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Gravitational waves generated by inspiralling compact binaries are investigated to the second-
post-Newtonian (2PN) approximation of general relativity. Using a recently developed 2PN-accurate
wave generation formalism, we compute the gravitational waveform and associated energy loss rate
from a binary system of point masses moving on a quasicircular orbit. The 'crucial new input is
our computation of the 2PN-accurate "source" quadrupole moment of the binary. Tails in both the
waveform and energy loss rate at infinity are explicitly computed. Gravitational radiation reaction
effects on the orbital frequency and phase of the binary are deduced from the energy loss. In the
limiting case of a very small mass ratio between the two bodies we recover the results obtained by
black hole perturbation methods. We And that finite mass ratio effects are very significant as they
increase the 2PN contribution to the phase by up to 52'Po. The results of this paper should be of use
when deciphering the signals observed by the future I IGO-VIRGO network of gravitational-wave
detectors.

PACS number(s): 04.30.—w, 04.80.Nn, 97.60.Jd, 97.60.Lf

I. INTRODUCTION

The Laser Inter ferometric Gravitational Wave
Observatory —(LIGO-) VIRGO network of kilometer-size
interferometric detectors of gravitational waves is ex-
pected to be in operation by the turn of the century
[1,2] (see [3] for a recent review). The most promising
targets for this network are the gravitational waves emit-
ted during the radiation-reaction-driven inspiral of bi-
nary systems of compact objects (neutron stars or black
holes). Crucial to the successful detection and decipher-
ing of such waves will be the availability of accurate theo-
retical templates for the inspiral gravitational waveforms
[4—6]. Much theoretical effort is currently being spent
on developing improved formalisms tackling the genera-
tion of gravitational waves by general material sources
and/or on applying existing formalisms to the explicit
computation of increasingly accurate inspiral waveforms.
Among the existing generation formalisms, the one pro-
posed by us [7—9] can, in principle, be developed to an
arbitrarily high accuracy. Recent work by one of us [10]
has succeeded in pushing its accuracy to the second-post-

Newtonian (2PN) level, i.e. , in. deriving general expres-
sions for the asymptotic gravitational waveform, as a
functional of the matter distribution in the source, which
take into account all contributions of fractional order c
beyond the leading ("quadrupole formula" ) term. Here

v/c (Gm/rc2)~~2 denotes the small parameter
entering the post-Newtonian expansion appropriate to
the description of slowly moving, weakly stressed, weakly
self-gravitating systems.

The object of the present paper is to apply the 2PN-
accurate generation formalism of Refs. [7—10] to the spe-
ci6c case of an inspiralling compact binary. This is a non-
trivial task as the end results of Ref. [10] contain some
complicated three-dimensional integrals which are math-
ematically de6ned by a procedure of analytic continua-
tion. Note that this contrasts with the end results of
our previous 1.5PN-accurate generation formalism [7—9]
which contained only integrals extending over the (com-
pact) support of the material source. The higher com-
plexity of the 2PN level is due to the appearance of
terms associated with the cubic nonlinearities of Ein-
stein's equations. We shall show below how to explicitly
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compute these terms in the case of binary systems.
Theoretical waveforms such as the one computed below

are useful to define parametrized "chirp" templates to be
cross correlated with the outputs of the LIGO-VIRGO
interferometric detectors. For this technique to be suc-
cessful, the templates must remain in phase with the ex-
act general-relativistic waveform as long as possible. The
phase of the signal is determined by the rate of change of
the orbital period resulting from gravitational radiation-
reaction efrects. Following the usual heuristic approach
(which has been validated in detail at the leading order
[ll]), the effect of gravitational radiation reaction on the
orbital period can be computed &om the losses of en-
ergy (and angular momentum) [12] at infinity. We shall
therefore pay special attention to the computation of the
2PN-accurate energy loss &om a (quasi) circular compact
binary which is obtained here for the first time, together
with the resulting orbital phasing of the binary.

Several investigations have recently focused on the
computation of the energy loss and waveform in the case
of a very small mass ratio between the two bodies [13—16].
Notably the energy loss has been computed in this case
both numerically [15] and analytically [16] up to an or-
der going well beyond the 2PN level. The test-mass limit
of our result agrees with the 2PN truncation of the re-
sults of Refs. [15,16]. However, we find that finite mass
eKects change very significantly the 2PN numerical con-
tribution to the accumulated orbital phase. Our main
results, completed by the contributions due to the spins
of the orbiting bodies, have been briefly reported in [17].
Note that our formula for the energy loss has been con-
Brmed by an independent derivation based on a difIerent,
albeit less rigorous, method [18].

The organization of the paper is the following. In
I

Sec. II we write down the results of the 2PN genera-
tion formalism in a form convenient for the application
to inspiralling binaries and we outline our strategy. In
Sec. III we compute the 2PN-accurate "source" moments
of mass-type (especially the quadrupole moment E = 2)
in the case of a binary system made of two point masses.
In particular a crucial cubically nonlinear term is ob-
tained in Sec. III C. The expressions for all the relevant
source moments are given in Sec. IV which deals with
the explicit computation of the 2PN-accurate waveform
and energy loss rate (including relevant tails). The in-
stantaneous orbital phase of the binary is computed at
the end of Sec. IV. Technical details are relegated to sev-
eral appendices: the conserved mass monopole and dipole
moments are considered in Appendix A; Appendix B
presents an alternative derivation of the cubically non-
linear contribution to the quadrupole moment, which is
valid for N-body systems; and. Appendix C is a com-
pendium of various formulas for moments.

II. SUMMARY OF THE 2PN-ACCURATE
GENERATION FORMALISM

Let us first recall that in a suitable "radiative" coor-
dinate system X" = (cT, X') the metric coefficients, say
G p(X ), describing the gravitational field outside an
isolated system admit an asymptotic expansion in powers
of R i, when R = ~X~ ~ oo with T —R/c and N = X/R
being fixed ("future null infinity" ). The transverse-
traceless (TT) projection of the deviation of G p(X~)
from the flat metric (signature —1, +1,+1,+1) defines
the asymptotic waveform h& = [Gk (X') —bb ] (latin
indices i, j, k, m, . . .range &om 1 to 3). The 1/R part of
hk can be uniquely decomposed into multipoles:

4G 2E
(X,T) =, R,b~(&)), NI. 2U*,I. 2(TI—i) — — NaI, 2&ab(;&)bl, 2—(Ta) + (-) —

~
(2.1)

The "radiative" multipole moments Ul, and VL, (defined for E & 2) denote some functions of the retarded time
T~ = T R/c taking v—alues in the set of symmetric trace-&ee (STF) three-dimensional Cartesian tensors of order 8
Here I = i i iI denotes a spatial multi-index of order E, Ng 2 = N;, N.. ., X(,~) = 2(X,~ + Xz,), and

(N) = (8;b —N;Nb)(b~ —N, N ) ——(8,, —N, N~)(bb —NbN ) .
1

(2.2)

(For the convenience of the reader we summarize our notation in Ref. [19].) As indicated in Eq. (2.1), for slowly
moving systems the multipole order is correlated with the post-Newtonian order. The coefficients in Eq. (2.1) have
been chosen so that the moments Ug and Vl, reduce, in the nonrelativistic limit c + +co (or e' -+ 0), to the 8th time
derivatives of the usual Newtonian mass-type and current-type moments of the source. At the 2PN approximation,
i.e. , when retaining all terms of fractional order b c with respect to the leading (Newtonian quadrupole) result,
the waveform (2.1) reads

2G 1 1 4 1 1 1
+ijkm Uij + +a+ij a + &ab(i+j )a+b + +ab+ijab + ~ab(i j}ac+bcc4/ c 3 3 c~ 12 2

1 1 2 1 1 1+ NabcUij abc + Sab(i Vj)acdNbcd + 4 NabcdUij abed + Sab(i Vj)acdeNbcde + O(& )c3 60 15 c4 360 36
(2.3)

The rate of decrease of the Bondi energy E~ with respect to the retarded time TR = T —R/c is related to the
waveform by
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dE~ c
dT~ 32vr G

OhTT
B'dO(N) .

BTR )
(2.4)

At the 2PN approximation this yields (with Ui"1 = d"U/de)

A 2PN-accurate gravitational-wave generation formal-
ism is a method allow'ing one to compute the radiative
moments entering Eqs. (2.3) and (2.5) in terms of the
source variables with an accuracy sufFicient for obtaining
the waveform with f'ractional accuracy 1/c . The latter
requirement implies, in view of Eq. (2.3), that one should
(at a minimum) compute the mass-type quadrupole ra-
diative moment U;, ;, with 1/c accuracy, the mass-type
radiative octupole U;„„,and the current-type radiative
quadrupole V;„, with 1/cs accuracy, U;„„.„., and V;„.„,

nian accuracy. Note that these requirements are relaxed
if one is only interested in getting the energy loss rate
with 2PN accuracy. In that case, Eq. (2.5) shows that
one still needs U,„., with 1/c accuracy, but that it is
enough to compute U,„„,and V,„,with 1/c accuracy,
and U;„„.„., and V;„.„,with Newtonian accuracy.

In our generation formalism, the link between the ra-
diative multipoles Ul. and VL, and the dynamical state
of the material source is obtained in several steps involv-
ing as intermediate object a certain vacuum "canonical"
metric g„' "(x,"„) expressed in terms of some "canonical"
multipoles Mr, and Sl. (alternatively referred to as algo-
rithmic moments in [8]). On the one hand, the match-
ing of g„'„"(2:," „) to a (PN-expanded) near-zone solution
of the inhomogeneous Einstein equations allows one to
compute ML, and SL, in terms of some suitably deGned
"source" multipoles IL, (source), Jl, (source). On the other
hand, the computation of nonlinear eÃects in the wave
zone allows one to compute UL, and Vl, as functionals of
ML, and SI, . The final result for the 2PN-accurate gener-
ation formalism reads (when working in an initially mass-
centered coordinate system, i.e., such that the canonical
mass dipole M; vanishes for all times)

2am +-
U;, (T~) = I!,"(T~) +

0

U;&a(TR) = I,,„(TR) +
0

2Gm +-
V;, (T )=J,, (T )+

dr ln —+ —I, (T~ —r) +O(e ),7 11 (4) 5

26 12

dr ln —+ I. (T~ —r)+O(e ),97 (5) 5

26 60

dr ln —+ — J, (TR —7.) + O(e ),26 6

(2.6a)

(2.6b)

(2.6c)

for the moments that need to be known beyond the 1PN accuracy, and

UL, (T~) = I~i 1(T~) + O(e ),
VL, (Ta) = Jl. '(TR) + O(e'),

(2.7a)

(2.7b)

for the other ones. Equations (2.6) involve some integrals which are associated with tails; these integrals have in front
of them the total mass energy m of the source, and contain a quantity 6 which is an arbitrary constant (with the
dimension of time) parametrizing a certain freedom in the construction of the radiative coordinate system (T, X).
More precisely, the link between the (Bondi-type) radiative coordinates I"= (cT, 4') and the (harmonic) canonical
coordinates x,"„=(ct, „,x', „) reads

TR = tean
~can

ln '" +Os +O 1 r, „ (2.8)

Except for the computation of U;~ which requires the knowledge of the mass quadrupole source moment I,~ with
2PN accuracy, the computation of the other multipole contributions to the waveform can be obtained from 1PN-
accurate expressions of the mass-type and current-type source moments which have been obtained for all values of E

in Refs. [7,8], respectively, as explicit integrals extending only on the compact support of the material source. (Note
that there are no 1/cs contributions in the source moments. ) Let us illustrate the structure of the 1PN results by
quoting the simpler 1PN mass-type source moments:

xLx2 02o (t, x) 4(2E+ l)x;I, Bo;(t,x).
2(2E+ 3)c2 Bt2 (/+ l)(2E+ 3)c2 Bt (2.9)
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The (compact support) matter densities appearing in Eq. (2.9), and their generalizations discussed below, are defined
from the contravariant components (in the harmonic, "source" coordinate system x") of the material stress-energy
tensor T" as

o.(t, x) = T"(t,x)+ T-(t, x)

Tp'(t, x)a, (t, x)—:
C

o,, (t, x) —= T"(t, x) .

(2.iOa)

(2.iob)

(2.10c)

The powers of c introduced in Eqs. (2.10) are such that the o s have a finite nonzero limit as lic -+ 0. One associates
to the matter densities (2.10) some Newtonian-like potentials, say

U(x, t) = G
d K

, cr(x', t),

X (x, t) = G d'x'ix —x'ia. (x', t),

U;(x, t) = G , a;(x', t),

P,, (x, t) = G
d'x' 1

rr, ~ +
~

B,UB, U — 8;,B—bUB. bU
~

(x', t) .
x —x' '

47rG (* ' 2'

(2.1la)

(2.lib)

(2.1lc)

(2.1ld)

[Note the equation satisfied by the 4" potential: AZC = 2U. ] The 2PN-accurate source moment Il, (t) has been
obtained in Ref. [10] and expressed in terms of the matter densities a, o;, o,~, the potentials U, U;, PU. and the trace
P—:P„. The result [see Eq. (4.21) of Ref. [10]] is

Il, (t) = FPgy p d x~x~ XI, cr + —(cr;;U —OP) + B aB - 4 lxl &I 2
c4 *' 2c' 2E+ 3

B,
~

1+
~

cr, + —
~

BbU[B;Ub —BbU,]+ Bt,UB, U—
~

4(2E+ 1)x I, f 4UI 1 f 3
c2 a+1 2g+3 ( c2) * ~Gc2 ( ' ' 4 ' )

2(2Z+ i) ~x~'x;&

8c4(2E + 3)(2E + 5) c (& + 1)(2& + 3)(2& + 5)

z~ —P~, B;,U —2V~B,BU+ 2B~U, B,, U~ ——[B&U) —U&g & ) + O(~ ) .
vr Gc4 (2.12)

This expression obviously reduces to Eq. (2.9) at the lpN level. It was also shown in Eq. (4.13) of Ref. [10] that the
current moment JL„which needs only 1PN accuracy, can be written as

1+ —U
I
ob+ Ba

4
c2 ) 2c2 2t'+ 3

'B, ab, + BbUB,U + O(s ) .
c2 8+ 2 28+ 3 '

4vrG

JL(t) = FPB=p ~ab(if

3+ G, ~l.—i) BbU(BbUb —Br Ub) + BtUBbU—
vr Gc2 4

(2.i3)
This form is equivalent to the result previously derived in Ref. [8] [Eq. (5.18) there]. See below for comments on the
syiiibol FP~—p iii front of Eqs. (2.12) and (2.13).

In this paper, it will be convenient to split the potential P;z of Eq. (2.lid) into a compact-source potential U,~ and
a nonlinear potential W,~ according to

1
P;~ = U,~

—W;~ + —b,~W„,
2

(2.i4a)

where U,z and TV,~ are defined by

U;~(x, t) = G , cr;, (x', t),
/x —x'f

1 d 3C

W;,. (x, t) = ——,[B,UB~U](x', t) .
4~

(2.14b)

(2.14c)
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(We have &W;. = Q;UQ U. ) The compact-source potential U;z should not be confused with the previously defined
radiative quadrupole moment U;z. Also note that the notation W;~ is the same as used in Ref. [10] to denote a different
potential (which is a retarded version of the potential P;~ )b.ut which will not be used in this paper. Let us note for
future reference that the trace of TV,~ as defined here satisfies

gJ U2
2

C {x,t) =G, [oU](x', t) .
ix —x'i

(2.15a)

(2.15b)

The potentials introduced above are connected by the approximate differential identities

BiU+ 8;U; = O(s ),
BiU, + 0~U;, =0,.

~
W,~

——8;~W„~ + O(s ) .
2 )

(2.16a)

(2.16b)

We replace in Eq. (2.12) the potential P~ by Eqs. (2.14) above, and BiU by the spatial derivative —B,U, . It is also
convenient to perform an integration by parts, using Oi, UBA, U, —:2 [A(UU;) —UAU, —U, AU], which is justified by a
reasoning similar to the ones followed in Sec. IV of Ref. [10]. This leads to the form we shall use as the starting point
in this work:

IL, (t) = FPii o d x~x~ ~l, o — oU, .—+ . Uo..—+ O, o.

4(2/+ 1)*-;, ( 2U l 2U; 1 ( 3
Bi

~

1+ o, — cT+
c (8+1)(28+3) ( c2) ' c2 vrGc2 ( ' * ' 4

' ' )
~x~ xl, 4 2(2Z+ 1)~x~ x I, s 2(2/+ 1)x~1,

8c4(28+3){28+5) ' c4(8+1)(28+3)(2/+5) ' * c4(8+1)(8+2)(2S+5) ' *' 4~G '

+ 2UB,,U,. —U,,B,, U ——(BU)'+ 28UBU; ——B,*jU') + W,,B,U, (2.17)

For simplicity, we henceforth drop most of the post-
Newtonian error terms as they are usually evident from
the context.

The symbol FP~ o in Eq. (2.17) stands for "finite
part at B = 0" and denotes a mathematically well-
defined operation of analytic continuation. Let us re-
call its precise meaning (see [20,21] for details and proofs
of the applicability of such a definition): one considers
separately two functions of one complex variable B de-
fined by the integrals Ii(B) = f& d x~x~ f(x), I2(B) =
f& d x~x~ f(x), where Vi is, say, the ball 0 & ~x~ & ro
and V2 the complementary domain: ~x~ ) ro. If the
function f (x) is, say, continuous in &s and has, at most,
a polynomial growth O(~x~") when ~x~

—+ oo, the inte-
gral defining Ii(B) is convergent if the real part of B is
large enough, say Re(B) ) —3, while the integral defin-
ing I2(B) is convergent if Re(B) ( —p —3. If moreover
the function f (x) admits an asymptotic expansion ("mul-
tipolar expansion") of the form f(x) Zi, &„fi, I, ~x~ "n
as ~x~

—+ oo (we do not include logarithms of ~x~ to sim-
plify), the function I2(B) can be analytically continued
as a meromorphic function in the complex B plane up to
arbitrarily large values of Re(B) (with possible poles on
the real axis). Finally, one considers the sum of Ii (B) and
of the analytic continuation of I2(B) for values of B near
0: the constant term (zeroth power of B) in the Laurent
expansion of Ii (B)+analytic continuation[I2 (B)]around
B = 0 defines FPii o f dsx~x~ f(x). It is easily shown

I

that this definition is independent of the choice of the
intermediate radius ro used to split K in two regions.
Note that, in principle, one should introduce a length
scale to n-dimensionalize ~x~ before taking its Bth power
in (2.17). This is superfiuous in our case because the au-
thor of [10] has shown that there arise no poles at B = 0
and therefore no associated logarithms.

Although the result (2.17) is mathematically well de-
fined (contrary to the results of Refs. [22,23] which are
expressed in terms of undefined, divergent integrals), it
is a nontrivial task to compute it explicitly in terms of
the source variables only. This will be done in the next
section, in the case where the source is a binary system
of nonrotating compact objects (neutron stars or black
holes). To this end, we shall heuristically represent the
stress-energy tensor of the material source as a sum of
Dirac b functions. More generally, the stress-energy ten-
sor of a system of % (nonrotating) compact bodies is
formally given by

dy~ dy~ 1 dtT" (x, t) = ) m~ ~ ~ —b(x —y~(t)),dt dt g—g dk

(2.18)

where m~ denotes the (constant) Schwarzschild mass of
the 4th compact body. This yields, for the source vari-
ables (2.10),
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N v2
o(x, t) = )»(t)

~

1+
~
b(x —y~(t)),")

N
o.;(x, t) = )»(t)v~b(x —y~(t)),

A=1
N

v( ) = ).»(t)v~v~b(x —y~(t)),
A=1

where v& = dy&/dt and

(2.19a)

(2.19b)

(2.19c)

)((,~(t) =
1d2=-

Q2

1
d4

C4

~[1 + (d2)~ + (d4)~],
(v2

)
~

—v + —Uv —4U;v; —24'+ —U + 4U..)
I'3 4 3, 3

(2.20c)

Eq. (2.21), must be explicated before making the replace-
ment x ~ y~(t). ] Although we do not claim to have ver-
ified it by a detailed proof, we feel secure that the formal
use of b functions can be justified at the 2PN accuracy
(and even at the 2.5PN accuracy) by combining our gen-
eration formalism with the results of Ref. [24]. Indeed,
the latter reference showed (by a matching technique)
that the metric generated by a system of well-separated
strongly self-gravitating bodies was equal, up to the 3PN
level, to the metric generated by a mathematically well-
defined version of b functions. See Sec. III C of Ref. [9]
for a discussion, at the 1PN level, of how to combine the
two formalisms.

III. THE 2PN-ACCURATE MASS MOMENTS OF
A COMPACT BINARY

It is convenient to split the starting formula (2.17) into
three types of contributions, say

the notation V being a shorthand for the combination I(c)+I(~)+I( )
L L L (3 1)

V=U+ O, X )

1
2c

(2.21)

[Note that the second time derivative appearing in V,

which is the potential appearing naturally in the 1PN
near-zone metric in harmonic coordinates. The subscript
A appearing in Eq. (2.20a) indicates that one must re-
place the field point x by the position yA of the 4th
mass point, while discarding all the ill-defined (formally
infinite) terms arising in the limit x -+ y~. For instance,

U. G ) O'B(t)(1 + vB/ )

Here, I& ("compact terms") denotes the terms where,(&)

because of the explicit presence of a source term o (x),
o;(x), or o,8(x) (or a time derivative thereof), the three-
dimensional integral J' d x extends only over the com-
pact support of the material source. The finite part
prescription is unnecessary for such terms. [Note that

IL is identical to the 2PN expansion of the exact lin-
earized gravity result given by Eq. (5.33) of [25].] The
"Y terms" I& [named after the quantity defined in
Eq. (3.22) below] denote all the contributions involving
the three-dimensional integral of the product of (spatial
derivatives of) two Newtonian-like potentials, e.g. ,

d2
FPa 0 d3xx ax'2Lat2 a, U02U —

2 Fpa 0 8 xixi 2;,48;U8, U) (3.2)

he time derivatives appearing in the Y terms have all been written in a cmanner such that they can be factorized in
f'rout as total time derivatives acting on (the finite part of) a three-dimensional integral. Finally, IL, denotes the
only term of (2.].7) involving the three-dimensional integral of a term trilinear in source variables; namely,

FP o d x(x~ ~I,~,~„U, (3.3)

where we recall that W;8, defined by (2.14c), is a bilinear functional of (r(x', t).
e shall consider in turn the three contributions to IL. The "compact" and "Y" contributions will be evaluated ln

the quadrupole case (E = 2) while the "W" contribution will be calculated for any E The cases. E = 0 and l = 1 play
a special role as they do not correspond to radlatlve moments, but to conserved quantltles We check ln Appendix A
the agreement with known results for these low moments.

A. The compact terms and their explicit form in the circular thoro-body ease

The general, N-extended-body expression for the "compact" contributions to the 2PN mass moments reads

4U. , ~ 4U
I~ —— dx xL, o(l — ")+ (T„+

(
B, a+ B, o)c4 ) c4 "

2 21+3 (c2 ' 4 2E+5 c4 ' )
4(2&+ 1) ( 2U) 2U; 1

(2+ 2)(22+ 2)c' ( cc ) cc + 2(2/+2) c* ).
(I. + 1)(E + 2)(2E + 5)c4 " (3.4)
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From Eqs. (2.19) we obtain the corresponding point-mass form

I(| ) —
1 U-A+ U.A 2 -I +4 1 d 1 d4

2 2-1
c4 " c4 2(2l + 3)c2 dt2 8(2E+ 3)(2l + 5)c4 dt4

A=1

4(2l + 1) d f 2U+ l, 2U; „,I 2(2&+ 1)
(I+. 1)(2E+.3)c Ch ( c ) c (E+ l)(2E+ 3)(2E+. 5)c dt

(E + 1)(E+ 2)(2E + 5)c4 dt2 (3.5)

in which we have introduced for brevity p, ~ = p, ~(1 +
v&2/c ). As it is written, the result (3.5) depends (at 2PN
order) not only on the positions y~ and velocities v~ of
the N compact bodies, but also on higher time derivatives
thereof, up to d y~/dt . To reduce the functional depen-

dence of I&~
) to a dependence on positions and velocities

only, we need to use the post-Newtonian-expanded equa-
tions of motion of the %-body system. At this juncture,
we restrict ourselves to the simplest case of a binary sys-
tem evolving on a quasicircular orbit. Consistently with
the 2PN accuracy of the generation formalism considered
here, we use the 2PN truncation of the 2.5PN equations
of motion of Ref. [11]. We use a (harmonic) coordinate
system in which the 2PN center-of-mass is at rest, at the
origin. In such a coordinate system the 2PN truncation
of the equations of motion admit exact circular periodic
orbits. Using the 2PN-accurate center-of-mass theorem
of Ref. [26], we can express the individual center-of-mass-
frame positions of the two bodies in circular orbits in
terms of the relative position

Gm 41
~2pN = s 1 (3 —v)p+

l
6+ v+ v

r 4

(3.11)

which is such that

de
V =

dt ' (3.12a)

dv' d 3c 2 5

dt dt2 ~2PNx++(s ) . (3.12b)

Let us note that Eqs. (3.12) imply, as usual, that v =
vl = ~»N r, so that Eq. (3.11) implies

the fact that we are restricting our attention to circular
orbits. (In the noncircular case there are 1PN corrections
to X2 and —Xq which are proportional to v —Gm/r,
see, e.g. , [27].) Then the content of the 2PN equations
of motion reduces to the knowledge of the 2PN-accurate
orbital frequency u2pN given by

as

(3.6)
'U—=p 1 —(3 —v)p+ ~

6+ v+v p . (3.13)
(

C2

yg
——[X2 + 3vp (Xg —X2)]x,

y2 ——
[
—Xg + 3vp'(Xg —X2)]x .

(3.7a)

(3.7b)

m]
m —= my+ m2, Xg —=

m
m2

X2 = =1 —Xg,
m

(3.8)

and

[Equations (3.7) are obtained by setting G; = 0 for cir-
cular orbits, where G; is given by Eq. (19) in Ref. [26].]
Here, we have denoted

We are now in a position to compute explicitly the
(e)"compact" terms I&, and we restrict ourselves to the

quadrupole case E = 2.
Without entering into the details of the calculation of

I, , let us mention that there arise many symmetric
functions of the two masses which can be straightfor-
wardly expressed in terms of the total mass m and of
the quantity v = XqX2 by using the well-known fact
that a symmetric polynomial in Xq and X2 can be writ-
ten in terms of the elementary symmetric combinations
Xq + X2(—:1) and XqX2. Useful formulas for this reduc-
tion are

mlm2v=XgX2 —=
m

Gm
2C P

(3.9)

(3.10)

X,'+ X'
X~ +X2
X~4+ X24

X~ +X2

1 —2v

1 —3v,
1 —4v+ 2v

1 —5v+ 5v

(3.14a)
(3.14b)
(3.14c)
(3.14d)

with r—:~x~—:~yq
—y2~ denoting the constant (harmonic)

coordinate radius of the relative orbit. One should note
in Eq. (3.7) the absence of 1PN corrections to the usual
center-of-mass expressions. This is an accident due to

The computation of the quadrupole I, for two bodies
and circular orbits is long and tedious but quite straight-
forward. We obtain
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11 r2 2

I . .= STF, . vm x'~ ——x'~(1+ 39v) + — v—'~(l —3v) + — x'~(5203 —18275v —2785v )21 c 1512
r 2

+ —v'~ (191 —577v + 109v )378 C2
(3.15)

where STF,z denotes the STF projection with respect to the indices ij.
B. The quadrat ically nonlinear terms

Separating out Rom Eq. (2.17) the terms involving the three-dimensional integral of a product of (spatial derivatives
of) two Newtonian potentials, we define

Iz = FP~ 0 d x!x! 2U;B,,U, —U.~B;,U —. 8;U;—O~U, + 2B,U, B~U ——0, (U )

(~+i)y~+s) a" '' ' * ' 4
* ' ' ' y+i)(~+2)(++5)2 a" ', *

These terms can be deduced from the results of Ref. [8]. Denoting ri = !x—yi!, r2 = !x—y2!, ri2 = !yi —y2!, the
latter reference has introduced the kernel

1
k(x; yi, y2)—:—ln[(ri + r2) —ri~]2

(3.17)

and proven that it satisfies (in the sense of distribution theory) the identity

I —2vrb1 2 (3.18)

where b12 denotes a distribution supported on the segment joining y1 to y2 '.

512(xi yl) y2) = ri2 da b(x —y ), (3.19a)

where

y—:(1 —n)yi + ny2 . (3.19b)

Moreover, the kernel k(x) is such that its multipolar expansion when !x! +oo contain-s, besides a logarithmic term,
ln(2!x!), only terms of the type !x! nl (with p 6 2V). The important point, as we are going to see, is that the
multipolar expansion of k(x) contains no terms of the type !x! nl, i.e. , no homogeneous solutions of the Laplace
equation. [This is the feature defining the kernel k by contrast with the kernel g satisfying 4 g = (rir2) everywhere
and containing a homogeneous piece zh whose distributional source is precisely the —2nhi2 term in Eq. (3.18); see
[8].] The latter property implies that

FPB—p d x x xgA~k x = FPB—p d xL~ x xg I x

Fp, gg P + 2(+ 1 g' B+'-'- I (3.20)

Here, the first equality is obtained by integrating by parts
[the surface term at infinity vanishing by analytic con-
tinuation from the case where Re(B) is large and neg-
ative], and the last follows &om the fact that k(x) is
well behaved at the origin !x!= 0 and contains no "ho-
mogeneous" terms!x! nL in its multipolar expansion
at inanity. Indeed, going back to the definition recalled
above of analytically continued integrals, as the sum of
one integral over the ball 0 & !x.! & ro and one over its
complement !x!) ro, we see that the factor B in front
will give a zero result, except if the integral near the ori-
gin (0 & !x!& s) or the one near infinity (!x!) ro, with

ro arbitrarily large) generates a pole at B = 0 in the
complex B plane. As k(x) exhibits no powerlike blow
up near the origin x = 0 (even when the latter coincides
with yi or y2) the integral near the origin is easily seen
not to generate any pole at B = 0. Concerning the inte-
gral near infinity, written as I dr r +

(js dOnL, k), we
see from the orthogonality of the ng 's over the sphere S2
that only the presence of terms oc nl, /r + in the mul-
tipolar expansion of k(x) could generate a pole through

d& &B+E&—E—1 gg
—1&B

70
By combining the identity (3.18) with the result (3.20)

we conclude that
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FPB=O d KIKI *L3 B- 1

P] 72
= —2~ Y (y„y2) (3.21)

o. is polynomial it is easy to perform the integration over
n in (3.22) to get [10]

(see also Sec. IV in Ref. [10]) in which, following the
notation of [8], we have introduced

1

(yl i y2) = d K &L~12( Kjyl) y2): r12 do JJa
0

(3.22)

where y
~ denotes the STF projection of y" . . y" with

y' defined by Eq. (3.19b). As the dependence of y on
I

e

YL( .
)

I» —y2I )- «-»)
p=0

P i1 ~s L—P ~I+1 tCwhere y2
——y2 ~ y2, yz

——yz - yz . By taking
derivatives of both sides of (3.21) with respect to yl or

y2 and integrating over yz and y2 after having weighted
the integrand with some source functions o. (yl), o.)s(y2)
(where o denote a, 0, or o';~), one can obtain all
the terms in (3.16) since these are all bilinear in some
Newtonian-like potentials. For instance, the right-hand
side of Eq. (3.2) can be written as

(3.24)

where one must be careful about the minus signs appearing in the spatial derivatives due to )9rl /Ox' = Orl /o—)yl,
Or& /c))x = —)9rz /c)y2, and about keeping the total time derivatives factorized in front of the whole expression. It
is convenient to introduce a special notation for the derivatives of Y with respect to yi and y2, say

ijY

YL

LYi-

|9

y& yji

8
l9yi gy

0
t9y2 gy

(3.25a)

(3.25b)

(3.25c)

With this notation in hand, it is easy, from the result (3.21), to obtain the following expression for the "Y-type"
contribution to IL defined in Eq. (3.16):

IL(&) 2G 3 3 8 I)Ll I s I)),' L 1 s A; L s k L 1 L
C

d yld y2 2o'lo2 Yal, —01 02 Yz), ——0102 s YI, + 2)T1)r2 k YB cog (olo2 Y )2 2

21+ 1

(E + 1)(2E + 3) 4 2(I, + 1)(E + 2) (2l + 5)
(3.26)

YL
vAvC

L
vAvC

L„Yvc

i j—vA vQ'

i j= vAvc
i j= VAV~

L
Yi

LijY
L,Y-

(3.27a)

(3.27b)

(3.27c)

where A, C = 1, 2, as well as a mixed notation such as,
e.g. ,

L i Lv„Yj = VA iYj o (3.27d)

This leads, for any 8, to the following expression for the

where o.l = o(yl, t), o2 = o.(y2, t), etc.
Finally, the point-mass limit is obtained by insert-

ing Eqs. (2.19) into Eq. (3.26). Note that, because of
the overall c factor, it is enough to use the Newto-
nian approximation for the source terms [e.g. , o(K, t) =
E~m~b(K —y~(t)) + O(E )]. To increase the readability
of the result, it is convenient to introduce a shorthand
for the contractions of the derivatives (3.25) with the ve-
locities:

Y terms:

A, C

——„„Y„+2„Y„„—0, (Y )—

4(2I. + 1) ,L 3

(8+1)(2E+3)
" ' 4"" '

g2 [ YabI ] 3 28
2(1+1)(8+2)(28+5) ' " '

in which all functions Y are evaluated with yA in
their first argument, and y~ in their second one, e.g. ,

"c,.Y, (yx yc), Y„„„„=~~~a Y,, (yx, yc),
and in which all the self-terms A = C must be omitted.
Finally, by using expression (3.23) for Y, a long calcula-
tion yields the following explicit expression for the Y-type
mass quadrupole for two bodies in a circular orbit, and
considered in the center-of-mass frame:
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I, = — —STF;~ px'~ (55 —155v —53v )
AW = ——TV~B,~U,

4

+—v'~ (—118 + 92v —10v )Q2
(3.29)

x
, W;~ (x') 8;~ U(x'), (3.3lb)

C. The cubically nonlinear term

Let us now tackle the cubically nonlinear term

IL — FPB o
(w)

sr Gc4
d «ixi z W,,B,~U, (3.30)

with W,~. = 6 (cj;UO~U). We shall show how to evalu-

ate IL explicitly, for all values of E, in the case where
the source is a binary system. [Note in passing that as
(3.30) depends only on the instantaneous mass distribu-
tion of the source our result is valid whatever be the orbit
(circular or not) of the binary. ] To do this for all values
of E we need what is essentially a generalization of the
method of [8], i.e. , a detailed study of some cubically
nonlinear kernel. In the particular (and most urgently
needed) case of the mass quadrupole, E = 2, one can eval-
uate (3.30) by other means, as is shown in Appendix B
which succeeds in computing I( for %-body systems.
This gives us an independent check of the results below.

Let us define a function W(x, t) [which is a trilinear,
nonlocal functional of cr(x', t)] by

where, for brevity, we suppress the dependence on the
time variable which is the same on both sides. Note that
the integral (3.3lb) is a usual, convergent integral [at
infinity W~ = O(l/r), 8;,U = O(l/r )]. As usual, W is
characterized as being the unique solution (in the sense
of distribution theory) of (3.3la) which falls off at spatial
infinity.

Our method for computing IL is similar to the one

we used in Eqs. (3.17)—(3.20) above to compute I& from(&)

the results of [8] on the kernels k and g. Inserting (3.31a)
into (3.30) gives

IL(w) = — FPB=O d3x x BZL~.W x 3.32
4~G

Integrating by parts the two spatial derivatives of 4
[the analytic continuation &om a case where Re(B) is
large and negative ensuring the vanishing of any sur-
face term at infinity], using the formula 4 (~x~+z+) =
B(B+2E+ 1) + n, where r—:~x~, n'—:x'/r, and
writing explicitly the definition of the analytically con-
tinued integral (in polar coordinates: dsx = r2drdO) we

get

+2 +1
4~G

7 Q

dr der + n W+ B+E L~ (3.33)

Because of the regularity of W(x) near the origin x = 0 [28], the first integral on the right-hand side of (3.33) will

continuously depend on B g(F near B = 0, and will therefore not contribute to IL because of the explicit B factor
in front. We are therefore left with (since the second integral can have at most a simple pole)

dO n W(x) (3.34)

W(x) = ) W~
p&~, e&o

(3.35)

Although this is not a priori evident from its definition
(3.31), the explicit expression we shall derive below for
W(x) shows that the multipolar expansion (3.35) pro-
ceeds according to the inverse powers of r, without in-
volving logarithms. [Actually, the presence of logarithms
in (3.35) would not change the result below. ] As was al-
ready mentioned above, the only terms in the multipolar
expansion (3.35) which can generate a simple pole in B
so as to cancel the factor B in front are those which corre-
spond to a homogeneous solution of the Laplace equation
oc n /r + Let us then defin. e the "homogeneous" piece
of W by restricting the double sum in (3.35) to the case

where ro can be taken arbitrarily large, so that expression
(3.34) depends only on the asymptotic expansion of W(x)
for ~x~ m oo, say

I

where p = /+ 1, say (with the definition W& = W&+ )

nL
Whom( ) ) Whom

e&o
(3.36)

GI(~) ~' gJ horn

(2E —1)!! (3.37)

Inserting back (3.37) into (3.36) shows that the multi-

Note that this definition is independent of the choice of
the origin x = 0 around which one is expanding. This
stems from the easily verified fact that under a constant
shift x —+ x + c the homogeneous and inhomogeneous
pieces of W do not mix. Using f drr = Bro-

B i + O(BO) and—f dQ nl, nl, Tl, = [4rr&!/(2& + 1)!!]Tl.
[where n!!= n(n —2)(n —4) ~ (1 or 2)] we get the fol-

lowing link between IL and the coeKcients appearing(VV)

in the multipolar expansion (3.36) of W" (x):
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polar expansion of W" can be compactly written 1n a
form which is familiar:

e
Wham G y ( ) 1(14')g

e&o

(3.38)

' r1 '
r2

1
+m1fD2 Oyig j +0 jO i

y1 y2 y1 yg (3.39)

whose solution can be written as

(3.4o)

with

R';j = —O,j ln r111

W,-. = —8;j lnr22.2=1
12=.= igj+ jgi .

1 bij

8 rl
1 b'

+
8 2 )

r2

(3.4la)

(3.41b)

(3.41c)

In Eqs. (3.41a), (3.4lb) the derivatives ct;—:8/Ox', while
in Eq. (3.4lc) g is the quadratic kernel [8]

g(x; yi, y2):—ln(ri + r2 + r12), (3.42a)

(3.42b)

The form (3.38) is related to another, more convenient,

expression for Il (in terms of the "source" of W" )
that we shall derive below. Let us now obtain an explicit
expression for W(x) in the point-mass limit and extract
its homogeneous part.

Inserting U = Gmi/ri + Gm2/r2 in the definition of
W,, yields [with n', :—(x' —y', )/ri, etc.]

Note that the two x derivatives acting on 1/ri and
1/r2 in (3.46) (which introduce nonlocally integrable sin-
gularities in x space) are left unefFected and must be in-
terpreted in the sense of distribution theory (in x space).
Rigorously speaking, one is not allowed to work within
the framework of d.istribution theory (because one is deal-
ing with the product of a distribution 8;~r1 by a func-
tion, g~ which is not smooth at x = yi). One should, e.g. ,
use the well-defined analytic continuation procedure of
[24] which has been shown to correctly describe the self-

gravity efFects of compact bodies. [The latter analytic
continuation procedure yields in particular an unambigu-
ous treatment of the self-source term A, Eq. (3.45).]
In practice, a technically easier way to deal with this sub-
tlety is to work with the y1 and y2 derivatives of quanti-
ties which are less singular in x space (see the first terms
in the definitions of H and K below). When doing so,
there arises only one term which is not well defined in the
sense of distribution theory, and this term, oc nil(x —yi),
clearly vanishes when treated more properly by analytic
continuation. Computing A (W,~B;~U) is easy for A
[using Ari = 6 xi ] and the last term in A 1 [using
ri Ar2 ——r12 Ar2 ——A(r12 rz )]. The other contri-
butions to A112 are much more intricate to deal with.
We succeeded in evaluating explicitly A 1A1 by com-
bining the results of Refs. [29,30] which pointed out the
usefulness of considering certain y1 and y2 derivatives of
combinations of g, ln ri, ri, r2 and r12, with the fact (con-
tained in a somewhat roundabout way in Ref. [31]) that
the inverse Laplacian of r1 r2 has a simple expression:

, ( 1 ) 1 rg

1 2) 12 1
4 (3.47)

[The latter being most simply obtained from its eas-
ily verified "inverse:" A(r2/ri) = 2r12/(rzr2). ] Denoting
71 = ~/Oyl r +1 = ~/'Wi~/~gi~ 71 +2 —~/~V]. ~/~92 r

and n12 = (yi —yz)/r12, we define the quantities

From (3.40) we get the cubically nonlinear efFective
source term

g U G3[ 3A111 + 2 A112 + 2A122

3A222] (3.44)

with

and we have introduced the same abbreviated notation
as above:

t9 8
igj =—

~ jg.
g1 y2

1 r2

2 r12r1
H = Ai(V'1 V2)

2

which verify

I

1 1 Il12' Il1 1
+ 2 + 2 +

2 r12r1 r12r1 r12r1
3 Il12 Il1 I112+—, —-, &1g,

r12r1 12

1 1K = (V'1 V'2) —1nri ——lnr12
r2 r2

1 r2 1 1 1 1+—
2 2 2

+—
2 r12r1 2 r1 r2 2 r12r2

(3.48)

(3.49)

r1 8 r1 2r1
'

1 1 1 1 1
+—8;.lnr, a.

8 ' r 8r2 r

(3.45)

(3.46)

1L H =2igjg, —,
r1

1
2t9 j lnr1 ij 'r2

Finally, introducing the combination

(3.5o)

(3.51)

the other terms in (3.44) being obtained by exchanging
the roles of y1 and. y2.

1 1 1
Q = 4H+ —K+ —,

4 2 r122r2
(3.52)
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we find that W(x), the unique solution of (3.3la) falling off at infiruty, is given by

G m13 3
W =

2
—mim2Q + (two other terms obtained by exchanging 1 ++ 2)

3P1
(3.53)

To project out &om W(x) the part W" whose multi-
polar expansion, when lxl -+ oo, is purely homogeneous,
it is convenient, in addition to using the defining crite-
rion that it contains only terms of the type n /lxl +, to
notice that R" must also be a non smooth function
of yi and y2 (considered jointly). This can be shown
either Rom the general structure of our generation for-
malism, or, more simply, by remarking, on dimensional
and tensorial grounds, that I& must be of the form

(W'}

G2m~imz "/(c4r12) times a tensor product of E vectors
y1 or y2. When using these two criteria in conjunction,
one finds that many terms in H and K project out to
zero. For instance, by explicating

( )horn

I "i)
I &1

12
e)0

(3.58)

(—)' ' (r»& +
5 Pg(ni ni2)

lr12 2E —1 ri ) (3.59)

Using formula (A25) from [20] this can be rewritten in
terms of Legendre polynomials of n1. n12.

ri + r12
g =l —+ lg+ —+(rl 1 12 ) ri ri

(3.54)

with the decomposition g = k + zh (see Ref. [8]) where
k is smooth in (yi, y2) and where

h( ) I l(rl +12+ r12

, +r2 —r»

It is clear froin Eqs. (3.58) and (3.59) that u(x, yi, y2) is a
solution of 4 u = 0 which has an axial symmetry around
the straight line joining y1 to y2. We can represent u in
closed form by introducing a distribution of "charges"
along the segment y1 —y2, say

u) (n)dn, y
—= (1 —n) yi + ny2.x —y~

(3.60)

(3.55b)

has a purely homogeneous multipolar expansion, one
finds that the first term in H [Eq. (3.48)] projects out
to zero. Finally one gets 1

dn iu(n)n
1

2E —1
(3.61)

By identifying (3.60) and (3.59) on the axis of symmetry,
we see that the weight iu(n) with which the "charges"
are distributed on the segment y1 —y2 must satisfy

15 (r2) n 2 ni 4+ 2 2 2 2"12 ("1) P12 7'1 P12P1

5 1 n12+2 2
. 7'ih +(1++2), (3.56)

Pg ~ & 1 I O'IP1
2 r ~ g) 12 2

e)o
(3.57)

(where, as usual, vi+2 = riz i 1'2). The projection of
Ol.ri/ri onto the homogeneous solutions oc ni /@i+ (us-
ing x = yi as origin for the expansion at infinity) is sim-
ply obtained by taking the STF projection of the multi-
index I. Hence [with (—1)!!= 1, (—3)!!= —1]

where (r2/ri)" denotes the homogeneous projection of
r2/ri and where h was defined in Eqs. (3.55). I et us now
evaluate 11 = (r2/ri)" . By expanding r2 = lx —y21 =
ri + r»l (with ri ——x —yi, r12 ——yi —y2) in powers of

r12, we get the expansion at infinity of r2 jri:

We find that iu(n) must be defined within the framework
of distribution theory (rather than that of ordinary, lo-
cally integrable functions) as

]
iu(n) = Pf ——n

2
(3.62)

where the symbol Pf denotes Hadamard's partie finie for
an integral over the interval 0 ( n ( 1 (see Ref. [32]). Ac-
tually, this could also be written in terms of the analytic-
continuation finite part operator used in our general for-
malism, but Hadamard's Pf operator is a simpler object
when, as is the case in Eq. (3.62), the integrals to be
defined involve noninteger powers. We want also to em-
phasize by the change of notation that the appearance
of the distribution tu(n) is quite disconnected from the
formalism behind our starting formula (2.17). We note
in passing that we could dispense of using Hadamard's
partie finie by using iu(n) = (d/dn)(n 1~2), where the
derivative is taken in the sense of distributions, and by
integrating (3.60) by parts. However, the form (3.62) is
technically more convenient for our purpose.

Summarizing the results so far, we have succeeded in
resumming the infinite multipolar series defining TV"
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Eq. (3.36), to obtain it as a finite sum of derivatives of
ri and r2 [see Eq. (3.56)], plus two more complicated
homogeneous solutions: a y1 gradient of the function 6,
Eqs. (3.55), and the function u, which is a distributional
superposition of elementary solutions ~x —y ~

on the
segment yi —y2. Note that while Eq. (3.36) defined
only the asymptotic expansion at infinity of W", our
closed-form result for W" (x) defines it for all values
of x. At this stage, it is convenient to bypass the link

{3.37) and (3.38) between the object we seek, I&, and(W)

the coefficients of the multipolar expansion of W" (x)

by using our detailed results on W" for deBning the
distributional "source" (in x space) of W" by

1S{x)—:——4 W" (x) .4'
Thanks to our resummation of W" as a sum of elemen-
tary "homogeneous" (in the sense of functions, but not of
distributions) solutions, the definition (3.63) makes sense
with S(x) being a distribution (in x space) whose sup-
port is localized on the segment joining y1 to y2. More
precisely, we have

G3m21m2 1 15 1S = —V'i. V'2[in rig8(x —y2)] —— Pf
c4 4 16 r2 dnn ) 8(x —y ) —4 ' V', 8(x —y, )r12

4 5 1 Xl12. ~(» —vi) ——,&(» —x~)+~, &i (~i2
12

(3.64)

The introduction of the source S of W" simplifies our evaluation of the multipole moments IL . Indeed, from the
definition (3.36) and the fact that S(x) has a compact support we deduce, as usual,

Whom( ) ds S(y) )- (—)'~ d yy S(y) . (3.65)

By comparing with (3.38), we find

d xx S(x) . (3.66)

1—(V'i. V'2) (ln r, 2 y2 ) = — y2 + — V'2y, . (3.67)-L 1 -L 1 ~12 -I
4 4r122 4 r12

It is interesting to remark that the work of the present
subsection, together with the one of the previous subsec-
tion, is analogous to the method used in Ref. [8]. Ba-
sically, we have decomposed —4W;~o),.~U/c, which was
an efFective source term for the inner metric (i.e. , a cu-
bically nonlinear analogue of the quadratically nonlinear
terms obtained from the elementary object ri r2 ) into
a piece L W" = —4mS which has a compact support
(analogue to A h = —4vr8i2, in [8], defining the com-
pact source 7.," ) and a complementary piece A W'""
with W'"" ~:—W —W" being the analogue of the
kernel k, which does not contribute to (2.17). In other
words, the combination of the results of Ref. [10] with
the results given here end up by yielding a formula for
IL given explicitly by an integral over a compact sup-
port [after the two replacements ri r2 M —2mbi2 and
W;~0;,.Ujc m AS in Eq. (2.17)]. From Eq. (3.66) one
can read ofF directly from (3.64) an explicit expression
for IL . Note that one can get rid of the logarithm ap-(W)

pearing in the first term of this expression by explicating
the V'1 derivative:

1(R )
L

G2m21m2 4
c4 r2

12

I112—4 . V'1y1 +
r12

ni2+2 V'i
~
ri

-L 7 -L
r12

1 X112
- V'2y2

r12

dny.
~

i

0 )
dnn ')'y + (1++ 2), (3.68)Pf15 1

16 r12

where, as usual, y = y~" . . y~, and where, because of
the dissymmetry betweeen y1 and y2 in the last integral,
it is important to recall the definition used here: y
(1 —n)yi + ny2 (which difFers from the notation used in
[8] by the replacement n -+ 1 —n).

To get a completely explicit expression for IL in
terms of y1 and y2 one needs first to compute the in-
tegrals appearing in (3.68): the first one has been given
in Eq. (3.23) above [actually, one uses here the equiv-
alent expression given by Eq. (5.24) in [8]], the second
one is simply obtained by expanding the tensorial power
y~ = (yi —nyi2)~ in powers of n and by using the
elementary integrals (3.61). Then the derivatives with
respect to y1 and y2 must be eIII'ected. One can drasti-
cally cut down the whole calculation by using the fact
that I& must [as is clear from (3.66)] transform under(R')

global spatial shifts of the coordinate system, x —+ x+ e,
y~ ~ y~ + e according to 6&I& —Isi, , I& )

+ O{s )
(w) (w)

(see also Appendix B of [8]). Defining for brevity some
E-dependent coefFicients,

This leads to our (essentially) final result
~12 + 3E+ 2

Cg = 2g +4t)~ + (—) 2(2t' —1)
(3.69a)
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(where 8&
——1 if E = 0 and 0 otherwise, and similarly for g), we obtain finally

I(w )
L C„yi y12+ 1 m2 (3.69b)

where the multi-indices are such that there are S —p indices on yq and p on yq2 ——yq —y2. Writing out explicitly the
low orders in E we find

with

G2m2m

C rl2
(3.70)

(3.71a)
(3.71b)

(3.71c)

(3.7ld)

=1
q2 = yi+ y12 1

(ij) (i j) (ij)
Q, = yi + 2yi y12 + 2y12

('jJ )@j k yl + 3yl y12 + 6yl y12 2y12

(ijat) (ijr I) (ij I.i) (i jIi) 15 (ijki)
@2j kl yl + 4yi y12 + 12yl y12 8yi y12 +

7 y12 (3.71e)

One should note that in all the formulas for W and I& given above, starting with Eq. (3.53), one must complement
the explicitly written results by adding similar terms, proportional to m~m2, obtained by exchanging the labels 1 and
2 (remember that y21 = y2 —yi ———y12). For instance, the complete expression of the quadrupole reads

2m mI = — . STF,i [miyi + m2y2 + 2(miyi —m2y2)y12 + 2(mi + m2)y12] .
C r12

(3.72)

An independent, direct derivation of the quadrupole (3.72) (without using the decomposition of H7 into homogeneous
and inhomogeneous parts) is given in Appendix B. In the center-of-mass frame, we finally get, for the cubically
nonlinear contribution to the quadrupole,

I~, ~ = —vms (2+ 5v)i'~ . (3.73)

Summing up the explicit results obtained for the three pieces of the 2PN-accurate quadrupole (considered for circular
orbits, in the center-of-mass frame) we get

Ii, =Ii(, )+I(j)+Ii(j ) =STF,, vm x'j 1+39VX'j + —"—', v'j 1 —3P

'U j
1512

(461+ 18M5v+ 241v ) + (1607 —1681v+ 228v'))378c2 (3.74)

IV. THE 2PN-ACCURATE VFAVEFORM AND ENEKCY LOSS

A. The waveform including its tail contribution

The 2PN-accurate waveform is given by Eq. (2.3) in terms of' the "radiative" multipole moments UL, and VL, which
are in turn linked to the source moments II, and Jl. by Eqs. (2.6) and (2.7). The latter equations involve some tail
integrals and therefore yield a natural decomposition of the waveform into two pieces, one which depends on the state
of the binary at the retarded instant TR = T —8/c only (we qualify this piece as "instantaneous"), and one which is
a priori sensitive to the binary's dynamics at all previous instants TR —7 ( TR (we refer to this piece as the "tail"
contribution). More precisely, we decompose

=("k ) 2+("k )t ) (4.1)

where the "instantaneous" contribution is de6ned by

TT .(4 )'-2 = 2G (2) 1 1 (3) 4 (2)+ijk~ I . + — NaIij'a + ~ab(i J )
Nb

1 1 (5) 2 (4) 1+ 3 abc ijabc + ab(i j )acd bcd + 4
—N I. . + ~ J. N

1 1 (4) 1 (3)+ 2 Nab ijab + ~ab(i J ) Nbcj
I(6) J(5)

abed ij abed + 36~ab(i j)acde bede (4.2)
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and where the "tail" contribution reads

2G 2Gm(6 )2'i= C4B c3 0

We have used for simplicity the notation

b, = b, -»/»

+ 1& ~1()T
E2bi p

'~ 3c (2b2)

+—ln~ ~v v(, Nv1 (Tn. —v))
4 f 7- l (4)
3c (2bs)

—97/60 g b
—7/6

(4.3a)

(4.3b)

Note that the decomposition (4.1)—(4.3) into instantaneous and tail contributions is convenient but by no means
unique. In particular the logarithms of the constants bi, b2, bs in Eq. (4.3a) could be as well transferred to the
instantaneous side (4.2).

We first study the instantaneous contribution (4.2), which is straightforwardly computed from the 2PN-accurate
mass quadrupole moment previously derived [Eq. (3.74)], and from the knowledge of the other moments necessitating
the 1PN accuracy at most. The 1PN-accurate source moments have been derived in [7] [see Eq. (2.9) above] and [8].
Note that the result (5.18) of [8] is equivalent to inserting Eq. (3.21) into the result (2.13) above. We list below the
relevant mass-type and current-type moments which have to be inserted into the waveform (4.2):

11"' "I, = vm STF; x" ——(1 + 39v) x" + ——v" (1 —3v)u 42
p2Vij

1512
(461+ 18895v+ 241v ) + (1607 —1681v+ 229v ))378c2

r2
I,, v = vm («, —«', ) STS;,4 (nn" —Tenn" + —v"n (1 —2v))C2

(4.4a)

(4.4b)

Iijkl

Iijklm

Iijklmn

Jijkl

J;jkl

2

vm STF;zr, i x' (1 —3v) + x'~ (3 —125v + 345v ) +-i kl 'Y ijkl 78 r
110 55 c2

vm(1 —2v)(X2 —Xi) x*~"'

vm(1 —5v+ 5v') x""'

vm(«'v —«'1) STS;, v( 4 (n *v 4- —v 'v (67 —8v))

aij 6 PX V 2 7
vmSTF;~i, si, b x '~v (1 —3v) + (181 —545v+ 65v ) +—

90 45

vm(l —2v) (X2 —Xi) STF,, ), I, s~~(, x *'"v

vm(1 —5v + 5v ) STF,, i,~~ ~~~(, x ""'2)

v*'n"' (1 —5v + 5v') ) (4.4c)

(4.4d)

(4.4e)

(4.4f)

z v" (1 —5v+ 5v')), (4.48)
C2

(4.4h)

(4.4i)

(4.5a)

Note that the authors of Ref. [8] gave two diff'erent forms of the current-type moments: a "central" form, its Eq. (5.18),
equivalent to the form (2.13) above (taken from [10]), and a "potential" form. We found the first form simpler to
evaluate when one is interested in computing the moments in the center-of-mass frame. [By using it, we detected. an
error in [33] which computed the potential form of the octupole J,~i, . the coefficient of the twelfth term in Eq. (9) of
Ref. [33] should read —5/2 instead of +3/2 (this twelfth term was the only one not checked by the transformation law
of multipole moments under a constant shift of the spatial origin of the coordinates). ] The relevant time derivatives
of the moments (4.4), as well as all their contractions with the unit direction N which are needed in the computation
of (h&+ );„,6, are relegated to Appendix C. One gets, for the 2PN-accurate instantaneous part of the waveform (in the
case of two bodies moving on a circular orbit),

(hvvv); ., =, Iv,, v ((,, + («g —«i)5;, +5,, + («g —«i)5;, + (;, )c4B
where the various post-Newtonian pieces are given by

G
P

(4.5b)

)r

51, 1 = —(1 —8v) (Nn)'7 (10 n" —14v")

(Nv)', , Gm, . .. (1 ) Gm, , (19—32 (Nn)(Nv)pn'v' +, 6v" —2 n" —pv"
~

—+ v
i
+p n*'

i

——v
iE» ~ E3

(4.5c)

(4.5d)
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(4.5e)

228+ p(Nn) (Nv) (1 —5v + 5v2)
5

�

am n~'~~~

(Nv) s ' 1 Gm, , t'95 —18v ) Gm nl'v~l
n'~ + 2v'~ + Nn p

(Nv) 2 81 —2v Gm+ ——(1+v)pv" + A
c 3 12 r

Gm (361 + 6» + 45v' &, (101—295v —15v' )

Gm 2 (309 —995v + 195v2 l 86 94 Gm
(Nn)

I
+ —(Nn)'(Nv)'(1 —5v+ 5v') —— (Nn)'(1 —5v+ 5v')

15 ) 5 15 r
2 6419+ 1325v+ 15v2) (Nv)z+v'~ 1 —3v —v

60 ) c2

2 (163 —545v + 135v2 i (Nv)4+q' Nn ' + 2 1 —5v+5v
~ 15 ) c4

+ p (Nn) (1 —5v + 5v ) —30' (1 —5v + 5v2)
128 2 4 (Nv) (Nn)2
15 c2

f 176 —560v + 80v2 5 Nv s
+n~*v~lp p(Nn)(Nv)

~
~

—20(nN) (1 —5v + 5v2)
l 5 c

Here n is shorthand for x/r. Usual Euclidean scalar
products are denoted, e.g. , by (Nn) = N n. We recall
that the parameter p = Gm/(c r) is related to the rela-
tive velocity v of the bodies by Eq. (3.13). When com-
paring the waveform (4.5) with the less accurate 1.5PN
waveform obtained in Ref. [34], we find several discrep-
ancies between the coeKcients entering the 1.5PN piece

(; [Eq. (4.5e)]. However it has been shown [18] that

the diff'erence between (l ~ l obtained here and the corre-(3/2)

sponding 1.5PN piece in Ref. [34] exactly vanishes after
application of the TT projection operator 'P,~k . There-
fore the 1.5PN truncation of the waveform (4.5) perfectly
agrees with the 1.5PN waveform obtained in Ref. [34].
We have checked directly, by difFerentiating and squar-
ing the complete 2PN waveform (4.5) for circular orbits,
that the correct instantaneous part of the energy loss is
recovered [i.e. , Eq. (4.12) below].

The tail contribution (4.3) is more difficult to evalu-
ate than the instantaneous one because it involves an
integral extending over the whole past evolution (or past
"history") of the binary. In another sense, however, it
is easier to evaluate because it necessitates at the 2PN
level the knowledge of the quadrupole and octupole mo-
ments of the binary with ¹mtonian accuracy only. This
is clear owing to the explicit powers of 1/c appearing
in Eq. (4.3a). (Only at the 2.5PN level shall we need
to include a post-Newtonian correction into the tail con-
tribution. ) In order to compute the tail integrals, we
shall follow a procedure which is a priori dangerously
formal (although most natural), but has been fully justi-
fied in Ref. [35] where it was proved to yield the correct
numerical value of the integrals, provided that a weak
assumption concerning the behavior of the gravitational
field in the past (—r —+ —oo) is satisfied. This assump-

tion is essentially that the Ah time derivative of a mo-
ment of order E tends to a constant when —~ + —oo. It
serves to preclude, for instance, the emission of a strong
burst of radiation in the remote past which would make
a nonphysical contribution to the tail integrals (see also
Ref. [21] for a discussion). This assumption is satisfied
in the case where the binary is formed by capture of two
bodies moving on an initial quasihyperbolic orbit with
small enough energy. The method consists (i) in sub-
stituting into the tail integrals in Eq. (4.3a) the compo-
nents of the moments calculated for a fixe (nondecaying)
circular orbit whose constant orbital frequency is equal
to the current value of the frequency at time T~, i.e.,
w = w2pN = w2pN(T~). Then it consists (ii) in evaluat-
ing each resulting integral by means of the formula

d~ ln —e'

—sgn(B) + i[in(2~0]b) + C], (4.6)0 2

where C = 0.577. . . is Euler's constant and 0 is the fre-
quency of the radiation [i.e. , a real number 0 = +nw;
sgn(A) = +1 and ~O~—:nw]. Note that this formula is
to be applied even though the left-hand side of (4.6) is
an absolutely convergent integral only when 0 possesses
a strictly positive imaginary part, Im(O) ) 0 (compare
Appendix A and Sec. 3 in Ref. [35]). As proved in Ap-
pendix 8 of Ref. [35], methods (i) and (ii) are valid for
an orbit which is actually decaying, and thus for which
u{T~ —T) tends formally to zero when —r —+ —oo. The
numerical errors made in following (i) and (ii) have been
shown to be of order O[(ln(], where ( is the usual adi-
abatic small parameter describing the decay of the or-
bit (( w/tu ), taken at the current instant T~, i.e.,
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$ = ((T~). The proof consists in showing that an ade-
quately defined "remote past" contribution to the tail
integrals is itself of order O[((T~)], so that only the
"recent" values of the frequency, near the current value
tu = w(T~), contribute to the tail integrals. Although this
has not rigorously been shown, the proof could in princi-
ple be extended to orbits which had a non-negligible ec-
centricity in the past, and had in fact whatever behavior
in the past which is consistent with the weak assumption
made above. Note that the decay of the orbit is driven
by radiation reaction effects which are of order O(s ) in
the post-Newtonian parameter c, and so the adiabatic
parameter ( is itself of order O(s ). One can therefore
safely neglect in the 2PN waveform all the errors brought
about by the above procedure (i) and (ii).

We now calculate the two independent polarizations
associated with the tail contribution (4.3) with respect to
two unit directions P and Q perpendicular to N and such

that N, P, Q forms a right-handed orthonormal triad.
We adopt the usual convention that P and Q lie along
the major and minor axes of the projection of the circular
orbit on the plane of the sky, respectively, and we denote
by c = cosi and s = sin i the cosine and sine of the angle
between the line of sight N and the normal to the orbital
plane [c = cos i is not to be confused with the speed of
light which we denote exceptionally by co in Eqs. (4.7)—
(4.10)]. Denoting by P the instantaneous orbital phase of
the binary [defined as an angle, oriented in the sense of
the motion, such that P =

2 (mod 2') when the relative
direction of the two bodies is n = P], and using the rele-
vant time derivatives and contractions of ¹mtonian mo-
ments as readily calculated &om Appendix C, we follow
the items (i) and (ii) above and bring the two "plus" and
"cross" polarizations (h+)t») = 2(P;P~ —Q;Q~) (h;. )«,.)
and (hx)t») = 2 (P,Q& + Q;Pz)(h;. )«;~ into the form

4G4 vm' +
(h+)t.;) =

coR r4
(~b

d7 —4 1+c ln --— cos 2 TR —'T

(2bg)

+~ )' (X, —X,)s (1+c ) ln
I I

in[3&(T~ — )]
1 2 81

8 (262)1, r'rl 3+—]5+ c')in]
I
sin]ii(TR —r)I ——sin]i)]Tn —c)] )8 q26, ) 10

(4.7)

4G vm
(hx)~ ) =

coB r4
( ~ ') 81 (~)

d7 —8c ln sin 2 T~ —w + jt' ~ X2 —Xq sc ——ln cos 3 T~ —7
4 g262 )

3 (~) 3
I

cos]&]Tn —c)I — cos]0]Tn —c)I
)4 (2bq p 10

(4.8)

Still following (i) and (ii) we now compute (4.7) and (4.8) by replacing P by a linear function of time, P(T) = wT+ $0
where w = cu(T~) is the current value of the orbital frequency, and by applying formula (4.6) to each integral. As a
result we get

4G vm 7r
(h+), ;) =

7 2(l+ c ) [1n(4~bg) + C] sin2$+. —cos2$
c~~R r 2

~p ) (A2 —X~)s (1+c ) [ln(6(ub2) + C] cos3$ ——sin3it)1 2 27 2 7t

8 2

1 2 7r . 3
+—]5+ c ) ]1 ]2wl)+Co]cossts) ——sinii + cosP

)8 2 10

4G vm
(hx)t '1 =

7
—4c [ln(4cubq) + C] cos2$ ——sin2$

c07R r 2

Xj2 27-
+ 7 (~2 ~1)&c —[ln(6~62) + C] sin 3$ + —cos 3$

4 2

3' 7r 3+ — ]in]2o'bs) + i ]sin ii+ —coo ii ~ sing4 10 (4.10)

The orbital frequency w and phase p in (4.9) and (4.10) denote the current values tu = u(T~) and p = p(T~). Both u
and p will be computed in the next subsection [see Eqs. (4.28)—(4.30)]. [Evidently, though during the computation of
Eqs. (4.9) and (4.10), p has been replaced, following Ref. [35], by a linear function of time, its actual time variation
is nonlinear. ]
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B. The energy loss and the associated binary's orbital phasing

The 2PN-accurate energy loss given by Eq. (2.5) is split, similarly to the waveform, into an "instantaneous"
contribution and a "tail" one. Let us deal first with the instantaneous contribution, which is de6ned by

(dEgy l G 1 (s) (s) 1 1 (4) (4) 16 (s) (3) (5} (5) (4) (4)
5 ij ij 2 189 ijk ijk 45 ij ij 4 9072 ijkna ijkrn 84 ijk ijk

& ) inst
(4.11)

All the needed moments to compute this contribution have been given in Eqs. (4.4). Their relevant time derivatives
and "squares" can be found in Appendix C. By a quite straightforward computation we get

fdEgy) 32 c 2 5 (2927 5 ) 2 t'293383 380
(4.12)

As for the tail contribution, it reads (when retaining only the terms which contribute to the 2PN order)

(dEgy i 2G 2Gml( ) (T )5e5 e3 (4.13)

Note that at the 2PN order there appears only the tail integral associated with the mass quadrupole moment I;~,
which can be replaced by its usual Newtonian expression. We now evaluate Eq. (4.13) by the same method (i) and (ii)
as used previously for the tails in the waveform. Namely we replace in (4.13) the third and fifth time derivatives of
the quadrupole moment by Newtonian quantities valid for circular orbits, and we perform explicitly the contractions
between these moments, being careful that one of them is taken at the current instant T~ while the other is taken at
the former instant TR —r. This readily brings (4.13) into the form

5].2a' v'm' +
(4.14)

where for this computation P can be assumed to be a linear phase [35]. Then the use of the integration formula (4.6)
immediately yields

(dE~ ) 32e'
5G

v p (47rp'~ ) . (4.15)

There is no dependence on the constant b parametrizing the freedom in constructing the radiative coordinate system.
This is not surprising because the constant 5 (or rather bi) enters a term which is a total derivative [see Eq. (4.13)]
and thus, as we already noticed [12], which vanishes identically for circular orbits.

A central result of this paper, namely the complete 2PN-accurate gravitational energy loss rate from a compact
binary moving on a circular orbit, is now obtained by adding Eqs. (4.12) and (4.15):

(4.16)

The p parameter is p = Gm/(rc ) where r is the har-
monic radial coordinate [see Eqs. (3.10)-(3.13)]. It is to
be noticed that in the form (4.16), i.e. , when the post-
Newtonian expansion is parametrized using p, there is
no term proportional to v in the relative 2PN contribu-
tion. This fact is somewhat surprising because all sep-
arate pieces making up the energy loss, i.e., all the dif-
ferent "squares" of moments listed in Appendix C, do
contain terms proportional to v . However the final co-
eKcient of v in the 2PN correction term turns out to be
zero. The expression of the energy loss (4.16) completes
several previous investigations having obtained either the
lower-order PN corrections or the limiting case where the
mass of one body is negligible as compared to the other
one (limiting case v —+ 0). The OPN leading term in
Eq. (4.16) was known &om Ref. [36], and the 1PN cor-
rection was added in Refs. [37,38]. The 1.5PN tail correc-
tion (4m term) was first computed in the limit v ~ 0 [13]

I

and then shown to be also valid for arbitrary mass ratios
in Refs. [35,39] based on Ref. [9]. [The generalization of
the energy loss expression for noncircular (eccentric) or-
bits has been obtained in Ref. [40] for the OPN leading
term and in Ref. [41] for the 1PN corrections. Note that
for noncircular orbits the tail term 4vrp /' has simply to
be multiplied by a function rp(e) of the eccentricity of
the orbit, but unfortunately this function probably does
not admit a closed analytical form (see Ref. [35] for the
numerical graph of this function). ] Finally the 2PN cor-
rection term in Eq. (4.16) was known, up to now, only in
the limiting case v —+ 0, where it was computed first nu-
merically [15] and then analytically [16]. For comparison
with the latter references, and for later convenience, let
us reexpress the energy loss (4.16) in terms of a new post-
Newtonian parameter defined by x—:(Gmu2pN/c ) ~ .
The p parameter is related to the x parameter by the
inverse of Eq. (3.11): namely,
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t' l 1 / 651
~ = »+

/

1 —-v
I
*+

I
1 ——v

I

*'3) & 12) (4.17)

(which also does not involve v terms). Inserting (4.17)
into (4.16) (and keeping consistently all terms up to the
2PN order) readily yields

dEg
de

32c 2 s
/' 1247

44 711 9271 65
9072 504 18

35 3/2——v
~

x+4~x '
12 )

(4.18)

This expression (which we notice involves now a v
term) relates the two coordinate-independent quantities
dE~/dT~ and m = u2pN, and is therefore the same in all
coordinate systems. It Inay thus be compared directly
with the expression obtained in Refs. [15,16] in the limit
v ~ 0. We find that the coeiKcient —44711/9072 agrees
with the latter references [42].

Let us now denote the 2PN-accurate Bondi energy loss
rate (4.18), or total gravitational luminosity, by Z~

dE~/dT—R, and let us equate, by a standard argument,
the rate of decrease af the dynamical energy E of the
binary system to the opposite of Z~, i.e. ,

(4»)

We shall admit here the validity of the balance equa-
tion (4.19) to the 2PN order, although it has been vali-
dated only to the leading OPN order and in the case of
the binary pulsar [ll]. [Note that the 2PN order is the
last order at which the binary admits a conserved en-
ergy 8 (and a conserved angular momentum Q).] The
balance equation (4.19) drives the variations with time
of the in.stantaneous orbital frequency u and phase P of
the (quasicircular) decaying orbit. These u and P are the

I

ones which enter the expression of the waveform [see, e.g. ,
Eqs. (4.9) and (4.10)]. To compute w and P one must evi-
dently specify first what is the left-hand side of Eq. (4.19),
i.e., one must know the 2PN-accurate expression of the
center-of-mass energy E for a fixed (nondecaying) circular
orbit as a function of the parameter 2;.

I et us recall from Ref. [43] (extending Ref. [27]) that
the 2PN motion of a binary system moving on an eccen-
tric orbit admits the representation

n(t —to) = u —eq sin u + —sin v + —(v —u), (4.20a)4

r = a, (l —e, cos u),
F . G

P —bio = IC (u+ —sin2v+ —sin3vIc4

(4.2ob)

(4.20c)

where

l'1+ e4, ) '~' u
v = 2 arctan

~
~

tan—
(1 —ey) 2

(4.2od)

The time t, separation r between the two bodies and
polar angle (or phase) P in these equations correspond
to harmonic coordinates. The motion is parametrized by
some "eccentric" and. "real" anomalies u and v, and ten
constants enter Eqs. (4.20) in addition to the initial to
and Po. n = 2vr/P where P is the time of return to the
periastron (or period); K—:8/2m' where 8 is the angle of
return to the periastron. (K —1 is the relative periastron
advance per rotation); the semimajor axis a„ three types
of eccentricities e„e„,and e4„and four constants f, g,
F, and G entering purely 2PN terms. Mast important
for our purpose are the expressions of the constants n
and K obtained in Ref. [43] [see Eqs. (3.11) and (3.12)
there] in terms of the constant center-of-mass energy 8
and angular momentum J'. Denoting E = vms and g =
Gvm h, we have

(—2Z)'~' 1 F 3 ( ll, ) E 3 (—2Z)'~'
n = 1+ —(15 —v) —+ —

~

185+ lov+ —v
~

———(5 —2v)
Gm c~ 32 3 ) c4 2 c46

3 /5 ) 8 (35 5 iK= 1+ 1+
I

——v
I

—+
I

———v
Ic2h~

L, 2 ) c2 (4 2 ) c2h2

(4.21)

(4.22)

The other constants in Eqs. (4.20) have been computed in Ref. [44]; however we shall here only need, in addition to
Eqs. (4.21) and (4.22), the fact that in the circular orbit case, which is defined by e„=0, the two other eccentricities e&

and e@ vanish to 2PN order, hence the two anomalies u and v agree to this order, and that the three terms involving
the constants f, F, and G also vanish (see [44]). The 2PN-accurate circular motion of the binary is thus simply
described by the equations

P —P, = nK(t —t,),
(4.23a)

(4.23b)

which show that the orbital &equency ~ in the circular orbit case is equal to the product nK. Now ~ = nK can
straightforwardly be obtained &om Eqs. (4.21) and (4.22) and the fact that Z and h are related to each other by the
1PN-accurate relation 1 + 2Eh2 = —(9+ v)Z/c2 (consequence of e„=0). We find [45]

3 & ll
(d = 1 ——(9 + v) —+ —

i
297 —134v + —v

Gm 4 c2 32 3 ) c4 (4.24)
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The inversion of Eq. (4.24) then yields our desired relation between the energy F = vms and the parameter x =
(Gm~/c )2~ for circular orbits:

c2 1 1 ( v'l
E = ——vm2. 1 ——[9+v)x ——

~

27 —19v+
~
x'j .

2 12 8 q 3 ) (4.25)

With Eqs. (4.18) and (4.25) in hand, it is now a simple matter to transform the energy balance equation (4.19) into
the ordinary difFerential equation

1 (743 11 (3 058 673 5429 617
do =. dx—x—' 1+

~
+ —v

~

x —4wx'~'+
~

v+ v ~x
64 g 336 4 1 016 064 1008 144 )

where we have introduced for convenience the adimensional time variable

(4.26)

c v

5Gm (4.27)

Solving (4.26) leads to the variation in time 0 of the parameter x and hence of the instantaneous frequency w of the
quasicircular orbit. Similarly, integrating dP = wdT~ = (5/v)x ~2do leads to the variation of the instantaneous orbital
phase P. We finally obtain

(4.28)

y, —y= —(0, —0) ~ 1+—p(0, —8) ~ ——(0, —0) ~ + q(e, —0)
24 4 64

(4.29)

where

743 11 1 855 099 56 975 371
4 ' 225 792 4032 32

(4.30)

and where P, and 0, denote the values of the phase and
adimensional time (4.27) at the instant of the coales-
cence. The frequency and phase (4.28) and (4.29) have
to be inserted into the expression of the waveform. Note
that the coefficient of the 2PN contribution in Eq. (4.29)
(proportional to q), increases by 52% between the test-
mass limit (v = 0) and the equal-mass case (v = 1/4).
This shows that finite mass effects (which cannot be ob-
tained in perturbation calculations of black hole space-
times) play a very significant role in the definition of
2PN-accurate theoretical waveforms. This proves the
importance of post-Newtonian generation formalisms for
constructing accurate templates to be used in matched
filtering of the data from future gravitational-wave de-
tectors.

I~ l = m 1 ——vp ——v(1 —15v)p'
2 8

I&~i = 2mv(l —v) p',
I( )

(Ala)

(Alb)

(Alc)

Adding together these contributions leads to

tion has already been done in Appendix B of [10] in the
mass monopole case 1 = 0. Here we shall check that for
two bodies moving on a circular orbit the mass monopole
reduces to the expression computed in [26], and the mass
dipole is zero, as it must be since we are using a mass-
centered frame.

The mass monopole I and dipole I;, which are obtained
by setting E = 0 and E = 1 in Eq. (2.17), are split into
three "compact, " "Y," and "R"' contributions according
to Eq. (3.1) and evaluated separately using the method
developed in Sec. III. The "W" contributions have in
fact already been computed in Eqs. (3.70), (3.7la), and
(3.71b). We quote only the results. For / = 0 we find

ACKNOVVLEDG MENTS 1 1 2I = m 1 ——vp+ —v(7 —v)p
2 8

(A2)

One of us (B.R.I.) would like to acknowledge the hos-
pitality of IHES during the initial phase of this collabo-
ration.

APPENDIX A: THE MASS MONOPOLE AND
DIPOLE MOMENTS

Since the expression (2.17) of the 2PN-accurate mass
multipole moment is valid for all orders of multipolarity
E, it is important to verify that for the lowest orders 8 = 0
and 8 = 1 it reduces to the expressions of the conserved
mass monopole and mass dipole moments. This verifica-

which is in agreement with Eq. (20) in Ref. [26] when
specialized to circular orbits. For E = 1 we get

= (X, —X,)mv~
~

-+ —v
~

*',(C') , (2
(7 35

(Y) 9 291
I, =(X2 —

X. i)mvp ————v
~

x',
7 35

I,~ l = (X'2 —Xi)m, vp x',

(A3a)

(A3b)

(A3c)

in which we have used (for the "C" term only) the 2PN-
accurate mass-centered frame equation (3.7). The three
contributions (A3) sum up to zero,
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as was to be checked.

I, =O, (A4) I(. )= — -FP d ". W 0 U 8
vrGc4

where we recall that the potential R'@ is defined by

APPENDIX B: ALTERNATIVE DERIVATION OF
THE W TERM

1 d 3C

WA,. (x, t) =-
, [Bi,UB U](x', t) . (B2)

4~ /x —x'/

We have computed in Sec. III C of the main text the
cubically nonlinear "W" term [defined by Eq. (3.30)] for
all values of the order of multipolarity E, but in the spe-
cial case where the source is a binary system. In this
appendix we present an alternative derivation of this R'
term which is valid for a general fluid system (and hence
for a systein made of N compact bodies), but is limited
to the quadrupole case Z = 2. When N = 2 and E = 2,
i.e., when one evaluates the W term for a binary system
and in the quadrupole case, which is what interests us
in this paper, we find that both derivations agree on the
result given by Eq. (3.72).

Specializing the definition (3.30) to I. = 2, we thus want
to compute

1(w) I(w 1) I(w'2)
v —6 + v

given respectively by

(B3)

We first perform on (Bl) two integrations by parts in
order to shift the spatial derivatives acting on U to the
left side of the integrand. As can be proved thanks to
Eq. (4.2) of Ref. [10], all the terms coming &om the dif-
ferentiation of the analytic continuation factor ~x~ and
having explicitly B as a factor are zero. [Indeed, recall
that Eq. (4.2) of Ref. [10] permits one to freely integrate
by parts all terms in the source moment (2.17) as if the
analytic continuation factor and the "finite part" were
absent. ] The surface terms are also zero by analytic con-
tinuation. Hence we can split the W term into two pieces,

I,, = STF,~ FP~—p d xi»i W;,.U,
vr Gc4

d x~x~ [4o)pe(,x,.) + Bk WI, x, ]U~ (B5)

(where the angular brackets () denote the trace-free projection). In (B5) the divergences of the potential W~. are
given by

1 2 G
Bi,W;I, = —8;(U ) +—

4 2

d3K'
, [crO;U —UO;a](x', t), (B6a)

1 G
Bg Wy = —A(U )+—

2

d3~'
, [crKU —UAO](x', t) .

/» —x'/
(B6b)

The most interesting contribution to compute is the first one, i.e. , I, given by (B4). This contribution has no
explicit dependence on w in the integrand; this fact, which is special to the quadrupolar case, allows the alternative
derivation followed in this appendix. To compute I, we employ the kernel g(x;yi, y2) already introduced in
Eqs. (3.42),

g(x; yi, y2) = ln(ri + r2 + ri2), (B7)

which satisfies

rlr2

in the sense of distribution theory. (We denote ri ——~x —yi~, r2 ——~x —y2~, ri2 ——~yi —y2~. ) The essence of the
present computation of I, is to consider a secondary kernel f defined by(W 1)

1 1 1f(x yl y2) (rl' r2) ln(rl + r2 + r12) 3
+

6
(r12r1 + r12r2 rir2)

and whose main property is to satisfy

A f=2g (B10)

in the sense of distributions. This property is easily checked on the expression (Bg). We now recall that the potential
W;~ can be expressed in terms of the kernel g as
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Wi, (,g) = G' ff d y, d y, (y, , t) (y, , t) . (g(x;yi, y~)) .
OgiOg2

(B11)

Thus we see that a secondary potential defined by the same expression as (Bll) but with g replaced by the secondary
kernel, i.e. ,

ur;, (x, t) = G' B2
d yid y2o(yi, t)o(y2, t), . (f(x;yi, y2)),

OggOg2
(B12)

necessarily satisfies

Am, ~
= 2W,.~ (B13)

in the sense of distributions. Substituting (B13) into (B4) leads to

I,, = STF,, FPgy o d xix~ UAn);, . (B14)

The next step is to integrate by parts the Laplace operator in the integrand of (B14). However, note that it is a priori
not possible to perform this integration by parts ignoring the analytic continuation factor ~x~ and the finite part
symbol. For instance, the result (4.2) of Ref. [10] invoked above does not apply to this case. We thus integrate by
parts the integral (B14) keeping all terms coming from the differentiation of ~x~ . This yields (using AU = 4mGcr)—

C
(B15)

where the 6rst term has a compact support (we have removed on it the analytic continuation factor and the finite
part symbol), and where the second term is explicitly given by

1
R,, = STF;~ FP~—o d xixi vo;~ B(B+1) + 2Bx"Bi, U .

Vr GC4 (»6)

An equivalent expression for B;~ which is convenient for our purpose is easily obtained by substitution of the expression
(B12) of the potential w;~ and use of U = J d yso (ys, t)/~x —ys~. We have

Q2
STF;2

7t C
Yld Y2d ys o(ui)o (g2)o (Vs) . —(~(vi, Y2 ys))

Bgg t9g2
(B17)

where

K(yz, yg, ys) = FP~ —o R(H —1) —2By~ d x~x~
' ' '

) (»8)

To compute K(yi, y2, ys), we need to control the pole part when B —+ 0 of the integral on the right-hand side of (B18).
This is because of the explicit factors B and B in front of the integral. [Note that it is important to keep the factors
B and B2 in front since as we shall see the integral involves both a simple and a double pole when B + 0.] The pole
part of the integral in (B18) depends only on the behavior of the integrand at the upper bound ~x~

—+ oo, so we need
only to consider the asymptotic expansion of the kernel f (x; yi, y2) when ~x~ -+ oo, or equivalently when yi, y2 -+ 0.
It is then easily shown that the only terms in the latter expansion of f which generate poles when B -+ 0 are either of
the type a regular solution of Laplace s equation, i.e. , xl, times a function of yi and y2, or of the type xl, ln ~x~ times
a function of yi, y2 (note that the expansion of f involves a logarithm of ~x~). We shall slightly improperly refer
to these terms as the "harmonic" terms in f. Their coznputation can be gr atly simplified by noticing that in the
asymptotic expansion of g = ln(ri + r2 + ri2) when yi, y2 -+ 0, only the three leading order contributions, constant,
linear, and quadratic in yi, y2, can contribute to fh, „;, Indeed, the. higher-order contributions, at least cubic in
yi, y2, necessarily involve a function of x whose dimension is that of 1/~x~ with n ) 3 (because g is dimensionless),
and thus which will never yield a term of the type zl, or i r, ln ~x~ when multiplied by ri r2 = x —x.yi —x.y2+ yi .y2.
Computing the expansion of g when yi, y2 —+ 0, and then the expansion of f, we obtain

1 1 1f~--- = -»»»(2lxl) —-(x .» + x»)»(2lxl) ——
3 3 3 (»9)

(This computation of the "harinonic" terms in f bears a resemblance to the computation in Sec. III C of the "homo-
geneous" part of the function W. ) The pole part of the integral in (B18) is then straightforwardly obtained &om the
replacements f ~ fi,~,~o„;, and ~x —ys~

i -+ ~x~ (1 + ys x/~x~ ) (we do not need to expand ~x —ys~ further
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since f), , „;, involves only terms with multipolarity 0 or 1). We find a simple and a double pole. Then we apply to
the latter pole part the operator B[B—1 —2y&B/Bys] present in (B18) (being careful about correctly handling the
double pole), and compute the finite part at B = 0. The result is

( 1)~(yi, y2,.y3) = —yi y2i ln2+ 1
i
+ —(yi . y3+y2 y3) ~

ln2 ——
i) 3)

This is a nonzero result; however the quantity of interest in (B17) is

(B20)

02
, (Ii(yi, y2;y3)) = o

t9yi |9y2
B;~ =0, (B21)

which shows that the contribution I, gi.ven by (B15) reduces to its first term, i.e. , to the manifestly compact
support integral

I( ) STF'cg 4 i2 (B22)

This expression is our main result because the second contribution I;,given by (B5), is evaluated without problem
by substituting into it formulas (B6) giving the divergences of the potential W, z. and using at various places the function
Y of Eq. (3.23). Adding up all the terms constituting I, to the first contribution I, given by (B22), we arrive
finally at the following expression for the cubically nonlinear quadrupole term:

4G'
STF;g d yid y2d y34T(y])47(y2)o(y3)

3 3 3
C

02 (1 1 1
r13 r23 ln(F13 + &23 + &12) + (+12&13 + r12r23 r13&23)

o yi)9y2 3 6

+ (y3y3 ylyl y2y2) 6 3 (ylyl + yly2 + y2y2)4r13r23 6r] 3r12

+ . (49'9v —49*.9f + 59*.9v —59|9l))6ri3

This expression is valid for a general fluid system. We can evaluate in an explicit way the differentiations with respect
to yi and y2 it contains. In doing so one Ands that thanks to the trace-free projection there is in fact no logarithmic
term in (B23). After reduction of (B23) to the two-body case (using as usual 8 functions and formally discarding all
infiiute self-energy terms), we get

2m m
I, = —

2
. STF;~.((5mi + 2m2)yi + (5m2+ 2mi)y2 —6(mi+ m2)yiy2} .

C rl2
(B24)

Changing notation with y&2
—yi —y2 Anally leads to

2mm
STF,~(miyi + m2y2 + 2(mi + m2)y12 + 2(mlyi ™2y2)y12$,

"12

in complete agreement with the equation (3.72) derived in the main text.

APPENDIX C: A COMPENDIUM OF FORMULAS FOR MOMENTS

We list below the expressions of the time derivatives of moments which are used in the computation of the waveform
and energy loss. For the waveform,

I-. = 2vm STF; v" — x" + p (149 —69v) — v'~ (23 —27v)(2) Gm; Gm x'~
'U u r3 r3 42 42

Gm 2
+ v0 (—7048 + 7887v —8708v ) + v0 (—4518 —19 591v + 1819r )), (Cla)1512 r3 1512

I, ~
——vm(X2 —Xi) STF;qi, 6v'~" —21 x'~v" —p(7 —8v)v'~" + (83 —40v)p x'~v" (Clb)
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I ~~= ~m STF.jk~ 24 1 —3~ ~' —192 1 —3~ ~ ~ + 4P 1 ijkl

+ p z'~v (161 —585v + 255v ) + —p z'~ (—3909 + 13495v —4695v )
288 Gm 4 G2m

55 r3

+ —p 77'~ (—41+ 183v —139v )11

2m2
I; „) ——5vm(1 —2v)(A2 —X'g) STF,~p,)~ 24v""' —360 x"v"' + 241 ijkl m (Cld)

I, &&
——24vm(l —5v+ 5v ) STF;~b~ „30v' "' "—750 z'~v"'

G~m2 G3m3
1p7p

G ijkl rnn 94
G

(Cle)

J~. ———vm(Xv —X~) STF0 44 vv *v 1 — —(17 —20v))(2)
(Cls)

J, I,
———8vm STF;zb e'b bx 'v ~ 1 —3v + —(—103 + 425v —275v )r

J, q(
——3vm(1 —2v)(A2 —Xg) STF,~b) e( bx u

~

—20z'v + 7 z(4) Gm br ' b Gm
xg kl

(C18)

(Clb)

J, „, = 32. vm(1 —5v+ 5v ) STF;,b~~ E~~bz v
~

—15z*v~ + 17 z'~ v
(5) b t';, „, Gm

(Cli)

For the energy loss,

2
I, = —8vm STF;4 v'v~ 1 ——(149 —69v) + (7043 —7837v + 3703v ) )U r3 42 1512 (C2a)

I, &
——vm(A2 —Aq) STF;~q [21 —p(146 —61v)] z'~ —[60 —p(241 —122v)]v'~z(4) Gm , kGm i k (C2b)

I,, b(
———8vm(l —3v) STF;~b) 60v'~ x —68 z'~ v(5) Gm i k ) Gm

(C2c)

I . = vm(Xv —X~) STF; —1+ —(17 —20v)) v~ v v *,
22 2r3 28

(C2(I)

(C2e)

The TT projections of relevant contractions of time derivatives of moments with N as used in the waveform are

P,~k Ii - = 2vmP;jk v' Gm i- p Gm
T3'~ + — n*~ (149 —69' ) ——(23 —27v) v*~

r 42 r 42

Gm 2
+ v '(—7043+ 7837r —3703r ) + v*'( —4613 —19391v+ 1219v')]1512 r 1512

Pvv I, N = vm(Xv —X~)'F;44 (6(vN)vv —7(vN) vv —14(vN) v, 'v4 —7(vN)(7 —8v)vv

1 Gm i 2 Gm+ —(83 —40v)7(vN) n, '4 + —(83 —40v)7(vN) v'v~),3 r 3 r

(C3a)

(C3b)
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P,~I, I,, b N b = vms, ,I, (1 —3v) 24(vN) v" + — v'~
7 r

—32 (nN) v" —32(vN) n" —— n'~

2
G2m2 Gm

+40(nN) n'~ —128(nN) (vN) — n'v~
r2 r

(C3c)

/0 2

Pvv I, 4, N v = .5vm(1 —2v)(Xv —Xv) Pnv '24 (Nv) v'4 ——(Nv)vn)3

—36
G n'~ Nv + 6n'v~ Nn Nv + 3 Nn Nv v'~

12 Gm i 12
+p (—109+ 325&+ 5v ) v'~ + —(—41+ 183v —139v )(vN) v'~

385 r 11
48 Gm i. 4 G2m2

+—(161 —585v+ 255v )(nN) v'~ + (657 —2075v+ 315v ) n'~
55 r 385 r2

48 Gm i- 4 , G'm'
+—(161 —585v + 255v ) (vN) n'~ + —(—3909 + 13495v —4695v ) (nN) nU

55 r 55 r2
192 Gm+ (161 —585v+ 255v )(nN)(vN) n'v~

)55 r

——(Nv)v ——v (Nv)n ——(Nn)v n v~)
1 1 2 2

3 3 3

241 G'm' i2 3 1 v 2i2+ 3n'~ (Nn) (Nv) + 2n'v~ (Nn) ——n'~ (Nv) — n'v~ (Nn—)r2 3 3

P;,4 I;, 4 4 A 4 4 = 24vm(1 —5v+ 5v') P;, 4 80(v*'(N'v) ——v*v" (Nv) + —v v")

—50
G n' Nv + 8n'v Nn Nv + 6v'~ Nn Nv

(C3~1)

214 G'm'
6n'~(Nn) (Nv) + (Nn) v'~ + 8n'v~(Nn) (Nv)

6——]nn(Nv) +4 v (Nn)(vNv) n4- (Nn) vv 4-v n6(Nn) ]+ —(vv + 2v nv))11 33

—94 (nN) n'~ ——(Nn) n'~ + —n'~
r3 11 33

Pvv v v; J Nv = —vm (Xv — )XvP;44 (1—. (2) Gm
28

(17 —20v) [(nN) v'n~ —(vN) n'~],

P I, 1 —3v n' —v' +3nN v' —3vN n'(3)
Pijkm&abi J'ac Nbc = ——Vm

3

+— n'~( —373+ 1325v —545v )90 r

11 ]v (nv (Nv) + 4nvv (Nn) (Nv) + vv (Nn) ) + v6 (Nv) ] + —(2v vn + v nV) )33

(C3e)

(C3f)

+[3(nN) v'~ —3(vN) n'~ —v'~]( —103+ 425v —275v )

7 ij km& b J 4241gNbcd = 3&n5(1 2i )(~2 ~1) 7 jI4224
(~) Gm

(C3g)

x —— 4v'n~ (Nv) (Nn) —+ 8v'~ (Nn) (Nv)
3

v2
+ 2(Nv)v nV + 2(Nn)v nvv —4nv (Nv) —2vv (Nv) ——]2v'nv (Nn) —2nv (Nv)] I7

4(Nn) v'n' —4(Nv)(Nn) n*~7 Gm 3 i 2 i
4 r

2(Nn) v'n' ——[(Nn) v'n' —(Nv) n" ] (C3h)
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'Ps. I, E t,; J „d,Ng, d, = 32vm(1 —5v+ 5v ) p;s~(5) Gm

x ———10(Nv) (Nn)v*n' + 6v (Nn)(Nv)n*v'
20

+4v (Nv) n's —5(Nv) n" + 15(Nn) (Nv) v*s

—3(Nv) v" —v (Nn) v'~ — vn—*~ + —v v*'
3 3

17 Gm
10(Nn) (Nv) v'n~ —6(Nn) (Nv) v'n~

20 r
—15(Nn)'(Nv)'n' + 5(Nn)'v" —4(Nn)'v" + 3v'(Nn)'n*'

12; 1,+(07v)'v*' ——v'v."4- —v"
)3 3

Finally the "squares" of time derivatives of moments as used in the energy loss are

G'm' 2

(1, ) = 32(vm) 1 ——(212 —00v) + (130150—76007v 4-31442& '))22 r5 21 2646
Q2 2 1 4 G2m2

(C3i)

(C4a)

(I,,'.i)' =(5) 2

+ 480v (30 —7(241 —122v)) + 18 v (420 —7(4607 —2074v)))

512 G2m2 G2m2 G
(vm)'(1 —3v)' — 450v + 578 v'+ 765 v )7 r4 r2 r

128, G'm' G'm' Gm
(vm)'(1 —3v)' 2v'+ 2 v'+ v') .

r4 r2 r

(C4b)

(C4c)

(C4d)

(C4e)
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