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Grayvitational radiation reaction effects in the dynamics of an isolated system arise from the use
of retarded potentials for the radiation field, satisfying time-asymmetric boundary conditions im-
posed at past-null infinity. Part one of this paper investigates the “antisymmetric” component, a
solution of the wave equation of the type retarded minus advanced, of the linearized gravitational
field generated by an isolated system in the exterior region of the system. At linearized order such a
component is well defined and is “time odd” in the usual post-Newtonian (PN) sense. We introduce
a new linearized coordinate system which generalizes the Burke and Thorne coordinate system both
in its space-time domain of validity, which is no longer limited to the near zone of the source, and in
the post-Newtonian smallness of the linear antisymmetric (“time-odd”) component of the metric, for
all multipolarities of antisymmetric waves. These waves (as viewed in the near zone) define a gener-
alized radiation reaction four-tensor potential V,%2  of the linear theory. At the 2.5 post-Newtonian
approximation, the tensor potential reduces to the standard Burke-Thorne scalar potential of the
lowest-order local radiation reaction force. At the 3.5 PN approximation, the potential involves scalar
(V2R..) and vector (V2 ) components which are associated with subdominant radiation reaction
effects such as the recoil effect. At the higher-order PN approximations, the potential is intrinsically
tensorial. A nonlinear exterior metric is iteratively constructed from the new linearized metric by
the method of a previous work. Part two of this paper is devoted to the near-zone reexpansion of the
nonlinear iterations of the exterior metric. We use a very convenient decomposition of the integral
of the retarded potentials into a particular solution involving only “instantaneous” potentials, and
a homogeneous solution of the antisymmetric type. The former particular solution is “even” in the
sense that it explicitly contains only even powers of ¢c~!. The latter homogeneous solution defines
a component of the exterior metric which is associated with radiation reaction effects of nonlinear
origin. This decomposition of the retarded integral enables us to control the occurrence and the
magnitude of “odd” terms in any nonlinear iterations of the metric, and to compute explicitly the
radiation reaction potential of the nonlinear theory up to the 3.5 PN approximation. Finally we
recover and complete a previous work concerning the hereditary modification, of quadratic nonlinear
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origin, of the radiation reaction potential at the 4 PN approximation.

PACS number(s): 04.30.+x

I. INTRODUCTION
A. Motivation and summary

The problem of computing the gravitational forces
acting on an isolated system in reaction to the emis-
sion of gravitational radiation is an outstanding prob-
lem in general relativity. Gravitational radiation reaction
forces, such as electromagnetic ones, arise from the use
of retarded potentials for the radiation field, satisfying
time-asymmetric boundary conditions, for instance, no-
incoming-radiation conditions imposed at past-null infin-
ity. The gravitational problem is made technically more
difficult than the electromagnetic problem by the nonlin-
earity of Einstein’s equations. Its importance lies in the
exciting present day possibility of comparing the theory
with astrophysical observations.

For the moment, the only direct evidence that gravi-
tational radiation reaction forces are at work in the real
world is in the observed dynamics of the Hulse-Taylor
[1] binary pulsar PSR 1913+16. The orbital period P
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of this pulsar around its companion has been observed
since 1974 to steadily decrease at a rate P which is per-
fectly consistent with the expectation that the binary sys-
tem loses energy by gravitational radiation [2]-[6]. The
general relativistic formula for P, which now numeri-
cally agrees to within 0.5% with the observations [6], can
be derived heuristically by an energy balance argument
based on the Einstein quadrupole equation [7]-[10] or,
more rigorously, by a study of the dynamics of a system
of two neutron stars up to the level where radiation reac-
tion effects appear [11]-[13]. Thus, the binary system of
the pulsar and its companion is actually emitting gravita-
tional radiation, and the radiation is reacting back on the
system (it obeys time-asymmetric boundary conditions).

In the future, gravitational-wave astronomy will open
a new window on our Universe, and we expect to observe
systems in which gravitational radiation reaction plays
an important role. This is of course the case for coalesc-
ing compact binary systems, whose dynamics is driven
by radiation reaction, but also for supernova explosions
which may undergo a non-negligible net change of total
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linear momentum (recoil) in reaction to the emission of
waves [14].

The first explicit expression of the local radiation reac-
tion force in general relativity was obtained by Burke [15]
and Thorne [16] using a method of matched asymptotic
expansions (see also Refs. [17-19]). This force, which
involves the fifth time derivative of the quadrupole mo-
ment of the source, can be viewed as the gravitational
analogue of the Lorentz damping force of electromag-
netism. Its interpretation as a reaction force rests on the
fact that it appears as the first post-Newtonian correc-
tion in the equations of motion of the source that changes
sign under a time-reversal operation. Thus, the Burke-
Thorne force is expected to yield irreversible effects in
the dynamics of the source, which will dominate, over
the long run, the effects associated with the lowest order,
but time-symmetric, post-Newtonian corrections. Unfor-
tunately, this argument can be fully justified only if one
has a good control of the lowest-order time-symmetric
corrections themselves (see Damour [20] for a discussion).
On the other hand, the way the Burke-Thorne force was
originally derived is incomplete because of the neglect of
nonlinearities in the field [21], [22].

A systematic post-Newtonian (PN) approximation
method, pursued by Chandrasekhar et al. [23]-[26] and
by many subsequent authors [27]—[32], has shown that at
the five halves order post-Newtonian (2.5 PN) approxi-
mation radiation reaction effects appear in the dynamics
of the source and imply a secular decrease of its total
energy and total angular momentum, which are defined
to be the quantities which are conserved up to the 2
PN approximation level. The secular decrease of the en-
ergy agrees with the Einstein quadrupole formula. Note
that the expression of the radiation reaction force in the
work of Chandrasekhar, for instance, has a much more
intricate form than the expression found by Burke and
Thorne, but Miller [33] has shown how to transform one
expression into the other by means of a suitable coor-
dinate transformation (see Schéfer [34] for a compari-
son between various expressions of the radiation reaction
force). The post-Newtonian approximation method is,
however, no longer applicable at the higher 4 PN approx-
imation level, because of the appearance in the metric of
“hereditary” contributions depending on the dynamics
of the source at all instants in the past (Blanchet and
Damour [35]). As we shall see, this means that the post-
Newtonian method is unable to reach radiation reaction
effects of nonlinear origin.

In this paper we shall examine (using the post-
Minkowskian method developed in a recent sequence of
papers [35]-[40]) the component of the exterior gravita-
tional field (generated by an isolated system) which is
responsible for radiation reaction effects both of linear
and nonlinear origin. More precisely we shall investigate
a specific component of the field which is “antisymmet-
ric” in the sense that it is a solution of the wave equation
of the type retarded minus advanced. The possibility of
defining such a component, notably in nonlinear itera-
tions of the field, will be made precise below. Antisym-
metric waves (retarded minus advanced) in the exterior
metric are responsible for radiation reaction effects inside
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the source. Indeed these waves are in fact regular in a
neighborhood of the origin where the source is located,
and thus they are as well present in the inner metric of
the source (this can be shown by matching) where they
imply a small correction in the local equations of motion
which can be interpreted in the usual way as a radiation
reaction force.

The linearized coordinate system used in the work of
Burke and Thorne yields the simplest form of the ra-
diation reaction force. However, this coordinate system
deals only with the dominant part of the radiation re-
action force which appears at the first “odd” 2.5 PN
approximation, where “odd” refers as usual to the half-
integer PN approximations involving odd powers of ¢!
in the equations of motion. Furthermore, the Burke-
Thorne gauge is a priori only valid in the near zone of
the source because it involves homogeneous solutions of
Laplace’s equation which are regular at the origin but
blow up at infinity. In the first part of this paper (Sec. II),
we shall prove the existence of a new linearized coordi-
nate system having the following properties.

(1) The gauge transformation going from the linearized
harmonic coordinates to the new coordinates is made of
globally well behaved (in IR%) “antisymmetric” waves of
a retarded minus advanced type which are “odd” (in the
usual PN sense).

(2) The gauge transformation reduces in the near zone,
i.e., when ¢ — 400, to the usual Burke-Thorne gauge
transformation.

(3) The antisymmetric part of the linearized metric in
the new gauge is the “smallest” in the near zone, for all
multipolarities of waves, in the sense that its order of
magnitude in ¢! cannot be reduced by a further gauge
transformation.

This linearized coordinate system will generalize the
Burke-Thorne linearized coordinate system both in its
space-time domain of validity (which will no longer be
limited to the near zone of the source) and in the magni-
tude in the post-Newtonian sense of the “odd” part of the
metric (which will be the smallest for all components of
the metric and all multipolarities of waves). The small-
est post-Newtonian order of magnitude of the odd part of
the metric will be O(c=%73), O(c=%-%), and O(c~2-%)
in the components 00, 0¢, and ij of the metric density
(ie., G = /=g g*P), respectively, where | denotes the
multipolarity of the wave. At the 2.5 PN approximation,
we shall have only a quadrupolar wave and only the coeffi-
cient of ¢~7 in the 00 component of the metric which will
yield the usual Burke-Thorne scalar potential. At the
next 3.5 PN approximation, we shall have a scalar po-
tential ¢~° in the 00 component of the metric (involving
the mass quadrupole and mass octupole moments), and
a vector potential ¢~8 in the 0i component of the metric
(involving the mass and current quadrupole moments).
These scalar and vector potentials will parametrize, after
due account of the nonlinearities and matching, the recoil
force acting on the source. Higher-order “odd” PN ap-
proximations will be intrinsically tensorial in character.
The antisymmetric part of this linearized metric will be
referred to as a generalized radiation reaction four-tensor
potential (whose validity will be limited to the domain of
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applicability of the linearized theory). This tensor poten-
tial is given by Eqgs. (2.19) below. Everywhere in space-
time, including at the origin, it satisfies the homogeneous
vacuum linearized equations. The interpretation of this
potential as a radiation reaction potential will have to be
fully justified, in a future work, by an explicit matching
to the source.

The use of antisymmetric waves in the gauge trans-
formation, and thus of advanced waves, has, however,
several drawbacks. Indeed the metric no longer satisfies
the no-incoming radiation conditions at past-null infinity,
and its properties at future-null infinity depend on the
dynamics of the source at future temporal infinity. For
these reasons we shall use in fact a “regularized” gauge
transformation which will act only in the near zone of the
source, where it will agree with high accuracy with the
unregularized gauge, and which will be zero elsewhere,
preserving in particular the stationarity of the metric in
the past (since this will be our initial assumption), and
its properties near future-null infinity. The regularized
linear metric so defined will then be a suitable first ap-
proximation of a full nonlinear metric that we shall con-
struct, in the exterior region of the source, by the method
of Blanchet and Damour [36]. Note that since the met-
ric will not only be valid in the near zone but also in
the regions at infinity from the source (where it will be
possible to transform it into a “radiative” metric having
good falloff properties at infinity [37]), the dynamics of
the source as driven, for instance, by radiation reaction
will be related to observable quantities at infinity, such
as a shifted electromagnetic signal, and to well-defined
notions of total (Bondi) energy and linear momentum.

The second part of this paper (Sec. III) will be devoted
to the study of the reexpansion of the exterior metric in

the near zone (r/c — 0). To this end we shall use a very
convenient decomposition of the retarded solution of the
wave equation with some given source, into the sum of a
particular solution which is an instantaneous functional
of the source (in the sense that it depends, at time ¢, on
the dynamics of the source at the same time t), and of
a homogeneous solution of the antisymmetric type. The
former particular solution (which shall be related to the
usual symmetric solution) will be referred to as the solu-
tion of the instantaneous potentials. It is “even” in the
sense that it explicitly contains only even powers of ¢~ 1.
The latter homogeneous solution defines a component of
the exterior metric which is associated with radiation re-
action effects of nonlinear origin (in particular it contains
at quadratic order the “hereditary” contribution of the
radiation reaction force obtained in Ref. [35]). Thanks to
this decomposition we shall control, in any nonlinear iter-
ation of the metric, the occurrence of the post-Newtonian
“odd” terms and then compute the metric coefficients of
the 3.5 PN approximation. The use of our generalized
Burke-Thorne coordinate system will make this computa-

tion easy. These metric coefficients will permit the study
_J
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in a forthcoming paper of the gravitational recoil of the
source. Finally we shall recover and complete the result
of Ref. [35] concerning the appearance of hereditary ef-
fects at the 4 PN approximation.

B. Recapitulation of the assumptions

For convenience we refer to the earlier papers, Refs.
(36], [35], and [38], as paper I, paper II, and paper III,
respectively. (See also Refs. [37], [39], and [40] for other
papers of the same series.) Let us recall the assumptions
underlying the method used in paper I. This method has
its roots in the method of the “double series approxima-
tion,” pioneered by Bonnor and Rotenberg [41], [42] and
Hunter and Rotenberg [43]. It was later refined and clar-
ified by Thorne [44]. Basically the method is to look for
a metric in the form of a nonlinearity expansion, or ex-
pansion in powers of Newton’s constant G (see Ref. [45]
for our notation and conventions):

gaﬁ_:__\/__ggaﬁ=naﬁ+Gh?‘1ﬁ;+...+Gnh‘&ﬁ)+...,
(1.1)

satisfying Einstein’s vacuum equations in the external
weak-field region D, = {(x,t)|r = |x| > ro} around the
source, where 79 > a and 79 >> GM/c?, a and M being
the radius and mass of the source. Furthermore, it is
postulated that each one of the coefficients of the series,

hoA X,t), admits in D, a multipolar expansion into sym-
(n)

metric and trace-free (STF) products Ay = (np)S™TF =
(niyniy -y, )STE of unit vectors n; = x*/r (L denotes
the multi-index ¢143 - - - 4; of order [; see [45]):

K5 ) = 3 Ac(O S, ()

(1.2)

The expansion (1.2) is equivalent to an expansion in
usual spherical harmonics Y;™(6,¢). The two assump-
tions (1.1) and (1.2) are the basic ones, but in paper I we
made also two supplementary assumptions, namely, that
the multipole expansions are in fact finite (i.e., | < lnax)
and that the metric is stationary in time before some
remote date —T in the past, i.e.,

(8/6t) K22 (x,1) = 0.

(n

t<-T = (1.3)
Although the two supplementary assumptions allow the
use of rigorous techniques, they do not seem to play a fun-
damental role, and presumably could be weakened with-
out altering the results obtained by their means. For in-
stance the stationarity in the past could be replaced by
the assumption that the source contains freely moving
masses in its initial state. We shall, however, maintain
all these assumptions in this paper.

The construction of the nonlinear metric proceeds it-
eratively starting from the following “canonical” metric
hcan(l) = (h(l))canonical of Thorne [44]:

(1.4a)
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4 ¢ () 1 1 r
hcan(l) =3 - N OL-1 ;MzL 1 ( - E) 3 Z (+ 1),~‘5uzl>3aL—1 erL—1 (t - c) ) (1.4b)
’ 4 o (=) 1,2 1 Q) r
::]an(l) = -0_4 N OL-2 MijL—2 (t - ~) Z (l ¥ 1)| OaL—2 ;Eab(i‘s})bL_z (t - Z) (14C)

(0L denotes the product of derivatives 8, = 0i,0i, -+ - 0y,
where 9; = 0/0z"; see [45]). This linearized metric de-
pends functionally on two sets of time-varying multipole
moments My (u), mass type or “electric” type moments
having | > 0, and Sp(u), current type or “magnetic”
type moments having [ > 1, and their derivatives, e.g.,
M}ll)(u) = dMp (u)/du. The tensors My, and Sy, are STF
in L = 4149 ---4;. Thorne [44] has proved that the met-
ric (1.4) represents the most general solution, modulo
an arbitrary infinitesimal gauge transformation, of the
Einstein linearized equations in D.. This result was ex-
tended in paper I to a particular “canonical” construc-
tion of the nonlinear metric (1.1), having Eq. (1.4) as its
first approximation, which was shown to represent the
most general solution (within the multipolar and post-
Minkowskian framework) of the Einstein equations in D,
modulo an arbitrary coordinate transformation (see The-
orem 4.5 of paper I).

Thus the set of electric type and magnetic type mul-
tipole moments M = {My,SL} is necessary and suf-
ficient to parametrize the exterior gravitational field of
the source. These moments have been shown to be re-
lated in a nontrivial manner (when going to higher post-
Newtonian approximations) to the physical parameters
of the source [38], [39] and to observable quantities at
infinity [37], [40].

II. EXTERNAL GRAVITATIONAL FIELD

A. Symmetric versus antisymmetric multipolar
waves

The “canonical” linearized metric (1.4) has a structure
made of elementary multipolar retarded waves, solutions
in the exterior region D, of the d’Alembertian equation.
Let us write this structure as

S )

(2.1)

r

where Fgﬁ (u) denotes a function of u which is a con-
traction between some constant Cartesian tensor K Z"L’l,
made of Kronecker and Levi-Civita symbols, and some
time derivative of a mass or current multipole moment:

FEP(u) = K28 M (u) or K§2 5P (w). (2.2)
The function Fz‘ﬂ (u) is constant when v < —T. For
convenience we use in Eq. (2.1) the derivative operator
&, which is defined as the STF part of the product of [
space derivatives 91, = 0;,0;, - - - 0;, (see Ref. [45]).

Each elementary retarded wave in Eq. (2.1) can be
decomposed into the half-sum of the retarded wave and of
the corresponding advanced wave, and the half-difference
between the retarded and advanced waves. We write

\ (Rt

b, (F(t r/c)) by (F(t —r/c)y+ F(t +r/c))

+0L

’

— F(t+ r/c))
2r
(2.3)

where for simplicity’s sake we suppress the indices on
the function F'(u). In this paper we shall refer to the
half-sum of the retarded and advanced waves as a “sym-
metric” wave, and to the half-difference of the retarded
and advanced waves as an “antisymmetric” wave. These
waves, respectively, remain invariant and change sign if
we reverse the time evolution of F: F(u) — F(—u) and
if we afterwards evaluate the wave at the reversed time
—t.

The antisymmetric wave [second term in (2.3)] repre-
sents, for arbitrary [ and F, the most general solution of
the d’Alembertian equation that is regular at the origin.
The formal Taylor expansion of this wave near r = 0
(which can be viewed as a formal expansion when the
speed of light ¢ — +00) can be written, with the help of
Eq. (A32) of paper I, as

. (F(t—r/c) — F(t + (r/c)2k
e R B e e

where we denote by %y the STF part of the product z; = z¥ = zh1z% ...

The first two terms in the expansion (2.4) are

s (Ft—r/c)—F(t+r/c)\ _ Zr
8L( 2r )——

(21+1)
@2 F )l { O+ 2@+

(2.4)
z% and where p!l! = p(p —2)--- (2 or 1).
M?——F(%L‘”(t) 4. } . (2.5)

Note that the same Taylor expansion (2.4) appears in the computation of the multipole expansion of the solution
of the wave equation with a source that is of compact support in space (see the Appendix B of paper III). Using
Egs. (B11)-(B14) of paper III, we can rewrite the antisymmetric wave (2.4) in the form
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~ (F(t—r/c)—F(t+r/c)\ _ Zr ! 2041)
o ( 2r T @ Dl /_1 dz6i(2) FEH(t + 2rc), (2.6a)
where we have posed
20+ 1 1
5mz)—»(2H4; 1-22) J[Idzamz)==1. (2.6b)

Because of the explicit factor 1/c2+!

in front of the expansion (2.4)—(2.6), we see that the antisymmetric wave is of

an order O(1/c*+1) smaller than the symmetric or retarded corresponding waves when ¢ — +oo. For the sake of
completeness, let us also mention the following alternative forms for the antisymmetric wave:

&(F@—UQ—FU+N@)_

or 2c l+1

where P;(z) is the usual Legendre polynomial, and where
the solid angle dQ’ is associated with the unit vector
n’. [The forms (2.7) exhibit a coefficient 1/c'*! which
is larger by a factor ¢! than the real order of magnitude
of the antisymmetric wave when ¢ — +00.]

The decomposition (2.3) of the retarded wave can
also be viewed as the decomposition of the wave into
an “even” wave and an “odd” wave because the expan-
sions when r/c — 0 of the symmetric and antisymmetric
waves involve, respectively, only even and odd powers of

—1. Furthermore, taking into account the explicit pow-
ers of ¢! in front of the canonical linearized metric (1.4),
one sees that the symmetric and antisymmetric parts of
the retarded waves generate respectively the “even” and
“odd” parts of the linearized metric, where now the par-
ity of a term has its usual post-Newtonian meaning of
being the parity of the power of ¢! for terms in the com-
ponents 00 and ij of the metric, and the inverse parity
for terms in the components 0i. However, the use of the
post-Newtonian terminology can be somewhat dangerous
in the study of radiation reaction effects (which carry an
idea of “time oddness”). Indeed the fundamental prop-

/ dz P(z) FU D (t + 2r/c) =

1
Ard+T /dﬂlﬁ'LF(lH)(t +n’-x/c),

(2.7)

Ierty which is of interest in this study is that the anti-
symmetric wave (2.4) is a solution of the d’Alembertian
equation which is regular at the origin, and not that it
is “odd” in the post-Newtonian sense. In fact, we shall
see that in any even nonlinear iterations of the metric,
antisymmetric waves appear which are associated with
nonlinear radiation effects but which are “even” in the
post-Newtonian sense. (Note that in nonlinear approx-
imations the function F(u) will be a complicated func-
tional of the dynamics of the source and that our ter-
minology of symmetric or antisymmetric waves will refer
only to the structure of the wave [first or second term in
Eq. (2.3)] and not to its real behavior under the time-
reversal operation.)

Inserting the decomposition (2.3) into the linearized
canonical metric (1.4) we get a corresponding decompo-
sition

P (2.8)

af af
can(1l) — ( can(l))sym + (hcan(l))antisym .

For instance the antisymmetric part of the metric is given

by

(— )l Mp(t—r/c)— Mp(t+r1/c)
(hcan(l))antisym - 02 Z 2r ’ (29&)
>0
(W) =45y Mg 1 (t = r/c) = Mig) 1 (¢ + r/c)
can(1) antisym - 3 I>1 ! L1
)ll SbL_l(t—T/C)—SbL_l(t+T/C)
63 Z (l+ 1)'EzabaaL—1 o } ) (29b)
2
(W) =45, MGy 5t = /) = MZ)_y(t+/c)
can(1) antisym 04 52 - 2r
1
(- ) l Sj()gL_2(t—r/c) ()13L S(t+r/c)
Z (I+1)! Bar-2  €ab(s o (2.9¢)
[
When ¢ — 400 the components of the symmetric part af _ -2 -3 —4
of the linearized canonical metric have an order of mag- ( Can(1))sym O(e™,e™,e™), (2.10)

nitude given by the explicit powers of ¢! in Eqgs. (1.4),
namely,

where the symbol O(c™2,¢73,¢c™%) means that the com-
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ponents af = 00, 0i, and ij of the metric are, respec-
tively, of order O(c™2), OSc_s), and O(c™4). But because
of the explicit factor 1/c?+! in front of the expansion of
the antisymmetric wave (2.4), we find that the compo-
nents of the antisymmetric part of the metric are much
smaller in magnitude, being

= 0(c™7,¢c78,c7%) . (2.11)

(hedha)

can(1) antisym
With the help of Eq. (2.5) we can compute the first
(“odd”) terms arising at the level O(c=7,¢™%,¢™%) in the
linearized canonical metric. The result is [22]

thion1) + 7héma) = 2" M, M), (2.12a)
6h%ny = — 22°MP (1), (2.12b)
5h’iin(1) = 2M1,(33)(t) s (212C)

where we denote by "h’zﬁx(l) the coefficient of ¢~ in the
expansion of the metric dens1’cy, and where we have added

for convenience to 7hcan(1) the spatial trace 7hcan(1)

26,J7hcan(1) (which is in fact zero in this case because
the space-space canonical linearized metric is trace free).

B. Multipolar antisymmetric gauge transformation

The metric coefficients (2.12) are associated with the
lowest-order radiation reaction effects in the dynamics of
the source. Indeed, since they are present in the exterior
metric of the source, and since they satisfy the Einstein
linearized vacuum equations everywhere, including in a
neighborhood of the origin (modulo terms of higher order
in ¢1), they will appear in, or they will have to be added
by matching to, the inner metric of the source where they
will imply a small correction to the local equations of
motion which can be interpreted as a radiation reaction
force density [indeed the terms (2.12) arise because of
the use of retarded potentials for the emitted outgoing
radiation]. More generally, we see that the whole “an
tisymmetric” linearized metric (2.9) is associated with
radiation reaction effects in the source.

The scalar, vector, and tensor metric coefficients (2.12)
play the role of scalar, vector, and tensor potentials in
the expression of the radiation reaction force in har-
monic coordinates (at the lowest-order post-Newtonian
level ¢=®). However, it has been shown by Burke [15] and
Thorne [16] that by performing a suitable (linearized)
gauge transformation in the near zone of the source, one
can reduce to zero both the vector and tensor potentials
so that the radiation reaction force appears, in the new
gauge, as purely scalar (at lowest order ¢~°). Indeed
let us consider the linearized coordinate transformation

bzH = (Gc=%6£%, Ge55¢t), where
60 = —1z2 M (1), (2.13a)
s& = —z* MO (1) . (2.13b)

Then the new linearized metric h‘(’f; , say, transformed

from hz‘fn(l) by this linearized coordinate transformation,

4397

will have new metric coefficients at the level O(c™7, ¢,
¢=5) (or at the 2.5 PN level) given by

- 4at6€0a
eh% = 6h%n) + 8i6€® — Bus€’,
shly = shiny + 200567 — 698;5¢F .

7h(()?) + 7h{}) = 7h82n(1) + 7han(1)

Using Egs. (2.12) and (2.13) we then obtain

h) + 7hid) = a2t M) (8), (2.14a)
sh(iy =0, (2.14b)
shiy=0. (2.14c)

The scalar metric coefficient Eq. (2.14a), which is now
alone at the 2.5 PN level, yields (for instance, after
matching) a purely scalar expression for the radiation
reaction force density:

E(xa t) = pai‘/react(xa t)7 (2.15&)

where Vieact is the Burke-Thorne [15]-[19] radiation re-
action potential,
G . 5
Vieat = —p 52 MO (t) . (2.15b)
In Egs. (2.15a) and (2.15b), p is the mass density of the

source, and the quadrupole moment M,;(t) (as deter-
mined, for instance, by matching) is

Ma(t) = / B p(x, )3ap + O(c™?) . (2.150)

The total power extracted in the system by the Burke-
Thorne reaction force (2.15) agrees with the standard
Einstein quadrupole formula. However, the above deriva-
tion of this reaction force, based on a gauge transfor-
mation of the linearized (harmonic coordinates) metric
(2.12), is not correct. This can be seen from the fact
that the metric coefficients (2.12) do not by themselves
yield an expression for the force that agrees with the
quadrupole formula. Indeed one must also take into ac-
count (in harmonic coordinates) a contribution from the
quadratic nonlinearity in the exterior field [22]. It is only
afterwards that we must perform the coordinate trans-
formation (2.13). The end results (2.15) of Burke and
Thorne are then recovered (and proved).

We shall now generalize the Burke-Thorne gauge
transformation (2.13) to a general multipolar (not only
quadrupolar) gauge transformation such that the “odd”
part of the transformed linearized metric, which is re-
sponsible for radiation reaction effects, is “the smallest”
when ¢ — 400, in a sense made precise below, for ar-
bitrary orders of multipolarity {. In this sense, our gen-
eralized gauge will constitute the “maximal” generaliza-
tion of the Burke-Thorne gauge. On the other hand, a
problem with the Burke-Thorne gauge is that it is valid
only in the near zone of the source [because the ,£%’s in
Eqgs. (2.13) blow up at infinity]. Thus we shall also ex-
tend the validity in space of the gauge transformation by
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noting that terms such as the ,£%’s in Eqgs. (2.13) con-
stitute in fact the leading terms, valid only in the near
zone, of the expansion when ¢ — 400 of some antisym-
metric waves valid all over IR*; see Eq. (2.4). (However,
we shall see that the introduction in the gauge trans-
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formation of antisymmetric waves, and thus of advanced
waves, can cause some problems; these problems will be
dealt with in the next subsection.) Let us now define a
linearized gauge transformation §zx# = G&H, where & is
the antisymmetric multipolar series:

&= %l;(;)l lfffll)aL{MH“"/C);Mé_l)(t“/c)} , (2.165)
o 2_?;; (;)l (2 7;(11)_(211)+ 3., {Mﬁ‘” (t— r/c)z—TMﬁ—”(t + r/c)}
DZ2( )lzl+1aL_ { iL— 1(t—r/c)2T iL— 1(t+r/c)}
- Z l+;z'2lz+1€wb Bap s {s,ﬁ;?l(t—r/c>2—rs§;i’1<t+r/c)} | o16b)

where we have introduced antiderivatives of the multipole
moments defined as

M () = /_1; dv My (v) ,

MED () = /Tdv MY () .

We assume that the integration range starts at the date
—T (the date in the past before which the moments are
constant but not necessarily zero), but in fact the expres-
sions (2.16) do not depend on —7'. This can be proven
by noting that antiderivatives in (2.16) appear only in
the two types of combinations

MEVE—rje) — MVt +1/c)
2r
1 t+r/c
= - dv ML(’U)
2r t—r/c
and

¢ 2r

1 t+r/c
Y (§> /t_r/c du(t — v) Mz (v),

which do not depend on —7'. Using Eq. (2.4) it is easily
checked that at first order when ¢ — +co (or in the near

5 {M}l_z)(t —r/c) — M£_2) (t+r/c) }

zone where r — 0) the gauge transformation associated
with £ agrees with the Burke-Thorne gauge transforma-
tion (2.13):

1 1
0 _ 0
i—Lle ol 2.17b
g = Egsﬁ + ) (2.17b)
Then we define a “generalized radiation reaction four-

tensor potential” Vr‘:fct (in the linear theory) to be the
sum of the antisymmetric part of the canonical metric
(2.9) augmented by the gauge terms associated with the

antisymmetric gauge vector (2.16):

af o 3 Beo _ pof 1
(hcan<1))antisym+a é +0 £ n aué
V;?zgctv
={ — g Vieacts  (2.18)
erleactv
where we have factorized out ¢=2, ¢3, and c¢~* in the

00, 0i, and ij components of the tensor The explicit
expression of the tensor potential Vs romcts as a functional
of the moments M = {My, Sp}, can be computed from
the expression of the antisymmetric part of the canonical
linearized metric (2.9) and from (2.16). We find

|
VO G;( Y +(;)—(l1—1)-2)a {ML(t—r/c);TML(t-Fr/c)} 7 (2.192)
Dt —p/e) — MY r/c
o 2G;< ) <l+l(21<_2z1)+1)31L{ML (b= r/e) My 0+ /)}
+G Z(l+l1l'i+2€zabéaL— {SbL_l(t—T/C)Q;S”L_l(t+r/c)} : (2.19b)
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M) = 4GZ:PV@HJXW+$5 {M‘”@-ﬁ@-Mﬁ”a+ﬁ@}
react 1 — ij L
= I(t-1) 2r
\ ) l 2l A+1 SRt —r/c) = SRt + /o) 9.19
—2c GZ (l ab(zaj)a[, 1 or . ( 1 C)
—
The tensor V.22 (x,t) satisfies 1
Ve = —5oget e M O) + 5 | 15" e MEU0)
‘/react 0 (220&) )
and - %r2x“mbM(7) (t)]
at react +a r(;act 0 (220b) +O(c_9) s (222&)
everywhere in IR*. Note also that its space components G[1, 6 4 5
catioty Vihot = 5 | 572" Mo (t) — zeiapa®e°S{2) (1)
Vs, = (2.20c) +0(c™ 7y, (2.22b)
g G 1 . .
Furthermore, we note that the expressions (2.19) for the  Vidact = = [—ﬁﬂvuabMW) (t) + ab(’ J)‘“S(ﬁ)(t)]
components of this tensor involve only multiderivative .
operators that are trace free, 95 = (9;,0;, - - - Bij)STF, and +0(c™) . (2:22¢)

that bear the spatial “spin” indices of Vrzfct (nome, i, ij;
spin s < 2). Thus, we see that the multipolarities of the
waves composing V,eact, i.e., the number of indices j on
the trace-free derivative operators 3J, take the maximum
permitted values j =l + s and j =1+ s — 1 for a given
number [ of indices on M, and Sp, respectively, where
s = 0,1,2 according to a3 = 00, 0i, ij. (These values
can be viewed as the maximum values permitted by the
law of addition of angular momenta.) Since we know by
Eq. (2.4) that the magnitude in ¢~! of an antisymmetric
wave of multipolarity j is O(1/c**1), we conclude that
the waves composing Vreact have the smallest permitted
order of magnitude in the near zone (when ¢ — +00),
for any number [ of indices on the moments M}, and S¢.
[This is true even though there are positive powers of ¢
in front of Egs. (2.19).] Thus a linearized metric related
to h?ﬁ;(l) by the gauge transformation §z# = G&H, and

so having Veact as its antisymmetric part by Eq. (2.18),
will have the property that, among all linearized metrics
differing from each other by gauge transformations, it is
the one whose antisymmetric (“odd”) part is the smallest
in the near zone. It is in that sense that we say that the
coordinate system defined from the canonical (harmonic)
coordinate system by éx* = GE&H constitutes the “maxi-
mal” generalization, at linear order, of the Burke-Thorne
coordinate system. (Below we shall have to define a regu-
larized coordinate system that will preserve this property
of being “maximal.”)
When ¢ — +00 the scalar part V;22 , of the four-tensor
potential (2.19) is given by
yoo G o bas(5) 7
react — _ng z Ma,b (t) + O(C )7 (221)
which agrees in first approximation with the Burke-
Thorne scalar potential (2.15b). Computing the com-

ponents of V,22, up to a higher level [using Eq. (2.5)] we
find

C. Definition of a regularized linear metric

Let us tentatively consider the linearized metric ob-
tained from the canonical linearized metric hcan(1) by the
gauge transformation éz# = G¢H of Egs. (2.16):

hef) = k3D o) +0%¢° + 0%¢~ —n*Po,er . (2.23)

The antisymmetric part of this linearlzed metric is
given by the radiation reaction tensor V22, defined in
Eq. (2.18); its symmetric part is equal to the symmetric
part of the canonical me’crlc

The linearized metric h(1) has good properties, which
we qualified as “maximal,” concerning the smallness of
its antisymmetric part in the near zone, and it has also
“normal” properties concerning its symmetric part which
is of order O(c™2,c73,c™*) [see Eq. (2.10)]. Furthermore,
this metric is, like the canonical metric, well behaved in
all the exterior region D., including the regions at infin-
ity (say, for a realistic behavior of the moments at late
times, as in a scattering situation), because both sym-
metric and antisymmetric waves are so. However, since
we have introduced advanced waves in the gauge trans-

formation £#, the metric h(alﬁ) is not stationary in the past

(i.e., not constant before the date —T') like the canonical
metric, except in the interior region of the past-null cone
t+r/c < —T. In particular, at past-null infinity, the
metric does not satisfy the no-incoming-radiation condi-
tion (even though the incoming waves are pure gauge).
Another drawback of the nonstationarity in the past is
that it can prevent the construction of a full nonlinear
metric.

For this reason we shall now define a new “regularized”
gauge transformation which has been suggested to the
author by T. Damour in a personal communication. This
gauge transformation will be purely retarded, and in the
near zone it will agree with the gauge transformation &£*
to a high degree of accuracy. Furthermore, we shall define
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this gauge transformation so that it is zero in a vicinity of
infinity. Thus the good properties of the metric (2.23) in
the near zone will be preserved, and this is the only thing
that we shall need in a study of radiation reaction effects.
Consider the single monopolar antisymmetric wave

(F} = F(t—r/c) 27,F(t +r/ec) ,

(2.24)

where the function F'(u) is constant when u < —T. This
wave is a priori nonstationary (i.e., time varying) every-
where except in the interior region of the past-null cone
t 4+ r/c £ —T where it is zero. The expansion of {F}
in the near zone is given by Eq. (2.4) with [ = 0 or,
more generally, if we expand along some arbitrary cone
t — 6r/c = const (where 6 is some constant), by

Z (6 — 1)“ (0 +1)" (_c_) F(“)(t— or/c) .

(2.25)

Now, by keeping only a finite number of terms in the
expansion (2.25), say, the K first terms, we define a new
object depending on K and 6:

K
1 @—1)"—(@+1)" sr\» (n)
{FYo =5 nz;l = (C) F™ (t—0r/c).
(2.26)
This new object has the following properties. First of

all, we see that it differs from the original object {F'} by
terms which, choosing K large enough, can be made of
arbitrary small order in the near zone, namely,

{F}k,o ={F} + Sk,o(r,1), (2.27)
where we have

Ske(r,t) = O(r¥), (2.28a)
when r — 0, and

Sk,e(r,t) = 01/, (2.28b)

when ¢ — 400. Second we see that, because of the con-
stancy of F'(u) in the past, the object {F}k ¢ is zero in
all the space-time region ¢t — 6r/c < —T (indeed it is
made of a finite number of terms having this property).
The choice 6 > 0 is sufficient to ensure that {F}k is
zero in the past (for t < —T). However, because we
want to minimize the impact (notably in the nonlinear
iterations of the metric) of the gauge transformation at
infinity and in particular at future-null infinity, we shall
make the choice § > 1 below. With this choice we see
that {F}k, is zero in all the region exterior to the fu-
ture timelike cone r > (¢/0)(t + T') and thus is zero at
large distances from the source when we recede from the
source at any speed larger than ¢/# and in particular at
speed c. In a conformal (Minkowskian) diagram, {F} ke
is zero everywhere except in a timelike neighborhood of
the time axis r = 0, starting at ¢ = —T" and joining the
timelike future point I+.
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The regularized linear metric, which will constitute the
linear approximation of a full nonlinear metric below, is
now simply defined by

hcan(l) + 6a£?{,9 +0°€% 5 — ﬂaﬁawfﬁ,g,
(2.29)

ap
(1)K,6 —

where K is a large integer, where > 1, and where the
gauge vector {% , is obtained by replacing all monopolar
waves {F'} by the {F}k ¢ we defined in Eq. (2.26) in the
expression (2.16) for £€%, which gives

2 =)t 2 1
€, = ;;Z (”) e + { 1)} (2.30a)
1>2
. (=)' (2L +1)(2L + 3) (-2)
Eig = 2; Ty diL {ML }Ke
—)l2l+1
+ = Z (T-T;_—laL—l {MiL-1}g,

Y2041

czz(l“)v

EzabaaL 1{SIEL-1-)1}K9 .

(2.30b)

The linear metric (2.29) will be referred to as the “modi-
fied canonical” linear metric. (Note that the “K, 8” mod-
ification applied only to the gauge transformation and
not to the linearized metric itself.) It differs from the
unregularized metric (2.23) by the equation

hof — n"‘ﬁaue‘;{’e,

ke = hih + 0% g+ 0%k (2.31)

where €% , is a gauge vector which is by Eqgs. (2.27) and
(2.28) of very small magnitude in the near zone:

€%o=Ekp—E* =0(1/H2, 1)K (2.32)

In particular we see from Eqgs. (2.18) and (2.22) that the
antisymmetric part of the linear metric is

a _ B
(h(l)K ) == Vee

G c2+ s ' react

1 1 1
+0 (cK+1’ KT2 CK+1) (2.33a)

(where s = 0,1,2 according to a8 = 00,04,45), which,
when ¢ — +o00, is of order

1 1 1
(h(l)K g)antisym =0 (0_7’ C_S’ .0—9) ’

Equation (2.33b) is to be compared with Eq. (2.11). Sec-
ond, the metric (2.29) reduces to the linearized canonical
metric (1.4) in the region outside the timelike retarded
conet —0r/c=-T:

) antisym

(2.33b)

B —_ paB ¢
(K6 = heany When 7> E(t +T). (2.34)
In particular the metric is stationary in the past, and its
asymptotic properties at future-null infinity are the same
as those of the linearized canonical metric. Finally let us
write down that h(1)x ¢ satisfies the linearized Einstein

vacuum equations (in D,),
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« B v
DRl s o — 200N 4 + 18,0, =0, (2.35)
and the coordinate condition
Bh(l k6 = Do (2-36)

which by Eq. (2.32) is nearly harmonic in the near zone,
and by Eq. (2.34) is exactly harmonic in the far zone.

D. Nonlinear iterations of the exterior metric

‘We now construct a full “modified canonical” nonlinear
metric

+o00
Nl NS STy
n=0

(2.37)

which is a solution of Einstein’s vacuum equations in D,
and which is based on the linearized metric of Eq. (2.29):

((11[;1(,9 = h:ﬁxu) + 60‘529 + 8%€% o — n*P Bt 4,
(2.38)
where hz‘fn(l) is the canonical metric (1.4) and where the
gauge vector % , is given by Eq. (2.30) (where K is some

large integer, and where § > 1). By inserting the non-
linear metric (2.37) into Einstein’s vacuum equations, we

get a hierarchy of equations to be solved for each h?f) .00

B B
Oh(pyk,e — 2a(aauh(7)zl)LK,9 + naﬂauauhl(‘:)x,e = N(O;gx,ev
(2.39)

in the right-hand side of which the nth nonlinear source
is an algebraic functional of the previous h(myk,¢ (for 1 <
m < n — 1) and their first and second partial derivatives
(with N(I)K,0 =0).

Let us now recall that the construction of nonlinear
metrics in paper I uses a special class of functions of IR?,
the so-called L™ class of functions. A function f(x,t)
defined in IR*, except at the spatial origin r = |x| = 0,
is said to belong to the L™ class of functions (for some
n € IN) if it admits a finite expansion of the type

F(x,8) =D Frap(t)arr®(Inr)? + Ry (x,1)

p<n

(2.40)

for any positive integer N. In this expansion, a is a posi-
tive or negative integer a € Z (with a > ao; ag indepen-
dent of N), the powers of the logarithm are p € IV and
satisfy p < n (thus the integer n entering the definition
of the class L™ is the maximal power of the logarithms),
and the functions Frqp(t) are C*°(IR) and constant when
t < —T. Note that in paper I we assumed that the func-
tions Frep(t) are zero when ¢ < —T, but it is more con-
venient here to include in the definition of L™ constant
functions of the type Sp<nFropfrr*(Inr)? (where T is a
finite sum) having constant coefficients Fr,p. Finally the
remainder Ry (x,t) is such that its partial time deriva-
tives RE\‘}) (x,t) = 7Ry /Ot? of arbitrary order (Vq) are
(i) zero in the past (when t < —T'), (ii) of class CV (IR?),
i.e., N times continuously differentiable in IR*, and (iii)
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of order O(r") when 7 — 0, i.e.,
IR (x,1)| < MrYN, (2.41)

when r — 0 (with fixed t), where M is some constant.
Given a function f(x,t) belonging to the class of func-
tions L™ (and thus being in general singular at the origin
r = 0) we can consider the retarded integral

[Or' (rB )] (x,t)
1 d3x’
== | —=

1
Ix'|B f (x’,t - E|x - x'|) , (2.42)

|x — x'|

where we have introduced an analytic continuation fac-
tor |x’|B, B being a complex number. It has been shown
in paper I that the integral (2.42) which is a prior: de-
fined only in some vertical strip of the complex plane can
be analytically continued to all values of B in @ — Z,
and that at most multiple poles occur at integer values
of B. Then we define the finite part of the retarded in-
tegral (2.42) at the value B = 0 to be the coefficient
of the zeroth power of B (or constant coefficient) in the
Laurent expansion of Eq. (2.42) near B = 0. As proven
in paper I (see theorem 3.1 there) the latter finite part,
denoted by finite partg_oOz" (1P f) or more simply by
FPDEI f, satisfies in IR* except the time axis the usual
wave equation with source f,

vielL*, O(FPOR'f)=Ff,

and furthermore it leaves the classes of functions L™ glob-
ally stable with respect to its action in the sense that

feL"= FPOR'feL™!

(2.43)

(2.44)

(note the increase by one unit of the superscript n).

In order to start the iteration process by means of the
operator FPDI}1 we need to check that the linearized met-
ric (2.38) belongs to the class L°. Since we know that the
canonical metric hcan(1) € L° (see paper I; recall that we
have enlarged the definition of L™ to include constant
contributions) the only thing we need to check is that
the gauge vector £x 9 € L° (indeed the differentiation of
a function of L™ is a function of L™). This is proven by
expanding the function F'(t — 0r/c) in Eq. (2.26) around
r = 0 by means of Taylor’s formula with integral remain-
der, which shows that each elementary wave {F}x g of
which £k is composed, and hence also £k ¢ itself, be-
longs to LO. Thus, we assume, as an induction hypothesis
(following paper I), that the (n — 1) previous iterations
h(myx,0 (m < n —1) have been constructed so as to sat-
isfy Einstein’s vacuum equations in D, and to belong to
the classes of L™ ! functions, respectively. Inserting the
previous h(m)k,e’s into the nth nonlinear source on the
right-hand side of Eq. (2.39) we obtain
Ln-—-2

NoB

(mK.0 € (2.45)

(by the structure of the source and the properties of the
functions of L™). Thus we can solve the wave equation
with source N(n)k,9 by means of the operator FP D,‘zl.
We first define



4402

Vsco = FP OR NG)

(n) K0’ (2.46)

which belongs to L™~! by Eq. (2.44). [In our previous
papers we introduced a constant P to make the analytic
continuation factor dimensionless, i.e., (r/cP)Z, but we
shall take P = 1 for convenience in this paper.] The

tensor p?f) k.o 18 not yet a solution of Einstein’s equations
(2.39) and we must add to it a second tensor gf;,)
n)K,0

defined as follows. The divergence of p?f) k9> Damely,

Toy Ko = Bﬂp‘("f)Kﬂ, is computed from Eq. (2.46) and the
fact that the source identically satisfies
NB =0 2.47

B (n)K,6 ( . )

by the Bianchi identities. It reads as

70y K, = finite partp_o P [BrB”lniN(";f)K’g] ,
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where the factor B comes from the differentiations of
the analytic-continuation factor rB. It has been shown
in paper I that rf}, . , given by Eq. (2.48) is a sum of
retarded waves, solutions of the d’Alembertian equation
in D, which can be written, in a unique manner, as

ke = Y 0L (% Ap(t— r/c)) : (2.49a)
>0
ke = IZZO {aiL (%BL(t - r/c)>
+o; (%C,L(t - r/c))
+€iab0aL (%DbL (t— 7"/0)) } ,
(2.49b)

where Ar(u),...,Dr(u) (labels n, K, and 6 suppressed
for simplicity) are some STF tensorial functions of the

retarded time. Then the tensor q‘("nﬁ) Ko 18 defined by its

(2.48)  components as
|
@ = —SAED g (a0 420, (Lot (2.50a)
(n)K,6 r re ro @ ’
i C (- 1 1
Weyke = —;Ci( Y — cgiapa (;Dl(, U) - > 8L (;AiL—l> , (2.50b)
1>2
ii 1 1 1 (1) 3 (2) 1 1
oo =50 |18 0 (75| +§{ oG At s Pea (Ot ) + 2800 (B
1 1
—60r_1(: (;Bj)L—1) — 28,12 <5ab(i;Dj)bL—2> } (2.50c)

Note that the spatial trace of qz"nﬁ) K¢ s simply

i 1 1
q(n)K,G = —3 [;B + aa, <;Ba>:| .

In Egs. (2.50) we have introduced antiderivatives:
AED(y) = oo A(z)dz, A (y) = ffoo ACD (z)dz.
[Note that it has been shown in Appendix C of pa-
per I that for stationary metrics the tensors Ar,..., Dy
are identically zero. Hence the Ap(u),...,Dr(u) in
Egs. (2.50) are zero in the past and the above antideriva-
tives are well defined.] The tensor ng K0 has been de-
fined so that its divergence is the opposite of r?n) K6 SO
we can now pose, as an nth-order nonlinear iteration of
the metric,

(2.50d)

hoB

_ B8 B
(WK = Pimyk,e + Unyk,o - (2.51)

This h(af) ko satisfies the nth-order Einstein vacuum
equations (2.39) with the harmonic coordinate condition

Ophil e =0 (n>2), (2.52)

[
and it belongs to the class L*~! (because D(n)K,6 € -1
and qn)kx,e € L%) so that the induction hypothesis are
satisfied at nth order. This ends the construction of the
“modified canonical” metric (2.37).

Finally note that, by the choice (2.52) of the harmonic
coordinate condition for the nonlinear iterations, the ex-
terior metric (2.37) satisfies

005ty =GO ey (2.53)
[see Eq. (2.36)]. Thus, the “nonharmonicity” of the met-
ric (i.e., its divergence) comes only from its linear part,
that we have seen to be nonzero only in the near zone and
to have there the small magnitude given by Eq. (2.32).

III. NEAR-ZONE EXPANSION OF
THE EXTERNAL GRAVITATIONAL FIELD

A. Near-zone expansion of retarded integrals

In this subsection we present formulas, which have
been somewhat implicit in our previous papers (I and II)
but have not yet received a complete proof, concerning
the structure of the near-zone expansion, when r/¢c — 0,
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of (the finite part of) the retarded integral of some source.
Let f(x,t) be a function belonging to some class L",
i.e., admitting for any N € IN a near-zone expansion of
the type (2.40) [with remainder Ry(x,t) = O(r")], and
let f(x,t) be the formal infinite near-zone expansion of
f(x,t) (written “without remainder”), i.e.,
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in which the values of the (positive or negative) integer
a range from a minimum value a¢ up to +o00, and where
we recall that the functions Frop(t) are constant or zero
in the past. Then we can state the following result.

_ Theorem. The finite part of the retarded integral of
f(x,t) (ie., FPOR'f), defined to be the series made of
the finite part of the retarded integrals of each separate

z _ o »
F(x,1) ; Frap(t)fiLr®(Inr)” (1) terms in Eq. (3.1), can be written in the form
rsSn
J
- -— — l A~ —_— —_—
FP o5l f= FRrif+ 3 Olg, fBrltor/o) ~Rultvr/o)l (3:2)
I 2r
1>0
[
In this expression, the function Rp(u), which  Note that one can easily give a sense to the (divergent)

parametrizes an “antisymmetric” wave in the sense of
Sec. II, is related to the source f(x,t) by the equation

: 1 "
Ru(u) = fnite partgoo {~ 1= [y aulPatv.n)},

(3.3)

)STF

where §r, = (Yi,Yip - - ¥i and where the function

gi(y, u) is defined by

+o00 _
aly,u) = j{ dem()fy,u—zlyl/e),  (3.4)
with
() = (o G D 2 gy (3.52)

2!

[Note that we can assume that f(x,t) in Eq. (3.4) is zero
in the past because the constant part of f does not con-
tribute to the second term in Eq. (3.2). So the integral
Eq. (3.4) is convergent.] Thus, the function Rp(u) ap-
pears to be the (finite part of the) l/th order multipole
moment of an effective {-dependent source g;(y, u) repre-
senting an average of the real source f(y,v) over the re-
tarded values v < u, and weighted by the function ~;(2).

J

nLr

B+a+2

integral from 1 to infinity of the weighting function v;(z).
Indeed, by assuming that [ is a complex number satisfy-
ing —1 < Re(l) < —1/2, and by using in the expression
of 4;(z), the Euler gamma function, we compute

o ~ T(2l +2)T(=21 — 1)
/1 dzy(2) = 2(=)"* I +1)r(-1)

The right-hand side of this equation can be extended by
analytic continuation to all values of | € @ (except half-
integer values), and it is equal to one when [ is an integer:

(3.5b)

/ " dimz) =1  (eN). (3.5¢)
1

[Equation (3.5¢) is consistent with Eq. (2.6b) and the
fact that f_+o°: dz(2%2 —1)! is zero by analytic continuation
when [ is an integer.]

Second, the operator FPI~! appearing in the right-
hand side of Eq. (3.2) is defined to be the finite part at
B = 0 (or constant coefficient in the Laurent expansion)
of the formal solution of the wave equation with source
rB f obtained by iterated use of the inverse Laplace op-
erator A~! defined, when acting on each separate term
of the series Eq. (3.1), by

e mean ot (B
a7t urmmrr) = (55) [mrars2n@sarsso) (36)

[see Eq. (3.9) of paper I]. Thus, FPI~!f is defined by the infinite series

cot

_ +o00 5 2k B
FPI~!f = finite partg_, Z ( ) ATF1rB f(x,1)],
k=0

(3.7a)

where A~F~1 = (A~1)k+1 js the (k + 1)th iteration of the operator Eq. (3.6). Note that an alternative expression for
the operator FPI~! f, straightforwardly obtained from Eq. (3.7a), is

1 I/ \%* 11
p— ra —_— 1 “a+ ar 3 ,
FP I~" f = finite partg_q kz=0 (cat> {4“ /d .

in which the integrals are defined by analytic continua-
tion in B. We have, in all IR* except the time axis,

o (FPI7'f)=Ff. (3.8)

lx _ x/‘2k—1

1B (/!
t) e, 3.7b
A wirie ) (3.7b)
[
The proof of the theorem (3.2) is given in Appendix A.
Note that the structure of the near-zone expansion of the
retarded integral is expressed in a very clear way by this

theorem. The particular solution FPI~1f computes the
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near-zone expansion of the “solution” directly from the
near-zone expansion of the “source” in the way we would
like to proceed in practical computations performed in
the near zone of the source (see Secs. III B and IIIC be-
low). The second term in Eq. (3.2) adds to this “practi-
cal” solution a particular (homogeneous) solution of the
antisymmetric type discussed in Sec. II. Recall that the
order of magnitude in the near zone of an antisymmet-
ric wave is small [it is damped by the factor c=2~1 of
Eqgs. (2.4)—(2.6a) with respect to the corresponding re-
tarded wave], and thus we shall often be able to neglect
it in the computation of the lowest-order nonlinear met-
ric coefficients in the near zone. On the other hand, this
antisymmetric solution is associated with nonlinear radi-
ation reaction effects. It contains in particular the hered-
itary radiation reaction effect found in paper II (see also
Sec. III D below).

It is important to note that the particular solution
|

1 d3x’

FP0g = Fpeo {~ b [ B 7 (ot fix—xl) + 7 (xoe o k- x1) |}

LUC BLANCHET 47

FPI-!f is an instantaneous functional of the source in
the sense that (following the terminology of paper II) its
value at some time t depends on the values of the source
at only one instant, the same time ¢. We shall refer to
the operator FPI~! as the operator of the instantaneous
potentials. Note also that the operator FPI~! is “even”
in the sense that it explicitly involves only even powers
of ¢c71. As for the functions R (u) parametrizing the
antisymmetric wave in Eq. (3.2), they are retarded func-
tionals of the source, as is clear from their expressions
(3.3)-(3.4); in particular, the functions Rp(u) are zero
when u < -T.

In Appendix B, for the sake of completeness, we inves-
tigate the link between the operator of the instantaneous
potentials FPI~1, given by Eq. (3.7a) or (3.7b), and the
operator of the symmetric potentials defined, when it ex-
ists, as the (finite part of the) half-sum of the retarded
and advanced integrals:

(3.9)

Let us suppose for a moment that the function f (x,t) is zero both in the past ¢ < —T and in the future t > +T, so
that Eq. (3.9) is well defined. By comparing Egs. (3.7b) and (3.9) we see that the instantaneous integral FPI~!f is
equal to the formal Taylor expansion when ¢ — 400 of the symmetric integral FP Dgl f- The exact relation between
FPI-1f and FP Dgl f (which takes into account the remainder of the Taylor expansion) is, however, not an equality
and is given by Eq. (B9) in Appendix B. It is shown also in Appendix B that the decomposition of the retarded
integral analogous to Eq. (3.2) but with the symmetric operator Dgl in place of the instantaneous one I~! is given

by

Sp(t—r/c)— Sc(t+r/c)

l
FPOR'f=FPO5'f+ ) (;!) éL{

>0 2r

} , (3.10)

. in which the functions Sp,(u) are the following [th-order moments of the source:

1 1 _
S1,(u) = finite part _o {—;1; / &Py grlyl? /_ dzé()fyu zly|/c>} ,

involving a weighting function 6;(z) which is simply re-
lated to the weighting function v;(z) of Eq. (3.5):

1
§1(2) = —2 mi(2), / dz8i(2) = 1. (3.12)
-1

This weighting function 6;(2) is the one appearing in the
computation of the multipole expansion of the solution of
the wave equation outside a compact in space source; see
Egs. (B.11) and (B.12) of paper III. It can also be used
to express the antisymmetric wave itself; see Eqgs. (2.6)
in Sec. IT above.

Note that the function Sy (u), parametrizing the an-
tisymmetric wave in the decomposition of the retarded
integral in terms of the symmetric integral [Eq. (3.10)],
is a mixed retarded and advanced functional (and in fact
a symmetric functional) of the source. Of course this is
evident because the symmetric integral is itself such a
functional. But this shows by contrast how convenient is
the decomposition (3.2) of the retarded integral in terms
of the instantaneous potentials =1 and of the antisym-

(3.11)

r

metric waves parametrized by the retarded functionals
Rr(u). On the other hand the computation of paper II
has shown that nonlinear radiation reaction effects are
contained in the antisymmetric waves involving the Rp’s,
and not in those involving the Si’s. We now come back
to a situation in which f(x,t) is only zero in the past,
and where the decomposition (3.10) in terms of the sym-
metric integral is a priori not valid.

B. Near-zone expansion of the exterior metric

In this subsection, with the help of the theorem stated
in Eq. (3.2), we define an operational method for com-
puting the near-zone expansion of an arbitrary nth-
order nonlinear metric, h?f) K00 given that of its source,

N (o;g x,9- Since the method will be valid for any construc-

tion of the nonlinear metric of the type (3.15) below, we

shall suppress the indices K and 8 in this subsection.
Let us first write down the structure of the near-zone
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expansion of the source which is of the type (3.1) since
the source belongs to L™~2 [Eq. (2.45)]. Using the results
of paper I we can obtain the dependence of the source on
c and write

N8 = Z o= (3n+E0,L+2)

A S o (D) D))

p<n—2
(3.13)

where FE, denotes a set of n mass-type or current-
type multipole moments My, ML,,..., a4y, 414, SaL.—1
(where the current-type moments are endowed with their
natural Levi-Civita symbols), where X7 llz is the total
number of indices on the moments composing the set F,,
(Tyl, = ™1l + §, where j is the number of current-
type moments) and where the functions F'L”‘fp (t) are some
multilinear functionals (homogeneous of order n) of the
moments and their time derivatives having the form
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Faaﬂp(t) = Z/.../dul-..dun’CgZI,_Ln(t,ul,...,un)
KM (ug) - eai 1i, SE_ (un) . (3.14)

The kernel K in Eq. (3.14) has an index structure made
out only of Kronecker é’s and it is a function only of
quantities having the dimension of time: the time argu-
ment ¢, the n integration time arguments u; - - - un, (which
all satisfy u; < t because of the retarded nature of the
metric), and also the constant P (chosen here to be one)
in the factors (r/cP)®.

The nth-order nonlinear iteration of the exterior metric
is given by

heD = Pt + a7b, (3.15)

where the first term is the (finite part of) the retarded
integral of the source [see Eq. (2.46)] and where the sec-
ond term is defined in Eq. (2.50). We deal first with the

near-zone expansion of the first term p(n) With the help
of Eq. (3.2) we can write this expansion as

—af 1 ( )
P =FPI~ N(n)+l§ .

{ R (t—r/c)
r

—Rgﬁ(t+r/c)}

, (3.16)

where FP I is the operator defined in Egs. (3.7) (acting on each separate term of the L"~2 expansion of the source),
and where the functions Rzﬂ (u) are the (averaged) moments

R2%(u) = FP oo {—

1 oo 3y, 4 B rrofB
I/, dzv(z) [ @y Joly|" Ny (y,u—zlyl/c) ¢ -

(3.17)

Inserting Eq. (3.13) into Eq. (3.17), we easily see that the expression (3.16) can be written as

. 1 I+14
P(n )—FPI N(n)+2 3n+zz ZC oL

where now the functions P}fﬁ (u) have the same structure
as in Eq. (3.14), i.e., involving a kernel depending only
on variables having the dimension of time (the P‘w 's do
not depend on ¢). The antisymmetric waves in Eq (3.18)
define a component of the metric which is associated with
nth-order nonlinear radiation reaction effects.

We shall now (in the present Sec. IIIB and in the fol-
lowing one IIIC) view these waves as small remainders
in the near-zone expansion of the metric. Inserting into
Eq. (3.18) the expansion when ¢ — +o0 of the antisym-
metric waves [which involve an extra factor ¢~2/~! where
1 is the multipolarity of the waves; see Eq. (2.4)] we ob-
tain

_ap _
Py =FPI 1N +Zzo<csn+m+z> .

(3.19)

Then we use an equation relating the integer 7, [, 4+ to
the number s of (spin) spatial indices among the indices

{Pgﬂ(t —r/c) —

Pfﬂ(t—i-r/c)}, (3.18)

2r

—

o and B: s = 0,1,2 when af = 00, 01, ¢j, respectively,
and to the number k of contractions between the indices
of the moments composing E,,. This equation is

i=1

4—s+2k (3.20)

and is valid whenever at least one of the moments com-
posing E,, is time varying, which is the case in the second
term of Eq. (3.18). The proof of Eq. (3.20) is given in
paper III [see Eq. (3.14) there]. Equation (3.20) is very
useful because it provides a uniform majoration of the
magnitude in c~! of the remainder in Eq. (3.19). We
obtain

Pl = FPI I1N2# +o(——1—> )

(n) c3n+d—s (3.21)

This result is general (not depending on the particular
algorithm used for the construction of the exterior met-
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ric), and also maximal in the sense that the majoration
of the remainder is generally reached. For instance the
quadratic order “hereditary” terms obtained in paper II
were found to have the magnitude O(c~1%**), consistent
with Eq. (3.21) and n = 2.

Note that by Egs. (3.18) and (3.20) one sees that anti-
symmetric waves are “odd” (in the usual post-Newtonian
sense) in odd nonlinear iterations of the metric (i.e., odd
n), and on the contrary are “even” in even iterations of
the metric (even n).

The formula (3.21) (which has already been found to be
very useful in our previous papers [22], [35], [38]) permits
the computation “in the near zone,” using the operator
FP I~1, of the expansion of p‘("f) from the expansion of the

source with the accuracy O(c~3"~4+3). Furthermore, we
see from the structure of the near-zone expansion of the
antisymmetric wave [Eq. (2.4)] that the post-Newtonian
terms (i) involving at least one power of the logarithm
of ¢, or (ii) differing from the leading order c—3"—4+3 of
the remainder by an odd power of ¢! (e.g., the term
c¢=37=5 in p((’g)) can also be computed from the source by
means of FP I~! even though they are smaller than the
remainder. [The computation of Eq. (3.44b) in the next
subsection will use the previous remark (ii).] Note also
that the remainder in Eq. (3.21) is of order O(c™3"~%)
whenever the left-hand side is a scalar (s = 0). Thus one
can write, for instance,

" /- y 1
Ploy + By = FPI7H(NQY + NGy ) + O 57 ) -
C
(3.22)

Next we consider the second part q"‘nﬁ) of the metric
(3.15) which is a particular retarded solution of the wave
equation defined by the multipolar series (2.50). Restor-

ing the powers of ¢~ we can write the structure of q(o‘nﬂ)
as

L 5, QL =r/0)
af __ I L
) = Z o3ntEL; ZC oL <——r—_ ,  (3.23)

E, >0

where the functions Qzﬂ (u) have a structure analogous
to Eq. (3.14). First we note that q?‘rg has been defined
in such a way that its scalar components gf;y and ¢},
given, respectively, by Egs. (2.50a) and (2.50d) involve
only monopolar (I = 0) or dipolar (I = 1) waves. Using
this fact in Eq. (3.23), and using the equality (3.20), we
see that the expansions of these scalar components are
at least of order

This result is useful in applications. Let us now proceed
as follows. First of all the near-zone expansion of the
divergence rf,, = 6/3p?f) [which is given by Eq. (2.48)]
can be written similarly to Eq. (3.21) by means of the
operator I~1:
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_ . - 1, frai 1
T?n) = finite partB=0 I L [BT‘B ITLILN(C:Z):I +0 (m)
(3.25)

(in which s = 0ifa =0and s = 1if @ = 3). On
the other hand we know that 7‘2"”) admits the decompo-
sition (2.49) into a series of retarded multipole waves.
This fact shows that there must exist some STF ten-
sors Ar(r,t),...,Dr(r,t) such that the expansion (3.25)
reads

Ty = D OLAL(r 1) (3.26a)
1>0
an) = Z {a’iLBL (T’ t) +0.CiL (Ta t)
1>0
+€iabOarDor(r,t)} . (3.26b)

Now we associate to the decomposition (3.26) a new ten-
sor defined in a manner analogous to that of Egs. (2.50),
ie.,

200 = —cATY — 0, ATV + 29,¢{7? (3.27a)
i) = —cC{Y — ceiap@aDy P =D 01 Air_1,
12
(3.27b)

T3 = —6i;B — 6:;00Ba

1 a 3 (2
+ Z{aL—2 <E'A$j}4—2 + ng(ji)L—z - CijL—2>
1>2

+26;;0LBL — 601_1(:Bj)L-1

~20a1,-2 (Eab(iDj)bL—2)} ) (3.27¢)

in which the antiderivatives refer to the variable ¢ [for
instance ACD(r,t) = fioo A(r,z)dr]. The trace of
Eq. (3.27c) is

tty = —3B — 38,5, . (3.27d)
The tensor f?'f) is computed directly from the near-zone
expansion of the divergence (3.26) by formulas analogous
to the defining formulas of qz"nﬁ) [compare Egs. (2.50) and

(3.27)]. However, f?f) is not exactly equal to the near-

zone expansion q?f) of qz"f) This can be seen as follows.
The tensors Ag(r,t),...,Dr(r,t) are related to the func-
tions Ar(t —r/c),...,DL(t — r/c) of Egs. (2.49) by for-
mulas such as

1 1 r\k
AL(rt) = = x = (—Z) AP @),  (3.28)
k¢{1,3,...,21-1}

in which the sum ranges over all values of £k € IN ex-
cept the values k = 1,3,...,2l — 1. Indeed these values
must be removed from the sum because the correspond-
ing post-Newtonian terms, whose spatial dependence is
~ 1% with j = 0,1,...,1 — 1, are killed by the STF op-
erators d;, of Eq. (3.26) [see Eq. (A33) of paper I] and
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thus are in fact absent in the near-zone expansion (3.25).
However, since the number of derivatives acting on some
given tensor Ay, ..., Dy, differs in Egs. (3.26) and (3.27),
and in particular can decrease from Egs. (3.26) to (3.27),
we see that some of these absent terms will generate no
terms in f?nﬁ) while the corresponding terms really exist in

qz’n[; For instance we have dr.Ay, in 70, [see Eq. (3.26a)]
which produces dz-14iz—1 in &} [see Eq. (3.27b)], but

1
Or-1AiL-1=0r1 [— A1 (t - 2)]
r c

+ TL—-1 (21—1)(t) )

c2=1(21 — 1)!!‘4@-1 (3.29)
The first term is the term which normally appears in
q(ry [see Eq. (2.50b)] but the second one is an additional
unwanted term. Fortunately, this unwanted term has,
as well as the other unwanted terms coming from the
other functions By, Cr, and Dy, a structure of the type
Zr?$F(t) similar to the one of the near-zone expansion
of the antisymmetric wave [Eq. (2.4)]. Thus, by the same
reasoning as the one yielding Eq. (3.21), we can control
the order of magnitude of these terms and we have

B _ B 1
q_?n) - t_!(xn) +0 (c3n+4—s) .
Gathering Egs. (3.21) and (3.30) we can now write the

near-zone expansion of the nth nonlinear metric in the
form

(3.30)

TaB _ —1jgeB | o8 1
hiny =FPI 1Ngl)+€?n)+o(m_—s) . (3.31)

This form defines our operational method for computing
the metric directly in the near zone, with the precision
indicated in Eq. (3.31), without having recourse to the
full algorithm of paper I (or of Sec. II of this paper) com-
puting the metric in all the exterior region of the system.
Note that the method is applicable to any construction
of the metric in which the nonlinear metrics are given
by Eq. (3.15), independently of the linear metric, which
needs only to belong to L°. The method adequately com-
pletes the work of paper I.

As an application we now prove a theorem on the or-
der of magnitude, when ¢ — +00, of the odd terms in the
nonlinear metrics, where by odd term we mean a term
whose dependence in c is (Inc)?/c?*+1+¢ where s is the
number of spatial indices in a3 and k,p are positive in-
tegers (the dependence on Inc was proved in paper I).

Theorem. If, when ¢ — +00, the odd part of the linear
metric h?g is of order O(c~%, ¢4, ¢~%) [using the notation
of Eq. (2.10)], then the orders of the odd part of the
subsequent iterations h?‘f) are given by

T 1 1 1
af _
(h(n))odd =0 (C2n+3’ o2n+2’ c2n+3> :

(For simplicity we suppress the indication of the depen-
dence on Inec.)

The condition on hz‘lﬁ) is largely satisfied in the cases of

(3.32)
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the canonical metric [see Eq. (2.11)] and of the modified
canonical metric [see Eq. (2.33b)]. However, it turns out
that the theorem is sharply valid for nonlinear metrics
even in the case of the modified canonical metric (except
for special peculiarities where an a priori allowed term is
in fact absent). The proof of the theorem goes as follows.
We insert into the source N, gg the (n—1)th first iterations

i_z?,,g) (for 1 < m < n—1), supposed by induction to satisfy
Eq. (3.32), and (using the basic structure of 1\7(‘:5) obtain
that N(“nﬁ) itself satisfies

_ 1 1 1
af =
(N(n))odd =0 <C2n+3’ c2n+2’ c2n+3) :

Then, using Eq. (3.21) and the fact that the operator
FPI~! involves only even powers of ¢! [see Eq. (3.7a)],
we find that

(3.33)

1 1 1
B _
(ﬁ‘(l”))odd =0 (02"+3’ c2n+2’ czn+3) - (3:34)
This completes the first part of the proof. To prove

the second part concerning the tensor (j?f) we insert
Eq. (3.33) into Eq. (3.25) and get

- 1 1
(rg'n))odd =0 <——c2n o T +3) . (3.35)
Then we use Egs. (3.27) and (3.30) to compute
PN 1 1 1
(q?"))odd =0 (c2n+1 ? e2n+2? c2n+3) : (3'36)

Thus the time-time component (q?g))odd is found to be

O(c=?"~1) instead of the desired result O(c~2"~3). For-
tunately we have already noted in Eq. (3.24) that cj((’g) is

in fact of order O(c—3"~1!), which is always smaller than
O(c™2n~3). The theorem is thereby proved by induction.

C. The 3.5 post-Newtonian approximation

As we recalled it in the Introduction, this approxima-
tion is associated with subdominant reaction effects in-
cluding the gravitational recoil effect.

We consider the external metric in the modified canon-
ical coordinate system of Sec. II (which generalizes the
Burke-Thorne coordinate system in the exterior region).
We note first that the regularization constants K and
6 which have been introduced in the construction of
the metric will not appear in the near-zone expansion
of a given nonlinear metric h‘("nﬁ) ke UpP to the order
O(c™3n—4+3) (taking K large enough). This can be
checked from the formulas derived in the previous sub-
section, notably Egs. (3.21), (3.27), and (3.30). Hence
we can write

rap _ fap 1
mx,e = himy + O (m:) , (3.37)
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where E‘(’f) is the metric computed by formal iteration
in the near zone, using the method expounded in the
previous subsection, of the unregularized linear metric
(2.23). In the linear case n = 1, the accuracy to which
h‘("g K, 8grees with h'(’f is even higher and is given by
Egs. (2.31) and (2.32). Thus Eq. (3.37) tells us that the
dependence on K and 8 of the exterior metric in the near
zone starts at 4 PN order only.

By the theorem (3.32) of Sec. III B we see that in order

4 o by 1
(8 + 7)) 0y = 572°s" MO + 5 | ~755

o 1 ¥
(h%))odd [ 21" abM(G)(t)+ 455iab® xCSlES)(t)] +O( ) '

=
<hzjl))odd =0 (;}‘5) '

Note that we are using the metric in the modified canon-
ical gauge and that for instance the space-space compo-
nents (3.38¢) of the “odd” metric start at O(c™°) instead
of O(c™%) in the harmonic gauge. This fact makes the
nonlinear iterations of the “odd” metric easy to perform.
At quadratic order the “odd” part of the source, which is
generated by the interaction of the “odd” metric (3.38)
and of the “even” one, is dominantly of order

cap\ (1 1 1
(N(2))odd _O<E§’ clo’ c—9> ‘

To compute the first part 13‘("5 of the metric [see

Eq. (3.15)] at 3.5 PN order we need the following eas-
ily computed source:

(3.39)

16 " 5 1
(7% + N(2)> o5 AU )M (1) + O (ﬁ> :

(3.40)
in which A = 8;8; and where U is such that
4 1
U is explicitly given [see Eq. (1.4a)] by
U= Z ( ) (Brr~YYMy(t) . (3.41b)

>0

Then Eq. (3.22) tells us that we can compute the solution
by means of the instantaneous operator FPI~! because
the remainder O(c=(3*2+4)) = O(c~19) in Eq. (3.22) is
strictly smaller than the order ¢~ we want to reach. The
operator FPI~! reduces at this order to FPA~! and by
standard computations [see, e.g., Eq. (3.20) of paper III
and Egs. (3.9), (3.10) of paper I] we arrive at

4 —zozbre M)
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to control all contributions in the metric up to the 3.5 PN
approximation level, i.e., up to the order (¢™1)°~* in the
components of the usual covariant metric, we must take
into account the quadratic and cubic nonlinearities of Ein-
stein’s equations. (Recall that the quadratic nonlinearity
is sufficient to compute the 2.5 PN approximation [22].)

At the linearized level the “odd” part of the metric up
to 3.5 PN has been computed in Egs. (2.18), (2.22a), and
(2.22b). It reads as

(0) + =% r2M;§>(t)] +0 (il) , (3.38a)
(3.38b)
(3.38¢)
|
=i 16 17 pabps©)
(2% +58),,, = 58 U="=* MG )
—‘43 u(aLT_l)TL(t)
Il
>0
1
0 (2). o

The functions T7(¢) in this expression have been found
to be given by

42l +1
TL(t) =

5 21 +5 Méi)(t)MLab(t)

(3.43)

‘We now compute the second part (7?2[; of the metric. First

of all, the divergence 7:‘(12) = Bgﬁ‘("f) can be computed by

means of Eq. (3.25). We find that its “odd” part is dom-
inantly O(c™1%,¢~°) and is given by the formulas

(f?z))odd = FPp_oA™" [BTB n (N(z))
+0 (c}f*) ’
(W(;Q))odd = FPs=o [A * ( gt)z A_Q]

X [BTB'ln] (N(Q)) ] +0

odd]
(3.44a)

() -

(3.44b)

Actually, the remainder in Eq. (3.25) is O(c™(8%2+5-9))
= O(c™!,¢719), and thus allows us a priori to write
Eq. (3.44a) but not Eq. (3.44b). However, we have al-
ready noted [see the discussion after Eq. (3.21)] that
we are in fact still entitled to use the operator I~! =
A=Y 4 (8/cOt)2A=2% 4 ... when the order in ¢! dif-
fers from the remainder [in this case O(c™1%)] by an odd
power of ¢~1, which is indeed the case for the term ¢!
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in Eq. (3.44b). Now we can compute the tensor (j“&g by
means of Egs. (3.26) and (3.27), which generate the in-
termediate tensor f‘("g , and of Eq. (3.30), which shows
that cj?f) exactly agrees with f?‘f) at the 3.5 PN level [be-
cause the remainder O(c™19+9) starts at the 4 PN level).
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Inspection of Eqgs. (3.26) and (3.27) shows furthermore
that not all of the functions Ar, By, ... are needed, but
only the functions A, A;, B, B;, C;, and D; in the de-
composition of F??)' The explicit computation is done in
Appendix C and yields

(8 +25) 1, = 20 [ (1 2)] - <t— f) ~o (). (50
(#5),0, = = 577 (1 2) = Zewat [0 (e )] v () @
(q—g))odd =0 (cig) ' (3.45¢)
in which the functions m(u), m;(u), and s;(u) are given by
mu) = —= / s M ()MD (v) + F(u) (3.46a)
mau) = ~2MMD (w) - 2 / " o MG w)ME )
‘5 / dv / dw [ =MD @) M (w) - 4—embM(3)( w)SD (w)| + %Gi(u) , (3.46b)
si(u) = -gemb /~ dv MO )M () + Hifw) (3.46¢)

The functions F'(u), Gi(u), and H;(u) in these expres-
sions are functions of u which are some products of
derivatives of the moments taken at the same time u
(they are “instantaneous” functionals of the moments).
In Appendix C we give the complete explicit expressions
of the functions m(u), m;(u), and s;(u).

We still have to find a contribution at 3.5 PN level due
to the cubically nonlinear metric. The latter is readily
computed: Its sole source is

(98 + N<3>) %‘S‘A(U(@T"l))mz(t) +0 (CIT) ;

(3.47)
from which [by Eq. (3.21)] we can deduce

gU(@ir_l)mi(t) +0 (;}—1) :
(3.48)

(h(s) + h<3))

Indeed it is easily checked, using Eq. (3.20) of paper III
J

[

and Egs. (3.9), (3.10) of paper I, that no homogeneous
solution of Laplace’s equation has to be added to the
expression (3.48).

Equations (3.38), (3.42), (3.45), and (3.48) give the
complete “odd” part of the external metric up to the
3.5 PN approximation. Let us combine these equations
with information concerning the “even” part of the met-
ric. It has been shown in paper III that the exterior met-
ric, in usual covariant form gg"ﬂ‘, up to the 1 PN approx-
imation (to which it agrees with the present “modified
canonical” metric) is given by

o 2 2 1
gOOt =—-1+ ZEV[M] - E(V[M])z + 0] <Zﬁ-> y (3493.)
ext 4 ViHM]+ 0O 1 3.49b
90i = _gg_ [ ] + g ) ( . )
ext =65 (1 2 VM O L 9
955 =0i5 + =2 M] ) + =) - (3.49¢)

The scalar potential V' and the tensor potential V* are
given in terms of the moments M = {M, S} by the
symmetric (in the sense of Sec. II) multipolar expressions

VIM =G (;)laL {ML (t— 5);ML (t+ 5)} , (3.50a)
>0
i (=) M, (t—5) + M), (t+5)
ViM] —GgTaL_l{ Lol 5 Lol
e (l(;)i),embau_l {S"L‘l (- 5);;5"“ (¢ 5)} . (3.50b)
1>1
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[See Egs. (3.22) and (3.3) of paper III in which, consistently with the accuracy of the metric in Egs. (3.49), we have
replaced the retarded waves by their corresponding symmetric waves; note that in Ref. [39] the “even” part of the
external metric was investigated up to the more accurate level O(c™%,¢=7,¢7%).] The scalar potential V agrees with
GU, Eq. (3.41b), in the limit ¢ — +o00. Now it is straighforward to show, from the nonlinear iteration we performed
in Egs. (3.38), (3.42), (3.45), and (3.48), that the external metric, accurate to both the 1 PN level as concerns its
“even” part and the 3.5 PN level as concerns its “odd” part, is given by

ext 2 vt vt 2 2 1 1 ext 1
g5 = —1+ 5 (VIM) + VieaatlM]) = 5 (VIM] + VieastlM]) + 50085 + 898 +0 (5 )+ (351a)
ext i A 1 ext 1 ext 1
90i = T3 (V [M] +V react [M]) + g 59047 + = 7 790: +0 c_9 ’ (351b)
— — 1 1
gf;(t = 6'Lj [1 + 2 (V[M] + ‘/react[M])jl 4ngt + -5 6 f;ct +0 (C ) ’ (351C)
where in these equations we denote by ¢~ kgg’g some (yet uncalculated) metric coefficients which are “even,” where

the set of multipole moments M= {M ,S L} is defined from the original set M = {M[, SL} by the relations

gm(u) forl=0

Mp(u) = Mp(u) +

0 forl >2

_ ;Ggsl(u) forl =1 1
Si(u) = Sp(u) + +0 (_) ,

0 forl>2

G 1
;Ggmi(u) forl=1 » + c—7TL(u) +0 (c—g) ,

(3.52a)

(3.52b)

and where the radiation reaction scalar and vector potentials Vieact and Vi, have at this approximation the same

expressions as the ones of Egs. (2.22a) and (2.22b), namely,

2. ab 77 (T) 1
it] <o (&),

V) G siab (6) _ i ac (5) i
react[M] 5 [21 M 45€zab$ S + 0 P .

xz®

—~ G 1
Vieact [M] = z* bM(S) [ng Mcg’;):

The external metric (3.51), which appears as a functional
of the moments (3.52), will be matched, in a forthcoming
paper, to the inner metric of the source, and the effects
associated with the scalar and vector reaction potentials
(3.53) will be investigated.

D. The 4 post-Newtonian approximation

In paper IT we proved that at the 4 PN approximation
level, i.e., at the level O(1/c!°~*) in the components of
the metric, terms appear in the near-zone metric which
are “hereditary” in the sense that they depend on the full
past history of the source. These terms were shown by
matching to yield a hereditary modification of the local
radiation reaction force acting within the source. In the
present subsection we wish to recover, and to complete,
the result of paper II by using the expressions (3.3) and
(3.4) of the functions parametrizing the antisymmetric
waves in the nonlinear iterations of the metric. This will
permit to compute a numerical coefficient 11/12 in the
radiation reaction force which has been left undetermined
in paper II.

By Egs. (3.20) and (3.21) we see that nonlinear anti-
symmetric waves can arise at the 4 PN level O(1/c°~¢)

(3.53a)

(3.53b)

only in the quadratic metric (n = 2) and furthermore
only if the two moments [; and [, composing the wave
satisfy

-l-l +_l_2+l:4—3, (354)
where [ is the multipolarity of the wave (and s the number
of spatial indices in the component of the metric). Since
one of the moments must be time varying we have [; > 2
(say) and thus | <2 —s.

The waves having multipolarities | < 1 — s (i.e., mul-
tipolarities / = 0 and [ = 1 in the 00 component of the
metric, and multipolarity [ = 0 in the 0¢ components of
the metric) yield, in the equations of motion of the source,
a modification of the radiation reaction force which is of
the type pp;(t), where p is the density of the source and
©;(t) a function of time. In a mass centered frame, this
modification does not change the total amount of energy
radiated by the source. We do not compute these waves
having I < 1—s but will give their structure in Egs. (3.68)
and (3.69).

The only remaining possibility is then | = 2 — s, which
corresponds to the interaction of the mass quadrupole
moment M;; (which has I; = 2) and of the mass
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monopole moment M, or Arnowitt-Deser-Misner mass waves.

(which has [, = 0). We now explicitly compute the con- First of all, it is shown in Appendix D that the
tribution of the monopole-quadrupole interaction (sym- quadratic metrics for this interaction in the modified
bolized by “M x M;;”) in the quadratic antisymmetric ~ canonical and original canonical coordinates differ by

J

(h“"  + 0T o + 0°TI% 5 — 108, Ik , + Q;{’e)

can(2

, (3.55)
MXM,‘,]'

h(2)K 6

MXM.,;J'

where the vector II§; 4 is given by Egs. (D6) and (D2), and where the tensor Q“ K6 1s given by Eq. (D3). Now, in the

case of the interaction M x M;;, we easily see [from Eqs. (D10)] that the tensor Qp % is “odd” in the usual PN sense,
and thus that it cannot contribute to the antisymmetric waves at quadratic order since these waves are “even” (recall
that antisymmetric waves are “even” in even nonlinear iterations of the metric). Therefore the antisymmetric waves
of type M x M;; in both constructions of the metric differ from each other by an infinitesimal gauge transformation,
and we can compute them in any coordinate system, for instance in the canonical coordinate system.

The quadratic source corresponding to the interaction M x M;; in the canonical metric has been computed in
Appendix B of Ref. [40]. It reads as

N, = M { 126005126 (2) - 112 () 21 - 6 (£) M-8 (5) MP (e~ 1) . 3560

Netn@iaeson, = nmbM{GMS’) #o(5) M +2(5) M} (- )

c5rs
e {20 (0 MO s () (D) s

can(Dlmxn;  ¢ir6

) +2a(2)" 0 w4 (3)" 92} (- )
eZear (Pt 2 (2) aa - 2 (0) 202 3 ()" 22} (- 3)

i O dORERLJOREREJORH G

M {_% M® - 2; ( ) MY —8( ) Mg‘)} (t— g) . (3.56¢)

N Dijab 5y {GOMab +60 (2

We need to substitute this source into the quadratically nonlinear antisymmetric waves

af — _ poB r
8= )5 {RL (¢ /o)~ Bt + /c)}, 3.5
>0
where
1 +oo
RP(0) = FPao { -~ [@yaulyl? [ den) N0t~ 2lyl/e) ) (3.58)

[see Egs. (3. 16) and (3.17)]. Let us recall that the quadratic metric corresponding to the interaction M x M,j is equal

to its part pj, an(2) (see Appendix B of [40]) and therefore we consider only the antisymmetric waves in pcanm The

problem of computing these waves is reduced to the problem of computing the functions RLﬁ (t) for each elementary

source composing Nean(2)[arx My [Egs. (3.56)]. Let us denote such an elementary source with radial dependence r —k
(with k > 2) by
T AL T
T =S""pg ( =Ty 3.59
r"F(t c’n) Zr" L\t c) (3.59)

Then the corresponding functions

Ris(t) = FPa-o {1 [@yulyl®* [ dm@F - G+ Dlyi/ey/iv)} (3.60)
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take three different forms depending on the relative val-
ues of the integers k£ and [.

(i) When k = 2 and [ is arbitrary, we obtain (using
the technical tools of our previous papers) the hereditary
expression

= ! —_— -_—
Ror(t) =1 /0 d\ |In (2) + 2;:1: -

Fl(/_l)(t - ’\)7

(8.61a)

where Fp(t) is the {th multipolar projection of the func-
tion F(t,n) [see Eq. (3.59)], and where Fé_l)(t) denotes
]

( )l+k2k——2(k 3)|

Rip(t) =

400 k—l—31
N aTES 2)'(k—l—3)'/ d’\[ ()“sz F—2ri T 2 3
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the Ith antiderivative of F;, which is zero when t < —T.
Equation (3.61a) is the result of paper II [see Eq. (5.20)
of paper II]. (Recall that P = 1 in this paper.)

(ii) When 3 < k <[+ 2 we get

2’° 21+2—-k)!Y(k—3)!
(I+k—2)!

Rir(t) = O

(3.61b)

which involves simple antiderivatives of the function
Fy, (t) .

(iii) Finally when k > [+ 3 we again have a fully hered-
itary expression

(3.61c)

i=1

Thanks to the above expressions we now straightforwardly obtain the antisymmetric waves .Acan(2) [Eq. (3.57)]

corresponding to the interaction M x M;;. The result is

8M A 1
00 _ (2)
‘Acan(2)lMxM"j - o dA [ln (5) + '_:| 6ab {Mab leox y
] {M(3)

8M A 11 (4) M 3 (-1) 8M
a7 Jo d)‘[ ()+12}{M l-x 3 ”“”{Mab }+c—5

c5

: 8M

0 — .
.'Ac;n(2)!M><Mij T e o d/\|: ( )

ij —
can(2) nxr;; —

11M
51.3 aab {Mé;) )

where we have used the notation (2.24) to denote
monopolar antisymmetric waves:

F(t—r/c)—F(t+r/c)

{F} = = (3.62d)
Fit—X—r/c)—F{t—-X+r/c
{FHos = ( / )2r ( /) (3.62¢)
Note that the tensor (3.62) is divergenceless:
aﬁAcan@)lMXM =0. (3.63)

It is then easy to extract its physical information from
Egs. (3.62). Using, for instance, Egs. (2.26) of paper I
we can rewrite these equations as

8M Ay, n
00 =
Acan(Z)lMxMij - _-?5— 0 dA l: ( ) + 12]

X Oap {M‘Eg)}l + ouw®,

t—X

(3.64a)

; 8M [ A 11
0
Ac;n(2)|MxMi]. = —5 A dA [ln (5) + _1_2_]

cb
x D {M““) +ou,

(3.64b)

(3.62a)
M
M (Mar} (3.62b)
(1)
a(i {Mj)a
(3.62c)
[
§ 8M 11
c]an(2)|MxMi / dAl: ( ) 12]
{M(4)} + 6w,
(3.64c¢)

using the notation dw*P = %wP + §Pw* — N9, w* for
the gauge term associated with the vector

M

w® = 7 Bap{Mar}, (3.65a)
i__M (-1, 4M ®

wh= =5 Bias { MGV} + S 0 { M (3.65b)

From the form (3.64) of the antisymmetric waves, and
from Sec. II of this paper, we can now conclude that
the effect of these antisymmetric waves is to modify the
radiation reaction tensor potential (2.19) by a linear cor-
rection

‘SV;ZECQ; = V;gact [6 Mij]’ (3.66)

where 6M;; is a small hereditary correction to the mass
quadrupole moment given by
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4GM [t A 111 . (2

(3.67)
However, at the level of approximation we are using here

|

c7 | 189 abe
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(namely, the 4 PN level), only the hereditary modifica-
tion of the 00 component of the radiation reaction po-
tential makes sense, and thus we only write down the
expressions of the scalar and vector components of the
reaction potential complete up to 4 PN:

G ~ G(1 — 1 —~
Vieact = —s—c—za(L‘bMéi) + = {——:Ea.’l,‘b:rcM(7) - %szabeg)}

o8
and

cb 45

+S ) +0 (}7) .

. G (1 e A4 o
V;ieact == {ﬁwz szgb) — =F€iabT mcséi)}
(3.68b)

(Recall that the ij component of the reaction tensor be-
longs to a higher approximation.) The functions f;(t),
g(t) and h;(t), parametrizing monopolar and dipolar
waves, are some instantaneous functionals of the mo-
ments. They have the form

fit) =aM MDD (t), (3.69a)
6
9t)=>"BMP M @), (3.69b)
k=0
hi(t) =yMa M (t), (3.69c)

where «, (B, v are some uncalculated constants. Note
that, consistently with the 4 PN approximation, the mass
moments My, [given by Eq. (3.52a)] involve a hereditary
contribution at the level O(c™®) coming from the cubic
iteration of the metric [see Egs. (5.27) and (6.35) of pa-
per II].

The coefficient 11/12 completing the hereditary mod-
ification for the scalar reaction potential in Eq. (3.68a)
is in agreement with the related coefficient in the hered-
itary modification of the radiative quadrupole moment
computed at infinity from the source [see Eq. (3.10) of
Ref. [40]].

Finally let us end up this paper by stressing that the
expressions above for the scalar and vector radiation re-
action potentials are for the moment disconnected from
the actual dynamics of the source, and thus will have to
be fully justified by an explicit matching to the inner field
J

G 4GM +o0 A —
& {—4 : :v“:cb/o dA [m (§> + %] D (8 = ) +2°fult) +g(t)} +0 (219-)

(3.68a)

[

of the source, as was done in paper II for the hereditary
term in Eq. (3.68a). This will be the subject of a future
work.
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APPENDIX A: RELATION BETWEEN THE
OPERATORS OF THE RETARDED
POTENTIALS AND OF THE
INSTANTANEOUS POTENTIALS
(PROOF OF THE THEOREM IN SEC. III A)

_ We first decompose the (formal) near-zone expansion
f(x,t) given by Eq. (3.1) into a sum of pieces with given
multipolarities [:

f(xv t) = ZﬁL(eaW)fL(rv t), (A1)
1>0
with
fu(r,t) = Fr(t)yr*(lnr)?, (A2)

where the functions Fr,(t) are STF in L and constant or
zero in the past (indices suppressed for simplicity). Then,
for the computation of the retarded integral of 72 f(x, t)
[in fact of each separate term composing 2 f(x,t)], we
use the explicit expression which has been obtained in
theorem 6.1 of paper I. With the structure (A1) and (A2)
of f(x,t), we check that all the hypotheses of this the-
orem are satisfied if the real part of B is chosen large
enough. Thus we can write

ORI =Y [ dst {RE (435,8 = 5/e) = RE (*5,t = /) } | (43)

>0V"T

2r
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where the function RZ(p, u) is related to the source (A2)
by

B _ L7 (p—y) B-l+1Fr
RE(pyu) = (20) A A Tt fr(y,u+y/c)
(A4)
[see Egs. (6.3) and (6.4) in paper I]. This function satisfies

I+1
(%) [(717725(”’ ")} =" fLlp,u+ p/e) -
(A5)

Note that in Eq. (A4) we have explicitly chosen the lower
bound of the integral to be zero. [Recall that Eq. (A3)
is valid if the lower bound of the integral in Eq. (A4) is
replaced by an arbitrary function of ¢t and s; see paper 1.]
In the case where the bound is zero it is easy to see [us-
ing the structure (A2) of the source] that when p — 0
the function R2(p,u) admits an expansion of the type

SpB+k(In p)a F{™ (u), whlch is proportional to the ana-
lytic continuation factor pB, where k, g, n are integers.
Now we can proceed in a way similar to that of
Egs. (5.16)—(5.18) in paper II, and split the RHS of
Eq. (A3) into three integrals. The first integral is the first
term in Eq. (A3) which involves the argument (s —7)/2
and is purely retarded. The second integral is purely
advanced and is equal to the second term in Eq. (A3),
involving the argument (s + r)/2, but in which the lower
bound +r of the integral is replaced by —r. The third
integral is what remains, namely, the second term in
Eq. (A3) but with bounds —r and +r. Hence we write

OR )
e (521000
_g/jwdsa (S—_;—T,t-s/c>}
1

+E/ dsaL{-z— (; t——s/c)}.

1>0

It is known from paper I that a permissible operation is to
take the derivative operator d;, outside the first integral
because the terms coming from the differentiation of the
bound r of the integral are cancelled out by the factor
(2p)! = (s — r)! in the expression of RZ [see Eq. (A4)]
[this is true whatever be the value of the lower bound
of the integral in Eq. (A4)]. The same reasoning applies
also to the second term in Eq. (A6). Thus we obtain

oo - 5o ko, (M0 R0

(A6)

1>0 2r
A 1 _g/(s+r
+;/ dsaL{2—rRL <—2——,t—s/c)},

(A7)
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where the function R2(u) is given by

+oo
REW =200 [ doRE(pu—20/) . (A89)
0

In view of Eq. (A7), the theorem in Sec. III A of the
text will be proved if we show that the above expression
of RB(u) yields Egs. (3.3)-(3.5) in the text, and if the
near-zone expansion of the last term in Eq. (A7) agrees
with the operator I~! defined in Egs. (3.7) acting on the
source.

Inserting the expression (A4) of the function R% into
Eq. (A8), and replacing the variable p by the variable
z=2(p/y) — 1, we readily obtain

R =G [ ayyee

+o0
x /1 dz(2® — 1) Fo(y,u— 2y/c) -
(A9)

[Since the constant parts of the source cancel in the first
term of Eq. (A7), we can assume that fr(y,t) in Eq. (A9)
is zero in the past so that the integral is convergent.]
Then we use the inverse of Eq. (A1), namely,

_ I
fL(Tv t) = (_2_%%-)_

[Eq. (A9b) of paper I] and get

—1 (=)@t + 1! .
= E“( ) 2(1” ) /d3y|Y|ByL

x [T ax 1)y, u—slyle) (a)
1

dQ g f(x,t) (A10)

RE (u)

(where d3y = dyy2dQ; y = |y|). Posing

(ot &2 gy

500 (A12)

(2) =

we obtain

_ +o0 _
REw) = [@yivlPan [ dem@) (v u=siyl/o),

(A13)

which, after taking the finite part, gives the expressions
(3.3) and (3.4) in the text.

We now prove that the near-zone expansion of the last
term in Eq. (A7) is equal to the operator I~! of the
source 18 f(x, t). We first write the Taylor expansion of
this term when ¢ — 400, namely,

Z/ dséL{él—Rf (i-étt,t—s/c)}
>0Y-T T

“+oo ) a i
= - =) {KB(x,t)}, (Al14
S (i) (xEe0), ()

where we have set
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B(x,t)z/r dss.—:goB(x,s,t) ,
0B (x, 5, t)_ZaL{erL (%-’”t)} . (A15b)

>0

(Al5a)

(Note that_KF and ¢ depend also on c through the
functions fr and RZ.) Then we compute the usual
Laplacian (A = £,8,8,) of KP2. The differentiation 8,
will act both on ? in the integrand and on the bounds of
the integral. However, it is easily seen that only the up-
per bound of the integral makes a contribution. Indeed
the contribution coming from the differentiation of the
lower bound —r of the integral vanishes by analytic con-
tinuation since it vanishes when Re(B) is large enough,
because of the behavior RE(p,u) ~ pB**(Inp)? when
p — 0. [We see at this point that our choice zero for the
lower bound of the integral in Eq. (A4) is important.]
After an easy computation we find

T

B _ Si B 7,.1' 0 B
AK,L' = . dsﬁA@ (X, s5t) + Z_'67‘ [(P (xv Ty t)]

rt 9B . ! g
+ﬁ—a—(r—(x,7‘,t)+(l+2)i_!§0 (X,T,t),

(A16)

where in the second term the differentiation with respect
to r is done after the replacement of s by r in ¢?(x, s, 1),
while in the third term the differentiation is done first.
Now, by the structure of ¢Z, Eq. (A15b), we have Ap? =
8%pP /9s? and we can integrate by parts the first term in
Eq. (A16), taking care of the all-integrated terms coming
from the upper bound +r. As a result we get

1 1
AKP —K52+2

867' [r(pB (x,7,t)] . (A17)

Using Eq. (A.35a) of paper I we can compute the value
of P (x,r,t) and obtain

2_?%7,1 (_;_T)l [TZHRL(,» t)] . (A18)

Some further manipulations now show that

o B +1 1 B
E[T(p (x,m,t)] = ; 21+1 ( ) [;TRL (r, t):‘ .
0

(A19)

oB(x,7,t) =
1>0

1>0

) _:dséL{;—TRE(S—;—T,t—s/C)}=;<c_§z)2p A-p-1 [B<i .
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We recognize in the RHS of Eq. (A19) an expression
which can be simplified by means of Eq. (A5). Hence
we can write the following simple formula for the Lapla-
cian of K2 in terms of K2 , and the source:

rB+i

AKB _K32+——f(xt+ ) : (A20)

This formula is also valid in the cases ¢ = 0 and 1 if we
define KB, = KB, = 0. From Eq. (A20) we easily deduce
the equation satisfied by K2 separately:

B+‘L—2p _

AIHIKE = ZAJP[ — (x,t+£)], (A21)

where j = [i/2] is the integer part of i/2.

Now the point is that by the structure of the expansion
when p — 0 of the function R2(p, u) [which is of the type
SpBtE(ln p)e F én)(u)] we can check that the integral K2
given by Eq. (Al5a) admits an expansion similar to that
of the source, i.e., of the type of Eqs. (A1) and (A2). Thus
we see that the unique solution of Eq. (A21) is the solu-
tion obtained by means of the inverse Laplace operator

defined, when acting on terms of the type AprB+*(Inr)9,
by

A YagrBta(lnr)9)

fLL’f‘B+a‘+2

- (;E)q[(B+a+2—l)(B+a+3+l)]‘ (A22)

Namely, the solution of Eq. (A21) is

[¢/2] FB+i—2p
.B = -p=1 . — C
K| ;)A [( T (x,t+c)], (A23)

where it is understood that in the right-hand side we
must replace f(x,t + r/c) by its expansion (Al),(A2),
expand the argument ¢t + r/c around r = 0, and then
use repeatedly the operator Eq. (A22) on each term of
the series. The result is then the expansion of KZ. Fi-
nally we replace the solution found for each K2 back into
Eq. (A14) to obtain

J=

2(5) 16ee )| e

After reconstruction of the Taylor series in the RHS we recognize

Z/ dsaL{ (H%,t—s/c)}zg(%

>0v~—

>2pA_p_1[7‘Bf_(x, )]

! [TBfT(xv t))

(A25)
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which is the equation we wanted to prove.

Note that the above proof has rested on the argument that the integrals X2, and thus the LHS of Eq. (A25), admit
an expansion when r — 0 which is proportional to the analytic continuation factor rB. It has been suggested to me
by T. Damour that this fact alone is sufficient to ensure that Eq. (A25) holds true, the operator A~! being defined
by Eq. (A22). Nevertheless, we have found it interesting (and maybe useful for future work) to present a direct proof
of this equation.

APPENDIX B: RELATION BETWEEN THE OPERATORS OF THE INSTANTANEOUS POTENTIALS
AND OF THE SYMMETRIC POTENTIALS

We assume that the source f(x,t) admits the same near-zone expansion as in Egs. (A1) and (A2) of Appendix A
but with the functions Fy(t) constant or zero not only in the past (¢ < —T') but also in the future (t > +T). In this
way retarded and advanced integrals are convergent at infinity. Then the formula analogous to Eq. (A3) but for the
advanced potentials reads as

_ too ([ AB(=r t+s/c) — AB (&L, t+ s/c
e N =Y [ dsaL{ AeSERlL A SALLYY (B1)
1>0Y7
[
where the function A2 (p, u) is given by in which the function AZ(u) is given by
o !
AB(p,u) = (2 l/d (b=y) Boit1f _ +00
L(p ) ( p) o Y 1 Yy fL(y:u y/c) . AE(U)=2(—)ll!/ dp.AE(p,u+2p/c). (B4)
0
(B2)
Note the changes of sign bet Eags. (A3) and (A4 This function can be expressed in the same form as in
Egs. (B1) andg(BZ). & ween Eqs. (A3) and (A4) and Eq. (A13), but with the retarded argument u— z|y|/c re-
Following the same reasoning as in the retarded case, placed by the corresponding advanced argument. Hence

we can transform Eq. (Bl) into a form analogous to
Eq. (A7), namely, -1 +oo _
ABw) =5 [ @yiPo [ dem(@) (s utaiyl/e).

1B F (=) JAE(t+E) —AP (- 1)
= GIEDY oL £ L < B
5
1>0 ! 2r (B5)
ro 1 g (s+r Now it is easy to show that the second term in Eq. (B3)
+ Z dsOr, E.AL -——2——,t +s/c) e, is equal to the corresponding second term in Eq. (A7) of
>0Y"" the retarded case, the near-zone expansion of both terms

(B3)  being equal by Eq. (A25) to I~ of the source:
J

- " dsdy {.2.1;7;’3 (f—;ﬂ,t—s/c>} _ Z/_:dséL {%AE (%,Hs/c)} —I'Bf(x,t)].  (B6)

>0/ ~" 1>0

The equalities Eq. (B6) can be proved in two ways. First, it can be argued that both the retarded and advanced
terms in Eq. (B6) are solutions of the same d’Alembertian equation (with source r® f) and admit expansions when
r — 0 which are proportional to rB. Therefore the expansions of both terms must be equal to the expansion of I -1
of the source. However, a direct proof of the first equality in Eq. (B6) reads as

e
Tooa 1 _gfs+r 1 " z B-l+1F _s ¥, (st s —29)
ds 8L {Q;RL (T,t S/c>} N 2l+1l! /—'r dS/O dyy fL (y’t ¢ + C) aL r

-T

1 r B r—y B . A7) o
= ""—gz+1u/ dyy® ’“/ d’\fL(y,t—/\/c)aL{( r+y)!A+7 =) }
o ~(r-v) r

:/:dséL {%Af (s—y,tnts/c)} : (B7)
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(The last equality results from the fact that one can
change A into —A in the integrand.)
The integral of the symmetric potential, defined to be
the half-sum of the retarded and advanced potentials,
05 PP = H{OR e PH + 0 PN}, (B9)
can now easily be related to the operator I~!. By sum-
ming Egs. (A7) and (B3) and by using Eq. (B6) we obtain

_ YN TB _r _TB T
DEI(TBf) — l§>:0 ( l') aL{ L (t c) o L (t + c) }
+I7Y(rBf), (B9)

where the function T2 (u) is the half-difference between
the functions REZ(u) [Eq. (A13)] and AZ(u) [Eq. (B5)):

1
=4 | d°
+87r/ yly|®

Now, by using z|y| as a new variable in place of z in the
second integral of Eq. (B13), and by using the structure
Eqgs. (A1) and (A2) of the source, we see that this second
integral is in fact 1dent1cally zero since it involves inte-
grals of the type f *dly||y|Z+*(In |y|)? which are zero
by analytic continuation. Thus the correct expression of
the function SE(u) is

J

St (u)

1
SE@) = - [ @vyPor [ ) fvu - alylfe)

(B14)
|

- [ ot (52-) (5

>0

where the functions R/Z and A2 are defined by the same
expressions as the functions 7?, and AZ but with the
lower bound of the integral takmg the value +oo instead
of the value zero, i.e.,

RE (p,u) = 29)/ (p y) yP T Fr(y, u+y/o)
(B17a)

and
7 (pyu) = —(2/))1/+<><> dy (p;—!y)l yP T L (y, u—y/c).
' (B17b)

To prove Eq. (B16), we use the expressions (A7) and (B3)
of the retarded and advanced integrals in which the func-

tions RZ and AP are replaced by R’Z and A’Z. Then,
from the easily checked fact that

/ de (=) Fly,u— 2lyl/e) — o= / Byly|Por / dzm(2)F(y,u — 2lyl/c) -
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We can also write down the relation between the retarded
integral and the symmetric integral. It reads

(B10)

1>0 i
+0g(rB ), (B11)
where the function SE(u) is given by
SB(u) = M . (B12)

2

Let us obtain a more convenient expression for the func-
tion SP(u). By the explicit expressions (A13) and (B5)
of RE and AZ we get

(B13)

[
where we have set

(2l + )

bi(2) = oy

—%’W(z) = — 22, (B15)

This function 8;(z) is the one which appears in the ex-
pression (2.6) of the antisymmetric wave.

Finally we end up this appendix by noting an alter-
native form of the symmetric integral (B8) [or (B9)]. It

iz

+o00 B 400 B
/0 dpR'E (p,u — 2p/c) = /0 dp A5 (o, u+ 2p/c)

(B18)

one sees that the antisymmetric waves in these expres-
sions involve functions R/ and AP which are equal and
thus cancel each other in the symmetric integral.

(B16)

APPENDIX C: COMPUTATION OF THE
FUNCTIONS m(t), m;(t), AND s;(t)

In this appendix, we denote, e.g., by xq®? or A the
coefficients of ¢™* in the near-zone expansions of ¢*? or
A.

The decomposition of the coefficents 107"?2), 97‘1(;2), and
11rf2) in the divergence 7(5) = 8,3;7‘(’5) of Egs. (3.44) is of
the type
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_ 6 —124(1) 5 7(5
0%y = 104+ 00 10da 4 e, (Cla)  10A=—r MMy — ZrMP MY, (C3a)
oT(ay = i 9B + Bia 9Ba + 9C;i + £iabBa oDy + -, 104; = Tli)%r_lMi“bMég) + %r'lMi(;gMéi)
| (C1b) +8ciabr ™ MacShy) + Sheiasr ™ M) Sy, (C3D)
1urigy = 1uCi+---, (Cle) 9B = %T_lMabMég)’ (C3c)
_ _ 96 ,~1 (5)
from which, by Egs. (3.27) and (3.30), we have oB; = — 3™ My M,y (C3d)
_ Ci=—8rM,M®D, C3e
7Q?§) =0Ua QC(S, 2)» (C2a) o . a(7)m ( )
1Ci = —$rM M,
00 _ (1) (-1) (=2)
s ey MDD g MM
—9 90 — 30q 9Dg, —%Eiabr_lMacSlsg) - %5iabr_1Mé?:)SbC
800 = —oC{ ™V — €iab8a DSV . (C2c) ~Beiwr ' MPSy) - Rewwr T MY S,
| ) i (C3f)
. . 01 2] )
Inserting into the sources 10Ng), oN(3), and 11N oD; = %Eiab"'_lMé.i)MbC . (C3g)

the linear “even” contributions 2h(()f), 3h?f), 4h((’f) and
“odd” contributions 7h((’f), sh?{), gh((’f), and computing
107'?2), 97‘22), and 117‘22) according to Eqgs. (3.46), we find

t
6 1 5
mit) = / du [B MM + MM,
oo

1 t u
mi(t) = —3M MY + / du / dv [%M;;gMg?
—0o0 —o0

228

iab

1 ©) (1) 27(5)
+c—2 /_wdu[%—gMiabMab + YSM, M,y —

t
si(t) = 2eias / du M My, .
— 00

By integrating by parts Egs. (C4) we recover Eqs. (3.46)
in the text.

APPENDIX D: RELATION BETWEEN THE
QUADRATIC CANONICAL AND MODIFIED
CANONICAL METRICS

This appendix presents and uses an identity relat-
ing the quadratic source N(2yk,9 = N(2)(h(1)k,¢) of the
modified canonical metric to the corresponding source
Nean(2) = N2)(hcan(1)) of the original canonical metric.
This identity, which follows from the fact that the lin-
earized metrics h(1)x,9 and hcanq1) differ by the gauge
transformation associated with the gauge vector £% 4 [see
Eq. (2.29)], reads

Mo = N

can(2

) + aaaf(,e
+8%0% g — n*POu0l o + m‘;;?e, (D1)

where O = §,0* and where the vector 0% , and the tensor

The functions m(t), m;(t), and s;(t) of Eqgs. (3.45) are
then

(C4a)
+ &M Mo — FcianMacSye — F5eianMLD Sy
32 ciat M) S — %eiabMé?sg?]
S €ias MacSye) — %geiang?Sbc], (C4b)
(C4c)
|
Q‘}‘fe are given by
0k.6 = —hon1yOu0u€i 6 + Ou(€k 60K ) (D2)
and

B B
Q?{?ﬂ =2 hg;:u)au&x),o — 0y |:§l;{,9(hgaﬂn(l) + 26(a51<),0

—77“[’31151”(,9)}
+6 ga augﬂ
uSK,09 SK,9
+30°P (8ubk 90uElk o — Ol 60K ) - (D3)
Note that these expressions identically satisfy
005y + 055 =0. (D4)

Now we apply the operator FPEI}}1 on both sides
of Eq. (D1) to obtain a relation between p?,f; K0

FP DElN(az? k¢ Of the modified canonical metric and the



47 TIME-ASYMMETRIC STRUCTURE OF GRAVITATIONAL RADIATION

corresponding pgfn(z) = FPOz! ;i(z) of the canonical

metric. Using the tools of our previous papers we obtain

5} _ B
pé)K,e - p(o:lan(Z) + aang{,e + aﬁn?(,o - naﬁap.n;;{,g

+Q3 + ugly, (D5)
where the vector II% , is given by
%o =FPOR oke (D6)

and where the new tensor u}’fe, which arises because of
the differentiations of the analytic continuation factor 72,

reads
u®?, = FP m*l{ —2BrB-15.0Q%°
K,6 B=0 “R TSEKL6

~B(B +1)rB2%0,

—ZBnirB_lni(aaf{),e
+Bn¢rB_177°‘ﬁU}<’9} . (D7)

Because of the explicit factor B in the integrand of the
retarded integral (D7), the tensor u;"ffo is made of re-
tarded waves, solutions of the d’Alembertian equation in
D, (see paper I). The divergence of u‘;‘fe will have also

the same structure, and we can thus associate to u‘;{B PE:!

new tensor v}"fg by formulas analogous to Eqs. (2.49) and
(2.50). Then the relation between the quadratic modi-
fied canonical metric h?‘,g k0 [Eq. (2.51)] and the original

canonical one h?ﬁ.@) is given by
?;;K,e = hgﬁl(z) +0°T05, 5 + 8P 4 — n*PO,IT%

+Q555 +uily +vils - (D8)
Note that the combination u§’, + v5/, is a retarded so-
lution of the Einstein linearized equations (in harmonic

coordinates). Therefore it can be written as h:ﬁ;(l) of

some quadratically nonlinear moments plus terms corre-
sponding to an infinitesimal gauge transformation [44],
[36]. These moments represent a nonlinear correction in
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the relation linking the moments used in the construction
of the canonical and modified canonical metrics.

Finally let us consider the case of the quadratic
monopole-quadrupole metric, corresponding to the inter-
action of the mass M and of the quadrupole M;; (sym-
bolized by “M x M,;”). In this case one has

4M

U?(,OIMXM“‘ = Ez;atzfl;(,ﬂ (DQ)

and
4M 4M .
QR olmx s, = ~ & 8% 6 + 0; (r_cis}{'o) ) (D10a)
; aM .

Q%,G\MX M;; = —E atg}{,ea (DlOb)
Q%,6|MXM1‘]' =0, (D].OC)

where in the vector % , [Egs. (2.30)] we keep only the
part corresponding to the quadrupole M;;. Substitut-

ing the equations (D9) and (D10) into the tensor u?{ﬁ )

[Eq. (D7)] we find that u?fa is the finite part at B = 0
of a source whose near-zone expansion has a structure of
the type BaprBt1tP=3 F(t), where p is a positive integer
with p > 2 when I = 0. Since we know (paper I) that
the finite part of the retarded integral of BfyrBtF(t)
is nonzero only if a is of the type a = -1 -3, -l —5,...,
we easily conclude that

uglylmxnty; =0 (Dila)
and thus also
U?(?9|MXMU =0. (Dllb)

Thus, for the interaction M x M;;, the relation between
the canonical and modified canonical metrics becomes

W wlMxas; = ( hed oy + 0° T o + 07T

MXM,‘j ’
(D12)
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