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Motivated by the problem of the dynamics of point-particles in high post-
Newtonian~e.g., 3PN! approximations of general relativity, we consider a certain
class of functions which are smooth except at some isolated points around which
they admit a power-like singular expansion. We review the concepts of~i! Had-
amard ‘‘partie finie’’ of such functions at the location of singular points,~ii ! the
partie finie of their divergent integral. We present and investigate different expres-
sions, useful in applications, for the latter partie finie. To each singular function, we
associate a partie-finie~Pf! pseudo-function. The multiplication of pseudo-
functions is defined by the ordinary~pointwise! product. We construct a delta-
pseudo-function on the class of singular functions, which reduces to the usual
notion of Dirac distribution when applied on smooth functions with compact sup-
port. We introduce and analyze a new derivative operator acting on pseudo-
functions, and generalizing, in this context, the Schwartz distributional derivative.
This operator is uniquely defined up to an arbitrary numerical constant. Time de-
rivatives and partial derivatives with respect to the singular points are also inves-
tigated. In the course of the paper, all the formulas needed in the application to the
physical problem are derived. ©2000 American Institute of Physics.
@S0022-2488~00!03710-5#

I. INTRODUCTION

The Hadamard regularization,1,2 based on the concept of finite part~‘‘partie finie’’ ! of a
singular function or a divergent integral, plays an important role in several branches of M
ematical Physics~see Refs. 3–6 for reviews!. Typically one deals with functions admitting som
nonintegrable singularities on a discrete set of isolated points located at finite distances fro
origin. The regularization consists of assigningby definitiona value for the function at the locatio
of one of the singular points, and for the~generally divergent! integral of that function. The
definition may not be fully deterministic, as the Hadamard partie finie depends in general on
arbitrary constants. The Hadamard regularization is one among several other po
regularizations.4

A motivation for investigating the properties of a regularization comes from the phy
problem of the gravitational interaction of compact bodies in general relativity. As it is hopele
find a sufficiently general exact solution of this problem, we resort to successive post-New
approximations~limit c→1`!. Within the post-Newtonian framework, it makes sense to mo
compact objects like black holes by point-like particles. This is possible at the price of introd
a regularization, in order to cure the divergencies due to the infinite self-field of the point-ma
However, general relativity is a nonlinear theory and, if we want to go to high post-Newto

a!Electronic mail: Luc.Blanchet@obspm.fr
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approximations, involving high nonlinear terms, the process of regularization must be car
defined. In particular, it turns out that, from the third-post-Newtonian approximation~3PN or
1/c6!, the problem becomes complicated enough that a rather sophisticated version of th
amard regularization, including a theory of generalized functions, is required. By contrast, a
form of the Hadamard regularization, using merely the concept of partie finie of sin
functions,7–13 is sufficient to treat the problem up to the 2PN order. Furthermore, we know tha
answer provided by the Hadamard regularization up to the 2PN order is correct, in the sen
the field of the two bodies matches the inner field generated by two black holes,14 and the result
for the equations of motion can be recovered without the need of any regularization from
putations valid for extended nonsingular objects.15,16 Conforted by these observations we syste
atically investigate in this paper the Hadamard regularization as well as a theory of asso
generalized functions, in a form which can be directly applied to the study of the dynamics o
point-like particles at the 3PN order.17 ~We therefore restrict our attention to two singular poin
however most of the results of the paper can be generalized to any number of points.! Notice that
this problem enjoys a direct relevance to the future gravitational-wave experiments LIGO
VIRGO, which should be able to detect the radiation from black-hole and/or neutron-star bi
which a precision compatible with the 3PN approximation.18

Consider the classF of functions onR3 that are smooth except at two isolated singularitie
and 2, around which they admit some power-like singular expansions. The Hadamard part
(F)1 of FPF at the location of singularity 1, as reviewed in Sec. II, is defined by the average
spatial directions of the finite-part coefficient in the expansion ofF around 1. On the other hand
the Hadamard partie finie Pf*d3xF of the divergent integral ofF, we will review in Sec. III, is
obtained from the removal to the integral of the divergent part arising when two regular
volumes surrounding the singularities shrink to zero. Both concepts of partie finie are c
related. Notably, the partie-finie integral of a gradient is equal to the sum of the parties fini~in
the former sense! of the surface integrals surrounding the singularities, in the limit of vanish
areas. In Sec. IV we investivage several alternative expressions of the Hadamard partie
integrals, some of them based on a finite part defined by means of an analytic continuation p
~see Ref. 2 for a relation between partie finie and analytic continuation!. In our terminology, we
adopt the name ‘‘partie finie’’ for the specific definitions due to Hadamard, and speak of a ‘‘
part’’ when referring to other definitions, based for instance on analytic continuation. In Sec.
focus to the case~important in applications! of the partie finie of a Poisson integral ofFPF.

To any FPF, we associate in Sec. VI a generalized function, or partie-finie ‘‘pseu
function’’ PfF, which is a linear form onF defined for anyGPF by the duality bracket
^PfF,G&5Pf*d3xFG. When restricted to the setD of smooth functions with compact support th
pseudo-function PfF is a distribution in the sense of Schwartz2 ~see also Refs. 19–21 for mor
details about generalized functions and distributions!, i.e., a linear form which is continuous wit
respect to the Schwartz topology.~However, we do not attempt here to introduce a topology onF;
we simply define the set of algebraic and differential rules, needed in applications, tha
satisfied by the pseudo-functions onF.! The product of pseudo-functions coincides with t
ordinary ~‘‘pointwise’’ ! product used in physics, namely PfF.PfG5Pf(FG). An important par-
ticular case is the pseudo-function Pfd1 obtained~in Sec. VI! from the pseudo-function associate
with the Riesz delta-function,22 and that satisfies;GPF, ^Pfd1 ,G&5(G)1 . The ‘‘Dirac pseudo-
function’’ Pfd1 plays in the present context the same role as plays the Dirac measure in dis
tion theory. We introduce also more complicated objects such as Pf(Fd1). In Secs. VII and VIII
we show how to construct a derivative operator onF, generalizing for this class of function th
standard distributional derivative operator onD and satisfying basically the so-called rule
integration by parts, namely;F,GPF, ^] i(PfF),G&52^] i(PfG),F&. In addition we require that
the derivative reduces to the ‘‘ordinary’’ derivative for functions that are bounded in a neigh
hood of the singular points, and that the rule of commutation of derivatives holds. We find tha
derivative operator is uniquely defined modulo a dependence on an arbitrary numerical co
~see Theorem 4 in Sec. VIII!. It represents a natural notion of derivative within the context
Hadamard regularization of the functions inF. However, it does not satisfy in general the Leibn
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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rule for the derivative of a product~in agreement with a theorem of Schwartz23!. See Colombeau24

for a multiplication of distributions and associated distributional derivative satisfying the Le
rule. Further, we obtain the rules obeyed by the new derivative operator when acting on p
functions such as Pf(Fd1) in Sec. VII, and we investigate the associated Laplacian operato
Sec. VIII. Finally, in Sec. IX, we consider the case of partial derivatives with respect to
singular points 1 and 2, as well as the time derivative when both singular points depend o
~i.e., represent the trajectories of real particules!. Within this approach, the latter distributiona
derivative constitutes an important tool when studying the problem of the gravitational dyna
of point-particles at the 3PN order.17

Notation:N, Z, R andC are the usual sets of non-negative integers, integers, real number
complex numbers;R1* is the set of strictly positive real numberss.0; R3 is the usual three-
dimensional space endowed with the Euclidean normuxu5(x1

21x2
21x3

2)1/2; Cp(V) is the set of
p-times continuously differentiable functions on the open setV (p<1`); L loc

1 (V) is the set of
locally integrable functions onV; theo andO symbols for remainders have their standard me
ing; distances between the field pointx and the source pointsy1 and y2 are denoted byr 15ux
2y1u andr 25ux2y2u; unit directions aren15(x2y1)/r 1 andn25(x2y2)/r 2 ; dV1 anddV2 are
the solid angle elements associated withn1 and n2 ; r 125uy12y2u; B1(s) andB2(s) denote the
closed spherical balls of radiuss centered ony1 andy2 ; ] i5]/]xi , 1] i5]/]y1

i , 2] i5]/]y2
i ; L

5 i 1i 2¯ i l is a multi-index with lengthl ; n1
L5n1

i 1
¯n1

i l and]L5] i 1
¯] i l

; the symmetric-trace-free

~STF! projection is denoted byn̂1
L5STF(n1

L); ( i j )5 ( i j 1 j i )/2 and @ i j #5 ( i j 2 j i )/2 ; 1↔2
means the same expression but corresponding to the point 2; for clearer reading, we use l
labels 1 and 2 when the quantity appears within the text, like for the partial derivatives1] i and2] i

or the coefficients1f a and 2f b , and labels placed underneath the quantity when it appears i
equation; iff means if and only if.

II. HADAMARD PARTIE FINIE

A. A class of singular functions

All over this paper we consider the class of functions of a ‘‘field’’ pointxPR3 that are
singular at the location of two ‘‘source’’ pointsy1 andy2 around which they admit some singula
expansions.

Definition 1: A real function F(x) on R3 is said to belong to the class of functionsF iff:
(i) F is smooth onR3 deprived fromy1 and y2 , i.e., FPC`(R32$y1 ,y2%).
(ii) There exists an ordered family of indices(ai) i PN with aiPR, and a family of coefficients

1f ai
, such that

;NPN, F~x!5(
i 50

i N

r 1
ai f

1
ai

~n1!1R
1

N~x!. ~2.1!

Here r15ux2y1u and n15(x2y1)/r 1 ; i N satisfies a0,a1,¯,ai N
<N,ai N11 ; and the

‘‘remainder’’ is

R
1

N~x!5o~r 1
N!, when r 1→0. ~2.2!

(iii) Idem with indices(bi) i PN , coefficients2f bi
, remainder2RN , r 1↔r 2 andn1↔n2 .

In addition to Definition 1, we always assume that the functionsFPF decrease sufficiently
fast at infinity~whenuxu→`! so that all integrals we meet are convergent at infinity. Thus, w
discussing the integral*d3xF, we suppose implicitly thatF5o(uxu23) at infinity @or sometimes
F5O(uxu232e) wheree.0#, so that the possible divergencies come only from the bounds a
singular points y1,2. Similarly, when considering the integral*d3xFG, we supposeFG
5o(uxu23), but for instance we allowF to blow up at infinity, sayF5O(uxu), if we know thatG
decreases rapidly, e.g.,G5o(uxu24); in the case of *d3x] iF, we generally assumeF
5o(uxu22). @Clearly, from Definition 1 the ordinary productFG of two functions ofF is again a
function of F; and similarly the ordinary gradient] iFPF.#
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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An important assumption in Definition 1 is that the powers ofr 1 in the expansion ofF when
r 1→0 ~and similarly whenr 2→0) are bounded from below, i.e.,a0<ai where the most ‘‘diver-
gent’’ power of r 1 , which clearly depends onF, is a05a0(F). Thus the part of the expansio
which diverges whenr 1→0 is composed of a finite number of terms. Notice also that we h
excluded in Definition 1 the possible appearance of logarithms ofr 1 ~or r 2! in the expansion ofF.
See Sellier5 for a more general study in the case where some arbitrary powers of logarithm
present. We will discuss the occurrence of logarithms in Sec. V, when dealing with the Po
integral ofF. At last, we point out that the coefficients1f a ~and similarly2f b) do not depend only
on n1 , but also they do on the source pointsy1 and y2 , so that in principle we should write

1f a(n1 ;y1 ,y2); however, for simplicity’s sake we omit writing the dependence on the so
points. The coefficients could also depend on other variables such as the velocitiesv1 andv2 of the
source points, but the velocities do not participate in the process of regularization and c
ignored for the moment~we will return to this question in Section IX when considering the tim
dependence ofF!.

Once the classF has been defined, we shall often write in this paper the expansions ofF when
r 1,2→0 in the simplified forms

F~x!5 (
a0<a<N

r 1
af

1
a~n1!1o~r 1

N! when r 1→0, ~2.3a!

F~x!5 (
b0<b<N

r 2
bf

2
b~n2!1o~r 2

N! when r 2→0, ~2.3b!

by which we really mean the expansions in Definition 1, i.e., in particular where the indica
P(ai) i PN andbP(bi) i PN , and area priori real. However, most of the time~in applications!, it is
sufficient to assume that the powers ofr 1,2 are relative integersa,bPZ. We can then write the
expansionr 1→0 in the form

F5 (
k50

k0

1/r 1
~11k! f

1
212k1 (

k50

N

r 1
k f

1
k1o~r 1

N!, ~2.4!

wherek05212a0 . In the following we shall sometimes derive the results in the simpler c
where the powersPZ, being always undertood that the generalization to the case of real po
is straightforward. Finally, it is worth noting that the assumption~i! in Definition 1, thatF is C`

outside$y1 ,y2%, can often be relaxed to allow some functions to have integrable singularities
example is the functionx→1/ux2x8u encountered in Sec. V, depending on a fixed ‘‘spectato
point x8 distinct fromy1 andy2 . To treat such objects, we introduce a larger class of functio
Floc .

Definition 2: F(x) is said to belong to the class of functionsFloc iff:
(i8) F is locally integrable onR3 deprived fromy1 and y2 , i.e., FPL loc

1 (R32$y1 ,y2%).
~ii !–~iii ! in Definition 1 hold.
For simplicity, in the following, we shall derive most of the results for functions belongin

the classF ~even if the generalization toFloc is trivial!; Floc will be employed only occasionally

B. Partie finie of a singular function

The first notion of Hadamard partie finie is that of a singular function at the very locatio
one of its singular points.

Definition 3: Given FPF we define the Hadamard partie finie of F at the pointy1 to be

~F !15E dV1

4p
f
1

0~n1!, ~2.5!
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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where dV15dV(n1) denotes the solid angle element of originy1 and directionn1 .
In words, the partie finie ofF at point 1 is defined by the angular average, with respect to

unit directionn1 , of the coefficient of the zeroth power ofr 1 in the expansion ofF near 1~and
similarly for the point 2!. There is a nonzero partie finie only if the family of indices (ai) i PN in
Definition 1 contains the value 0, i.e.,' i 0 such thatai 0

50. The latter definition applied to the
productFG of two functions inF yields

~FG!15 (
a0(F)<a<2a0(G)

E dV1

4p
f
1

ag
1

2a , ~2.6!

where1f a and1ga are the coefficients in the expansions ofF andG whenr 1→0 ~the summation
overa is always finite!. From ~2.6! it is clear that the Hadamard partie finie is not ‘‘distributive
with respect to the multiplication, in the sense that

~FG!1Þ~F !1~G!1 in general. ~2.7!

The partie finie picks up the angular average of1f 0(n1), namely the scalar orl 50 piece in the
spherical-harmonics expansion (Ylm), or, equivalently, in the expansion on the basis of symme
and trace-free~STF! products of unit vectorsn15(n1

i ). For any l PN, we denote byL
5 i 1i 2¯ i l a multi-index composed ofl indices, and similarlyL215 i 1i 2¯ i l 21 , P5 j 1 j 2¯ j p . In
general we do not need to specify the carrier indexi or j , so a tensor withl upper indices is
denotedTL, and for instance the scalar formed by contraction with another tensorUL of the same
type is written asS5TLUL5Ti 1¯ i lUi 1¯ i l, where we omit writing thel summations over thel
indicesi k51,2,3. We denote a product ofl components of the unit vectorn1

i by n1
L5n1

i 1
¯n1

i l, and
the STF projection of that product byn̂1

L[STF(n1
L): e.g., n̂1

i j 5n1
i n1

j 2 1
3d

i j , n̂1
i jk5n1

i n1
j n1

k

2 1
5(n1

i d jk1n1
j dki1n1

kd i j ). More generally, we denote byT̂L the STF projection ofTL; that is,T̂L

is symmetric, and satisfiesd i l 21i l
T̂i l 21i l L2250 ~see Ref. 25 and Appendix A of Ref. 26 for

compendium of formulas using the STF formalism!. The coefficients1f a of the expansion ofF
admit the STF decomposition

f
1

a~n1!5(
l 50

1`

n1
L f̂

1
a
L , ~2.8!

where the1 f̂ a
L’s are constant STF tensors, given by the inverse formula:

f̂
1

a
L5

~2l 11!!!

l ! E dV1

4p
n̂1

L f
1

a~n1!. ~2.9!

In STF notation, the Hadamard partie finie ofF at 1 reads simply as

~F !15 f̂
1

0 , ~2.10!

where1 f̂ a denotes the first term in the expansion~2.8!.
Lemma 1: The partie finie at 1 of the gradient] iF (as defined outside the singularities) of an

function FPF satisfies

~] iF !153S n1
i

r 1
F D

1

. ~2.11!

This Lemma is particularly useful as it permits replacing systematically the differential opera] i

by thealgebraicone 3(n1
i /r 1) when working under the partie-finie sign (̄)1 .
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Proof: The expansion whenr 1→0 of the gradient is readily obtained from the expansion oF
itself as

] iF5(
a

r 1
a21@a n1

i f
1

a1d1
i f
1

a#, ~2.12!

~with over-simplified notation for the sum!, where the operatord1
i is defined asr 1] i when applied

on a function of the sole unit vectorn1 . Hence, explicitly,d1
i 5(d i j 2n1

i j )(]/]n1
j ). This operator

is evidently transverse ton1 : n1
i d1

i 50, and we get, from the decomposition~2.8!,

d1
i f

1
a5(

l 50

1`

l ~n1
L21 f̂

1
a
iL 212n1

iL f̂
1

a
L!. ~2.13!

Thus, by averaging over angles,

E dV1

4p
d1

i f
1

a5
2

3
f̂
1

a
i 52E dV1

4p
n1

i f
1

a . ~2.14!

We readily deduce that the partie finie of the gradient~2.12! is given by

~] iF !153E dV1

4p
n1

i f
1

15 f̂
1

1
i ~QED!. ~2.15!

As an example of the application of Lemma 1, we can write, using an operation by
(r 1

3] iF)15@] i(r 1
3F)2] i(r 1

3)F#15@3n1
i r 1

2F2] i(r 1
3)F#1 , from which it follows that

~r 1
3] iF !150. ~2.16!

Another consequence of Lemma 1, resulting from two operations by parts, is (r 1
2 DF)1

5@3n1
i r 1 ] iF2] i(r 1

2)] iF#15(n1
i r 1] iF)15@3F2] i(n1

i r 1)F#1 ~where the LaplacianD5] i] i),
hence the identity

~r 1
2 DF !150. ~2.17!

By the same method we obtain also

~] i j F !15S 15n1
i j 23d i j

r 1
2 F D

1

52~ f̂
1

2
i j 1d i j f̂

1
2!, ~2.18!

the right-hand side of the last equality being expressed in terms of the STF tensors parame
~2.8!. Tracing out the previous formula, we find

~DF !15S 6

r 1
2 F D

1

56 f̂
1

2 . ~2.19!

Finally, let us quote the general formula for the partie finie of thel th derivative ]LF
5] i 1

¯] i l
F:

~]LF !15 l ! (
k50

@ l /2#

d (2K f̂
1

l
L22K) . ~2.20!
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Here, @ l /2# denotes the integer part ofl /2 , d2K is the product of Kronecker symbol
d i 1i 2d i 3i 4...d i 2k21i 2k, and1 f̂ l

L22K51 f̂ l
i 2k11¯ i l ; the parentheses around the indices denote the s

metrization. One may define the ‘‘regular’’ part of the functionF near the singularity 1 as th
formal Taylor expansion whenr 1→0 obtained using~2.20!. Thus,

F1
reg[(

l 50

1`
1

l !
r 1

l n1
L~]LF !15(

l 50

1`

r 1
l (

k50

[ l /2]

n1
L22K f̂

1
l
L22K . ~2.21!

III. PARTIE-FINIE INTEGRALS

A. The partie finie of a divergent integral

The second notion of Hadamard partie finie is that of the integral*d3xF(x), whereFPF.
This integral is generally divergent because of the presence of the singular pointsy1 andy2 ~recall
that we always assume that the function decreases sufficiently rapidly at infinity so that we
have any divergency coming from the integration bounduxu→1`). Consider first the domainR3

deprived from two spherical ballsB1(s) andB2(s) of radiuss, centered on the two singularitie
y1 , y2 : B1(s)5$x; r 1<s% and B2(s)5$x;r 2<s%. We assume thats is small enough, i.e.,s
,r 12/2 wherer 125uy12y2u, so that the two balls do not intersect. Fors.0 the integral over this
domain, sayI (s)5*R3\B1(s)øB2(s)d

3xF, is well-defined and generally tends to infinity whens

→0. Thanks to the expansions~assumed in Definition 1! of F near the singularities, we easil
compute the part ofI (s) that blows up whens→0; we find that this divergent part is given, ne
each singularity, by a finite sum of strictly negative powers ofs ~a polynomial of 1/s in general!
plus a term involving the logarithm ofs. By subtracting fromI (s) the corresponding divergen
part, we get a term that possesses a finite limit whens→0; the Hadamard partie finie1 is defined
as this limit. Associated with the logarithm ofs, there arises an ambiguity which can be viewed
the freedom in the re-definition of the unit system we employ to measure the lengths. In fact it is
convenient to introduce two constant length scaless1 and s2 , one per singularity, in order to
a-dimensionalize the logarithms as ln(s/s1) and ln(s/s2).

Definition 4: For any FPF integrable in a neighborhood ofuxu51`, we define the Had-
amard partie finie of the divergent integral*d3xF as

Pfs1 ,s2
E d3xF5 lim

s→0
H ER3\B1(s)øB2(s)

d3xF1 (
a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
2311↔2J ,

~3.1!

where1↔2 means the same previous two terms but concerning the singularity 2.
This notion of partie finie can be extended to functions which are locally integrable ou

the singularities, i.e.,FPFloc ~see Definition 2!. In ~3.1! the divergent terms are composed of
sum overa such thata13,0 as well as a logarithmic term, by which we really mean, using
more detailed notation of Definition 1,

(
i 50

i l21
sai13

ai13 E dV1f
1

ai
1d23,ai l

lnS s

s1
D E dV1f

1
ai l

11↔2,

wherei l is such thata0,a1,¯,ai l21,23<ai l
~the sum is always finite!; we have introduced

a Kronecker symbold23,ai l
to recall that the logarithm is present only if the family of indic

(ai) i PN contains the integer23 ~i.e., ai l
523). The divergent terms in~3.1! can also be ex-

pressed by means of the partie finie defined by~2.5!. Indeed, they read as

4pF (
a13,0

sa13

a13 S F

r 1
aD

1

1 lnS s

s1
D ~r 1

3F !1G11↔2
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@coming back to the less detailed notation of~3.1!#.
The partie-finie integral~3.1! depends intrinsically on the two arbitrary constantss1 and s2

introduced above. There is another way to interpret these constants besides the necessity
into account the dimension ofs, which is discussed by Sellier in Ref. 5. With this point of vie
we initially define the partie finie using two arbitrarily shaped volumesV1 andV2 instead of the
two spherical ballsB1 andB2 . Consider for instance the two volumesV15$x; r 1<sr1(n1)% and
V25$x; r 2<sr2(n2)%, wheresPR1* measures the size of the volumes and the two functionsr1

andr2 describe their shape~the ballsB1 andB2 corresponding simply tor1 andr2[1!. Here, we
assume for simplicity that the volumes remain isometric to themselves whens varies. Then, the
partie finie is defined as the limit of the integral overR3\V1øV2 to which we subtract the
corresponding divergent terms whens→0, without adding any normalizing constant to the log
rithms. In this way, we find that the alternative definition is equivalent to our definition~3.1!
provided thats1 ands2 are related to theshapesof the regularizing volumesV1 andV2 through the
formula

lns1E dV1f
1

235E dV1f
1

23lnr1 ~3.2!

~and similarly for s2!. The arbitrariness on the two original regularizing volumes is there
encoded into the two~and only two! constantss1 ands2 . A closely related way to interpret them
is linked to the necessity to allow the change of the integration variablex in the integral*d3xF.
Such an operation modifies the size and shape of the regularizing volumes, thus the ballsB1 and
B2 are in general transformed into some new volumesV1 andV2 ; so, according to the previou
argument, the freedom of choosing the integration variable reflects out in the freedom of ch
two arbitrary constantss1 ands2 . ~In this paper we shall assume thats1 ands2 are fixed once and
for all.!

An alternative expression of the Hadamard partie finie is often useful because it doe
involve the limits→0, but is written with the help of afinite parameters8PR1* . Consider some
s8 such that 0,s,s8, and next, split the integral overR3\B1(s)øB2(s) into the sum of the
integral over R3\B1(s8)øB2(s8) and the two integrals over the ring-shaped doma
B1(s8)\B1(s) andB1(s8)\B1(s). If s,s8!1 we can substitute, respectively, into the ring-shap
integrals the expansions ofF whenr 1→0 andr 2→0 @see~2.3!#. The terms that are divergent i
s cancel out, so we can apply the limits→0 ~with fixed s8!. This yields the following expression
for the partie finie:;NPN,

Pfs1 ,s2
E d3xF5E

R3\B1(s8)øB2(s8)
d3xF1 (

a13<N
a13Þ0

s8a13

a13 E dV1f
1

a1 lnS s8

s1
D E dV1f

1
23

11↔21o~s8N13!, ~3.3!

which is valid for an arbitrary fixeds8. Of course, up to any given finite orderN the second
member of~3.3! depends ons8, but in the formal limitN→1`, this dependence disappears an
in fine, the partie finie is independent ofs8.

B. Partie-finie integral of a gradient

A fundamental feature of the Hadamard partie finie of a divergent integral is that the int
of a gradient] iF is a priori not zero, since the surface integrals surrounding the two singular
become infinite when the surface areas shrink to zero, and may possess a finite part.

Theorem 1: For any FPF the partie finie of the gradient of F is given by

PfE d3x] iF524p~n1
i r 1

2F !111↔2, ~3.4!
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where the singular value at point 1 is defined by~2.5!.
In the case of a regular function, the result is always zero from the simple fact that the s

areas tend to zero—cf. the factorr 1
2 in the right side of~3.4!. However, forFPF, the factorr 1

2 is
in general compensated by a divergent term in the expansion ofF, possibly producing a finite
contribution.

Proof: We apply~3.1! to the case of the gradient] iF, using the expansion of] iF when r 1

→0 as given by~2.12!. The expression of the divergent terms is simplified with the help of
identity ~2.14!, which shows notably that the logarithms and associated constantss1,2 disappear.
This leads to

lim
s→0

H ER3\B1(s)øB2(s)
d3x] iF1 (

a12,0
sa12E dV1n1

i f
1

a11↔2J . ~3.5!

Next, the first term inside the braces is transformed via the Gauss theorem into two s
integrals atr 15s andr 25s, where we can replaceF by the corresponding expansions aroundy1

andy2 , respectively. We get

lim
s→0

H 2(
a

sa12E dV1n1
i f

1
a1 (

a12,0
sa12E dV1n1

i f
1

aJ 52E dV1n1
i f

1
22

~and similarly when 1↔2!; QED.
From Theorem 1 it results that the correct formula for ‘‘integrating by parts’’ under the

Pf is

PfE d3xF] iG52PfE d3xG] iF24p~n1
i r 1

2FG!124p~n2
i r 2

2FG!2 . ~3.6!

Note also that the partie-finie integrals of a double derivative as well as a Laplacian are giv

PfE d3x] i j F54p~r 1~d i j 22n1
i j !F !111↔2, ~3.7a!

PfE d3xDF54p~r 1F !111↔2. ~3.7b!

C. Parties finies and the Riesz delta-function

The Riesz delta-function22 plays an important role in the context of Hadamard parties fin
It is defined for any«PR1* by «d(x)5@«(12«)/4p# uxu«23; when«→0, it tends, in the usua
sense of distribution theory, towards the Dirac measure in three dimensions—i.e., lim«→0«d5d,
as can be seen from the easily checked property thatD(uxu«21)524p«d(x). The point for our
purpose is that when defined with respect to one of the singularities, the Riesz delta-fu
belongs toF. Thus, let us set,;«PR1* ,

«d1~x![«d~x2y1!5
«~12«!

4p
r 1

«23PF ~3.8!

~and idem for 2!. Now we can apply to«d1(x) the previous definitions for parties finies. I
particular, from Definition 3, we see that«d1 has no partie finie at 1 when« is small enough:
(«d1)150. From Definition 4, we have the following.

Lemma 2: For any FPF, we have

lim
«→0

PfE d3x«d1F5~F !1 , ~3.9!
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where the value of F at point 1 is given by the prescription~2.5!.
Proof: For «.0 we evaluate the finite part of the integral for the product«d1FPF using the

specific form~3.3! of the partie finie defined in terms of a given finites8. The expansions of«d1F
when r 1,2 tend to zero are readily determined to be

«d1F5
«~12«!

4p (
a

r 1
a1«23f

1
a~n1! for r 1→0, ~3.10a!

«d1F5
«~12«!

4p (
l>0

~2 ! l

l !
]
1

Lr 12
«23(

b
r 2

b1 ln2
L f

2
b~n2!, for r 2→0. ~3.10b!

In the second equation we used the Taylor expansionr 1
«235( l>0 @(2) l / l ! # r 2

l n2
L

1]Lr 12
«23 when

r 2→0, with the notationn2
L5n2

i 1
¯n2

i l and 1]L51] i 1
¯1] i l

. Hence, we can write the partie-fini
integral in the form (;NPN; with fixed s8 such that 0,s8,1!,

E
R3\B1(s8)øB2(s8)

d3x«d1F1
«~12«!

4p (
a1«<N

s8a1«

a1« E dV1f
1

a

1
«~12«!

4p (
l>0

~2 ! l

l !
]
1

Lr 12
«23F (

b1 l 13<N
andÞ0

s8b1 l 13

b1 l 13 E dV2n2
L f

2
b

1 lnS s8

s2
D E dV2n2

L f
2

2 l 23G1o~s8N!.

Here, we have discarded the term with ln(s8/s1) by choosing«.0 to be so small that all denomi
natorsa1« differ from zero. Since«d1 tends towards the Dirac measure when«→0, the integral
overR3\B1(s8)øB2(s8) goes to zero. Because of the factor« present in the numerators, so do th
other terms when«→0, except for those whose denominators involve a compensating«. Now, the
only term having the required property corresponds toa50 in the previous expression. Therefor
taking the limit«→0 ~with fixed s8!, we get

lim
«→0

PfE d3x«d1F5E dV1

4p
f
1

0~n1!1o~s8N!,

and this being true for anyN, we conclude

lim
«→0

PfE d3x«d1F5E dV1

4p
f
1

0~n1!5~F !1 ~QED!.

As we can infer from Lemma 2, the Riesz delta-function«d1 should constitute in the limit
«→0 an appropriate extension of the notion of Dirac distribution to the framework of pa
finies of singular functions inF. The precise definition of a ‘‘partie-finie Dirac function’’ nece
sitates the introduction of the space of linear forms onF and will be investigated in Sec. VI~see
Definition 7!.

IV. ALTERNATIVE FORMS OF THE PARTIE FINIE

A. Partie finie based on analytic continuation

Practically speaking, the Hadamard partie-finie integral in the form given by~3.1! is rather
difficult to evaluate, because it involves an integration over the complicated vo
R3\B1(s)øB2(s). Fortunately, there exist several alternative expressions of the Hadamard
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finie, which are much better suited for practical computations. The first one is based on a d
analytic continuation, with two complex parametersa, bPC, of the integral

I a,b5E d3xS r 1

s1
D aS r 2

s2
D b

F, ~4.1!

where the constantss1 and s2 are the same as those introduced within the definition~3.1!. The
point for our purpose is that the integral~4.1! does range over the complete setR3. First of all, we
propose to check thatI a,b is defined by analytic continuation in a neighborhood of the origina
505b in C2, except at the origin itself where it generically admits a simple pole ina or b or
both. We start by splittingI a,b into three contribution:1I a,b extending over the ballB1(s) of
radiuss surrounding 1,2I a,b extending over the ballB2(s) surrounding 2, and3I a,b extending
over the restR3\B1(s)øB2(s). The integral1I a,b is initially convergent forR(a).2a023 and
any b, wherea0 is the most singular power ofr 1 in the expansion ofF neary1 ; similarly, 2I a,b

exists only ifR(b).2b023 and anya (b0 is the analogous toa0 that relates toy2!, and3I a,b

exists if R(a1b),e, wheree.0 is such thatF5O(uxu232e) when uxu→1`. As the third
contribution3I a,b is clearly defined in a neighborhood of the origin, including the origin itself,
consider simply the part1I a,b ~the same reasoning applies to2I a,b!. Within the integrand, we
replace the productr 2

bF by its expansion in the neighborhood ofy1 ~using a Taylor expansion fo
r 2

b!, and find that the dependence onb occurs through some everywhere well-defined quant
namely1]Lr 12

b . After performing the angular integration overdV1 , we obtain a remaining radia
integral consisting of a sum of terms of the type*0

sdr1r 1
a1a1 l 125sa1a1 l 13/(a1a1 l 13), that

clearly admit a unique analytic continuation onC\Z; hence our statement~a simple pole at the
origin arises whena52 l 23!.

Theorem 2: For any function FPF that is summable at infinity, the Hadamard partie finie
the integral is given by

Pfs1 ,s2
E d3xF5FPa→0

b→0E d3xS r 1

s1
D aS r 2

s2
D b

F5FPb→0
a→0E d3xS r 1

s1
D aS r 2

s2
D b

F, ~4.2!

where FPa→0
b→0

means taking the finite parts in the Laurent expansions whena→0 and b→0
successively.

The proof of Theorem 2 is relegated to the Appendix. Notice our convention regardin
notation: while ‘‘Pf’’ always stands for the Partie finie of an integral in the specific sens
Hadamard,1 we refer to ‘‘FP’’ as the Finite Part or zeroth-order coefficient in the Laurent exp
sion with respect to some complex parameter~a, bPC, or BPC as in the next subsection!. We see
from Theorem 2 that the partie finie Pf can be viewed as a finite part FP andvice versa. The link
between analytic continuation and Hadamard partie finie is pointed out by Schwartz.2 More pre-
cisely, Theorem 2 says how to calculate the Hadamard partie finie; the procedure consist~i!
performing the Laurent expansion ofI a,b when a→0 while b remains afixed ~‘‘spectator’’!
nonzero complex number, i.e.,

I a,b5 (
p5pmin

1`

apI (p),b ,

wherepPZ and where the coefficientsI (p),b depend onb; ~ii ! achieving the Laurent expansion o
the zeroth-a-power coefficientI (0),b whenb→0, i.e.,

I (0),b5 (
q5qmin

1`

bqI (0,q) ,
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to finally arrive at the zeroth-b-power coefficientI (0,0) . Indeed, we find that the same result can
obtained by proceeding the other way around, first expanding aroundb50 with a fixeda, then
expanding the coefficientsI a,(0) neara50. Thus,

FPb→0$FPa→0I a,b%5I (0,0)5FPa→0$FPb→0I a,b%. ~4.3!

We emphasize that the definition~3.1! of the partie finie yields unambiguously the resultI (0,0) ,
which corresponds to takingindependentlythe two limitsa→0 andb→0 ~the limiting process
does not allow for instance to keepa5b). The final valueI (0,0) is the same as the one given b
the regularization adopted by Jaranowski and Scha¨fer12 ~see their Appendix B.2!.

In practice the expression~4.2! is used in connection with the Riesz formula,22 valid for any
g, dPC except at some isolated poles,

E d3xr 1
gr 2

d5p3/2

GS g13

2 DGS d13

2 DGS 2
g1d13

2 D
GS 2

g

2DGS 2
d

2DGS g1d16

2 D r 12
g1d13, ~4.4!

with r 125uy12y2u; here,G denotes the Eulerian function. According to Theorem 2, the form
~4.4! permits computing the partie finie of any integral of a product between powers ofr 1 andr 2 .
Consider the~not so trivial! case of the integral ofr 1

23r 2
23, which is divergent at both points 1 an

2. From the Riesz formula, withg5a23 andd5b23, we have

I a,b5p3/2

GS a

2 DGS b

2 DGS 2
a1b23

2 D
GS 2

a23

2 DGS 2
b23

2 DGS a1b

2 D
r 12

a1b23

s1
as2

b .

We compute the Laurent expansion whena→0 with fixed bPC and obtain a simple pole ina
followed by ab-dependent finite part given by

I (0),b5p3/2
G~1!

G~ 3
2!

r 12
b23

s2
b F 2

b
1C~1!2CS 11

b

2 D1CS 3

2D2CS 3

2
2

b

2 D12 lnS r 12

s1
D G ,

with C(z)5(d/dz) ln G(z). This finite part itself includes a simple pole inb, and then we obtain
the corresponding finite part whenb→0 as

I (0,0)5
p3/2

r 12
3

G~1!

G~ 3
2!

F2lnS r 12

s1
D12 lnS r 12

s2
D G .

At last, Theorem 2 tells us that

Pfs1 ,s2
E d3x

r 1
3r 2

3 5
4p

r 12
3 F lnS r 12

s1
D1 lnS r 12

s2
D G . ~4.5!

Some more complicated integrals will be obtained in the next subsection.
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



wed
ges at
e

and 2,
t

ry
ose
partie

esz

two
and

rt
een

lytic
y
t

d,

7687J. Math. Phys., Vol. 41, No. 11, November 2000 Hadamard regularization

Downloaded 07 Sep 
B. Partie finie based on angular integration

The idea is to compute the partie-finie integral by performing an angular integration, follo
by the integration over some radial variable. In a first stage, consider an integral that diver
the point 1, but converges at the point 2. According to~3.1!, we need to compute it over th
domainR3\B1(s); so it is natural to change the integration variablex to r1[x2y1 , carry on the
angular integration overdV15dV(n1), and then, the radial integration overr 15ur1u varying
from s to infinity, i.e.,

E
R3\B1(s)

d3xF5E
r 1.s

d3r1F5E
s

1`

dr1r 1
2E dV1F. ~4.6!

In the more general case where the integral is simultaneously divergent at the two points 1
this methodstricto sensuis no longer valid since the radial integration in~4.6! becomes divergen
when r 15r 12. Yet, still it is advantageous to dispose of a mean to change the variablex into r1

in order to obtain a convenient radial integration~even at the price of breaking the symmet
between the points 1 and 2!. We shall derive here two Propositions, based on this idea, wh
implementation in practical computations constitutes a very efficient mean to determine the
finie, without anya priori restriction on the form of integrand as in the application of the Ri
formula ~4.4!.

As a matter of fact, in the first proposition, the computation of a partie-finie integral with
singularities 1 and 2 boils down to the computation of a partie-finie integral with singularity 1
a finite-part integral~FP! whose singularity is located at infinity:r 1[ux2y1u→1` ~so to speak,
the singularity 2 is ‘‘rejected’’ to infinity!.

Proposition 1: For any function F in the classF we can write:

Pfs1 ,s2
E d3xF5Pfs1H FPB→0E d3r1S r 1

s2
D BFF2 (

b13<0
r 2

bf
2

bG J , ~4.7!

where the2f b’s denote the coefficients of the expansion of F near r250.
In other words, in order to compute the partie finie one can~i! ‘‘regularize’’ F around the

point 2 by subtracting out from it the terms yielding a divergence at 2, i.e.,

F̃2[F2 (
b13<0

r 2
bf

2
b , ~4.8!

and~ii ! compute the integral of the regularizedF̃2 using the partie finie around 1 and the finite pa
when B→0 to deal with the divergency at infinity. Notice that the latter divergency has b
introduced simply because of the term corresponding tob523 in ~4.8! if nonzero. By the finite
part whenB→0 we mean the zeroth-order coefficient in the Laurent expansion of the ana
continuation with respect to the parameterBPC. The analytic continuation is straightforwardl
defined from the domain of the complex planeR(B).0 in which the integral converges a
infinity.

Proof: We consider two open domainsD1 and D2 that are supposed to be disjoine
D1ùD25B, complementary inR3, i.e. D1øD2̄5R3, and such thaty1PD1 andy2PD2 . From
Definition 4, the partie-finie integral overD2 reads as~for small enoughs!

PfE
D 2

d3xF5 lim
s→0

H ED2\B2(s)
d3xF1 (

b13,0

sb13

b13 E dV2f
2

b1 lnS s

s2
D E dV2f

2
23J .

Now, two short computations reveal that
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(
b13,0

E
R3\B2(s)

d3xr 2
bf

2
b52 (

b13,0

sb13

b13 E dV2f
2

b , ~4.9a!

FPB→0E
R3\B2(s)

d3xS uxu
s2

D B 1

r 2
3 f

2
2352 lnS s

s2
D E dV2f

2
23 . ~4.9b!

Furthermore, since the integral appearing in~4.9a! is convergent at infinity, one can add witho
harm the same finite part operation whenB→0 as in~4.9b!. Thus, the integral overD2 may be
re-written as

lim
s→0

H ED2\B2(s)
d3xF2 (

b13<0
FPB→0E

R3\B2(s)
d3xS uxu

s2
D B

r 2
bf

2
bJ

5 lim
s→0

H FPB→0ED2\B2(s)
d3xS uxu

s2
D B

F̃22 (
b13<0

FPB→0ED 1

d3xS uxu
s2

D B

r 2
bf

2
bJ

5 lim
s→0

H FPB→0ED 2

d3xS uxu
s2

D B

F̃22 (
b13<0

FPB→0ED1\B1(s)
d3xS uxu

s2
D B

r 2
bf

2
bJ .

We have used the facts that the integral ofF converges at infinity~first equality! and the integral
of F̃2 converges at the singularity 2~second equality!. Adding up the other contribution extendin
over D1 , we readily obtain the complete partie finie as

lim
s→0

H FPB→0E
R3\B1(s)

d3xS uxu
s2

D B

F̃21 (
a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
23J .

Since the coefficients1f a , for a<23, are those of the expansion whenr 1→0 of F as well as of
F̃2 , we recognize in the expression above the partie finie~with respect to 1 only! of the integral
of the regularized functionF̃2 . Hence the intermediate expression

Pfs1 ,s2
E d3xF5Pfs1H FPB→0E d3xS uxu

s2
D B

F̃2J . ~4.10!

To establish the proposition it remains to change variablex into r1 . At that point, we must be
careful, because under this change of variable the regularization factoruxuB changes itself in a
complicated way. Fortunately, we can limit ourselves to the case whereB is infinitesimal, since
we shall take the finite part afterwards, makingB→0. We substitute touxuB in the right side of
~4.10! its equivalent expression in terms ofr1 and where we expand whenB→0, i.e.,

uxuB5r 1
BeBln(uxu/r 1)5r 1

BH 11
B

2
lnF112

n1 .y1

r 1
1

y1
2

r 1
2G1O~B2!J , ~4.11!

wheren1 .y1 denotes the usual scalar product onR3 ~andy1
25y1 .y1). Now, the dominant term in

the latter expansion amounts simply to replacinguxuB by r 1
B , which would yield precisely the

result ~4.7! we want to prove; but we have still to show that all the extra terms in the expan
~4.11!, which carry at least a factorB in front, do not contribute to the final result, i.e., that

FPB→0FB

2 E1`

d3r1S r 1

s2
D B

lnF112
n1 .y1

r 1
1

y1
2

r 1
2G F̃21O~B2!G50. ~4.12!

Because of the factorB in front, the only possible contribution to the finite part forB→0 occurs
when the integral develops a pole atB50 due to the behavior of the integrand at infinity (r 1→
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1`). Hence, as indicated in~4.12!, the value of the integral depends only on the bound at infin
@this is also why we did not write a Pfs1

symbol in ~4.12!: the partie finie deals with the boun
r 150, which is irrelevant to this case#. In order to evaluate the pole, we replace the integrand
its expansion whenr 1→1`. We know thatF behaves aso(1/uxu3) at a maximumuxu→1` to
ensure the convergence of the integral ofF at infinity, so we haveF5o(1/r 1

3) when r 1→1`.
Now, from the defining expression~4.8! of F̃2 , we obtain

F̃252
1

r 1
3 f

2
23~n1!1oS 1

r 1
3D , when r 1→1`, ~4.13!

after making the replacements ofr 2 and n2 by r 1 and n1 which are permitted because we a
working at the dominant order whenr 1→1`. On the other hand, we have ln@112@(n1 .y1)/r 1#
1 y1

2/r 1
2#52@(n1 .y1)/r 1# 1O1/r 1

2). So that the integral to be computed~as concerns the only
relevant bound at infinity! reads as

E1`

d3r1r 1
BlnF112

n1 .y1

r 1
1

y1
2

r 1
2G F̃2522E1`

dr1r 1
B22H E dV1n1 .y1f

2
23~n1!1o~r 1

0!J .

This integral cannot generate a pole atB50 since such a pole could come only from a rad
integral of the type*1`dr1 r 1

B21 ~after the angular integration has been performed!. Repeating the
same reasoning to any higher orders inB, we prove the equation~4.12! as well as Proposition 1

In practice, Proposition 1 is used with the integration with respect ton1 , followed by the
integration overr 1 varying from 0 (Pfs1

takes care of this bound! to infinity ~where FPB→0 does
the work!; Proposition 1 justifies this process even when the original integral is divergent atboth
singularities. The result of the angular integration depends on where the field point is lo
either inside the ballB1(r 12) centered ony1 and of radiusr 12 ~the point 2 lies on the surface of thi
ball!, or in the complementary domainR3\B1(r 12). Therefore, a natural splitting of the integr
~4.7! is

Pfs1 ,s2
E d3xF5Pfs1

E
B1(r 12)

d3r1F̃21FPB→0E
R3\B1(r 12)

d3r1S r 1

s2
D B

F̃2 , ~4.14!

taking into account the fact that the partie finie Pfs1
applies only to the inner integral, ove

B1(r 12), and the finite part FPB→0 only to the outer one, overR3\B1(r 12). To be more specific, the
angular integral ofF̃2 defines two angular-average functionsĨ 2(r 1) and J̃2(r 1) depending on
whetherx is in B1(r 12) or its complement:

E dV1

4p
F̃25H Ĩ 2~r 1!, when r 1<r 12,

J̃2~r 1!, when r 1.r 12.
~4.15!

The functionsĨ 2 andJ̃2 depend also explicitly on the source pointsy1 andy2 . @As an example, in
the caseF̃25r 2 , we find Ĩ 25r 121 r 1

2/3r 12 and J̃25r 11 r 12
2 /3r 1 .# Now, knowing Ĩ 2 and J̃2 , we

can achieve the radial integration according to the formula

Pfs1 ,s2
E d3xF54pPfs1

E
0

r 12
dr1r 1

2 Ĩ 214pFPB→0E
r 12

1`

dr1S r 1

s2
D B

r 1
2J̃2 . ~4.16!

The first term in~4.16! is quite simple to handle in practice, whereas the second one is
difficult because it requiresa priori the knowledge of a closed-form expression for the integra
r 1

B12J̃2 , valid for any B such thatR(B).0. Obtaining this may not be feasible ifF is too
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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complicated; in this event, we should use a different form of the integral at infinity. The se
proposition, which provides the appropriate form, constitutes, perhaps, the most powerful w
compute the partie finie in rather complicated applications.

Proposition 2: The partie finie of the integral of FPF (if convergent at infinity) reads as:

Pfs1 ,s2
E d3xF54pPfs1

E
0

r 12
dr1r 1

2 Ĩ 2~r 1!14pE
r 12

1`

dr1F r 1
2J̃2~r 1!1

1

r 1
~r 2

3F !2G
14p~r 2

3F !2 lnS r 12

s2
D ~4.17!

(and similarly by interchange of 1 and 2).
Proof: Consider the angular average of the expansion ofF̃2 when r 1→1` which has been

determined in~4.13!. We get

J̃2[E dV1

4p
F̃252

1

r 1
3 ~r 2

3F !21oS 1

r 1
3D , ~4.18!

where the coefficient of the dominant term is made of a Hadamard partie finie at point 2. L
subtract and add toJ̃2 inside the second integral in~4.16! the previous dominant term at infinity
In this way, we may re-write it as the sum of a convergent integral at infinity on one han
which we can then remove the finite part prescription, and a simple extra integral on the
hand. Namely,

E
r 12

1`

dr1F r 1
2J̃21

1

r 1
~r 2

3F !2G2~r 2
3F !2FPB→0E

r 12

1` dr1

r 1
S r 1

s2
D B

.

The extra integral is finally computed in a simple way as

FPB→0E
r 12

1` dr1

r 1
S r 1

s2
D B

5FPB→0F2
1

B S r 12

s2
D BG52 lnS r 12

s2
D ,

where we used the properties of the analytic continuation. Q
Thanks to Proposition 2 we are now able to compute many integrals which could n

deduced from the Riesz formula~4.4!, unlike for ~4.5!. For instance,

Pfs1 ,s2
E d3x

r 1
3r 2

3~r 11r 2!
5

4p

r 12
4 F lnS r 12

s1
D1 lnS r 12

s2
D2

8

3
ln 21

2

3G , ~4.19a!

Pfs1 ,s2
E d3x

r 1
3r 2

3~r 11r 21r 12!
5

2p

r 12
4 F lnS r 12

s1
D1 lnS r 12

s2
D1

p2

3
24G . ~4.19b!

The result for the integral~4.19b! is in agreement with the one that follows from a recent gen
alization of the Riesz formula to include arbitrary powers ofr 11r 21r 12, which has been obtaine
by Jaranowski and Scha¨fer ~see Appendix B.2 in Ref. 12!. In any case, the dependence of t
partie-finie integral on the two constantss1 ands2 is given by

Pfs1 ,s2
E d3xF54p~r 1

3F !1lnS r 12

s1
D14p~r 2

3F !2lnS r 12

s2
D1terms independent ofs1 ,s2 .

~4.20!
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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V. PARTIE FINIE OF POISSON INTEGRALS

In this section we investigate the main properties of the partie finie of Poisson integra
singular functions in the classF. We have in view the application to the post-Newtonian mot
of particles in general relativity, since the post-Newtonian iteration proceeds typically thr
Poisson~or Poisson-type! integrals. Consider a fixed~‘‘spectator’’! point x8PR3 and, for each
value ofx8, define the functionSx8(x)5F(x)/ux2x8u whereFPF. Clearly, for any givenx8, the
function Sx8 belongs to the classFloc , introduced in Sec. II, Definition 2. In addition, when th
spectator pointx8 coincides with the singular pointy1 ~and similarly fory2), we haveSy1

PF.
Since~as already mentioned! Definition 4 can be extended to functions in the classFloc , we can
consider the partie-finie integral

P~x8!52
1

4p
PfE d3xSx8~x!52

1

4p
PfE d3x

ux2x8u
F~x!. ~5.1!

This is, indeed, what we shall call the ‘‘Poisson’’ integral ofF. In particular, when the spectato
point x8 is equal toy1 , we shall write

P~y1!52
1

4p
PfE d3xSy1

~x!52
1

4p
PfE d3x

r 1
F~x!. ~5.2!

The Poisson integral is not continuous at the singular pointy1 becauseP(x8), when initially
defined forx8Þ5y1 , admits an expansion that is singular whenx8 tends toy1 . In the present
Section, our aim is to understand the limit relation of the integralP(x8) when r 18[ux82y1u→0,
and to connect it with the ‘‘regularized’’ integralP(y1) given by ~5.2!. In particular, we shall
show that the ‘‘partie finie’’~in an extended Hadamard’s sense! of P(x8) at x85y1 is related in a
precise way toP(y1). Let us make clear straight away thatP(x8), as a function ofx8 different
from y1 ~and y2), does not belong to the classF as the Poisson integral typically generat
logarithms in the expansion whenr 18→0. In particular, the coefficient of zeroth power ofr 18 in the
latter expansion containsa priori a lnr18 term, and its partie finie in the sense of Definition 3 is
fact not finite at all, because of the presence of this formally infinite constant lnr1852`. A
possible way to deal with this problem, followed by Sellier in Ref. 5, is toexcludethe lnr18 ~and
any higher power of lnr18) from the definition of the partie finie. On the other hand, in applicatio
to the physical problem, the constant lnr18 can be viewed as a ‘‘renormalization’’ constant, whi
is better to keep as it appears all the way through the calculation. Therefore, we simply in
here the renormalization constant lnr18 into the definition; but, for simplicity’s sake, we stick to th
name of ‘‘partie finie’’ in this case~although the lnr18 makes it formally infinite!. Thus, for a
function like P admitting a logarithmic expansion:

;NPN, P~x8!5 (
a<N
p50,1

r 18
a~ ln r 18!pf

1
a,p~n18!1o~r 18

N!, when r 18→0, ~5.3!

we define the Hadamard partie finie ofP at 1 by

~P!15E dV18

4p
@ f

1
0,0~n18!1 f

1
0,1~n18!ln r 18#. ~5.4!

Theorem 3: The Hadamard partie finie at 1 (in the previous sense) of the Poisson integr
any FPF reads as

~P!152
1

4p
Pfs1 ,s2

E d3x

r 1
F~x!1F lnS r 18

s1
D 21G~r 1

2F !1 , ~5.5!
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with r185ux82y1u. Furthermore the constants s1 cancel each other from the two terms in the rig
side of (5.5) (so the partie finie depends on the two constantsln r18 and ln s2).

In other words, the partie finie of the Poisson integral at 1 is equal to the regularized in
P(y1), obtained from the replacementx8→y1 inside the integrand ofP(x8), augmented by a term
associated with the presence of the~infinite! constant lnr18 .

Proof: The fact that the constantss1 cancel out~so s1 is ‘‘replaced’’ by r 18) is a trivial
consequence of the dependence of the partie finie ons1 ands2 determined in~4.20!. For our proof,
we need the explicit expressions of the objectsP(x8), whenx8 is different fromy1 andy2 , and
P(y1), following from Definition 4. Forx8Þy1 and r 15ux2y1u→0, we have the expansion

Sx8~x!5(
l>0

~2 ! l

l !
]L8S 1

r 18
D(

a
r 1

a1 ln1
L f

1
a~n1! ~5.6!

~and idem 1↔2!, wherer 185ux82y1u, ]L8 being the multi-spatial derivative acting onx8. From
~3.1!, we get the expression~for x8Þy1 andy2!

P~x8!52
1

4p
lim
s→0

H ER3\B1(s)øB2(s)

d3x

ux2x8u
F

1(
l>0

~2 ! l

l !
]L8S 1

r 18
D F (

a1 l 13,0

sa1 l 13

a1 l 13 E dV1n1
L f

1
a

1 lnS s

s1
D E dV1n1

L f
1

232 l G11↔2J . ~5.7!

Applying the recipe~5.4!, we start by computing the angular integral overn185(x82y1)/r 18 ~for a
fixed r 18! of P(x8) in the form given by~5.7!, and consider the limitr 18→0 afterwards. Sinces is
fated to tend to zero first, one can chooses,r 18 , and as we are ultimately interested in the lim
r 18→0, we also assumer 18,r 12. To compute the angular average of the divergent terms in~5.7!,
we make use of the identities

E dV18

4p
]L8S 1

r 18
D 5

d0l

r 18
, ~5.8a!

E dV18

4p
]L8S 1

r 28
D 5]LS 1

r 12
D ~5.8b!

~whered0l denotes the Kronecker symbol!. On the other hand, the relevant formula to treat
integral on the right side of~5.7! is

E dV18

4p

1

ux2x8u
5H 1

r 18
~ if r 1,r 18!,

1

r 1
~ if r 18,r 1!.

~5.9!

We split this integral into three other ones, the first of them extending over the ‘‘exterior’’ dom
R3\B1(r 18)øB2(r 18), and the two remaining ones over the ring-shaped regionsB1(r 18)\B1(s) and
B2(r 18)\B2(s). Hence
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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E dV18

4p
P~x8!52

1

4p
lim
s→0

H ER3\B1(r 18)øB2(r 18)

d3x

r 1
F1

1

r 18
E

B1(r 18)\B1(s)
d3xF1E

B2(r 18)\B2(s)

d3x

r 1
F

1
1

r 18
F (

a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
23G1(

l>0

~2 ! l

l !
]LS 1

r 12
D

3F (
b1 l 13,0

sb1 l 13

b1 l 13 E dV2n2
L f

2
b1 lnS s

s2
D E dV2n2

L f
2

232 l G J . ~5.10!

Next, supposing thatr 18 is small enough, we may replaceF in the second and third terms by it
own expansions around 1 and 2, respectively. We find that the divergent terms ins cancel out, so
we are allowed to apply the limits→0. This yields

E dV18

4p
P~x8!52

1

4p H E
R3\B1~r 18!øB2~r 18!

d3x

r 1
F

1
1

r 18
F (

a13,0

r 18
a13

a13 E dV1f
1

a1 lnS r 18

s1
D E dV1f

1
231r 18E dV1f

1
22G

1(
l>0

~2 ! l

l !
]LS 1

r 12
D F (

b1 l 13,0

r 18
b1 l 13

b1 l 13 E dV2n2
L f

2
b1 lnS r 18

s2
D E dV2n2

L f
2

232 l G
1o~r 18

0!J ~5.11!

~the remainder dies out whenr 18→0!. Under the latter form we recognize most of the term
composing the integralP(y1). Indeed, we have, respectively, whenr 1→0 andr 2→0,

Sy1
~x!5(

a
r

1

a21f
1

a~n1!, ~5.12a!

Sy1
~x!5(

l>0

~2 ! l

l !
]LS 1

r 12
D(

b
r

2

b1 ln2
L f

2
b~n2!. ~5.12b!

Now, using the form~3.3! of the partie finie with the change of notations85r 18 , we find

P~y1!52
1

4p H E
R3\B1(r 18)øB2(r 18)

d3x

r 1
F1 (

a12,0

r 18
a12

a12 E dV1f
1

a1 lnS r 18

s1
D E dV1f

1
22

1(
l>0

~2 ! l

l !
]LS 1

r 12
D F (

b1 l 13,0

r 18
b1 l 13

b1 l 13 E dV2n2
L f

2
b1 lnS r 18

s2
D E dV2n2

L f
2

232 l G1o~r 18
0!J .

~5.13!

We finally evaluate the difference between~5.11! and ~5.13! and look for the partie finie in the
sense of~5.4! ~i.e., keeping the lnr18 term!. We obtain

~P!12P~y1!5F lnS r 18

s1
D 21G E dV1

4p
f
1

22 ~QED!. ~5.14!

The same type of result can be proved for the partie finie of the ‘‘twice-iterated’’ Poi
integral defined by
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Q~x8!52
1

4p
PfE d3xux2x8uF~x!. ~5.15!

We find, analogously to~5.5!, that

~Q!152
1

4p
PfE d3xr 1F~x!1F lnS r 18

s1
D 1

1

2G~r 1
4F !1. ~5.16!

For the parties finies of thegradientsof the Poisson and twice-iterated Poisson integrals, we

~] i P!152
1

4p
PfE d3x

n1
i

r 1
2 F~x!1 lnS r 18

s1
D ~n1

i r 1F !1 , ~5.17a!

~] iQ!15
1

4p
PfE d3xn1

i F~x!2F lnS r 18

s1
D 2

1

2G~n1
i r 1

3F !1 . ~5.17b!

Those results are proved in the same way as in Theorem 3~with similar cancellations of the
constantss1!.

VI. PARTIE-FINIE PSEUDO-FUNCTIONS

A. A class of pseudo-functions

The concept of Hadamard partie finie of the divergent integral of functionsFPF yields a
natural definition of a class of pseudo-functions PfF ~‘‘partie finie’’ of F!, namely linear forms on
a subset ofF, of the typeGPF→^PfF,G&PR, where the result of the action of PfF on G is
denoted using a duality bracket^,&.

Definition 5: For any function FPF we define the pseudo-functionPfF as the linear func-
tional which associates to any GPF, such that FG5o(uxu23) when uxu→1`, the partie-finie
integral of the product FG, i.e.,

^PfF,G&5PfE d3xFG, ~6.1!

where the partie-finie integral is defined by (3.1).
As we can see, the pseudo-function PfF is not a linear form onF itself but on the subset o

F such that the integral converges at infinity. For simplicity’s sake we will always say
statements like~6.1! are valid ;GPF, without mentioning this restriction. Note also that th
partie-finie integral depends on the two constantss1 , s2PR1* , and so is the pseudo-functio
which should indeed be denoted Pfs1 ,s2

F. In our simplified notation we omit indicatings1 ands2 .
An evident property of the duality bracket is its ‘‘symmetry’’ by exchanging the roles of

two slots of the bracket, namely,

;~F,G!PF 2, ^PfF,G&5^PfG,F&. ~6.2!

Also evident are the properties

^PfF,GH&5^PfG,FH&5^Pf~FG!,H&5^Pf~FGH!,1&.

In the following we generally do not distinguish between the two slots in^,&. Accordingly we
definethe object

^F,PfG&[^PfG,F&.
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Even more, we allow for a bracket in which the two slots are filled with pseudo-functions. T
we write

^PfF,PfG&[^PfF,G&5^PfG,F&,

which constitutes merely thedefinitionof the new object̂ PfF,PfG&.
We denote byF8 the set of pseudo-functions PfF, whenF describes the classF, introduced

by Definition 5: F85$PfF;FPF%. Later we shall extend the definition ofF8 to include the
‘‘limits’’ of some pseudo-functions. Roughly, the setF8 plays a role analogous to the setD8 in
distribution theory,2 which is dual to the classD of functions which are bothC`(R3) ~about which
we are concerned here! and zero outside a compact subset ofR3. In distribution theory the setD
is endowed with the Schwartz topology: a sequence (wn)nPN of elements ofD converges to zero
if and only if ~i! 'n0PN and a compactK of R3 such that;n>n0 , supp(wn),K, and~ii ! for any
multi-index L5 i 1i 2¯ i l , ]Lwn converges uniformly to zero.D8 is the set of linear forms onD
that are continuous with respect to that topology. In this paper we shall not attempt to de
topology on the classF, and shall limit ourselves~having in view the physical application! to the
definition of the algebraic and differential rules obeyed by the pseudo-functions ofF8. However
we can state the following.

Lemma 3: The pseudo-functions ofF8, when restricted to the setD of C`(R3) functions with
compact support, are distributions in the sense of Schwartz:

PfF uDPD8. ~6.3!

Proof: All we need to check is that the pseudo-function PfF uD is continuous with respect to th
Schwartz topology.2 Consider a sequencewnPD tending to zero in the sense recalled abo
Applying the partie-finie integral in the form~3.3!, we get (;s8!1 and;NPN!

^PfF uD,wn&5E
R3\B1~s8!øB2~s8!

d3xFwn

1(
l>0

1

l !
]Lwn~y1!F (

a1 l 13<N
andÞ0

s8a1 l 13

a1 l 13 E dV1n1
L f

1
a1 lnS s8

s1
D E dV1n1

L f 12 l 23G
11↔21o~s8N!.

Sincewn and all its derivatives]Lwn tend uniformly towards zero in a given compactK, clearly
so does the sequence of real numbers^PfF uD,wn&, which shows that PfF uD is indeed continuous

~QED!.
Definition 6: The product (‘‘.’’) of FPF and of PfGPF8, and the product of two pseudo

functionsPfF and PfG, are defined as

F•PfG[PfF•PfG[Pf~FG!PF8. ~6.4!

In particular F•PfG5G•PfF.
In the following, we will remove the dot indicating the product and write indifferently

FPfG5GPfF5Pf~FG!5PfFPfG5FGPf1. ~6.5!

Notice that from the symmetry of the duality bracket we have,;HPF,

^GPfF,H&5PfE d3xFGH5^PfF,GH&. ~6.6!
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Therefore, when applied to the restriction of pseudo-functions toD, the product of Definition 6
agrees with the product of a distribution and a functioncPC`(R3), i.e.,

;wPD, ^cPfF uD,w&5^PfF uD,cw&. ~6.7!

B. A Dirac delta-pseudo-function

Consider, for«PR1* , the Riesz delta-function«d1 that we introduced in~3.8!. Since«d1

PF we can associate to it the pseudo-function Pf«d1 . Now, Lemma 2@see~3.9!# can be re-stated
by means of the duality bracket as

lim
«→0

^Pf«d1 ,F&5~F !1 . ~6.8!

This motivates the following definition.
Definition 7: We define the pseudo-functionPfd1 by

;FPF, ^Pfd1 ,F&5~F !1 . ~6.9!

We then extend the definition of the setF8 to include this pseudo-function:Pfd1PF8.
Obviously Pfd1 can be viewed as the ‘‘limit’’@but we have not defined a topology onF# of

the pseudo-functions Pf«d1 when«→0. The restriction of Pfd1 to D is identical to the usual Dirac
measure,

Pfd1uD
5d1[d~x2y1!, ~6.10!

so that the pseudo-function Pfd1 appears as a natural generalization of the Dirac measure in
context of Hadamard parties finies. In the following, we shall do as ifd1 would belong to the
original class of functionsF, writing, for instance,

^PfF,d1&[^Pfd1 ,F&5~F !1 . ~6.11!

Of course, this equation constitutes in fact the definition of the bracket^PfF,d1&.
Definition 8: For any FPF the pseudo-functionPf(Fd1) is defined, consistently with th

product ~6.4!, by

;GPF, ^Pf~Fd1!,G&5~FG!1 . ~6.12!

We include intoF8 all the pseudo-functions of this type: Pf(Fd1)PF8 (that is, we consider
Fnew8 5F81Fd11Fd2 ; and we henceforth drop the ‘‘new’’).

Notice that an immediate consequence of the ‘‘nondistributivity’’ of the Hadamard p
finie, namely (FG)1Þ5(F)1(G)1 , is the fact that

Pf~Fd1!Þ~F !1Pfd1 . ~6.13!

As an example, we have (r 1)150; but Pf(r 1d1) is not zero, sincêPf(r 1d1),1/r 1&51 for instance.
The pseudo-function Pf(Fd1) represents the product of a delta-function with a function tha
singular on its own support, whereas this product is ill-defined in the standard distribution th
However, this object, as seen as a distribution, i.e., when restricted to the classD of smooth
functions with compact support, does exist in the standard theory. Using the Taylor expa
when r 1→0 of anywPD, that is( l>0 (1/l !) r 1

l n1
L]Lw(y1), we obtain

^Pf~Fd1! uD, w&5~Fw!15(
l>0

1

l !
]Lw~y1!E dV1

4p
n1

L f
1

2 l , ~6.14!
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where1f 2 l denotes the coefficient of 1/r 1
l in the expansion ofF whenr 1→0. Notice that the sum

in ~6.14! is always finite becausel<2a0 , wherea05a0(F) is the smallest exponent ofr 1 in the
expansion ofF ~see Definition 1!. From~6.14! we derive immediately the ‘‘intrinsic’’ form of the
distribution Pf(Fd1) uD, that is,

Pf~Fd1! uD5(
l>0

~2 ! l

l !
]Ld1E dV1

4p
n1

L f
1

2 l5(
l>0

~2 ! l

l !
~r 1

l n1
LF !1]Ld1 , ~6.15!

where]Ld1 denotes thel th partial derivative of the Dirac measure~and where the sums are finite!.
We have, for instance,

PfS d1

r 1
2 D

uD

5
1

6
Dd1 . ~6.16!

Note also that the distribution Pf(Fd1) uD can be recovered, quite naturally, from the Laplac
~in the ordinary distributional sense! of the bracket corresponding to the ‘‘Poisson’’ integral
Pf(Fd1), i.e., formed by Pf(Fd1) acting on the functionx→1/ux2x8u. For any givenx8, this
function belongs toFloc and we are still allowed to consider such a bracket~see also Sec. V!. Thus
we define

G~x8!52
1

4p K Pf~Fd1!,
1

ux2x8u L 52
1

4p S F~x!

ux2x8u D
1

. ~6.17!

For x8 different from the singularityy1 , we find, using the Taylor expansion of 1/ux2x8u around
y1 ,

G~x8!52
1

4p (
l>0

~2 ! l

l !
~r 1

l n1
LF !1]L8S 1

r 18
D . ~6.18!

Clearly the functionG, if considered as a function of the variablex8, belongs toF. Now, we see
from ~6.15! that the ‘‘ordinary’’ Laplacian ofG(x8) is precisely equal to Pf(Fd1) uD, namely,

D8G8uD5(
l>0

~2 ! l

l !
~r 1

l n1
LF !1]L8d185Pf~F8d18! uD. ~6.19!

Let us point out thatG has no partie finie at the point 1: (G)150; so, in order to compute its
partie finie at 1, we are not allowed to replace formallyx8 by y1 inside the defining expressio
~6.17!:

0524p~G!1Þ K Pf~Fd1!,
1

r 1
L 5S F

r 1
D

1

5 f̂
1

1 . ~6.20!

@The functionG(x8) is not continuous at 1, as we can easily see from its singular expan
~6.18!.#

Finally let us mention how to give a sense to a pseudo-function that would be associate
the square of the delta-function.;«.0, we have«d1

2PF, and hence, we can consider the part
finie integral of«d1

2F. In the limit «→0 we get

lim
«→0

^Pf«d1
2,F&5 lim

«→0
PfE d3x«d1

2F50, ~6.21!
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essentially because we have a square«2 in factor which kills any divergencies arising from th
integral. Therefore Pfd1

2 is ~defined to be! identically zero. More generally,

;FPF, Pf~Fd1
2!50, ~6.22!

and we shall not hesitate to write such identities as

^Pfd1 ,Fd1&5^d1 ,Pf~Fd1!&5^Pf~Fd1
2!,1&50. ~6.23!

Note also that

Pf~Fd1d2!50. ~6.24!

VII. DERIVATIVE OF PSEUDO-FUNCTIONS

A. A derivative operator on F
From now on we shall generally suppose, in order to simplify the presentation, that the p

of r 1 and r 2 in the expansions ofFPF around the two singularities are positive or negat
integers (PZ). Our aim is to define an appropriate partial derivative operator acting on
pseudo-functions of the type PfF. First of all, we know~Lemma 3! that the restriction of PfF to
D is a distribution in the ordinary sense, so we already have at our disposal the derivative op
of distribution theory,2 which is uniquely determined — as well as any higher-order derivative
by the requirement

;wPD, ^] i~PfF uD!,w&52^PfF uD,] iw&. ~7.1!

It is clear from viewing PfF uD as an integral operator acting onw, that ~7.1! corresponds to a rule
of ‘‘integration by part’’ in which the ‘‘all-integrated’’~surface! term vanishes. In particular th
‘‘integral of a gradient’’ is zero. This motivates the following definition.

Definition 9: A partial derivative operator] i acting on pseudo-functions ofF8 is said to
satisfy the rule of integration by parts iff

;F,GPF, ^] i~PfF !,G&52^] i~PfG!,F&. ~7.2!

Notice the symmetry between the two slots of the duality bracket in~7.2!. As an immediate
consequence, for a derivative operator satisfying this rule, we have

;FPF, ^] i~PfF !,F&50. ~7.3!

Furthermore, if we assume] i(Pf1)50 in addition to Definition 9, then

;FPF, ^] i~PfF !,1&50. ~7.4!

Of course, both~7.3! and~7.4! correspond to the intuitive idea that the integral of a gradient~in a
‘‘distributional-extended’’ sense! should be zero.

Proposition 3: The most general derivative operator onF8 satisfying the rule of integration
by parts~7.2! reads as

] i~PfF !5Pf~] iF !1Di@F#PF8, ~7.5!

where Pf(] iF) represents the ‘‘ordinary’’ derivative, and where the ‘‘distributional’’ term
Di@F#5Hi@F#1Di

part@F# is the sum of the general solution of the homogeneous equation, i
linear functional Hi@F# such that

;F,GPF, ^Hi@F#,G&1^Hi@G#,F&50, ~7.6!
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and of the particular solution defined by

Di
part@F#54p PfS n1

i F1

2
r 1f

1
211 (

k>0

1

r 1
k f

1
222kGd111↔2D . ~7.7!

When applied on anyGPF, the particular solution reads as

^Di
part@F#,G&5E dV1n1

i F1

2
f
1

21g
1

211 (
k>0

f
1

222kg
1

kG11↔2. ~7.8!

Proof: We replace the form~7.5! of the derivative operator into the rule~7.2! and find

^Di@F#,G&1^Di@G#,F&52^Pf~] iF !,G&2^Pf~] iG!,F&.

The right-hand side can be readily re-written as the partie-finie integral of a gradient,

^Di@F#,G&1^Di@G#,F&52PfE d3x] i~FG!. ~7.9!

Now we know from~3.4! that the integral of a gradient is equal to the partie finie of the surf
integrals around the singularities when the surface areas shrink to zero; thus

^Di@F#,G&1^Di@G#,F&54p~n1
i r 1

2FG!111↔2.

We replace into the right sideF andG by their expansions around 1, and after an easy calcula
we arrive at

^Di@F#,G&1^Di@G#,F&5E dV1n1
i F f

1
21g

1
211 (

k>0
~ f

1
222kg

1
k1 f

1
kg

1
222k!G11↔2.

~7.10!

It is clear that the particular solution given by~7.7! or ~7.8! solves the latter equation. As
consequence, the most general solution is simply obtained by adding the general solution
homogeneous equation, i.e.,~7.10! with zero on the right side, which is precisely a Hi@F# satis-
fying the ‘‘anti-symmetry’’ propertŷ Hi@F#,G&1^Hi@G#,F&50. QED.

As we see from Proposition 3, the rule of integration by parts does not permit, unlike i
case of distribution theory@see~7.1!#, to fully specify the derivative operator. Obviously, we mu
supplement the rule by another statement indicating the cases for which the new derivative
reduce to the ‘‘ordinary’’ one, i.e., when we should have] i(PfF)5Pf(] iF). Clearly, we would
like to recover the ordinary derivative in the cases where the function is ‘‘not too much singu
In the following, we shall require essentially that our derivative reduces to the ordinary one
the functionF is boundednear the singularities@in addition belonging toC`(R32$y1,2%)#, in the
sense that there exists a neighborhoodN containing the two singularitiesy1 andy2 and a constant
MPR1* such thatxPN⇒uF(x)u<M . Let us refer to the coefficients of the negative powers
r 1 and r 2 in the expansions ofF, i.e., the1f 212k’s and 2f 212k’s wherekPN, as thesingular
coefficients ofF ~recall that we assumed that the powers ofr 1 and r 2 are integers!. Clearly, a
function is bounded near the singularities if and only if all its singular coefficients vanish.
means that we shall require that the distributional term Di@F#, which is a linear functional of the
coefficients in the expansions ofF, should depend only on the singular coefficients1f 212k and

2f 212k of F. This is already the case of our particular solution Di
part@F# in ~7.7!. We now look for

the most general possible Hi@F# depending on the1f 212k’s ~and 1↔2!.
All the singular coefficients admit some spherical-harmonics or equivalently STF expan

of the type~2.8!–~2.9!, with STF-tensorial coefficients1 f̂ 212k
L @whereL5 i 1¯ i l ; see~2.8! for

definition#, so we are led to requiring that Hi@F# be the most general~linear! functional of the STF
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tensors1 f̂ 212k
L and 1↔2. Moreover, we demand that Hi@F#, like Di

part@F#, is proportional to the
Dirac pseudo-function Pfd1 ~as we shall see, the gradient of Pfd1 is itself proportional to Pfd1 so
there is no loss of generality!. Now, we have also to take into account the fact that the dim
sionality of Hi@F# should be compatible with the one of Pf(] iF). EndowingR3 with a unit of
length to measure the space coordinates, the Dirac pseudo-function Pfd1 takes the dimension o
the inverse cube of a length, and Hi@F# the dimension ofF divided by this length~in physical
applications, we do not want to introduce any special physical scale!. We conclude that Hi@F#
must be of the general form

Hi@F#5 (
k>0

(
l 50

1`

Pf~@ak,l n̂1
iL f̂

1
212k
iL 1bk,ln1

L f̂
1

212k
iL #r 1

12kd1!11↔2, ~7.11!

where theak,l ’s and bk,l ’s denote some purely constant numerical coefficients~and where, as
usual, the sum overk is finite!. Applying this Hi@F# on anyG we readily obtain

^Hi@F#,G&5 (
k>0

(
l 50

1`
l !

~2l 11!!! F l 11

2l 13
ak,l f̂

1
212k
L ĝ

1
211k
iL 1bk,l f̂

1
212k
iL ĝ

1
211k
L G11↔2.

~7.12!

At last we must impose the anti-symmetry condition~7.6!. For anyG whose all singular coeffi-
cients vanish we havêHi@G#,F&50; then, the anti-symmetry condition tells us that~7.12! should
be identically zero for any suchG and anyF. Therefore, we must haveak,l50 and bk,l50
wheneverk>1, so we are left with only the coefficientsa0,l andb0,l , and the condition~7.6! now
implies

05(
l 50

1`
l !

~2l 11!!! S l 11

2l 13
a0,l1b0,l D @ f̂

1
21
L ĝ

1
21
iL 1 f̂

1
21
iL ĝ

1
21
L #11↔2,

which can clearly be satisfied only if~and only if!, @( l 11)/(2l 13)# a0,l1b0,l50. Thus, posing
a l[a0,l , we have just proved the following.

Lemma 4: The most generalHi@F# that vanishes for any bounded function FPF and pos-
sesses the correct dimension depends only on (the STF-harmonics of) the singular coef

1f 21 and 2f 21 and is given by

Hi@F#5(
l 50

1`

a lPfS F n̂1
iL f̂

1
21
L 2

l 11

2l 13
n1

L f̂
1

21
iL G r 1d1D 11↔2, ~7.13!

where thea l ’s form a countable set of arbitrary numerical coefficients.
@The angular dependence of the first term in~7.13! is expressed by means of the STF tens

n̂1
iL .# Equivalently we have

^Hi@F#,G&5(
l 50

1`

a l

~ l 11!!

~2l 13!!!
@ f̂

1
21
L ĝ

1
21
iL 2 f̂

1
21
iL ĝ

1
21
L #11↔2. ~7.14!

This expression is anti-symmetric in the exchangeF↔G as required.
To sum up, we have obtained the most general derivative operator] i(PfF)5Pf(] iF)

1Di@F# that satisfies the rule of integration by parts and depends only on the singular coeffi
of F. The distributional term Di@F# is the sum of a ‘‘particular’’ solution fully specified by~7.7!
or ~7.8!, and of a ‘‘homogeneous’’ solution given by~7.13! or ~7.14! in terms of an infinite set of
arbitrary numerical coefficientsa lPR ~and l PN!. In Sec. VIII we shall see how one can redu
the arbitrariness of the definition of the derivative to only one single coefficientKPR.
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B. Some properties of the derivative

At this stage, one can already investigate some properties of the distributional termi@F#
5Di

part@F#1Hi@F#, using the fact that the yet un-specified^Hi@F#,G& depends only on1f 21 and

1g21 ~and 1↔2!. Let us first check that the derivative operator, when restricted to the smooth
compact-support functions ofD, reduces to the distributional derivative of distribution theor2

This must actually be true since the fundamental property~7.1! of the distributional derivative is
a particular case of our rule of integration by parts, and because the derivative ofwPD reduces to
the ordinary one. However, it is instructive to verify directly this fact using the expression~7.7!.
Applying Di@F# on wPD and using the Taylor expansion ofw around 1: w
5(k>0 (1/k!) r 1

kn1
K(]Kw)(y1), we obtain

^Di@F#,w&5 (
k>0

1

k!
~]Kw!~y1!E dV1n1

i n1
K f

1
222k11↔2.

Hence the intrinsic expression of the distributional terms onD,

Di@F# uD5 (
k>0

~2 !k

k!
]Kd1E dV1n1

i n1
K f

1
222k11↔2, ~7.15!

which agrees with the distributional part of the derivative of a function with tempered singula
in distribution theory. For example, we can write

DiF 1

r 1
3G

uD

52
4p

3
] id1 . ~7.16!

However, when acting on functions of the full setF, the derivative generally leads to prop
erties which have no equivalent in distributional theory. For instance, although the distribu
derivative of 1/r 1

2 reduces onD to the ordinary derivative, i.e., Di@1/r 1
2# uD50, onF it does not:

] i S Pf
1

r 1
2D 5PfS 22

n1
i

r 1
3 14pn1

i d1D . ~7.17!

For the distributional derivative of 1/r 1
3 on F we find

] i S Pf
1

r 1
3D 5PfS 23

n1
i

r 1
4 14p

n1
i

r 1
d1D . ~7.18!

The expression of the distributional term is apparently different from the corresponding
~7.16! in distribution theory. However we shall see after learning how to differentiate the D
pseudo-function Pfd1 that the distributional term Di@1/r 1

3# takes in fact the same form onF as on
D @see~7.28! below#.

We come now to an important point. In this paper we have defined a ‘‘pointwise’’ produ
pseudo-functions~see Definition 6!, which reduces to the ordinary product in all the cases wh
the functions are regular enough. For instance, it coincides with the ordinary product foC`

functions, or even continuous or locally integrable functions~adopting the classFloc!. Next, we
introduced a derivative operator that acts merely as the ordinary derivative for a large cl
not-too-singular functions~those which are bounded near the singularities, see Proposition 3!. In
particular, the derivative is equal to the ordinary one when the functions areC1 at the location of
the two singularities. However, we know from a theorem of Schwartz23 that it is impossible to
define a multiplication for distributions having the previous properties and such that the dis
tional derivation satisfies the standard formula for the derivation of a product~Leibniz’s rule!. In
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nse,’’

two

o-

n

e

e
g

nd in

7702 J. Math. Phys., Vol. 41, No. 11, November 2000 L. Blanchet and G. Faye

Downloaded 07 Sep 
agreement with that theorem, we find that the derivative operator defined by~7.5!–~7.7! does not
obey in general the Leibniz rule, whereas it does satisfy it by definition in an ‘‘integrated se
namely,

^] i@Pf~FG!#,1&505^] i~PfF !G1F] i~PfG!,1&. ~7.19!

However it does not satisfy the Leibniz rule in a ‘‘local sense,’’ i.e., we have, generically for
functionsF,GPF,

] i@Pf~FG!#2] i~PfF !G2F] i~PfG!Þ0. ~7.20!

This means that,a priori,

^] i@Pf~FG!#,H&2^] i~PfF !,GH&2^] i~PfG!,FH&Þ0, ~7.21!

or, equivalently, since the Leibniz rule is satisfied by the ordinary derivative,

^Di@FG#,H&2^Di@F#,GH&2^Di@G#,FH&Þ0. ~7.22!

Actually, in accordance with the theorem in Ref. 23,~7.20! must be true even when the pseud
function is regarded as a distribution onD. To check this, let us compute the left side of~7.22! in
the case where Di is the particular solution Di

part defined by~7.7!, and whereH is equal to some
wPD. We employ the Taylor expansion ofw around 1 and 2, and, strictly following the definitio
of the distributional term in~7.7!, we arrive at

@Di
part@FG#2FDi

part@G#2GDi
part@F## uD5 (

k>1

~2 !k

k!
]Kd1E dV1n1

i n1
KF1

2
f
1

21g
1

212k1
1

2
f
1

212kg
1

21

2(
j 50

k

f
1

212 jg
1

j 2k21G11↔2. ~7.23!

The right side of~7.23! equals (2p/3) ] id1 in the case whereF5 1/r 1 andG5 1/r 1
2 for instance.

It is not possible to add a homogeneous solution of the form~7.13! so as to always get zero. As th
result ~7.23! depends only on the singular coefficients ofF andG, we recover the Leibniz rule
wheneverF or G is bounded near the singularities. Besides, we can verify directly on~7.23! that
the Leibniz rule is indeed true in an integrated sense, since the integral overR3 of ~7.23! picks up
only the term withk50 which gives no contribution.

C. Derivative of the Dirac pseudo-function

In this subsection we compute the distributional term^Di@F#,G& given by the sum of~7.8!
and ~7.14! assuming that eitherF or G is equal to the Riesz delta-function«d15@«(«
21)/4p# r 1

«23 for some small«.0. ~We come back for a moment to Definition 1 in which th
powers ofr 1 andr 2 in the expansions ofF or G are real.! We notice first that the terms dependin
on the singular coefficients1f 21 and1g21 are present only when the exponent21 belongs to both
families of indices (ai) i PN corresponding toF and G ~remind Definition 1!. This means that,
choosing« to be different from 2, these terms will not contribute to the present calculation, a
particular that the homogeneous part^Hi@F#,G& will always give zero, provided that eitherF or
G is equal to«d1 . From the expression~7.8! we get

^Di@«d1#,G&5«~12«!E dV1

4p
n1

i g
1

12« , ~7.24a!
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^Di@F#,«d1&5«~12«!(
l>0

~2 ! l

l !
]
1

Lr 12
«23E dV2

4p
n2

iL f
2

222 l . ~7.24b!

Furthermore, by choosing« smaller than the spacing between some exponentsai of G ~specifi-
cally «,12ai 1

with ai 1
is such thatai 1

,1<ai 111) we can arrange for having1g12«50 so that
~7.24a! becomes identically zero. Anyway, in the limit«→0 we come up formally with both
relations^Di@d1#,G&50 and^Di@F#,d1&50. The former tells us that the distributional derivati
of Pfd1 reduces to the ordinary one, i.e.,

] i~Pfd1!5Pf~] id1!. ~7.25!

The latter@that we already knew from~6.23!# shows via the rule of integration by parts that t
action of] i(Pfd1) over any functionFPF is equal to minus the action of Pfd1 over the derivative
] iF.

Definition 10: The derivative of the Dirac pseudo-functionPfd1 is defined by

;FPF, ^] i~Pfd1!,F&52^Pfd1 ,] iF&[2~] iF !1 . ~7.26!

We can summarize the properties of the derivative of the Dirac pseudo-function by writin
successive identities,

^] i~Pfd1!,F&5^Pf~] id1!,F&52^Pfd1 ,] iF&52~] iF !1 ,

as well as similar identities obtained by exchanging the roles ofF andd1 ,

^] i~PfF !,d1&5^Pf~] iF !,d1&52^PfF,] id1&5~] iF !1 .

Lemma 5: The intrinsic form of the derivative of the Dirac pseudo-function is

] i~Pfd1!52PfS 3
n1

i

r 1
d1D . ~7.27!

The proof is evident from using the identity~2.11!. The form~7.27! @with ~7.25!# is quite useful in
practice; for instance, it permits us to re-write the derivative of the pseudo-function Pf(1/r 1

3) as
computed in~7.18! into the form

] i S Pf
1

r 1
3D 5PfS 23

n1
i

r 1
4 2

4p

3
] id1D , ~7.28!

where the distributional term takes the same form as in the distribution theory@compare with
~7.16!#.

The preceding definition and lemma are easily extended to the case of the pseudo-fu
Pf(Fd1). The derivative of these objects is defined by the mean of the relation

^] i@Pf~Fd1!#,G&52^Pf~Fd1!,] iG&52~F] iG!1 . ~7.29!

Then, from the identity~2.11!, we readily get the intrinsic form

] i@Pf~Fd1!#5PfF r 1
3] i S F

r 1
3D d1G . ~7.30!

Notice the interesting particular case,

] i@Pf~r 1
3d1!#50, ~7.31!
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which is also an immediate consequence of~2.16!. Finally, let us mention that the Leibniz rul
happens to hold in the special case where one of the pseudo-functions is of the type Pf(Gd1), i.e.,

] i@PfF.Pf~Gd1!#5] i~PfF !.Pf~Gd1!1PfF.] i@Pf~Gd1!# ~7.32!

~the verification is straightforward!.

VIII. MULTIPLE DERIVATIVES

A. General construction

From Proposition 3 we can give a meaning to

^] i~PfF !,G&5PfE d3x] iFG1^Di@F#,G&, ~8.1!

which will be also denoted̂ ] i(PfF),PfG&. We now define the more complicated obje
^] i(PfF),] j (PfG)&. Since the distributional term Di@F# has the form Pf(Hd1) plus 1↔2, and
because~6.22!–~6.24! entail such identities aŝPf(Gd1),Pf(Hd1)&505^Pf(Gd1),Pf(Hd2)&, we
deduce that the duality bracket applied on any two distributional terms is always zero:

;F,GPF, ^Di@F#,Dj@G#&50. ~8.2!

When constructing the bracket^] i(PfF),] j (PfG)& we shall meet a product of two distributiona
terms which gives zero by~8.2!, and we shall be left only with the ordinary part as well as the t
cross terms involving one distributional term. Therefore,

^] i~PfF !,] j~PfG!&5PfE d3x] iF ] jG1^Di@F#,] jG&1^Dj@G#,] iF&. ~8.3!

@The ordinary part can equivalently be written as

PfE d3x] iF ] jG5^Pf~] iF !,Pf~] jG!&5^Pf~] iF !,] jG&5^] iF,Pf~] jG!&.]

We now intend to introduce the second-order derivative operator. The generalization t
l th-order derivative is straightforward and will be stated without proof. By extending the ru
integration by parts presented in Definition 9, we are led, quite naturally, to require that

;F,GPF, ^] i j ~PfF !,G&52^] j~PfF !,] i~PfG!&, ~8.4!

where the object̂] j (PfF),] i(PfG)& has just been given in~8.3!. For the moment, we are carefu
at distinguishing the order of the indicesi and j . Let us look for the expression of the distribu
tional term Di j @F# corresponding to the double derivative, viz.,

] i j ~PfF !5Pf~] i j F !1Di j @F#, ~8.5!

in terms of the single-derivative term Di@F#. Inserting~8.5! into the required property~8.4! we
arrive immediately at

^Di j @F#,G&52PfE d3x] i~] jFG!2^Dj@F#,] iG&2^Di@G#,] jF&.

Next recall the formula~7.9! which tells us that any partie-finie integral of a gradient is the s
of two distributional contributions. Using this property we obtain the simple result

^Di j @F#,G&5^Di@] jF#,G&2^Dj@F#,] iG&5^Di@] jF#,G&1^] iDj@F#,G&. ~8.6!
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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The formula~7.29! allowed us to obtain the second equality; so the intrinsic form of the sec
order distributional term is obtained as

Di j @F#5Di@] jF#1] iDj@F#. ~8.7!

This result is easily extendible to any multiple derivatives, demanding that, to any orderl ,

^] i 1i 2¯ i l
~PfF !,G&52^] i 2¯ i l

~PfF !,] i 1
~PfG!&, ~8.8!

where the right side is obtained in a way similar to~8.3!. We can even impose the more gene
rule of integration by parts, that forany k51,...,l ,

^] i 1i 2¯ i l
~PfF !,G&5~2 !k^] i k11i k12¯ i l

~PfF !,] i ki k21¯ i 1
~PfG!&. ~8.9!

Then the following is proved by induction overl .
Proposition 4: If a multi-derivative operator,

] i 1i 2¯ i l
~PfF !5Pf~] i 1i 2¯ i l

F !1Di 1i 2¯ i l
@F#, ~8.10!

satisfies the rule of integration by parts (8.8) or (8.9), then thelth-order distributional term
Di 1i 2¯ i l

@F# is given in terms of the first-orderDi k
@F# ’s by

Di 1i 2¯ i l
@F#5 (

k51

l

] i 1¯ i k21
Di k

@] i k11¯ i l
F#. ~8.11!

Recall that this result is valid for any distributional derivative of the form given by Propositio
i.e., Di@F#5Di

part@F#1Hi@F#. Therefore, the rule of integration by parts has permitted us
construct uniquely all higher-order derivatives from a given choice of first-order derivative Di@F#,
i.e., from a given choice of ‘‘homogeneous’’ solution Hi@F#. Notice thata priori this construction
does not yield some commuting multi-derivatives~i.e., the Schwarz lemma is not valid in genera!,
because evidently the right side of the formula~8.11! is not necessarily symmetric in all it
indices. However, as a central result of this paper, we shall show now that it is possible to fi
initial H i@F# such that the derivatives do commute to any order.

Theorem 4: The most general derivative operator] i(PfF)5Pf(] iF)1Di@F# such that
(i) the distributional termDi@F# depends only on the singular coefficients of F,
(ii) all multi-derivatives satisfy the rule of integration by parts,
(iii) all multi-derivatives commute (i.e., theDi 1i 2¯ i l

@F# ’s are symmetric in i1i 2¯ i l!, is given by

Di@F#54p(
l 50

1`

PfS Cl@n1
iL f̂

1
21
L 2n1

L f̂
1

21
iL #r 1d11 (

k>0

n1
iL

r 1
k f̂

1
222k
L d1D 11↔2, ~8.12!

where the coefficients Cl5( l 11)$K1( j 51
l @1/( j 11)#% depend on an arbitrary constant K.

~Actually the theorem states that the derivative operator dependsa priori on two different
constantsK1 and K2 for each of the two singularities. In the following we shall assume
simplicity that the constants are the same, so that the way to differentiate does not disti
between the different singularities.! Notice that Di@F# differs from the particular solution Di

part@F#
given by ~7.7! only in the terms depending on the ‘‘least singular’’ coefficients1f 21 and2f 21 .

Proof: According to the assumptions~i! and ~ii ! we already know~see Proposition 3 and
Lemma 4! that the distributional term must be of the form Di@F#5Di

part@F#1Hi@F#, where the
particular solution is given explicitly by~7.7!, and where the homogeneous term takes the fo
~7.13! depending on a set of arbitrary coefficientsa l . Furthermore, we know from Proposition
that all higher-order derivatives are generated from the first-order one in the way specifi
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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~8.11!. It only remains to show that the coefficientsa l can becomputedin order that the assump
tion ~iii ! of the commutation of derivatives be fulfilled, and that the derivative is given by~8.12!.

What we want then is to impose the symmetry of Di j @F# in i j . We compute the anti-
symmetric projection@ i j #[ ( i j 2 j i )/2 of the second-order distributional term associated with
particular solution~7.7!,

D[ i j ]
part@F#5D[ i

part@] j ]F#1] [ iDj ]
part@F#. ~8.13!

The first term is readily obtained from~2.12! which tells us that theath coefficient in the
r 1-expansion of the gradient is1f a(] jF)5(a11)n1

j
1f a111d1

j
1f a11 . On the other hand, the sec

ond term in~8.13! comes directly from using the formula~7.30!. It follows that the anti-symmetric
projection depends only on the expansion coefficients1f 0 , 1f 21 and 1↔2 through the simple
formula,

D[ i j ]
part@F#52pPf~n1

[ i@r 1d1
j ] f

1
01d1

j ] f
1

21#d1!11↔2, ~8.14!

or, using the relation~2.13! for the operatord1
j ,

D[ i j ]
part@F#52p(

l 50

1`

~ l 11!Pf~n1
L[ i@r 1 f̂

1
0
j ]L1 f

1
21
j ]L#d1!11↔2. ~8.15!

Note that by applying this on anyG, we get

^D[ i j ]
part@F#,G&522p(

l 50

1`
~ l 11!~ l 11!!

~2l 13!!!
~ f̂

1
0
L[ i ĝ

1
21
j ]L1 f̂

1
21
L[ i ĝ

1
0
j ]L!11↔2.

Next, we add the homogeneous solution. By performing a computation similar as the previo
~but a bit more involved! we find, based on the expression~7.13!,

H[ i j ]@F#5(
l 50

1`
l 11

2l 13
@~ l 12!a l2~ l 11!a l 11#Pf~n1

[ i@r 1 f̂
1

0
j ]L1 f

1
21
j ]L#d1!11↔2. ~8.16!

Remarkably, H[ i j ]@F# takes exactly the same form as~8.15!. Hence, we are able to determine
relation to be satisfied by the looked-for coefficientsa l for any l in order that the noncommuting
part ~8.15! associated to the particular solution be cancelled out by that of the homogeneou
; l , (l 12)a l2( l 11)a l 11522p(2l 13). Given any initial value fora0 the solution reads as

a l5~ l 11!Fa012p(
j 51

l S 1

j
1

1

j 11D G522p14p~ l 11!FK1(
j 51

l
1

j 11G , ~8.17!

in which we have introduced the new arbitrary constantK5 a0/4p 1 1/2. Inserting~8.17! back
into the expression for Di@F# leads to the announced result~8.12!. At last, we find that for any
choice of the constantK the second-derivative operator commutes, i.e.,

D[ i j ]@F#5H[ i j ]@F#1D[ i j ]
part@F#50. ~8.18!

Let us verify from ~8.18! that all higher-order multi-derivative operators commute as well,
Di 1i 2¯ i l

@F# given by the formula~8.11! is symmetric in all its indices. This is easily proved b
induction overl . Suppose that to the (l 21)th order Di 1i 2¯ i l 21

@F# is symmetric, and re-write the
formula ~8.11! into both forms,

Di 1i 2¯ i l
@F#5Di 1

@] i 2¯ i l
F#1] i 1

Di 2¯ i l
@F#5Di 1¯ i l 21

@] i l
F#1] i 1¯ i l 21

Di l
@F#.
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Clearly, Di 1¯ i l
@F# is symmetric with respect to bothi 1¯ i l 21 and i 2¯ i l , so must be symmetric

in all its indices~the symmetry with respect to the first and last indices being a consequence
other symmetries!. QED.

We should mention that the dependence upon the arbitrary constantK of the derivative
operator defined by Theorem 4 is

Di@F# uK
54pK(

l 50

1`

~ l 11!Pf~@n1
iL f̂

1
21
L 2n1

L f̂
1

21
iL #r 1d1!11↔2, ~8.19!

which can also be cast into the more interesting form

Di@F# uK
524pK] i@Pf~r 1

2f
1

21d1!#11↔2. ~8.20!

We see that the ‘‘ambiguity’’ linked with the constantK when deriving the pseudo-function PfF
is related to an ambiguity resulting from the addition of the term24pKPf(r 1

2
1f 21d1)11↔2 to

PfF. In a sense, one can also view the constantK as a measure of how much the distribution
derivative of the pseudo-function Pf(1/r 1) differs from the ordinary one, i.e.,

DiF 1

r 1
G54pKPf~n1

i r 1d1!. ~8.21!

Indeed, for functions which are more singular than a simple 1/r 1 , there is no dependence on th
constantK; see, e.g.,~7.17!–~7.18!.

B. The Laplacian operator

Let us compute the second-derivative of Pf(1/r 1) using the formula Di j @1/r 1#5Di@2n1
j /r 1

2#
1] iDj@1/r 1#. The first term is obtained directly from the definition~8.12!, and the second term i
computed with the help of the formula~7.30! applied on~8.21!. As a result, we get

Di j F 1

r 1
G52

4p

3
Pf~@d i j 13~3K11!n̂1

i j #d1!, ~8.22!

wheren̂1
i j 5n1

i n1
j 2 (1/3)d i j . Evidently ~because of the trace-freen̂1

i j !, when we restrict ourselve
to smooth functions of the setD, we recover the usual formula of distributional theory,

Di j F 1

r 1
G

uD

52
4p

3
d i j d1 . ~8.23!

Since the dependence overK in ~8.22! drops out when taking the trace over the indicesi j , we
have Di i @1/r 1#524pPfd1 ~even on the setF!. This means that the Laplacian of 1/r 1 on F takes
the same form as the well-known formula of distribution theory:

DS Pf
1

r 1
D524pPfd1 . ~8.24!

We infer from the rule of integration by parts that

K D~PfF !,
1

r 1
L 5 K DS Pf

1

r 1
D ,F L 524p~F !1 , ~8.25!
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which can be phrased by saying that the Poisson integral of the Laplacian of a singular fun
as evaluated at a singular point, is equal to the partie finie of the function at that point.
generally, the Laplacian acting on any pseudo-function inF8 is defined by

D~PfF !5Pf~DF !1Di i @F#, ~8.26!

where the distributional term is given by

Di i @F#5] iDi@F#1Di@] iF#. ~8.27!

Proposition 5: Under the hypothesis of Theorem 4 the distributional term associated with
Laplacian operator reads as

Di i @F#54p(
l 50

1`

PfS ~ l 11!Cl 21n1
L@ f̂

1
21
L 1r 1 f̂

1
0
L#d12 (

k>0
~2k11!

n1
L

r 1
k f̂

1
212k
L d1D 11↔2.

~8.28!

The proof is straightforward and will not be detailed. Note that the dependence onK occurs only
for functions owing some nonzero coefficients1f 21 or 1f 0 , or 1↔2; for instance,

Di i @n1
j #58pKPf~n1

i r 1d1!,

Di i @n1
j /r 1#58p~K2 1

2!Pf~n1
i d1!.

But, for more singular functions like 1/r 1
3, we have

DS Pf
1

r 1
3D 5PfS 6

r 1
52

20p

r 1
2 d1D . ~8.29!

Lemma 6: The Laplacian of the pseudo-functionPf(Fd1) is given by

D@Pf~Fd1!#5PfS r 1
3DF F

r 1
3Gd1D . ~8.30!

The proof is similar to the one of the formula~7.30!. Two immediate particular applications ar

D~Pfd1!5PfS 6

r 1
2 d1D , ~8.31a!

D@Pf~r 1
2d1!#50, ~8.31b!

which can also be deduced, respectively, from~2.19! and ~2.17!. @~8.31a! is in agreement with
~6.16!.# Let us add that

DFPfS r 1

2
d1D G5PfS d1

r 1
D . ~8.32!

In practice, Lemma 6 may be used to determine some solutions of Poisson equations ‘‘in the
of distributions’’ onF. For instance combining~8.31a! with the formula~8.29!, we can write

DFPfS 1

r 1
3 1

10p

3
d1D G5PfS 6

r 1
5D , ~8.33!

which provides a solution of the Poisson equation with source Pf(6/r 1
5) in the sense of these

distributions. Such a solution is by no means unique, since, from Lemma 6, one can add to
2011 to 134.157.250.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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‘‘homogeneous’’ solution of the form Pf(Hhomd1) where Hhom is the product ofr 1
3 with an

arbitrary solution of the Laplace equation. Notice that~8.33! as it stands is well-defined in distri
bution theory and so takes the same form when restricted toD (Dd1 is meaningful on this set!.
However,

DFPfS 1

r 1
2 16pr 1d1D G5PfS 2

r 1
4D ~8.34!

has no equivalent in distribution theory.

IX. TIME DERIVATIVE AND PARTIAL DERIVATIVES

The functionsFPF depend on the field pointx and on the two singular source pointsy1 and
y2 . We shall now consider the situation where the two source points represent the trajecto
actual particles, and therefore depend on timet. We assume that the two trajectoriesy1(t) and
y2(t) are smooth, that isy1 , y2PC`(R). In general~e.g., in the application to the problem o
motion of point-particles! the functionF will also depend on time through the two velocitie
v1(t)5dy1(t)/dt andv2(t)5dy2(t)/dt. We suppose thatF is a smooth functional ofv1 andv2 .
Therefore, in this section,F is supposed to take the form

F5F„x,t;y1~ t !,y2~ t !…PF. ~9.1!

We want to investigate the partial derivatives~in a distributional sense! of the pseudo-function
PfF with respect to the source pointsy1 andy2 , as well as the derivative of PfF with respect to
time t. Obviously, the partial derivatives1] i[]/]y1 and 1↔2 are closely related to the tim
derivative] t[]/]t on account of the fact that

] tF5Ḟ1v1
i ]

1
iF1v2

i ]
2

iF ~9.2!

~in the ordinary sense!, whereḞ denotes the contribution of the time-derivative due to the dep
dence over the velocities, i.e.,Ḟ5a1

i ]F/]v1
i 1a2

i ]F/]v2
i (a1

i and a2
i denoting the two accelera

tions!. In applications it is frequent thatF depends on the trajectories only through the t
distances to the field pointr15x2y1 and r25x2y2 ; in that case,

] iF1]
1

iF1]
2

iF50. ~9.3!

The general function~9.1! does not necessarily satisfy the latter identity. However, let us g
from ~9.3! the result for the distributional terms1Di@F# ~and 1↔2! associated with the partia
derivative1] i acting on the pseudo-function PfF. Since we have supposed that the dependenc
F on the velocities is smooth, the distributional terms will depend only on that part of the fun
which becomes singular whenr 1→0, and so, because as far as the singular part is concerned
function behaves like~9.3!, the distributional terms1Di@F# and2Di@F# should satisfy

Di@F#1D
1

i@F#1D
2

i@F#50. ~9.4!

Now, from Theorem 4, we know that Di@F# can be naturally split into two parts associate
respectively, with the singularities 1 and 2. Therefore, we expect that the correct distribu
term 1Di@F# is equal tominusthat part of Di@F# which corresponds to 1. Namely, using~8.12!,

D
1

i@F#524p(
l 50

1`

PfS Cl@n1
iL f̂

1
21
L 2n1

L f̂
1

21
iL #r 1d11 (

k>0

n1
iL

r 1
k f̂

1
222k
L d1D ~9.5!
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~and idem for 2!. This expectation is confirmed by the following definition and proposition.
Definition 11: The partial derivative1] i (and 1↔2 ) acting on pseudo-functions is said t

satisfy the rule of integration by parts iff

;F,GPF, ^]
1

i~PfF !,G&1^]
1

i~PfG!,F&5]
1

i@^PfF,G&#. ~9.6!

Similarly, the time derivative] t is said to satisfy the rule of integration by parts iff

^] t~PfF !,G&1^] t~PfG!,F&5
d

dt
@^PfF,G&#. ~9.7!

Notice that^PfF,G&5Pf*d3xFG is a function of the source pointsy1(t) andy2(t), as well ast
independently if eitherF or G depends on the velocities. The time derivative in the right side
~9.7! means the total time derivative we get by taking into account both the variablet occurring
throughy1(t) and y1(t), and the independentt coming from the velocities. Let us now state
result analogous to Theorem 4, whose proof will not be given since it represents a simple
tation of the one of that theorem.

Proposition 6: Under the hypothesis of Theorem 4 the partial derivative with respect ty1

(and idem with1↔2 ) is determined as

]
1

i~PfF !5Pf~]
1

iF !1D
1

i@F#, ~9.8!

where1Di@F# is given by (9.5). And the time derivative is determined as

] t~PfF !5Pf~] tF !1Dt@F#, ~9.9!

whereDt@F# is given by

Dt@F#5v1
i D

1
i@F#1v2

i D
2

i@F#. ~9.10!

Higher-order derivatives are constructed as in Sec. VIII. We find, for instance,

]
1

i j ~PfF !5Pf~]
1

i j F !1D
1

i@]
1

jF#1]
1

iD
1

j@F#, ~9.11!

Idem for the second-order time derivative, which reads as

] t
2~PfF !5Pf~] t

2F !1Dt@] tF#1] tDt@F#, ~9.12!

where] tF is given by~9.2! and Dt@F# is defined in~9.10!. Furthermore the mixing up of deriva
tives of different type is allowed, and proceeds in the expected way. For example,

]
1

i]
2

j~PfF !5Pf~]
1

i]
2

jF !1D
1

i@]
2

jF#1]
1

iD
2

j@F#. ~9.13!

Another example is

] t] i j ~PfF !5Pf~] t] i j F !1Dt@] i j F#1] tDi@] jF#1] t] iDj@F#. ~9.14!
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APPENDIX: PROOF OF THEOREM 2

Basically the proof establishes the legitimacy of commuting some discrete series with
grals. ConsiderFPF. We start by evaluating the integrals

FPb→0
a→0EB1(s)

d3x (
a<23

S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a~n1! ~A1a!

and

FPa→0
b→0EB1(s)

d3x (
a<23

S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a~n1!, ~A1b!

where the1f a’s are the coefficients of the expansion ofF whenr 1→0, and whereB1(s) is the ball
centered ony1 and of radiussPR1* ~chosen to bes,r 12!. From the definition of the classF the
sums overa in ~A1! are finite. When the real part ofb is such that 0<R(b)<1, the integrand of
~A1a! is majored by

S r 1

s1
D R(a)S r 2

s2
D R(b)

(
a<23

r 1
au f

1
a~n1!u<S r 1

s1
D R(a)

maxS 1,
r 2

s2
D (

a<23
r 1

au f
1

a~n1!u,

which can be integrated onB1(s). Thus the theorem of dominated convergence of an integral
be applied, with the result that

FPb→0
a→0EB1(s)

d3x (
a<23

S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a5FPa→0EB1(s)

d3x (
a<23

S r 1

s1
D a

r 1
af

1
a

5 (
a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
23 .

The second integral is more difficult to compute because the limita→0 does not commute with
the integration sign. We must expandr 2

b as a power series ofr 1 . ;r 1,r 12,

r 2
b5r 12

b S 112n1•n12

r 1

r 12
1

r 1
2

r 12
2 D b/2

5r 12
b (

l 50

1`

Cl
2b/2~2n1•n12!S r 1

r 12
D l

, ~A2!

where n125(y12y2)/r 12, and whereCl
l(t) denotes the Gegenbauer polynomial, which is

definition the coefficient ofxl in the power-series expansion of the function (122tx1x2)2l when
x→0 ~with l, tPC!. See, e.g., Morse and Feshbach,27 p. 602. WhentPR and is such thatutu
<1 ~as is the case here sincet52n1•n12!, we can obtain a majoration of the Gegenbau
polynomial. From the formula~cf. Gradshteyn and Ryzhik,28 p. 1030!

Cl
l~cosu!5 (

k,h>0
k1h5 l

G~l1k!G~l1h!

k!h! @G~l!#2 cos@~k2h!u#,

we find that; lÞ0, uCl
l(cosu)u is always less than

(
k,h>0
k1h5 l

~ ulu1k21!~ ulu1k22!¯ulu~ ulu1h21!~ ulu1h22!¯ulu
k!h!

5Cl
ulu~1!.
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Therefore the series( l uCl
2b/2(2n1•n12))(r 1 /r 12)

l u is bounded by (122r 1 /r 121r 1
2/r 12

2 ) ubu/2, and
thus admits a limit. Thus~A2! converges absolutely and@whenR(a) is large enough# the signs*
and( can be interchanged:

E
B1(s)

d3x (
a13<0

S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a5S r 12

s2
D b

(
l 50

1`

(
a13<0

E
B1(s)

d3x
r 1

a1a1 l

s1
ar 12

l f
1

aCl
2b/2 ,

whereCl
2b/2[Cl

2b/2(2n1•n12). We obtain the two terms

S r 12

s2
D b

(
l 50

1`

(
a13<0

a1 l 13Þ0

sa1a1 l 13

s1
ar 12

l ~a1a1 l 13!
E dV1f

1
aCl

2b/2

1S r 12

s2
D b

(
l 50

finite sum

1`
1

a S s

s1
D a 1

r 12
l E dV1f

1
2 l 23Cl

2b/2 .

The finite part whena→0 of the second term reads simply as

S r 12

s2
D b

lnS s

s1
D(

l 50

1`
1

r 12
l E dV1f

1
2 l 23Cl

2b/2 . ~A3!

On the other hand, in order to treat the first term, we must justify the commutation of the finit
with the infinite sum. Consider the series

(
l 50

1`
1

a1a1 l 13 S s

r 12
D lE dV1f

1
aCl

2b/2 .

For a in a disk of the complex plane centered on 0 and of radiuse ~with 0,e,1!, we can bound
the generic term of that series~for large enoughl ! by

1

ua1 l 13u2e S s

r 12
D lU E dV1f

1
aCl

2b/2U,
which is independent ofa, and whose corresponding series inl converges. Therefore we can app
the limit a→0 through the summation overl and deduce

lim
a→0

H S r 12

s2
D b

(
l 50

1`

(
a13<0

a1 l 13Þ0

sa1a1 l 13

s1
ar 12

l ~a1a1 l 13!
E dV1f

1
aCl

2b/2J
5S r 12

s2
D b

(
a13<0

sa13 (
l 50

a1 l 13Þ0

1`
1

a1 l 13 S s

r 12
D lE dV1f

1
aCl

2b/2 . ~A4!

Next we apply the finite part Pfb→0 to the sum of~A3! and~A4!, which involves finding the limit
whenb→0 of the series

(
l 50

a1 l 13Þ0

1`
1

a1 l 13 S s

r 12
D lE dV1f

1
aCl

2b/2 . ~A5!

In any case the absolute value of the quantity under the sign( is smaller than
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S s

r 12
D l

Cl
ubu/2~1!E dV1u f

1
au.

Furthermore we know thatCl
l(1)5G(2l1 l )/@ l !G(2l)#. For lÞ50, Cl

ulu(1)5(2ulu1 l 21)
3(2ulu1 l 22)¯(2ulu)/ l ! is manifestly an increasing function ofulu, and, forl 50, C0

ulu(1)51 is
constant. From this we infer that; l and for b in the disk centered on 0 and of radiuse,
Cl

ubu/2(1)<Cl
e/2(1) holds, which leads to theb-independent bound

S s

r 12
D l

Cl
e/2~1!E dV1u f

1
au,

which is manifestly the general term of a convergent series. Therefore the series~A5! possesses a
limit when b→0 which is simply obtained by settingb50 under the sign(. Using Cl

0(cosu)
5dl0 we find this limit to be 0 ifa523 and

1

a13 E dV1f
1

a , ~A6!

if aÞ523. Gathering the results~A3!–~A4! and ~A6!, we arrive at

(
a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
235FPa→0

b→0EB1(s)
d3x (

a13<0
S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a

5FPb→0
a→0EB1(s)

d3x (
a13<0

S r 1

s1
D aS r 2

s2
D b

r 1
af

1
a , ~A7!

from which we can now easily prove the equivalence with the Hadamard partie finie. Like i
proof of Proposition 1 we consider two open domainsD1 andD2 , disjoined and complementar
in R3, and such thatB1(s),D1 andB2(s),D2 . We can write

E
D 1

d3xS r 1

s1
D aS r 2

s2
D b

F5E
D1\B1(s)

d3xS r 1

s1
D aS r 2

s2
D b

F1E
B1(s)

d3xS r 1

s1
D aS r 2

s2
D b

F, ~A8!

where each of the objects is defined by complex analytic continuation in a neighborhooda

5b50 @the proof similar to the one after~4.1!#. Like in ~4.8! we associate toF the functionF̃1

representing its ‘‘regularization’’ around the point 1,

F̃15F2 (
a13<0

r 1
af

1
a , ~A9!

and we re-write the right side of~A8! as

E
D1\B1(s)

d3xS r 1

s1
D aS r 2

s2
D b

F1E
B1(s)

d3xS r 1

s1
D aS r 2

s2
D b

F̃11E
B1(s)

d3xS r 1

s1
D aS r 2

s2
D b

(
a13<0

r 1
af

1
a .

Of these three terms, the first two are well-defined whena andb tend to zero, hence their finite
parts are simply obtained by posinga505b. On the other hand we have proved previously th
the finite parts Pfa→0

b→0
and Pfb→0

a→0
of the third term are equal and we have found their comm

value to be given by~A7!. This shows immediately that
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FPa→0
b→0ED 1

d3xS r 1

s1
D aS r 2

s2
D b

F5E
D1\B1(s)

d3xF1E
B1(s)

d3xF̃1

1 (
a13,0

sa13

a13 E dV1f
1

a1 lnS s

s1
D E dV1f

1
23 ~A10!

~and idemwith Pfb→0
a→0

!. We recognize on the right side of~A10! the Hadamard partie finie of th
integral. Indeed the second term clearly admits an expansion in positive powers ofs,

;NPN, E
B1(s)

d3xF̃15 (
0,a13<N

sa13

a13 E dV1f
1

a1o~sN!, ~A11!

so we recover exactly the partie-finie integral overD1 in the form given by~3.3!. QED.
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