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The two purposes of the article arB to present a regularization of the self-field of
point-like particles, based on Hadamard’s concept of “partie finie,” that permits in
principle to maintain the Lorentz covariance of a relativistic field theory, (@nhtb

use this regularization for defining a model of stress-energy tensor that describes
point-particles in post-Newtonian expansiqmesg., 3PN of general relativity. We
consider specifically the case of a system of two point-particles. We first perform a
Lorentz transformation of the system’s variables which carries one of the particles
to its rest frame, next implement the Hadamard regularization within that frame,
and finally come back to the original variables with the help of the inverse Lorentz
transformation. The Lorentzian regularization is defined in this way up to any order
in the relativistic parameter d7. Following a previous work of ours, we then
construct the delta-pseudo-functions associated with this regularization. Using an
action principle, we derive the stress-energy tensor, made of delta-pseudo-
functions, of point-like particles. The equations of motion take the same form as the
geodesic equations of test particles on a fixed background, but the role of the
background is now played by the regularized metric. 2@01 American Institute

of Physics. [DOI: 10.1063/1.1384864

I. INTRODUCTION

In recent years, the problem of the dynamics of gravitationally interacting compact objects in
general relativity has received a lot of attention. This is due in part to the interest of the theoretical
problem in its own, and in part to the ongoing development of laser-interferometric detectors for
observing gravitational radiation. In the absence of an exact solution of the problem, one has
recourse to successive post-Newtonian approximati{fersnal expansions in powers of ¢/
Within such approximations, it makes sense to model the compact objects with some “point-like
particles,” exactly as we do in a standard way within the Newtonian theory. However, the self-
field of point-particles is infinite at the very location of a particle, and thus must be somehow
regularized. The regularization is quite straightforward in the Newtonian theory, but it becomes
nontrivial when going to high post-Newtonian approximations. Dealing with this problem, the
present authofsdeveloped a method for regularizing the infinite self-field of point-particles,
which is based on the concept of “partie finie,” in the sense of Hadarhaod a singular function
at the place of one of its singular pointsee, e.g., Refs. 4—7 for entries to the mathematical
literature. We know that the Hadamard regularization yields the correct result for the equations of
motion of two particles up to the so-called second and half post-Newtd¢@8i&aPN approxima-
tion, corresponding to the orderc®/beyond the Newtonian acceleration. Indeed, the problem has
been completely solved at that ordel’? notably some derivations make use of this regularization
(e.g., Refs. 12 and 19In the present state of the art, we are concerned with the @PN/c®)
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approximatiorf’=2° In fact, starting at this high post-Newtonian order, the regularization may
become physically incomplete because of the appearance of an undetermined coefficient in the
equations of motioR®2°

The Hadamard regularization, investigated in Ref. 1, is performed in a three-dimensional
Euclidean space with generic poi& R2, which is viewed as the spatial hypersurface labeled by
t=const in a global coordinate systeffix} covering the whole space—time. In particular, the
regularization involves a spatial average, performeid=atonst, over the direction of approach to
the singularity. As such a regularization makes use of a preferred spatial hyperse+famest, it
is clearly incompatible with the framework of special or general relativity, which embodies a
global Lorentz(or Poincarg frame invariance. Notably, we expect that the post-Newtonian equa-
tions of motion of point-like particles in harmonic coordinatgghich we recall preserve the
global Lorentz invariangeshould exhibit at some stage a violation of the Lorentz invariance due
to the latter regularization. The fact is that the breakdown of the Lorentz invariance due to the
regularization occurs only at the very high 3PN approximation. Until the 2.5PN order, it is
sufficient to regularize within a preferred slites const of the harmonic coordinate system to
obtain some Lorentz-invariant equations of motfdn.

The first purpose of this article is to define a regularizatiéa Hadamard? that is compatible
with the Lorentz structure of a relativistic field theory. This completes the definition, proposed in
Ref. 1, of a specific version of the Hadamard regularizatimsed notably on a particular class of
pseudo-functions To achieve this purpose, we shall simply perform the standard Hadamard
regularization within the hypersurface that is geometrically orthogonal, in the sense of the
Minkowski metric, to the four-velocity of the particle. In separate papefsywe apply the latter
“Lorentzian” regularization(together with the distributional derivatives introduced in Reftdl
the computation of the binary equations of motion at the 3PN order in harmonic coordinates and
find that, indeed, it permits the preserving of their Lorentz invaridirteome case at the price of
adjusting some paramejeA different approach to the problem of incorporating the Lorentz
invariance in the 3PN equations of motion consists of deriving a generic regularized dynamics,
within the ADM-Hamiltonian formalism of general relativity, involving an arbitrary regularization
parameter, and determining this parameter uniquely by requiring the Lorentz invaiaiSee
Sec. 2 in Ref. 25 for a discussion on our point-mass regularization and its relation to Ref. 23.

Throughout the article, we assume the existence of a preferred Minkowski metric, as selected
for instance by the condition of harmonic coordinates in general relativity, with respect to which
the trajectories of particles are represented by accelerated world lines like in special relativity.
Most of our investigation is valid not only in the case of the gravitational field but also for any
Lorentz-tensor field propagating on the Minkowski background. Furthermore, we shall define the
Lorentzian regularization in a sense of formal expansion seriexfh 46 that all the formulas in
the article will be given by some infinite series of relativistic corrections whéends toward
infinity. This is all we need for the derivation of the equations of motion to the 3PN &tder.

Since we are interested in the application to the motion of two particles, we shall define the
regularization around one of the particlesay particle 1, and shall consider that its acceleration
is purely due to particle 2(However, our definitions could be generalized to a systenN of
particles) Notice that particle 2 enters this regularization scheme through the Lorentz transforma-
tion of its own variables to the rest frame of particle 1, and the replacement of the acceleration of
1 in terms of the equations of the binary motion. In general, working at some given relativistic
order, we shall need to know the equations of motion up to a lower order only, therefore giving us
the possibility of an iterative process. In this article, we always assume that we know the relevant
equations of motion at this order, and that these are Lorentz-invariant.

Our second purpose is to derive an expression, compatible with the latter regularization, for
the stress-energy tensor of point-like particles in post-Newtonian expansions of general relativity.
Thanks to this regularization, we are able to give a sense to the value of the metric coefficients at
the very location of the particle. Our basic assumption is that the matter action is the same as for
testparticles moving on a prescribed background gravitational field, except that the metric at the
location of the particles is replaced by its regularized value in the sense didhentzian
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regularization. From this assumption, we prove that the Dirac measure in the stress-energy tensor
must be replaced by a certain generalized function defined by means of the Hadamard prescrip-
tion. In the case of two particlgshe generalization tdl particles is immediate we obtain

+1<2, (1.2

14
Ty _ micviv; A(x—yy)
particle ™

\/_[gpa']lvgvg.r \/g(t,X)

wherem;, is the mass of the particle 1, and = (c,v;) its coordinate velocity, i.ey;=dy, /dt,
y1=Y1(t) being the trajectory parametrized by the coordinate tiftiee symbol -2 denotes the
same expression but corresponding to the second patidie notationg,,]; means that the
metric g,,,(t,x) is to be computed at the point=y,(t) following the regularizatior(of course
[9,-11 depends on the positions and velocities of both particles 1 aridd?e that the first factor

in (1.1) is a mere function of timé The second factor PA(x—Yy,)/+\/g) is made of a special type

of partie finie delta-pseudo-function associated with the regularizét@iowing the definition

given in Ref. ). It involves(minus the determinant of the metrg;,,,, namelyg, evaluated at the
point (t,x), and a generalization B{x—y,) of the Dirac function defined in such a way that its
action on a singular function yields the value of the function at the singular point in the sense of
the regularization. Among the rules for handling the delta-pseudo-functions, we are allowed to
write Pf(A (x—y,)/Vg) = (1/\/g) PfA(x—y;), whereas it is strictly forbidden to replace the latter
quantity by[1//g];PfA(x—y;).

The stress-energy tens(t.l) takes the same form as the one of test particles moving in a
fixed background, but with the role of the background played by the regularized metric generated
by the bodies. In particular, the equations of motion obtained from the covariant conservation of
that tensor ¥, T, ricie= 0) take the same form as the “geodesic equations” when considered with
respect to the regularized metric. Our definition of the stress-energy t€hdprconstitutes a
proposal that we have found to be the most natural in the problem of the equations of binary
motion at the 3PN ordéf,;? but that we have not proved to be generally valid to higher post-
Newtonian ordergnor of course when considered outside a framework of post-Newtonian expan-
siong. The tensor(1.1) appears to be a good candidate for the characterization of point-like
particles in post-Newtonian expansions of general relativity.

The plan of this article is the following. In Sec. I, we recall from Ref. 1 the material needed
in the subsequent parts concerning the Hadamard regularization and the associated pseudo-
functions. In Sec. lll, we investigate the formulas needed to regularize, for the Lorentz transfor-
mation of some field point as well as two source points, and we define the new regularization
around one of the particles as taking place within the instantaneous spatial hypersurface of the
particle. In Sec. IV, we give the formulas for this regularization at the level of the first relativistic
correction 1¢2. Finally, in Sec. V, we derive from an action principle our model of stress-energy
tensor of point-like particles; the covariant conservation of this tensor leads to the equations of
motion.

II. HADAMARD REGULARIZATION

To make the present article self-contained, we shall review in this section the classic notions
of the Hadamard regularization of singular functions and divergent intetjtals, well as the
construction, by Blanchet and Fayef a set of pseudo-functions associated with it. We follow
closely the investigation of our previous artitlend employ most of its notation. A coordinate
system{t,x} being given on space—tin{éor instance, the harmonic coordinates used in Seg. IV
we consider some functiors(x) defined on the spatial slide= const, wherexe R® denotes the
position in the slice. We say that the functi6ifx) belongs to the clas§ if and only if F is a
smooth function ori® except at two isolated pointg andy,, and admits around each of these
points the following power-like singular expansions. Denoting py |[x—Y,| the spatial distance
to the point 1, and by, =(x—y,)/r; the spatial direction of approach to 1, we assume that, for
anyNeN,
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F(x)= >, r2f(n)+o(r)). (2.2
1

agsasN

The coefficientsf, of the various powers af, are smooth functions of the unit vectoy, and the
remainder tends to zero strictly more rapidly th%when r,—0. The powersa of r; in that
expansion are assumed to be reek R, to range in discrete steps, i.e.e(a;)i.n, and to be
bounded from below, i.eago<a for someaye R. Similarly, we assume the same type of expan-
sion around point 2,

VNel, |:(x)=b rg;b(n2)+o(rg), (2.2)

o<=b=N

wherer ,=|x—Y,| andn,=(x—Y,)/r,. Thus, to each functiok in the classF are associated two
discrete families of indicea andb, and two corresponding families of coefficients,(n;) and
>fp(Nny), all of them depending of. We shall refer to the coefficients, for which a<0 (and
similarly to ,f, whenb<0) as thesingular coefficients ofF in the expansion when,— 0. Since
a=ay(F) andb=by(F), the number of singular coefficients Bfis always finite.

The so-called “partie finie” in the sense of Hadamatwf the singular functiorF at the
location of the singular poiny, is equal to the angular average, §fa)y of the zeroth-order
coefficient,;fo(ny), in the expansion of the function whep— 0 we assumed i2.1); namely

F),=f —JdQlf 2.3
( )1—10= Elo(nl), (2.3

wheredQ;=d(n;) denotes the solid angle element of origip and directionn;. The latter
angular integration is performed within the coordinate hypersutfaa®nst. A crucial property of
the Hadamard patrtie finie is its “nondistributivity” with respect to the multiplication, in the sense
that

(FG)1#(F)1(G)4 2.4

in general. When applied to the gradienE of a functionF e F, the definition(2.3) yields a
useful formula which permits one to compute rapidly the partie finie of complicated expressions
involving gradients:

(0iF)1=3| —F] . (2.5
r 1

Closely related to the concept of partie finie of a singular function is the definition of the
partie finie (Pf) of the divergent integrgld®xF. Throughout this article, we assume that the
functions decrease fast enough at infinftynen|x|— + ) so that the possible divergencies of
integrals come only from the bounds located at the two singular points 1 and 2. The “partie-finie
integral” read$* as

s—0

S
—) +4w|n(—)(rfF)l+l<—>2}.
a Sy

Sa+3
Pf, < Jd3xF=Iim J BXF+4m D
12 R3\B4(S)UBy(S) af3<o a+t3|r? )

(2.6

The integral on the right side extends oWerdeprived from two closed spherical baBs(s) and
B,(s) of radiuss centered on the two singularitiehusB;(s) andB,(s) are defined by;<s and
r,<s]. The other terms, which are defined by means of the partie finie in the se(@8)pfare
chosen in such a way that the linsit-0 exists. The notation<: 2 indicates the same terms as the
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two previous ones but corresponding to the other point. The summation adatisfiesag<a
< —3 (in particular the sum is always finjteNotice the two arbitrary constanss ands, which
are introduced in order to adimensionalize the arguments of the logarithi2$inthe partie finie
owns an ambiguity through these constafitsnce the notation E;tSZ). The close connection
between the partie finie of a singular functi@h3) and that of a divergent integré2.6) is most
easily seen from the fact tHat

Pff d3xg;F=—4m(nirF)+1-2 . (2.7

Unlike in the case of continuous functions, ttpartie finie integral of a gradient is nonzero in
general, and equal to the sum of the parties finies, in the sen&@3pf of the surface integrals
surrounding the singularities, in the limit where the surface areas tend to zero. This fact motivated
the introduction and study in Ref. 1 of a new derivative operator acting,@atisfying a property
of “integration by parts” implying that the integral of any gradient is always zero. This operator
generalizes for the class of functioffsthe standard distributional derivative of Schwattz.

Let us associate to arfye F a pseudo-function denotedPaind defined to be the following
linear form acting on the classg:

VGeF, <PfF,G>:Pff d3xFG, (2.9

where the right side is a partie-finie integral in the sens€2d); we use a duality bracket to
denote the result of the action of the pseudo-functidh &f G. A fundamental definition adopted

in Ref. 1, and motivated by the application to physics, concerns the product of two pseudo-
functions, or of a function and a pseudo-function, which is tleedfhary’ pointwise product in

the sense that

PfF.PiG=F.PiG=G.PF=Pf(FG). (2.9

Thus, for instance,
<Pﬂ:.PfG,H>=Pff d3xFGH. (2.10

The product(2.9) chosen in Ref. 1 dictates most of the subsequent properties of the pseudo-
functions, as well as their generalized distributional derivativ@sfer to Refs. 26—28 for math-
ematical treatises on generalized functions and distribujidmgarticular, the derivatives do not
in general satisfy the Leibniz rule for the derivation of the product, although they satisfy it in an
“integrated sense,” according to the rule of integration by parts.

The RiesZ® delta-function, given foe>0 by, 8(x) =[e(1—¢)/4m]|x|* "3, tends, in the usual
sense of distribution theory, towards the Dirac measure whe®. When considered with respect
to the singular poiny, , the Riesz delta-function allows us to define a useful element of our class,

e(l-e) 4
c01(X)=:8(x—y) = —,——T11 e F. (2.1

Therefore it is possible to associate. ) (for anye>0) the pseudo-function P#; following the
prescription(2.8). Applying the limits—0, we obtain

lim(Pf,8,,F)=limPf| d3x,6,;F=(F), (2.12

e—0 e—0
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where the value of at the point 1 on the right side is defined by the prescript®i). This
motivates us for introducing a new pseudo-function, which we shall call the delta-pseudo-function
Pfs,, as the formal limit of the pseudo-functions,Bf whene— 0. By definition,

VFeF, (Pfs,F)y=(F);. (2.13

Clearly, the delta-pseudo-function &f generalizes the notion of Dirac distributiofy = 6(x
—Vy,) to the case where the “test” functions are singular and belong to the ZlaEstending the
definition of the product2.9) to include the delta-pseudo-function we pose

PfF.Pf5, = F.Pf5,=Pf(F &,), (2.14
as well as, for instance,
Pf(F5,).PIG=Pf(F§,).G=Pf(FG&,). (2.15
The new object P# 6;) in (2.14 and(2.15 has no equivalent in distribution theory; it satisfies
VGeF, (Pf(Fé8,),G)=(FG);. (2.16

We notice for future reference that a consequence of the “nondistributivity” of the Hadamard
partie finie[see(2.4)] is that

Pi(F 8,)# (F)Pfd,. (2.17

We are not allowed to replace a singular function that appears in factor of the delta-pseudo-
function at point 1 by its regularized value at that point.

The derivative of the delta-pseudo-functionrsPfvas constructed in Ref. 1. As it turns out, it
takes the form of an “ordinary” derivatives,(Pfé;) = Pf(9,6,); due to the presence of the delta-
pseudo-function, there are no distributional terms associated with it. We have diingoty the
rule of integration by paris

VFeF, (0;(Pfs)),F)=—(Pfé,,0;F)=—(o;F);. (2.18
The differentiation of the more complicated objectP#) proceeds in the same way:
VGeF, (g[Pf(F61)],G)=—(Pf(Fé,),0,G)=—(F&G);. (2.19

Note that, as a consequence of the idern@tp), we can write for the intrinsic form of this object

F
ri&i<_3) 01
r

Because the derivative of the delta-pseudo-function is equal to the ordinary one, the Leibniz rule
for the derivative of a product happens to still hold. For instance, in the case of the product of
Pf(F 8;) with some pseudo-function 8f we have

[ P(F 61)]=PA : (2.20

di[ PI(F 8,).PIG] = o;[ Pf(F 61)]. PIG+ Pf(F 8;).6;(PfG). (2.2)
The proof uses the combination (#.15 and(2.19.

Ill. LORENTZIAN REGULARIZATION

To define a Lorentzian regularizatiala Hadamardbased on the investigation of Ref. 1 and
on Sec. ), we now need to specify in a precise way the dependence of a furfe(onin the
classF on the “source” variables at the coordinate timef a global frame{x,t}. We assuméas
everywhere else in this artigl¢hat we are working at some given finite order in a relativistic or
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post-Newtonian approximation. Up to a given order, we can choose as the source variables the two
trajectoriesy, (t) andy,(t) in the frame{x,t}, and the two coordinate velocities(t) =dy, /dt
andv,(t) =dy,/dt (the trajectories of the particles are timelike world lines in Minkowski space—
time). Indeed, it is legitimate to assume only the latter source variables because, up to a given
post-Newtonian order, we can order-reduce the accelerations and all derivatives of accelerations
by means of the equations of motion of the particles up to the appropriate ac¢urgeneral the
precision of the equations of motion needed for this order-reduction is one order less than the
given post-Newtonian order at which we are performing a calculati@hcourse, we are assum-

ing that these equations of motion are knoftirey are known presently to the 2.5PN oréfet1°

and the general motivation of this work is to get them up to the 3PN &&&D). Thus, we
assume that the functidh e F really reads

FOt)=F[Xy1(t),y2(t);va(t),va(t)]. (3.1)

We denote with the same lettEr by a slight abuse of notation, the function of the field poigt)

and the functional of the field point and source variables on the right-hand-side. For definiteness,
we assume that the two trajectories are smooth functions of timey,i,ey, € C*(R?®), and thatF

is a smooth functional of the two velocitigg, v, (see also Sec. IX of Ref. 1 for details about our
assumptions By (3.1), we mean that the dependence=afn the coordinate timeis through(and

only through the two instantaneous trajectorigs, y, and velocities/;, v,. Note also that it is
implicitly assumed with our notatio3.1) that the functionF dependslocally on timet (no
dependence over the trajectories and velocities at some time earlier filramstancég. Further-
more, very often in applications, we shall find that the dependenéecof the spatial positiox
appears only via the two spatial distances to the source paoif(t9,=x—y,(t) andr,(t)=x
—VY,(t). In this article, we shall generally suppose, in order to simplify the presentation, that this
is the case; namely, the functién) as a functional of the source variables, is

F(X,t)=F[ra(t),ra(t);va(t),vo(t)]. (3.2)

The hypothesiq3.2) does not constitute a very severe restriction. The extension to the more
general cas€3.1) is generally straightforward; moreové8.2) is always verified in the problem of

the post-Newtonian equations of motion of binary systems. In this section, we shall define the
Lorentzian regularized value of the functirat the location of the singularity 1, in contrast to the
non-invariant regularized value defined (8.3) within the “global” coordinate hypersurface
=const. We shall denote Ky ], the new Lorentzian regularization Bfat point 1, defined within

the instantaneous rest frame of particle 1'at const[in contrast with the notationH), used in

(2.3 for the old regularizatioh In addition, we shall introduce a delta-pseudo-function denoted by
PfA ; associated with the new regularizati@imilar to the delta-pseudo-function&fwhich was
defined in(2.13 in the case of the old regularizatipn

A. Lorentz transformation of the source variables

In this article, it is sufficient to consider only those homogeneous proper Lorentz transforma-
tions which change the velocity of a global inertial frafp&} ={ct,x}. More specifically, let us
consider the Lorentz boost

xX"*=A* (V)X (3.3
where the Lorentz matrid*,(V), depending on the constant boost velodityis given by

A% (V) =1, (3.4a

) V
A'o(V):_Y?, (3.4b
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\VA
AG(V) ==, (349
A= s 2 VY 3.4
(V)= oA 2 (3.40

We indifferently denote the components of the boost vectoMby(V')=(V,) (spatial indices
i,j=1,2,3). The Lorentz factoy reads

1
YoV

with V2= §;V'V! (of course|V|<c). The inverse transformation is’= A ,*(V)x'# where the
components ofA ,"(V)=17,,7""A?,(V) are obtained directly fron(3.3) by changingV—
—V. The choice of sign made in the Bomponents of the boo&3.4) is such that a particle which
has velocityV at timet in the frame{x*} is at rest in the framéx’'#} at timet’.

We introduce on one side the space—time ev@ntvhich represents for us a “field” point
located outside the two world lines of the particles, and on the other side the space—time events
P,, M; andP,, M,, which are “source” points, lying respectively on the world lines of particles
1 and 2(see later in this work for their definitionThe coordinates of the eve@tare {,x) in the
frame{x*} and {’,x’) in the frame{x’#}. Sorting out the spatial and temporal indiceg3n3),
we have

(3.5

ct’ =cA%t+A%x, (3.6a
X' =CcA'pt+Aljx. (3.6b

The pointsP, andP, are now defined as the two events that are located on the trajectories of the
particles and are “simultaneous” with the evedtin the frame{x*}, i.e., that belong to the same
spatial slicet=const asQ. The coordinates oP; and P, in {x*} are denoted byt(y,;) and
(t,y»), respectively, the two trajectorigg=Yy,(t) andy,=Yy,(t) being parametrized by the coor-
dinate timet in that frame. On the other hand, in the new frafw&"}, the coordinates oP, and

P, are (r1,z;) and (5,z;). Evidently, the primed coordinates are related to the unprimed ones by
the Lorentz boos(3.3), so that

cri=cA%t+ A%y, (3.79

z;'=cAlgt+ A"y, (3.7b
in the case of the everit; [wherey) =yl (t), y,=yL(t)], and

cry=cA%%t+ A%y, (3.83

zyi=cAlgt+Alyh, (3.8

in the case of the evemit,. In the new framgx’#}, the source events that are simultaneous with
Q are notP; andP,, but some other eventd; andM,, whose coordinates in the primed frame
are thus {',y;) and ¢',y5); the coordinate tim¢’ is the same as that @ in the primed frame,
and the spatial coordinates are the trajectories of the parjittes; (t') andy,=y,(t') which are
labeled byt" in the new frame. Let4;,z;) and (r,,z,) be the coordinates df1, andM,, in the
original frame{x*}. By definition,

ct’'=cA%m +A%Z}, (3.93
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yii:CAioTl"f‘AijZ];L, (39b)
Ct,:CAooTz'f‘Aonjz, (39()
yéi:CAioTz+Aijzjz, (390)

wherey ' =y/!(t") andy, =y,/(t"). Beware of our notation, where (for instancg is the time
coordinate ofP, in {x'#} while 7, is the time coordinate ifix*} of thedifferenteventM;. Since
the eventdM,; and M, are located on the world lines of the particles parametrizegt;ft) and
y,(t) in {x*}, itis clear that at timer; in that frame their coordinates are related to the trajectories

by
2,=Y1(71), (3.103
2;=Y5(73). (3.10h

Similarly, from the fact thatP, and P, are also on the world lines, which write $(t’) and
y5(t") in the frame{x’'#}, we deduce that their coordinates{ix'#} satisfy

z1=y1(71), (3.11a
2;=Y,(7)). (3.11b

By eliminatingt’ from the equation$3.69 and(3.99 we immediately obtain
cA% (T —t)=A%(X —2), (3.12

or, equivalently, taking also into accou(.4),
1
Tl—t=——2V.(X—Zl), (313
c

where the usual Euclidean scalar product betweldface vectors is denoted by a dot. With the
help of the latter formula for expressing, we can restate the belonging of to the particle
world line at timer; [see(3.103] as

1
zlzyl(t—gv.(x—zl)). (3.19

Recall thatz; is the spatial coordinate in the old frame of the eMdntwhich is simultaneous with
the field pointQ in the new frame. Clearly, the equatio(8.14) determines the vectar; as a
function of the coordinates (x) of the field-point even® (see the Appendijx Here, let us view
z; as a “vector” fieldz;(x), solution of(3.14), lying in the three-dimensional spate const. It is
evident from(3.14) that the functiorz;(x) admits a fixed point ay; =y,(t), in the sense that

z1(Y1) =Y. (3.15

Unless specified otherwigéke in (3.14], the notationy; always meany;(t). The mathematical
justification of (3.15) is the following. From the fact that the world line of the particle is timelike

we can write, for any instantsandt, the inequalityly;(t) —y;(t)|<c|t—t|. Hence, applying the
definition (3.14), we find that our functiorz,(x) obeys, for any positiong andx, the further
inequalities|z; (X) — z;(X)| < (1/c) |V. (X—X)|<|V|/c|x—X|. Now recall thafV|/c <1, so the lat-
ter inequalities mean exactly that the functior z,(x) is acontractingapplication with respect
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to the usual Euclidean nortne., it satisfies the property of Lipschitz with a rakie-|V|/c strictly
less than one Therefore, by the theorem of Picard, the function admits a unique fixed point,
which of course is nothing but; . (Besides, at the location of the fixed point, we haye-t.)

In this article, we establish the general solution of the equad8adl¥) in the form of an infinite
(post-Newtoniah power series in t2. We shall not discuss the convergence properties of this
series and simply employ it to define the regularization up to any relativistic order. This is
sufficient for the application to the problem of the equations of motion of particles in the post-
Newtonian approximation. The general solution(8f14), as determined in the Appendix, reads

B + (_)n 9 n—1 )
n=yit 2 ol ) [V, (3.16

with shorthand notationg, =y (t), r;=x—y;(t), andv;=v,(t). The many derivatives/Jt on

the right side are partial time derivatives with respect to the coordinatettithe spatial coordi-

natex being held constant. They act op through the trajectory,: we havedr,/dt=—v; or
Jd(V.ry)lat=—V.v, for instance. On the other side, they act of course on velocitiesderi/a-

tives of) accelerations: thugv,/dt=a,, da;/dt=b,, db,/dt=c;, and so on, where,, b, ¢;
represent the acceleration, and its first and second derivdiivésese cases the partial derivative

is a total derivative, e.gdv,/dt=a;). Thus, to high post-Newtonian ord€8.16) contains many
accelerations and derivatives of accelerations, but it is understood that this formula is order-
reduced, consistent with the post-Newtonian order; i.e., all accelerations and derivatives of accel-
erations are to be replaced by the functionals of the positions and velocities deduced from the
equations of motion. Combinin@.13 and (3.16), we easily find the corresponding solution for

the time coordinater,

- g (_)n g\n-1 ]
Tl—t+n:1 Cznn! E [(Vl’l) ] (317)

[Of course, sinc& is a constant vector, it could be as well put outside the partial time derivative
operators in both3.16 and (3.17).] Finally, Egs.(3.16 and (3.17) determine completely the
space—time everi¥l,. From them, we can recover directly the fact that wikery, (at the fixed

point) thenz;=y; and r;=t: there are on the right sides of both relatiams 1 partial time
derivatives acting on a term that involves thié power (/.r;)", so that at least one of the scalar
productsV.r, is left undifferentiated, and makes the sumg3nl6 and (3.17) vanish wherr,

=0. Replacing botfz; and; as given by the infinite post-Newtonian series back into the relation
(3.103, expressing both sides of the resulting equation as the same type of post-Newtonian series
with the help of a formal Taylor expansion wher>«, and finally equating all the coefficients of
these two series yields an interesting mathematical formula relating together some sums of prod-
ucts of derivatives. This formula is derived in the Appengizhere we also present a direct proof

of it). Notice that the same reasoning as before can be done on the coordinates of tHe, ement

the new frame, which we find to be given by

+ % 9 n—-1
zi=y1+n§=)1m<§> [(V.rp)™vil, (3.183

+ o0 1 a n—-1
I=t'+ — V.rhHn, 3.18
7 nZlcmm(,w [(V.r)" (3.180

wherey;=y;(t'), ri=x"—y;(t"), andv;=v;(t"). Evidently, the resul{3.18 can also be de-
duced directly from(3.16) and(3.17) by changingV into —V and replacing all the non-primed
variables by the corresponding primed ones.
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We are now able to give all the transformation laws of field and source variables between the
frames{x*} and{x'#}. Of course, from(3.6), the transformation of the field variables is the

standard Lorentz one,

1
t'=y(t——2(V.x) , (3.193
C
Y] P Y 3.19
X =X—vy t—gm( .X) . ( . b

Concerning the source variables, we are interested in the expressions of the new ppgitions

y5(t’) and velocitiesv(t’), v4(t') in the new frame at timé’. These are straightforwardly
obtained from inserting the result3.16 and(3.17) into the equation§3.9), as well as the similar

results corresponding to point 2. We find, for trajectories,

r= V 1 7 V
Yi=Y1—Y t—gm( .X)

SOy oy
+n; T (5) [(v.rl) (vl—mv } (3.203
1
Ys=Ya— (t——%l(Vx))
5 2[4 oot
& ) |V ——1V (3.209

By subtracting the latter equatiof3.20 to x’ as given by(3.19H we obtain the spatial distances
ri=x'—yi(t") andry=x"—y,(t’) as

, +o (_)n J n—1 .

rlzrl—zlc (5) (V.rl)( ——1v (3.213
ro=r —§ Sl i " V.ry)" v —LV (3.21b
2 n=1c2"'n! \ dt (V.ra y+1 '

These relations will play the crucial role in the definition of our Lorentzian regularization. Of
interest also is the expression of the relative distance between the two particleg; ey

—Yy5=r5—r} given by

y+1 +1

—(V-rz)”( ——v} (3.22

(V.rl)”( - v

Yi2= Y12+2 ( " (&t)

Finally, we compute the expressions of the coordinate velocit{¢s') =dy;/dt’ and v,(t’)
=dy,/dt" in the new frame. They follow immediately from the law of transformation of the time

derivative,d; = yd,+ yV'd;, and we obtain

’ 1 1 - (_)n a\" n Y
VlZ;Vl V+;n§:lc (5) [(V-rl) (Vl_ mv }' (3.233
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+ o

1 1 (=) a\" v
,:— — +— J— . n —_
V2= V2~V Vnz’l cznn!<¢9t) (Ver2l| Vo= iV

}. (3.23h

Notice that although the velocitieg (t') andv,(t’) are some mere functions of the coordinate
timet’ in the new frame, they depend, when expressed in terms of quantities belonging to the old
frame, on both time&nd space coordinatesandx. This is obvious because by changing the space
coordinatex of the field pointQ while keepingt=const we change the time coordinateof the

source eventd!; andM, and therefore the values of their particle velocitisson as the trajec-

tories are acceleratgdThis fact is important and has to be taken correctly into account in the
regularization process defined in the next subsection. The inverse formulas are obtained in the
same way by substitutingd.18 into the inverse of3.7). They correspond of course to changing

V into —V and replacing everywhere the unprimed labels by primed ones. We find, for the spatial
distances and velocities,

+ o 1 9 n—-1 y
=r/— — T v+ —— .
1=h ngl c2“n!((9t’) {(V v 7+1V”’ (3.242
+ o n—-1
1 J y }
ro=rh— — V)N v+ ——V | |, 3.24
22 ngl c2”n!(<9t’) {( 2Vt (3:24)
! ’+V+1§ 1 (9 n[(v v —~ v} (3.249
Vi=—V — — TJ)"vit——=V]||, .
Loyt y i1 ¢t \ ot VAT oyl
1 + (9 n|: y :|
Vo=—V,+V+ — — V)M v+ ——V | |. 3.24
2= VetV 2 Cznn!(ﬂ, (Vorg)"| vt g (3.240

B. Definition of the regularization

Let us consider a functiofr belonging to the clasg and being at the same timesaalar
under Lorentz transformations, i.d(x,t)=F’(x’,t"). More precisely, we restrict ourselves to
the case of a dependence »mnly via the distances; andr, [cf. (3.2)]; this means

FLra(t),ra(t);va(t),va() ]=F'[ry(t"),ra(t");va(t"),va(t"); V], (3.29

where we use the same slightly abusive notation 48.@), with addition, on the right side, of the
explicit mention of the dependence over the boost ve¢tohll the variables in both framefs«#}
and{x'#} are related to each other by the formulas developed in the previous subsection. The
regularization process goes as follows.

(i) Starting fromF[rq,r,;vy,v,] defined in the framgx*}, we first determine the new
functional F'[r1,r5;v;,v5;V] in the boosted framéx’#}. To do so, we replace all the variables
ry, o, Vi, Vo by their expressions in terms of the new ongs r;, v;, vy as given by the
formulas(3.24), in which it is understood that all the accelerations are order-reduced up to some
given specified post-Newtonian order. Performing all the necessary post-Newtonian reexpansions
to that order, we indeed obtain in that wésinceF is a Lorentz scalarthe new functionaF’ of
the new distances;, r; and velocitiesvy, v;. In addition, F’ depends as expected on the
constantV which is yet unspecified at this stage.

(ii) We compute the Hadamard regularizatiorFéfat point 1 following exactly the same rules
as defined in2.3), but in the boosted framgx'#} (in particular, within the coordinate slicg
=cons}. In words, we perform the expansion®f when the spatial distaneg tends to zero, and
obtain the same type of power-law expansion a$2ii) [since the form of the relation.24)
shows that the structure of the expansions in both frames must be thé. $éomesver, we get
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some primed functional coefficients, that differ from the unprimed coefficient$, appearing in
(2.1). The boost vecto¥ is simply held constant in the process. Thugy € IV,

F/rirhvivaiVl= > r'3fi(nlyiivi vaV)+o(r'Y), (3.2
1

ag=asN

with the notationr ;=[x —y;1|, nj=(x"—y};)/r}, andy;,=y;—Yy,. (The fact that the coefficients
1f; depend ory;, instead of the two individual trajectorigg, y; is due to our restriction that’
depends o’ via the distances; andr,; also, the accelerations depend on the relative distance
y15.) Now, like in (2.3), we pick up the zeroth-order coefficient in the-expansion(3.26) and
average over the angles. This defines a certain functional of the separationwectine veloci-
tiesvy, v5 and the boost velocity,

!

A/ ’ ’ ’ dQl ! ! ! !
fo(ylz;vl,vz;v)=fEfo(n’l;ym;vl,vz;v). (3.27
1 1

We insist that the angular average is perfornrethe new framgewithin the spatial hypersurface
t’=const; in particular, the solid angle element (127 is the one associated with the unit
directionn; in that hypersurfacedQ); =dQ(n;). Here againy is considered as a simple constant
“spectator” vector during the average.

(iii) We impose that the new frame is actually the rest frame of particle 1 at the Byent
Recalling that the Lorentz boo&.4) brings a particle with velocity in the frame{x*} at rest in
the frame{x'#}, we see that we must choose

We come back to the original variables in the unprimed frame by using the transformation laws
(3.22 and(3.23, in the limit where the field poinx tends to the source poig(t) (because we

are located at the eveRt;), with V=v,; according to(3.28. Note that, in this limitr;—0, the
coordinate timet” of the eventQ in the primed frame is equal to the coordinate timeof the
eventP,. It is important to realize that both the computation of the limit wien-0 and the
replacement of the vectd¥ by (3.28 are to be doneafter performing the many partial time
differentiations in(3.22 and (3.23. Consider first the primed variablg,, which is given by
(3.22 where we apply the replacement=0 (as well asV=v;). In (3.22 then—1 partial time
derivatives acting on the term proportional td.¢;)" will clearly lead to zero in the limit;

=0; indeed, by an argument met previously, there are not “enough” derivatives to make a nonzero
contribution. So the variable to be used when coming back to the original frame is

< (D" fayn? Y
1 _ . n _
Vi (Y12 n§=:l c2'n! (ﬁt) [(V.rZ) (VZ ')’+1V D (/2:3’12. (329
-v,

As indicated by the notation one must implement the replacememtslnfy;, (this is equivalent
tor,=0) and ofV by v, afterthen—1 time differentiations. In the case of the primed velocity of
particle 2, given by3.23h, we simply have

v

(3.30
M2=Y12
V=v,
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The formulag(3.29 and(3.30 define, after order-reduction of the accelerations, some functionals
y1d Y12:V1,Vo] @andvy[yio;vq,V,] that we use for coming back to the initial frarfpe*}. Clearly,

the primed velocityv; of point 1, at which we perform the regularization, deserves a special
treatment. From3.2339 we obtain

Here, there aren time derivatives which is priori enough to make a contribution. The only
possibility is to differentiate successively each of thfactorsV.r, yielding for each of the terms
in the sumn! identical contributions. Hence, we arrive at a much simpler series,

+ oo

1 1 (—)”(6)” ( Y
A VAV —| (V)" vi— ——=V
. (?’Vl Vrgl c®'n! |\ dt (Vra\va y+1

(3.3)

r,=0
V=v,

+ oo n

1 1 V.vg v )
vi=|—v;—V+— — |vyj———=V , 3.3
1(Y1 PN el B e} ‘ (3.32
V=v,
which can now easily be summed up. The result is
Uy)i—V+[yl(y+1)(V.vy/c?) ]V
o |V DV ) | 339
1-V.vs/c
V=v;

from which we immediately deduce that the primed velocity of particle 1 must be zero,
v;=0. (3.39

This is of course the expected result because the boost velocity was chosen to be equal to the
instantaneous velocity of particle 1 in the unprimed frame at the instétvever, the details of
the above proof constitute a necessary consistency check of the formulas.
(iv) The choice of boost vectdr =v,, together with the equivalent statement that 0, as
well as the expression§3.29 and (3.30 defining the two functionals/;Jyi,;v,,v,] and
V5[ Y12;V1,V,], are put into(3.27, which gave the resulﬁ() of the spherical average in the
Hadamard regularization performed in the primed frame. Therefore, the regularized vl of
point 1 is defined by

[Fli= ?6(yiz[y12;V1 V2 l;0,Vo[Y12:Ve,V2livy). (3.39
1

The new regularizatiofiF]; acts, like the old oneK),, as a certain functional of the relative
distancey,, and the velocities/;, v,. However, in generic casepk]; differs from (F); by
relativistic terms at least of the orderci/(we investigate in Sec. IV the exact relation between
both regularizations to the first relativistic orderc®). In the problem of the post-Newtonian
equations of motion, we have foutfd*that the new regularizatidiF ]; adds some extra terms to
the acceleration computed using the regularizatie)y ( these new terms are of order 3PN and
manage to make the 3PN equations of motion invariant with respect to Lorentz transformations.
Indeed, with the regularizatior(, the Lorentz invariance of the equations of motion would be
broken at the 3PN order. Finally, let us introduce as we did in Régeg also Sec. )lla delta-
pseudo-function associated with the new regularizafiér,. By definition, the “Lorentzian”
delta-pseudo-function denotedBf[to contrast with the noninvariant one®Rfdefined by(2.13)]

is such that

VFeF, (PfA,,F)=[F],, (3.39
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where the right side is given by the new regularizatidr85. By definition, we have in the case
of the new regularization the same laws for the multiplication as in Sec. Il, for instance

FG.PfA,=Pf(FA;).G=Pf(FA,).PIG=Pf(FGA,), (3.37
where the pseudo-function F¥Q,) is defined by
VGeF, (Pf(FA,),G)=[FG];. (3.38

This pseudo-function PKA,) is at the basis of our proposal for the stress-energy tensor of
point-particles in Sec. V. And, like in the case of P;), we are not allowed to replace this
pseudo-function by the product of the regularized value of the function times the delta-pseudo-
function, namely,

Pi(FA,)#[F],PfA;. (3.39

The derivatives of Rf; and Pf(FA,) are constructed in the same way as for the original
regularization in Sec. Il. Therefore,

VGeF, (4[Pf(FA1)],G)y=—(Pf(FA,),0,G)=—[FaG];. (3.40

However, the identity2.5) is not valid in the case of the new regularization, so we do not have a
result similar to(2.20 [see(4.13 for the equivalent of2.5) at the first relativistic orddr For the
product of PfF &;) with some P&, the Leibniz rule holds:

A[P(FA,).PiG]=¢,[ P(FA,)].PIG+Pf(FA,).d;( PfG). (3.4)

This is a consequence of the definiti40 and the law(3.37).

IV. THE REGULARIZATION AT THE FIRST RELATIVISTIC ORDER

At this point, it is instructive(and useful in practigeto present the complete formulas that
define the Lorentzian regularizati¢f ], at the level of the first relativistic correctionsci/ i.e.,
neglecting all the terms of ord€(1/c*). [Notice that, consistent with Sec. Ill, we must consider
that the boost vectoV itself is of orderO(1), sothat, for instance, the factov?/c? really
represents a small relativistic correction of the or@ét/c?).] Furthermore, we shall obtain at this
1/c? level a formula linking the new regularizati¢# ], to the old one F);. Like in Sec. IlI, we
assume that the functioR depends orx through the two distances(t) andr,(t) only; this
implies a relation between the partial derivatives:

JF JF
(?iF‘f‘—i‘f‘—i:O (4.1
dy; dys

(whered,=a/dx'). We suppose also th&tis a Lorentz scalar, c{3.25.

We follow the general specification for the regularization in Sec. Ill. We first express the
vectorial distances,, r, and velocities/ , v, in the boosted framgx’#} using the transformation
formulas(3.24 restricted to the order ¢?. For the distances, we get

o 1 ’ ’ 1 1
rl—rl—g(v.rl) Vit 5V|+0 ) (4.2a
1 1 1
rzzré——z(v.ré) v+ =V[+0 ik (4.2b
c 2 c

The relative distancg,=r,—r, reads as
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1 1
Y12=Yiot g[ —3(V.y1)V+H(V.rpvy—(V.ry vy ]+ O( ;) ) 4.3

while, for instance, the relative separatiop=|y;| is

! !

! 1 1 1 \2 rl ! ! ! r2 ’ ’ ’ 1
rio=rig 1+ | =3(V.npp) "+ —(V.ny)(vy.N1p) = —=(V.nz)(Va.n3p) | | O — |,
c Mo Mo c
(4.9
wheren;=r;/r;, ny=r,/r;, andnj,=y;,/r1,. For the two velocities, we find
1 1
v1=v1+V+?([—%VZ—V.vi]vi—%(V.vi)V+(V.ri)a£)+O E)' (4.53
1
Vo=V5+V+ —2([—%v2—v.v;]vg—%(v.vg)v+(v.rg)a§)+o il (4.5b)
c c

where the two acceleratiorsg anda, are to be replaced, consistent with the approximation, by
their Newtonian valuesa;=—(Gm,/r’'2,) nj,+0(1/c?) and ay=(Gm,/r'%)n],+O(1/c?).
[Notice that in Sec. Ill the regularization has been defined regardless of the type of special-
relativistic interaction involved; in the case of electromagnetism, for instance, we should simply
replace the accelerations by their Coulombian valuegib).]

Next, we substitute the expressidds?) and(4.5) into the scalar functiof[r,r,;v;,v,] and
perform the expansion to the first order. The result is the scalar furigtior ,r;;v;,v5;V] in the
new frame; thus

1 . _dF
F'[ry,r:vy,Va;VI=F[ry,r5;vi+V, v+ V]+ ?(V.ri) v’ +3V']—

Jd
ay'
Lol JeF 1l o1,
Tl ] | BV VR

1
v/i
2 oy, ¢ !

1 !
C

1 i i JF 1 ) ,
—S(VV)VIH(Vrpah |+ S | = SV2-Vavs o
2 9 c?

U1

JF 1
(902 C

where we have usedF/dri=—dF/ay} and oF/ar,=—dF/dy,. Note that, to this order, the
partial derivatives in(4.6) can be evaluated at the primed valugs r, andv;+V, v,+V, or
equivalently at the nonprimed ones, r, andv,, v,. Now we pick up in the new frame the term

of zeroth order in the expansion whej— 0, and perform the angular average with respect to the
directionn; . This yields the functional of the variablg$,, v; , v5, andV which has been defined

in (3.27). Since these operations of expanding and averaging represent nothing but the Hadamard
regularization in the old sense (#.3), we can denote them by using the parenthesis appropriate
for this regularization. Therefore,

1 ) .
— E(V.vé)v'+(v.ré)a"2
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) 1 1 |oF
fo(Yia;v1,V3iV)= (F[rlyrl+y12=vl+v V2+V]+ 2(Vor) vyt 2VILV
1
HERVISRYAVE ot V'VF
—(V.r . v’
> 1T VY1 27 oy,
1 1 2 v 1 V. V| V. ri
+? E Vi E( Vl) +( rl)a Tl
1 1 5 N 1 '\ ’ ri JIF
+ —2 — E V.V2 [ 202 E(VVZ)V +[Vr1+vy12]a 2 _I
c O"Uz 1
1
+0| - @0
C

We have replaced here the vectorial distaricby the unprimed notation,, noticing thatr; is the
dummy variable with respect to which the regularization procdedth this notationr; is re-
placed byr,+y;,). Following (3.35, the Lorentzian regularizatiofF], is achieved by posing
V=v,; andv;=0, as well asy;,=y;JY12;V1,Vo] andv,=v;[yi,;V1,V,], where the latter func-
tionals are defined in the general case(By29 and (3.30. It is convenient to obtain first an
intermediate formula by setting=v, andv; =0 in (4.7), and by replacing into the terms that are
already of order 1 the primed variabley;, anda; , a, by the unprimed ones. Using also the
identity (4.1), we arrive at

1 )
[F]lz(F[rl,r1+y12;vl,vl+v§]+ E(vl.rl)v'lﬁiF

N P A . Y EWVAIN £ |

—(Vy.r)| vy — —+a,—+a,— =(V1.Vo)u+ | 2Vi—V; .V, v

2V Loy 2[5,y2 Lot o2t 2| 5(V1-Vo)ur | SVI— V1. Vo v
o 1 oF 1

+(Vy.y1day | — ( 1-Y12)| — 01+Uz o] Ol =/ (4.8
(?1)2 &yzl C

wherey;, andv; in the first term of the right side are given functionsyg$, v, andv, obtained
by approximating(3.29 and(3.30 to the first order. We find

(4.99

1
Y12:Y12+ (V1 Y12)| — V1+ Vo

1
+0| —
c’

1
Vé: _V1+V2+ _2 —
Cc

1

1
2
E(V1-V2)V1+ — 5 Vit ViV Vo= (V1Y)

1
5 +0 g (4.9b

(where the acceleration is equal to its Newtonian valBg inserting(4.9) into (4.8 and expand-
ing to order 1¢2, it is easily seen that we cancel out exactly the two last terms on the right-hand
side of(4.8), so that the result simplifies appreciably:
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1 )
[F]1::< F[rlarz;V11V2]+'E;;E(Vl-rl)vaaiF

+1( ) iaF+iaF+iaF+iaF Lo 410
— (V1.5 V1— TU,—F— tTaA;—F— Tta,—— — . .
2 U Ttayl Payh vl Cavl ) ct
Finally, we recognize on the right side the partial time derivative,
- dF - dF - dF - oF
ﬁtF:l)ll—i'i‘Ulz—i'i‘all—i—Falz—i, (4.11
ayq Yy, vy v,
so that our final result writes
1 1 1
[F]]_: F+—(r1.V1) &tF‘i‘_UIl&iF +O . (413
c? 2 L ct

The result(4.12 displays the first relativistic corrections brought about by our Lorentzian
regularization[F];. As a check of the formula, let us apply it to the case of the special combi-
nation 9;F —3(n}/r1)F which, as we know fronm(2.5), has no partie finie at the point 1 in the
sense of the old regularization. This is no longer true in the sense of the new regularization. Using
the equation4.12 we find instead

n 1 , 1
3_ 1__2(nlvl) F__zvlé’tF +O
s c C N

[diF]i=

1
< (4.13

The check consists of remarking that becausé€2d) we have(d; F’ —3(n’i1/r1)F’)1=0 in the
rest frame of particle 1, therefore the equatighF’—3(n’’/r1)F’],=0 must hold in any frame
by definition of the new regularization. In the frame where the particle velocity; we have
ri=ry+ (1/2c?)(vy.ry) v, +0(1/c?) and o = 9+ (1/c?) v} dy+ (1/12c%) vy} 9, +O(1/c?). Insert-
ing these relations into the previous equation, and using the facktisaa scalar, we recover the
formula (4.13 after a short computation.

V. THE STRESS-ENERGY TENSOR OF POINT-PARTICLES

With the Lorentzian regularization in hand, we make a proposal for the description of point-
like particles in(post-Newtonian approximations)afeneral relativity. We recall first the general
context of the problem. We want to solve the field equations of general relativity by means of
analytic post-Newtonian series, with matter source describing appropriately defined point-
particles. The stress-energy tensor of the matter source is supposed to be spatially isolated; we
recall that, in this case, general relativity admits the Poingaoeip as a global symmetry. We
assume the existence and unity of a global harmonic coordinate system, defined by the gauge
conditions

a,h#*'=0, (5.1

h#r=gg'— n*, (5.1b

whereg#” denotes the inverse of the covariant metyi¢,, and whereg is the opposite of its
determinant. The harmonic gauge conditigbsl) introduce a preferred Minkowskian structure,
with Minkowski metric given byp*”=diag(-1,1,1,1)= 5,,. Thus, the gravitational field can be
described in harmonic coordinates by the Lorentzian tensor fild propagating on the
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Minkowskian backgroundy*”. Similarly, one can think of the trajectories of the particles as
accelerated world lines in Minkowski space—time. Subject to the conditiofsthe Einstein field
equations take the form of wave equations on the flat background,

, 167G , , 5
Oh* ZTQT" +A#*"[h,9h,9°h], (5.2

where the flat d’Alembertian operator is given by= »*"3,4,. The right-hand side is made of

the sum of the matter source term, with spatially compact support, plus the gravitational source
term A#”, given by a certain functional of the field variable¥” and its first and second space—
time derivatives, and at least of second ordeh.iA consequence of the harmonicity conditions is
that

4

wv
9 9T 16,6

A®*Y|=0 , (5.3

which is equivalentthrough the contracted Bianchi ideniitto the covariant conservation of the
matter stress-energy tensot”,

V,TH=0 , (5.4)

the latter equation being in turn equivalent to

3,(NGG\, T = 319\, T (5.5

In this section we regard the matter ten3dt” as a Lorentz tensor defined with respect to the
Minkowski metric 77, singled out by our choice of harmonic coordinates.

To define a model for point-like particles, we follow essentially the derivation of the stress-
energy tensor ofestmasses moving on a fixesmoothbackground(see, e.g., Ref. 30, p. 360
However, in the case of “self-gravitating” particles, we do not have a smooth background at our
disposal, and the metric becomes singular at the location of the point-masses. Essentially, we shall
propose the value of th@ost-Newtoniapmetric coefficients on each of the particles to be given
by the Lorentzian regularization defined in Sec. Ill. This entails supposing that the metric coeffi-
cients belong to the class of functiofs This is correct up to the 2PN ordE&thowever, we know
that the expansion of the metric coefficiefitsharmonic coordinatesiear the particles, instead of
being of the type(2.1) and (2.2), involve some logarithms of the distance to the singularities
starting at 3PN order. It was shoffrthat, at this order, the logarithms can be considered as some
constants and included into the definition of the partie finie; moreover, they can be finally elimi-
nated from the equations of motion by a change of coordinates. This suggests that we might
consider more generally the logarithms as some constants, motivating our assumptigp, that
e F. On the other hand, it is knowh?* that the constants; ands, entering the partie finie
integral (2.6) must be adjusted in order that the equations of motion can be deducible from a
Lagrangian, and in particular admit a conserved energy. For these répsesence of logarithms,
equations of motion not directly admitting an energthe following derivation of the stress-
energy tensor for particles cannot be considered to be a rigorous proof. However, as we shall see,
it is nicely consistent with the regularization, and its result satisfying. Our basic assumption is that
the dynamics of the particles follows from the variation, with respect to the metric, of the action

+
IparticIe:_mlcfioc dtV_[g#v]lUTUI_Fl‘_’za (5.9

wherev{'=(c,dy,/dt) denotes the coordinate velocity of particle(\e consider a two-body
system, but the generalizationltbbodies is immediage The crucial point is that the value gf,,
at 1 is assumed to be given by the Lorentzian regularization defined in Sec. lll. We vary the action

Downloaded 07 Sep 2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



4410 J. Math. Phys., Vol. 42, No. 9, September 2001 L. Blanchet and G. Faye

(5.6) with respect to the metric, i.e., we imagine tiggt, 7 is subject to an infinitesimal variation
9,,—09,,19,, and compute the corresponding change in the action. However, we want the
variation of the metric to correspond to the same matter system with two singularities 1 and 2. The
evident and most natural way to ensure this is to supposethgte F. Under the latter variation

the regularized value of the metric at the point 1 undergoes the infinitesimal changh
—[9,,11+[89,,]1. Therefore, the variation of the actidh.6) reads as

+oc '“V

1
Sl particle= =M, C [69,,]1+1<2. (5.7
particle 2 1 \/m gM 1

From the defining propert{3.36 of the delta-pseudo-function Bf, we can rewritg5.7) in the
equivalent form

(PfA,89,,)+1-2. (5.9

5 ! f T
particle™ 5 M1C TV
2 - _[gp(r]lvgvl

Now, recall that the duality bracket is defined by the partie finie of the three-dimensional integral
[cf. (2.8)], so the latter expression can be cast into the standard form appropriate to the definition
of a stress-energy tensdf e, Namely,

partlcle 2 f d t< \/_Tpamclev 5g,u,v (59)

The only difference with the standard definition is that the partie finie takes care of the divergen-
cies at the positions of the particles. By comparig8) and (5.9), we readily find that the
corresponding stress-energy tensor density is given by

vivy

\/ET’W< =M
particle ™~ 1 50 [gpo] " gv i'

The stress-energy tensor itself comes immediately from the rule of multiplication of pseudo-
functions(3.37):

PfA;+ 12, (5.10

MmooV

V70U
11 L +102, (5.11)

A
THY =M e Pf( —
partlcle [t~ 1 .p.0 [gpg] v ’iv‘f \/a

This tensor takes the same form as the stress-energy tensor of test particles moving on a smooth
background, except that the role of the background field is now played by the metric generated by
the particles, regularized following the prescripti@?35. Notice in particular that the factor Jg

inside the partie finie sign Pf should not be replaced by its regularized valugsae®.39]. We

propose the tensdb.11) as a model of particles in the post-Newtonian approximation. From the
product rules for pseudo-functions, we get the matter source term on the right-hand &d® of

as

Pf(VgA) +1-2. (5.12

MmooV
U1Uq

TAY =M ——

g particle ™Y .0
[gp(r]lvlvl

The post-Newtonian iteration of the field equations in Refs. 22 and 24 is based on the latter
expression of the matter source term.

We now derive the equations of motion of particle 1 from the covariant conservation of the
stress-energy tens@b.11):

Downloaded 07 Sep 2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



J. Math. Phys., Vol. 42, No. 9, September 2001 Lorentzian regularization 4411

\Y% VT{)LaVI’tide: 0. (5 13)

Notice that thanks to the presence of the delta-pseudo-function, we know that the derivative is
“ordinary” and satisfies the Leibniz rule in the sense(8f41). Thus, we can transfor¥i, T} ice

in the standard way and find that the equatibri3 is equivalent, like in the case of continuous
sources, to the alternative form

1
(9,,( \/ag)\ung:rticle) = E\/aa)\g;w-rgayrticle- (5.14)

Then, we integrat€5.14) over a closed volume Vsurrounding particle 1 exclusively. The role of
the three-dimensional integral is played here by the duality bracket defingd8yl et us denote
by 1v, the characteristic function of the volume, Vsuch thatlvl(x)=1 if xeV,; and 1V1(x)

=0 otherwise[notably, 1, (y,)=0]. Thus, we consider

1
(d,( fgngﬁa”mcue) )= < EﬁﬁngTﬁaﬂm@ 1y, ). (5.19

(Though1l,_ does not belong to the class it is locally integrable orR® and we know that the
gnly, g y g

duality bracket applies on such functions as well; see RefThe partial derivatives,, on the
left-hand side is split into a time derivative and a space derivative. Following thé34i@), the
spatial derivative); is shifted to the right side of the bracket, where it applies on the characteristic
functionly = Because of the presence of the delta-pseudo-function, the derivative f to be
taken in an ordinary sense and is zero. Following the (@/@ in Ref. 1, an analogous reasoning

is valid for the time-derivativel,= (1/c)d; which can thus simply be put outside the bracket.
Thus, we get

d 1
E‘K \/ggAuTga?rticle- )= < E@AQWTS‘;M 1V1> . (5.16

Next, we insert intd5.16) the specific expressiofb.10 of the stress-energy density of particles.
Because of the presence of the functitq,q only the part corresponding to particle 1 contributes,
and we obtain

d| "L b A )’ LU g Ay). (5.7
o= TP\ A1) Wy ) [ = 5 T——— NG, 1y ). (5.
dt \/_[gpa']lvgvl : ! 2 \/_[gp(r lvgvl g '

Finally, the effect of the brackets on both sides of the latter equation is to take the value at point
1 in the sense of the Lorentzian regularizati@mB5. Thereby our final result reads as

d( (G ]avt )_1[5&9”1»]10?1);

— =_ : (5.18
dt \/_[gpa]lvgvg 2 V_[gpn]lvgvg

The equations of motion of particle 1 have the same formal structure as the geodesic equations of
a test particle. In separate papérd?°we use(5.18 to derive explicitly the equations of motion
of the two particles at the 3PN approximation.
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APPENDIX: SOLUTION OF THE EQUATION (3.14)

We are looking for the vectar; satisfying the equation

1
zlzyl(t—?v.(x—zl)), (A1)

wherey;,(t) represents a given smootiCT{) time-like trajectory andV a constant vector with
norm|V|<c. Clearly, for a given trajectory, the solutiap depends on the field pointas well as
on timet. It was shown in the text aftdB.15 that the applicatiox— z, is contracting with fixed
pointy,. Here, let us look for the solutior, in the form of a function of the coordinates,

Z;=21(X,t). (A2)

From (A1) we compute the partial derivatives af with respect tot andx', considered to be
independent, and readily obtain

m_ Ly v lV( ) (A33)
—_— = i—V.,.—|V — —V.(X—2Z s a
X! c?| axi|t c? !
m 1ty Al -ty A3b
i 2V A o2 (x=2z7) |. (A3b)

Contracting these equations with the vecibwe can obtain the scalar produdtsiz, /9x' and
V.dz,/dt, and use them back int#3) with the result that

0z, 1 Vq
—=——=V,—, (Ada)
e c? '1-V.v,/c?

9z A

gt 1-V.v/c?, (A4db)

where the velocity; is evaluated at the instant (1/c?)V.(x—z;). In particular, we find that;
must be a solution of the following first-order differential equation:

071 1 v 9z, A5
o 2 (A5)

Conversely, let us prove that a vectgrthat (i) satisfies the differential equatiqi5) and (ii)
admitsy, (t) as afixedpoint, i.e., is such that

Z;(y1(1), D)=y (1) (AB)

necessarily satisfies the original equati@). Such az(x,t) being given, we perform in the
equation(A5) the change of variablex(t)— (p},71) defined by

pl=x—2Z (1), (A79)
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T =t— izv.(x—zl(x,t)). (A7b)
c

Using (A5) it is easy to obtain the laws of transformation of the partial derivatives:

J _ J 1 J
a_§+§viﬁ' (A8a)

’ _(9+Bi6’2j1 ’ A8Db
ary ot gt gy’ (ABD)

whereB; denotes the matrix inverse @f= S+ (LI?)V (azZ4/at) (ie., A;BL= 6. in the case
considered here where the velocities are strictly less thizne matrixA! is a deformation of the
unit matrix and thus admits an invejs&ow, under the change of variables7) the differential
equation(A5) becomes simply

9z,
— = 0, (Ag)
py

whose general solution is an arbitrary function of the time varialle Therefore, there must
exists a trajectoryy’; such that

;=Y (1))=Y

t— izv.(x— zl)). (A10)
C

Imposing now thay;(t) is a fixed point for this solutioz; in the sense ofA6) leads immediately
to

Y1(t)=y(1), (A11)

so the equatiortAl) is recovered exactly. Thus, solviigl) is equivalent to solving the differ-
ential equation(A5) supplemented by the conditiqiA6). Notice that from(Al) or equivalently
from (A5) and (A6) we find thatz; tends to the fixed point in the “nonrelativistic” limit
— 4+, e,

lim {za(x,D} =y (0). (A12)

C—+®

This suggests to look for the solutiay in the form of an infinite series of relativistic corrections
of successive ordersc® [from (A5) we know thatz; is a function of 1¢2]. Thus, taking also into
account the limit(A12), we pose

n

M|
z(x,t) =y, (D) + gl Zalx), (A13)

n
and we look for each one of the unknown coefficiehigx,t). By placing the serie§A13) into
both sides of the equatiohA5) and identifying the factors of the powers ot4/on each side we
find, for anyn=1,

Downloaded 07 Sep 2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



4414 J. Math. Phys., Vol. 42, No. 9, September 2001 L. Blanchet and G. Faye

n n—-1
9z, iz,
Vi (A14)

0
with the convention thaZ,=y,(t). The equation$A14) are to be solved using the condition of
fixed pointy; [cf. (A6)], which implies that¥n=1,

n

Z4(ya(t),1)=0. (A15)
The solution of(A14) and(A15) is found by induction oven. As an induction hypothesis suppose
that
n—1 (_)n—l n-2
= - n—1
1 (n_1)| <O7t) [(Vrl) Vl]i (A]-G)

wherer,;=x—y,, and where the partial time derivatives acttokeeping the space coordinate
fixed: for instancegr,/dt=—v; anddv,/dt=dv,/dt=a;, wherea; is the acceleration. Notice
that (A16) satisfies the conditiofA15) because it involvesi—2 partial time derivatives while
there is a factorV.r;)" ! inside the brackets, so after differentiation there will remain at least one
factor V.r; making the result be zero whea=y;. Inserting(A16) into the right-hand side of
(A14) we obtain the equation to be satisfied for the next-order coefficient,

azn _\n J n—1
ﬁ_)(il: |ﬁ(ﬁ) [(V-rl)n_lvl]a (A17)

which can be rewritten equivalently in the form

aznl_ d (—)”(a
o ax at

n—-1
= —) [(v.n)”vﬂ], (A18)

showing that the most general solution is necessarily of the type

n (_)n 9 n—-1 .
T (ﬁ) [(V.r)™va]+C(b), (A19)

whereC(t) denotes an arbitrary vector depending only on timelowever, this vector must be
zero on account of the fact that the result should be zero when . Therefore we have proved
by induction that

n _\Nn n—1
21:( ) (E) [(V.ry)"vq], (A20)

n!

so the vector; solving at oncgA5) and(A6), or equivalently(Al), takes the form of the rather
interesting infinite series

=y g\l
Z;=Yy1t+ n§=:1 ((:an)“ (5) [(V.ry)"Vvq], (A21)
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which constitutes the solution needed for our work in Sec. Ill. Furthermore, subtraditiog this
solution and contracting witV we obtain after a short calculation the quantity which was
defined in(A7b):

Tl_t+21( )(—) [(V.rp)"]. (A22)

c2nt \ ot

Now, recall that the latter quantity, is such thatz;=y,(7,). Therefore, we see that we can
find an alternative expression of the vectgmy inserting intoy;(7;) the series expansiai22)
found for r1. Using an infinite Taylor expansion we are led to

+ o0

3=y + 2

(p+21)! gt \n=1 ¢2n at

p +o . \n n—-1 p+1
! dvl( ) i) [(v.n)“]) . (A23)

Each of the terms is composed pf 1 sums; accordingly we introduget 1 summation indices

Ny, ..., Ny, Npyq SO that
+o 1 dr Vl +o o +o (_)n1+...+np+1
Z=y1+ X o 2 T Ea—r—
p=0 (p+1) dtP n=1 p=1nyi1=1C (Nt ... +npiq)
a\M (V. a\" I (V.r)"] [ a\ 1 (V.r )2 roa
X J— eeo| — J— e —
ot n,! ot np! ot Npt1! (A24)

Next we pos&k=n,+---+n,+n,,, replace the index,,, by k, and operatep+1 commuta-
tions of summations to arrive at

k k=1

( ) 1 dpvl d1 Ap
z +
1=Y1 Z pZo (p+l)! dtP ni=1 Np
J n—1
<[

(V.rpn a\" I (V.r)"]/ g\ M1t
n,! ot np! at
in whichn, ;=k—2f_;n; andq;= 1+Ep+1(n —1) (with 1<j=<p). We must identify the latter

complicated expression with the simpler form of the veapgiven by (A21). From identifying
the powers of 12 in both expressions we immediately obtain

A

=1

(V.ry)"ert

Np 1!

, (A25)

(V.rp)k } S TR (VA S
ALLE VRN

k! =2

p=0 (p+21)! gtp n1=1“.n =1
J n;—1 (V.rl)”l np—1 (V rl)n Np+1—1
ot n,! at np! Jlat

Finally, from using the binomial formula for the derivative of a product, we can identify on each
side of the latter equation the coefficients of edf, /dt°, and we arrive at the relation, valid for
> 3
.. .np:1 E

anyp and anyk=p+1,
(Vr)™] p (Vg™ Mp+1-1
n=1 n,! at ny! at

~(pt1)(k—1)! ( a)kpl (V.rp)k
T (k—=1-p)! lat k|

(V.ry)"e+ 1}
Npre! |
(A26)

(V-rl)np“}

Np+1!

(A27)
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The latter relation actually represents a quite general mathematical formula because we have
specified nothing about the scalar product,. Therefore, the relatiofA27) holds in fact in the
case of an arbitrary sufficiently differentiable functibft), so

kS ko fd |\ fm d\" Y %]/ d\ "1 Y fMpr2
ni=1 ‘”npgzl (a) ﬁ (a) @ (m) Np+1!

fk

(p+1)(k—=1)! [ d\k P71
-l

(k—1—p)! \dt

. (A28)

The equivalence obtained above between the forfAda and the differential equatiofA5)
together with the auxiliary conditiofA6) showsindirectly that the mathematical formul&28) is
correct. However, airect proof of this formula has been found by Tanaka, Sasaki, and Tagoshi
(private communication Here we reproduce their proof in the particular case wierd, so that
g;=k—1 andn,=k—n (wheren=n,), in which case the formula reads, for aky 2,

k-1 d n—-1 d k—n—1 fkfn
> (a) (ﬁ) [(k—n)!

n=1
We replacef(t) in (A29) by its Fourier transformf(t)= [ " *(dw/2m)e' “F(w), and readily find
that in order to prove the formul@29) it suffices to prove the statement that the equation

fn
n!

k=2l £k
=2(k—1)(&) {k_'} (A29)

k—1

E1

n=

n)((U(l"' w2+- ~-+wn)n71(wn+1+- “+a)k))k7nil:2(k_ 1)((1)1+ 0)2+' st wk)k72
(A30)

holds identically for any family of real frequencies;, w,, ..., w,. Most importantly, the

parentheses around indices on the left sideA30) indicate the complete symmetrization over the
k frequenciesvq, ..., oy [in addition, Cﬁ) denotes the binomial coefficignt et us single out one

of the frequencies, for instaneg,, and rewrite(A30) in a form involving an explicit symmetri-
zation over the othek—1 frequencieswq, ..., w1, Only:

k—1 (k—l

n )(w(l+'"+wn)n_l(wn+l+'"+wk—1)+wk)k_n_l

n=1
=(k—1) (w1t wyt -+ ) 2 (A31)
(in which we have simplified a factor 2 on both sides of the equatiearthermore, let us replace

in the latter formulaw, by some sumw,+---+ w5, and symmetrize over the whole set of
frequencieswy, ..., wy,s. This yields, for anys,

k—1 ke 1
nz'l( n )(“’(H"'“"”)n1(wn+1+'--+wk+s))kn1
:(k_l)(wl+w2+...+wk+s)k,2. (A32)

Now we prove that the equatiqi30), or equivalently(A31), is true by induction on the integer
k. Therefore, our induction hypothesis is tlaB1) is correct forany k<K, and from this we want
to show that it is correct again fér= K + 1. Note that from our induction hypothesis we know that
(A32) is also correct for ank<K andany s Consider the sum defined by the left side(AB1)

in the case wherk=K+ 1, say
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K
K
Sk+1= El ( n)(w(l—’_' fia wn)nil(wn+1+' "+wK)+wK+1)K7n, (A33)

n=
where we recall that one of the frequencies, i®, 1, is “artificially” singled out. However,
Sk +1 is also given by half the left-hand side ¢&30) and is symmetric invy, ..., wg,q. We

want to show thaBy , ; is equal to the right-hand side ¢A31) with k=K + 1. To this end, we
transformSy . ; with the help of the binomial formula, and obtain after a short calculation

K-=1 | K—I
ke Kl K—I 1 K—n—I
SK+l: IZO T (K_I)' nZl( n (w(l+"'+wn)n (wn+1+"'+wK)) : .

(A34)

Now we have two sums ovérandn, and it is easy to recognize that the second sum, nyean
be simplified as soon ds=1 by means ofA32) which is correct by induction under the condition
thatk<K and for anys. PosingKk — 1 =k—1 andk+s=K we see that this condition is realized if
and only ifI=1. After simplification we find

Skr1= Ko+ + o) T+ V(o ... 0k), (A35)
where the first term is the result we want to obtain, and where the second term is a certain function
of the frequencies, ..., wx but which doesiotdepend orwy , ;. The expression o¥, ; is
given for completeness as

K

Yyi1= 21

n=

K
n)(w(1+---+a)n)”_l(wn+1+~--+wK))K_n—K(w1+---+a)K)K_1. (A36)

Now we use the fact the8 ., is actually fully symmetric with respect to th€+ 1 frequencies
w1, ..., wgs1- Therefore the functiol ,; must be a pure constant, independent on apy

Furthermore, we know also th8 , ; is a homogeneous polynomial of degtee- 1 in all thew,
., wk+1, SO this constant must in fact be zety ,;=0. Finally we are able to conclude on

the desired result,
Skr1= Ko+ + o)t (A37)

Incidentally, notice that the equalit¥, =0 is itself a consequence of the same mathematical
formula, since it follows from setting=K +1 and posingvk, ;=0 in (A31).
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