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Motivated by the problem of the dynamics of point-particles in high post-
Newtonian(e.g., 3PN approximations of general relativity, we consider a certain
class of functions which are smooth except at some isolated points around which
they admit a power-like singular expansion. We review the conceptd ¢fad-
amard “partie finie” of such functions at the location of singular poiriis, the

partie finie of their divergent integral. We present and investigate different expres-
sions, useful in applications, for the latter partie finie. To each singular function, we
associate a partie-fini€Pf) pseudo-function. The multiplication of pseudo-
functions is defined by the ordinarpointwise product. We construct a delta-
pseudo-function on the class of singular functions, which reduces to the usual
notion of Dirac distribution when applied on smooth functions with compact sup-
port. We introduce and analyze a new derivative operator acting on pseudo-
functions, and generalizing, in this context, the Schwartz distributional derivative.
This operator is uniquely defined up to an arbitrary numerical constant. Time de-
rivatives and partial derivatives with respect to the singular points are also inves-
tigated. In the course of the paper, all the formulas needed in the application to the
physical problem are derived. @000 American Institute of Physics.
[S0022-24880)03710-3

I. INTRODUCTION

The Hadamard regularizatidrf, based on the concept of finite pdfpartie finie”) of a
singular function or a divergent integral, plays an important role in several branches of Math-
ematical Physicésee Refs. 3—6 for reviewsTypically one deals with functions admitting some
nonintegrable singularities on a discrete set of isolated points located at finite distances from the
origin. The regularization consists of assignimgdefinitiona value for the function at the location
of one of the singular points, and for ti{igenerally divergentintegral of that function. The
definition may not be fully deterministic, as the Hadamard partie finie depends in general on some
arbitrary constants. The Hadamard regularization is one among several other possible
regularization$.

A motivation for investigating the properties of a regularization comes from the physical
problem of the gravitational interaction of compact bodies in general relativity. As it is hopeless to
find a sufficiently general exact solution of this problem, we resort to successive post-Newtonian
approximationglimit c— +). Within the post-Newtonian framework, it makes sense to model
compact objects like black holes by point-like particles. This is possible at the price of introducing
a regularization, in order to cure the divergencies due to the infinite self-field of the point-masses.
However, general relativity is a nonlinear theory and, if we want to go to high post-Newtonian
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approximations, involving high nonlinear terms, the process of regularization must be carefully
defined. In particular, it turns out that, from the third-post-Newtonian approxim&88MN or

1/c®), the problem becomes complicated enough that a rather sophisticated version of the Had-
amard regularization, including a theory of generalized functions, is required. By contrast, a cruder
form of the Hadamard regularization, using merely the concept of partie finie of singular
functions!~*3is sufficient to treat the problem up to the 2PN order. Furthermore, we know that the
answer provided by the Hadamard regularization up to the 2PN order is correct, in the sense that
the field of the two bodies matches the inner field generated by two black ales, the result

for the equations of motion can be recovered without the need of any regularization from com-
putations valid for extended nonsingular objects® Conforted by these observations we system-
atically investigate in this paper the Hadamard regularization as well as a theory of associated
generalized functions, in a form which can be directly applied to the study of the dynamics of two
point-like particles at the 3PN ord&f(We therefore restrict our attention to two singular points;
however most of the results of the paper can be generalized to any number of) péititse that

this problem enjoys a direct relevance to the future gravitational-wave experiments LIGO and
VIRGO, which should be able to detect the radiation from black-hole and/or neutron-star binaries
which a precision compatible with the 3PN approximatidn.

Consider the clas¥ of functions onRi® that are smooth except at two isolated singularities 1
and 2, around which they admit some power-like singular expansions. The Hadamard partie finie
(F); of F e Fat the location of singularity 1, as reviewed in Sec. ll, is defined by the average over
spatial directions of the finite-part coefficient in the expansiof @fround 1. On the other hand,
the Hadamard partie finie PixF of the divergent integral oF, we will review in Sec. I, is
obtained from the removal to the integral of the divergent part arising when two regularizing
volumes surrounding the singularities shrink to zero. Both concepts of partie finie are closely
related. Notably, the partie-finie integral of a gradient is equal to the sum of the partieq(ifinies
the former sengeof the surface integrals surrounding the singularities, in the limit of vanishing
areas. In Sec. IV we investivage several alternative expressions of the Hadamard partie finie of
integrals, some of them based on a finite part defined by means of an analytic continuation process
(see Ref. 2 for a relation between partie finie and analytic continyatiorour terminology, we
adopt the name “partie finie” for the specific definitions due to Hadamard, and speak of a “finite
part” when referring to other definitions, based for instance on analytic continuation. In Sec. V we
focus to the casémportant in applicationsof the partie finie of a Poisson integral Bfe F.

To any FeF, we associate in Sec. VI a generalized function, or partie-finie “pseudo-
function” PfF, which is a linear form onF defined for anyG e F by the duality bracket
(PfF,G)=Pffd*xFG. When restricted to the s& of smooth functions with compact support the
pseudo-function F¥ is a distribution in the sense of Schwdrtzee also Refs. 19-21 for more
details about generalized functions and distributipns., a linear form which is continuous with
respect to the Schwartz topologjHowever, we do not attempt here to introduce a topology-pn
we simply define the set of algebraic and differential rules, needed in applications, that are
satisfied by the pseudo-functions df) The product of pseudo-functions coincides with the
ordinary (“pointwise”) product used in physics, namelyfRPPiG=Pf(FG). An important par-
ticular case is the pseudo-functiondpfobtained(in Sec. V) from the pseudo-function associated
with the Riesz delta-functioff, and that satisfie¥ G e F, (Pfs;,G)=(G),. The “Dirac pseudo-
function” Pf&; plays in the present context the same role as plays the Dirac measure in distribu-
tion theory. We introduce also more complicated objects such &sdPf( In Secs. VII and VI
we show how to construct a derivative operatorgngeneralizing for this class of function the
standard distributional derivative operator @hand satisfying basically the so-called rule of
integration by parts, namelF,G e 7, (4;(PfF),G)= —(4,(PfG),F). In addition we require that
the derivative reduces to the “ordinary” derivative for functions that are bounded in a neighbor-
hood of the singular points, and that the rule of commutation of derivatives holds. We find that this
derivative operator is uniquely defined modulo a dependence on an arbitrary numerical constant
(see Theorem 4 in Sec. V)IIIt represents a natural notion of derivative within the context of
Hadamard regularization of the functions/ However, it does not satisfy in general the Leibniz
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rule for the derivative of a produ¢in agreement with a theorem of SchwarjzSee Colombe&t

for a multiplication of distributions and associated distributional derivative satisfying the Leibniz
rule. Further, we obtain the rules obeyed by the new derivative operator when acting on pseudo-
functions such as PH;) in Sec. VII, and we investigate the associated Laplacian operator in
Sec. VIII. Finally, in Sec. IX, we consider the case of partial derivatives with respect to the
singular points 1 and 2, as well as the time derivative when both singular points depend on time
(i.e., represent the trajectories of real particul&¥ithin this approach, the latter distributional
derivative constitutes an important tool when studying the problem of the gravitational dynamics
of point-particles at the 3PN ordéf.

Notation: N, Z, R andC are the usual sets of non-negative integers, integers, real numbers and
complex numbersR** is the set of strictly positive real numbess-0; R? is the usual three-
dimensional space endowed with the Euclidean nptns (x5+x5+x3)% CP(Q) is the set of
p-times continuously differentiable functions on the open@dip=< + x»); L&,C(Q) is the set of
locally integrable functions of2; theo andO symbols for remainders have their standard mean-
ing; distances between the field poitand the source pointg, andy, are denoted by;=|x
—vyi| andr,=|x—ys,|; unit directions are; = (x—y;)/r, andn,=(x—Y,)/r,; dQ; anddQ, are
the solid angle elements associated withandn,; r1,=|y;—Y,|; Bi(s) andB,(s) denote the
closed spherical balls of radisscentered ory; andy,; d;=dldx', 19;=dldyy, 20,=aldy,; L
=i1ip i) is a multi-index with length; nj=n'’--n} andd =4, ---d; ; the symmetric-trace-free
(STP projection is denoted by\y=STF(n}); (ij)=(ij+ji)/2 and[ij]= (ij —ji)/2; 12
means the same expression but corresponding to the point 2; for clearer reading, we use left-side
labels 1 and 2 when the quantity appears within the text, like for the partial derivaiivaesl,0;
or the coefficients f, and,f,, and labels placed underneath the quantity when it appears in an
equation; iff means if and only if.

II. HADAMARD PARTIE FINIE
A. A class of singular functions

All over this paper we consider the class of functions of a “field” point R® that are
singular at the location of two “source” pointg andy, around which they admit some singular
expansions.

Definition 1: A real function Ex) on R? is said to belong to the class of functiofsiff:

()  F is smooth onk?® deprived fromy, andys,, i.e, F e C*(R3—{y;,y,}).
(i) There exists an ordered family of indicé€s;); . with a;€ R, and a family of coefficients
1fa,, such that
'N

VNeN, F(x)=20 r3'f4,(N) +Ry(X). (2.1)
= 1 1

Here r;=[x—y,| andn;=(x—yy)/ry; iy satisfies g<a,<---<a; <N<a; .1; and the
“remainder” is
RuX)=o(r}), when ry;—0. (2.2
1

(i) Idem with indices(b;); ., coeﬁicientsszi, remainder,Ry, r;<r, andn;<n,.

In addition to Definition 1, we always assume that the functiBrsF decrease sufficiently
fast at infinity (when|x|— o) so that all integrals we meet are convergent at infinity. Thus, when
discussing the integrald®xF, we suppose implicitly thalF =o(|x| ~3) at infinity [or sometimes
F=0(|x| "3 € wheree>0], so that the possible divergencies come only from the bounds at the
singular pointsy, ,. Similarly, when considering the integrald®xFG, we supposeFG
=0(|x| %), but for instance we allow to blow up at infinity, sayF = O(|x|), if we know thatG
decreases rapidly, e.gG=o0(|x|"%); in the case of [d3xg;F, we generally assumd
=0(|x|~?). [Clearly, from Definition 1 the ordinary produEtG of two functions ofF is again a
function of 7, and similarly the ordinary gradiemF e F.]
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An important assumption in Definition 1 is that the powers pfn the expansion oF when
r,—0 (and similarly wherr,—0) are bounded from below, i.eag<a; where the most “diver-
gent” power ofr4, which clearly depends oR, is ap=ay(F). Thus the part of the expansion
which diverges whem;—0 is composed of a finite number of terms. Notice also that we have
excluded in Definition 1 the possible appearance of logarithmg dr r) in the expansion of.
See Selliet for a more general study in the case where some arbitrary powers of logarithms are
present. We will discuss the occurrence of logarithms in Sec. V, when dealing with the Poisson
integral of F. At last, we point out that the coefficient§, (and similarly,f,) do not depend only
on n,, but also they do on the source points andy,, so that in principle we should write
1fa(ny;y1,Y,); however, for simplicity’s sake we omit writing the dependence on the source
points. The coefficients could also depend on other variables such as the velqcitieb/, of the
source points, but the velocities do not participate in the process of regularization and can be
ignored for the momenfwe will return to this question in Section IX when considering the time
dependence df).

Once the clasg has been defined, we shall often write in this paper the expansidhsvben
r,,—0 in the simplified forms

F(x)= >, rif(ny)+o(r)) whenr,—0, (2.33
aosasN 1

F(X)= >, r3fy(ny)+o(r)) whenr,—0, (2.3b
bp<b=N 2

by which we really mean the expansions in Definition 1, i.e., in particular where the inaices
e (), andbe (b;);.n, and area priori real. However, most of the timgn applications, it is
sufficient to assume that the powersrgf, are relative integera,beZ. We can then write the
expansiorr;—0 in the form

F=> 1 0f_ o+ > 5 +o(r), (2.4)
k=0 1 k=0 "1

whereko=—1—ag. In the following we shall sometimes derive the results in the simpler case
where the powers: 7, being always undertood that the generalization to the case of real powers
is straightforward. Finally, it is worth noting that the assumptiprin Definition 1, thatF is C*
outside{y,,Y,}, can often be relaxed to allow some functions to have integrable singularities. An
example is the functiox— 1/x—x’| encountered in Sec. V, depending on a fixed “spectator”
point X’ distinct fromy, andy,. To treat such objects, we introduce a larger class of functions,
Fioc-

Definition 2: F(x) is said to belong to the class of functiofi%,. iff:

(i") F is locally integrable onk® deprived fromy; andy,, i.e.,Fe L|1OC(JH§3—{y1,y2}).

(ii)—=(iii) in Definition 1 hold.

For simplicity, in the following, we shall derive most of the results for functions belonging to
the classF (even if the generalization &, is trivial); F,. will be employed only occasionally.

B. Partie finie of a singular function

The first notion of Hadamard partie finie is that of a singular function at the very location of
one of its singular points.
Definition 3: Given Fe F we define the Hadamard partie finie of F at the pgmtto be

dQ
(F)1=J4_77_1I0(n1), (2.9

Downloaded 07 Sep 2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



J. Math. Phys., Vol. 41, No. 11, November 2000 Hadamard regularization 7679

where d);=d((n,) denotes the solid angle element of originand directionn; .

In words, the partie finie of at point 1 is defined by the angular average, with respect to the
unit directionn,, of the coefficient of the zeroth power of in the expansion oF near 1(and
similarly for the point 2. There is a nonzero partie finie only if the family of indiceg){_y Iin
Definition 1 contains the value 0, i.&di, such thataiozo. The latter definition applied to the

productFG of two functions inF yields

dQ,

—f.0_a, 2.6
aO(F)sasao(G)f 4 1a§13 a 29

(FG)1=
where, f, and;g, are the coefficients in the expansionsFohndG whenr;—0 (the summation
overa is always finitg. From(2.6) it is clear that the Hadamard partie finie is not “distributive”
with respect to the multiplication, in the sense that

(FG)1#(F)1(G); in general. 2.7

The partie finie picks up the angular averaggfe{n;), namely the scalar d=0 piece in the
spherical-harmonics expansio¥(,), or, equivalently, in the expansion on the basis of symmetric
and trace-free(STP products of unit vectorsn;=(n’}). For anyleN, we denote byL
=iqiy i) @ multi-index composed dfindices, and similarly. —1=iqip -+i;_1, P=j1j *jp. In
general we do not need to specify the carrier indeot j, so a tensor witH upper indices is
denotedT", and for instance the scalar formed by contraction with another téfisof the same
type is written asS=T-U-=T'1 U™t where we omit writing théd summations over thée

indicesi,,=1,2,3. We denote a product bEomponents of the unit vectof1 by ni= nill- . n'l' and

the STF projection of that product bai=STFn}): e.g., AY=nini—31s1, Al*=nlnink
—(n} 8 +n) 84+ nks). More generally, we denote bl the STF projection of*; that is, T-
is symmetric, and satisfie&l_1i|'AI'iI*1‘I'-‘2=0 (see Ref. 25 and Appendix A of Ref. 26 for a

compendium of formulas using the STF formalismihe coefficients f, of the expansion ofF
admit the STF decomposition

+
fo(ny)=>, ntfL, (2.9
1 =0 1

where thelf;’s are constant STF tensors, given by the inverse formula:

@+ f dQ

1.1
la_ I At nlia(nl)' (29)

In STF notation, the Hadamard partie finiefofat 1 reads simply as

(F)1=io, (2.10

where; f, denotes the first term in the expansi@hs).
Lemma 1: The patrtie finie at 1 of the gradienF (as defined outside the singularities) of any
function Fe F satisfies

el
(iF)1=3| —F| . (2.11)
r 1

This Lemma is particularly useful as it permits replacing systematically the differential opérator
by thealgebraicone 3(}/r,;) when working under the partie-finie sign-(); .
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Proof: The expansion when,— 0 of the gradient is readily obtained from the expansiof of
itself as

aF=> ra a nif,+d,'f,], (2.12
a 1 1

(with over-simplified notation for the supywhere the opera@t(ﬂi1 is defined as ;; when applied
on a function of the sole unit vector;. Hence, explicitly,d; = (5" —n?)(d/on}). This operator
is evidently transverse to,: njd;=0, and we get, from the decompositica ),

+ o
difa=> I(ny 1F-"t—nltth). (2.13
1 I=0 1 1
Thus, by averaging over angles,
f L —Z“fi—zf—dQl f 2.1
Ar lla_ §la_ A nlla' ( . 4)

We readily deduce that the partie finie of the gradighl? is given by
dQ, . N
(aiF)1=3f—n'1f1:f'l (QED). (2.15
4o S0
As an example of the application of Lemma 1, we can write, using an operation by parts,
(r30,F)1=[ai(r3F)— a,(r})F1,=[3n}r2F — 4,(r3)F1,, from which it follows that
(r3gF),=0. (2.16
Another consequence of Lemma 1, resulting from two operations by partsrfiAFo1
=[3nlr, F—ai(r?)g;F1,=(nir.0;F),=[3F—4a,(nir;)F]; (where the LaplacianA=4,4;),
hence the identity
(r2AF),=0. (2.17
By the same method we obtain also
15n}) — 34

—2F> =2(f+6'%,), (2.18
r 1 1 1

(3iF)1=

the right-hand side of the last equality being expressed in terms of the STF tensors parametrizing
(2.8). Tracing out the previous formula, we find

6 -
I/, 1
Finally, let us quote the general formula for the partie finie of {ilie derivative ¢ F
=£9il"‘&i||::
[1/2]
(L F) =11, sCKFL—2K) (2.20
k=0 1
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Here, [1/2] denotes the integer part dffi2, & is the product of Kronecker symbols
Siizgisla, §'2-1i2k and, ff 2K =,f,2+7"""; the parentheses around the indices denote the sym-
metrization. One may define the “regular” part of the functiBnnear the singularity 1 as the
formal Taylor expansion when,— 0 obtained using2.20. Thus,

i +o [12]

1 CoKZL—
Fift= 2 ring(aF)y= 2 rh 20 np 2. (2.29

lll. PARTIE-FINIE INTEGRALS

A. The partie finie of a divergent integral

The second notion of Hadamard partie finie is that of the intefjddkF (x), whereF e F.
This integral is generally divergent because of the presence of the singularyocamdy, (recall
that we always assume that the function decreases sufficiently rapidly at infinity so that we never
have any divergency coming from the integration boixje- + ). Consider first the domaif®
deprived from two spherical ball§;(s) and B,(s) of radiuss, centered on the two singularities
Y1, You Bi(s)={x; r;=s} and B,(s)={x;r,=<s}. We assume thas is small enough, i.e.s
<r142 wherer ;,=|y; —Y,|, so that the two balls do not intersect. Fo¢ 0 the integral over this
domain, sayl(s)zfﬂa\Bl(s)UBZ(s)dE‘xF, is well-defined and generally tends to infinity when
—0. Thanks to the expansioriassumed in Definition)lof F near the singularities, we easily
compute the part off(s) that blows up whers—0; we find that this divergent part is given, near
each singularity, by a finite sum of strictly negative powers ¢& polynomial of 14 in general
plus a term involving the logarithm of. By subtracting fromi(s) the corresponding divergent
part, we get a term that possesses a finite limit wherD; the Hadamard partie finliés defined
as this limit. Associated with the logarithm sf there arises an ambiguity which can be viewed as
the freedom in the re-definition of the unit system we employ to measure the enigtifiact it is
convenient to introduce two constant length scagsnds,, one per singularity, in order to
a-dimensionalize the logarithms asdis{) and Ing's,).

Definition 4: For any Fe F integrable in a neighborhood dk| =+, we define the Had-
amard partie finie of the divergent integréti®xF as

Sa+3
Pf, fda’xF:Iim f d3xF + fdQ fo+In
5152 [ R3\By(5)UBo(s) a+§3:<0 a+3 te

s—0

S
_) f dO,f o+ 1<_>2] ,
S1 1

(3.9

wherel< 2 means the same previous two terms but concerning the singularity 2

This notion of partie finie can be extended to functions which are locally integrable outside
the singularities, i.e.F € 7, (see Definition 2 In (3.1) the divergent terms are composed of a
sum overa such thata+3<0 as well as a logarithmic term, by which we really mean, using the
more detailed notation of Definition 1,

Sai+3

i—1
S

;0 a;+3 f dQl‘;ai”—s’ail'”(s—l) dﬂliail+ 152,

wherei, is such thay<a; <---<a; _;<—3=<a; (the sum is always finite we have introduced

a Kronecker symbob_;, to recall that the logarithm is present only if the family of indices
il

(a)icn contains the integer-3 (i.e., a; = —3). The divergent terms i3.1) can also be ex-

pressed by means of the partie finie defined2¥). Indeed, they read as

Sa+3

Aqr +12

S
S_l)(riF)l

—| +In
1

aifz<oat+3\r}
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[coming back to the less detailed notation(8f1)].

The partie-finie integra(3.1) depends intrinsically on the two arbitrary constas{sands,
introduced above. There is another way to interpret these constants besides the necessity to take
into account the dimension &f which is discussed by Sellier in Ref. 5. With this point of view
we initially define the partie finie using two arbitrarily shaped volurivgsand V), instead of the
two spherical ball€3; andB,. Consider for instance the two volum¥s={x; r;<sp,(n;)} and
V,=1{X; r,<sp,(n,)}, wherese R** measures the size of the volumes and the two functigns
andp, describe their shapghe ballsB; and B, corresponding simply tp; andp,=1). Here, we
assume for simplicity that the volumes remain isometric to themselves wharies. Then, the
partie finie is defined as the limit of the integral ov@f\ VUV, to which we subtract the
corresponding divergent terms whes-0, withoutadding any normalizing constant to the loga-
rithms. In this way, we find that the alternative definition is equivalent to our defin{oh)
provided thas; ands, are related to thehapeof the regularizing volume¥,; andV, through the
formula

Inslf dQlf_3:f dQlf_3|np1 (32)
1 1

(and similarly fors,). The arbitrariness on the two original regularizing volumes is therefore
encoded into the tw@and only twg constants; ands,. A closely related way to interpret them
is linked to the necessity to allow the change of the integration variabiethe integralf d3xF.
Such an operation modifies the size and shape of the regularizing volumes, thus tt#% lzaits
B, are in general transformed into some new voluigsndV,; so, according to the previous
argument, the freedom of choosing the integration variable reflects out in the freedom of choosing
two arbitrary constants,; ands,. (In this paper we shall assume tisatands, are fixed once and
for all.)

An alternative expression of the Hadamard partie finie is often useful because it does not
involve the limits— 0, but is written with the help of &inite parametes’ e R**. Consider some
s’ such that 6<s<s’, and next, split the integral ovét®\B,(s)UB,(s) into the sum of the
integral over R3\B;(s')UB,(s') and the two integrals over the ring-shaped domains
B1(s")\By(s) andB,(s')\B;(s). If s<s’<1 we can substitute, respectively, into the ring-shaped
integrals the expansions &f whenr;—0 andr,—0 [see(2.3)]. The terms that are divergent in
s cancel out, so we can apply the linsit-0 (with fixed s’). This yields the following expression
for the partie finieVNe N,

ra+3

SI
Pf. fd3xF=f d3xF + fdQ fat+In —)f dQ,f_
5152 R3\B,(s')UBy(s) a+;<N a+3 11a S1 11 *
a+3#0
+1-240(s'N*3), (3.3

which is valid for an arbitrary fixeg’. Of course, up to any given finite ordé&t the second
member 0f(3.3) depends o1s’, but in the formal limitN— + <0, this dependence disappears and,
in fing the partie finie is independent ef.

B. Partie-finie integral of a gradient

A fundamental feature of the Hadamard partie finie of a divergent integral is that the integral
of a gradient;F is a priori not zero, since the surface integrals surrounding the two singularities
become infinite when the surface areas shrink to zero, and may possess a finite part.

Theorem 1: For any Fe F the partie finie of the gradient of F is given by

Pff dBxgF = —Am(nir2F), + 12, (3.4
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where the singular value at point 1 is defined (@y5).

In the case of a regular function, the result is always zero from the simple fact that the surface
areas tend to zero—cf. the factdrin the right side of3.4). However, forF e F, the factor? is
in general compensated by a divergent term in the expansidén @ossibly producing a finite
contribution.

Proof: We apply(3.1) to the case of the gradiestF, using the expansion of,F whenr,
—0 as given by(2.12. The expression of the divergent terms is simplified with the help of the
identity (2.14), which shows notably that the logarithms and associated constgnttisappear.
This leads to

Iim[j d3xaF+ > sa+2f danilfa+1<—>2’. (3.5
s—0| JRAB(5)UB,(s) at2<0 1

Next, the first term inside the braces is transformed via the Gauss theorem into two surface

integrals at,=s andr,=s, where we can replade by the corresponding expansions aroynd
andy,, respectively. We get

|im[—§a‘, SMJ danilfaJraE sa*zf dnln‘lfa}=—f dQ,nif_,
1 1 1

s—0 +2<0
(and similarly when % 2); QED.
From Theorem 1 it results that the correct formula for “integrating by parts” under the sign
Pf is
Pff d3xFa,G= —Pff d3xGaiF —4m(nir2FG)— 4m(nLraFG),. (3.6

Note also that the partie-finie integrals of a double derivative as well as a Laplacian are given by

Pff d*xd; F=4m(ry (81 —2n])F);+1-2, (3.79

Pff d3XAF =47 (rF);+1<2. (3.7b

C. Parties finies and the Riesz delta-function

The Riesz delta-functidf plays an important role in the context of Hadamard parties finies.
It is defined for anye e R™* by ,8(x)=[e(1—¢&)/47]|x|°~3; whene—0, it tends, in the usual
sense of distribution theory, towards the Dirac measure in three dimensions—i.e,glife= J,
as can be seen from the easily checked propertyAlipt|® 1) = —47,5(x). The point for our
purpose is that when defined with respect to one of the singularities, the Riesz delta-function
belongs toF. Thus, let us setys e R**,

e(l-e) __,
£01(0=.0(x=y))=———r1 "eF (3.9

(and idem for 2). Now we can apply to5;(x) the previous definitions for parties finies. In
particular, from Definition 3, we see tha; has no partie finie at 1 whes is small enough:
(,61)1=0. From Definition 4, we have the following.

Lemma 2: For any k= F, we have

lim PfJ d3x,6,F=(F),, (3.9

e—0
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where the value of F at point 1 is given by the prescriptiarb).

Proof: For e >0 we evaluate the finite part of the integral for the produit- e F using the
specific form(3.3) of the partie finie defined in terms of a given finte The expansions qfé,F
whenr , tend to zero are readily determined to be

e(l—e¢
L0 F= ( )2 rate=3f,(n,) for r;—0, (3.103
1

e(l—e !
L0 F= ( ) ( ) aLr12 32 ro*Inf b(n2 for r,—0. (3.10H

I=0

In the second equation we used the Taylor expansfori==3,-[(—)"/I']rbn5.d,.r5, % when
r,—0, with the notatiom§=n'21~--n'2' and 19.=1d; " *"10; . Hence, we can write the partie-finie
integral in the form ¥ N e N; with fixed s’ such that 8<s’' <1),

5 8(1_8) ra+s
d3x, 5,F + dfs
R3\By(s')UBy(s') 4w a+a<N ate
8(1—8) (_)I /b+|+3J, .
+ €3
r T Ll o n DTTH3 d€anzf

and#0

+In

S’
—)fd92n5f|3 +o(s’N).
s, 5

Here, we have discarded the term withdit§;) by choosings>0 to be so small that all denomi-
natorsa+ ¢ differ from zero. Since §; tends towards the Dirac measure when 0, the integral
overR3\B;(s')UB,(s') goes to zero. Because of the facégpresent in the numerators, so do the
other terms wher — 0, except for those whose denominators involve a compensatidgw, the
only term having the required property corresponda=+d in the previous expression. Therefore,
taking the limite —0 (with fixed s’), we get

Q,
IimPffd X, 01F fd fo(ny)+o(s'™),

e—0

and this being true for ani, we conclude

IimPde3x 5,F J diy 0(nl) (F), (QED).

e—0

As we can infer from Lemma 2, the Riesz delta-functj@iy should constitute in the limit
e—0 an appropriate extension of the notion of Dirac distribution to the framework of parties
finies of singular functions iF. The precise definition of a “partie-finie Dirac function” neces-
sitates the introduction of the space of linear forms7and will be investigated in Sec. \(see
Definition 7).

IV. ALTERNATIVE FORMS OF THE PARTIE FINIE
A. Partie finie based on analytic continuation

Practically speaking, the Hadamard partie-finie integral in the form give(8ly is rather
difficult to evaluate, because it involves an integration over the complicated volume
R3\B,(s)UB,(s). Fortunately, there exist several alternative expressions of the Hadamard partie
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finie, which are much better suited for practical computations. The first one is based on a double
analytic continuation, with two complex parametersB e C, of the integral

@ B
|a,3=fd3x r—1> (r—2> = (4.1)

S1/ \$2

where the constants; ands, are the same as those introduced within the definit®a). The
point for our purpose is that the integ(d.1) does range over the complete 8t First of all, we
propose to check that, ; is defined by analytic continuation in a neighborhood of the origin
=0=pin (2, except at the origin itself where it generically admits a simple pole or 3 or
both. We start by splittind ,, 5 into three contribution;l, z extending over the balB;(s) of
radiuss surrounding 1,l, g extending over the balB,(s) surrounding 2, andl, ; extending
over the resR3\B;(s)UB,(s). The integral! «,p IS initially convergent fofR(a)>—a,—3 and
any B, wherea, is the most singular power of, in the expansion oF neary,; similarly, 5, 4
exists only if9R(8)>—by—3 and anya (b is the analogous te, that relates tq,), andgl , g
exists if R(a+ B)<e, wheree>0 is such thatF =0O(|x| "3~ €) when |x|—+%. As the third
contributionsl, 4 is clearly defined in a neighborhood of the origin, including the origin itself, we
consider simply the partl, 5 (the same reasoning appliesltg ;). Within the integrand, we
replace the produc‘tgF by its expansion in the neighborhoodf (using a Taylor expansion for
r5), and find that the dependence Broccurs through some everywhere well-defined quantity,
namelyla,_r/fz. After performing the angular integration ovéf),, we obtain a remaining radial
integral consisting of a sum of terms of the tyfglr,r¢ """ 2=ge*a*143/(4 + a+1+3), that
clearly admit a unique analytic continuation 6kZ; hence our statemera simple pole at the
origin arises whera= —1—3).

Theorem 2: For any function Fe F that is summable at infinity, the Hadamard partie finie of
the integral is given by

B
(r_z) F, 4.2

7

ro\ % r,)\? ro\®
Pfs, s, f d°xF = FP2—0 f dgx(s—i) (S—i) F=Fpg—0 f d3x<s—i

where Fngg means taking the finite parts in the Laurent expansions wien0 and S8—0
successively

The proof of Theorem 2 is relegated to the Appendix. Notice our convention regarding the
notation: while “Pf” always stands for the Partie finie of an integral in the specific sense of
Hadamard, we refer to “FP” as the Finite Part or zeroth-order coefficient in the Laurent expan-
sion with respect to some complex paraméter e C, or B e C as in the next subsectipnVe see
from Theorem 2 that the partie finie Pf can be viewed as a finite part FRieadersaThe link
between analytic continuation and Hadamard partie finie is pointed out by Schwadiz pre-
cisely, Theorem 2 says how to calculate the Hadamard partie finie; the procedure con§ists of
performing the Laurent expansion of ; when «—0 while 8 remains afixed (“spectator”)
nonzero complex number, i.e.,

+ oo

lag= 2 @l s,

P=Pmin

wherep e 7 and where the coefficients, ; depend or; (i) achieving the Laurent expansion of
the zerothe-power coefficient oy 5 when5—0, i.e.,

+

Blog>

Amin

l(0),6=
q
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to finally arrive at the zeroti-power coefficient o). Indeed, we find that the same result can be
obtained by proceeding the other way around, first expanding ar@en@ with a fixed «, then
expanding the coefficients, ) neara=0. Thus,

FPs_ ol FPs— ol o,8) =1(0,0= FPa— ol FPs—0l a5} - 4.3

We emphasize that the definitid8.1) of the partie finie yields unambiguously the resiyf,
which corresponds to takingdependentlthe two limitsa—0 and 8—0 (the limiting process
does not allow for instance to keep= ). The final valud o) is the same as the one given by
the regularization adopted by Jaranowski and &sffa(see their Appendix B)2

In practice the expressia@.2) is used in connection with the Riesz formdafavalid for any
v, deC except at some isolated poles,

v+3 5+3 F( v+6+3
2 2 2
f d3xrr =72 7576 riyors, (4.4

2

with r1,=|y; —Y5|; here,I" denotes the Eulerian function. According to Theorem 2, the formula
(4.4) permits computing the partie finie of any integral of a product between poweksaofdr 5.
Consider thenot so trivia) case of the integral af, °r, 3, which is divergent at both points 1 and
2. From the Riesz formula, with=«—3 and 5= S—3, we have

@ B atpB—3
F(E)F(E)F(‘—z ) g h

| 5= .
ap” T F(—a_g)F(—B_S)T a+,8) S‘fsg

2 2 2

We compute the Laurent expansion wher>0 with fixed 8 e C and obtain a simple pole in
followed by aB-dependent finite part given by

r(1) rf32 B 3 3 B M1
— 32 - _ ~ 2l °_P
l0yg=m rQ s ﬁ+\lf(1) V| 1+ 5|+ ¥| 5| =¥ 5-5|+21n il

with ¥ (2)=(d/d2) InT'(2). This finite part itself includes a simple pole B and then we obtain
the corresponding finite part whe®—0 as

%21 (1 r r
i F(ﬁ) S1 Sy

At last, Theorem 2 tells us that

bt J’ d3x 4w
s,.s, | .3,3° .3
pR2)orary I

(4.9

2 l2
Inl =|+In| —]|.
S1 Sz

Some more complicated integrals will be obtained in the next subsection.
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B. Partie finie based on angular integration

The idea is to compute the partie-finie integral by performing an angular integration, followed
by the integration over some radial variable. In a first stage, consider an integral that diverges at
the point 1, but converges at the point 2. According(3al), we need to compute it over the
domainR3\B,(s); so it is natural to change the integration variakle® r,=x—y;, carry on the
angular integration ovedQ;=d{(n;), and then, the radial integration over=|r,| varying
from s to infinity, i.e.,

+ o0
f d3xF=f d3r1F:f drlrif dQ,F. (4.6)
R3\Bl(s) r{>s s

In the more general case where the integral is simultaneously divergent at the two points 1 and 2,
this methodstricto sensus no longer valid since the radial integration($16) becomes divergent
whenr;=r,. Yet, still it is advantageous to dispose of a mean to change the vaxabte r,

in order to obtain a convenient radial integrati@ven at the price of breaking the symmetry
between the points 1 and.2We shall derive here two Propositions, based on this idea, whose
implementation in practical computations constitutes a very efficient mean to determine the partie
finie, without anya priori restriction on the form of integrand as in the application of the Riesz
formula (4.4).

As a matter of fact, in the first proposition, the computation of a partie-finie integral with two
singularities 1 and 2 boils down to the computation of a partie-finie integral with singularity 1 and
afinite-partintegral (FP) whose singularity is located at infinity;=|x—y,|— + (so to speak,
the singularity 2 is “rejected” to infinity.

Proposition 1: For any function F in the clasg we can write:

B

> r%fb“, 4.7
b+3<0 2

where the,f,’s denote the coefficients of the expansion of F near0.
In other words, in order to compute the partie finie one Gan‘regularize” F around the
point 2 by subtracting out from it the terms yielding a divergence at 2, i.e.,

r
Pfy, s, f d3xF=PfSl{ FPs .o f d3r1<s—z

Fo=F— > 5y, (4.9
b+3=<0 2

and (i) compute the integral of the regularizEd using the partie finie around 1 and the finite part
whenB—0 to deal with the divergency at infinity. Notice that the latter divergency has been
introduced simply because of the term correspondinig=to- 3 in (4.8) if nonzero. By the finite
part whenB— 0 we mean the zeroth-order coefficient in the Laurent expansion of the analytic
continuation with respect to the parameBee C. The analytic continuation is straightforwardly
defined from the domain of the complex plafiB)>0 in which the integral converges at
infinity.

Proof: We consider two open domair®, and D, that are supposed to be disjoined,
D,ND,=, complementary it3, i.e. D,UD,=R> and such thay, e D; andy,e D,. From
Definition 4, the partie-finie integral ovép, reads agfor small enoughs)

S)Jdﬂ f
s, 22—3 :

D, 50 b+3<0

Sb+3
Pf| d®F=Ilim J d3xF+ —Jszfan
D\By(s) b+3 2

Now, two short computations reveal that
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h+3
d3xr3f, = JdQ fi 4.9
b+3<0 fRS\BZ(s) 20 b+3<0 b+3 b (4.99
o X[\ ® s
FPBHOJ N L R fdﬂzf,g. (4.9b
R3\By(s) S2/ T2z Sz 2

Furthermore, since the integral appearind4rfg is convergent at infinity, one can add without
harm the same finite part operation wher-0 as in(4.9b. Thus, the integral oveP, may be
re-written as

X B
lim f d3xF — FPs .o f d3x(|—|) rof,
50| J D\By(s) b+3=0 RAB,(s) S2 2
x|\ B x|\B
=lim FPB—»OJ dgx(u) FZ_ 2 FPB—»OJ\ d3X<u) I’gfb
s—0 D\By(S) Sz b+3=0 Dy Sz 2

. af X [ IX°
=lim FPB—»OJ d x| — F2_ FPB_)OJ» d°x| — rsz .
50 D, S7) b+3=0 Dy\By(9) Sz 2

We have used the facts that the integraFo€onverges at infinityfirst equality and the integral

of F, converges at the singularity(8econd equality Adding up the other contribution extending
over Dy, we readily obtain the complete partie finie as

|X| B a+3
. a [ X"~
llirl)[ FPBAofRB\Bl(S)d x( Sz) F2+a§<o a+3fd9 f +In( )fdﬂ f_ 3J

Since the coefficientsf ;, for a<—3, are those of the expansion when-0 of F as well as of
F,, we recognize in the expression above the partie finieh respect to 1 onlyof the integral
of the regularized functiofr,. Hence the intermediate expression

Pf;, Sfd3xF Pf, [FPB_@f d3x ('g(l) Fz]. (4.10

2

To establish the proposition it remains to change variabieto r,. At that point, we must be
careful, because under this change of variable the regularization fatfochanges itself in a
complicated way. Fortunately, we can limit ourselves to the case wBiéseinfinitesimal, since
we shall take the finite part afterwards, makiBg-0. We substitute t¢x|B in the right side of
(4.10 its equivalent expression in terms of and where we expand whé0, i.e.,

n1-)/1 Y1

|x|B=rBeBn(Xl/r) =B 14+2——=

1+B|
EI’I

+O(BZ)} (4.12)

wheren; .y; denotes the usual scalar productﬂb’n(andyi:yl.yl). Now, the dominant term in

the latter expansion amounts simply to replacjrif by r?, which would yield precisely the
result(4.7) we want to prove; but we have still to show that all the extra terms in the expansion
(4.11, which carry at least a fact® in front, do not contribute to the final result, i.e., that

B [+ ry\B
— 3 | =

5 f d rl(sz) In
Because of the factd in front, the only possible contribution to the finite part #+ 0 occurs
when the integral develops a poleB#=0 due to the behavior of the integrand at infinity &

N.y1 Y1

1+2 to

FRPs_.o
1

F,+0O(B )} (4.12
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+). Hence, as indicated i#.12), the value of the integral depends only on the bound at infinity
[this is also why we did not write a Elfsymbol in(4.12: the partie finie deals with the bound
r,=0, which is irrelevant to this cageln order to evaluate the pole, we replace the integrand by
its expansion when;— +. We know thatF behaves as(1/x|®) at a maximum/x|— + to
ensure the convergence of the integralFoat infinity, so we haveF:o(llrf) whenr;— +oo,
Now, from the defining expressio@.8) of F,, we obtain

1
r_3> ,  when r;— +o, (4.13

- 1
Fo=——5f_3(n)+o
r 1

12

after making the replacements of andn, by r; andn; which are permitted because we are
working at the dominant order whan— +o. On the other hand, we have In-2[(n;.y;)/r]

+ yaIr2]=2[(n,.y,)/r,] +O1/r?). So that the integral to be computéds concerns the only
relevant bound at infinityreads as

+ o
f d3r,rfin

This integral cannot generate a poleBat0 since such a pole could come only from a radial
integral of the typd *~dr; r?’l (after the angular integration has been performBepeating the
same reasoning to any higher order8inwe prove the equatio#.12 as well as Proposition 1.
In practice, Proposition 1 is used with the integration with respect;tofollowed by the
integration over ; varying from 0 (P{ takes care of this boundo infinity (where FRg_, does

the work); Proposition 1 justifies this process even when the original integral is divergéottat
singularities. The result of the angular integration depends on where the field point is located,
either inside the balB,(r,) centered ory; and of radius ;, (the point 2 lies on the surface of this
ball), or in the complementary domait®\B,(r,). Therefore, a natural splitting of the integral

4.7 is

N1.y1

1

2

y

1+2 +35
1

~ +o
F2=—2f drlrﬁ‘ZUdanl.ylf_s(n1)+o(r2) .
2

B

~ r ~

P, . f d3xF=PfSJ d3r1F2+FPBHOJ 3r1(—1) F,, (4.14
1m2 Y Bi(ryy E3\By(r19) S2

taking into account the fact that the partie finieslP&ppIies only to the inner integral, over
B4(r1,), and the finite part RP., only to the outer one, ovét®\B,(r 1,). To be more specific, the

angular integral off, defines two angular-average functiongr;) andJ,(r;) depending on
whetherx is in B;(r,) or its complement:

=1 ~ (4.195
4o 2 Jo(ry), whenri>rq,.

f dQ, - [Tz(rl), when r;<r,,
The functionst andﬁz depend also explicitly on the source poigtsandy,. [As an example, in
the caser,=r,, we findT,=r,+ r2/3r;, andJ,=r;+ r3,/3r;.] Now, knowingT, andJ,, we
can achieve the radial integration according to the formula

+

r o0 r B
Pfsl,SJ d3xF:4wPfsJ 12dr1r§Tz+4WFPBHof drl(s—l) rZ3,. (4.16
0 2

M2

The first term in(4.16) is quite simple to handle in practice, whereas the second one is more
difficult because it requirea priori the knowledge of a closed-form expression for the integral of

r8+23,, valid for any B such that9i(B)>0. Obtaining this may not be feasible f is too
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complicated; in this event, we should use a different form of the integral at infinity. The second
proposition, which provides the appropriate form, constitutes, perhaps, the most powerful way to
compute the partie finie in rather complicated applications.

Proposition 2: The partie finie of the integral of E F (if convergent at infinity) reads as

r +o 1
Pfsl,SJ d3xF=47-rPfslf 12drlrﬁz(r1)+4wf dry| 153,(r) + — (r§F),
0 r 1

12
r
+477(r§F)2In(S—12) (4.17)
2

(and similarly by interchange of 1 and.2)

Proof: Consider the angular average of the expansiok ofvhenr;— + which has been
determined in4.13. We get

L[ dQ , 1
Jp= P ——F>= 3(r2F)2+0 3
1

(4.18

where the coefficient of the dominant term is made of a Hadamard partie finie at point 2. Let us

subtract and add td, inside the second integral i@.16) the previous dominant term at infinity.

In this way, we may re-write it as the sum of a convergent integral at infinity on one hand, to
which we can then remove the finite part prescription, and a simple extra integral on the other
hand. Namely,

+o0 +odry(ry)B
[ “on ot et uterm o[
M2 r

p 1 \S2

The extra integral is finally computed in a simple way as

- f*wﬂ(r_l)lpp
B—0 1 rl 52 B—0

1

B
_ 2T
Bls,

l2
=—In| —|,
S,

where we used the properties of the analytic continuation. QED.
Thanks to Proposition 2 we are now able to compute many integrals which could not be
deduced from the Riesz formuid.4), unlike for (4.5). For instance,

Pf f—g—g—dsx 4 (r12)+| (r”) 8oy 2 4.19
152 ) rrs(rytry) r12 A S; n S,/ 3 : 3/ (4.193
Pt f d 2| (r o2 ™ 419
S1%2 ) p3r3(ritratry)  rh, : s, s, 3 (4.199

The result for the integrad.19b is in agreement with the one that follows from a recent gener-
alization of the Riesz formula to include arbitrary powers pf r,+r 45, which has been obtained
by Jaranowski and Scfex (see Appendix B.2 in Ref. 32In any case, the dependence of the
partie-finie integral on the two constarggs ands, is given by

+4w(r3F)2In( )+terms independent o§,,s,.

(4.20

P, s j d3xF=4m(r 3F)1In<
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V. PARTIE FINIE OF POISSON INTEGRALS

In this section we investigate the main properties of the partie finie of Poisson integrals of
singular functions in the clasé. We have in view the application to the post-Newtonian motion
of particles in general relativity, since the post-Newtonian iteration proceeds typically through
Poisson(or Poisson-typeintegrals. Consider a fixetI'spectator”) point x’ e R® and, for each
value ofx’, define the functiors, (x) = F(x)/|x—x’| whereF e F. Clearly, for any giverx’, the
function S, belongs to the clas$,,., introduced in Sec. Il, Definition 2. In addition, when the
spectator poink’ coincides with the singular poiry; (and similarly fory,), we haveS, e 7.
Since(as already mentiongdefinition 4 can be extended to functions in the cl#ks, we can
consider the partie-finie integral

, 1 5 1 d3x
P(X )=— Epff d XSXr(X)Z— Epff WF(X). (5.1)

This is, indeed, what we shall call the “Poisson” integralfef In particular, when the spectator
pointx’ is equal toy,, we shall write

1 5 1 d3x
P(y1)=— Epff d Xsyl(X): - Epff TF(X). (5.2

The Poisson integral is not continuous at the singular pgjnbecauseP(x’), when initially
defined forx’ # =y,;, admits an expansion that is singular whéeéntends toy;. In the present
Section, our aim is to understand the limit relation of the inte@@’) whenr;=|x"—y;|—0,

and to connect it with the “regularized” integrd&(y,) given by (5.2). In particular, we shall
show that the “partie finie”(in an extended Hadamard’s sens&€P(x’) atx’ =y, is related in a
precise way tdP(y;). Let us make clear straight away thafx’), as a function of’ different
from y; (andys,), does not belong to the clasg as the Poisson integral typically generates
logarithms in the expansion whep— 0. In particular, the coefficient of zeroth powerrdfin the
latter expansion contairespriori a Inr; term, and its partie finie in the sense of Definition 3 is in
fact not finite at all, because of the presence of this formally infinite constarjt=lnc. A
possible way to deal with this problem, followed by Sellier in Ref. 5, igxoludethe Inr; (and
any higher power of In;) from the definition of the partie finie. On the other hand, in applications
to the physical problem, the constant|rcan be viewed as a “renormalization” constant, which
is better to keep as it appears all the way through the calculation. Therefore, we simply include
here the renormalization constant|rinto the definition; but, for simplicity’s sake, we stick to the
name of “partie finie” in this casealthough the Im; makes it formally infinit¢. Thus, for a
function like P admitting a logarithmic expansion:

YNel, P(x)= 2, ri(InryPf, (n)+o(rN), whenr;—0, (5.3
asN 1
p=0,1

we define the Hadamard partie finie Bfat 1 by

!

dQ
- o UodnD+ fo(nDinr ) (5.4

Theorem 3: The Hadamard partie finie at 1 (in the previous sense) of the Poisson integral of
any Fe F reads as

!

r
)—1}(@91, (5.5

In

P L o fngF :
(P)1=—7—Pf N (x)+ )
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with r;=|x’"—y4|. Furthermore the constants €ancel each other from the two terms in the right
side of (5.5) (so the partie finie depends on the two constamisand In's,).

In other words, the partie finie of the Poisson integral at 1 is equal to the regularized integral
P(y,), obtained from the replacemexit—y; inside the integrand d?(x"), augmented by a term
associated with the presence of fii&finite) constant Irr;.

Proof: The fact that the constantg cancel out(so s, is “replaced” by r;) is a trivial
consequence of the dependence of the partie finig @mds, determined in4.20. For our proof,
we need the explicit expressions of the objde{x’), whenx’ is different fromy,; andy,, and
P(y1), following from Definition 4. Forx’ #y; andr,=|x—y,;|—0, we have the expansion

se0-3 1L L(r )E r§inifa(ny (5.6

1=0

(andidem 1+2), wherer;=|x’'—y|, d, being the multi-spatial derivative acting ot\. From
(3.1), we get the expressiaffior x’ #y,; andy,)

P(x") 1| f —Eﬁ?F
x')= m ’
47Tsﬁo \H3\Bl(s)UBz(s)|X_ X'|

| Gatl+3
& ( -) (rl)

1=0

S L
+In| —| | dQnif_5_
S; 1

Applying the recipg5.4), we start by computing the angular integral ongr= (x' —y,)/r; (for a
fixedry) of P(x’) in the form given by(5.7), and consider the limit;—0 afterwards. Sincs is
fated to tend to zero first, one can choaser;, and as we are ultimately interested in the limit
r;—0, we also assume|<r,. To compute the angular average of the divergent ternts.if,
we make use of the identities

Jdan fa

a+i+3<0 a+l+3

+1H2y (5.7

f dﬂia’-i _% (5.8a
4 er r/i .

1 1
o) (1 1 o
4ar (? 2 aL rlz ( ’ )

(where 8y denotes the Kronecker symboDn the other hand, the relevant formula to treat the
integral on the right side of5.7) is

(if ry<ry),
(5.9

[~ -

o) 1
f 4 |x—x'|

(if ri<ry).

—_
[y

We split this integral into three other ones, the first of them extending over the “exterior” domain
R3AB,(r))UB,(r}), and the two remaining ones over the ring-shaped regiyfs;)\53,(s) and
B,(r )\B,(s). Hence
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1 d3x 1 . d3x
E— —F+— d3xF + —F
Am 47Tsﬁo R3By (1) UB,(ry) M1 1 JByr)By(s) By(r\By(s) 1
Sa+3 s __)I 1
—)JdQlf3 +> (—aL<—)
S1 1 =0 I

M2
S L
= | dQ2onzf_3
S, )

Next, supposing that; is small enough, we may replaéein the second and third terms by its
own expansions around 1 and 2, respectively. We find that the divergent tesnasuiicel out, so
we are allowed to apply the limg— 0. This yields

L1
ry

ag@ a+3fd(211;a+ln

Sb+|+3

L
X b+|+23<0 —b+|+3fd(22n2£b+ln

]. (5.10

dQ/ 1 f dBXF
4 CAw RABy(r)UBy(ry) M1
1 /a+3
+f1 LA a+3 fdQ fatin )fdﬂf 3+r1fdﬂf 2}
(— )' 1 b+1+3
+'ZO ! r_]_2)|:b+|23<0 b+|+3fdﬂzn2 pFIn )f sznzf 3- |1
+o(r .
(ri°) (5.1

(the remainder dies out wher{—0). Under the latter form we recognize most of the terms
composing the integrdP(y,). Indeed, we have, respectively, whepr—0 andr,—0,

S,(0)=2 r* M(ny), (5.128
a 1 1
(_
8,,00=2 7~ ( )2 g fo(ng). (5.12
Now, using the form(3.3) of the partie finie with the change of notatish=r 7, we find
1 d3x rjat2 r
P =——f —F+ Jde+In—def,
(y2) 477{ ]Rs\Bl(ri)uBz(ri) r a-§<0 a+2 te S1 12
1 rib+l+3 fi
+ ———— | dQ,n5fp+In| = fdn nsf_s_|+o(r;%}.
IZO _ (rlz){b+|+23<o b+|+3f 2ty 52) 23— (ry)
(5.13

We finally evaluate the difference betwe&n11) and(5.13 and look for the partie finie in the
sense of5.4) (i.e., keeping the Ir{ term). We obtain

r ’

In( —1> -1
S1
The same type of result can be proved for the partie finie of the “twice-iterated” Poisson

integral defined by

(P)1—Py)=

do,
f 2 f-2 (QED. (5.14

1
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Q(xf)z—%PfJ d3x|x—x'|F(x). (5.19

We find, analogously t65.5), that

!’

1 4
In +§ (riF)s. (5.16

1
(Q)lz—EPff d3xrF(x) + S—i

For the parties finies of thgradientsof the Poisson and twice-iterated Poisson integrals, we get

1 . N AR
(aiP)l=—EPfJ d xr—fF(x)Hn 5_1 (nyriF)q, (5.173
1 3yn ) 1 i3
(ﬁiQ)l=EPf d*xn;F(x)—|In 5_1 3 (niriF);. (5.17h
Those results are proved in the same way as in TheorgwitB similar cancellations of the

constantss,).

VI. PARTIE-FINIE PSEUDO-FUNCTIONS

A. A class of pseudo-functions

The concept of Hadamard partie finie of the divergent integral of functioasF yields a
natural definition of a class of pseudo-function§ Rfpartie finie” of F), namely linear forms on
a subset off, of the typeG e F—(PfF,G) e R, where the result of the action of Pfon G is
denoted using a duality brackéb.

Definition 5: For any function e F we define the pseudo-functiéiF as the linear func-
tional which associates to any &F, such that FG=0(|x| %) when|x|— + =, the partie-finie
integral of the product FGi.e,,

(PfF,G)=Pff d3xFG, (6.1

where the partie-finie integral is defined by (3.1).

As we can see, the pseudo-functiorFR$ not a linear form onf itself but on the subset of
F such that the integral converges at infinity. For simplicity’s sake we will always say that
statements likg6.1) are valid VG e F, without mentioning this restriction. Note also that the
partie-finie integral depends on the two constaitss,e R**, and so is the pseudo-function
which should indeed be denotedSlezF. In our simplified notation we omit indicating; ands,.

An evident property of the duality bracket is its “symmetry” by exchanging the roles of the
two slots of the bracket, namely,

Y(F,G)eF?, (PfF,G)=(PiG,F). (6.2
Also evident are the properties
(PfF,GH)=(PfG,FH)=(Pf(FG),H)=(Pf(FGH),1).

In the following we generally do not distinguish between the two slot§, n Accordingly we
definethe object

(F,PiG)=(PfG,F).
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Even more, we allow for a bracket in which the two slots are filled with pseudo-functions. Thus,
we write

(PfF,PIG)=(PfF,G)=(PIG,F),

which constitutes merely theefinitionof the new object PfF, PiG).

We denote byF' the set of pseudo-functionsPfwhenF describes the class, introduced
by Definition 5: 7' ={PfF;F e F}. Later we shall extend the definition of’ to include the
“limits” of some pseudo-functions. Roughly, the s&t plays a role analogous to the @t in
distribution theory? which is dual to the clasp of functions which are bot*(R®) (about which
we are concerned hérand zero outside a compact subseRéf In distribution theory the seb
is endowed with the Schwartz topology: a sequengg (. n of elements ofD converges to zero
if and only if (i) Inge N and a compadt of R® such thaWn=n,, suppf,) CK, and(ii) for any
multi-index L=i4i» i, d_ ¢, converges uniformly to zerd>’ is the set of linear forms o
that are continuous with respect to that topology. In this paper we shall not attempt to define a
topology on the clasg, and shall limit ourselveghaving in view the physical applicatipmo the
definition of the algebraic and differential rules obeyed by the pseudo-functiafs. diowever
we can state the following.

Lemma 3: The pseudo-functions®f, when restricted to the s@ of C*(R?) functions with
compact support, are distributions in the sense of Schwartz

P, D', 6.3

Proof: All we need to check is that the pseudo-functiofr Pfis continuous with respect to the

Schwartz topology. Consider a sequence, e D tending to zero in the sense recalled above.
Applying the partie-finie integral in the forr{8.3), we get s’<1 andVNeN)

(P en)=| , d*xF e,
RAB(s")UBy(s")

1 Sra+|+3 s’
2 e, 3 o [ et [ e
= . = 1
and#0

+1-2+0(s'V).

Since¢,, and all its derivatives), ¢, tend uniformly towards zero in a given compdct clearly
so does the sequence of real numb@f=| ,¢,), which shows that P is indeed continuous

(QED).
Definition 6: The product (“.”) of Fe 7 and of PG e 7', and the product of two pseudo-
functionsPfF and PfG, are defined as
F-PiG=PfF-PIG=Pf(FG) e F'. (6.4

In particular F- Pf{G=G- PfF.
In the following, we will remove the dot indicating the product and write indifferently

FPfG=GPfF = Pf(FG) = PfFP{G = FGPfl. (6.5

Notice that from the symmetry of the duality bracket we hawel, e F,

(GPfF,H)szf d*xFGH=(PfF,GH). (6.6)
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Therefore, when applied to the restriction of pseudo-function®,tthe product of Definition 6
agrees with the product of a distribution and a functiba C*(R3), i.e.,

VoeD, ((ﬂPfF‘D,@):(Pbe,wgo). (6.7

B. A Dirac delta-pseudo-function

Consider, fors e R**, the Riesz delta-functiops, that we introduced in3.8). Since,d;
e F we can associate to it the pseudo-functiopd?f Now, Lemma Zsee(3.9)] can be re-stated
by means of the duality bracket as

lim (Pf,6,,F)=(F);. (6.9

e—0

This motivates the following definition.
Definition 7: We define the pseudo-functiefd; by

VFeF, (P8, F)=(F),. 6.9

We then extend the definition of the gétto include this pseudo-functioifé; e F'.

Obviously P#,; can be viewed as the “limit'Tbut we have not defined a topology @1 of
the pseudo-functions P§; whene — 0. The restriction of Rf; to D is identical to the usual Dirac
measure,

Pf&l‘D: 5155(X_y1), (61@

so that the pseudo-function &fappears as a natural generalization of the Dirac measure in the
context of Hadamard parties finies. In the following, we shall do a8 iftvould belong to the
original class of functionsF, writing, for instance,

(PfF,81)=(Pfé,,F)=(F);. (6.11

Of course, this equation constitutes in fact the definition of the bradkit, &;).
Definition 8: For any Fe F the pseudo-functioPf(F 6;) is defined, consistently with the
product(6.4), by

VGeF, (Pi(F8,),G)=(FG),. (6.12

We include intoF" all the pseudo-functions of this typ®f(Fd,) e ' (that is, we consider
Flew=F +F8,+F8,; and we henceforth drop the “new!’)

Notice that an immediate consequence of the “nondistributivity” of the Hadamard partie
finie, namely FG),# =(F).(G),, is the fact that

P(F 61) # (F),Pf5;. (6.13

As an example, we have {),=0; but Pf(,8,) is not zero, sincéPf(r,5,),1/ ;)= 1 for instance.

The pseudo-function P5;) represents the product of a delta-function with a function that is
singular on its own support, whereas this product is ill-defined in the standard distribution theory.
However, this object, as seen as a distribution, i.e., when restricted to theZrlafsmooth
functions with compact support, does exist in the standard theory. Using the Taylor expansion
whenr;—0 of anype D, thatis> = (1/1!) r'lnkana(yl), we obtain

B —E dQ
(PIFS, &)=(Fen=3, ety [ G 2nit . 614
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where; f_, denotes the coefficient ofrl/in the expansion of whenr;— 0. Notice that the sum
in (6.14) is always finite becaudes —a,, whereay=ay(F) is the smallest exponent of in the
expansion of (see Definition 1 From(6.14) we derive immediately the “intrinsic” form of the
distribution Pf( 51)|D, that is,

_)I do _)I
Pf(F51)|D:2 (I' 3L51j 471_1 nif =2, (|_I("I1n&':)19|_51: (6.19
! 1 !

1=0 =0

whered, §; denotes théth partial derivative of the Dirac measui@nd where the sums are finite
We have, for instance,

o 2] —tas 6.1
2| =ghd (6.16

Ip

Note also that the distribution F¥(;)| , can be recovered, quite naturally, from the Laplacian

(in the ordinary distributional sensef the bracket corresponding to the “Poisson” integral of
Pf(Fé,), i.e., formed by PfFé,) acting on the functiox— 1/x—x’|. For any givenx’, this
function belongs tdF,. and we are still allowed to consider such a bradket also Sec. M Thus
we define

1 ( F(x)

47\ [x—x']

(6.17

1 1
G(X,):—E<Pf(|:51),m> =

1
Forx’ different from the singularity,, we find, using the Taylor expansion of3+ x’| around
yl!

1 -)'
6(x)=- 13, ! T (ringF),a]

1
r—,) (6.18

1

Clearly the functionG, if considered as a function of the varialXe belongs taF. Now, we see
from (6.15 that the “ordinary” Laplacian ofG(x") is precisely equal to PF(51)|D, namely,

! ’ _)I ’ ! ’ !
A'G |D=|ZOI—I(r'1n'iF)1(9,_51=Pf(F 811, (6.19
Let us point out thats has no partie finie at the point 1G(,;=0; so, in order to compute its
partie finie at 1, we are not allowed to replace formallyby y, inside the defining expression

(6.17):

1 F .
0=—47T(G)1¢<Pf(F51),a>=(a) =f,. (6.20
1 1

[The functionG(x’) is not continuous at 1, as we can easily see from its singular expansion
(6.18.]

Finally let us mention how to give a sense to a pseudo-function that would be associated with
the square of the delta-functiode>0, we haveséfe]-‘, and hence, we can consider the partie-
finie integral of, 85F. In the limite—0 we get

lim (Pf,8%,F) = lim Pff d3x, 85F =0, (6.20)

e—0 e—0
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essentially because we have a squsfrén factor which kills any divergencies arising from the
integral. Therefore I%ﬁ is (defined to bgidentically zero. More generally,

VFe F, Pf(F§?)=0, (6.22
and we shall not hesitate to write such identities as
(Pf8y,F 8,)=(6,,PiF&,))=(Pf(F&3),1)=0. (6.23
Note also that
Pf(F 8,8,)=0. (6.24)

VIl. DERIVATIVE OF PSEUDO-FUNCTIONS

A. A derivative operator on F

From now on we shall generally suppose, in order to simplify the presentation, that the powers
of ry andr, in the expansions oF € F around the two singularities are positive or negative
integers (7). Our aim is to define an appropriate partial derivative operator acting on the
pseudo-functions of the type IPf First of all, we know(Lemma 3 that the restriction of F& to
D is a distribution in the ordinary sense, so we already have at our disposal the derivative operator
of distribution theony, which is uniquely determined — as well as any higher-order derivatives —
by the requirement

VoeD, (r?i(PfF‘D),(p>=—(PfF|D,(7igo>. (7.1

It is clear from viewing PFF|D as an integral operator acting gnthat(7.1) corresponds to a rule

of “integration by part” in which the “all-integrated”(surface term vanishes. In particular the
“integral of a gradient” is zero. This motivates the following definition.

Definition 9: A partial derivative operatop; acting on pseudo-functions of is said to
satisfy the rule of integration by parts iff

VE,GeF, (d(PfF),G)=—(d(PiG),F). (7.2

Notice the symmetry between the two slots of the duality brackdf7id). As an immediate
consequence, for a derivative operator satisfying this rule, we have

VFeF, (g(PfF),F)=0. (7.3
Furthermore, if we assum&(Pf1)=0 in addition to Definition 9, then
VFeF, (d(PfF),1)=0. (7.4

Of course, both7.3) and(7.4) correspond to the intuitive idea that the integral of a gradiena
“distributional-extended” sengeshould be zero.

Proposition 3: The most general derivative operator @i satisfying the rule of integration
by parts(7.2) reads as

d,(PfF)=Pf(3,F)+D|[Fle F, (7.5)

where Pf(9;F) represents the “ordinary” derivative, and where the “distributional” term
Di[F]=H[F]+DP2"[F] is the sum of the general solution of the homogeneous equation, i.e., a
linear functional H[F] such that

VF,GeF, (H[F],G)+(H[G],F)=0, (7.6
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and of the particular solution defined by

1 1
DPYTE]=4m Pl ni|Srof 1+ > ¢ f oy
2 1 k=0 I’ll

S+ 1<—>2) . (7.7
When applied on ang e F, the particular solution reads as

1
<Dipar[F],G>:f ANy  5f 191+ 2 oo G| +1e2. (7.8
21 1 k=0 1 1

Proof: We replace the forni7.5) of the derivative operator into the ru(&.2) and find
(Di[F1,G)+(Di[G],F)=—(Pf(3;F),G) = (Pf(4,G),F).

The right-hand side can be readily re-written as the partie-finie integral of a gradient,
(Di[F],G)+<Di[G],F):—PfJ d3xd;(FG). (7.9

Now we know from(3.4) that the integral of a gradient is equal to the partie finie of the surface
integrals around the singularities when the surface areas shrink to zero; thus

(Di[F],G)+(D;[G],F)=4m(nir2FG),;+1-2.

We replace into the right sideé andG by their expansions around 1, and after an easy calculation
we arrive at

(DIF1.6)+(D[G]F)= [ doyn]

fyg 1+ > (f o Gkt fig o i) |+1e2.
1 1 k=0 1 1 11

(7.10

It is clear that the particular solution given l§¥.7) or (7.8) solves the latter equation. As a
consequence, the most general solution is simply obtained by adding the general solution of the
homogeneous equation, i.€7.10 with zero on the right side, which is precisely g H] satis-

fying the “anti-symmetry” property(H;[F],G)+(H;[{G],F)=0. QED.

As we see from Proposition 3, the rule of integration by parts does not permit, unlike in the
case of distribution theorjsee(7.1)], to fully specify the derivative operator. Obviously, we must
supplement the rule by another statement indicating the cases for which the new derivative should
reduce to the “ordinary” one, i.e., when we should hayéPfF)=Pf(9;F). Clearly, we would
like to recover the ordinary derivative in the cases where the function is “not too much singular.”
In the following, we shall require essentially that our derivative reduces to the ordinary one when
the functionF is boundednear the singularitiefin addition belonging taC”(R3—{y; 5})], in the
sense that there exists a neighborhdédontaining the two singularitieg, andy, and a constant
M e R** such thatxe N=|F(x)|<M. Let us refer to the coefficients of the negative powers of
r, andr, in the expansions of, i.e., the;f_;_,’s and,f_;_,’'s whereke N, as thesingular
coefficients ofF (recall that we assumed that the powersr pfandr, are integers Clearly, a
function is bounded near the singularities if and only if all its singular coefficients vanish. This
means that we shall require that the distributional terFD, which is a linear functional of the
coefficients in the expansions Bf, should depend only on the singular coefficierits;_, and
,f_1_ of F. This is already the case of our particular solutidi"DF] in (7.7). We now look for
the most general possiblg[l] depending on thef_;_,’s (and 1-2).

All the singular coefficients admit some spherical-harmonics or equivalently STF expansions
of the type(2.8—(2.9), with STF-tensorial coefﬁcientgfL_l_k [whereL=i;--"i,; see(2.9) for
definition], so we are led to requiring that[HF ] be the most generdinearn functional of the STF
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tensors,f-,_, and 1—2. Moreover, we demand that[Hf ], like DP*{F], is proportional to the

Dirac pseudo-function B, (as we shall see, the gradient ofsPfis itself proportional to P§; so
there is no loss of generalityNow, we have also to take into account the fact that the dimen-
sionality of H[F] should be compatible with the one of Pff). EndowingR® with a unit of
length to measure the space coordinates, the Dirac pseudo-functipiakRés the dimension of
the inverse cube of a length, and[A] the dimension of divided by this length(in physical
applications, we do not want to introduce any special physical scale conclude that HF ]
must be of the general form

+ oo

Hi[F]:kEo |Eo P AT+ Bianif’ty (Jri 6 +1e2, (7.1
=0 1= 1 1

where thee, ’s and By ,'s denote some purely constant numerical coefficiéatsdl where, as
usual, the sum ovek is finite). Applying this H[F] on anyG we readily obtain

+ o
| l+1 . N
. — I L Ail iL AL
(H(F1.6) go;o(2|+l)!! 2|+3ak"];—l—k?—l+k+Bk,lz—l—k%—lﬁ—k}+1‘_’2-

(7.12

At last we must impose the anti-symmetry conditighn6). For anyG whose all singular coeffi-
cients vanish we hawgH;[ G],F)=0; then, the anti-symmetry condition tells us tkiatl2 should
be identically zero for any sucs and anyF. Therefore, we must have, ;=0 and 8, ;=0
whenevelk=1, so we are left with only the coefficients), andB,, , and the conditiori7.6) now
implies

+

z [+1
“h (21+ 1)1

0= 2|+3a0,l+ﬁ0,l

[fElgll-1+fll_1@E1]+l<—)2,
1 1 1 1

which can clearly be satisfied only (&nd only if), [(I+1)/(21+3)] ag,+ Bo,;=0. Thus, posing
a=ag), We have just proved the following.

Lemma 4: The most generbl[ F] that vanishes for any bounded functiore 5 and pos-
sesses the correct dimension depends only on (the STF-harmonics of) the singular coefficients
1f_4 and,f_; and is given by

+ )
_ LZiL
21+3Mi

+ o
Hi[szgo a|Pf( 116, | +1-2, (7.13

A-ts
1

where theq,’s form a countable set of arbitrary numerical coefficients
~ [The angular dependence of the first term(il3) is expressed by means of the STF tensor
Al .] Equivalently we have

+ o

(R |
(H[F1.G)=2, al(ZH—?,)”[IEl?}l—i}l?quHz. (7.14

This expression is anti-symmetric in the exchafge G as required.

To sum up, we have obtained the most general derivative opergt®it)=Pf(d;F)
+ D;[ F] that satisfies the rule of integration by parts and depends only on the singular coefficients
of F. The distributional term PF] is the sum of a “particular” solution fully specified by7.7)
or (7.8), and of a “homogeneous” solution given l§¥.13 or (7.14) in terms of an infinite set of
arbitrary numerical coefficients; € R (andl e N). In Sec. VIl we shall see how one can reduce
the arbitrariness of the definition of the derivative to only one single coeffidienR.
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B. Some properties of the derivative

At this stage, one can already investigate some properties of the distributional tgfh D
=DP¥{F]+H[F], using the fact that the yet un-specifigd;[ F],G) depends only orf_, and
10_1 (and 1+ 2). Let us first check that the derivative operator, when restricted to the smooth and
compact-support functions @, reduces to the distributional derivative of distribution thebory.
This must actually be true since the fundamental prop@rty) of the distributional derivative is
a particular case of our rule of integration by parts, and because the derivative®freduces to
the ordinary one. However, it is instructive to verify directly this fact using the expre$gian
Applying DjfF] on ¢eD and using the Taylor expansion ofp around 1: ¢
=320 (1K!) rnk (9 @) (y1), we obtain

1 :
(DIFLo)=3, () [ dninkt ;102
k=0 K: 1

Hence the intrinsic expression of the distributional termspn

()" i
DilFl,= 2 aK(slf dQnynff_, +1-2, (7.19
= . 1

which agrees with the distributional part of the derivative of a function with tempered singularities
in distribution theory. For example, we can write

1
Dia

However, when acting on functions of the full s&t the derivative generally leads to prop-
erties which have no equivalent in distributional theory. For instance, although the distributional
derivative of 1/ reduces orD to the ordinary derivative, i.e., iDl/rf]‘D= 0, on F it does not:

4

3
Ip

3,6, . (7.16

ni .
—2r—31+477n'151). (7.17)
1

1
3i<Pf—§>::Pf
N

For the distributional derivative of 4 on F we find

r)-r{-s3+eta)
d;| Pf—=|=Pfl =37 +47—46,|. (7.18
ry rq r

The expression of the distributional term is apparently different from the corresponding result
(7.16 in distribution theory. However we shall see after learning how to differentiate the Dirac
pseudo-function R¥; that the distributional term [D1/r f] takes in fact the same form gfias on

D [see(7.28 below].

We come now to an important point. In this paper we have defined a “pointwise” product of
pseudo-functiongsee Definition § which reduces to the ordinary product in all the cases where
the functions are regular enough. For instance, it coincides with the ordinary product’for
functions, or even continuous or locally integrable functiéadopting the clasg,.). Next, we
introduced a derivative operator that acts merely as the ordinary derivative for a large class of
not-too-singular functiongthose which are bounded near the singularities, see Proposijtiém 3
particular, the derivative is equal to the ordinary one when the function€agg the location of
the two singularities. However, we know from a theorem of SchWttmt it is impossible to
define a multiplication for distributions having the previous properties and such that the distribu-
tional derivation satisfies the standard formula for the derivation of a prdtediniz’s rulg. In
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agreement with that theorem, we find that the derivative operator defin€d®(7.7) does not
obey in general the Leibniz rule, whereas it does satisfy it by definition in an “integrated sense,”
namely,

(6;[P(FG)],1)=0=(0;(PfF)G+Fag;(PfG),1). (7.19

However it does not satisfy the Leibniz rule in a “local sense,” i.e., we have, generically for two
functionsF,G e F,

d[Pf(FG)]— 9;(PfF)G—F¢;(PfG) #0. (7.20
This means thata priori,
(&,[PI(FG)],H)—(a;(PfF),GH)—(4;(PIG),FH)#0, (7.2)
or, equivalently, since the Leibniz rule is satisfied by the ordinary derivative,
(Di[FG],H)—(D;[F],GH)—(D;[G],FH)#0. (7.22

Actually, in accordance with the theorem in Ref. 28,20 must be true even when the pseudo-
function is regarded as a distribution @h To check this, let us compute the left side(d22) in
the case where Os the particular solution P3" defined by(7.7), and whereH is equal to some
¢ e D. We employ the Taylor expansion gfaround 1 and 2, and, strictly following the definition
of the distributional term inf7.7), we arrive at

_k
[DP*TFG]—FDP*{G]-GDP*TF]], = kZl %(%«%J dQynint

L Iy
519 1t 5f g
21 11 ' 21 ! 1 !

+1-2. (7.23

k
_E fo1 05k
=01 1

The right side 0f(7.23 equals (27/3) 9;8; in the case wheré = 1/r; andG= 1/r§ for instance.

It is not possible to add a homogeneous solution of the fatt3 so as to always get zero. As the
result(7.23 depends only on the singular coefficientsFofand G, we recover the Leibniz rule
wheneverF or G is bounded near the singularities. Besides, we can verify directly @3 that
the Leibniz rule is indeed true in an integrated sense, since the integrakdweér(7.23 picks up
only the term withk=0 which gives no contribution.

C. Derivative of the Dirac pseudo-function

In this subsection we compute the distributional teq[ F],G) given by the sum 0f7.8)
and (7.14 assuming that eitheF or G is equal to the Riesz delta-functiops;=[e(e
—1)/47]r% "3 for some smalk>0. (We come back for a moment to Definition 1 in which the
powers ofr, andr, in the expansions df or G are real) We notice first that the terms depending
on the singular coefficientd _; and;g_4 are present only when the exponent belongs to both
families of indices §;); .y corresponding td= and G (remind Definition ). This means that,
choosinge to be different from 2, these terms will not contribute to the present calculation, and in
particular that the homogeneous pér;[F],G) will always give zero, provided that eith&r or
G is equal to, 6, . From the expressio(v.8) we get

do,
(DL.5,).6)=e(1-0) [ G20gs ., (7.243
1
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(=)' L [dQ,
(DI[F]..00)=e(1-2) % TlﬁLri23f4—;n'2L£2|. (7.24b

Furthermore, by choosing smaller than the spacing between some expor@nts G (specifi-
cally e<l—a with a;, is such tha'ai1< 1< ai1+l) we can arrange for havingy, . =0 so that

(7.243 becomes identically zero. Anyway, in the limit—=0 we come up formally with both
relations(D;[ 5,],G)=0 and({D;[F],5;)=0. The former tells us that the distributional derivative
of Pfé; reduces to the ordinary one, i.e.,

d;(Pfé,)=Pf(4;6,). (7.295

The latter[that we already knew fron6.23] shows via the rule of integration by parts that the
action ofg;(Pfé;) over any functior e F is equal to minus the action of &f over the derivative
OF.

Definition 10: The derivative of the Dirac pseudo-functidfd, is defined by

VFE]:, <al(Pf5l),F>:_<Pf51,8|F>E_((9|F)l (726)

We can summarize the properties of the derivative of the Dirac pseudo-function by writing the
successive identities,

(0i(P16y),F)y=(Pf(9;6,),F)=—(Pf61,0;F)=—(d;F)1,
as well as similar identities obtained by exchanging the roles ahd &,
(6;(PTF), 8,y =(Pf(9;F),5,)= —(PfF,3;8,) = (9;F);.

Lemma 5: The intrinsic form of the derivative of the Dirac pseudo-function is

ai(Pfey)=—Pf 325, . (7.27)
1

The proof is evident from using the identitg.11). The form(7.27) [with (7.25] is quite useful in
practice; for instance, it permits us to re-write the derivative of the pseudo-functiorr?f(’:ﬂsi
computed in(7.18 into the form

i

n;

41
& —33—?&51 , (7.28

1
M

where the distributional term takes the same form as in the distribution tieomgpare with
(7.106)].
The preceding definition and lemma are easily extended to the case of the pseudo-functions
Pf(F 6,). The derivative of these objects is defined by the mean of the relation
(ai[Pf(F81)],G)=—(Pf(F81),8,G) =~ (F,G);. (7.29

Then, from the identity2.11), we readily get the intrinsic form

(7.30

F
ai[Pf(Fal)]zpf[riai(r—g,> 8.
1
Notice the interesting particular case,

di[Pf(rs,)]1=0, (7.31)
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which is also an immediate consequencgafl6). Finally, let us mention that the Leibniz rule
happens to hold in the special case where one of the pseudo-functions is of the 3pe)Pf(e.,

d[PfF.Pf(G&1)]=0;(PfF).P(G&6y)+ PIF.0;)[ PI(G67)] (7.32

(the verification is straightforwajd

VIIl. MULTIPLE DERIVATIVES
A. General construction

From Proposition 3 we can give a meaning to
<ai(PfF),G>=Pff d*xd9;FG+(D[F],G), (8.1

which will be also denoted ¢;(PfF),PfG). We now define the more complicated object
(9i(PfF),0;(PfG)). Since the distributional term;CF] has the form Pfi5;) plus 1—2, and
becausé6.22—(6.24) entail such identities a&Pf(G5,),Pf(H51))=0=(Pf(Gd,),Pf(H&,)), we
deduce that the duality bracket applied on any two distributional terms is always zero:

VF,GeF, (D[F],D,[G])=0. (8.2)

When constructing the brackes;(PfF),d;(PfG)) we shall meet a product of two distributional
terms which gives zero b{8.2), and we shall be left only with the ordinary part as well as the two
cross terms involving one distributional term. Therefore,

(0i(PfF),0;(PIG))= Pff d3xo;F 3;G+(Di[F],d;G)+(D;[G],d;F). (8.3
[The ordinary part can equivalently be written as

We now intend to introduce the second-order derivative operator. The generalization to any
Ith-order derivative is straightforward and will be stated without proof. By extending the rule of
integration by parts presented in Definition 9, we are led, quite naturally, to require that

VF,GeF, (d;(PfF),G)=—(d,(PfF),5(PiG)), (8.4)

where the objectd;(PfF),d;(PfG)) has just been given if8.3). For the moment, we are careful
at distinguishing the order of the indicesandj. Let us look for the expression of the distribu-
tional term ;[ F] corresponding to the double derivative, viz.,

in terms of the single-derivative term;[[F]. Inserting(8.5) into the required property8.4) we
arrive immediately at

(Dy[F1,G)= —Pff d®xd,(9;FG) —(D,[F1,8,G)— (D[ G],d;F).

Next recall the formuld7.9) which tells us that any partie-finie integral of a gradient is the sum
of two distributional contributions. Using this property we obtain the simple result

(D;j[F1,G)=(Di[9;F1,G) —(D;[F1,0;G)=(Di[ 9;F ],G) +(4;D;[ F],G). (8.9
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The formula(7.29 allowed us to obtain the second equality; so the intrinsic form of the second-
order distributional term is obtained as

This result is easily extendible to any multiple derivatives, demanding that, to anylorder
(05 iyiyi, (PTF), G)=—(d iz...il(PfF),(?il(PfG)), (8.9

where the right side is obtained in a way similar(83). We can even impose the more general
rule of integration by parts, that f@any k=1,...,

(1,1 (PF),GY= ()31, i, i, (PIF).dii i (PIG)). (8.9
Then the following is proved by induction ovér
Proposition 4: If a multi-derivative operatar
iiy-i (PIF)=PHd; i ..i F)+ Dy, [F1, (8.10

satisfies the rule of integration by parts (8.8) or (8.9), then ktie-order distributional term
[F] is given in terms of the first-ordd; [F] s by

12 l

|
Dijiy '| Z '1"ikleik[aikJrl"'ilF]' (8.11

Recall that this result is valid for any distributional derivative of the form given by Proposition 3,
i.e., B[F]=DP*{F]+H[F]. Therefore, the rule of integration by parts has permitted us to
construct uniquely all higher-order derivatives from a given choice of first-order derivafitg D
i.e., from a given choice of “homogeneous” solution[A]. Notice thata priori this construction
does not yield some commuting multi-derivatives., the Schwarz lemma is not valid in gengral
because evidently the right side of the formy&ll) is not necessarily symmetric in all its
indices. However, as a central result of this paper, we shall show now that it is possible to find an
initial H;[ F] such that the derivatives do commute to any order.

Theorem 4: The most general derivative operatg PfF)=Pf(d;F) + D;[ F] such that
® the distributional termD;[ F] depends only on the singular coefficients of F,
(i)  all multi-derivatives satisfy the rule of integration by parts,

(iii)  all multi-derivatives commute (i.e., thg; ;... [F]'s are symmetric inji, - i), is given by

+o iL
n ny .

Di[F]=47T|EO Pf |[n"'f" —n&f'fl]rlaﬁkZO—r,i—sz_kal +12, (8.12
= 1 = 11

where the coefficients & (I + 1){K+2}:1[1/(j +1)]} depend on an arbitrary constant.K

(Actually the theorem states that the derivative operator depanu$ori on two different
constantsK; and K, for each of the two singularities. In the following we shall assume for
simplicity that the constants are the same, so that the way to differentiate does not distinguish
between the different singularitigdotice that B[ F] differs from the particular solution BTF]
given by (7.7) only in the terms depending on the “least singular” coefficierfts; and,f _;.

Proof: According to the assumption$) and (ii) we already know(see Proposition 3 and
Lemma 4 that the distributional term must be of the form[B]=DP*TF]+H[F], where the
particular solution is given explicitly by7.7), and where the homogeneous term takes the form
(7.13 depending on a set of arbitrary coefficiems Furthermore, we know from Proposition 4
that all higher-order derivatives are generated from the first-order one in the way specified by
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(8.11. It only remains to show that the coefficients can becomputedn order that the assump-
tion (iii ) of the commutation of derivatives be fulfilled, and that the derivative is give(82).

What we want then is to impose the symmetry gf[B] in ij. We compute the anti-
symmetric projectionij ]= (ij —ji)/2 of the second-order distributional term associated with the
particular solution7.7),

DPSitF1=DpTa;F1+ o DFTF]. 8.13

The first term is readily obtained fror2.12 which tells us that theath coefficient in the
r;-expansion of the gradient i$,(d;F)=(a+1)n{;fa.1+dj;1f,.1. On the other hand, the sec-
ond term in(8.13 comes directly from using the formu{@.30. It follows that the anti-symmetric
projection depends only on the expansion coefficigits ,f_; and 12 through the simple
formula,

DR'{ F1=2mPf(n| [rldjllio+d"11171]51)+l<—>2, 819

or, using the relatiori2.13 for the operatod! ,

+ oo

DRffiFI=2m 3, (1+1)Pnfi[ryfY+ oy +102. (613
1 1

Note that by applying this on ang, we get

A+D)A+1)
par _ FL[iAjIL L[iAj]L
(DR¥IF1,G)= zwlﬁo G (IO 911,1+I,1?0 )+ 12,

Next, we add the homogeneous solution. By performing a computation similar as the previous one
(but a bit more involvegwe find, based on the expressiohl3,

Hip[F1= 2 2|+3[(|+2)a| (I+ 1)@y, 1]Pf(i[ry f11L+f”5]51)+1<_>2 (8.16

Remarkably, H;;[F] takes exactly the same form &&15. Hence, we are able to determine a
relation to be satisfied by the looked-for coefficienisfor any| in order that the noncommuting
part(8.15 associated to the particular solution be cancelled out by that of the homogeneous one:
VI, 1+2)a—(1+1)a,1=—2m(2] +3). Given any initial value for, the solution reads as

| |
1 1 1
a0+277j21 (J_+]+_1 =-27+47(l+1) K+j21j+_1 (8.17

a=(1+1)

in which we have introduced the new arbitrary constdnt ay/4m + 1/2. Inserting(8.17) back
into the expression for DF ] leads to the announced res(12. At last, we find that for any
choice of the constar the second-derivative operator commutes, i.e.,

Dyijj[F1=Hyij[F1+ DRN{F]1=0. (8.18

Let us verify from(8.18 that all higher-order multi-derivative operators commute as well, i.e.,
D, [F] given by the formula8.11) is symmetric in all its indices. This is easily proved by

iqipmi
induction over. Suppose that to thd { 1)th order Biyi [F] is symmetric, and re-write the

-1
formula(8.11) into both forms,

[F1=Di,[6i,..iF]1+di Di..;[F1=D;,. [d;F1+ Di [F].

PPNl ip iy ip iy I iy hog
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Clearly, Dl...il[F] is symmetric with respect to boih---i,_; andi, --i;, So must be symmetric
in all its indices(the symmetry with respect to the first and last indices being a consequence of the
other symmetries QED.

We should mention that the dependence upon the arbitrary constanitthe derivative
operator defined by Theorem 4 is

+ oo
Di[F], =47K >, (I+1)PH[n{Ts,—niflhri6)+ 152, (8.19
I1=0 1 1
which can also be cast into the more interesting form

Di[F]|, = —47Kg[Pl(rif_161)]+1-2. (8.20

1

We see that the “ambiguity” linked with the constakitwhen deriving the pseudo-functionfPf
is related to an ambiguity resulting from the addition of the temeKPf(rilf,161)+1<—>2 to

PfF. In a sense, one can also view the constards a measure of how much the distributional
derivative of the pseudo-function Pf¢1) differs from the ordinary one, i.e.,

=47KPf(nir,8y). (8.21)

1
Dia

Indeed, for functions which are more singular than a simple,lthere is no dependence on the
constantK; see, e.g.(7.17—(7.18.

B. The Laplacian operator

Let us compute the second-derivative of Pfg)/using the formula B[ 1/r,]= Di[—njl/r"{]
+d;Dj[ 1/r1]. The first term is obtained directly from the definiti®12), and the second term is
computed with the help of the formul&@.30 applied on(8.21). As a result, we get

Dij[ri}z—%Pf([5”+3(3K+1)ﬁy]61), (8.22
1

wheref! =ninl — (1/3) 8. Evidently (because of the trace-fréd)), when we restrict ourselves
to smooth functions of the s&, we recover the usual formula of distributional theory,

1

= 4775”5 8.2
rl - 3 1- (3)

Ip

Since the dependence owiérin (8.22 drops out when taking the trace over the indicgswe
have [ 1/r1]= —4xPf5, (even on the sef). This means that the Laplacian of 1/on F takes
the same form as the well-known formula of distribution theory:

A = —AmPfs, . (8.24)

1
Pf—
ry

We infer from the rule of integration by parts that

1
(e =(s

Pfri ,F>=—47T(F)1, (8.29
1
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which can be phrased by saying that the Poisson integral of the Laplacian of a singular function,
as evaluated at a singular point, is equal to the partie finie of the function at that point. More
generally, the Laplacian acting on any pseudo-functioftins defined by

A(PfF)=Pf(AF)+D;[F], (8.26
where the distributional term is given by
Di[F]=aDi[F]+ Di[9iF]. (8.27)

Proposition 5: Under the hypothesis of Theorem 4 the distributional term associated with the
Laplacian operator reads as

+ |_

Di[F1=47>, Pl (I+1)C,_yni[f-,+r f516,— > (2k+1) —k—f 101 | 12
=0 1 1 k=0
(8.28

The proof is straightforward and will not be detailed. Note that the dependenkeoaurs only
for functions owing some nonzero coefficienfs ; or ,fy, or 1< 2; for instance,

Dii[n}]=87KPf(nir;8y),
Dilni/r,]=8m(K—3)Pf(n}5,).

But, for more singular functions like i, we have

1 6 207
A( Pfr—g> Pf(r —2—51) (8.29
1
Lemma 6: The Laplacian of the pseudo-functiefigF 5;) is given by
s, | F
A[Pf(F&,)]=Pf riA 3 O1]. (8.30
1

The proof is similar to the one of the formw@.30. Two immediate particular applications are
6
A(Pfé,)=Pf 2 o1/, (8.31a

A[Pf(r§s,)]=0, (8.31h

which can also be deduced, respectively, fr@m9 and(2.17). [(8.313 is in agreement with
(6.16).] Let us add that
ry

In practice, Lemma 6 may be used to determine some solutions of Poisson equations “in the sense
of distributions” on F. For instance combining.313 with the formula(8.29, we can write

A

i
=pPfl —|. (8.32
5]

1

6
01 }: Pf( —5), (8.33
r

which provides a solution of the Poisson equation with source iBf(6h the sense of these
distributions. Such a solution is by no means unique, since, from Lemma 6, one can add to it any
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“homogeneous” solution of the form P#"™s;) where H"™ is the product ofr3 with an
arbitrary solution of the Laplace equation. Notice tf&a83 as it stands is well-defined in distri-
bution theory and so takes the same form when restrictdd (d 5, is meaningful on this sgt
However,

A[Pf

1 2
I I

has no equivalent in distribution theory.

IX. TIME DERIVATIVE AND PARTIAL DERIVATIVES

The functions- e 7 depend on the field point and on the two singular source poigtsand
y». We shall now consider the situation where the two source points represent the trajectories of
actual particles, and therefore depend on tim&/e assume that the two trajectoriggt) and
y,(t) are smooth, that ig;, y,e C*(R). In general(e.g., in the application to the problem of
motion of point-particlesthe functionF will also depend on time through the two velocities
vy (t) =dy,(t)/dt andv,(t) =dy,(t)/dt. We suppose thdt is a smooth functional of; andv,.
Therefore, in this sectiork; is supposed to take the form

F=Fty(t),ya(t) e 7. (9.1)

We want to investigate the partial derivatives a distributional sengeof the pseudo-function
PfF with respect to the source poings andy,, as well as the derivative of Pfwith respect to

time t. Obviously, the partial derivativegd;=d/dy,; and 1—2 are closely related to the time
derivative 9,=d/ gt on account of the fact that

HF=F+010,F+v5aF (9.2
1 2

(in the ordinary sensewhereF denotes the contribution of the time-derivative due to the depen-

dence over the velocities, i.6,=a}dF/av’ +aLdF/av}, (a) anda), denoting the two accelera-
tions). In applications it is frequent tha depends on the trajectories only through the two
distances to the field poimt =x—y; andr,=x—Yy,; in that case,

aiF+0iF+ﬁiF:0. (93)
1 2

The general functiort9.1) does not necessarily satisfy the latter identity. However, let us guess
from (9.3) the result for the distributional term®;[F] (and 1—2) associated with the partial
derivative;d; acting on the pseudo-functionPf Since we have supposed that the dependence of
F on the velocities is smooth, the distributional terms will depend only on that part of the function
which becomes singular when— 0, and so, because as far as the singular part is concerned, the
function behaves lik€9.3), the distributional termgD;[ F] and,D;[ F] should satisfy

D,[F]+D;[F]+Dj[F]=0. (9.9
1 2
Now, from Theorem 4, we know that;[F] can be naturally split into two parts associated,

respectively, with the singularities 1 and 2. Therefore, we expect that the correct distributional
termD;[F] is equal tominusthat part of O F] which corresponds to 1. Namely, usif§12),

+ oo iL
. N ny .
Di[|:]=—4wl§‘6 Pf cl[n'lLfEl—ngf'}l]rlaﬁkEO s ft, 61 (9.5
1 = 1 1 = 11
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(andidemfor 2). This expectation is confirmed by the following definition and proposition.
Definition 11: The partial derivativgd; (and 1+ 2 ) acting on pseudo-functions is said to
satisfy the rule of integration by parts iff

VF,GeF, (6;i(PfF),G)+(d;(PfG),F)=¢,[(PfF,G)]. (9.6
1 1 1
Similarly, the time derivativé, is said to satisfy the rule of integration by parts iff
d
(0(PfF),G) +(a(PIG),F)= a[(PfF,GH- 9.7

Notice that(PfF,G)=Pf[d*xFG is a function of the source pointg(t) andy,(t), as well ast
independently if eitheF or G depends on the velocities. The time derivative in the right side of
(9.7 means the total time derivative we get by taking into account both the vatiadgeurring
throughy,(t) andy;(t), and the independentcoming from the velocities. Let us now state a
result analogous to Theorem 4, whose proof will not be given since it represents a simple adap-
tation of the one of that theorem.

Proposition 6: Under the hypothesis of Theorem 4 the partial derivative with respegt to
(and idem withl<2 ) is determined as

d,(PfF)=Pf(o;F)+D;[F], 9.9
1 1 1

where D[ F] is given by (9.5). And the time derivative is determined as
(PfF)=Pf(d,F)+ Dy F], 9.9
whereD[F] is given by

D{F]=v'Di[F]+v,D[F]. (9.10
1 2

Higher-order derivatives are constructed as in Sec. VIII. We find, for instance,

1 1 1 1 11

Idemfor the second-order time derivative, which reads as
92(PfF)=Pf(32F)+ D &;F 1+ &;DF], (9.12

whered,F is given by(9.2) and Q[ F] is defined in(9.10. Furthermore the mixing up of deriva-
tives of different type is allowed, and proceeds in the expected way. For example,

12 12 1 2 12
Another example is
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APPENDIX: PROOF OF THEOREM 2

Basically the proof establishes the legitimacy of commuting some discrete series with inte-
grals. ConsideF € F. We start by evaluating the integrals
3 ri)ra p a
FP6—0 f d3x X, [ =] (=] r¥fa(ng) (Ala)
By(s) a=-3 151/ \S2/ 7

and

FP Of d3x > (rl)a(r’l)B at_(n,) (A1b)
- X — — r ng),
B=0)pys a==3\81) \Sp l13( '

where the f,'s are the coefficients of the expansionfofvhenr;— 0, and where3,(s) is the ball

centered oty; and of radiusse R** (chosen to bes<r,,). From the definition of the class the

sums oveRr in (Al) are finite. When the real part ¢f is such that = 2R(8) <1, the integrand of
(Ala) is majored by

R(a) R(B) R(a)

ry ) i )

) ( ) Esri‘lfaml)ls(s—l) ma»{lg) > rilfa(ngl,
< 1 1

S1 Sz a<-3

as—

which can be integrated a8, (s). Thus the theorem of dominated convergence of an integral can
be applied, with the result that

@lr,\# 3 r)“
=] r3,=FP, dx >, | =] rif,
Sy 1 Bi(s) a<=-3 \ S 1

a+3 s
s fdQll;_g,.

The second integral is more difficult to compute because the im0 does not commute with
the integration sign. We must expan@ as a power series af,. Vr<rq,,

i
FpBﬂOJA d3X ( _—
a0 By(s) ag—s S;

2

r i

rf=rf 1+2n;-ny—+ =
12

BI2 +o0 r)!
=1, crﬂ’2<—n1~n12)(—) ! (A2)
12 =0 l2

where ny,=(y;—VY,)/r1,, and whereC?(t) denotes the Gegenbauer polynomial, which is by
definition the coefficient ok' in the power-series expansion of the function{dtx+x?) ~» when
x—0 (with \, te C). See, e.g., Morse and Feshb&ép. 602. Whente R and is such thatt|

<1 (as is the case here sinte —n;-n;,), we can obtain a majoration of the Gegenbauer
polynomial. From the formulécf. Gradshteyn and Ryzhi€,p. 1030

T(N+K)T(A+h)
C?(Cosa):ﬂ%ﬂ ATTIRINIE cog (k—h) 6],

we find thatV1+0, |C'(cosé)| is always less than

(IN+k=D)(IN[+k=2)--IN[(IM[+h=D)(IN[+h=2)-+|\]
kh=0 k!'h!

=cM(1).
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Therefore the serieX||C; #4(—n; -nyy))(r1/r1,)'| is bounded by (& 2r /r 1+ 12/r2,)Al2 and
thus admits a limit. ThugA2) converges absolutely afidthenfi(«) is large enoughthe signsf
andX can be interchanged:

r.\e ro B Mo BT® a+a+|
1 1
By(s) a+3=0\S1/ \S2 1 Sz | =0 a+3=0 JBy(s) Sir1p 1

whereC; #?=C;#”?(—n, -n;,). We obtain the two terms

o +a+1+3
r\? s* _
—) ™ dQ,f,Ci 77
Sy/ =0 af3=<o Siriata+l+3) 1
a+l+3#0
+ oo
ro)? 1
+(—) > = de |_3Cy P
Sy =0 Sy r12
finite sum

The finite part where— 0 of the second term reads simply as

ro\f [s)es 1
(—) |n(—)2 de |_3C P2, (A3)
S2 S1/i= 12

On the other hand, in order to treat the first term, we must justify the commutation of the finite part
with the infinite sum. Consider the series

+ o

1
<o ata+l+3

) fdQ f,C P2,
EP)

For « in a disk of the complex plane centered on 0 and of radi(with 0<e<1), we can bound
the generic term of that seriéfor large enough) by

fdn f,C/ P2

1
|a+|+3|_6 r12

which is independent at, and whose corresponding serie$ tonverges. Therefore we can apply
the limit «— 0 through the summation ovérand deduce

EP) B gatatl+3
lim{ | — fdQ pp—
a—0 (Sz) I=§:O a+§3:<o Sfrllz(a+a+|+3) 11a I

a+l+3#0

B +o
25 5 el (e

Sy / af3=o0 =0 atl+3
a+l+3#0

Next we apply the finite part Rf,, to the sum ofA3) and(A4), which involves finding the limit
when 8—0 of the series

g 1
<o a+l+3
a+1+3#0

s |
) f dQ,f,C; A2, (A5)
2 1

In any case the absolute value of the quantity under the Signsmaller than
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s I
(r—) clw) [ dot,|.
12 1

Furthermore we know tha€}(1)=T(2\+1)/[1'T(2\)]. For I#=0, C}M(1)=(2|\|+1-1)
X (2|N|+1-2)---(2|\])/1! is manifestly an increasing function pf|, and, forl=0, CP\(1)=1 is
constant. From this we infer thatl and for 8 in the disk centered on 0 and of radiés
Clf”?(1)<cf4(1) holds, which leads to thg-independent bound

s |
r—) (1) f d0y/f4,
12 1

which is manifestly the general term of a convergent series. Therefore the (@&Gjgsossesses a
limit when 8—0 which is simply obtained by setting=0 under the sigrX. Using C,O(cosa)
= 8o we find this limit to be 0 ifa=—3 and

1

3] doufe, (16)

if a# = —3. Gathering the result\3)—(A4) and (A6), we arrive at

S)Jde Fpe OJ d3 2 (rl)“(rz)ﬁa
— _g=FPx— X = |=]r

S 11 3 B=0)p(s) ats=<o\S1) |S2 11a

=FpPB-0 f d3x > (r—l)a(r—z)ﬁraf (A7)
a—0 By(s) a+3=<0 | S1 S 11a-

Sa+3

afa<o a+3 f dQlIa-Hn

from which we can now easily prove the equivalence with the Hadamard partie finie. Like in the
proof of Proposition 1 we consider two open domalisand D, disjoined and complementary
in R3, and such thaBB,(s) CD; and B,(s)CD,. We can write

ro\%ro

s/ s,

r\%r,\? r\%r
f d3x —1) (—2> F=f d3x<—l) (—2 F+j d3x
D, S1/ \S2 D\By(S) S1/ \S2 By(s)

where each of the objects is defined by complex analytic continuation in a neighborheod of

= B=0 [the proof similar to the one aftéd.1)]. Like in (4.8) we associate t& the functionﬁl
representing its “regularization” around the point 1,

B B

F, (A8)

Fi=F— > r3f,, (A9)
1

a+3=<0

and we re-write the right side ¢AA8) as

a B a B a B
r r r r ~ r r
D1\By(s) S1 Sz By(s) S1 S B1(s) S; Sp/ af3<0 1

Of these three terms, the first two are well-defined wheand B3 tend to zero, hence their finite
parts are simply obtained by posiag=0= 3. On the other hand we have proved previously that
the finite parts ngg and Pﬁ:g of the third term are equal and we have found their common

value to be given byA7). This shows immediately that
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ry\%(ry\? ~
FPa—‘Of d3x| =] | = F=f d3x|:+f d3xF,
B=0])p, S1/ \S2 D\By(s) B4(9)

a+3

fdnlfaﬂn fdﬂlf_s (A10)
1 1

+ R—
af3<oa+3 S1

(andidemwith Pf5=0). We recognize on the right side 0A10) the Hadamard partie finie of the
integral. Indeed the second term clearly admits an expansion in positive pow&rs of

a+3

VNel, f d3xF,= f dQ,f,+o(sVY), (A11)
By(9) 0<a+3<N a+3 1
so we recover exactly the partie-finie integral o@&yrin the form given by(3.3). QED.

1J. Hadamard|e Problene de Cauchy et Legjeations aux Devées Partielles Linaires HyperboliquegHermann,
Paris, 1932

2L. Schwartz,Theorie des DistributiongHermann, Paris, 1978

3R. Estrada and R. P. Kanwal, Proc. R. Soc. London, Set0OR 281 (1985.

4R. Estrada and R. P. Kanwal, J. Math. Anal. Appd1, 195 (1989.

5A. Sellier, Proc. R. Soc. London, Ser. 45, 69 (1964).

D. S. Jones, Math. Methods Appl. Sd9, 1017(1996.

L. Bel, T. Damour, N. Deruelle, J. Ibag, and J. Martin, Gen. Relativ. Gravit3, 963 (1981).

8T. Damour and N. Deruelle, Phys. Lett. 8V, 81 (1981).

9G. Sch#er, Ann. Phys(N.Y.) 161, 81 (1985.

101, Blanchet, T. Damour, and B. R. lyer, Phys. Rev5D 5360(1995.

11p. Jaranowski, iMathematics of Gravitatianedited by A. Krdak (Banach Center Publications, 1997

12p_ Jaranowski and G. Sdiea, Phys. Rev. [57, 7274(1998.

131, Blanchet, G. Faye, and B. Ponsot, Phys. Re\68)124002(1998.

14T, Damour, inGravitational Radiation edited by N. Deruelle and T. PirgiNorth-Holland, New York, 1988

153, M. Kopejkin, Astron. Zh62, 889(1985.

181, p. Grishchuk and S. M. Kopejkin, iRelativity in Celestial Mechanics and Astrometeglited by J. Kovalevsky and
V. A. Brumberg(Reidel, Dordrecht, 1986

7. Blanchet and G. Faye, Phys. Lett. 2Y1, 58 (2000.

8C. Cutler, T. A. Apostolatos, L. Bildsteet al, Phys. Rev. Lett70, 2984 (1993.

191, M. Gel'fand and G. E. ShilovGeneralized FunctionéAcademic, New York, 1964

2D, S. JonesGeneralized Function§Cambridge University Press, Cambridge, 1982

2IR. P. KanwalGeneralized Functions, Theory and Technigaeademic, New York, 1983

22M. Riesz, Acta Math81, 1 (1949.

2L, Schwartz, C. R. Acad Sci. Par89, 847 (1954,

24J. F. Colombeau, J. Math. Anal. Apf@4, 96 (1983.

25K, S. Thorne, Rev. Mod. Phy&2, 299 (1980.

26|, Blanchet and T. Damour, Philos. Trans. R. Soc. London, Se32@ 379 (1986.

27M. P. Morse and H. Feshbacklethods of Theoretical Physi¢McGraw-Hill, New York, 1953.

2|, S. Gradshteyn and I. M. RyzhiR;able of Integrals, Series and Produd#scademic, New York, 1980

Downloaded 07 Sep 2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



