argument,
valid for any system, is that the termsdÔ(c24)/dt are nu-
merically small when one looks at the evolution of the sys-
tem over long time scales, for instanceDt@Ô(c24)
3(dE1PN/dt)21 ~see Thorne@64#, p. 46!.

Adopting heredÔ(c24)/dt5O(c29) and the latter gen-
eral argument, we can neglect the termsÔ(c24) and arrive
to the 1PN energy-momenta balance equations

dE1PN

dt
52

G

c5 H 15I i j~3!I i j
~3!1

1

c2 F 1

189
I i jk

~4!I i jk
~4!1

16

45
Ji j

~3!Ji j
~3!G J

1OS 1c8D , ~4.29!

dPi
1PN

dt
52

G

c7 H 2

63
I i jk

~4!I jk
~3!1

16

45
« i jk I jm

~3!Jkm
~3!J 1OS 1c9D ,

~4.30!

dSi
1PN

dt
52

G

c5
« i jk H 25I jm~2!I km

~3!1
1

c2 F 163I jmn
~3! I kmn

~4! 1
32

45
Jjm

~2!Jkm
~3!G J

1OS 1c8D , ~4.31!

relating the 1PN-conserved energy and momenta, given by
explicit integrals over the source@Eqs. ~4.15!–~4.18!#, to
some combinations of derivatives of multipole moments,
also given by explicit integrals over the source@see Eqs.
~3.7!–~3.8!#. Note that at this order both sides of the equa-
tions are in the form of compact-support integrals. The right-
hand-sides of Eqs.~4.29!–~4.31! agree exactly with~minus!
the fluxes of energy and momenta as computed in the wave
zone of the system. See for instance the equations~4.16’!,
~4.20’!, and ~4.23’! in @46#, when truncated to 1PN order
@and recalling that the quadrupole moment which enters the
1PN fluxes is precisely the one given by Eq.~4.26!#. Thus,
we can conclude on the validity of the balance equations at
1PN order, for weakly self-gravitating systems.

These equations could also be recovered, in principle,
from the relations~2.14!–~2.15! ~which were obtained in pa-
per I!. Indeed, Eqs.~2.14!–~2.15! involve, besides some in-
stantaneous contributions such asTL(t), some nonlocal~or
hereditary! contributions contained in the functionsm(t),
mi(t), and si(t). These contributions modify the constant
monopole and dipole momentsM , Mi , andSi by some ex-
pressions which correspond exactly to the emitted fluxes.
The balance equations could be recovered~with, though, less
precision than obtained in this paper! by using the constancy
of the monopole and dipolesM , Mi , andSi in the equations
~2.14! written for l50 andl51, and by using the matching
equations obtained in Eq.~3.27!, also written forl50 and
l51. Related to this, notice the term involving a single time
antiderivative in the functionmi(t) of Eq. ~2.15b!, and which
is associated with a secular displacement of the center of
mass position.

C. Tail effects at 1.5PN order

To 1.5PN order in the radiation reaction force appears a
hereditary integral~i.e., an integral extending on the whole
past history of the source!, which is associated physically
with the effects of gravitational-wave tails. More precisely, it
is shown in@50#, using the same combination of approxima-
tion methods as used in paper I and this paper, that the domi-
nant hereditary contribution in the inner post-Newtonian
metricgmn

in ~valid all overDi) arises at the 4PN order. At this
order, the dynamics of a self-gravitating system is thus in-
trinsically dependent on the full past evolution of the system.

In a particular gauge~defined in@50#!, the 4PN-hereditary
contribution ingmn

in is entirely located in the 00 component of
the metric, and reads

g00
in uhereditary52

8G2M

5c10
xixjE

0

1`

dl lnS l

2D I i j~7!~ t2l!

1OS 1

c11D . ~4.32!
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The hereditary contributions in the other components of the
metric (0i andi j ) arise at higher order. Note that the heredi-
tary ~tail! integral in Eq.~4.32! involves a logarithmic kernel.
A priori, one should include in the logarithm a constant time
scaleP in order to adimensionalize the integration variable
l, say ln(l/2P). However, lnP would actually be in factor of
an instantaneous term@depending only on the current instant
t through the sixth time derivativeI i j

(6)(t)], so Eq.~4.32! is in
fact independent of the choice of time scale. In Eq.~4.32! we
have chosen for simplicityP51 sec. The presence of the tail
integral ~4.32! in the metric implies a modification of the
radiation reaction force at the relative 1.5PN order@50#. The
other 4PN terms are not controlled at this stage, but are in-
stantaneous and thus do not yield any radiation reaction ef-
fects ~indeed the 4PN approximation is ‘‘even’’ in the post-
Newtonian sense!. It was further shown@42# that the 1.5PN
tail integral in the radiation reaction is such that there is
exact energy balance with a corresponding integral present in
the far-zone flux. Here we recover this fact and add it up to
the results obtained previously.

As the gauge transformation yielding~4.32! in @50# deals
only with 4PN terms, it can be applied to the inner metric
gmn
in given by Eq.~3.1! without modifying any of the known
terms at the 1PN nonradiative and reactive approximations.
It is clear from Eq.~4.32! and the reactive potentials~3.6!
that after gauge transformation, the inner metric takes the
same form as Eq.~3.1!, except that the reactive potentials are
now more accurate, and given by

Vreac~x,t !52
G

5c5
xi j I i j

~5!~ t !

1
G

c7F 1

189
xi jk I i jk

~7!~ t !2
1

70
x2xi j I i j

~7!~ t !G
2
4G2M

5c8
xi j E

0

1`

dl lnS l

2D I i j
~7!~ t2l!1OS 1c9D ,

~4.33a!

Vi
reac~x,t !5

G

c5 F 121x̂i jk I jk~6!~ t !2
4

45
« i jkxjmJkm

~5!~ t !G1OS 1c7D .
~4.33b!

Still there remain in the metric some uncontrolled~even!
4PN terms, but these are made ofinstantaneousspatial inte-
grals over the source variables, exactly like the uncontrolled
2PN and 3PN terms.@The expressions~4.33! can be recov-
ered also from Sec. III D of paper I and a matching similar to
the one performed in this paper.# With Eq. ~4.33! in hand,
one readily extends the balance equations to 1.5PN order.
First one obtains Eq.~4.24!, but where the reactive potentials
are given more accurately by Eq.~4.33!, and there are some
instantaneous 4PN terms8X, 8Yi , and 8Zi in the right-hand
sides. Extending the~slight! assumption made before con-
cerning the similar 3PN terms, we can transform8X, 8Yi ,
and 8Zi into time derivatives and transfer them to the left-
hand sides. This yields Eq.~4.25!, except that the remainders

in the right-hand sides areO(c29) instead ofO(c28). Using
Eq. ~4.33!, we then obtain~working modulo total time de-
rivatives! the laws~4.28! augmented by the tail contributions
arising at orderc28 in the right-hand sides. The remainders
in the left-hand sides are of the order
dÔ(c24)/dt5O(c29) ~arguing as previously!, and therefore
are negligible as compared to the tail contributions atc28. In
the case of energy the 1.5PN balance equation is obtained as

dE1PN

dt
52

G

5c5
I i j

~3!I i j
~3!2

G

c7 F 1

189
I i jk

~4!I i jk
~4!1

16

45
Ji j

~3!Ji j
~3!G

2
4G2M

5c8
I i j

~3!~ t !E
0

1`

dl ln S l

2D I i j
~5!~ t2l!

1OS 1c9D . ~4.34!

Because there are no terms of orderc23 in the internal en-
ergy of the system~see Sec. IV A!, the energyE1PN appear-
ing in the left-hand side is in fact valid at the 1.5PN order.
Finally, to the required order, one can rewrite Eq.~4.34!
equivalently in a form where~minus! the right-hand side is
manifestly positive-definite,

dE1PN

dt
52

G

5c5F I i j~3!~ t !1
2GM

c3 E
0

1`

dl lnS l

2D I i j~5!~ t2l!G2
2
G

c7 F 1

189
~ I i jk

~4!!21
16

45
~Ji j

~3!!2G1OS 1c9D . ~4.35!

Under the latter form one recognizes in the right-hand side
the known energy flux at 1.5PN order. Indeed the effective
quadrupole moment which appears in the parenthesis agrees
with the tail-modifiedradiative quadrupole moment param-
etrizing the field in the far zone@see Eq.~3.10! in @42##. @The
term associated with the~gauge-dependent! constant 11/12 in
the radiative quadrupole moment@42# yields a total time de-
rivative in the energy flux~as would yield any time scaleP
in the logarithm!, and can be neglected in Eq.~4.35!.# The
1.5PN balance equation for angular momentum is proved
similarly ~it involves as required the same tail-modified ra-
diative quadrupole moment!. The balance equation for linear
momentum does not include any tail contribution at 1.5PN
order, and simply remains in the form of Eq.~4.30!.
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