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Département d’Astrophysique Relativiste et de Cosmologie, Centre National de la
Recherche Scientifique (UMR 8629), Observatoire de Paris, 92195 Meudon Cedex, France
and Department of Earth and Space Science, Graduate School of Science, Osaka
University, Toyonaka, Osaka 560–0043, Japan

Guillaume Faye
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The two purposes of the article are~1! to present a regularization of the self-field of
point-like particles, based on Hadamard’s concept of ‘‘partie finie,’’ that permits in
principle to maintain the Lorentz covariance of a relativistic field theory, and~2! to
use this regularization for defining a model of stress-energy tensor that describes
point-particles in post-Newtonian expansions~e.g., 3PN! of general relativity. We
consider specifically the case of a system of two point-particles. We first perform a
Lorentz transformation of the system’s variables which carries one of the particles
to its rest frame, next implement the Hadamard regularization within that frame,
and finally come back to the original variables with the help of the inverse Lorentz
transformation. The Lorentzian regularization is defined in this way up to any order
in the relativistic parameter 1/c2. Following a previous work of ours, we then
construct the delta-pseudo-functions associated with this regularization. Using an
action principle, we derive the stress-energy tensor, made of delta-pseudo-
functions, of point-like particles. The equations of motion take the same form as the
geodesic equations of test particles on a fixed background, but the role of the
background is now played by the regularized metric. ©2001 American Institute
of Physics. @DOI: 10.1063/1.1384864#

I. INTRODUCTION
In recent years, the problem of the dynamics of gravitationally interacting compact obje

general relativity has received a lot of attention. This is due in part to the interest of the theo
problem in its own, and in part to the ongoing development of laser-interferometric detecto
observing gravitational radiation. In the absence of an exact solution of the problem, on
recourse to successive post-Newtonian approximations~formal expansions in powers of 1/c).
Within such approximations, it makes sense to model the compact objects with some ‘‘poin
particles,’’ exactly as we do in a standard way within the Newtonian theory. However, the
field of point-particles is infinite at the very location of a particle, and thus must be some
regularized. The regularization is quite straightforward in the Newtonian theory, but it bec
nontrivial when going to high post-Newtonian approximations. Dealing with this problem
present authors1 developed a method for regularizing the infinite self-field of point-partic
which is based on the concept of ‘‘partie finie,’’ in the sense of Hadamard,2,3 of a singular function
at the place of one of its singular points~see, e.g., Refs. 4–7 for entries to the mathemat
literature!. We know that the Hadamard regularization yields the correct result for the equatio
motion of two particles up to the so-called second and half post-Newtonian~2.5PN! approxima-
tion, corresponding to the order 1/c5 beyond the Newtonian acceleration. Indeed, the problem
been completely solved at that order;8–19 notably some derivations make use of this regularizat
~e.g., Refs. 12 and 19!. In the present state of the art, we are concerned with the 3PN~or 1/c6)
43910022-2488/2001/42(9)/4391/28/$18.00 © 2001 American Institute of Physics
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approximation.20–25 In fact, starting at this high post-Newtonian order, the regularization m
become physically incomplete because of the appearance of an undetermined coefficien
equations of motion.20–25

The Hadamard regularization, investigated in Ref. 1, is performed in a three-dimen
Euclidean space with generic pointxPR3, which is viewed as the spatial hypersurface labeled
t5const in a global coordinate system$t,x% covering the whole space–time. In particular, t
regularization involves a spatial average, performed att5const, over the direction of approach
the singularity. As such a regularization makes use of a preferred spatial hypersurfacet5const, it
is clearly incompatible with the framework of special or general relativity, which embodi
global Lorentz~or Poincare´! frame invariance. Notably, we expect that the post-Newtonian eq
tions of motion of point-like particles in harmonic coordinates~which we recall preserve the
global Lorentz invariance! should exhibit at some stage a violation of the Lorentz invariance
to the latter regularization. The fact is that the breakdown of the Lorentz invariance due
regularization occurs only at the very high 3PN approximation. Until the 2.5PN order,
sufficient to regularize within a preferred slicet5const of the harmonic coordinate system
obtain some Lorentz-invariant equations of motion.19

The first purpose of this article is to define a regularizationà la Hadamard2,3 that is compatible
with the Lorentz structure of a relativistic field theory. This completes the definition, propos
Ref. 1, of a specific version of the Hadamard regularization~based notably on a particular class
pseudo-functions!. To achieve this purpose, we shall simply perform the standard Hada
regularization within the hypersurface that is geometrically orthogonal, in the sense o
Minkowski metric, to the four-velocity of the particle. In separate papers,24,25 we apply the latter
‘‘Lorentzian’’ regularization~together with the distributional derivatives introduced in Ref. 1! to
the computation of the binary equations of motion at the 3PN order in harmonic coordinate
find that, indeed, it permits the preserving of their Lorentz invariance~in some case at the price o
adjusting some parameter!. A different approach to the problem of incorporating the Lore
invariance in the 3PN equations of motion consists of deriving a generic regularized dyna
within the ADM-Hamiltonian formalism of general relativity, involving an arbitrary regularizat
parameter, and determining this parameter uniquely by requiring the Lorentz invariance.23 ~See
Sec. 2 in Ref. 25 for a discussion on our point-mass regularization and its relation to Ref.!

Throughout the article, we assume the existence of a preferred Minkowski metric, as se
for instance by the condition of harmonic coordinates in general relativity, with respect to w
the trajectories of particles are represented by accelerated world lines like in special rela
Most of our investigation is valid not only in the case of the gravitational field but also for
Lorentz-tensor field propagating on the Minkowski background. Furthermore, we shall defin
Lorentzian regularization in a sense of formal expansion series in 1/c2, so that all the formulas in
the article will be given by some infinite series of relativistic corrections whenc tends toward
infinity. This is all we need for the derivation of the equations of motion to the 3PN order.24,25

Since we are interested in the application to the motion of two particles, we shall defin
regularization around one of the particles~say particle 1!, and shall consider that its acceleratio
is purely due to particle 2.~However, our definitions could be generalized to a system oN
particles.! Notice that particle 2 enters this regularization scheme through the Lorentz transf
tion of its own variables to the rest frame of particle 1, and the replacement of the accelera
1 in terms of the equations of the binary motion. In general, working at some given relati
order, we shall need to know the equations of motion up to a lower order only, therefore givi
the possibility of an iterative process. In this article, we always assume that we know the re
equations of motion at this order, and that these are Lorentz-invariant.

Our second purpose is to derive an expression, compatible with the latter regularizatio
the stress-energy tensor of point-like particles in post-Newtonian expansions of general rel
Thanks to this regularization, we are able to give a sense to the value of the metric coeffici
the very location of the particle. Our basic assumption is that the matter action is the same
testparticles moving on a prescribed background gravitational field, except that the metric
location of the particles is replaced by its regularized value in the sense of the~Lorentzian!
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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regularization. From this assumption, we prove that the Dirac measure in the stress-energy
must be replaced by a certain generalized function defined by means of the Hadamard pr
tion. In the case of two particles~the generalization toN particles is immediate!, we obtain

Tparticle
mn 5

m1cv1
mv1

n

A2@grs#1v1
rv1

s
Pf S D~x2y1!

Ag~ t,x!
D 11↔2, ~1.1!

wherem1 is the mass of the particle 1, andv1
m5(c,v1) its coordinate velocity, i.e.,v15dy1 /dt,

y15y1(t) being the trajectory parametrized by the coordinate timet ~the symbol 1↔2 denotes the
same expression but corresponding to the second particle!. The notation@grs#1 means that the
metric grs(t,x) is to be computed at the pointx5y1(t) following the regularization~of course
@grs#1 depends on the positions and velocities of both particles 1 and 2!. Note that the first factor
in ~1.1! is a mere function of timet. The second factor Pf„D(x2y1)/Ag… is made of a special type
of partie finie delta-pseudo-function associated with the regularization~following the definition
given in Ref. 1!. It involves~minus! the determinant of the metricgrs , namelyg, evaluated at the
point (t,x), and a generalization PfD(x2y1) of the Dirac function defined in such a way that i
action on a singular function yields the value of the function at the singular point in the sen
the regularization. Among the rules for handling the delta-pseudo-functions, we are allow
write Pf(D(x2y1)/Ag)5(1/Ag)PfD(x2y1), whereas it is strictly forbidden to replace the latt
quantity by@1/Ag#1PfD(x2y1).

The stress-energy tensor~1.1! takes the same form as the one of test particles moving
fixed background, but with the role of the background played by the regularized metric gen
by the bodies. In particular, the equations of motion obtained from the covariant conservat
that tensor (¹nTparticle

mn 50) take the same form as the ‘‘geodesic equations’’ when considered
respect to the regularized metric. Our definition of the stress-energy tensor~1.1! constitutes a
proposal that we have found to be the most natural in the problem of the equations of
motion at the 3PN order,24,25 but that we have not proved to be generally valid to higher po
Newtonian orders~nor of course when considered outside a framework of post-Newtonian ex
sions!. The tensor~1.1! appears to be a good candidate for the characterization of point
particles in post-Newtonian expansions of general relativity.

The plan of this article is the following. In Sec. II, we recall from Ref. 1 the material nee
in the subsequent parts concerning the Hadamard regularization and the associated
functions. In Sec. III, we investigate the formulas needed to regularize, for the Lorentz tra
mation of some field point as well as two source points, and we define the new regulari
around one of the particles as taking place within the instantaneous spatial hypersurface
particle. In Sec. IV, we give the formulas for this regularization at the level of the first relativ
correction 1/c2. Finally, in Sec. V, we derive from an action principle our model of stress-ene
tensor of point-like particles; the covariant conservation of this tensor leads to the equati
motion.

II. HADAMARD REGULARIZATION

To make the present article self-contained, we shall review in this section the classic n
of the Hadamard regularization of singular functions and divergent integrals,2,3 as well as the
construction, by Blanchet and Faye,1 of a set of pseudo-functions associated with it. We follo
closely the investigation of our previous article1 and employ most of its notation. A coordina
system$t,x% being given on space–time~for instance, the harmonic coordinates used in Sec.!,
we consider some functionsF(x) defined on the spatial slicet5const, wherexPR3 denotes the
position in the slice. We say that the functionF(x) belongs to the classF if and only if F is a
smooth function onR3 except at two isolated pointsy1 andy2 , and admits around each of thes
points the following power-like singular expansions. Denoting byr 15ux2y1u the spatial distance
to the point 1, and byn15(x2y1)/r 1 the spatial direction of approach to 1, we assume that,
any NPN,
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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F~x!5 (
a0<a<N

r 1
a f

1
a~n1!1o~r 1

N!. ~2.1!

The coefficients1f a of the various powers ofr 1 are smooth functions of the unit vectorn1 , and the
remainder tends to zero strictly more rapidly thanr 1

N when r 1→0. The powersa of r 1 in that
expansion are assumed to be real,aPR, to range in discrete steps, i.e.,aP(ai) i PN , and to be
bounded from below, i.e.,a0<a for somea0PR. Similarly, we assume the same type of expa
sion around point 2,

;NPN, F~x!5 (
b0<b<N

r 2
b f

2
b~n2!1o~r 2

N!, ~2.2!

wherer 25ux2y2u andn25(x2y2)/r 2 . Thus, to each functionF in the classF are associated two
discrete families of indicesa andb, and two corresponding families of coefficients1f a(n1) and

2f b(n2), all of them depending onF. We shall refer to the coefficients1f a for which a,0 ~and
similarly to 2f b whenb,0) as thesingularcoefficients ofF in the expansion whenr 1→0. Since
a>a0(F) andb>b0(F), the number of singular coefficients ofF is always finite.

The so-called ‘‘partie finie’’ in the sense of Hadamard2,3 of the singular functionF at the
location of the singular pointy1 is equal to the angular average, say1 f̂ 0 , of the zeroth-order
coefficient,1f 0(n1), in the expansion of the function whenr 1→0 we assumed in~2.1!; namely

~F !15 f̂
1

0[E dV1

4p
f
1

0~n1!, ~2.3!

wheredV15dV(n1) denotes the solid angle element of originy1 and directionn1 . The latter
angular integration is performed within the coordinate hypersurfacet5const. A crucial property of
the Hadamard partie finie is its ‘‘nondistributivity’’ with respect to the multiplication, in the se
that

~FG!15” ~F !1~G!1 ~2.4!

in general. When applied to the gradient] iF of a functionFPF, the definition~2.3! yields a
useful formula which permits one to compute rapidly the partie finie of complicated expres
involving gradients:

~] iF !153S n1
i

r 1
F D

1

. ~2.5!

Closely related to the concept of partie finie of a singular function is the definition of
partie finie (Pf) of the divergent integral*d3xF. Throughout this article, we assume that t
functions decrease fast enough at infinity~when uxu→1`) so that the possible divergencies
integrals come only from the bounds located at the two singular points 1 and 2. The ‘‘partie
integral’’ reads2,3 as

Pfs1 ,s2
E d3xF5 lim

s→0
H ER3\B1~s!øB2~s!

d3xF14p (
a13,0

sa13

a13 S F

r 1
aD

1

14p lnS s

s1
D ~r 1

3F !111↔2J .

~2.6!

The integral on the right side extends overR3 deprived from two closed spherical ballsB1(s) and
B2(s) of radiuss centered on the two singularities@thusB1(s) andB2(s) are defined byr 1<s and
r 2<s#. The other terms, which are defined by means of the partie finie in the sense of~2.3!, are
chosen in such a way that the limits→0 exists. The notation 1↔2 indicates the same terms as t
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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two previous ones but corresponding to the other point. The summation indexa satisfiesa0<a
,23 ~in particular the sum is always finite!. Notice the two arbitrary constantss1 ands2 which
are introduced in order to adimensionalize the arguments of the logarithms in~2.6!; the partie finie
owns an ambiguity through these constants~hence the notation Pfs1 ,s2

). The close connection
between the partie finie of a singular function~2.3! and that of a divergent integral~2.6! is most
easily seen from the fact that1

PfE d3x] iF524p~n1
i r 1

2F !111↔2 . ~2.7!

Unlike in the case of continuous functions, the~partie finie! integral of a gradient is nonzero i
general, and equal to the sum of the parties finies, in the sense of~2.3!, of the surface integrals
surrounding the singularities, in the limit where the surface areas tend to zero. This fact mot
the introduction and study in Ref. 1 of a new derivative operator acting onF, satisfying a property
of ‘‘integration by parts’’ implying that the integral of any gradient is always zero. This oper
generalizes for the class of functionsF the standard distributional derivative of Schwartz.3

Let us associate to anyFPF a pseudo-function denoted PfF and defined to be the following
linear form acting on the classF:

;GPF, ^PfF,G&5PfE d3xFG, ~2.8!

where the right side is a partie-finie integral in the sense of~2.6!; we use a duality bracket to
denote the result of the action of the pseudo-function PfF on G. A fundamental definition adopted
in Ref. 1, and motivated by the application to physics, concerns the product of two ps
functions, or of a function and a pseudo-function, which is the ‘‘ordinary’’ pointwise product in
the sense that

PfF.PfG5F.PfG5G.PfF5Pf~FG!. ~2.9!

Thus, for instance,

^PfF.PfG,H&5PfE d3xFGH. ~2.10!

The product~2.9! chosen in Ref. 1 dictates most of the subsequent properties of the ps
functions, as well as their generalized distributional derivatives.~Refer to Refs. 26–28 for math
ematical treatises on generalized functions and distributions.! In particular, the derivatives do no
in general satisfy the Leibniz rule for the derivation of the product, although they satisfy it
‘‘integrated sense,’’ according to the rule of integration by parts.

The Riesz29 delta-function, given for«.0 by«d(x)5@«(12«)/4p#uxu«23, tends, in the usua
sense of distribution theory, towards the Dirac measure when«→0. When considered with respec
to the singular pointy1 , the Riesz delta-function allows us to define a useful element of our c

«d1~x![«d~x2y1!5
«~12«!

4p
r 1

«23PF. ~2.11!

Therefore it is possible to associate to«d1 ~for any«.0) the pseudo-function Pf«d1 following the
prescription~2.8!. Applying the limit «→0, we obtain1

lim
«→0

^Pf«d1 ,F&[ lim
«→0

PfE d3x«d1F5~F !1 , ~2.12!
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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where the value ofF at the point 1 on the right side is defined by the prescription~2.3!. This
motivates us for introducing a new pseudo-function, which we shall call the delta-pseudo-fu
Pfd1 , as the formal limit of the pseudo-functions Pf«d1 when«→0. By definition,

;FPF, ^Pfd1 ,F&5~F !1 . ~2.13!

Clearly, the delta-pseudo-function Pfd1 generalizes the notion of Dirac distributiond1[d(x
2y1) to the case where the ‘‘test’’ functions are singular and belong to the classF. Extending the
definition of the product~2.9! to include the delta-pseudo-function we pose

PfF.Pfd15F.Pfd15Pf~Fd1!, ~2.14!

as well as, for instance,

Pf~Fd1!.PfG5Pf~Fd1!.G5Pf~FGd1!. ~2.15!

The new object Pf(Fd1) in ~2.14! and ~2.15! has no equivalent in distribution theory; it satisfie

;GPF, ^Pf~Fd1!,G&5~FG!1 . ~2.16!

We notice for future reference that a consequence of the ‘‘nondistributivity’’ of the Hadam
partie finie@see~2.4!# is that

Pf~Fd1!5” ~F !1Pfd1 . ~2.17!

We are not allowed to replace a singular function that appears in factor of the delta-ps
function at point 1 by its regularized value at that point.

The derivative of the delta-pseudo-function Pfd1 was constructed in Ref. 1. As it turns out,
takes the form of an ‘‘ordinary’’ derivative:] i(Pfd1)5Pf(] id1); due to the presence of the delt
pseudo-function, there are no distributional terms associated with it. We have simply~from the
rule of integration by parts!

;FPF, ^] i~Pfd1!,F&52^Pfd1 ,] iF&52~] iF !1 . ~2.18!

The differentiation of the more complicated object Pf(Fd1) proceeds in the same way:

;GPF, ^] i@Pf~Fd1!#,G&52^Pf~Fd1!,] iG&52~F] iG!1 . ~2.19!

Note that, as a consequence of the identity~2.5!, we can write for the intrinsic form of this objec

] i@Pf~Fd1!#5PfF r 1
3] iS F

r 1
3D d1G . ~2.20!

Because the derivative of the delta-pseudo-function is equal to the ordinary one, the Leibn
for the derivative of a product happens to still hold. For instance, in the case of the prod
Pf(Fd1) with some pseudo-function PfG, we have

] i@Pf~Fd1!.PfG#5] i@Pf~Fd1!#.PfG1Pf~Fd1!.] i~PfG!. ~2.21!

The proof uses the combination of~2.15! and ~2.19!.

III. LORENTZIAN REGULARIZATION

To define a Lorentzian regularizationà la Hadamard~based on the investigation of Ref. 1 an
on Sec. II!, we now need to specify in a precise way the dependence of a functionF(x) in the
classF on the ‘‘source’’ variables at the coordinate timet of a global frame$x,t%. We assume~as
everywhere else in this article! that we are working at some given finite order in a relativistic
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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post-Newtonian approximation. Up to a given order, we can choose as the source variables
trajectoriesy1(t) andy2(t) in the frame$x,t%, and the two coordinate velocitiesv1(t)5dy1 /dt
andv2(t)5dy2 /dt ~the trajectories of the particles are timelike world lines in Minkowski spac
time!. Indeed, it is legitimate to assume only the latter source variables because, up to a
post-Newtonian order, we can order-reduce the accelerations and all derivatives of accele
by means of the equations of motion of the particles up to the appropriate accuracy~in general the
precision of the equations of motion needed for this order-reduction is one order less th
given post-Newtonian order at which we are performing a calculation!. Of course, we are assum
ing that these equations of motion are known~they are known presently to the 2.5PN order,13,14,19

and the general motivation of this work is to get them up to the 3PN order22,24,25!. Thus, we
assume that the functionFPF really reads

F~x,t !5F@x;y1~ t !,y2~ t !;v1~ t !,v2~ t !#. ~3.1!

We denote with the same letterF, by a slight abuse of notation, the function of the field point (x,t)
and the functional of the field point and source variables on the right-hand-side. For definit
we assume that the two trajectories are smooth functions of time, i.e.,y1 , y2PC`(R3), and thatF
is a smooth functional of the two velocitiesv1 , v2 ~see also Sec. IX of Ref. 1 for details about o
assumptions!. By ~3.1!, we mean that the dependence ofF on the coordinate timet is through~and
only through! the two instantaneous trajectoriesy1 , y2 and velocitiesv1 , v2 . Note also that it is
implicitly assumed with our notation~3.1! that the functionF dependslocally on time t ~no
dependence over the trajectories and velocities at some time earlier thant for instance!. Further-
more, very often in applications, we shall find that the dependence ofF on the spatial positionx
appears only via the two spatial distances to the source points,r1(t)5x2y1(t) and r2(t)5x
2y2(t). In this article, we shall generally suppose, in order to simplify the presentation, tha
is the case; namely, the functionF, as a functional of the source variables, is

F~x,t !5F@r1~ t !,r2~ t !;v1~ t !,v2~ t !#. ~3.2!

The hypothesis~3.2! does not constitute a very severe restriction. The extension to the
general case~3.1! is generally straightforward; moreover,~3.2! is always verified in the problem o
the post-Newtonian equations of motion of binary systems. In this section, we shall defin
Lorentzian regularized value of the functionF at the location of the singularity 1, in contrast to th
non-invariant regularized value defined by~2.3! within the ‘‘global’’ coordinate hypersurfacet
5const. We shall denote by@F#1 the new Lorentzian regularization ofF at point 1, defined within
the instantaneous rest frame of particle 1 att85const@in contrast with the notation (F)1 used in
~2.3! for the old regularization#. In addition, we shall introduce a delta-pseudo-function denoted
PfD1 associated with the new regularization@similar to the delta-pseudo-function Pfd1 which was
defined in~2.13! in the case of the old regularization#.

A. Lorentz transformation of the source variables

In this article, it is sufficient to consider only those homogeneous proper Lorentz transfo
tions which change the velocity of a global inertial frame$xm%5$ct,x%. More specifically, let us
consider the Lorentz boost

x8m5Lm
n~V!xn, ~3.3!

where the Lorentz matrixLm
n(V), depending on the constant boost velocityV, is given by

L0
0~V!5g, ~3.4a!

L i
0~V!52g

Vi

c
, ~3.4b!
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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L0
j~V!52g

Vj

c
, ~3.4c!

L i
j~V!5d j

i 1
g2

g11

ViVj

c2
. ~3.4d!

We indifferently denote the components of the boost vector byV5(Vi)5(Vi) ~spatial indices
i , j 51,2,3). The Lorentz factorg reads

g5
1

A12V2/c2
, ~3.5!

with V25d i j V
iVj ~of courseuVu,c). The inverse transformation isxn5Lm

n(V)x8m where the
components ofLm

n(V)5hmrhnsLr
s(V) are obtained directly from~3.3! by changingV→

2V. The choice of sign made in the 0i components of the boost~3.4! is such that a particle which
has velocityV at time t in the frame$xm% is at rest in the frame$x8m% at time t8.

We introduce on one side the space–time eventQ, which represents for us a ‘‘field’’ point
located outside the two world lines of the particles, and on the other side the space–time
P1 , M1 andP2 , M2 , which are ‘‘source’’ points, lying respectively on the world lines of partic
1 and 2~see later in this work for their definition!. The coordinates of the eventQ are (t,x) in the
frame$xm% and (t8,x8) in the frame$x8m%. Sorting out the spatial and temporal indices in~3.3!,
we have

ct85cL0
0t1L0

j x
j , ~3.6a!

x8 i5cL i
0t1L i

j x
j . ~3.6b!

The pointsP1 andP2 are now defined as the two events that are located on the trajectories
particles and are ‘‘simultaneous’’ with the eventQ in the frame$xm%, i.e., that belong to the sam
spatial slicet5const asQ. The coordinates ofP1 and P2 in $xm% are denoted by (t,y1) and
(t,y2), respectively, the two trajectoriesy15y1(t) andy25y2(t) being parametrized by the coo
dinate timet in that frame. On the other hand, in the new frame$x8m%, the coordinates ofP1 and
P2 are (t18 ,z18) and (t28 ,z28). Evidently, the primed coordinates are related to the unprimed one
the Lorentz boost~3.3!, so that

ct185cL0
0t1L0

j y1
j , ~3.7a!

z18
i5cL i

0t1L i
j y1

j , ~3.7b!

in the case of the eventP1 @wherey1
j 5y1

j (t), y2
j 5y2

j (t)#, and

ct285cL0
0t1L0

j y2
j , ~3.8a!

z28
i5cL i

0t1L i
j y2

j , ~3.8b!

in the case of the eventP2 . In the new frame$x8m%, the source events that are simultaneous w
Q are notP1 andP2 , but some other eventsM1 andM2 , whose coordinates in the primed fram
are thus (t8,y18) and (t8,y28); the coordinate timet8 is the same as that ofQ in the primed frame,
and the spatial coordinates are the trajectories of the particlesy185y18(t8) andy285y28(t8) which are
labeled byt8 in the new frame. Let (t1 ,z1) and (t2 ,z2) be the coordinates ofM1 andM2 in the
original frame$xm%. By definition,

ct85cL0
0t11L0

j z1
j , ~3.9a!
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y18
i5cL i

0t11L i
j z1

j , ~3.9b!

ct85cL0
0t21L0

j z2
j , ~3.9c!

y28
i5cL i

0t21L i
j z2

j , ~3.9d!

wherey18
i5y18

i(t8) andy28
i5y28

i(t8). Beware of our notation, wheret18 ~for instance! is the time
coordinate ofP1 in $x8m% while t1 is the time coordinate in$xm% of thedifferenteventM1 . Since
the eventsM1 andM2 are located on the world lines of the particles parametrized byy1(t) and
y2(t) in $xm%, it is clear that at timet1 in that frame their coordinates are related to the trajecto
by

z15y1~t1!, ~3.10a!

z25y2~t2!. ~3.10b!

Similarly, from the fact thatP1 and P2 are also on the world lines, which write asy18(t8) and
y28(t8) in the frame$x8m%, we deduce that their coordinates in$x8m% satisfy

z185y18~t18!, ~3.11a!

z285y28~t28!. ~3.11b!

By eliminating t8 from the equations~3.6a! and ~3.9a! we immediately obtain

cL0
0~t12t !5L0

i~xi2z1
i !, ~3.12!

or, equivalently, taking also into account~3.4!,

t12t52
1

c2
V.~x2z1!, ~3.13!

where the usual Euclidean scalar product between~boldface! vectors is denoted by a dot. With th
help of the latter formula for expressingt1 , we can restate the belonging ofz1 to the particle
world line at timet1 @see~3.10a!# as

z15y1S t2
1

c2
V.~x2z1!D . ~3.14!

Recall thatz1 is the spatial coordinate in the old frame of the eventM1 which is simultaneous with
the field pointQ in the new frame. Clearly, the equation~3.14! determines the vectorz1 as a
function of the coordinates (t,x) of the field-point eventQ ~see the Appendix!. Here, let us view
z1 as a ‘‘vector’’ fieldz1(x), solution of~3.14!, lying in the three-dimensional spacet5const. It is
evident from~3.14! that the functionz1(x) admits a fixed point aty15y1(t), in the sense that

z1~y1!5y1 . ~3.15!

Unless specified otherwise@like in ~3.14!#, the notationy1 always meansy1(t). The mathematical
justification of~3.15! is the following. From the fact that the world line of the particle is timeli
we can write, for any instantst̂ and t̄ , the inequalityuy1( t̂ )2y1( t̄ )u,cu t̂2 t̄ u. Hence, applying the
definition ~3.14!, we find that our functionz1(x) obeys, for any positionsx̂ and x̄, the further
inequalitiesuz1( x̂)2z1( x̄)u,(1/c)uV.(x̂2 x̄)u<uVu/cux̂2 x̄u. Now recall thatuVu/c ,1, so the lat-
ter inequalities mean exactly that the functionx→z1(x) is a contractingapplication with respect
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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to the usual Euclidean norm~i.e., it satisfies the property of Lipschitz with a ratiok5uVu/c strictly
less than one!. Therefore, by the theorem of Picard, the function admits a unique fixed p
which of course is nothing buty1 . ~Besides, at the location of the fixed point, we havet15t.!

In this article, we establish the general solution of the equation~3.14! in the form of an infinite
~post-Newtonian! power series in 1/c2. We shall not discuss the convergence properties of
series and simply employ it to define the regularization up to any relativistic order. Th
sufficient for the application to the problem of the equations of motion of particles in the
Newtonian approximation. The general solution of~3.14!, as determined in the Appendix, read

z15y11 (
n51

1`
~2 !n

c2nn!
S ]

]t D
n21

@~V.r1!nv1#, ~3.16!

with shorthand notationsy15y1(t), r15x2y1(t), andv15v1(t). The many derivatives]/]t on
the right side are partial time derivatives with respect to the coordinate timet, the spatial coordi-
natex being held constant. They act onr1 through the trajectoryy1 : we have]r1 /]t52v1 or
](V.r1)/]t52V.v1 for instance. On the other side, they act of course on velocities and~deriva-
tives of! accelerations: thus]v1 /]t5a1 , ]a1 /]t5b1 , ]b1 /]t5c1 , and so on, wherea1 , b1 , c1

represent the acceleration, and its first and second derivatives~in these cases the partial derivativ
is a total derivative, e.g.,dv1 /dt5a1). Thus, to high post-Newtonian order,~3.16! contains many
accelerations and derivatives of accelerations, but it is understood that this formula is
reduced, consistent with the post-Newtonian order; i.e., all accelerations and derivatives of
erations are to be replaced by the functionals of the positions and velocities deduced fro
equations of motion. Combining~3.13! and ~3.16!, we easily find the corresponding solution fo
the time coordinatet1 ,

t15t1 (
n51

1`
~2 !n

c2nn!
S ]

]t D
n21

@~V.r1!n#. ~3.17!

@Of course, sinceV is a constant vector, it could be as well put outside the partial time deriva
operators in both~3.16! and ~3.17!.# Finally, Eqs. ~3.16! and ~3.17! determine completely the
space–time eventM1 . From them, we can recover directly the fact that whenx5y1 ~at the fixed
point! then z15y1 and t15t: there are on the right sides of both relationsn21 partial time
derivatives acting on a term that involves thenth power (V.r1)n, so that at least one of the scal
productsV.r1 is left undifferentiated, and makes the sums in~3.16! and ~3.17! vanish whenr1

50. Replacing bothz1 andt1 as given by the infinite post-Newtonian series back into the rela
~3.10a!, expressing both sides of the resulting equation as the same type of post-Newtonian
with the help of a formal Taylor expansion whenc→`, and finally equating all the coefficients o
these two series yields an interesting mathematical formula relating together some sums o
ucts of derivatives. This formula is derived in the Appendix~where we also present a direct pro
of it!. Notice that the same reasoning as before can be done on the coordinates of the eveP1 in
the new frame, which we find to be given by

z185y181 (
n51

1`
1

c2nn!
S ]

]t8
D n21

@~V.r18!nv18#, ~3.18a!

t185t81 (
n51

1`
1

c2nn!
S ]

]t8
D n21

@~V.r18!n#, ~3.18b!

wherey185y18(t8), r185x82y18(t8), and v185v18(t8). Evidently, the result~3.18! can also be de-
duced directly from~3.16! and ~3.17! by changingV into 2V and replacing all the non-prime
variables by the corresponding primed ones.
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We are now able to give all the transformation laws of field and source variables betwe
frames$xm% and $x8m%. Of course, from~3.6!, the transformation of the field variables is th
standard Lorentz one,

t85gS t2
1

c2
~V.x!D , ~3.19a!

x85x2gVS t2
1

c2

g

g11
~V.x!D . ~3.19b!

Concerning the source variables, we are interested in the expressions of the new positionsy18(t8),
y28(t8) and velocitiesv18(t8), v28(t8) in the new frame at timet8. These are straightforwardly
obtained from inserting the results~3.16! and~3.17! into the equations~3.9!, as well as the similar
results corresponding to point 2. We find, for trajectories,

y185y12gVS t2
1

c2

g

g11
~V.x!D

1 (
n51

1`
~2 !n

c2nn!
S ]

]t D
n21F ~V.r1!nS v12

g

g11
VD G , ~3.20a!

y285y22gVS t2
1

c2

g

g11
~V.x!D

1 (
n51

1`
~2 !n

c2nn!
S ]

]t D
n21F ~V.r2!nS v22

g

g11
VD G . ~3.20b!

By subtracting the latter equations~3.20! to x8 as given by~3.19b! we obtain the spatial distance
r185x82y18(t8) and r285x82y28(t8) as

r185r12 (
n51

1`
~2 !n

c2nn!
S ]

]t D
n21F ~V.r1!nS v12

g

g11
VD G , ~3.21a!

r285r22 (
n51

1`
~2 !n

c2nn!
S ]

]t D
n21F ~V.r2!nS v22

g

g11
VD G . ~3.21b!

These relations will play the crucial role in the definition of our Lorentzian regularization
interest also is the expression of the relative distance between the two particles, i.e.,y128 5y18
2y285r282r18 given by

y128 5y121 (
n51

1`
~2 !n

c2nn!
S ]

]t D
n21F ~V.r1!nS v12

g

g11
VD2~V.r2!nS v22

g

g11
VD G . ~3.22!

Finally, we compute the expressions of the coordinate velocitiesv18(t8)5dy18/dt8 and v28(t8)
5dy28/dt8 in the new frame. They follow immediately from the law of transformation of the ti
derivative,] t85g] t1gVi] i , and we obtain

v185
1

g
v12V1

1

g (
n51

1`
~2 !n

c2nn!
S ]

]t D
nF ~V.r1!nS v12

g

g11
VD G , ~3.23a!
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v285
1

g
v22V1

1

g (
n51

1`
~2 !n

c2nn!
S ]

]t D
nF ~V.r2!nS v22

g

g11
VD G . ~3.23b!

Notice that although the velocitiesv18(t8) andv28(t8) are some mere functions of the coordina
time t8 in the new frame, they depend, when expressed in terms of quantities belonging to t
frame, on both timeandspace coordinatest andx. This is obvious because by changing the sp
coordinatex of the field pointQ while keepingt5const we change the time coordinatet8 of the
source eventsM1 andM2 and therefore the values of their particle velocities~soon as the trajec
tories are accelerated!. This fact is important and has to be taken correctly into account in
regularization process defined in the next subsection. The inverse formulas are obtained
same way by substituting~3.18! into the inverse of~3.7!. They correspond of course to changin
V into 2V and replacing everywhere the unprimed labels by primed ones. We find, for the s
distances and velocities,

r15r182 (
n51

1`
1

c2nn!
S ]

]t8
D n21F ~V.r18!nS v181

g

g11
VD G , ~3.24a!

r25r282 (
n51

1`
1

c2nn!
S ]

]t8
D n21F ~V.r28!nS v281

g

g11
VD G , ~3.24b!

v15
1

g
v181V1

1

g (
n51

1`
1

c2nn!
S ]

]t8
D nF ~V.r18!nS v181

g

g11
VD G , ~3.24c!

v25
1

g
v281V1

1

g (
n51

1`
1

c2nn!
S ]

]t8
D nF ~V.r28!nS v281

g

g11
VD G . ~3.24d!

B. Definition of the regularization

Let us consider a functionF belonging to the classF and being at the same time ascalar
under Lorentz transformations, i.e.,F(x,t)5F8(x8,t8). More precisely, we restrict ourselves
the case of a dependence onx only via the distancesr1 and r2 @cf. ~3.2!#; this means

F@r1~ t !,r2~ t !;v1~ t !,v2~ t !#5F8@r18~ t8!,r28~ t8!;v18~ t8!,v28~ t8!;V#, ~3.25!

where we use the same slightly abusive notation as in~3.2!, with addition, on the right side, of the
explicit mention of the dependence over the boost vectorV. All the variables in both frames$xm%
and $x8m% are related to each other by the formulas developed in the previous subsection
regularization process goes as follows.

~i! Starting from F@r1 ,r2 ;v1 ,v2# defined in the frame$xm%, we first determine the new
functionalF8@r18 ,r28 ;v18 ,v28 ;V# in the boosted frame$x8m%. To do so, we replace all the variable
r1 , r2 , v1 , v2 by their expressions in terms of the new onesr18 , r28 , v18 , v28 as given by the
formulas~3.24!, in which it is understood that all the accelerations are order-reduced up to
given specified post-Newtonian order. Performing all the necessary post-Newtonian reexpa
to that order, we indeed obtain in that way~sinceF is a Lorentz scalar! the new functionalF8 of
the new distancesr18 , r28 and velocitiesv18 , v28 . In addition, F8 depends as expected on th
constantV which is yet unspecified at this stage.

~ii ! We compute the Hadamard regularization ofF8 at point 1 following exactly the same rule
as defined in~2.3!, but in the boosted frame$x8m% ~in particular, within the coordinate slicet8
5const!. In words, we perform the expansion ofF8 when the spatial distancer 18 tends to zero, and
obtain the same type of power-law expansion as in~2.1! @since the form of the relations~3.24!
shows that the structure of the expansions in both frames must be the same#. However, we get
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some primed functional coefficients1f a8 that differ from the unprimed coefficients1f a appearing in
~2.1!. The boost vectorV is simply held constant in the process. Thus,;NPN,

F8@r18 ,r28 ;v18 ,v28 ;V#5 (
a0<a<N

r 81
af

1
a8~n18 ;y128 ;v18 ,v28 ;V!1o~r 81

N!, ~3.26!

with the notationr 185ux82y18u, n185(x82y18)/r 18, andy128 5y182y28 . ~The fact that the coefficients

1f a8 depend ony128 instead of the two individual trajectoriesy18 , y28 is due to our restriction thatF8
depends onx8 via the distancesr18 andr28 ; also, the accelerations depend on the relative dista
y128 .! Now, like in ~2.3!, we pick up the zeroth-order coefficient in ther 18-expansion~3.26! and
average over the angles. This defines a certain functional of the separation vectory128 , the veloci-
ties v18 , v28 and the boost velocityV,

f̂
1

08~y128 ;v18 ,v28 ;V!5E dV18

4p
f
1

08~n81 ;y128 ;v18 ,v28 ;V!. ~3.27!

We insist that the angular average is performedin the new frame, within the spatial hypersurface
t85const; in particular, the solid angle element in~3.27! is the one associated with the un
directionn18 in that hypersurface:dV185dV(n18). Here again,V is considered as a simple consta
‘‘spectator’’ vector during the average.

~iii ! We impose that the new frame is actually the rest frame of particle 1 at the evenP1 .
Recalling that the Lorentz boost~3.4! brings a particle with velocityV in the frame$xm% at rest in
the frame$x8m%, we see that we must choose

V5v1~ t !. ~3.28!

We come back to the original variables in the unprimed frame by using the transformation
~3.22! and~3.23!, in the limit where the field pointx tends to the source pointy1(t) ~because we
are located at the eventP1), with V5v1 according to~3.28!. Note that, in this limitr1→0, the
coordinate timet8 of the eventQ in the primed frame is equal to the coordinate timet18 of the
eventP1 . It is important to realize that both the computation of the limit whenr1→0 and the
replacement of the vectorV by ~3.28! are to be doneafter performing the many partial time
differentiations in~3.22! and ~3.23!. Consider first the primed variabley128 , which is given by
~3.22! where we apply the replacementr150 ~as well asV5v1). In ~3.22! the n21 partial time
derivatives acting on the term proportional to (V.r1)n will clearly lead to zero in the limitr1

50; indeed, by an argument met previously, there are not ‘‘enough’’ derivatives to make a no
contribution. So the variable to be used when coming back to the original frame is

y128 5Xy122 (
n51

1`
~2 !n

c2nn!
S ]

]t D
n21F ~V.r2!nS v22

g

g11
VD G CU r25y12

V5v1

. ~3.29!

As indicated by the notation one must implement the replacements ofr2 by y12 ~this is equivalent
to r150) and ofV by v1 after then21 time differentiations. In the case of the primed velocity
particle 2, given by~3.23b!, we simply have

v285X1

g
v22V1

1

g (
n51

1`
~2 !n

c2nn!
S ]

]t D
nF ~V.r2!nS v22

g

g11
VD G CU r25y12

V5v1

. ~3.30!
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The formulas~3.29! and~3.30! define, after order-reduction of the accelerations, some functio
y128 @y12;v1 ,v2# andv28@y12;v1 ,v2# that we use for coming back to the initial frame$xm%. Clearly,
the primed velocityv18 of point 1, at which we perform the regularization, deserves a spe
treatment. From~3.23a! we obtain

v185X1

g
v12V1

1

g (
n51

1`
~2 !n

c2nn!
S ]

]t D
nF ~V.r1!nS v12

g

g11
VD G CU r150

V5v1

. ~3.31!

Here, there aren time derivatives which isa priori enough to make a contribution. The on
possibility is to differentiate successively each of then factorsV.r1 , yielding for each of the terms
in the sumn! identical contributions. Hence, we arrive at a much simpler series,

v185X1

g
v12V1

1

g (
n51

1` S V.v1

c2 D nS v12
g

g11
VD CU

V5v1

, ~3.32!

which can now easily be summed up. The result is

v185S ~1/g!v12V1@g/~g11!~V.v1 /c2!#V

12V.v1 /c2 DU
V5v1

, ~3.33!

from which we immediately deduce that the primed velocity of particle 1 must be zero,

v1850. ~3.34!

This is of course the expected result because the boost velocity was chosen to be equa
instantaneous velocity of particle 1 in the unprimed frame at the instantt; however, the details of
the above proof constitute a necessary consistency check of the formulas.

~iv! The choice of boost vectorV5v1 , together with the equivalent statement thatv1850, as
well as the expressions~3.29! and ~3.30! defining the two functionalsy128 @y12;v1 ,v2# and
v28@y12;v1 ,v2#, are put into~3.27!, which gave the result1 f̂ 08 of the spherical average in th
Hadamard regularization performed in the primed frame. Therefore, the regularized value oF at
point 1 is defined by

@F#15 f̂
1

08~y128 @y12;v1 ,v2#;0,v28@y12;v1 ,v2#;v1!. ~3.35!

The new regularization@F#1 acts, like the old one (F)1 , as a certain functional of the relativ
distancey12 and the velocitiesv1 , v2 . However, in generic cases,@F#1 differs from (F)1 by
relativistic terms at least of the order 1/c2 ~we investigate in Sec. IV the exact relation betwe
both regularizations to the first relativistic order 1/c2). In the problem of the post-Newtonia
equations of motion, we have found22,24that the new regularization@F#1 adds some extra terms t
the acceleration computed using the regularization (F)1 ; these new terms are of order 3PN a
manage to make the 3PN equations of motion invariant with respect to Lorentz transforma
Indeed, with the regularization (F)1 the Lorentz invariance of the equations of motion would
broken at the 3PN order. Finally, let us introduce as we did in Ref. 1~see also Sec. II! a delta-
pseudo-function associated with the new regularization@F#1 . By definition, the ‘‘Lorentzian’’
delta-pseudo-function denoted PfD1 @to contrast with the noninvariant one Pfd1 defined by~2.13!#
is such that

;FPF, ^PfD1 ,F&5@F#1 , ~3.36!
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where the right side is given by the new regularization~3.35!. By definition, we have in the cas
of the new regularization the same laws for the multiplication as in Sec. II, for instance

FG.PfD15Pf~FD1!.G5Pf~FD1!.PfG5Pf~FGD1!, ~3.37!

where the pseudo-function Pf(FD1) is defined by

;GPF, ^Pf~FD1!,G&5@FG#1 . ~3.38!

This pseudo-function Pf(FD1) is at the basis of our proposal for the stress-energy tenso
point-particles in Sec. V. And, like in the case of Pf(Fd1), we are not allowed to replace thi
pseudo-function by the product of the regularized value of the function times the delta-ps
function, namely,

Pf~FD1!5” @F#1PfD1 . ~3.39!

The derivatives of PfD1 and Pf(FD1) are constructed in the same way as for the origi
regularization in Sec. II. Therefore,

;GPF, ^] i@Pf~FD1!#,G&52^Pf~FD1!,] iG&52@F] iG#1 . ~3.40!

However, the identity~2.5! is not valid in the case of the new regularization, so we do not ha
result similar to~2.20! @see~4.13! for the equivalent of~2.5! at the first relativistic order#. For the
product of Pf(Fd1) with some PfG, the Leibniz rule holds:

] i@Pf~FD1!.PfG#5] i@Pf~FD1!#.PfG1Pf~FD1!.] i~PfG!. ~3.41!

This is a consequence of the definition~3.40! and the law~3.37!.

IV. THE REGULARIZATION AT THE FIRST RELATIVISTIC ORDER

At this point, it is instructive~and useful in practice! to present the complete formulas th
define the Lorentzian regularization@F#1 at the level of the first relativistic corrections 1/c2, i.e.,
neglecting all the terms of orderO(1/c4). @Notice that, consistent with Sec. III, we must consid
that the boost vectorV itself is of orderO(1), so that, for instance, the factorV2/c2 really
represents a small relativistic correction of the orderO(1/c2).# Furthermore, we shall obtain at thi
1/c2 level a formula linking the new regularization@F#1 to the old one (F)1 . Like in Sec. III, we
assume that the functionF depends onx through the two distancesr1(t) and r2(t) only; this
implies a relation between the partial derivatives:

] iF1
]F

]y1
i

1
]F

]y2
i

50 ~4.1!

~where] i5]/]xi). We suppose also thatF is a Lorentz scalar, cf.~3.25!.
We follow the general specification for the regularization in Sec. III. We first express

vectorial distancesr1 , r2 and velocitiesv1 , v2 in the boosted frame$x8m% using the transformation
formulas~3.24! restricted to the order 1/c2. For the distances, we get

r15r182
1

c2
~V.r18!Fv181

1

2
VG1OS 1

c4D , ~4.2a!

r25r282
1

c2
~V.r28!Fv281

1

2
VG1OS 1

c4D . ~4.2b!

The relative distancey125r22r1 reads as
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y125y128 1
1

c2
@2 1

2~V.y128 !V1~V.r18!v182~V.r28!v28#1OS 1

c4D , ~4.3!

while, for instance, the relative separationr 125uy12u is

r 125r 128 S 11
1

c2 F2 1
2~V.n128 !21

r 18

r 128
~V.n18!~v18 .n128 !2

r 28

r 128
~V.n28!~v28 .n128 !G D 1OS 1

c4D ,

~4.4!

wheren185r18/r 18 , n285r28/r 28 , andn128 5y128 /r 128 . For the two velocities, we find

v15v181V1
1

c2
~@2 1

2V
22V.v18#v182 1

2~V.v18!V1~V.r18!a18!1OS 1

c4D , ~4.5a!

v25v281V1
1

c2
~@2 1

2V
22V.v28#v282 1

2~V.v28!V1~V.r28!a28!1OS 1

c4D , ~4.5b!

where the two accelerationsa18 anda28 are to be replaced, consistent with the approximation,
their Newtonian values:a1852(Gm2 /r 812

2 ) n128 1O(1/c2) and a285(Gm1 /r 812
2 )n128 1O(1/c2).

@Notice that in Sec. III the regularization has been defined regardless of the type of sp
relativistic interaction involved; in the case of electromagnetism, for instance, we should s
replace the accelerations by their Coulombian values in~4.5!.#

Next, we substitute the expressions~4.2! and~4.5! into the scalar functionF@r1 ,r2 ;v1 ,v2# and
perform the expansion to the first order. The result is the scalar functionF8@r18 ,r28 ;v18 ,v28 ;V# in the
new frame; thus

F8@r18 ,r28 ;v18 ,v28 ;V#5F@r18 ,r28 ;v181V,v281V#1
1

c2
~V.r18!@v81

i 1 1
2V

i #
]F

]y1
i

1
1

c2
~V.r28!Fv82

i 1
1

2
Vi G ]F

]y2
i

1
1

c2 S F2
1

2
V22V.v18Gv81

i

2
1

2
~V.v18!Vi1~V.r18!a81

i D ]F

]v1
i

1
1

c2 S F2
1

2
V22V.v28Gv82

i

2
1

2
~V.v28!Vi1~V.r28!a82

i D ]F

]v2
i

1OS 1

c4D , ~4.6!

where we have used]F/]r 1
i 52]F/]y1

i and ]F/]r 2
i 52]F/]y2

i . Note that, to this order, the
partial derivatives in~4.6! can be evaluated at the primed valuesr18 , r28 and v181V, v281V, or
equivalently at the nonprimed onesr1 , r2 andv1 , v2 . Now we pick up in the new frame the term
of zeroth order in the expansion whenr 18→0, and perform the angular average with respect to
directionn18 . This yields the functional of the variablesy128 , v18 , v28 , andV which has been defined
in ~3.27!. Since these operations of expanding and averaging represent nothing but the Had
regularization in the old sense of~2.3!, we can denote them by using the parenthesis approp
for this regularization. Therefore,
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f̂
1

08~y128 ;v18 ,v28 ;V!5XF@r1 ,r11y128 ;v181V,v281V#1
1

c2
~V.r1!Fv81

i 1
1

2
Vi G ]F

]y1
i

1
1

c2
~V.r11V.y128 !Fv82

i 1
1

2
Vi G ]F

]y2
i

1
1

c2 S F2
1

2
V22V.v18Gv81

i 2
1

2
~V.v18!Vi1~V.r1!a81

i D ]F

]v1
i

1
1

c2 S F2
1

2
V22V.v28Gv82

i 2
1

2
~V.v28!Vi1@V.r11V.y128 #a82

i D ]F

]v2
i C

1

1OS 1

c4D . ~4.7!

We have replaced here the vectorial distancer18 by the unprimed notationr1 , noticing thatr18 is the
dummy variable with respect to which the regularization proceeds~with this notationr28 is re-
placed byr11y128 ). Following ~3.35!, the Lorentzian regularization@F#1 is achieved by posing
V5v1 andv1850, as well asy128 5y128 @y12;v1 ,v2# andv285v28@y12;v1 ,v2#, where the latter func-
tionals are defined in the general case by~3.29! and ~3.30!. It is convenient to obtain first an
intermediate formula by settingV5v1 andv1850 in ~4.7!, and by replacing into the terms that a
already of order 1/c2 the primed variablesy128 anda18 , a28 by the unprimed ones. Using also th
identity ~4.1!, we arrive at

@F#15XF@r1 ,r11y128 ;v1 ,v11v28#1
1

2c2
~v1 .r1!v1

i ] iF

1
1

c2
~v1 .r1!Fv1

i ]F

]y1
i

1v2
i ]F

]y2
i

1a1
i ]F

]v1
i

1a2
i ]F

]v2
i G1

1

c2 S 1

2
~v1 .v2!v1

i 1F1

2
v1

22v1 .v2Gv2
i

1~v1 .y12!a2
i D ]F

]v2
i

1
1

c2
~v1 .y12!F2

1

2
v1

i 1v2
i G ]F

]y2
i C

1

1OS 1

c4D , ~4.8!

wherey128 andv28 in the first term of the right side are given functions ofy12, v1 andv2 obtained
by approximating~3.29! and ~3.30! to the first order. We find

y128 5y121
1

c2
~v1 .y12!F2

1

2
v11v2G1OS 1

c4D , ~4.9a!

v2852v11v21
1

c2 S 2
1

2
~v1 .v2!v11F2

1

2
v1

21v1 .v2Gv22~v1 .y12!a2D1OS 1

c4D ~4.9b!

~where the acceleration is equal to its Newtonian value!. By inserting~4.9! into ~4.8! and expand-
ing to order 1/c2, it is easily seen that we cancel out exactly the two last terms on the right-
side of ~4.8!, so that the result simplifies appreciably:
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@F#15S F@r1 ,r2 ;v1 ,v2#1
1

2c2
~v1 .r1!v1

i ] iF

1
1

c2
~v1 .r1!Fv1

i ]F

]y1
i

1v2
i ]F

]y2
i

1a1
i ]F

]v1
i

1a2
i ]F

]v2
i G D

1

1OS 1

c4D . ~4.10!

Finally, we recognize on the right side the partial time derivative,

] tF5v1
i ]F

]y1
i

1v2
i ]F

]y2
i

1a1
i ]F

]v1
i

1a2
i ]F

]v2
i

, ~4.11!

so that our final result writes

@F#15S F1
1

c2
~r1 .v1!F] tF1

1

2
v1

i ] iF G D
1

1OS 1

c4D . ~4.12!

The result~4.12! displays the first relativistic corrections brought about by our Lorentz
regularization@F#1 . As a check of the formula, let us apply it to the case of the special com
nation ] iF23(n1

i /r 1)F which, as we know from~2.5!, has no partie finie at the point 1 in th
sense of the old regularization. This is no longer true in the sense of the new regularization.
the equation~4.12! we find instead

@] iF#15F3
n1

i

r 1
S 12

1

c2
~n1 .v1!2D F2

1

c2
v1

i ] tFG
1

1OS 1

c4D . ~4.13!

The check consists of remarking that because of~2.5! we have„] i8F823(n81
i /r 18)F8…150 in the

rest frame of particle 1, therefore the equation@] i8F823(n81
i /r 18)F8#150 must hold in any frame

by definition of the new regularization. In the frame where the particle velocity isv1 we have
r185r11 (1/2c2)(v1 .r1)v11O(1/c4) and ] i85] i1(1/c2)v1

i ] t1(1/2c2)v1
i v1

j ] j1O(1/c4). Insert-
ing these relations into the previous equation, and using the fact thatF is a scalar, we recover th
formula ~4.13! after a short computation.

V. THE STRESS-ENERGY TENSOR OF POINT-PARTICLES

With the Lorentzian regularization in hand, we make a proposal for the description of p
like particles in~post-Newtonian approximations of! general relativity. We recall first the gener
context of the problem. We want to solve the field equations of general relativity by mea
analytic post-Newtonian series, with matter source describing appropriately defined
particles. The stress-energy tensor of the matter source is supposed to be spatially isola
recall that, in this case, general relativity admits the Poincare´ group as a global symmetry. W
assume the existence and unity of a global harmonic coordinate system, defined by the
conditions

]nhmn50 , ~5.1a!

hmn5Aggmn2hmn, ~5.1b!

wheregmn denotes the inverse of the covariant metricgmn , and whereg is the opposite of its
determinant. The harmonic gauge conditions~5.1! introduce a preferred Minkowskian structur
with Minkowski metric given byhmn5diag(21,1,1,1)5hmn . Thus, the gravitational field can b
described in harmonic coordinates by the Lorentzian tensor fieldhmn propagating on the
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Minkowskian backgroundhmn. Similarly, one can think of the trajectories of the particles
accelerated world lines in Minkowski space–time. Subject to the conditions~5.1! the Einstein field
equations take the form of wave equations on the flat background,

hhmn5
16pG

c4
gTmn1Lmn@h,]h,]2h#, ~5.2!

where the flat d’Alembertian operator is given byh5hmn]m]n . The right-hand side is made o
the sum of the matter source term, with spatially compact support, plus the gravitational s
term Lmn, given by a certain functional of the field variableshrs and its first and second space
time derivatives, and at least of second order inh. A consequence of the harmonicity conditions
that

]nS gTmn1
c4

16pG
LmnD50 , ~5.3!

which is equivalent~through the contracted Bianchi identity! to the covariant conservation of th
matter stress-energy tensorTmn,

¹nTmn50 , ~5.4!

the latter equation being in turn equivalent to

]n~AgglmTmn!5 1
2Ag]lgmnTmn. ~5.5!

In this section we regard the matter tensorTmn as a Lorentz tensor defined with respect to t
Minkowski metrichmn singled out by our choice of harmonic coordinates.

To define a model for point-like particles, we follow essentially the derivation of the str
energy tensor oftest masses moving on a fixedsmoothbackground~see, e.g., Ref. 30, p. 360!.
However, in the case of ‘‘self-gravitating’’ particles, we do not have a smooth background a
disposal, and the metric becomes singular at the location of the point-masses. Essentially, w
propose the value of the~post-Newtonian! metric coefficients on each of the particles to be giv
by the Lorentzian regularization defined in Sec. III. This entails supposing that the metric c
cients belong to the class of functionsF. This is correct up to the 2PN order;19 however, we know
that the expansion of the metric coefficients~in harmonic coordinates! near the particles, instead o
being of the type~2.1! and ~2.2!, involve some logarithms of the distance to the singularit
starting at 3PN order. It was shown22 that, at this order, the logarithms can be considered as s
constants and included into the definition of the partie finie; moreover, they can be finally e
nated from the equations of motion by a change of coordinates. This suggests that we
consider more generally the logarithms as some constants, motivating our assumption thgmn

PF. On the other hand, it is known22,24 that the constantss1 and s2 entering the partie finie
integral ~2.6! must be adjusted in order that the equations of motion can be deducible fr
Lagrangian, and in particular admit a conserved energy. For these reasons~presence of logarithms
equations of motion not directly admitting an energy!, the following derivation of the stress
energy tensor for particles cannot be considered to be a rigorous proof. However, as we sh
it is nicely consistent with the regularization, and its result satisfying. Our basic assumption
the dynamics of the particles follows from the variation, with respect to the metric, of the a

I particle52m1cE
2`

1`

dtA2@gmn#1v1
mv1

n11↔2, ~5.6!

where v1
m5(c,dy1 /dt) denotes the coordinate velocity of particle 1~we consider a two-body

system, but the generalization toN bodies is immediate!. The crucial point is that the value ofgmn

at 1 is assumed to be given by the Lorentzian regularization defined in Sec. III. We vary the
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~5.6! with respect to the metric, i.e., we imagine thatgmnPF is subject to an infinitesimal variation
gmn→gmn1dgmn and compute the corresponding change in the action. However, we wan
variation of the metric to correspond to the same matter system with two singularities 1 and
evident and most natural way to ensure this is to suppose thatdgmnPF. Under the latter variation
the regularized value of the metric at the point 1 undergoes the infinitesimal change@gmn#1

→@gmn#11@dgmn#1 . Therefore, the variation of the action~5.6! reads as

dI particle5
1

2
m1cE

2`

1`

dt
v1

mv1
n

A2@grs#1v1
rv1

s
@dgmn#111↔2. ~5.7!

From the defining property~3.36! of the delta-pseudo-function PfD1 , we can rewrite~5.7! in the
equivalent form

dI particle5
1

2
m1cE

2`

1`

dt
v1

mv1
n

A2@grs#1v1
rv1

s ^PfD1 ,dgmn&11↔2. ~5.8!

Now, recall that the duality bracket is defined by the partie finie of the three-dimensional in
@cf. ~2.8!#, so the latter expression can be cast into the standard form appropriate to the de
of a stress-energy tensorTparticle

mn , namely,

dI particle5
1

2E2`

1`

dt^AgTparticle
mn ,dgmn&. ~5.9!

The only difference with the standard definition is that the partie finie takes care of the dive
cies at the positions of the particles. By comparing~5.8! and ~5.9!, we readily find that the
corresponding stress-energy tensor density is given by

AgTparticle
mn 5m1c

v1
mv1

n

A2@grs#1v1
rv1

s
PfD111↔2. ~5.10!

The stress-energy tensor itself comes immediately from the rule of multiplication of pse
functions~3.37!:

Tparticle
mn 5m1c

v1
mv1

n

A2@grs#1v1
rv1

s
Pf S D1

Ag
D 11↔2, ~5.11!

This tensor takes the same form as the stress-energy tensor of test particles moving on a
background, except that the role of the background field is now played by the metric genera
the particles, regularized following the prescription~3.35!. Notice in particular that the factor 1/Ag
inside the partie finie sign Pf should not be replaced by its regularized value at 1@see~3.39!#. We
propose the tensor~5.11! as a model of particles in the post-Newtonian approximation. From
product rules for pseudo-functions, we get the matter source term on the right-hand side o~5.2!
as

gTparticle
mn 5m1c

v1
mv1

n

A2@grs#1v1
rv1

s
Pf ~AgD1!11↔2. ~5.12!

The post-Newtonian iteration of the field equations in Refs. 22 and 24 is based on the
expression of the matter source term.

We now derive the equations of motion of particle 1 from the covariant conservation o
stress-energy tensor~5.11!:
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



tive is

s

f

ristic

g
et.

s.
s,

t point

tions of
n

sions,

4411J. Math. Phys., Vol. 42, No. 9, September 2001 Lorentzian regularization

Downloaded 07 Sep 
¹nTparticle
mn 50 . ~5.13!

Notice that thanks to the presence of the delta-pseudo-function, we know that the deriva
‘‘ordinary’’ and satisfies the Leibniz rule in the sense of~3.41!. Thus, we can transform¹nTparticle

mn

in the standard way and find that the equation~5.13! is equivalent, like in the case of continuou
sources, to the alternative form

]n~AgglmTparticle
mn !5

1

2
Ag]lgmnTparticle

mn . ~5.14!

Then, we integrate~5.14! over a closed volume V1 surrounding particle 1 exclusively. The role o
the three-dimensional integral is played here by the duality bracket defined by~2.8!. Let us denote
by 1V1

the characteristic function of the volume V1, such that1V1
(x)51 if xPV1 and 1V1

(x)
50 otherwise@notably,1V1

(y2)50#. Thus, we consider

^]n~AgglmTparticle
mn !,1V1

&5 K 1

2
Ag]lgmnTparticle

mn ,1V1L . ~5.15!

~Though1V1
does not belong to the classF, it is locally integrable onR3 and we know that the

duality bracket applies on such functions as well; see Ref. 1.! The partial derivative]n on the
left-hand side is split into a time derivative and a space derivative. Following the rule~3.40!, the
spatial derivative] i is shifted to the right side of the bracket, where it applies on the characte
function 1V1 . Because of the presence of the delta-pseudo-function, the derivative of1V1

is to be
taken in an ordinary sense and is zero. Following the rule~9.7! in Ref. 1, an analogous reasonin
is valid for the time-derivative]05(1/c)] t which can thus simply be put outside the brack
Thus, we get

d

cdt
$^AgglmTparticle

m0 ,1V1
&%5 K 1

2
Ag]lgmnTparticle

mn ,1V1L . ~5.16!

Next, we insert into~5.16! the specific expression~5.10! of the stress-energy density of particle
Because of the presence of the function1V1

only the part corresponding to particle 1 contribute
and we obtain

d

dt H v1
m

A2@grs#1v1
rv1

s ^Pf~glmD1!,1V1
&J 5

1

2

v1
mv1

n

A2@grs#1v1
rv1

s ^Pf~]lgmnD1!,1V1
&. ~5.17!

Finally, the effect of the brackets on both sides of the latter equation is to take the value a
1 in the sense of the Lorentzian regularization~3.35!. Thereby our final result reads as

d

dt S @glm#1v1
m

A2@grs#1v1
rv1

sD 5
1

2

@]lgmn#1v1
mv1

n

A2@grs#1v1
rv1

s
. ~5.18!

The equations of motion of particle 1 have the same formal structure as the geodesic equa
a test particle. In separate papers22,24,25we use~5.18! to derive explicitly the equations of motio
of the two particles at the 3PN approximation.
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APPENDIX: SOLUTION OF THE EQUATION „3.14…

We are looking for the vectorz1 satisfying the equation

z15y1S t2
1

c2
V.~x2z1!D , ~A1!

wherey1(t) represents a given smooth (C`) time-like trajectory andV a constant vector with
norm uVu,c. Clearly, for a given trajectory, the solutionz1 depends on the field pointx as well as
on timet. It was shown in the text after~3.15! that the applicationx→z1 is contracting with fixed
point y1 . Here, let us look for the solutionz1 in the form of a function of the coordinates,

z15z1~x,t !. ~A2!

From ~A1! we compute the partial derivatives ofz1 with respect tot and xi , considered to be
independent, and readily obtain

]z1

]xi
52

1

c2 FVi2V.
]z1

]xi Gv1S t2
1

c2
V.~x2z1!D , ~A3a!

]z1

]t
5F11

1

c2
V.

]z1

]t Gv1S t2
1

c2
V.~x2z1!D . ~A3b!

Contracting these equations with the vectorV we can obtain the scalar productsV.]z1 /]xi and
V.]z1 /]t, and use them back into~A3! with the result that

]z1

]xi
52

1

c2
Vi

v1

12V.v1 /c2
, ~A4a!

]z1

]t
5

v1

12V.v1/c2, ~A4b!

where the velocityv1 is evaluated at the instantt2(1/c2)V.(x2z1). In particular, we find thatz1

must be a solution of the following first-order differential equation:

]z1

]xi
52

1

c2
Vi

]z1

]t
. ~A5!

Conversely, let us prove that a vectorz1 that ~i! satisfies the differential equation~A5! and ~ii !
admitsy1(t) as afixedpoint, i.e., is such that

z1„y1~ t !,t…5y1~ t ! ~A6!

necessarily satisfies the original equation~A1!. Such az1(x,t) being given, we perform in the
equation~A5! the change of variables (xi ,t)→(r1

i ,t1) defined by

r1
i 5xi2z1

i ~x,t !, ~A7a!
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



t

s

4413J. Math. Phys., Vol. 42, No. 9, September 2001 Lorentzian regularization

Downloaded 07 Sep 
t15t2
1

c2
V.„x2z1~x,t !…. ~A7b!

Using ~A5! it is easy to obtain the laws of transformation of the partial derivatives:

]

]r1
i

5
]

]xi
1

1

c2
Vi

]

]t
, ~A8a!

]

]t1
5

]

]t
1Bj

i
]z1

j

]t

]

]xi
, ~A8b!

whereBj
i denotes the matrix inverse ofAk

j 5dk
j 1(1/c2)Vk(]z1

j /]t) ~i.e., Aj
i Bk

j 5dk
i ; in the case

considered here where the velocities are strictly less thanc the matrixAj
i is a deformation of the

unit matrix and thus admits an inverse!. Now, under the change of variables~A7! the differential
equation~A5! becomes simply

]z1

]r1
i

50, ~A9!

whose general solution is an arbitrary function of the time variablet1 . Therefore, there mus
exists a trajectoryY1 such that

z15Y1~t1!5Y1S t2
1

c2
V.~x2z1!D . ~A10!

Imposing now thaty1(t) is a fixed point for this solutionz1 in the sense of~A6! leads immediately
to

Y1~ t !5y1~ t !, ~A11!

so the equation~A1! is recovered exactly. Thus, solving~A1! is equivalent to solving the differ-
ential equation~A5! supplemented by the condition~A6!. Notice that from~A1! or equivalently
from ~A5! and ~A6! we find thatz1 tends to the fixed point in the ‘‘nonrelativistic’’ limitc
→1`, i.e.,

lim
c→1`

$z1~x,t !%5y1~ t !. ~A12!

This suggests to look for the solutionz1 in the form of an infinite series of relativistic correction
of successive orders 1/c2n @from ~A5! we know thatz1 is a function of 1/c2#. Thus, taking also into
account the limit~A12!, we pose

z1~x,t !5y1~ t !1 (
n51

1`
1

c2n
Z1

n

~x,t !, ~A13!

and we look for each one of the unknown coefficientsZ1

n

(x,t). By placing the series~A13! into
both sides of the equation~A5! and identifying the factors of the powers of 1/c2 on each side we
find, for anyn>1,
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]Z1

n

]xi
52Vi

] Z1

n21

]t
, ~A14!

with the convention thatZ1

0

5y1(t). The equations~A14! are to be solved using the condition o
fixed pointy1 @cf. ~A6!#, which implies that,;n>1,

Z1

n

~y1~ t !,t !50. ~A15!

The solution of~A14! and~A15! is found by induction overn. As an induction hypothesis suppos
that

Z1

n21

5
~2 !n21

~n21!! S ]

]t D
n22

@~V.r1!n21v1#, ~A16!

wherer15x2y1 , and where the partial time derivatives act ont keeping the space coordinatex
fixed: for instance,]r1 /]t52v1 and]v1 /]t5dv1 /dt5a1 , wherea1 is the acceleration. Notice
that ~A16! satisfies the condition~A15! because it involvesn22 partial time derivatives while
there is a factor (V.r1)n21 inside the brackets, so after differentiation there will remain at least
factor V.r1 making the result be zero whenx5y1 . Inserting~A16! into the right-hand side of
~A14! we obtain the equation to be satisfied for the next-order coefficient,

]Z1

n

]xi
5Vi

~2 !n

~n21!! S ]

]t D
n21

@~V.r1!n21v1#, ~A17!

which can be rewritten equivalently in the form

]Z1

n

]xi
5

]

]xi H ~2 !n

n! S ]

]t D
n21

@~V.r1!nv1#J , ~A18!

showing that the most general solution is necessarily of the type

Z1

n

5
~2 !n

n! S ]

]t D
n21

@~V.r1!nv1#1C~ t !, ~A19!

whereC(t) denotes an arbitrary vector depending only on timet. However, this vector must be
zero on account of the fact that the result should be zero whenx5y1 . Therefore we have proved
by induction that

Z1

n

5
~2 !n

n! S ]

]t D
n21

@~V.r1!nv1#, ~A20!

so the vectorz1 solving at once~A5! and~A6!, or equivalently~A1!, takes the form of the rathe
interesting infinite series

z15y11 (
n51

1`
~2 !n

c2nn!
S ]

]t D
n21

@~V.r1!nv1#, ~A21!
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which constitutes the solution needed for our work in Sec. III. Furthermore, subtractingx from this
solution and contracting withV we obtain after a short calculation the quantityt1 which was
defined in~A7b!:

t15t1 (
n51

1`
~2 !n

c2nn!
S ]

]t D
n21

@~V.r1!n#. ~A22!

Now, recall that the latter quantityt1 is such thatz15y1(t1). Therefore, we see that we ca
find an alternative expression of the vectorz1 by inserting intoy1(t1) the series expansion~A22!
found for t1 . Using an infinite Taylor expansion we are led to

z15y11 (
p50

1`
1

~p11!!

dpv1

dtp X(
n51

1`
~2 !n

c2nn!
S ]

]t D
n21

@~V.r1!n# Cp11

. ~A23!

Each of the terms is composed ofp11 sums; accordingly we introducep11 summation indices
n1 , . . . , np , np11 so that

z15y11 (
p50

1`
1

~p11!!

dpv1

dtp (
n151

1`

¯ (
np51

1`

(
np1151

1`
~2 !n11 . . . 1np11

c2(n11 . . . 1np11)

3S ]

]t D
n121F ~V.r1!n1

n1! G¯S ]

]t D
np21F ~V.r1!np

np! G S ]

]t D
np1121F ~V.r1!np11

np11! G . ~A24!

Next we posek5n11¯1np1np11 , replace the indexnp11 by k, and operatep11 commuta-
tions of summations to arrive at

z15y11 (
k51

1`
~2 !k

c2k (
p50

k21
1

~p11!!

dpv1

dtp (
n151

q1

¯ (
np51

qp

3S ]

]t D
n121F ~V.r1!n1

n1! G¯S ]

]t D
np21F ~V.r1!np

np! G S ]

]t D
np1121F ~V.r1!np11

np11! G , ~A25!

in which np115k2( i 51
p ni andqj511( i 5 j

p11(ni21) ~with 1< j <p). We must identify the latter
complicated expression with the simpler form of the vectorz1 given by ~A21!. From identifying
the powers of 1/c2 in both expressions we immediately obtain

S ]

]t D
k21F ~V.r1!k

k!
v1G5 (

p50

k21
1

~p11!!

dpv1

dtp (
n151

q1

¯ (
np51

qp

3S ]

]t D
n121F ~V.r1!n1

n1! G¯S ]

]t D
np21F ~V.r1!np

np! G S ]

]t D
np1121F ~V.r1!np11

np11! G .
~A26!

Finally, from using the binomial formula for the derivative of a product, we can identify on e
side of the latter equation the coefficients of eachdpv1 /dtp, and we arrive at the relation, valid fo
any p and anyk>p11,

(
n151

q1

. . . (
np51

qp S ]

]t D
n121F ~V.r1!n1

n1! G¯S ]

]t D
np21F ~V.r1!np

np! G S ]

]t D
np1121F ~V.r1!np11

np11! G
5

~p11!~k21!!

~k212p!! S ]

]t D
k2p21F ~V.r1!k

k! G . ~A27!
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The latter relation actually represents a quite general mathematical formula because w
specified nothing about the scalar productV.r1 . Therefore, the relation~A27! holds in fact in the
case of an arbitrary sufficiently differentiable functionf (t), so

(
n151

q1

¯ (
np51

qp S d

dtD
n121F f n1

n1! G¯S d

dtD
np21F f np

np! G S d

dtD
np1121F f np11

np11! G
5

~p11!~k21!!

~k212p!! S d

dtD
k2p21F f k

k! G . ~A28!

The equivalence obtained above between the formula~A1! and the differential equation~A5!
together with the auxiliary condition~A6! showsindirectly that the mathematical formula~A28! is
correct. However, adirect proof of this formula has been found by Tanaka, Sasaki, and Tag
~private communication!. Here we reproduce their proof in the particular case wherep51, so that
q15k21 andn25k2n ~wheren[n1), in which case the formula reads, for anyk>2,

(
n51

k21 S d

dtD
n21F f n

n! G S d

dtD
k2n21F f k2n

~k2n!! G52~k21!S d

dtD
k22F f k

k! G . ~A29!

We replacef (t) in ~A29! by its Fourier transform,f (t)5*2`
1`(dv/2p)eivt f̃ (v), and readily find

that in order to prove the formula~A29! it suffices to prove the statement that the equation

(
n51

k21 S k
nD ~v (11v21¯1vn!n21~vn111¯1vk)!

k2n2152~k21!~v11v21¯1vk!
k22

~A30!

holds identically for any family of real frequenciesv1 , v2 , . . . , vk . Most importantly, the

parentheses around indices on the left side of~A30! indicate the complete symmetrization over t
k frequenciesv1 , . . . , vk @in addition, (n

k) denotes the binomial coefficient#. Let us single out one

of the frequencies, for instancevk , and rewrite~A30! in a form involving an explicit symmetri-
zation over the otherk21 frequencies,v1 , . . . , vk21 , only:

(
n51

k21 S k21
n D ~v (11¯1vn!n21~vn111¯1vk21)1vk!

k2n21

5~k21!~v11v21¯1vk!
k22 ~A31!

~in which we have simplified a factor 2 on both sides of the equation!. Furthermore, let us replac
in the latter formulavk by some sumvk1¯1vk1s , and symmetrize over the whole set
frequenciesv1 , . . . , vk1s . This yields, for anys,

(
n51

k21 S k21
n D ~v (11¯1vn!n21~vn111¯1vk1s)!

k2n21

5~k21!~v11v21¯1vk1s!
k22. ~A32!

Now we prove that the equation~A30!, or equivalently~A31!, is true by induction on the intege
k. Therefore, our induction hypothesis is that~A31! is correct forany k<K, and from this we want
to show that it is correct again fork5K11. Note that from our induction hypothesis we know th
~A32! is also correct for anyk<K andany s. Consider the sum defined by the left side of~A31!
in the case wherek5K11, say
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SK115 (
n51

K S K
n D ~v (11¯1vn!n21~vn111¯1vK)1vK11!K2n, ~A33!

where we recall that one of the frequencies, i.e.,vK11 , is ‘‘artificially’’ singled out. However,
SK11 is also given by half the left-hand side of~A30! and is symmetric inv1 , . . . , vK11 . We

want to show thatSK11 is equal to the right-hand side of~A31! with k5K11. To this end, we
transformSK11 with the help of the binomial formula, and obtain after a short calculation

SK115 (
l 50

K21 vK11
l

l !

K!

~K2 l !! (
n51

K2 l S K2 l
n D ~v (11¯1vn!n21~vn111¯1vK)!

K2n2 l .

~A34!

Now we have two sums overl andn, and it is easy to recognize that the second sum, overn, can
be simplified as soon asl>1 by means of~A32! which is correct by induction under the conditio
thatk<K and for anys. PosingK2 l 5k21 andk1s5K we see that this condition is realized
and only if l>1. After simplification we find

SK115K~v11¯1vK11!K211CK11~v1 , . . . ,vK!, ~A35!

where the first term is the result we want to obtain, and where the second term is a certain fu
of the frequenciesv1 , . . . , vK but which doesnot depend onvK11 . The expression ofCK11 is

given for completeness as

CK115 (
n51

K S K
n D ~v (11¯1vn!n21~vn111¯1vK)!

K2n2K~v11¯1vK!K21. ~A36!

Now we use the fact thatSK11 is actually fully symmetric with respect to theK11 frequencies
v1 , . . . , vK11 . Therefore the functionCK11 must be a pure constant, independent on anyvn .

Furthermore, we know also thatSK11 is a homogeneous polynomial of degreeK21 in all thev1 ,
. . . , vK11 , so this constant must in fact be zero:CK1150. Finally we are able to conclude o

the desired result,

SK115K~v11¯1vK11!K21. ~A37!

Incidentally, notice that the equalityCK1150 is itself a consequence of the same mathemat
formula, since it follows from settingk5K11 and posingvK1150 in ~A31!.
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