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Second-post-Newtonian generation of gravitational radiation
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This paper derives the expressions of the multipole moments of an isolated gravitating source with
an accuracy corresponding to the second-post-Newtonian (2PN) approximation of general relativity.
The moments are obtained by a procedure of matching the external gravitational-field of the source
to the inner field, and are found to be given by integrals extending over the stress-energy distribution
of the matter fields and the gravitational field. Although this is not manifest in their expressions, the
moments have a compact support limited to the material source only (they are thus perfectly well
defined mathematically). From the multipole moments we deduce the expressions of the asymptotic
gravitational waveform and associated energy generated by the source at the 2PN approximation.
This work, together with a forthcoming work devoted to the application to coalescing compact
binaries, will be used in the future observations of gravitational radiation by laser interferometric
detectors.

PACS number(s): 04.30.Db, 04.25.Nx

I. INTRODUCTION

A. Motivation and relation to other works

The problem of the generation of gravitational radi-
ation by a slowly moving isolated system is presently
solved with an accuracy corresponding to the 1.5-post-
Newtonian (in short 1.5PN) approximation of general rel-
ativity [1—3]. This approximation takes into account all
contributions in the radiation field at large distances &om
the system up to the relative order c, where e c
is a usual post-Newtonian parameter. The objective of
this paper is to go one step further in the resolution of
this problem by deriving the expression of the gravita-
tional radiation field with an accuracy corresponding to
the second-post-Newtonian (2PN) approximation, tak-
ing into account all contributions up to the order e4. In
a forthcoxning paper [4] we shall consider specifically the
case of the radiation generated by a coalescing binary
system made of compact stars (neutron stars or black
holes).

It is now well known that post-Newtonian efFects in the
radiation generated by a coalescing compact binary sys-
tem should be detectable by future gravitational-wave in-
terferometers such as the Laser Interferometric Gravita-
tional Wave Observatory (LIGO) and VIRGO [5—10]. It
has even been realized in recent years that an extremely
accurate theoretical signal is required in order to achieve
the full potential precision on the measurement of the bi-
nary's parameters [8]. This rexnarkable state of affairs is
made possible by the fact that the signal will spend hun-
dreds to thousands of cycles in the detector bandwidth,
and that as a result the instantaneous phase of the sig-
nal will be amenable to a very precise determination.
The main inBuence of the higher-order post-Newtonian
corrections is thus located in the phase of the signal,
which is itself mainly determined by the rate of decay

of the binary's orbit resulting &om the gravitational ra-
diation reaction. Note that this potential high precision
on the extraction of the binary's parameters is interesting
not only for doing astrophysical measurements of masses,
spins, etc. , of stars, but also for testing some aspects of
the nonlinear structure of general relativity [11].

Analytical and numerical computations of the radia-
tion generated by a small mass in circular orbit around a
large one have indicated that post-Newtonian corrections
beyond the 3PN approximation may be needed [12—15].
The 2PN approximation worked out in this paper and
its sequel [4] thus does not yet reach the ideal precision
required by the observations of coalescing binaries, but
still represents an appreciable improvement to the exist-
ing situation.

The investigation of this paper will be based on
a "multipolar-post-Minkowskian" formalism for dealing
with the gravitational field in the external vacuum region
of the source. Such a formalism combines a multipole mo-
ment expansion, valid in the exterior of the source, with a
post-Minkowskian expansion, i.e., a nonlinearity expan-
sion or expansion in powers of Newton's constant 0, valid
wherever the field is weak. This double expansion formal-
ism is originally due to Bonnor and collaborators [16—19],
and has been later refined and clarified by Thorne [20].
In recent years, the formalism has been implemented in
an explicit and constructive way [21,22] (with the help of
some mathematical tools such as analytic continuation),
and applications have been made to the problems of grav-
itational radiation reaction [23,24] and wave generation
[1—3]. The field being determined only in the exterior of
the source, the multipolar-post-Minkowskian formalism
must be supplemented by a method of matching to the
field inside the source. We shall use a variant of the well-
known method of matching of asymptotic expansions (see
e.g. , [25]) which has already, on several occasions, found
its way in general relativity [26—29].
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Inspection of the solution of the wave generation prob-
lem at the 1.5PN approximation [1—3] readily shows what
is needed for extension at the 2PN approximation. In-
deed, the works [1] and [2] have obtained, respectively,
the expressions of the mass-type and current-type mul-
tipole moments of the source with relative precision e,
the next-order correction being of order O(s ). The in-
clusion done in [1] of the terms s in the mass multipole
moments permits solving the wave generation problem
at the 1PN approxiination (in fact, only the terms s2

in the quadrupole mass moment are needed). This has
set on a solid (and well-defined) footing previous works
by Epstein and Wagoner [30], and Thorne [20] who ob-
tained formally correct but divergent expressions of the
moments at the 1PN approximation (see [1] for discus-
sion). In the work [3] the nonlinear effects in the radi-
ation field were added and shown to arise at the level
e, essentially due to the "tails" of gravitational waves.
Higher-order nonlinear effects were shown to be of or-
der O(e ) at least. Now recall that the contribution of
a moment with multipolarity l scales like c in the radi-
ation field, and that the current moments always carry
an additional factor c as compared with the correspond-
ing mass moments. Therefore, we conclude that what is
needed for solving the 2PN wave generation problem is
only to find the extension of the expression of the mass
quadrupole moment of the source with relative precision

Note that the computation of the moments of the
source can be done in the near zone of the source.

This paper will thus mainly focus on the matching be-
tween the external and internal gravitational Belds in the
near zone of the source (both fields are expressed in the
form of a post-Newtonian expansion when r -+ 0) with a
precision consistent with the inclusion of the terms c in
the mass rnultipole moments. (Although the quadrupole
mass moment is su%cient for our purpose, we shall com-
pute the terms e in all mass moments of arbitrary multi-
polarity l.) The matching performed in [1] was based on
a particularly simple closed form of the internal gravita-
tional field of the source including 1PN corrections. On
the other hand, the matching performed in [2] made use
of some specific distributional kernels to deal with the
quadratic nonlinearities of Einstein's equations. None of
these methods can be applied to our problem, which ne-
cessitates the inclusion of the full 2PN corrections in the
Beld, depending not only on quadratic but also on cu-
bic nonlinearities of Einstein's equations. In this paper
we shall employ a matching procedure which is far more
general than the ones followed in [1,2]. In particular, we
shall show how one can deal with the cubic nonlinearities
of Einstein's equations without any use of distributional
kernels.

The end result obtained in this paper expresses the
multipole moments of the source as integrals extending
over the distribution of stress energy of the matter fields
in the source and of the gravitational Geld. This re-
sult is similar to the one we would obtain by using as
the source of the radiation field the total stress-energy
(pseudo) tensor of the matter and gravitational fields, and
by considering formally that this tensor has a spatially
compact support limited to the material source. It is

well known that by proceeding in this formal way (i.e. ,
in the manner of Epstein, Wagoner, and Thorne), we ob-
tain integral expressions of the multipole moments which
are divergent, because of the noncompact-supported dis-
tribution of the gravitational field. (Indeed, the integral
expression of a moment with multipolarity / involves a
large power ~x.

~

of the radial distance to the source,
which blows up at infinity. ) We prove in this paper that
the correct expressions of the multipole moments must
involve also an analytic continuation factor ~x~, where
B is a complex number, and a "Gnite part at B = 0"
prescription to deal with the a priori bad behavior of the
integrals at spatial infinity. In such a way the expressions
of the moments are perfectly well defined mathematically.
When a pole 1/B occurs in an integral due to the bad
behavior of the integral at spatial infinity, the finite part
at B = 0 introduces an additional contribution to the
moment which must absolutely be taken into account.
(However, we shall see that no poles occur at the level
investigated in this paper. )

Let us stress that the expressions presented here of
the multipole moments are not manifestly of compact-
supported form (contrarily to say the lowest-order ex-
pressions at the 1PN level [1]),but are numerically equal,
thanks to the properties of the analytic continuation, to
some compact-supported expressions which could be con-
structed at the price of introducing more complicated
potentials in addition to the usual Poisson integrals of
the mass and current densities in the source. Such a
construction is, however, unnecessary (and is somewhat
awkward) in practical computations of the moments for
specific sources.

It is likely that the expressions of the moments ex-
pressed in this way as integrals extending over the total
stress-energy distribution of the matter and gravitational
fields and regularized by means of analytic continuation,
will admit a generalization to higher nonlinearities in the
field, and higher post-Newtonian approximations. Such
a generalization, which will be the subject of future work,
should permit the resolution, at least in principle, of the
problem of the generation of gravitational radiation by a
general isolated system up to the high level of approxima-
tion required by the observations of coalescing compact
binaries.

This paper is organized as follows. In Sec. II we com-
pute the gravitational Geld both in the near zone of
the source (where a direct post-Newtonian expansion of
the field equations is performed), and in the external
near zone of the source (where we use the multipolar-
post-Minkowskian solution of the vacuum equations). In
Sec. III we impose that the two fields are isometric in
their common domain of validity, namely the external
near zone of the source. This yields a matching equa-
tion valid up to an appropriate post-Newtonian order,
and which is used in Sec. IV to obtain the expressions
of both the mass and current multipole moments of the
source. The formulas for the asymptotic waveform and
the associated energy generated by the source at the 2PN
approximation are also given in Sec. IV. The paper ends
with three Appendices, and we start with our notation
for Einstein's equations.
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B. Notation for Einstein's equations

Throughout most of this paper, we shall use Ein-
stein's equations in harmonic coordinates. The 6eld de-
viation &om Minkowski s metric is denoted by h ~

g—gg P —rI P, where Greek indices n, P, p, v. .. range
from 0 to 3, g p is the usual covariant metric, g ~ is
the inverse of g p, g is the determinant of g p, and
q P = diag( —1, 1, 1, 1) is the Minkowski metric. The
condition of harmonic coordinates reads as

ash ~ =0,
where 8p = 8/8xP is the usual derivation with respect to
the harmonic coordinates. Einstein's equations reduced
by the condition (1.1) are written in the form

We denote by D = rI P8 8p the Pat d'Alembertian op-
erator, by T ~ the stress-energy tensor of the nongravi-
tational fields (T P has the dimension of an energy den-
sity), and by A the absolute value of g, i.e. A =

~g~
= —g.

In terms of a series expansion in the field variable h~~,
we have

A = 1+6+ —(62 —6„6"")+ O(h'),
2

where h&„——g„g„ph ~ and h = g ph ~. The second
term in (1.2) is an effective gravitational nonlinear source
including all the nonlinearities (quadratic, cubic, . . . ) of
Einstein's equations. We denote

A P (6) = N P (6, 6) + M P (6, 6, 6) + O(h'), (1.4)

6 P= AT P+A P(h) .4 (1.2) where the quadratically nonlinear term is given by

N P(h 6) = 6""8 8—6 P+ 86 8—Ph"" — 868Ph——28~ 6 8"6P~" +8 6 "(8"6P+8 6P")1 1

——Oph„BPh"" + —8„60"h + —B„h pO" h"P (1 5)

and where the cubically nonlinear term is given by

M P(h, h, h) = 6""(8 h„—p8Ph„+ 8ph„8 6P —8„6 8„6P ) + 6 P ah„„8—6"—"+ 8„68"6+— 8„h„p8"6"—1 1 1

+ 6" 8~ 6„—„8P 6+26""8ph~ 8P~ih~+6"~
~

8Plh p8„6"~ —28„6P 8„6"~— 8P~68„6 I—1 1

+ri p 6""8 68 6—— 6""8 6 8~—6 — h~ 8 6 8 —6""— h~ 8 6 8 —6" + h~ 8 6"8"6—1 1 . 1 1 1
p V 4 p p.V 4 p p, V W

2 p p~ & 2
p, p (7g

(1.6)
In (1.5) and (1.6), we raise and lower all indices with the Minkowski metric, and we denote t~ pl = 2(t p + tp ). By
taking the divergence of (1.5) and (1.6), we obtain the relations

8pN P = —8„6„86„„——8 h—g„„~ 6"

8pM p =
~
8„6 — 86„+ —8hg„„jN""—+ 6~8ph„—h„—p8 h~ + h„p8„6 ~

P v 2 P& 4 P~/ 2 P P~ PP

cx h + h QM hPo' hcxPQ h hP v

which are consistent, by Bianchi s identities, with the
conservation (in the covariant sense) of the stress-energy
tensor of the matter fields.

II. THE INTERNAL AND EXTERNAL
GRAVITATIONAL FIELDS

A. Solution of Einstein's equations in the internal
near zone

Let us de6ne the internal near zone of the source to
be a doinain D, = ((x, t)/~x~ & r;1whose radius r; is

adjusted so that (i) r; ) a, where a is the radius of a
sphere which totally encloses the source, and (ii) r, «
A, where A o.c/v is the (reduced) wavelength of the
emitted gravitational radiation, and v is a typical internal
velocity in the source.

Defining D; in such a way assumes in particular that
a (& A, or equivalently c (& 1 where s v/c is a small
"post-Newtonian" parameter appropriate to the descrip-
tion of slowly moving sources. [We shall also assume
that the source is self-gravitating so that GM/(ac2)
where M is the total mass of the source, and that the
internal stresses are such that T'~/T 0 s .] In D;,
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we can solve Einstein's equations (1.1)—(1.2) by formally
taking the post-Newtonian limit e —+ 0. The following
notation will be used for terms of small order in the post-
Newtonian parameter s. By A = O(p) we mean that A
is of order O(s"); by B = O(p, q) we mean that the
zero component of the vector B is B = O(p), and that
the spatial components of B are B' = O(q); and sim-
ilarly by C ~ = O(p, q, r) we mean that Co = O(p),
C ' = O(q), and C'~ = O(r) (.The latin indices
i, j,. . . range from 1 to 3.)

From the contravariant components of the stress-
energy tensor T ~ of the matter 6elds, we define a mass
density o., a current density 0, and. a stress density o,.~
by the formulas

TOO + Tii
c2

TOi

(2.1a)

(2.1b)

CJi~ = T (2.1c)

o, cr;, o;~ = O(0). (2.2)

We introduce next some retarded potentials generated by
the densities a, 0.; and 0;~. First, V and Vi are the usual
retarded scalar and vector potentials of the mass and
current densities o. and o.;, i.e.,

dsx' (, 1
V(x, t) =G, cr

/

x', t ——/» —x'i
/ix —»'/ ( ' c )

(2.3a)

dsx' (, 1
V(», t) =G, ~'i x' t —-I» —»'I

i
(23b)

ix —x'[ ' ( ' c )
satisfying OV = —4+Go and ClVi = —4vrG~;. Second,
W,.~ is a more complicated retarded tensor potential de-
Gned by

where in (2.1a) T" = Zh;~TU denotes the spatial trace of
T ~. In all this paper, we shall assume that the matter
densities 0, 0, , and cr,~ are of order e when e —+ 0, i.e.

Bier+ c),cr, = O(2),
cj,c7;+ B,cr;, = oc);V + O(2),

(2.6a)
(2.6b)

we deduce that the potentials V, Vi, and W,.~ satisfy the
conservation laws

BcV+ 8;V; = O(2),
OcV;+ 8;W;, = O(2) .

(2.7a)
(2.7b)

In (2.6b) and (2.7) we can replace the potentials V, V;,
and R',

~ by corresponding Poisson-type potentials, e.g. ,
V = U+ 0(2) where U is the Newtonian potential of the
mass density o, satisfying LU = —4+Go..

We now proceed to solve Einstein's equations (1.1)
and (1.2) with an accuracy corresponding to the post-
Newtonian order O(8, 7, 8), by which we mean O(8) in
the 00 and ij components of h i, and O(7) in its Oi

components. The insertion of the lowest-order results
hso = —4V/c + O(2), hs' = O(3), and h'~ = O(4)
into the right-hand-side of (1.2) with the explicit expres-
sion (1.5), yields first the equations to be solved at order
0(6, 5, 6) . We get

d'»'
(U~' f) (», t) = ——,f i

x', t ——(x —x'i
[

4vr ix —x'i ( ' c )
(2 5)

so that, e.g. , V = —4vrG Q~ 0..
It is convenient in most of this paper to keep the po-

tentials (2.3)—(2.4) in retarded form, i.e., to not expand
when c -+ +oo the retardation argument t —~x —x'i/c.
This permits avoiding possible problems of convergence
with the expansion of potentials with noncompact sup-
port. However, most of the equations of this paper will
be valid only up to some remainder in the expansion

c ~ 0, and we can replace, when there is no
problem of convergence, the retarded potentials by their
post-Newtonian expanded forms up to the accuracy of
the remainder. For instance, &om the Newtonian equa-
tions of continuity and of motion,

d'~'
W;~(x, t) =G, o;~. + (8;VB~V

x. —x' *
4vrG

c4 I, c' ) c4

(2.8a)

1
b;~Bi,VBi,V)

~

x', t————~x —x'~
~

. (2.4)
2 u c

Note that while the potentials V and V, have a com-
pact support limited to that portion of the past null cone
issued from the field point (x', t) which intersects the
source, the potential lV;~ has not a compact support.
From (2.3a), we see that V(x', t ——~x —x'~) behaves like

GM/[x'i wheii [x'~ m oo, where M = 1'dsyo(y, —oo)
+O(2) is the initial mass [or Arnowitt-Deser-Misner
(ADM) mass] of the source, and we can check from this
that the potential R';z is given as a convergent integral.
We shall often abbreviate formulas such as (2.3)—(2.4)
by denoting the retarded integral of some source f (x, t),
having adequate falloK properties along past null cones,
by

Uh '= T'+ O(5)

16~G, 1T'~ + — 0;VO V ——8;-OI,VBI,Vc4 c4 ' ' 2 '~

+O(6) . (2.8c)

h = ——V+ —(W —2V ) + O(6),c2 c4

h ' = ——V;+O(5),4
C

h" = ——W,, +O(6) .
c4

(2.9a)

(2.9b)

(2.9c)

These equations can be straightforwardly solved by
means of the potentials V, V;, and W;z we defined in (2.3)
and (2.4), and by means of the trace W = W;; = Zh;~ W;z
of the potential t)V,.&. The result is
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Since the potentials satisfy the conservation laws (2.7),
we see that the field (2.9) satisfies the approximate har-
monic gauge condition Bph P = O(5, 6).

The next step consists in iterating Einstein's equations
by using the expression (2.9) of the field. We substitute
(2.9) into the right-hand side of (1.2) with the help of
(1.3) and of the explicit expressions (1.5) and (1.6) of
the quadratic and cubic nonlinearities. In this way, we
find the equations to the satisfied by the field up to the
order O(8, 7, 8), which are

Oh P = A(VW)T P A (V VW~)
+O(8, 7, 8) . (2.10)

In these equations, we denote by A the post-Newtonian
I

expansion of A =
~g~

= —g when truncated at the order
O(6), i.e. , A = A+O(6), and expressed with the potentials
V and W = W,;. From (1.3) we have

A(V, W) = 1+ —V ——(W —V ) .
c2 c4 (2.11)

[Note that because the inatter stress-energy tensor is
T P = 0(—2, —1,0), the precision on A as given by (2.11)
is necessary only in the 00 component of the equations

(2.10).] Similarly, A in (2.10) is defined to be the post-
Newtonian expansion of the effective nonlinear source
in the right-hand-side of Einstein s equations (1.2) when

truncated at order O(8, 7, 8), i.e. , A P = A +O(8, 7, 8),
and expressed in terms of the potentials V, Vi, and R';~.
From (1.5) and (1.6), we arrive at the expressions

—00 14 16 5 2 1
A (V, V;, W;~) = ——By, VBy, v+ — VB, V——2vy, BgBy,v —Wy, By, V+ —(BgV) + —Bgv (Bgv + 3B Vg)

7
+BeVB,Vs + 28& VBs'bV ——VBaVBa V), (2.12a)

A (V V;, W~)

A (V, V;, W~)

(2.12b)

(2.12c)

16 3
BaV(8;Va —BaV) + —8&VB;V)c

4 1 16
B,VB,V —-a,,B,VB,V + —, 2B&,VB,V, ,

—B,V, B,V,c c

3.. 2—BaViBaV, + 28';VaBaV i
— b;, (8&V) ——b;, BaVBcVa+ b;, BaV (Ba—V —8 Va)) .1

8 u u 2 u

Bp AT P+A =O(7 8) . (2.13)

Note that the condition (2.13) checks all terms in (2.12)—00
except the c s terms in the 00 component A of (2.12a)
and the c 4 term in A. We have checked these terms
by adding in the Oi component A of (2.12b) the next-
order c terms and computing the divergence. Note
also that the consideration of the next-order c terms—Oi
in A would allow the control of the c 4 correction terms
not only in the mass-type source moments (which is the
aim of this paper), but also in the current-type source
moments. However, we have chosen here not to include
these terms because they are not necessary for solving the
2PN wave generation problem, and because they some-
what complicate the discussion with the need of intro-
ducing new potentials besides V, Vi, and R';~, and the
necessity of a better control of the external metric in
Sec. IIB. These terms will be considered in a future
work where we investigate how the procedure followed
in this paper could be systematically extended to higher
post-Newtonian orders.

Finally, a solution of (2.10), with the required preci-

By using the equations of motion and of continuity in-
cluding s2 terms [which are given by (B5) in Appendix
B], one can check that the expressions (2.11) and (2.12)
imply

sion, can simply be written as

h P = Oyi AT P + A + O(8, 7, 8), (2.14)

where GR is the retarded integral operator defined in
(2.5). By (2.13), this solution satisfies also the approxi-
mate harmonic gauge condition

Bph P = O(7, 8) . (2.15)

Note that we could have added in (2.14) some homoge-
neous solutions of the wave equation which are regular in
D; and satisfy the harmonic gauge condition (2.15). It
is simpler to use the solution (2.14) as it stands since we
shall show that it directly matches the exterior metric.

B. Solution of Einstein's equations in the external
near zone

Let D, = ((x, t) /r =
~x~ ) r, ) be an external do-

main surrounding the source, where r is adjusted so that
a ( r ( ri, a being the radius of the source and ri the
radius of the inner domain Di defined in Sec. IIA. By
our assumption GM/(ac ) e, gravity is weak every-
where and in particular in D„so we can solve Einstein's
vacuum equations in D, by means of the multipolar and
post-Minkowskian approximation method developed in
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where the coeKcients h"
n( )

of an arbitrary nth power of
G are algorithmically constructed &om the knowledge of
the previous coefficients h"" (with m ( n) by post-
Minkowskian iteration of the vacuum equations. This
iteration is made possible by a systematic use of multi-
pole expansions, valid outside the source (in D, ), for all
the coefficients h,""„(„)in (2.16).

The whole iteration in (2.16) rests on the first of the
coeKcients, namely the "linearized" Geld h""

(1) which
is chosen to be the most general solution, modulo an ar-
bitrary linear gauge transformation, of the linear vacuum
equations. This solution reads as

00
can(1)

G h, an(1)

yext
c2

~ext
3 i

yext
4

(2.17a)

(2.17b)

(2.17c)

where the external potentials V'"i, V "i, V "i (different
from the inner potentials V, V;, W;~) are given by some
explicit infinite multipole expansions of retarded spheri-
cal waves (solutions of the homogeneous wave equation
in D,): namely,

V'*' = G), BI. —MI. (t ——)
. (—) 1 r

e=o
(2.18a)

Vext G )
1=1

e—G ) ) e
si~bBoL —i —Sbr, i t ———

g! /+1 r c

(2.18b)

our previous works [21—24] on foundations laid by Bonnor
[16] and Thorne [20]. More specifically, we use the con-
struction of the external field which is defined in Sec. 4.3
of [21] and which is referred there to as the "canonical"
external field. Using a formal infinite post-Minkowskian
expansion, or expansion in powers of Newton's parameter
G, the canonical external field h", "„=g—g, „g&"„—rI""
is given as

h&" = Gh"v +G'h"v + . -+G"h"vcan can(1) can(2) can(n)

(2.16)

Similarly, L —1 = i1 ~ ~ ig 1, I —2 = i1 ~ ig 2 and aL =
aii . . ie. A product ofspace derivatives c); = 8/Bz is de-
noted by 01. ——0; 0; . . 8,, Similarly, z = x"z" . x"
and n = n"n" n" where n' = 2."/~x~ = x'/r .The
symmetric and trace-free (STF) projection is denoted
with a caret, e.g. , OL, or x, or sometimes by, e.g. , 8&I,).
M(")(t) denotes the pth time derivative of M(t), and
Tij =

2 (Tij + Tji)
The linearized external field (2.17) and (2.18) satisfies

the linearized equations Oh, "
(1) 0 everywhere except

at the spatial origin r = 0 of the coordinates. The har-
monic gauge condition B„h,""

(1)
——0 follows from the

(exact) identities

g ~ext + g yext p

g yext + g yext pt i 2 ij

(2.19a)

(2.19b)

Note that the potential V,'"t is trace-&ee:

~ext (2.20)

As we see, the potentials (2.18) depend on two infi-
nite sets of functions of time, ML, (t) for e = 0, . . . , oo,
and Sl, (t) for e = l, , oo. These functions are STF
in their 8 indices. They can be viewed, respectively,
as some canonical mass-type and current-type multipole
moments parametrizing the external canonical metric.
They are completely arbitrary functions of time except
that the lowest multipole moments M (mass monopole),
M; (mass dipole), and S; (current dipole) are constant:
M( ) = M, = S; = 0. Note that it was assumed in
[21] that the moments Ml. (t) and Sl, (t) are constant be-
fore some remote date in the past. We shall admit here
that one can cover a more general situation where (for
instance) the eth tiine derivatives of ML, (t) and SL, (t)
become asymptotically constant when t —+ —oo, corre-
sponding to a situation of initial scattering in the infinite
past. I'urthermore, we shall relax without justification
the assumption made in [21] that the multipole expan-
sions are finite; that is, we assume that we really have
two infinite sets of moments Ml, (t) and SL, (t). These
two amendments almost certainly have no incidence on
the results derived in this paper.

Starting with the linearized metric (2.17)—(2.18), one
constructs iteratively the nth coefBcient h " of thecan(n)
series (2.16) by the formula

hpv —FP — ~ 1 ~Ap, v p, v
can(n) = & can(n) + ~can(n) (2.21)

4=2" (-)e 2e

e+11=2
1 (1) P

x —6' g( S.)~L C
(2.18c)

The first term in this formula involves A v
(„),which is

defined to be the coefficient of G in the expansion of the
effective gravitational source A" (h) in the right-hand-
side of Einstein's equation (1.2) and computed with the
canonical field (2.16). That is,

See, e.g. , (8.12) in Thorne [20]. Our notation is as follows
(anticipating also future needs). Upper case latin letters
denote multi-indices with the corresponding lower case
letters being the number of indices, e.g. , I = i1i2 - ~ ig.

A""(h, „)= G A""„(2)+. + G"A,""„(„)+ . . (2.22)

Since A~" is at least quadratic in h, A~"
( )

for any
n is a function only of the previous n —1 coeKcients



SECOND-POST-NE%'TONIAN GENERATION OF. . . 2565

Ii, „(i),. . . , 6, „(„ i). For instance, we have (with evi-
dent notation)

A", "„( )
——N""(h, „(i),h, „(i)),

&.»»(s) + (~can(1) & ~can(2) ) + ( ican(2) & ~can(1) )

+M (~c»»(1) & Iican(l) & ~can(1) ) & (2.23b)

where N"" and M" are given by (1.4)—(1.6). The re-
tarded integral operator &, which is defined in (2.5),
acts on the source A

( )
but multiplied by an ana-

lytic continuation factor r, where r = ~x~ and B is a
complex number. The introduction of this factor is re-
quired because the linearized metric h, „(i) of (2.17) and
(2.18), and all subsequent metrics h, „(„) and sources
A, „( ), are valid only in the exterior of the source (in
D, ) and are singular at the spatial origin of the coor-
dinates, r = 0, located within the source. It has been
shown in [21] that for B a complex number the retarded
integral f(B) = & (r A, „( )) defines an analytic func-
tion of B all over the complex plane except in general at
integer values of B. Near the value B = 0, f(B) admits
a Laurent expansion of the type f (B) = Za„Bi', where

p g &. The coefFicient of B in this expansion, i.e., ao,
is what we call the finite part at B = 0 (or FPii —p) of the
retarded integral f(B). This is the first term in (2.21);
it satisfies ap ——A, „(„)(and is also singular at the ori-
gin). Thus the introduction of the analytic continuation
factor r is a mean (and a convenient one) to obtain a
solution of the Einstein equation (1.2) in D, —this is the
only thing we need (see [21] for more details about this
way of proceeding). The second term q, „( ) in (2.21)
is a particular retarded solution of the wave equation,
i.e., q „( }

——0, whose divergence is the opposite of
the divergence of the first term, and thus which permits
ensuring the satisfaction of the harmonic coordinate con-
dition 8 h n( )

——0. The precise definition of the term

q, n(„} is reported in Appendix A where we control its
order of magnitude in the post-Newtonian expansion.

The external field (2.16), in which we have (2.17),
(2.18), and (2.21), represents the most general solution
of Einstein s equations in D„and is parametrized by the
arbitrary canonical inultipole moments Ml, (t) and Sl.(t).
Now the point is that one knows (see [22,1,3]) how to re-
late the observable "radiative" multipole moments UL, (t)
and VL, (t), parametrizing the field in the distant wave
zone of the source (where the detector is located), to the
moments ML, (t) and SL, (t) (see Sec. IV below). There-
fore, what is only needed in order to compute the distant
wave field is to consider the near-zone expansion, or ex-
pansion when c ~ +oo or e ~ 0, of the external field
(2.16) up to some suitable order, so as to give by match-
ing to the inner metric constructed in Sec. II A a suitably
accurate physical meaning to the moments Ml. (t) and
SL,(t) in terms of the source's parameters. Equivalently,
this means that we must consider the external field (2.16)
in that part of the external domain D which belongs to
the near zone, i.e. , D fl D; = ((x, t)/r, ( r ( r, ), in
which we can simultaneously expand the external field
when e ~ 0 and keep its multipole moment structure.
First of all, &om the fact that an arbitrary nonlinear

h,"„=Gh,""
(i) +. G h,""„(2)+ G h""

(s) + O(8, 9, 8) .

(2.24)

Second, it is shown in Appendix A that the second terms
q""

(2) and q"
(z} in the definitions of the quadratic and

cubic coefficients (2.21) have (at least) the following or-
ders of magnitude when e ~ 0:

q.
"„(,) ——O(7, 7, 7),

q ( )
—O(8, 7, 8) .

(2.25a)

(2.25b)

Therefore, from (2.21), we can write the expansion when
e ~ 0 of the canonical external field (2.24) in the form

h,""„=Gh,""„(i)+ FPgy —p ~ [r (G A,""„(2)

+G A""
( ) )] + O(7, 7, 7), (2.26)

where the remainder term O(7, 7, 7) is dominated by the
contribution (2.25a) of q"" (2).

The source terms A, „(2) and A, „(s) in (2.26) are given
more explicitly by (2.23). To compute their sum with
an accuracy consistent with the reinainder in (2.26), we
must know the quadratic metric h, n(2) up to the order
O(6, 5, 6). This is of course analogous to the computation
we have done in Sec. II A, where we had first to solve Ein-
stein's equations up to the order O(6, 5, 6) before reach-
ing the looked-for order O(8, 7, 8). The quadratic source
at the order O(6, 5, 6) is readily obtained by substituting
(2.17) and (2.18) into (2.23a) and discarding O(6, 5, 6)
terms. We obtain

2 00
can(2)

2 OiG Acan(2)

G A~
can(2)

——
&9g V'"'&9g V'"' + O(6), (2.27a)

O(5), (2.27b)

Vextg Vext g g Vextg Vext
4

+O(6), (2.27c)

&om which we deduce

2 00
can(2)

2 OiG hcan(2)

G h'~
can(2}

——(V'"')' + O(6),

O(5),

——Z;,
"' + O(6),

(2.28a)

(2.28b)

(2.28c)

where we have introduced the new external potential

Zext Fp B —O' Vext g Vext
u

+ g g Vextg Vext1
ij A: k (2.29)

coefficient h," ( )
in (2.16) is of order O(2n, 2n+ 1, 2n)

when s ~ 0 [see (5.5) in [21]],we find that the neglect of
all nonlinear iterations with n & 4 permits the computa-
tion of the field up to the order O(8, 9, 8) when s' ~ 0,
i.e.)
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The justification of (2.28) is as follows. We know that the
post-Newtonian expansion of the regularized retarded op-
erator FP R acting on terms belonging to the quadratic
source A,""„~2& is equal to the expansion obtained from

the action of the regularized "instantaneous" operator
FPI '= FPEP 0(cI/coIt) "E " where A " i is the
(k + l)th iteration of the Poisson operator A, mod-
ulo negligible terms of order O(10, 9, 8) [see, e.g. , (3.7)
and (3.21), with n = 2, in [24]]. Thus, FP & act-
ing on the remainder O(6, 5, 6) in (2.27) is itself of
order O(6, 5, 6). Furthermore, we know that FPA
(namely the first term in FPI ) gives simply (U'" )
when acting on A[(U'" )2], where U'"t is the "New-
tonian" potential associated with V'x and given by
U'" = GZ &, (BL,r )ML, (t) (see, e.g. , [1], p. 395).
Since V'"t = U'" +O(2), we have FP CI& (A[(V'"t)2]) =
(V'"t) +O(2) as has been used in (2.28a). Note that this
last fact implies that the trace Z = Z,,x of the poten-
tial (2.29) satisfies

simple replacement V, V;, R'.
~ ~ V', V ",W . In-

serting (2.33) into (2.26), and recalling that FPG& act-
ing on 0(8, 7, 8) is also O(8, 7, 8), yields our looked-for
expression of the external Beld, namely

h"" = Gh"" + FP — CI r A (V'"' V'"' W'."')can can(1) B=O R ) g )

+O(7, 7, 7) . (2.34)

It is to be noticed that the remainder in (2.34) is O(7, 7, 7)
instead of the remainder O(8, 7, 8) in the inner field
(2.14) because it involves the not controlled contribu-
tion O(7, 7, 7) of q"

~2l
in (2.25a). In the next section

we rnatch the external field (2.34) to the corresponding
inner field (2.14).

III. MATCHING OF THE INTERNAL
AND EXTERNAL FIELDS

Zext (Vext)2 + g(2)
1
4

(2.30) A. Coordinate transformation between the internal
and external Qelds

h00 Vext + [Wext 2(Vext)2] + g(6)
4 4

h'.:„=——,V,'"'+ O(5),

h',~„=——W ."'+O(6),

(2.31a)

(2.3lb)

(2.31c)

Using now (2.30) and (2.20), we can write the canonical
field up to the order O(6, 5, 6) in a form which is formally
identical to that of the inner field (2.9), i.e.,

We require that the internal 6eld h ~ constructed
in Sec. IIA and the external 6eld 6", „constructed in
Sec. IIB are isometric in their common domain of valid-
ity, which is the exterior near-zone domain D, fl D, =
((x, t)/ r, ( r ( r;) of the source. Denoting by z the
harmonic coordinates used in the inner domain D; (see
Sec. IIA), and by z,"„ the canonical harmonic coordi-
nates used in the exterior domain D, (Sec. II B), we thus
look for a compatible coordinate transformation

z."„(z) = z" + rp" (z), (3.1)
where we have defined

~ext Vext + Zext
U u

whose trace is

Wext Wext Zext (Vext)2 + g(2)
1
4

(2.32a)

(2.32b)

where the vector y"(z) is assumed to be in the form of a
multipolar and post-Newtonian expansion appropriate in
D, flD, [In Sec. II.B, we have for notational convenience
abusively denoted by 2;" what really are the canonical
harmonic coordinates z,"„.] Since the two coordinate
systems x" and x,"„are harmonic, the vector p" satis6es
the (exact) relation

Finally, since the canonical field (2.31) has the same
form in terms of the external potentials as the inner
field (2.9) has in terms of the inner potentials, it is clear
that the source term G'A--(2) + G A",."„(3) in the right
hand-side of (2.26) will be equal modulo the same order
O(8, 7, 8) as in (2.10) to the truncated source A de-
fined in (2.12), but computed with the external poten-
tials V ",V; ",and W;-" instead of the inner potentials
V, V;, W;~. (Indeed, never a Laplace or d'Alembertian
operator enters in the effective gravitational source of
Einstein s equations, which would give a different result
when acting on an external potential or on an inner one. )
Thus, we can write

G2AP& + G3AP& A&~(Vext Vext Wext)
can(2) can(3) zg

+O(8, 7, 8), (2.33)

where the right-hand-side is obtained &om (2.12) by the

Cl(p" + h ~(z)8 pp" = 0, (3 2)

where 0 = q ~cI2&. The (also exact) transformation law

of the field deviation 6 ~ under the change of coordinates
(3.1) is given by

rl"" + h,""(z, „)= (b" + 0 y")(b$ + Bp(p")

x [vP~ + h ~(z)], (3.3)

where J = det(Bz, „/Bz) denotes the Jacobian determi-
nant of the coordinate transformation.

We now expand the transformation law (3.3) when
e —+ 0. The field deviation 6 ~ in the right-hand side of
(3.3) is by (2.9) of order O(2, 3, 4) when s —+ 0. Ftirther-
more, let us assume that the vector y~ in the coordinate
transformation (3.1) is of order
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»p" = O(3, 4) . (3.4) and (2.31). This leads to an equation whose solution is
easily seen to be

This assuxnption (which has already been made in pre-
vious works [1,2]) is proved below, when we show that it
leads to a consistent matching. We can then easily see
that the transformation law (3.3) reduces up to the order
O(6, 7, 8) to a linear transformation,

V "' = V + c 8»p + O(4) . (3.9)

[Indeed, we have»po = O(3).] Similarly, by inserting (2.9)
and (2.31) into the Oi component of (3.5), we obtain

h,""(x) = h""(x) + 8»p""(x) + O(6, 7, 8), (3.5)
cV'" = V; ——8;y +O(2) . (3.10)

where we have expressed both sides of the equation in
terms of the inner coordinates x", and where Op~" de-
notes the linear part of the coordinate transformation
given by

8&8 = 8»p +8 &p
—'9 8&'p (3.6)

By taking the divergence of (3.6) and using (3.2) we ob-
tain

8„8»p"" = U»p" = h~ 8»p"—,

&om which we d.educe the order of magnitude

8„8»p"" = O(7, 8) .

(3.7a)

(3.7b)

Note that one could have a priori expected some nonlin-
ear terms to appear at the order e in the ij component
of Eq. (3.5) —for instance, terms such as hseB~'p~l or
h &'B&~y . Such nonlinear terms are, however, absent at
this order (as was also found in [2]). On the contrary,
some nonlinear terms arise at the order e in the 00 com-
ponent of (3.5). These terms, which will be needed in the
following, are obtained by a short computation showing
that the 00 component of (3.5), now valid up to the order
O(8), is given by

e

~(v) =»:&, »», -'v'(» —"-)
e=p

e

~(v) = G& „»», -'v,'(» —-")

(3.11a)

(3.11b)

where the multipole xnoments V+(t) and V+(t) are given
by explicit integrals extending over the mass and current
densities in the source: namely,

Note that (3.9) is valid with the inclusion of relativistic
corrections sz, while (3.10) is valid at the nonrelativistic
level only.

The relations (3.9) and (3.10) are numerically true in
the region D; fl D . We now transform thexn into match-
ing equations, i.e., equations relating mathematical ex-
pressions of the saxne nature. To do this, we need only
to replace the inner potentials in the right-hand-sides of
(3.9) and (3.10) by their multipole expansions valid out-
side the source. This is simple because V and V; are the
retarded integrals of the compact-supported mass and
current densities o and cr; [see (2.3)]. Thus the multipole
expansions M(V) and M(V;) of V and V; are given by

h, (z) = Ix (2:) + 8»p + 2h "8„(p —8„(h &p")

+B,rp 8;y +O(8) . (3.8)

Here also we have expressed both sides of the equation
in terms of the inner coordinate system x".

V (t) = d yye, dz he(z)o
~ y, t + z ~, (3.12a)L 3

—1 c )

V, (t) = d yyL, dzbe(z)o;
l y, t+ z

I
. (3.12b)s-

—1 ~ )

B. Matching of the compact-supported potentials
V and V,.

A requisite in the matching procedure is to 6nd the
relations linking the multipole expansion8 outside the
source of the inner potentials V, V;, and R',~ and the
external potentials V'", V;", and R","'. We deal in
this subsection with the case of the compact-supported
potentials V and V;. The more complicated case of the
noncompact-supported potential W;~ is reported in the
next subsection.

The inner and outer 6elds have been shown in Sec. II
to take, up to the order O(6, 5, 6), the same functional
forms (2.9) and (2.31) in terms of their respective poten-
tials. On the other hand. , the coordinate transformation
between them takes, up to this order (and even up to a
higher order), the linear form (3.5) with (3.6). We first
substitute into the sum of the 00 component and of the
spatial trace ii of (3.5) the inner and outer fields (2.9)

In (3.12), ye, denotes the trace-free part of yL,

y;, y;, y;„and be(z) is given by

2e+&e! f
1

dz he(z) = 1 .
—1

(3.13)

The formulas (3.11)—(3.13) have been proved in the ap-
pendix B of [1]. Now, we have V = M(V) and V;
M(V~) in D; A D; hence, we can write

V'" = M(V) + cB»»p +O(4),
C pV" = M(V;) ——8,&p + O(2) .

(3.14)

(3.15)

These matching equations relate the multipole expanded
external potentials V'"», V~'"» given by (2.18) to the xnul-

tipole expansions M(V), M(V;) of the inner potentials,
and can be used to obtain the expressions of the canoni-
cal moments ML, (t) and SL,(t) entering (2.18) in terxns of
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the source's parameters, with first relativistic accuracy
s in Ml, (t) and nonrelativistic accuracy in Sl, (t). One
can also obtain, in this way, the coordinate change rp (in
the form of a multipole expansion). This was the method
followed in [1], and we can check again that the results
of [1] are indeed equivalent to (3.14)—(3.15). (We shall
in particular recover below the results of [1] by a more
general method. )

C. Matching of the noncompact-supported potential
W;~

W "' = V "'+ Z,~(M(V)) + O(2),
where Z;~(M(V)) is given by

(3.17)

Zv(M(V)) = FP~=p xx' —B,M (V)0,M (V)

1+—h;, BgM(V)8gM(V) (3.is)

Note that it is crucial to replace V'" in Z;z(V'" ) not by
V, but by the multipole expansion M(V) of V [modulo
O(2)]. Indeed, contrarily to V'" = V+ O(2) which is
true only in the region D; 8 D„ the matching equation
V'"t = M(V) + O(2) is an identity which is valid 'ev-
erywhere" and in particular on the whole past null cone,
issued from the considered field point, on which depends
the retarded integral in (3.18).

As for the inner potential R'.~, we recall that it is given
by

1
W;- = R —4+Go.;.—0;VO~V + —b;~OA, VIV

(3.i9)
We shall now prove that the multipole expansion
M(W, ~), valid outside of source, of the (noncompact-

By inserting in the spatial components ij of the trans-
formation law (3.5) the inner and outer fields (2.9) and
(2.31), we obtain

~4
W,',"' = W;, ——[8;p'+O,.p' —b,~(Op(p + Bx,p")]

(3.i6)

This equation is valid at the nonrelativistic level only.
Like (3.9) and (3.10), it is numerically true in the region
D, 6 D, . To transform (3.16) into a matching equation,
we must first compute the multipole expansion, valid out-
side the source, of the inner potential R';~ which is, con-
trarily to the potentials V and V;, of noncompact sup-
port.

Recall that W,'"t in the left-hand-side of (3.16) is the
sum of the potential V; -" parametrizing the linear metric
(2.17c), and of the nonlinear potential Z;" = Z;z(V'" )
defined in (2.29). Now V'" has been matched to the
multipole expansion of V in the previous subsection;
V'"~ = M(V) + O(2) as deduced from (3.14). Thus we
can write the external potential TV;- as

supported) potential (3.19) reads as

M(W~) = Z;~[M(V)]+G), BL,
- (—)'

e=o

x -'W,', (~ —-") (3.20)

where the first term is given by (3.18), and where the
multipole moments W+(t) in the second term are given
by

1
W. .p) = Fp& —o f d & ~&~ flrdz be, (z)

—1

0;, +
~

8;VB,V — b;, 8&VB—&V
i4~G (' 2' )

x/yt+z
c )

(3.21)

where hx(z) is defined in (3.13).
The proof of (3.20) and (3.21) goes as follows. The

first term in TV;~, involving the compact-supported mat-
ter stresses cr;~, can be treated by formulas identical to
(3.11)—(3.13). We thus focus the proof on the second
term involving t9;VO& V, &om which we easily deduce the
last term. Let us consider the difFerence between (minus)
this term and the corresponding term in (3.18) involving
the finite part at B = 0 of the retarded integral: i.e.,

The analytic continuation factor r in the second re-
tarded integral deals with the singular behavior of the
multipole expansions near the spatial origin r = 0. The
first integral does not need any regularization factor be-
cause the integrand is perfectly regular at r = 0. How-
ever, in order to make a better comparison between the
two integrals, let us introduce the same factor r, and the
"finite part" prescription, into the first integral. Since
this integral is convergent, the finite part prescription
simply gives back the value of the integral. Hence we
can rewrite (3.22) as

X;z ——FPxx —p & (r [8;VO~V —8;M(V)BzM(V)]).

(3.23)

The important point is that, under the forxn (3.23), we
see that X;~ doe8 have a conipact support limited to the
distribution of matter in the source. Indeed, outside the
compact support of the source (i.e., in the domain D,),
the potential V numerically agrees with its multipole ex-
pansion M(V), and therefore the integrand in (3.23) is
identically zero. (It is at this point that we need to as-
sume that the multipole expansions in the canonical con-
struction of the exterior metric in D involve an infinite
number of multipoles. ) We can thus coxnpute the xnul-

tipole expansion M(X;z) of (3.23) in D, by exactly the
same formulas (3.11)—(3.13) as was used for the cornpact-
supported potentials V and V;. The only difference is

X;i =
xx [8;VOi V] —FPxx p R [" 8;M(V)BiM(V)].

(3.22)
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that the analytic continuation factor r must be kept
inside the integral, and that one must apply to the for-
mulas the finite part prescription. One is thus led to the
multipole expansion

(3.24)

x ly, t+z
~ )

(3.26)

1

4;, (t) = PPet-o f d'y)y( yz «te(z)(8&VtteV)
—1

where the multipole moments X+(t) are given by

1

X,, (t) = PPee=o f d ylyl yz «&e(z) (tt Vttey
—1

—(9;M(V)t9 M(V)] i y, t+ z
c )

(3.25)

[The finite part commutes with the derivation operator
OL, in (3.24).] We now prove that the second term in
(3.25), which involves the multipole expansion M(V) in
the integrand, is in fact zero by analytic continuation. In-
deed, the multipole expansion M(V)(y, t) is by (3.11a)
an expansion of the type ZnL, ~y~ x'P(t —~y~/c) t where L'
is some multi-index, p is some integer, and W some func-
tion of time (all indices suppressed). Thus, JH(V)(y, t +
z~y~/c) is of the type ZnL, ~y[ ~X[t + (z —1)~y~/c]. By
differentiating and squaring the latter expansion, we see
that the product 8;M(V)B~M(V)(y, t+ z~y~/c) entering
(3.25) is an expansion of the same type ZnL, ~y~ 'xQ(t+
(z —1)~y~/c), with L" a multi-index, q an integer, and g
a function of time. We then expand by Taylor's formula
each function Q when c -+ +oo. This introduces many
powers of ~y~ and of (z—1). Multiplying by hx(z) and inte-
grating over z, we find a multipole expansion of the type
ZnL, ~y~"'R(t), where k is an integer and 'R another func-
tion of time; then multiplying by jdsy~y~+yl, and per-
forming the angular integration (using dsy = d~y~ ~y~2dO
and f dOnl, eenL, = const x hg t«), we arrive at a mul-

tipole expansion of the type ZnL, 'R(t) j+ d~y~~y~
+

where m is an integer. Finally, each of the latter in-

tegrals f d]y] ~y~
+ is zero by analytic continua-

tion. [Indeed, we cut the integrals into two pieces,
Ii ——fo d]y]/y/ + and Iz ——j~ d/y//y/++, where
Y is some constant ) 0. By choosing the real part
of B to be such that Re B + m ) —1, we compute
Ii ——Y + + /(B + m+ 1); and by choosing the real
part of B to be such that Re B + m ( —1, we compute
I2 —— Y++ +i/(B+m—+1). Then both Ii and I2 can be
analytically continued for all complex values of B except
the single value —m —1. The integral f d~y~~y~

+ is
the sum of the analytic continuations of Ii and I2, and is
thus identically zero on the whole complex plane (includ-
ing —m —1).] Note that the proof that the second term in
(3.25) is zero can be easily extended to the case where we
have, instead of t9,M(V)(9~M(V), an arbitrary nonlin-
ear multipolar product of the type O~MQO M2M3 ~ ~ ~,

where Mx(y, t), M2(y, t), Ms(y, t) . denote formal
multipolar and post-Newtonian expansions of the type
ZnL, (y("(ln (y])~K(t), where p, q are integers (such ex-
pansions are known to arise in higher-order nonlinear
approximations of the external field [21]). Thus, the rnul-
tipole moxnents A;-. (t) in (3.25) can be simply written as

C4
W;;."' = M(W;, ) ——[(9;p~ + t9i(p' —b;~ (80(p + (9A,, p")]

+O(2), (3.27)

where the multipole expansion M(W, ~ ) is given by (3.20)
and (3.21). This equation can be equivalently rewritten
as

and the expressions (3.20) and (3.21) are then easily de-
duced. Indeed, we write W;~ as the sum of Z;i[M(V)],
of the compact-support integral CI& [

—4' Go.,~] and of
the term —X;~ + —h, iXgi„.. The multipole expansion
M(W;i) is thus the suxn of Z;i[M(V)], which is al-
ready a multipole expansion, of the multipole expansion
of C3& [

—4mG(7;x] computed by formulas such as (3.11)
and (3.12), and of M(—X;~) + zh;~M(Xx, x,) as deduced
from (3.24) and (3.26). We add the factor ~y~ and the
finite part prescription into the moments of the expan-
sion of 0& [—4vrGcr;z] (which are convergent anyway),
and the result is M(Wi) given by (3.20) and (3.21).

One should note the remarkable role of the analytic
continuation factor ~y] in (3.25) and (3.26). The inte-
gral (3.25) is of compact support and is thus perfectly
well defined at infinity ~y~ ~ +oo. The role of the factor
~y~ in (3.25) is to deal with the singular behavior at
the origin ~y~

= 0 of the second term in the integrand,
involving the multipole expansion M(V). That is, one
can compute (3.25) by choosing Re B to be a large posi
tive number so as to compensate the bad behavior of the
integral at the origin, then analytically continuing the in-
tegral near B = 0 and deducing the finite part at B = 0.
On the contrary, the integral (3.26) is perfectly well de-
fined near the origin ~y~

= 0, but it is not apparently of
compact support. The factor ~y~ in (3.26) then deals
with the a priori bad behavior of the integral at infin-
ity ~y~ m oo, where yI, O;VB~V behaves for large 8 like
a large power ~y~

4 blowing up at infinity. That is,
one can compute (3.26) by choosing Re B to be a large
negative number so as to make the integral convergent
when ~y~ ~ oo. These two different procedures, ReB a
large positive number in (3.25) and a large negative num-
ber in (3.26), give the same numerical result, as we have
just proved. In conclusion, the form (3.26) although not
apparently of compact support is however, thanks to the
properties of analytic continuation, numerically equal to
the compact-supported form (3.25). It is evident that
the form (3.26), where the analytic continuation factor
deals with the behavior of the integral at infinity from
the source, is the one which should be used in applica-
tions.

Equation (3.16) can finally be replaced by the match-
ing equation
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v;,* =G& „a, -'w,', (~-"-)
e=o
4

——[B y'+ B y' —~ (Boy'+ B~y")1+O(2)

(3.28)

and in this form can be used to compute, if desired, the
vector y' [since yo is known from (3.15)]. To this end,
one needs to decompose the moments W+ into irreducible
STF tensors with respect to the indices ij and L.

A""(v "', v,. "',w,.;"') = A""(m(v), w(v, ), w(w, ,))
+ CIA~" +O(8, 7, 8), (3.31)

where in the right-hand-side extra terms appear which
are due to the coordinate transformation between the
inner and outer metrics, and which can be written as a
d'Alembertian operator U acting on the tensor:

Goo = ——M(v)B,y'+ M(v;)B;y'
C

D. Matching equation at
the post-Newtonian order ee

B—„—(M(v)y") + B;yoB,y

0"=o,
n'~ =0.

(3.32a)

(3.32b)

(3.32c)
We now have in hand all the material needed to match

the inner metric (2.14), namely

h ~(&) = Z„-', X(VW)T ~+X (VV;, W;, )

+O(8, 7, 8), (3.29)

where A and A are defined in (2.11) and (2.12), to the
corresponding outer metric (2.34), namely

hcan(~«~) = Gh, ~~(l)(~«~) + FP&=o R

HP& (Vext Vext Wext) + O(7 7 7)

(3.30)

where h "~
l

is the linear metric (2.17) and (2.18), and

A is the same expression as in (3.29) but expressed in
terms of the external potentials V'", V; ", and W,'" .
The metrics (3.29) and {3.30) are given in their respec-
tive coordinate systems x~ and x~ „, and are valid, re-
spectively, in D; and D; 0 D, .

In the two previous subsections, we have related the
external potentials Vext Vext and ~ext to the mul
pole expansions M(V), lH(v;), and M(W;~) of the in-
ternal potentials V, V, , and R';z. These relations, which
are (3.14), (3.15), and (3.27), allow us to compute the
efFective nonlinear source A (V'", V ",W,'" ) in the
right-hand side of the outer metric (3.30) in terms of
the inner potentials. Indeed, by using (3.14), (3.15), and
(3.27) into the expression (2.12) of A, and by using
CIM(v) = CIM(V) = 0 and Clyde' = O(7, 8) [see (3.7b)],
we And

h", "„(z,„)= Gh"" (i)(z, „)+ FP~—0

x r A" (W(V), M(V), M(W;, )) + 0""
+O(7, 7, 7) . (3.33)

On the other hand, we have shown in Sec. III A that the
inner and outer metrics should be linked by a coordinate
transformation involving nonlinear terms at order e in
its 00 component, see (3.8). Using hoo = —~4&(v) +. . .
and h ' = ——,JH(V;) +.. . as is appropriate in D; 8 D„
it is easy to see that the nonlinear terms in (3.8) are pre-
cisely equal to 0 s given by (3.32a), modulo O(8). Hence,
the coordinate transformation (3.5)—(3.8) is in fact given
by

h,""„(x)= h""{x)+ By""+ 0""+ O(8, 7, 8), {3.34)

[where the linear part By"" of the coordinate transfor-
mation is defined by (3.6), and where both sides are ex-
pressed in terms of the inner coordinates x&]. Substitut-
ing in the left-hand side of (3.34) the outer metric (3.33),
and in the right-hand side the inner metric (3.29), we
arrive at the following equation for the external linear
metric (in the coordinates x"):

[The only nonzero component is Boo which is of order
O(6).] Now, to evaluate (3.30) we must apply on both
sides of (3.31) the regularized inverse d'Alembertian op-
erator FPCI& . One easily checks that FPCI& (CIQoe) =
0 + O(7). Indeed, this follows Rom the structure of
0 which is made at leading level e of terms of the
type ZnL, r I +2+2"l, where k is a positive integer (see
[1],p. 395). [M(V), M(v~) and yo, y' all have the struc-
ture giiL, r I~ +il at leading level. ] Hence, we find that
the outer metric (3.30) reads as

Gh,""„(i)(x)= Q~ A(V, W)T"" A (V, V;, W;~)

—FP [r X" (M(v), M(v;), M(W; ))]+By""+O(7, 7, 7) . (3.35)
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B„r""= O(3, 4) (3.37)

Then we can transform (3.35) into the matching equation

4G (—) 1 —pv r
Gh,"„(i)[MI„SI.] = — ), c)L, —7 I, t ——

e=o
+Bop"" + O(7, 7, 7), (3.38)

relating the exterior linear metric (2.17) and (2.18), that
we recall is a functional of the canonical moments ML, and
SL„ to the total truncated stress-energy tensor (3.36) via
the multipole moments

1

7 ","(f) = FPp=, f d'y~y~ gl, dz$e(z)v"
—1

x/yt+z c J
(3.39)

The nonlinear part 0" of the coordinate transformation
has been canceled, and it remains only the linear coordi-
nate transformation By"".

Equation (3.35) is numerically valid in D; 8 D„but
must now be transformed into a matching equation. The
reasoning is exactly the same as the one we followed in
dealing with the noncompact-supported potential R';~ in
Sec. IIIC, and we simply repeat here the arguments.
First, the term in (3.35) involving the compact-supported
matter stress-energy tensor T~" is treated by formulas
such as (3.11)—(3.13). Then consider, analogously to
(3.22), the difFerence between the two terms involving
A" in (3.35). By adding the factor r+ and the finite
part prescription in the first of these terms (whose inte-
grand is regular at r = 0) we can write this difference,
analogously to (3.23), in a manifestly compact-supported
form. [Indeed, the potentials V, V; and W,~ are numer-
ically equal in D, to their multipole expansions M(V),
JH(V, ), and M(W~). ] Hence, we can also apply to this
difFerence the formulas (3.11)—(3.13) and obtain, anal-
ogously to (3.24) and (3.25), some expressions for the
multipole moments allowing for the analytic continua-
tion factor ~y~ and the finite part at B = 0. Finally
the contribution associated with the multipole expanded
source A (M(V), M(V;), M(Wz)) in these multipole
moments is shown, analogously to (3.26), to be zero by
analytic continuation. This follows &om the fact that
A (M(V), M(V), M(W~)) is a sum of quadratic or
cubic terms O~MiB~M2 or o)~MiB~M2Ms where the
Mg's admit formal multipolar and post-Newtonian ex-
pansions of the type ZnL, ]yP(ln ~y~) ~K(t), with p, q some
integers [q = 0 in the case of M(V) and M(V;), but
q = 0 or 1 in the case of M(W~)]; see the discussion
above (3.26). An important result of this paper can now
be written down. We introduce an effective (truncated)
total stress-energy tensor of the matter fields and of the
gravitational field,

4
r""(V,V;, Wi) = A(V, W)T~" + A (V, V;, W;i),16' 0

(3.36)

where A and A are given by (2.11) and (2.12). By
(2.13) this tensor satisfies

The result (3.38) and (3.39) is especially simple. It says
that the linear metric 6"

~z~
is equal, modulo the linear

coordinate transformation Br@" [and modulo O(7, 7, 7)
terms], to the multipole expansion outside the source
we would obtain if the efFective total stress-energy ten-
sor w"" had a compact support limited to the material
source only. The difference is that the moments (3.39)
carry the analytic continuation factor ~y~ and the finite
part at B = 0 to deal with the poles at B = 0 com-
ing &om the behavior of the integral at its upper bound
~y~

-+ +oo. When no poles arise as will be the case at the
2PN approximation (see Sec. IV), we can say that (3.38)
and (3.39) justifies the formal procedure followed by Ep-
stein and Wagoner [30] and Thorne [20] to compute the
multipole moments. (However recall that in the works
[30] and [20] these multipole moments are assumed to
be the moments which are radiated at infinity, while one
has still to add to these moments all tails and nonlinear
contributions in the radiation field, see Sec. IV below. )
Let us emphasize again that the expression (3.39) is not
manifestly of compact-supported form, but is numerically
equal to the expression obtained by multipole expanding
the compact-supported right-hand-side of (3.35). In par-
ticular, this shows that the multipole moments (3.39) are
retarded functionals of the source's parameters, depend-
ing on the source at times t' & t only [or t' & t —r/c in
(3.38)], contrary to what is apparent on their expressions
(3.39) but in accordance with what they must be.

IV. GENERATION OF GRAVITATIONAL WAVES

A. Relations between the canonical moments
and the source moments

In order to find from the matching equations (3.38) and
(3.39) the expressions of the canonical moments Ml. , Sl,
as functions of the source's parameters, it sufBces simply
to decompose the reducible moments 7 I (t) into irre-
ducible STF multipole moments. This has already been
done by Damour and Iyer [31] in the case of /inearized
gravity, i.e., in the case where the total stress-energy
tensor r"" in (3.38) is replaced by the usual compact-
supported stress-energy tensor T" of the matter fields,
supposed to be exactly conserved: O„T~" = 0, and where
of course there are no analytic continuation factors in the
expressions of the moments.

Let us prove that the computation done in [31] ba-
sically applies to our case, which involves both analytic
continuation factors and a stress-energy tensor v"" which
is only approxiinately conserved: B„r"" = O(3, 4) by
(3.37). To this end, we need only to check that the
multipole expansion in the right-hand side of (3.38) is
divergenceless up to O(3, 4) as a consequence of the
approximate conservation of ~"". We take the time
derivative of the Op coxnponents of the multipole mo-
ments (3.39), use c Bir " = B~r~" + O(3, 4), perform—
some integrations by parts both with respect to y and
to z, and finally insert the identity (d/dz) by+i(z)
(2E + 1)(2E + 3) [bg i (z) —hg (z)]. These operations re-
sult in
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2

1

+FP~—p B d yy y~yl, dzbg z ~" y, t+zy c +0 3, 4
—1

(4.1)

The first two terms in the right-hand side of (4.1) are
the ones which would ensure the exact zero divergency
of the multipole expansion in (3.38). (7&" ") means the

STF part of 7&+"i.) The third term is the finite part
at B = 0 of an integral having explicitly B as a factor.
This term arises because of the derivation of the factor
lyl during the integration by parts. (Note that we have
discarded a surface term which is easily seen to be zero
by analytic continuation. ) Finally, the remainder O(3, 4)
comes &om the only approximate conservation of w"".
We now show that the third term in (4.1) in fact vanishes
up to order O(3, 4), which means, thanks to the explicit
factor B, that the integral has at this order no simple
pole at B = 0. This follows &om a general lemma which
we now state and which will turn out to be very useful in
the remaining of the paper. Let y be a "source" point,
xq, x2, . . . , x„be n "field" points, and o.p, o.q, . . . ,o.„be
n + 1 real numbers. Then we can state that

FPB=p B d yy 'QLy —x1 '' ' y —x

(2.12b) and (2.12c) is of the type c)VOV, where V rep-
resents a retarded potential (2.3a) or (2.3b), and 8 is
some time or space derivation (all indices suppressed).
By expanding the retardation argument in the V's up
to the same order O(3, 4), we see that the structure of
A

" is of the type OUBU or BUOX, where U and X
are instantaneous (Poisson-type) potentials of the type
f d xa.(x)ly —xl with n = +1 [see (4.14) and (4.15)
below]. Thus, A

" is composed of terms of the type
f d xid x20,8,0(xi)o(x2)ly —xil 'ly —x2l ' where
o.q + o.2 ———2 or 0, and where the derivatives act on the
source points zi ——(xi, t) and z2 ——(x2, t) (we use the
fact that D„ly —xl = 8 ly——xl ). Finally, it remains
to commute the integration over y with the integrations
over x.~ and x2 to arrive at a series of integrals of the
type f d'ylyl + '~~ ly —xil 'ly —x21 ' wh-e n»s
an even integer and ni + n2 ———2 or 0 (we have used
y, yL, y,L, + lyl2h;&, ,yL, i&). These integrals have no
poles by the lemma (4.2). Therefore, we have proved
that (4.1) reads in fact as

2

= 0 (4.2)

if the sum no + ni + . . + n„ is not an odd (posi-
tive or negative) integer. To prove that this is true,
we need to investigate the behavior of the integrand
at the bound lyl ~ +oo of the integral, where each

ly —xil ', . . . admits a multipole expansion of the type
Zx ' BL„lyl

' . . (coefficients suppressed). Thus, one
is led to consider the behavior of integrals of the type

f dsylyl~+ 'yL, BL„lyl ' . .BL,„lyl ". By performing the
integration over the angles (using d y = lyl dlyldO), we
find that these integrals are zero if 8 + Z~ + - + 1 is an
odd integer. When 8+Sq+- .+X„is an even integer, a sin-
gle type of radial integral remains, which is f dlyllyl++~
where P = 2+ no+ E+ (ni —Ei) + . . + (n —8 ). A
pole at B = 0 will arise only if P = —1, and thus, since
E+E~+ ~ +8 is an even integer, only if o.p+Ay+ ' '+o.„
is an odd integer. If np + o;q + . - + n is not an odd
integer, there is no pole and (4.2) is true by virtue of
the explicit factor B in f'ront of the integral. [Note that
this condition for (4.2) to hold is suKcient but by no
ineans necessary. ] Now, a nonzero contribution to the
third term in (4.1) can come only from the noncompact
supported part of w~~ in the integrand, i.e., the part in-

volving A [see (3.36)]. We first expand the argument
t + z]y]/c when c ~ +oo up to an order consistent with
the remainder O(3, 4) in (4.1), and integrate over z [using
(4.8) below]. Thus we have to consider integrals involv-

ing A and its time-derivatives, and multiplied by some
even powers of lyl. The structure of A

" as given by

+O(3, 4) . (4.3)

Gh""„(i)[MI„SI,] = Gh""
(i) [IL„JI,] + 0(u"" + 0&p""

+O(7, 7, 7), (4.4)

where Ou~" is a certain harmonic linear gauge transfor-

This relation shows that the multipole expansion in the
right-hand side of (3.38) is divergenceless modulo small
terms of order O(7, 8). This is consistent with the fact
that the "q part" of the external metric is found to be zero
at order O(7, 7, 7), see (2.25) and Appendix A. Because
of the uncontrolled remainder in (4.3), we find that the
four relations (5.27) in [31] are modified by small post-
Newtonian terms: Cl. is modified by a term O(7), and QL„
7g, Ql, are modified by terms O(8). Thus the Oi compo-
nents (5.9b) in [31]involve some uncontrolled terms O(7),
while the ij components involve uncontrolled terms O(8)
(the 00 coinponent not being affected). All these terms
fall into the remainder term O(7, 7, 7) in (3.38), showing
that the end formulas (5.33) and (5.35) of [31] giving the
expressions of the mass-type and current-type multipole
moments in linearized gravity can be applied to our case
with the replacement of the matter stress-energy tensor
T~" by the total stress-energy tensor w~", and with the
addition of analytic continuation factors lyl and of the
finite part prescription.

The matching equation (3.38) can thus be written in
the form
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mation (Clur" = 0), and where the mass-type and current-type source moments IL, and JL are given by

4(2E + 1)
Is, (&) = FPB o d ylyl dz he(z)yLz —

2 be+i(z)y;Lt9dz;c' /+1 2t'+3

'( )( )( )

1

2 (tz) = FFz z f d'
~ y~ ydz be(z) .z&4;, yt». Fz

c2E+2 28+3 be+i(z)s b«, yL, &«OeZb,
l yt t+ z

~ )

(4.5a)

(4.5b)

The mass, current, and stress densities in (4.5) are de-
6ned by

~00 + ~ii
Z= (4.6a)

)
C

(4.6b)

(4.6c)

ML(t) = IL(t) + O(5),
SL (t) = JL (t) + O(4) .

(4.7a)

(4.7b)

where the stress-energy tensor v"" is given by (3.36). The
weighting function be(z) is defined in (3.13). The match-
ing equation (4.4) then tells us that the gauge transfor-
mation Bbd"" necessarily satisfies (9u"" = —By~"+O(7, 8)
[indeed remember that Clrp" = O(7, 8)], and that the
canonical moments ML, SL in the left-hand side of (4.4)
are related to the source moments II„JI,by

[The relation (4.7a) for the mass moment comes from the
00 component of the matching equation (4.4), while the
relation (4.7b) for the current moinent comes &om the
Oi components of (4.4).] The relations (4.7a) and (4.7b)
are exactly the ones needed to solve the wave generation
problem at the second-post-Newtonian approximation.

B. Expressions of the mass-type and current-type
source moments

Since the relations (4.7) are only valid up to some post-
Newtonian order, it is sufficient to consider the post-
Newtonian expansion c ~ +oo of the source moments
IL„JL, defined by (4.5). This expansion is achieved by
means of a formula derived in Appendix B of [1], and
giving the expansion when c —+ +oo of terms involving
the average over z appearing in (4.5). This formula reads
as

f
1 2 4

dzbe(z)Z
l y, t+z

l

= Z(y, t)+, c)2Z(y, t)+, c),'Z(y, t)+O(6) . (4.8)

Using (4.8), and retaining consistently the powers of c, we obtain

I t~=FP d' ( (
. Z+ " "' O'Z+ " "' a'Z — '("+')"" OZ

2c (2t'+ 3) 8c (2g + 3) (2l + 5) c (E + 1)(2$ + 3)

2(Ã+ 1)lyl y;L 3— 2(2E+ 1)y;
c4(E+ 1)(2E+ 3)(2E+ 5)

' ' c4(l+ 1)(/+ 2)(2E+ 5)

JL(t) FPB=O ~ob(id d ylyl gL 1&azb + 2 ~
— ~e zb —

2 ~
(9tzba (y, t) + o(4)3 B — lyl gL —»a 2— (2& + 1)gL—i&aa

(4.9)

(4.10)

We must then insert into (4.9) and (4.10) explicit formulas of Z, Z;, and Z;~ which are easily computed &om (3.36)
where we use the expression (2.11) of A = lgl + O(6) and the expressions (2.12) of the components of the effective
nonlinear source A . We 6nd the formulas

B,.V|9,V
14V 81+. ——(W —V ) o-

c2 c4

+ —VB,*V —2VBeBeV —We, B;,V ——(BeV) +28eV, B,V;+28;VB;W ——VB;VB.V),'22' ' '
2

4V 1 31+ z; + 84 V(BeVz —84Ve) + —B,VB;V) + O(4),
C2 m QC2 4

(4.11a)

(4.11b)
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1 1
Z;~ = o.;~ + t9;VB~V ——b;~BI,VOI, V + 0 2

4~G '
2

' (4.llc)

Again retaining the powers of c consistently with the accuracy indicated in (4.9) and (4.10), we can now write
formulas for the source moments in raw form:

IL, (t) = FP~—p d ylyl 1 + —V ——(W —V ) y« — y,B;VB,V3 z 4 8 2 1
C2 C4 mGC2

+ 4yz, VB—, V —2VB)B;V —WEB~V ——(BtV) + 2B;V~B~V;+ 2B;VB;W ——VB,VB;V
C

+ 2 B& l
1+ 2 l(T — BVBVlyl'yi, ( 4v~

2c2 2I. +3 ' ( c2 ) ~Gc2

4 2(2e+ i) lyl'y'~ 3
8c4(2g+ 3)(2E+ 5) c4(I+ 1)(2E+ 3)(2k + 5)

8,
~

4+
~

o;+ BtV(8(Vt —BtVr) + —BrVBrV)
4(2l + 1)yL, 6 4V) 1 3

c2 E+ 1 21+3 ( c3 ) ' mGc3 4

8, o;, + 8;VB,V }+O(6),2(2E + 1)y, 1
c4 I+1 /+2 2I+5 ' " 4~G ' (4.i2)

JL(t) =FP~=ps ~&', d ylyl yL, -i&. l
1+ —,V

l
ot, +, B, o&

a - & 4 & lyl'yl,
c ) 2c2 28+3

1 3+ 2yL, i&~ Br, V(BsVj, —BqVs) + B&VB—bV
srGc2 4

(2l+ l)yL, i& 1

cd+ 2 2E+ 3 '
4vrG

'8, o'r + BtVBV )+O(4) .

(4.i3)

Recall that the analytic continuation procedure in (4.12) and (4.13) is needed only for handling the (apparently)
noncompact supported terms such as the term yl, B;VB,V in (4.12), and could be removed from manifestly compact
supported terms such as, e.g. , yL, oV .

Let us now derive an equivalent but somewhat simpler form for the mass-type multipole source moment (4.12).
First, we replace the retarded potentials V, V;, W;~ used in (4.12) by "instantaneous" potentials U, X, U;, P,~ (and
P = P;;) defined by the post-Newtonian expansions

V = U+ B,X+0(3),
V; = U;+O(2),

W;~ = P,~+ 0(l) .

(4.14a)

(4.14b)

(4.14c)

These instantaneous potentials are

3C

U(x, t) =G, o(x', t),
lx —x'l

X(x, t) = O jdtx (x —x'(o(x', 't),

(4.i5a)

(4.15b)

U;(x, t) =G, o;(x', t),
lx —x'l

dsx' 1 ( 1
P;~(x, t) =G, o;~ +

l
B;UO~U — b;~ BI,UBqU

l

—(x. ', t),x —x' *
47rG E 2

d x 1 I U
P(x, t) =G.o;; ——oU (x', t) +x —x'l "

2
' 4

We can then rewrite (4.12) as

(4.15c)

(4.15d)

(4.15e)
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2 o(r) = FPrr=a f d y~ly~l 4 + —U + —(2B, X —iiP + BU ) yo or

+ 4y
m Gc2 ' ' xGc4

2U—;B&O,U —P;~B; U ——((9&U) + 28;U~O~U; + 20;UO;P — UB—;UB;U

+ c),
i
1+

~

0 — 8U(9U[y['f))L, 2 ( 4U ) 1

2c2(2E+ 3 ' ( c2 ) m. Gc2

&4 2(2&+ 1)lyl'~'~ g3
8c4(2E + 3) (2E + 5) c4(E + 1)(2E + 3) (2E + 5)

(4.16)

Several reductions of this expression can be done by integrating various terms by parts. For instance we can operate
by part the term yl, B;Ut9;U using Lyl, ——0 and LU = —4vrGo. This yields

FPrr-o 4'yliyl yoB; UB; U = FPrr=o d'
/ y/ y4 Gy errrU +o—B; yoB; U' —B;yoU* )2 '- (4.17)

The second term in the right-hand side of (4.17), which is made of the product of ~y~+ and of a pure divergence, is
easily shown to be zero thanks to the lemma (4.2). Indeed, the differentiation of the factor ~y~ yields no ———2, and
since the term involves two potentials U it has nq + n2 ———2. Hence we can write

FPB—0 d p g yI, iUOiU = 4m'G d yyl, o U (4.18)

where we have removed the factor ~y~ in the right-hand side since the term is compact-supported. Note that the
use of the lemma (4.2) permits &eely integrating by parts all noncompact-supported terms in (4.16) except the term
involving the product of three U s, i.e., the term yl. UB;UO;U, which must be treated separately. For this term we
write, like in (4.17),

FPro=o d y/iy/i~yoUB UB U= FPrr=o d y'ly/ '2rrGyorrU + —B; yoB*U — ; By)oU6
(4.19)

To cancel the second term in the right-hand side, we
have to show that the integral f dsy(y~ 2yL, (y —xq~

(y —x2[ )y —xs[ has no pole at B = 0 [this
case is not covered by (4.2)]. When ~y~ -+ +oo the

a e' —e —e —eintegrand behaves like ~y~++r r' ~2 ~B snl. nl„nl„nl,
(where n, = y;/~y~). The angular integration shows that
~$ + ~Q + ~3 = l' + 2p where p is a positive integer, so that
the remaining radial integral is f d(y~~y~+ 2" s which
cannot have a pole (this would mean p = —1). Thus
we can conclude, as in (4.18), that

FP

(4.20)

Incidentally, the above proof shows that in higher post-
Newtonian approximations, terms can arise which cannot
be integrated by parts without generating poles. This is,
for instance, the case of the term yl. UB;UB;B~ X which
is expected to arise at the O(6) level.

The identity (4.18) shows that the term yl, B;UO; U in
(4.16) exactly cancels a previous term yL, (rU, so that
we recover, at the first post-Newtonian approximation,
the expression obtained in [1], i.e., (2.27) in [1]. We use
also the identity (4.20), and then perform several other
manipulations such as, for instance, one showing that
the two terms involving the potential X in (4.16) can be
advantageously replaced by a single term yL, UB~ U—
all these manipulations are justified by the lemma (4.2).
They yield the expression
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Il, (t) = FPgg p d ylyl yl, o + —(o;;U —oP) + )9, cr
s a - 4

c4 " 2c2 2I+3

I

1+
I
~'+ 2 I

~I U(&'Ui —~I U']+ ~~-U@U
I

4(2&+ 1)yL, & 4U) 1 ( 3
c' g + 1 2E + 3 g

c' )
' ~t c'

q 4 )
4 2(2e + 1)lyl'g'i 3

8c (2l + 3)(2l + 5) c (E + 1)(2E + 3)(2E + 5)

+ y~ P;,82—U —2U. ;8&8;U+ 28, U, B,U; ——(8~U)* —UB,'U ) +O(5) .~Gc4 '22' 2
(4.21)

The expression (4.21) will be applied, in a forthcoming
paper [4], to the problem of the generation of waves by
a coalescing compact binary at the 2PN approximation.
Note that many other transformations of the expression
(4.21) could be done using the equations of motion and
of conservation of mass. In Appendix 8 we show that
in the case E = 0 the expression (4.21) reduces to the
expression of the conserved total mass M at 2PN which
is known &om the equation of conservation of mass at
2PN.

Finally, we prove that the expression (4.13) of the
current-type source moment is equivalent to the expres-
sion obtained in [2]. We make the comparison with the
expression (5.18) in [2], which involves a STF tensor
Y (yi, y2) depending on two source points yi, y2, and
defined by

k is some kernel given by k =
2 ln[(ly —yil + ly—

y2I)2 —lyi —y2I2]. By substitution into the left-hand-
side of (4.23) one gets two terms. The first one is the
fiiiite part at B = 0 of the integral f d ylyl yl. A&&,
which is also equal to BJ d ylyl g~[)9~'gL, & —'gl ~i&].
We replace into the latter integral the convergent Taylor
expansion when yi, y2 -+ 0 of the kernel k [which is an-
alytic in yi, y2', see (3.14) in [2]], and find that the only
remaining radial integrals are of the type BJ' d ylyl
or Bf d ylyl ln lyl, where A: is an integer. These ra-
dial integrals are zero at B = 0 (no poles). Thus it
remains only the second term which is the finite part at
& = 0 of f d ylyl yL, (—27rbi2), and readily yields the
result (4.23). By multiplying (4.23) by some densities
0(yi, t) and o(y2, t) and integrating over d yi and d y2
we obtain such relations as

1

Y (yi, y2) = lyi —y2I d~u' ',
0

(4.22a) FP~—o d y y yI, Bi UO~U = —2x d yid y20. (yi)

e
YL, ( )

Iyi y2I ) (L —& &)

p=o
(4.22b)

where we sum over the number p of indices present on

y2 ——yz' . yz (in which case yi ——yi
+' yi') and

without p-dependent coeKcient in the sum, e.g. , Y'~ =
i

lyi —y2I x(yi'y~i + yi'yz + yz'yz ). Then the formula
which permits relating our work with the formalism used
in [2] is

FP~ p
———27rY (yi, y2) . (4.23)

The proof of this formula is as follows. We know &om
(3.9c) in [2] that (ly —yilly —y21)

' = &~& —2~~»
1where biz ——lyi —y2I jp do.b(y —y ) represents a Dirac

distribution on the segment joining yi and y2 (b' is the
usual three-dimensional Dirac distribution), and where

where y' = nyi + (1 —n)yz, and where y denotes the
STF part of y = y" ~ .y". An alternative form of Y
can be obtained by explicitly performing the integration
over n. It reads

&&0('g2)Y; (yi y2)
(4.24)

where Y+ = 82Y+/ByiOy~2, showing the complete equiv-
alence between our expression (4.13) above (where the
V's can be replaced by the corresponding U's) and the
expression (5.18) in [2].

C. The asymptotic waveform at the 2PN
approximation

It has been shown in [22] (see also [32]) that the canon-
ical external field (2.16), which satisfies all over D, the
harmonic-coordinates Einstein s equations (1.1) and (1.2)
(in the sense of formal nonlinear expansions), can be
rewritten in a so-called radiative coordinate system X~ =
(cT, X) in which it is of the Bondi type at large distances
&om the source. It is sufhcient to consider the transverse-
traceless (TT) projection of the leading-order 1/R part
of the spatial metric (where R = IXI is the distance to
the source). Denoting by hl, (X~) = (gI, (X")—hi )T
this TT projection of the spatial metric (where g), is the
usual covariant metric), we can then uniquely decompose
the 1/R part of h& into the infinite multipole moment
series [20]
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(X,T) = 'P;,.b (N)), N U;,L (T —R/c)
x=2

2Z 6 1 )—
(

N L, 2Sab~;Vj)bL 2(T —R/C) + 08+1 c qR2y
(4.25)

where the radiative moments UL and VL represent two infinite sets of functions of the retarded time T —R/c, which
are STF in their indices L = ii ix (E goes &oxn 2 up to infinity). These functions by definition parametrize the
asymptotic waveform. The coefficients in (4.25) have been chosen so that the moments UL and VL reduce, in the
nonrelativistic limit c + +oo to the 8th time derivatives of the usual "Newtonian" mass-type and current-type
moments of the source [20]. Our notation in (4.25) is NL 2

——N;, N;, , with N; = X'/R, NaL 2 ——N NL

T(ij ) 2 (Tij + Tji ), and

P;~b (N) = (b;b —N;Nb)(hj —NjN ) ——(bj —N;Nj)(hb —NbN ) .
1

(4.26)

At the 2PN approximation, including all terms up to the level s4 c 4, the waveform (4.25) reads as

2G 1 1 4 1 1 1
Pij bva Uij + NaUij a + Sab(i Vj)aNb + g NabUij ab + Sab(iVj )acNbcc4B c 3 3 c2 12 2

1 1 2 1 1 1+ Nd U jd + '('Vdd) ddNI d + d NddV4 I d+ d(~ d)V(d Nd d +O(5)) . (4.22)
c3 60 15 c4 360 36

By differentiating, squaring, and averaging over angles this expression, one obtains the energy loss formula at the
2PN approximation, giving the rate of decrease of the Bondi energy E~.

W

Now the point is that the external field (2.16) is algo-
rithmically constructed in [21] &om the linearized xnetric
(2.17) and (2.18), which is parametrized by the canon-
ical multipole moments MI„SL„and that the coordi-
nate transformation between the harmonic coordinates
and the radiative ones can also be algorithmically imple-
mented [22,32]. Therefore, the radiative moments UL and
VL, parametrizing the multipole expansion of the asymp-
totic waveform (4.25) are necessarily given as some algo-
rithmically computable functionals of the canonical mo-
ments ML, and SL, . It has been shown in previous papers
[1,3] that UL and VL are given by some nonlinear infinite
expansions in G (consistently with our whole approach)
of the type

gn —1

UL(T) = ML (T) + )
~ ) XaL(T), (4.29a)

n)2

(E—X)S-4'4, -L-2( ) = -4'4 . .L 2( )
Gn —1+),

~ „„,Y„,(T), (4.29b)
n)2

where ML (T) and SL i (T) denote the 8th and (E—1)th
time derivatives of ML, and SL, q computed at the radia-
tive time T, and where X L(T) and Y L (T) are nonlinear
functionals of order n of the moments ML, and SL, and
their time derivatives. The general structure of X L, and
YnL, is

T T
XAL(T)4YaL(T) = ) dUl dUap LL, " L„(T,Ui, (Ua.)PL" (Ui) PL

" (Ua), (4.30)

where 'PL denotes the ath time derivative of either a
mass moment ML (in which case g = E) or a current mo-
ment G~ig+1igS~I, $ endowed with a I evi-Civita symbol
(in which case g = E+ 1). The tensor KLL, ...L denotes
some dimensionless kernel whose index structure is made
out only of Kronecker symbols, and which depends only
on variables having the dimension of time. The powers of
G and c in (4.29a) are obtained by a simple dimensional
argument, namely that the mass and current moxnents
MI. and SL, have the usual dixnensions of xnultipole mo-
ments. The notation Z/i is for Z; yE —Z yZ' + s,
where Z; zf; is the total number of indices present on

n

) S,. =e+2I, (4.31)

where k is the number of contractions among the indices
Ltgy ~ ~ o L e

In view of the explicit powers of c ~ in &ont of the mul-

the n moments 'PL in (4.30), and where s is the nuxn-

ber of current moments among these n moments. As
the tensor KL,L,, ...I, represents an operation of complete
contraction between the indices L, L~, . . . , L, we have
necessarily the equality
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tipole moxnent contributions present in (4.27), we need
to compute the relations (4.29) linking the radiative and
canonical moments only up to some definite order in c
Namely, U;~ is to be computed up to c inclusively, U,~p
and V~ are to be computed up to c, U,~I, and Vzg up
to c 2, and so on. Now the equality (4.31) shows that the
nonlinear terxns in (4.29) having n & 3, and thus com-
ing &om the cubic and higher nonlinearities of Einstein's
equations, are at least of order O(c s) = O(6) and can be
neglected for our purpose. Rxrthermore, the terms with
n = 2 must have k = 0 in (4.31) since for k & 1 the cor-
responding order is O(5), also negligible for our purpose.
Finally, the remaining nonlinear terms with n = 2 and
k = 0, which represent corrections c 3 in the radiative
moments, are to be computed only in the quad. rupole
and octupole mass moments U;~ and U;~g, and in the
quadrupole current moment Vz. We then easily arrive
at the only possibilities E = )x+12 [see (4.31)] with / = 2
(case of U;~) and lx ——0, g2

——2, or E = 3 (cases of
U; x, and V; ) and gz ——0, Ez ——3, or gx ——1, E2 ——2.
(Indeed, one of the moxnents in (4.30) is necessarily non-
static, g2 & 2 say. ) This corresponds to the interaction of
the mass monopole M and of the mass quadrupole M,~
(case of U;~), of M and of the mass octupole M,~x„or of
the mass dipole M; and of M;~ (case of U,~k), and of M
and the current quadrupole S;~ (case of V~). Let us coxn-
bine this information with the results of [3] showing that
two (and only two) types of "hereditary" contributions
arise in the radiative moments UI. , Vl, at the quadratic
nonlinear approximation, namely the "tail" contributions
involving the interaction between M and nonstatic mo-
ments ML, or SI., and the "memory" contribution involv-
ing the interaction between two nonstatic moments ML, .
By the previous reasoning, the latter memory contribu-
tion can be neglected, and the former tail contributions
need to be included only in the radiative moments U;~)
U;~x„and V~. Hence we can write, from (2.42) and (3.4)
in [3],

(V)dv»I —I+l2b)
U,, (T) = M,',"(T)

C p

xM, (T —V) + O(5),

U; (T) =M, (T)
0

xM, q(T —V) + O(5),

V~(T) = S, (T).
C p

xS&,'. &(T —V) + O(5) .

(4.32a)

(vl
dV ln~ —~+~s

l2b)
(4.32b)

fv)
dV ln~ —~+~2

l2b)
(4.32c)

The other radiative moments U;zi, , . . . , V&I, in (4.27)
and (4.28) are equal, with the required precision, to the
corresponding M, &, . . . , S,-.& . Three purely numeri-
cal constants ~2, ~s, and e2 appear in (4.32), which are in
factor of "instantaneous" (nonhereditary) contributions.
Note that there is a priori also a contribution involving
the interaction between the mass dipole M, and the mass
quadrupole Mzx, (T) in the octupole moment U;~x, (T) of
(4.32b). This contribution, which is necessarily instanta-

neous and of the type (osG/cs) M&, M.&~(T), where mrs is

some numerical constant, has been set to zero in (4.32b)
by requiring that the (harmonic) exterior coordinate sys-
tem is mass centered, i.e., M; = 0. The computation of
K2 K3 and K2 necessitates the implementation of the al-
gorithm for the construction of the external metric. This
was already done in [3] for the computation of e2 T.he
computation done in Appendix C yields the values

ll
K2 = —

)l2 '
97

K3 =
60 '

7
K2 =

6
(4.33)

The constant b entering the tail contributions in (4.32) is
a constant (with dimension of a time) which parametrizes
the relation between the radiative coordinate system
(T, R) in which the metric is of the Bondi type and the
harmonic coordinate system (t, „,r, ) of Sec. IIB. It is
such that

RT ——=tcanc
+can 2GM

c c3 cb
(4.34)

+OO

0

xI, x, (T —V) + O(5), (4.35b)

+OO

VV(T) = J, (T)+, dV»
I

—
b

I

+-
C p

x J,&. l(T —V) + O(4), (4.35c)

(with relations limited to the first term in the right-hand
side for the higher-order moments U;zx, , . . .). One must
insert these relations, together with the explicit expres-
sions (4.21) and (4.13) of the source moxnents, into the
waveform (4.27) and/or the energy-loss formula (4.28).
[Note that the only tail contribution in the energy-loss
formula (4.28) comes froxn the "mass-quadrupole" tail
associated with the moment U;z in (4.35a).] This solves
the problem of the generation of gravitational waves by
a general isolated system at the 2PN approximation.
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[where terms of order O(1/r2 „) in the distance to the
source are neglected]. A possibly convenient choice for
the constant b is b 1/uo, where uo is a typical frequency
at which some detector at large distances from the source
is operating [11].

The relations (4.32) are still not expressed in terms
of the source's parameters, and the last step obviously
consists in using the relations (4.7) linking the canonical
moments ML„SI, to the real source moments II., JL, . We
can thus rewrite (4.32) as

+OO

U~(T) = I, (T) + "dV ln
~

—
~

+-
x I,&. l (T —V) + 0(5), (4.35a)
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APPENDIX A: PN EXPANSION OF PART OF
THE EXTERNAL FIELD

p"..„(„)= FPa=p &„' [r~A".."„(„)] (A1)

The q-part of the metric is computed &om the "p-part"

The "q-part" of the external metric is the second term
in the definition of the nonlinear canonical field (2.21).
We shall denote the first term in (2.21) by

(Al) as follows [21]. We compute the divergence of (Al),
namely r,"„( )

——c)„p,""„(„),and obtain

r"
( )

—FPgy p C3R [Br n, A"'
( )], (A2)

where n; = x'/r and where the factor B comes &om the
derivation of the analytic continuation factor r+. This di-
vergence is known to be a retarded solution of the wave
equation, and can thus be decomposed, in a unique man-
ner, as

rt..(„) ——) ttt xt (t ———
)e)0

1 1 1 r
r, ( (

—) 8;t —Bt t —— + ) (tt 1 —(;L— 1 t —— —+ t; t(t I 1 D—tt. —
r C p C r c

e&0 e&i W

(A3a)

(A3b)

where Ag, BI„CL„and DL, are some STF tensorial functions of the retarded time. Then the q-part of the external
metric is defined by its components as

oo &(—i)
&can(n)— r

oi (-&)
~can(n) ir

—a.
I

-A(-') I+ "a.
I

-c(-') I,
Er ) &r )

—cs; sO
I

Ds —
I

—) c)L, iI —A;I,
fl ( i)) . fl
Er ),), Er

(A4a)

(A4b)

1 |' 1 & . ( 1 (i) 3 (2)q'
( )

—— bij B+—)cIa—Ba
I

+ )— (9L, 2
I

—A, I 2+ B, .~qrc '~ rc2

(1 & (I
+2~ij ~L

I

—BL
I

—6(9L-i('
I B,)I,-i I

——2~aL 2
I sab(i D—j)bL, 2—

Er r (r )
(A4c)

[where, e.g. , A( ')(t) = j dt'A(t')].
The main task is to deal with the quadratic case

n = 2. We first control the post-Newtonian expan-
sion of the divergence r"

2 of (A2). The quadratic

source A""
(2)

——%""(h, „(i)) is computed by inserting

the linear inetric (2.17) and (2.18) into (1.5). Its post-
Newtonian expansion starts at O(4, 5, 4), with a next
term at O(6, 7, 6). I et us write

A,""„(2)—— F""+ G""+ 0(7,8, 7), (A5)

where F"" and G"" are the coeKcients of the leading-
order and next-order terms in the post-Newtonian ex-
pansion, and where we use the notation u = 0 when
p,v = 00 or ij and u = 1 when pv = Oi. Then it is easy
to show that the structures of F~" and G~", as concerns
their spatial dependence, are

). o~
I

—
I
~g I „- I

(11 (11
(A6a)

E") E"J

(1i (1& . (1)-G"" = ) &I
I -„ I

~g I -„ I
+ ). ~~ I

—„ I
&g(r)

Er) (r) „+), &)
(A6b)

where P and Q are multi-indices with p and q indices.
Important for our purpose is the fact that the number
of spatial derivatives is p + q & 2 in F'~" and in the

1 —i H 1 pi-+ FPgy —p 4 [Br n;G"'] + I—

xtt '[Br~ 'n;t'"']) + o(8t), ,(A7)

where b, i is the Poisson operator and 4 = (E ),
and where cu = 1 when p = 0 and u = 0 when p = i.
The justification of Eq. (A7) can be found in our previ-
ous papers [see, e.g. , (3.25) in [24]]. Using the structures
(A6) of I"""and G"" into (A7) shows that all explicit
terms in (A7) are zero. Indeed, by multiplying by r in;
the term BJ (r i)8g(r ) in (A6a) or (A6b) and project-
ing on STF tensors, we get a series of terms of the type
r+ " nl, where k is a positive or zero integer and
8 = p+q+1 —2k. By applying L and 4 we obtain
r+ 2"nL, /Di 2(B) where the denominators are, respec-
tively, Di(B) = (B—2I —2k)(B —2k+ 1) and D2(B) =
(B—2E —2k+ 2)(B —2E —2k)(B —2k+ 1)(B—2k+ 3).
When p + q ) 1 (which implies E + k ) 1) neither
Di(B) nor Dg(B) vanish at B = 0, and when p+ q ) 2

second term in G", and is p+ q & 1 in the first term
in G~". Knowing the expansion (A5) we can write the
corresponding expansion of the divergence (A2). We have
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(which implies l. + k ) 2) D2(B) does not vanish either.
Furthermore, by multiplying by r n; the second term
BJ (r )Bg(r) in (A6b), projecting on STF tensors and
applying 4, we get r+ "+znL, /Ds(B) where the de-
nominator is Ds (B) = (B—2E —2k +2) (B—2k+ 3) which
does not vanish at B = 0 when p+ q ) 2. Since all de-
nominators Di, D2, D3 take nonzero values at B = 0,
we conclude that all terms will be zero at B = 0 thanks
to the explicit factors B present in (A7). Thus,

q""
(s)

—O(8, 7, 8) . (All)

Equations (A10) and (All) are the ones which are used
in the text.

in c of a term in q,""„(s) is O(8+ Zl, —E) [see (3.23)
in [24]], and we know that Zg; ) E —s by the law of
addition of angular momenta, &om which we deduce also
q""

(s)
——O(8 —s) = O(8, 7, 6). These two results imply

r" „(,)
——O(8, 7) . (A8)

Equation (A3) then shows that for n = 2 the function
Al, is O(8) while BI„CL„and DI. are O(7). Hence we
can write, &om (A4),

q. „(,) ——c2c)
1

—C( ') 1+0(7),)
q, '„(2) ————C, —cr; ~0

1
D&

1

+—O(8), (A9b)

(A9a)

q."„(,) ——O(7) . (A9c)

Thus it remains to control three terms involving an-
tiderivatives of vectors C, and D; and having low multi-
polarities E = 0, 1. We know that the dependence on c
of a term with rnultipolarity I in q

"
(2) is O(5+(~+$2 E)—

[see, e.g. , (3.23) in [24]], where g~ and l2 are the number
of indices on the two moments 'PI, , and P'I, , composing
the term (notation of Sec. IV C). Now one of the two mo-
ments is necessarily nonstatic since for stationary metrics
the q-part of the metric is zero (Appendix C in [21]), thus
Zi ) 2 say. On the other hand, to form a vector t; or D;
one needs g2

——Zi + 1 thus Zi + 82 ) 3. This, together
with the fact that E & 1, shows that the remaining terms
in (A9) are O(7) at least. Thus we have proved

q""„(,
)
——O (7, 7, 7) . (Alo)

We finally deal with the cubic case n = 3. In this case
we know that the post-Newtonian expansion of the source
A""„(s) starts at O(6, 7, 8). [The fact that the spatial
components ij of the cubic source are O(8) instead of
the expected O(6) is not obvious but has been proved
in [21]—see the proof that A = 0 on p. 424 in [21];
indeed a possible term O(6) would be made of three mass-
type multipoles ML, .] Thus the divergence (A2) with
n = 3 is at least r"

(s)
——O(7, 8), from which we deduce

q,""„(s)——O(6, 7, 8). On the other hand the dependence
I

APPENDIX 8: THE CONSERVED 2PN TOTAL
MASS

We first obtain the expression of the total conserved
mass at the 2PN approximation. The equation of conti-
nuity at this level of approximation reads as

Bg o (1 —4P/c ) + 8~ o~ (1 —4P/c )
1 4= —(Bt,o~~ —o BgV) — (oU—~ 8~ U. + o~gO~ UI, )

+O(5), (B1)

where our notation can be found in (2.1)—(2.4) and (4.14)
and (4.15). By integrating this equation over the three-
dimensional space we obtain

d 3 1 4
d y o ——u. . ——oP

dh 22 4

3 1 4
d y ——~crB~V ——(aU, B U+ a, r, B,Ua)

I
+O(5) . (B2)

Several transformations of both sides of this equation
yield the equation of conservation of mass at the 2PN
approximation: namely,

1 r
d y cr+ —

1

—cr + —oV 1+ —oU +2o;U,.
dt c2 ( " 2 p c4

1—4o.~~U ——O~o.8~X = 0 5 . 83
4

We now show that the expression (4.21) we obtained
in the text for the general mass-type source moment II,
reduces when 1 = 0 to the conserved mass appearing in
the square brackets of (B3). When E = 0 the expression
(4.21) becomes

I =FPa o d yy o. + —o-;,U —o.P + y O, o.
c 6c2

4 ( 4U) 1 ( 3
,v'4 I 1+, 1~'+, 1~~U[~'UI —AU;]+ AU~;U 1—

I+,I&I ~a~ —,lyl v'& o'+ i,,~ o;, +

+ 4 P~Bo~U —2U;0&c);U+ —28;U, O~U; ——(B~U)2 —UQ~2U + O(5) .~ac4 2
(B4)
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We shall not write down the rather long calculation but only indicate its main steps. One must use the equation of
continuity (81) at the 1PN approximation, i.e. ,

1
Bier + B,o, =. (B—t,o~, —crBiU) + O(4), (85a)

together with the corresponding equation of motion

B, cr; (1+4U/c ) +B~ o;~ (.1+4U/c ) = oB;V+ —[oBiU;+o~(B~U; —B;U~)]+0(4) . (85b)

Thanks to the lemma (4.2) we know that the non-compact supported terms in (84) can be freely integrated by parts
as if the analytic continuation factor lyl+ and the finite part prescription were absent, and as if all surface terms
were zero. I et us quote here a list of identities, valid up to the required precision and up to the addition of a total
divergence, which are used in the reduction of (84):

4 1—(o U —o"P) = —crU4 w c4 (86a)

~Ge4 mGe4 (86b)

,20, lyl'Bi o = 30, lyl'y;Bi'o, , (86c)

1 „2 1,y;, a,' „+ a, UO,-U5c4 4' G
lyl y;B, o.; — lyl B, cr;; — B;UB;U (86d)

16 1
4y;Bi[Bi,U(B;Ui, —Bi,U;)] = y;B, Uo, — UB,B,U3+Ge4 3c4 ' ' 4~G (86e)

Using these and other identities, we arrive finally at a manifestly compact-supported expression (on which we can
remove the analytic continuation factors) which reads as

1 /' 1 I 1 ( 1
d y ~+ —

I

—~„+—~v
~

+ —
I

~U + 2~;vi —4~„U ——%~A»
I ) + &(5),22 2 ) c4 ( ~ ~ 22

in perfect agreement with (83).

(87)

APPENDIX C: COMPUTATION OF THREE
CONSTANTS

To compute the three constants +2, +3, and rz appear-
ing in (4.32) one needs to implement the construction of
the external metric for the interacting multipoles M x M;~
(case of r2), MxM;~g (case of rs), and MxS;~ (r2). The
more general cases of interacting multipoles M x Ml. (t)
and M x SL, (t) are in fact not more difficult to handle
and probably will be useful in future work, so we shall
compute Ke an ~e for any 8 & 2.

In Appendix 8 of [3], where K2 ——ll/12 was obtained,
we computed the complete M x M,z metric valid all over
D, . Here we shall only compute the terms 1/r (and
lnr/r) in the M x Ml, and M x SL, metrics at large

I

distances &om the source, since Ke and K& are contained
in these terms. The quadratic source (1.5) of Einstein's
equations, computed with the linearized metric (2.17)
and (2.18) and in which we retain only the products of
multipoles M x Ml, (t) and M x SL, (t), is made of a series
of terms of the type BI (r i)Bg(r F(t r/c)), where t—he
function F(t) is some time derivative of a moment ML, (t)
or Sl, (t) and where the number of space derivatives act-
ing on r is at most two, i.e. p = 0, 1 or 2 (and where q
is arbitrary). Thus we need only to compute the leading
term when r -+ +oo of the (finite part of the) retarded
integral of B~(r i)Bg(r iF(t —r/c)) when p = 0, 1 or 2.
When p = 0 we know &om our previous papers that this
retarded integral involves a tail. A computation using
(2.26) in [3] and (4.24) in [23] leads to

ra~r'r~ ——
C

[Note that the sum Z& i(l/k) is multiplied by a factor 1 in the present formula (Cl) and by a factor 2 in the formula
(2.26) in [3].] When p = 1 or 2 there are no tails, but the calculation is in fact somewhat more complicated. One
must use (4.26) in [23] to get the polar part at B = 0 of some integrals. The results are
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Fpg p c3~' r 8;(r ')Bc r '5(t'——
)') ~" (t- —:)

2 q+ 1 ' rc~ (r2)(n, ng —8;( ng, ))
' + O

i
—,

~
(C2)

FPii o ~' r 0;~(r )c)q r F t ——' )
(-)"'

2q+1 q+2 (n,~. + h;z)ng —2[b;(a ng i)n~. + bz(a ng i)n;]

(~+i) (t .
)+2~;&,~. . .ng 2) +, +O

~
—,

~

.
rc&+' 4r'J (C3)

[We denote Q = ai . . a~, and in the last term of (C3), j means that j has to be excluded &om the STF operation
( ).] It is then straightforward to obtain the needed nonlinear sources with the help of (1.5) and to apply the formulas
(Cl)—(C3) on each terms of these sources. The p-part of the metric obtained in this way [see (Al)] is found to be
divergenceless up to order O(ln r/r ) and thus, as a short reasoning shows, the q-part of the metric [see (A4)] vanishes
at this order. In the case of the interacting multipoles M x Ml. , we find the metric

(e+j)8 nl MM~
can(2) g|(g 0 k=1 '. (C4a)

(e+1)
0,- —2 n, z,MMI,

Z!(&+ 1)

6'~
can(2) tt(g+ 2)

2 12 + 3E+ 4 nI, gMM'z, —j
l.! I.(E+ 1)(z —1)

e—1

n&11MMI, 4 5I- + 10/ + 8 L —1(i &)L —I(e+x) 2 (e+i)

+ r. ~(e + 1)(e + 2)

4 2g +5/+4 g,-,.n~MM 8 2g +5/+4 nI. 2MM,-,.~ 2

S!e(a+1)(t i 2) . e!e(e+1)(e+ 2)
e—2

2 k ( )

(C4b)

(C4c)

(with c = 1). When E = 2 this metric reduces to (B4) in Appendix B of [3]. In the case of the interacting multipoles
M x S~, we find

„oo (lnr )
can(2) (, r

8(k+ 2)
(~ + 1)!(~+ 1)

(e+x)
naI, -~&'abM~bl, ~

(C5a)

OO e(+)
1

+ 1
OI

lnr)
+ z~sL i ln + +

(g 1)t bL i 2
—

y ( r2 )
168

can(2) (g + 1)f(g + 1)

(e+i) (e+l)n«, (,s, )asMS~~, 16(E —1) n« —2sas(i™,)sl, 2

r (E+ 1)!(8+1) r
'+

161 n« —2~ah(i M (8+2)
/+1!

(C5b)

(C5c)

2E'+ 5/+ 4
E(e + l)(e + 2)

.)
-, k

(C6)

In (C4) and (C5) the moments are evaluated at t —r/c in
the instantaneous terms, and at t —r/c —x/c in the tail
terms. From the metrics (C4) and (C5) we immediately
deduce the values of me and ee entering the tail terms in
the radiative moments. These are

8 —1 . 1"'= e(~+1)+)-k (C7)

We thus find the values quoted in (4.33). Note that the
constants ee and Ke depend on the coordinate system
which is used, namely the harmonic coordinate system.
For instance, the constants would be Ke + 2 and ee + 2
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lim [~t —lnE] = C,
g-++ oo

lim [Ict —lnE] = C,
E-++oo

(csa)

(cab)

in a (perturbed) Schwarzschild coordinate system. Note
also that

where C = 0.577. . . is Euler's constant. This can be of
interest since the combinations tet —1nE —C and +&-
in/ —C arise in the phase of the Fourier transform of the
waveform [see (3.5) in [33] for the mass-quadrupole case
1=2].
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