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MULTIPOLAR RADIATION REACTION IN GENERAL RELATIVITY 
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We point out that several previous derivations of quadrupolar radiation reaction based on "matched asymptotic expan- 
sions" were incomplete because of the lack of consideration of non-linear effects in the exterior gravitational field. Using 
a post minkowskian algorithm together with multipolar expansions we show how to take into account the non-linear effects. 
We derive an explicit expression for the radiation reaction force density when the first radiating multipoles are of order 
1/> 2. When l = 2 we recover the Burke-Thorne reaction potential. 

The announcement of  the observation of  secular kinematical effects in the binary pulsar [ 1] has motivated 
recently several new calculations of  gravitational radiation reaction in slowly moving gravitationally bound systems. 
Many different lines of  attack have been used, among them: post newtonian methods [2], asymptotic matching 
methods [3], balance equations approaches [4], initial value approaches [5], and post minkowskian methods [6]. 
Up to now the only complete calculation of  the secular kinematical effects happening in gravitationally bound sys- 
tems, as well as the only one applicable to the binary pulsar, has been performed by using a post minkowskian 
method [7]. However, the latter calculation applies only to a particular system (a two compact  body system) and 
at the lowest order where irreversible effects appear ("quadrupolar  damping"). On the other hand the existence of  
systems where the quadrupolar gravitational radiation is strongly suppressed [8], and the astrophysical importance 
of  gravitational radiation recoil [9] where the coupling between quadrupole and higher multipoles is essential, 
makes it important  to investigate the radiation reaction due to higher multipoles in more general systems. The 
purpose of  this letter is: (i) to point out that several previous derivations ofquadrupolar radiation reaction, based 
on asymptotic  matching method [10,11,3], were incomplete because they did not take into account the non- 
linear effects in the "exterior region", and (ii) to complete the latter "quadrupole" derivations, to generalize this 
approach to the case where all the multipoles of  order < l are constant and to compute the radiation reaction 
caused by the first radiating multipoles (either of  "mass"  or "current"  type). Concerning the criticism (i) above, 
let us emphasize, firstly that it does not apply to the calculations of  refs. [12] and [13] whose validity is however 
restricted to sources having a spherical or axial symmetry (this symmetry allowing one to meaningfully consider 
linearized perturbations on an exact (non-linearized) background), and, secondly that this criticism goes beyond 
the one of  ref. [14] which pointed out the need to take into account the non.linearities in the "resistive" interior 

field (or "near-zone" field). Here we show the need to consider also the non-linearities in the exterior field (see 
e.g. eq. (8d) below: this is a non-linear term in the exterior field which has not been taken into account in ref. [3] 
which however meets the criticism [14] for the near-zone field). 

The basic idea of  "matching methods"  is to determine the gravitational field generated by a bounded system 
both  in an "interior region" (or "near zone")  which covers the system and extends up to a radius r 1 away from it, 
and in an "exterior region" which starts at a radius r 0 < r 1 outside the system, and then to match the two metrics 
in the overlapping region r 0 < r < r 1. Let us make clear that in our approach r 0 is only restricted to be greater than 
the radius of  the system and not to be a large multiple of  the gravitational wave length ~. This is necessary for allow. 
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ing one to match the exterior metric (determined below) to a post newtonian expansion (or "near zone" expan- 
sion), valid only for r 1 ¢ h, of the interior metric. Correspondingly we shall make no use of "rescaled" variables 
(e.g. r* = r/h), the use of which can dangerously hide the necessity of considering non.linear effects in the exterior 
region. 

As a basis for our work we use the multipole moment formalism of  ref. [15] together with a procedure of com- 
plex analytic continuation. We wish to construct the most general solution of the vacuum Einstein equations which 
admit a post minkowskian expansion (G := Newton's constant, f ~  := fiat metric): 

igll/2g~3 = f~3 + Gh~13 ) + ... + Gnh~n3) + .... (1) 

Replacing the expansion (1) into Einstein's vacuum equations, and, using harmonic coordinates, lead to the follow- 
hag equations ([] :- A - c-2~2): 

E3h~n ~ =N~(n~(h(m)), O3h~n ~ = 0 ,  (2,3) 

where N(n ) is a polynomial in h(m ) and its first two derivatives (m < n, N 1 - 0). We shall take for h~l ~ the explicit 
expression (8.12) of ref. [ 15] given as a sum of terms of the type Oil i2...it [r- lF( t - r/e)], where the functions F 
are the "mass" or "current" multipole moments or their derivatives. We shall denote these moments respectively 
byM L and eabeSeL where L := (il, i2 -.. it) is a multi-index of order l. M L and S L are symmetric trace-free tensors, 
M and S i are constant and M i = 0. In order to have a well-def'med iteration at any order which incorporates Fock's 
"no incoming radiation" condition we shall assume here that all the multipole moments are stationary before a 
fixed instant in the past. Starting from h ~  [ML, SL] we define recursively h~n ~ ~t3 from N~n)(h(m)) (m < n) as: 

a3 a3 
h~n~ := P(n) + q(n), 

P~n~ := Finite partB= 0 ffJ~elt[(r/c)BN~(~(h(m))], 

33q~n~ = -ResidueB=0 ff]~e~ [(r/c)Br-lniNi(~)(h(m))], 

(4) 

(5) 

(6) 

where ff]~elt , denotes the usual retarded integral (all over space, including the vicinity of the "center" r := (x 2 +y2 
+ z2) 1/2 = 0), B is a complex number, n i := xi/r, c is the velocity of light (introduced here only for convenience), 
and where the explicit expression ofq(n) in terms of the r.h.s, of eq. (6) will be found in ref. [16]. The meaning 
of the r.h.s, of  eq. (5) and (6) is the following: It can be shown that each term of the multipolar expansion ofN(n ) 
in the exterior region r > r 0 > 0, is a function o f r  which can be (analytically) continued for 0 < r ~< r 0 and has 
only a "tempered" singularity in r = 0 (less than some r-k). Therefore, because of our assumption of stationarity 
of the multipole moments in the past, each integral appearing in (5), (6) will be well defined as a usual integral all 
over space for B pertaining to some strip in the complex plane, and then can be uniquely analytically continued 
all over the complex plane except for multiple poles at integer values of B. The Laurent expansion of  these func- 
tions near B = 0 then defines (5) (the B 0 term) and (6) (the B -1 term). Because h~l ~ represents the most general 
linearized solution which is stationary in the remote past (when using "arbitrary" sequences of multipole moments 
which are constant in the past) it can be proven formally that our construction: ~ G n h ~  [M L, SL], which is 
uniquely defined in terms of the preceding sequences of multipole moments, yields, modulo an arbitrary coordi- 
nate transformation ~ G n ~n), the most general formal power series solution of the vacuum Einstein equations 
which is stationary in the past (taking for granted the convergence of all the multipole expansions). 

If we endow the multipole moments with their usual physical dimensions (in terms of length, mass and veloc- 
ity units) each h~n ~ becomes a function of t ,  x and c. We have proven [16] that each h ~ ( t ,  x, c) admits an asymp- 
totic expansion/or c -* oo on the scale functions (log c)P/cq (p, q E N). The resulting expansion can be called the 
"near zone expansion of the exterior field" or the "post newtonian expansion of the post minkowskian field" and 
the pith of  the matching approach is to match this expansion to the "near zone" (or "post newtonian") expansion 
of the "near zone field". We have derived simple formulae for computing the former expansion without having to 
compute explicitly the post minkowskian h(n ). If we consider the case where the low order multipole moments are 
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always stationary and where the first "radiating" moments are Mil... i t and/or ei l i2 e Sci3... i t (usually 1 = 2), we 
found that, for any iteration order n, the "near zone" expansion of the non-linear exterior term p~n ~) is given by 
(i being the number of spatial indices among a, ~): 

-a~ k~0 1 a2k A -k-1  [(r/c)BAr~] + Or(log c)n-1/c3n+21-i l P(n) = Finite partB= 0 c 2k Bt 2k , (7) 

where the bars over pa~ and N ~ denote the near zone expansion, and where the iterated inverse laplacians of eq. 
(7) are defined by analytic continuation in B. Because of the remarkable absence of explicit odd powers of c -1 
in (7) it is especially simple to compute the "odd" terms in iSa#: we mean by "odd" terms the coefficients of c-q 
with i + q odd, i.e. the terms that change sign upon time reversal, or the "resistive" terms (there are no "log c" in 
these terms at lowest order). 

Simple dimensional arguments show beforehand that in order to get the complete radiation reaction we need to 
compute among h a• := Zn- 1 Gnh~'~', the c -(2/+3) parts of boo and h ss (denoted 2l+3 h00 and 2l+3hSS), as well as 

formula (7) for P~n~,- together with a related formula for q-aa(n). We find (all lowest order odd terms being zero): 

~t ~00 ss [(-1)t2t+1/( 21 + 1)!]xLM(Z21+l)(t) (8a) gt21+3"(1) + 2l+3h(1)) = 

L-l , . (21) r÷~ L-2e(21-1)/+'~l 21+2h(1)01 = [(_1)I+12l+1/i(21 _ 1)!] tx my L-I~'J + (1 - 1)e]ab xb °a L-2 t'JJ , (8b) 

r L-2..(21-1)r÷ ~ b L-2 (21-2) 2/+1h~) = [(-1)121/I(1 - 1)(21 - 3)!] ix m]* L-2u)  + 2(1 - 1)x eab(jSk) a L_3(t)] ,  (8c) 

r l. O0 ss _ ~ L- l . . (2 l -1 ) r ,  a 2(/-- 1) 2 cL-2,~(21-2)r,a1 
~.2l+3n(2) + 2l+3h(2)) - [(-1)l+12l-1/l(I - 1)2(2l - 3)!] IX ~na L-1 ~.'~ + ~ -  ~ eabcX °b L-2k'~J 

X ~ ~ (aaL,r-1)ML,(t)+ ~ 2(--1)l'+l(~L,r-1)QL,(t ) (8d) 
l '= 0  • l '=1 l ' !  ' 

2/+2h(0~) = 0 ; 2/+1 "2 k) = 0 ; 2l+3_lh(n) = 0 when n/> 3 .  (Be) 

In eqs. (8) L - 1 denotes (il, i2 ..... il-1), M(P) = dPM/dtP, n L = x L/r l is the trace free part of n i~ n i~ ... nil, and 
1 t (21 1) (21 2) (2l  3) or  I o o t QL, 'sacontractedtensorproduc ofM~ - , SL_  1 0 r S L _  1 wi thML,  SL,,. n rdert  stress he necessity 

of considering non-linear terms even if one intends only to do a partial matching (looking up the highest powers of 
a# r for instance) let us point out that the intermediate calculations ofh(n ) (n ~ 2) lead in addition to the type of 

terms appearing in (8d) to terms of the type ~PL,x  L' similar to the tdrms, coming from h(1), which give rise to 
radiation reaction effects (see eqs. (8a) and (11)). Therefore in absence of a proof (contained in our detailed calcu- 
lations leading to eqs. (8)) that these terms, of non-linear origin, do not appear, and thence do not modify the cor- 
responding terms coming from h(1), all the derivations of radiation reaction based on the sole linearized approxima- 
tion of the exterior field (like in refs. [10,11,3]) are certainly inconclusive. 

Let us now perform the following coordinate transformation in the overlapping region between the interior and 
the exterior region (r 0 < r < r 1 < X): x ' ,  = x "  + ~" with: 

~o = _~0 = ( 1/c 21+2) [ ( -  1)121/12(1 - 1)(2 l - 1)!] xLM(2l)( t) ,  (9a) 

21+1 l+l l 1 r L-l..(21-1){÷.~ b L-2 (21-2) ~l=(1/c )[(--1) 2 -  / I ( I -1 )2 (2 l  3)t ] tx  mig-~  t ' ) +  [2 ( l -1 )2 / (  l -  - 2)] etabx S~ L-2 ( t)}.  (9b) 

We f'md for the new "near.zone.expanded" exterior metric (going back to g~fl instead of h'~fl), for r 0 < r < r 1 : 
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/•1• (0L'r-1 g '  = , , ' , 2•+3 00 --2VR + )QL'(t), 2l+2g01 =A~ 2l+lg/k = 0 (10) 

with: 

(-1)t21(l + 1)(l + 2) L jx(2l+l)t+ a • _ (--1)12l+1(l + 1)(l - 1) L-2e(2t-1)t ,a (11) 
VR = ~ l ' - + ~ ) l .  "~ l"lL ~ ' '  AIR-  1 ( l ' 2 ) ( 2 1 - 1 ) !  e/abxb ° a L - 2 t ' : "  

Let us now assume that one has constructed a "near zone expanded" interior metric (for example for a slowly 
moving self-gravitating system o f  fluid balls) containing only "even" terms which matches our general near-zone- 
expanded exterior metric up to order 1/c 2l+2-i (this construction will be discussed in a forthcoming paper). Then, 
as it is easy to check that the expressions: 8goo = c-21-3(--2VR), 5go/= c-2l -2A~,  8gik = 0, considered all over 
space, satisfy everywhere the linearized Einstein's vacuum equations (modulo terms of higher order in c - l ) ,  it is 
clear that in order to match the interior and exterior fields we must: (1) add to the previous "even" interior metric 
the "odd" terms: 8goo, 8go/, 8g/k and, (2) link the multipole moments, which, up to now, were only arbitrary 
parameters in the exterior metric, to the matter density O by equations of  the type: 

M L, + c-(21'+l)QL, = f d3x Ox L' + "even" corrections. 

Finally the "odd" terms 8g00, 8go/in the interior metric imply a small "odd" correction to the local equations of 
motion (T aa ;~ = 0) which can be expressed in the usual way as a reaction force density. We find it convenient to 
express it as an electromagnetic.like force: 

F R = (1/c2l+l)p(ER + ~ × BR) , (12a) 

with: 

E R = - V V  R - 0 t A  R ,  B R = V X A  R.  (12b) 

The scalar and vector "reaction potentials" being given by eq. (11). When l = 2 (quadrupolar damping) the 
"vector reaction potential" vanishes (constant spin) and we recover the usual Burke-Thorne scalar potential. For 
mass moments 1/> 3 our V R agrees with the related proposals of  refs. [10,12]. We have shown that the reaction 
force F R causes the expected [ 15] secular decreases of  energy and angular momentum of the system. The details 
of  this work will be published elsewhere. 

One of us (T.D.) would like to acknowledge stimulating discussions with J. Ehlers and B. Schmidt. 
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