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Radiative gravitational fields in general relativity 
II. Asymptotic behaviour at future null infinity 
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We prove that Penrose's requirements for asymptotic simplicity are 
formally satisfied by the general metric, (1), which admits both post- 
Minkowskian and multipolar expansions, (2), which is stationary in the 
past and asymptotically Minkowskian -in the past, (3), which admits 
harmonic coordinates, and (4), which is a solution of Einstein's vacuum 
equations outside a spatially bounded region. The proof is based on the 
setting up, by using the method of a previous work (L. Blanchet & 
T. Damour *(Phil. Trans. R. Soc. Lond. A 320, 379-430 (I986))), of an 
improved algorithm that generates a metric equivalent to the general 
harmonic metric of that work but written in radiative coordinates, i.e. 
admitting an expansion in powers of r-I for r - oo and t - r fixed. The 
arbitrary parameters of the construction are the radiative multipole 
moments in the sense of K. S. Thorne (Rev. mod. Phys. 52, 299 (I980)). 

1. INTRODUCTION 
Penrose (I963, I965) has introduced the concept of an asymptotically simple 
space-time to geometrically formulate the asymptotic properties of radiative 
space-times that were investigated by Bondi et al. (I962) and Sachs (I962). 
Basically, an asymptotically simple space-time is a space-time sharing common 
local and global asymptotic properties with Minkowski space-time. However, this 
concept is only a definition of a class of space-times that we would like to associate 
with isolated systems and it has not been proven to be consistent with Einstein's 
equations: it is not known whether sufficiently general Einstein's space-times 
(notably, non-stationary space-times) satisfy the definition for asymptotic 
simplicity. 

The purpose of this paper is to shQw that the definition is (formally) satisfied 
by the general metric constructed in a previous work (Blanchet & Damour I 986, 
hereafter referred to as paper I). This general metric is physically expected to be 
associated with an isolated system (stationary in the past) lying in a region r < ro. 
The method of paper I is mainly an extension of the Bonnor-Thorne approach to 
gravitational radiation theory that combines the nonlinearity (or post- 
Minkowskian) expansions with multipolar expansions (Bonnor 1959; Bonnor & 

t Permanent address: Groupe d'Astrophysique Relativiste, C.N.R.S., Observatoire de 
Paris-Meudon, 92195 Meudon Principal Cedex, France. 
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Rotenberg I 966; Couch et al. I 968; Hunter & Rotenberg I 969; Thorne 1977, I 980, 
I983). The advantage of this method is that it is valid in all the 'weak-field' region 
outside an isolated system and thus, in particular, in all the 'asymptotic' region 
far from the system (e.g. the distant wave zone in Thorne's terminology). In 
contrast, the Bondi-Sachs-Penrose method is valid only in the asymptotic region. 

Let us first recall the basic assumptions of paper I. We consider the class of 
metrics yfl = \VggOzflt satisfying the following properties. 

1. OaB admits a multipolar post-Minkowskian expansion (MPM expansion), i.e. 
a formal expansion in powers of G (Newton's constant) 

00 
xflm = fxfl E on han (.1 

n=1 

such that each hOl# admits a finite multipolar expansion 

tmax 
haf#(x, t) - A 

L(6, 0) hOn4l(r, t), (1.2) 
1=0 

where Imax is -some maximum value of I (depending on n). 
2. yafl is stationary in the past, i.e. there exists a time - T such that 

t < - T =>(8/8t) yo"#(x, t) = 0 (1.3) 

and yafl is asymptotically Minkowskian in the past in the sense that 

t T -T= lim $fO(x, t) = fca#. (1.4) 
r-* oo 

3. yfa satisfies Einstein's vacuum equations in a domain of the type 
D = {(x, t);r > ro} for some ro > 0 which means that the hns satisfy in D the 
equations 

/ hal = Hxn, (1.5a) 

ha = -HOnfl+ J NOnfl (hm; m < n-1), (1.5b) 

where LI: = f1bgfP =- -2 + A is the flat d'Alembertian operator, Nafl is a 'source 
term' depending on the hms (for m < n-1), and HaflOl is a 'gauge term' given by 

-)Hafl = E)a Jr Hn n H (1.6a) 

with dao: = fa/b" 3/. Note that we have 

E11(MaHnl) - LIHOn (1.6b) 

In this paper we relax the last assumption of paper I, namely that &, 0 afl - 0 
(harmonic coordinates), and thus we leave unspecified the Hns in (1.5). 

Let us employ, with Geroch & Horowitz (1978), a definition for asymptotic 

t We use the notation of paper I: signature - + ++; Greek indices = 0, 1, 2, 3; Latin 
indices = 1, 2, 3; g: = -det (g,P); fcfl =fa = flat metric = diag(-1, +1, +1, +1); N, R are 
the usual sets of non-negative integers and real numbers; Cv( U) is the set of p-times continuously 
differentiable functions in the open set U (p < + oo); r = (x2 + x2 +x2)2; ni = xi/r; ai = 81W; 
nL = niln- 2 ... nil and aL = 

il ai2 . .il where L = i1i2 ... il is a multi-index with I indices; niL iS 
the (symmetric) trace-free part (STF part) of nL; we use c = 1 throughout the paper. 
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simplicity that slightly differs from Penrose's original definition by the following: 
we require that manifolds, Lorentz metrics and the conformal factor are Co instead 
of C4, C3 and C3 respectively, and that infinity is topologically S2 x R with complete 
'RlWs' (so that the global asymptotic structure is the same as those of Minkowski 
space-time). However, we keep the terminology 'asymptotically simple' instead 
of 'asymptotically flat' to emphasize that the concept is only a definition. For 
reviews of properties satisfied by an asymptotically simple space-time see Geroch 
(I977), Schmidt (I979) and Ashtekar (I984). 

Definition 1.1. A space-time (M, gaB), i.e. a CO connected Hausdorff orientable 
manifold M with a C" Lorentz metric gaB on M, is said to be asymptotically simple 
at null infinity if there exists a CO manifold M with boundary [ (c M) together 
with a C" Lorentz metric on M and a CO scalar field Q on M such that: 

(a) in the interior M-Xf we have Q > 0 and 9= Q 
(b) at the boundary f we have Q = 0, Vf #0, V QV,Qf = 0 and V, V2 = 0, 

where Vx = gafl V} is the covariant derivative operator associated with g; 
(c) Xf consists of two parts, f - and f +, each having topology S2 x lR, with the 

'RlWs' being complete null generators. 
In this paper we shall prove the following theorem. 

THEOREM 1.1. The general metric 4 - f Mfl + E lG9 h which is a solution of 
(1.1)-(1.5) and which admits harmonic coordinates in the domain D, rewritten in 
covariant form ag = fxfl + En 1OG gnY.f yields a sequence of space-times (M, g[p] ajg) 
for p > 1, where = fa,+ P= GOyl, which all satisfy definition 1.1. 

We require in theorem 1.1 that g admits, in the sense of power series in G, 
harmonic coordinates in D to connect g to the harmonic metrics of paper I. 
Theorem 1.1 gives us some confidence that an actual isolated system, stationary 
before a time - T and non-stationary thereafter, generates a space-time solution 
of Einstein's equations that is asymptotically simple (definition 1.1). Note, 
however, that the assumption of stationarity before the time - T is essential for 
theorem 1.1 to hold. Indeed, for a system that is always non-stationary (in 
particular, non-stationary in the remote past) asymptotic simplicity probably 
neither holds at .f- (see, for example, Bardeen & Press 1973; Walker & Will 1979) 
nor even at X + (Damour I986). 

To see precisely what to do for proving theorem 1. 1, let us consider the general 
MPM Einstein metric 9 = f + In > 1 Gn hn (stationary in the past and asymptotically 
Minkowskian in the past) in harmonic coordinates (i.e. such that 8,h, MO= 0 for 
all n) that has been constructed and studied in paper I. This metric admits 
(paper I, theorem 7.2) the following asymptotic expansion at the infinity r -> 0 
with t - r = const.: V N > No for No large enough, we have 

(N n-1 
hn(X, t) = n j E (1gr)P r kFn -(t r) +RN(r, t-r)j (1.7) 

t=I 0 k=1 p= o 

where the functions FInkp(u) are C?ll() and constant when u -T, and where the 
remainders I?Rn(r, u) are O (r-N)-functions (paper I, definition 7.1). Similarly, hn 
admits an asymptotic expansion of the type hn n nL (lg r)P ra Hnap(t) + TfN in the 
near zone r->0 with t = const. (paper I, equation (5.4)). 
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In the near zone, the logarithms are probably caused by backscattering effects 
(Bonnor 1974; Thorne I 980) and thus they probably reflect physical properties of 
gravitational waves. On the contrary, the logarithms of (1.7) (in the 'outgoing' 
far zone), that have been known to appear since the work of Fock (1959), might 
be an artefact due to the use of harmonic coordinates (Isaacson & Winicour I 968; 
Madore 1970; Anderson 1979). These logarithms are troublesome because at large 
distances from the origin the nth post-Minkowskian approximation becomes larger 
than the (n- 1)th one. (With a source at the origin, this occurs typically for 
r > AeA/GM, where A is the gravitational wavelength and M the mass of the source.) 
Furthermore, trying to apply definition 1.1 with the most natural conformal factor 
Q = 1/r, and by using coordinates x = (Q, u, 0, 0) with u = t-r, we are faced 
with powers of lg Q that prevent the conformal metric from being C" in a 
neighbourhood of Q = 0. Therefore what is needed (and it is possible to do so) is 
to construct a new ('good') coordinate system (distinct from the harmonic 
coordinate system) such that the transformed h.s admit expansions at infinity in 
powers of 1 /r only (no lg r terms). 

In fact, rather than exhibiting directly the coordinate transformation, we set 
up (in ?2), by using the tools and the algorithmic method of paper I, an improved 
algorithm that constructs a particular metric (called 9rad) expressed in 'good' 
coordinates. In ? 3 we prove that the space-time (M, grad) is asymptotically simple 
and we give some physical interpretations. Finally, in ?4, we show that 9rad iS 
'equivalent' to the general metric of paper I. This will complete the proof of 
theorem 1.1. 

2. CONSTRUCTION OF A RADIATIVE FIELD 

We wish to construct a (stationary in the past and asymptotically Minkowskian 
in the past) MPM radiative field in the sense of Papapetrou (i969) and Madore 
(I970), ie.a MPM field 9rad =f+l.>G h such that each h admits, 
when r -> o, an asymptotic expansion in powers of 1 /r along a family of forward 
cones t - r = const. More precisely, by using the class of functions YO defined in 
paper I (definition 7.2) we want, Vn > 1, Dhrad n (the dynamic part, zero in the 
past, of hrad n) to belong to YO, that is that there exist some functions Fnk(U) that 
are both C7O(lR) and zero in the past (u < - T), and some functions R'nN(r, u) that 
are O(r-N) (paper I, definition 7.1) such that, VN > 0, 

tmax N 

Dhradn(X, t) = n 2 
r FInk(t- r) . (2.1) 1=0 k==1-J 

The stationary part of hradn, Shrad (constant in time), is simply a finite sum of 
terms nLrk FLk with k > n (as shown in Appendix A). 

2.1. A linearized radiative field 
Our first problem is to find a convenient 'linearized radiative field', hradi, i.e. 

a solution of Einstein's linearized vacuum equations generating at further 
approximation steps a MPM radiative field. Consider the most general solution, 
satisfying the conditions (1.1)-(1.4), of the linearized vacuum equations in 
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harmonic coordinates (Llha4l = -,#hafl = 0), which has been dealt with by Sachs & 
Bergmann (1958); Sachs (I96I); Pirani (I964); Thorne (I980) (for a careful 
derivation of this general solution see paper I, ?2). This solution can be written, 
modulo an infinitesimal coordinate transformation, as the following 'canonical' 
multipolar expansion hcan1 [X#], depending on a finite set of C'(lR) STF tensors 
(multipole moments) ./ = {ML(t), SL(t)}, all constant in the past with M, M? and 
Si constant for all times. (We employ the notations of paper I, equations (2.32), 
except for the script letter Xk we use here to avoid confusion with the mass 
monopole M): 

hcani []-4 L ()L[r-ML(t-r)], (2.2a) 
I o 

?cani [M +4 E (!)aL-i [r-1 )M L 1(t-r)] 

+4 ) iabaaL-l [r SbL-l(t-r)], (2.2b) 

hian [X] = 4 E L-2 [r1 (2)MiJL2(t-r)] 
I 2 

-81z l+1 aaL-2 [r-leab (i (1)Sj) bL-2(t- r)]. (2.2c) 

This linearized field is the canonical linearized field used in Thorne (i 980, equations 
(8.12)). Expanding the derivatives aL, we see that hcani is a finite sum of terms 
AL r-k FkL(t-r) (with k > 1) and thus it is a finite expansion in powers of I /r along 
the cones t - r = const. (hence Dhcan IeP YO). However, these cones are not null 
hypersurfaces for the metric fl + GhaC181 since the equations for these null 
hypersurfaces are easily seen to be (neglecting terms of order Q(G2)): 

t-r-2GM lg2r+ I G r , C' nL r-k (I k)ML(t-r) = const., (2.3) 
lI1 kl1 

where the Cks are some constant coefficients, nL = nil nf2 ... nil and (P)M(u) = 
(d/du)P M(u). Thus the cones t - r = const. diverge (in harmonic coordinates) when 
r oo as 2GM Ig r from a family of null hypersurfaces off+ Ghcan 1i Madore (I 970) 
has proved that the cones t - r = const. along which a radiative field admits a 
1 /r-expansion must be, on the contrary, asymptotically tangent to a family of null 
hypersurfaces of the metric. He therefore concluded that a linearized harmonic 
metric, such as hcan 1' cannot be the linearized approximation of a radiative field: 
hcan 1 is not a convenient 'linearized radiative field'. 

We can easily find a convenient hrad such that the cones t - r const. are 
asymptotically tangent to null hypersurfaces of f+ Ghrad 1. The simplest choice is 

h'r-'laod 1 [X =hO-'fl 1 [.X] + da 6fl + afl ,a _fafB a 6s(2.4a) 
where the vector 6a is 

= 2Mf" lg r (-2M lg r, 0), (2.4b) 
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M being the mass monopole associated with M. hradl defined by (2.4) can be 
thought of as being the transformation of hcani by the infinitesimal coordinate 
change (t, x) -> (t - 2GM lg r, x) so that it is clear from (2.3) that, after transform- 
ation, the new cones t - r = const. are up to order O(02) asymptotically tangent 
to null hypersurfaces of f+ Ghradj. The (new) coordinates are not harmonic 
coordinates for hrad1 because we have 

hrxaaAdl = A6& = 2Mr-2fO :# 0 (2.5) 

(with A = g8? j j) hrad1 is, like hean1, a finite sum of terms nL r-k FkL(t - r) with 
k > 1. In the following we will need to consider the dominant part of hradl for 
r ->oo with t-r = const., namely r-1 F1(t-r, n) = n'L r-rl FL(t-r). From (2.2) 
and (2.4) we find 

Fxfl(t-r, n) = 2M(f0'I Vfl+fo0 k1) + ze4(t-r, n), (2.6) 

where kac is the Minkowski null vector ka = (1, n) (ka = fkfl = (-1, n)), and zaB 
is given by 

zOO(t-r, n) = -4 n n (t)ML(t-r), (2.7 a) 
I 2 

Zoi(t-r, n) = -4 n (! n L-1 ML_(t -r) 
I 2 

+4 (t + iablaL- n )SbL (t-r), (2.7 b) + 
42 (I+ 1)! la L1 5-( 

zij(t-r, n) =-4 0nL_2 MMjL-2(t- r) 
I 2 

+ 8 n )aL-2 6ab(i (S)S ) bL-2(t- r). (2.7 c) 
I 2 (1+ 1)! 

Note that ze4 is zero for t - r < -T. Contractions with kax are 

kcFfl #= 2Mklx (2.8a) 
and 

kckj1zF = O. (2.8b) 

2.2. A quadratic radiative field 
With hrad1 in hand, the next step is to consider Nrad2 = N2(hrad), namely the 

quadratic source of Einstein's equations (1.5) computed with hradl. The exact 
expression of N2(h) is: 

N24(h) =-8,(hL hP) + 2 h(fi , ) P + , h kL i w hl'P 

_ L e ah h j Jr #huP - 8h-28(a h# c8 h? + 8P hLt 8h 

rahL 1 h, r 1 hpp c hPP + hp,p P hP], (2.9) 

with hl = flp hkP =fl fpf Py and T(a? = 1(TOO + T#0'). Then we choose, following 
the method of paper I, a particular solution Dpr''d 2 that is zero in the past of the 
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d'Alembertian equation Lip4- =DNrad2 (where DNrad2 is the dynamic part of 
Nrad 2) by using the operator FPZEl1 ('finite part' of the retarded integral), which 
has been defined in paper I (definition 3.3) by means of analytic continuation: 

13Prad2 = FPOR DDNFPld2 (2.10) 

It is possible to do this because we check that DNrad2(x, t) belongs to the class of 
functions LO (paper I, definition 3.2) and thus, by paper I, theorem 3.1, we have 
Z DPrad 2 -DNrad2 and DPrad 2e L1. Now by exactly the same reasoning as used in 
proceeding from (4.10) to (4.13) in paper I, we can associate to DPr-ad 2 a tensor 
Dqra@d2 that is zero in the past and satisfies L_Dq'rafld2 = 

- (hence Dqrad2 belongs to 
LO and YO), and furthermore is such that 

0l Dqxrad 2 =- DPrad2 (2.112) 

Then the sum DPrad2+Dqrad2+Shrad2y where the stationary Shrad2 is given in 
Appendix A, is a particular divergence-free solution of Einstein's quadratic 
equations (1.5) with source Nlrafld2. However, we will see just below that this 
particular quadratic solution, although coming from a 'good' radiative linearized 
hradl does not admit an asymptotic expansion in powers of 1/r only avlong the 
cones t- r = const. (i.e. the dynamic part does not belong to ?2O). 

Let us recall a result of paper I (lemma 7.4) according to which the (finite part 
of the) retarded integral of a source of the type r- F(t - r, n), where F is zero in 
the past, belongs, for j > 3, to 'O, and belongs, for j = 2, to ?' (i.e. admits an 
expansion that contains either zero or one power of lg r; see definition 7.2 of 
paper I). The source Nrad which is precisely a finite sum of terms r- A,(t - r, n) 
with j > 2, will therefore generate far-zone logarithms in DPrad 2 if A2 (which is zero 
in the past) is not always zero. It turns out that A2, which can be computed by 
replacing the 'r-'-part' of hradi in (2.9), is not zero (hence DPrad 2e l) but has 
the particular form of the stress-energy tensor for a 'swarm of gravitons'. We find 

'A2a, = kax kfl(1(l)>1)z1P _((1) 1)> (2.12) 

where (')z,, is the time-derivative of z, = fp z, = fppf.azfa. It will be convenient 
to introduce the following integral &(t - r, n) 

-r 
&(t-r, n) = du('(')zP( 1 (1)z/ , (1)z') (u, n), (2.13a) 

-00 

the interpretation of which will be given in ? 3. Note that &(t - r, n) is zero for 
t - r < -T. With this notation we have 

A2a-(t-r, n) = 4ka- 0f(l)g(t-r, n). (2.13b) 

Now the point is that, because of the particular form of A2a-, we can find a vector 
Aa such that the 'gauge term' -Aa= a' A, + Ofl Aa- -Pfl aAX, when added to the 
Y1-expansion of the retarded integral of r-2A2a-, exactly cancels the logarithms in 
this expansion so that the result belongs to fO. We prove the following lemma 
in Appendix B. 

LEMMA 2.1. Let Aa be given by 

Aa = FP-1 1[2r-2ka- (t-r, n)]. (2.14a) 
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Then we have 
FPLI -1 [4r-2 ka1 k1cfl()&(t- r, n)] + OPOe ?f'. (2.14b) 

Therefore, because r-2Aoa = 4r-2 k1k V( alone produces logarithms in DPrad 2 
we find 

DPr'ad 2 + aAaE (2. 15) 
so the tensor u 2 defined by 

Urad 2:= DPard 2 + Dqrad 2 + Sharad 2 + dAaA (2.16) 
is a solution of Einstein's quadratic equations (1.5a, b) (with n = 2 and non-zero 
divergence: H02 = MP 0 ) that admits an asymptotic expansion in powers of 1/r 
('beginning ' at r-1) along the cones t - r = const. (indeed DUrad 2e ?90 by (2.15) and 
Shrad2 has the structure (A 3)). 

It would be possible to define the quadratic hrad 2 to be simply urad2, and then 
to continue the algorithm exactly in the same manner (cancelling at each step 
n > 3 the 'new' logarithms that appear by some OAM-8); see Blanchet (I986) for this 
way of proceeding. But it is convenient, and physically meaningful, to define a 
hrad 2 expansion of which at infinity 'begins' at r-2 instead of r-1 for Urad 2. Then 
we will see that no new logarithms appear at the cubic step, and, continuing in 
this manner, at higher steps. 

Let - r-1 Zc%fl(t - r, n), where the minus sign is chosen for later convenience, be the 
(dominant) 'r-l-term' at infinity in U;ad2 

Ur =d2 r- lZ06l(t -r, n)+O(r 2). (2.17) 

Because the stationary shrad2 is at least of order O(r-2) (by (A 3)), this - r-1 PZ is 
equal to the r-l-term in the YO0-expansion of DUdra#d2. Thus ZaA is zero in the past. 
Now consider the divergence fl ucafl2 of U4rad2; on one hand we have, at infinity, 

8flUd2d2 =r-1 kf(0/t) Za4(t-r, n) +O(r-2) (2.18a) 

and, on the other hand (from (2.16)), 

&# Uara#d 2 = lAa = 2r-2 ka (t-r, n). (2.18b) 

From (2.18a, b) we conclude that k1c Zxfl (t- r, n) must be a constant in time. But 
Z - (t-r, n) is zero in the past, therefore the constant is necessarily zero and we have 

k1flZa-4(t-r, n) = 0. (2.19) 

With this property we can prove (in Appendix B) the following lemma (adapted 
from ?2 of paper I). 

LEMMA 2.2. For Z%,P zero in the past and satisfying (2.19), there exist a set of 
multipole moments Xh/1 and a d'Alembertian-free vector 0a (FLa% = 0), with XI#1 and 

a both zero in the past, such that, for r -* oo and t - r = const., 

hrdl [ ak']+afl = r lZafl+O(r 2). (2.20) 

In other words, r-1 ZOfl can be regarded as the r-l-term in har-adl [X1] + 0f. Note 
that because X1 is zero in the past we have hrad 1 [Xk'1] = hcan 1 [X1] So, if we add 
to uo'fl the linearized (harmonic) hOrladl [/] + 8?la, which is a solution of 
Zhcxfl = hxflPO = 0, that is a solution of the 'homogeneous' problem, we obtain a 
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solution of Einstein's quadratic equations that admits, like uraadd2, a radiative 
expansion at infinity in powers of 1 /r and furthermore this expansion 'begins' at 
r2. This is exactly what we wanted so we pose 

hrad 2 [X] = DParad 2 + Dqa4d 2 + Shra8d 2 + hrafld 1 ]+ f alfl + Mafl (2.21) 

and we are assured that Dhrad 2e 'O and hrad2 =O(r-2) (in the sense of the 
YO-expansions and of the known structure (A 3) of shrad 2) 

2.3. Post-quadratic radiative fields 

The following steps of the algorithm are straightforward. Given n > 3 we 
recursively assume that some hradm for 2 < m < n-I have been constructed from 
hrad 1 to satisfy Einstein's equations and such that Dhrad m belongs both to Lm-1 and 
to Y': Dhrad m e Lm-l n sO, with a radiative expansion at infinity beginning at r-2: 
hradm = O(r-2). Then we compute the source N. with the hradms and find, by 
lemmas 3.4 and 7.3 of paper I, that Nrad.neLn-2 n ?o. Furthermore, because 
hradm = O(r-2) at infinity for m > 2 and Nrad n (with n > 3) is at least a quadratic 
product of hrad1 and hradm (m > 2) or a cubic product of three hradi1 we find that 

Nradn = O(r-3) at infinity: terms of order r2, which produce logarithms, are 
absent. Therefore, by theorem 7.1 and lemma 7.4 of paper I, the retarded integral 
of DNradn is a ?O-expansion; we have 

DPradn = FPOR DNrIa6dn e-0 for n > 3, (2.22) 

(and also DPradneLn-1) in contrast with DPrad2Ce 1. As announced, no new 
logarithms appear at the post-quadratic steps. Thus the desired hradn is obtained 
by adding to DPradn its associated Dqradn (so Einstein's equations are satisfied), 
the stationary shradn given in Appendix A, and the convenient homogeneous 
solution hrad 1 Lfn-1] + On-1 that cancels, by lemma 2.2, the r-l-part of 
DPrad n + Dqrad n + Shrad n, 

hradfnl[X]: = DPradfn + Dqrafld n + shra6d n + hrfld 1 [n - 1] + anl# for n > 3. (2.23) 

This completes the construction of an MPM radiative field. We thus state the 
following. 

PROPOSITION 2.1. Given the linearized metric hrad 1[X ] of (2.4), there exists 
an algorithm that constructs a formal metric solution of (1.1)-(1.4), 

9rad f] = f +n > 1 Gn hrad n [XI] (the hrad ns being given by (2.4), (2.21) and (2.23)), 
solving Einstein's vacuum equations (in D), and such that each hrw n [X ] admits the 
following asymptotic expansion (V N > No, where No is chosen large enough so that 
RnN is zero in the past): 

(N 

hrad n(x, t)= z fi{ z r nk(t r+ nLN(r, t-r)} (2.24) 
1 o k=1 

where the functions FLk(u) are C' (R8) and constant when u -T, and where the 
RnN(r, u) are 0?(r-). 

This 'good' expansion at infinity is to be contrasted with the 'bad' logarithmic 
expansion of the hns in harmonic coordinates (paper I, equation (7.13), or (1.7) 
above). 
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3. PROPERTIES OF THE RADIATIVE FIELD 

3.1. Asymptotic simplicity 
Let us prove, as a first step in the proof of theorem 1.1, that the MPM radiative 

9r~~~~d + 10rdn field yarafl= fa-fl +In= Gn haraAdn rewritten in covariant form gradafl = +n= 
Gn grad na#, yields a formal space-time that is asymptotically simple in the following 
sense. 

PROPOSITION 3.1. For any p > 1, the space-time (M, grad[p]acfl) where 
grad [p]ctfl = n+ _ 

51 
an grad naf, satisfies definition 1.1 for asymptotic simplicity. 

Proof. Let us deal first with J+. We introduce a conformal factor Q = r-1, 
a retarded time u = t-r and, for any p > 1, the conformal metric 
d --= Q2 drad[xp]xld dxg. In the coordinates x" = (9, u, 0, S) we have 

dV[p] = 9rad[p]vd,,dxi d. Then it can be checked, thanks to the asymptotic 
expansions (2.24) of the hrad ns (and by using the properties of the Y0 class) that 
each -rad[p] v admits the following expansion (V N > No) 

{N+1 

grad[p](Q U, 0, () = nL(O, j)ftj? Qk L k(U)+SLN+1(0, U) (3.1) 

where the functions GLpk(u) are C'(Rl) and constant when u -T, and the 
SPN+l(Q, u) are of the type (skipping the letters L and p) 

SN+1(Q, U) = RN+1(Q 1, U), (3.2) 

where RN+1(r, U) is a O(r-N-l)-function. The only problem we find in proving (3. 1) 
is caused by the coefficient of dQ2: grad [p] 02kk = 1 n-2 ldx 1C (G8 9rad n which is 
not apparently of 'order O(QO)'. But, in fact, it is because of (2.8b) and our choice 
hrad n = O(r-2) for n > 2. (Note, however, that in the other radiative algorithm we 
mentioned in ?2, in which hrad2 = Urad 2 given by (2.16) and where we subtract at 
each step n > 3 the 'new' logarithms, we would have as well find - Q= ?(Q?), 
so the proof of the proposition 3.1 would be exactly the same.) 

The first and main task is to prove that the functions (Q, u, 0t, g)9rad[p] 
(Q, u, 6, 0), which are initially defined in ]O, + oo [ x lR3, can be extended for Q = 0 
to functions belonging to CO ([O, + oo[ x R3), i.e. belonging to CN([O, + c [ x R3) for 
any NE N, where [0, + oo[ x R3 is endowed with the induced topology of R4. For 
doing this we will prove the equivalent requirement (see, for example, Schwartz 
I 966, p. 313) that, V NE N (or rather V N > NO), we can find extensions (which will 
depend on N) of these functions for all values of Q E DR belonging to CN(IR4). Since 
each function (nQ, U, 6, NZS) onL(6, S)?QkGPk(U) in (3.1), considered as a function 
on 1R4, belongs to COO?(R4) it is sufficient to prove that, V N > NO, we can extend 
SN+1(Q, u) to a function on DR2 belonging to CN(R2). We pose, for Q + 0, 

9N+1(0, U): = SN+1(1I1, U) = RN+1(1QI11, U) (3.3) 

(say). First we have YN+1(Q, u) E C??(R* x DR) where lR* = Rlt-{O}. Indeed we know 
that the function (x, t) n nL RN+1(r, u) belongs to LP1 (because each Dhrad n E Lnl) 
therefore we have nL RN+l(r, u) E CO [(R3 - {O}) x R] (as a function of the variables 
x and t), which implies N+j(Q, u) e C (R * x lR). Sedond, to prove that in fact 
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YN+1(Q7 U) e CN(R 2), we use lemma Et of paper I (Appendix E), which requires 
that the derivatives with respect to Q of YN+j be uniformly (in u) bounded by 
adequate powers of IQI. Let m < N and Q # 0, then we have (from the properties 
of the Oc0(r-N )-functions, lemma 7.1 of paper I), Vk >, 0, 

(d/df2)m(d/du)kN+1(2, U) = RN+1lm(1I21', u), (3.4) 

where RN+1_- is a O'(r-N-1+m)-function. Thus, by definition of the OX(r-N)_ 
functions we find V(uo, u1) E R2, there exist M > 0 and A > 0 such that 
[uo < u < u1 and 0 < IQI < A-1] imply 

I(d/d?2)m(d/du)k N+1(? , u)j < MIQIN+1lm. (3.5) 
So the hypotheses of lemma El are satisfied (with K = N) and therefore SN+l(Q, u) 
can be extended to N+1(?2, u)EiCN(R2). 

The other requirements for asymptotic simplicity at .+ are easy to prove. 
Indeed we have Va?2 = (1, 0, 0, 0) ? 0, Va V,8 =0 and 92VQ0 = equals 
[Q 1 8nigrad nflla= 0 And, at 2=0, 0 ds[p is equal to 
0 . du2 + d62 + sin2 0 d02 so that f+ is topologically S2 x lR. The completeness is a 
consequence of our assumption according to which the construction is valid in the 
whole of the 'exterior' region D = {(x, t), r > rO > 0}. 

Finally, the same reasoning applies to f- with the simplification that, because 
the metric is stationary in the past (and has the structure (A 3)), it is an easy matter 
to prove -that the conformal metric in coordinates (?, t+r, 0, 0) is Co. 

3.2. Interpretation of X and o 
We found it convenient to define hrad n for n > 2 in such a way that its expansion 

at infinity 'begins' at the order r-2. Thus the dominant, or radiative, part at 
infinity (the r-l-part) of the full non-linear 9rad =f +?n , Gn hradn comes exclus- 
ively from the linearized hrad 1. In other words, only the linearized hradi 'radiates' 
at infinity and the nonlinear hradfnS for n > 2 'do not radiate'. This means that 
the functions.# = {ML(t), SL(t)} that serve as unknown parameters in 9rad are in 
fact exactly the radiative, or far-zone, multipole moments in the sense of Thorne 
(I980, p. 331), ML(t) = Mrad(t); S_(t) - Srad(t). (3.6) 
We expect these moments to be measured on a detector far from the system. 
In other algorithms, such as the harmonic algorithms in paper I or the second 
radiative algorithm mentioned in ?2 (in which hrad2 = Urad2), the functions ML(t) 
and SL(t) do not have this interpretation. 

Finally, let us compute the energy-momentum vector PX(u), at f+, associated 
with grad by the following method (see, for example, Streubel 1978; Porrill & 
Stewart 1979): we integrate by using Gauss's theorem the usual Landau-Lifschitz 
(I971) energy-momentum pseudo-tensor over a sphere r = const., t = const. and 
then take the limit r-* oo with t - r = const. The result is 

PO(u) = ( O G ka (u, n), (3.7) 

(with dQ = sin 6 d6 doiS). Thus we can interpret Gi(u, n) as being 4i times the 
energy per steradian carried off by the radiation field before the time u and in the 
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direction n. Note that o is positive as easily deduced from the algebraic properties 
of za8 (equations (2.7)), 

u 
o(u, n) = f du' [-1-(p3pj (1)z. _qiqj ()Z )2 + pqj(l)zj)2], (3.8) 

_00 

where pi = ani/a and qi sin 0 = ani/ao. It can be recovered by integration of kIca0 
over angles equations (4.16') and (4.20') of Thorne (I980) giving the energy and 
linear momentum carried off at infinity by the waves as infinite formal multipolar 
series (the dominant energy contribution agreeing with the usual Einstein 
quadrupole formula). 

4. COORDINATE TRANSFORMATION BETWEEN THE CANONICAL AND 
THE RADIATIVE METRICS 

Up to now we have proven asymptotic simplicity only for a particular MPM 
metric, namely the radiative metric 9rad [A'] constructed in ?2. To prove theorem 
1.1, we need to show that the general metric 9gen satisfying our assumptions 
((1.1)-(1.5) and existence of harmonic coordinates) can be connected to some 
9rad [Xi] by a coordinate transformation. 

In paper I (theorem 4.5) this has been shown for a particular 'canonical' MPM 
metric 9canL'#] in harmonic coordinates whose linearized approximation is 
hcani [X'] ((2.2)); given any fgen, there exist X and a coordinate transformation 
T such that T (4.1) 

#Mgen = fcan [ 4. 

We will prove in this section that we can also connect 9can and 9rad; given X#, there 
exist 1' and a coordinate transformation T' such that 

T'9can [A'] = 9rad [/]. (4.2) 

Equation (4.2), combined with (4.1), is the needed result that completes the proof 
of theorem 1.1. Note that in (4.2) the coordinate transformation must be done 
conjointly with a change A J' of multipole moments (T. Damour, personal 
communication, I984). 

So let X be given. We first consider the coordinate transformation 

X /a = xa + 09a, (4.3) 

where a is the vector defined by (2.4 b): -a = 2Mf00 lg r in which M is the mass 
monopole associated with X. This coordinate transformation transforms the 
harmonic 9can [,'] into a non-harmonic 9can [X ] whose linearized approximation 
is equal to hrad [1 ] (because hrad1 given by (2.4a) differs from hcani by the 

'gauge' agafl): an [] =[f +Ghradl[A#]+O(G2). (4.4) 

Consider now the quadratic approximation of an namely h'an2 This h 2 whose 
can) can 2. This hcan 2' hs 

divergence is hkc1an 1 ,,,, satisfies Einstein's quadratic equations (1.5) with source 
Nrad 2 = N2(hrad 1) lha2 =Na d2 + aHcl2, (4.5a) 

a h /aflh2 = :Hcan2=k Man ajv (4.5b) 
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(with UaI#= -aH H + af Ix -fcafl , H). To relate the unknown h'an2 to h can rad 2' we 
define, by means of the operator FPIj1, the vector 

a:= FPn11(hc4faflU ). (4.6) 

This is possible because cPak/d,p,,g is zero in the past (because shlcan = 0) and 
belongs to LO. Thus oa e L1. Then we easily check that the quantity Dpiald 2 + 
DqRazd 2 + Shraaaad 2 + &aIfl where DPrad Dqrad and sh are pieces of the construction Dead2 2 ha Pa 2' 2Dqa2epecso 
of hrad2 (2.21) is a solution of the same equations as those that are satisfied by 
hcan2 (4.5). Therefore the difference between this quantity and h1a12 is equal to 
a solution of the (harmonic) homogeneous problem to which we know the general 
solution, i.e. this difference is equal to a linearized harmonic metric 
h'cx1 [an 1] + a al, where X 1 is some set of multipole moments and P`a a 
d'Alembertian-free vector. Moreover, because the stationary shrad2 and shcan2 are 
both of order O(r-2) when r-* oo (Appendix A), we find that the mass monopole 
M1 associated with . 1 is zero, so that we can write hcan 1 [Xf "] = hradl [X 1]. Now 
we have 

DPrad 2 + Dqrad 2 + Shrd 2+ a -hcan2 = hd [ ]+ (4.7) 

and thus, by using definition (2.21) of hrad2, 

hlafl = haad 2 [I- hra#d 1 [X + X "]-a Va#, (4.8) 
where Va is the vector 

Va = Aa- _ (a + Daj + l . (4.9) 

Now we perform the coordinate transformation 

x /a = xa + G2 Va. (4.10) 

Then %4an is transformed into Yean whose linearized and quadratic approximations 
are precisely hradl and hrad2 being computed not with the original X' but with a 
'corrected' X-G('1 +.X#), 

%an [I] = f+ Ghradl [G(# + ][ +)] + G2hrad2[G(A + X)]+O(G3). 
(4.11) 

The same reasoning can easily be extended to any order G11.t The final multipole 
moment X ' is a complicated functional of.X: ' = X-(7(X1 +1+ ') +.... X 

APPENDIX A. THE-STATIONARY METRIC 

We wish to construct a stationary MPM metrief+ > 1 Gn sh1adn such that Sh 
is the stationary part of hradl (2.4a) 

shdrafl = 5hcafl1 + a (A 1) 

A possible choice is simply to define this metric as the transformed of the stationary 
canonical metric of paper I by the coordinate transformation x'a = xa' + G06 
(T. Damour, personal communication I985). However, we prefer for practical 

t For n > 3, it is necessary to study separately the stationary part of wo, (4.6) in the manner 
of Appendix C, ?C2, in paper I. 
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reasons to define the stationary shrad n for n > 2 'similarly' to Dhrad n i.e. by using 
the operator FPA-1 (paper I, Appendix C) on the stationary sourNe SNradn, 

shrad n: = FPA sNrad n. (A 2) 

By the reasoning of paper I (Appendix C), shradn solves Einstein's stationary 
equations with zero divergence (Ashra#dn = SNra#dn and 8 shdrafdn = 0) and has the 
structure 

sh'r-a#d n AL I r- k 
FLnl, (A 3) 

1>i0 k>n 

(where the FLk are constant) provided that 'critical terms' in the quadratic 
5Nr?ad SNtjads and the cubic SNrdS, which produce logarithms, are absent (as it 
is the case for 5an2, sN- and SNicjan3 in paper I). We now prove that 
these 'critical terms' are absent. Indeed, under the coordinate transformation 
x/a = x + GP, shcan is transformed into sh'ani = shradl (by (A 1)), shcan 2 iS 
transformed into 

can2= schan2 + 4M2r2 (A 4a) 

sh'Oain2 - h^?cin2, (A 4b) 

VJn2 = (A 4c) 

and shcan 3 is transformed into 

Sh 3=0 Shn3 + 2 ShOi an2 6 (A 5a) 

5 can3 can 3 can 2 ia f (A5b) 

sh'in = shcan3. (A 5c) 

Now 5h,an2 must satisfy Einstein's equations with source SNrad2 (because 
ca= radl) Ashn2 rad2 y using the values (A 4) for sh' we find cani 5 ie ~~can S a25can2 

SNrad 2 = SNC?an 2 + A(4M2r-2), (A 6a) 

SNroad2 = sNcian2 (A 6b) 

SNrad2 = sNcjan2 (A 6c) 

so no 'critical terms' occur in SNOr and sNr0 because they do not occur in SN2c" 
and SNIcJan2. We thus pose Shrad2 = FPA SNrad2 and find 5'rad2 = Shcan2 (A 4). 
Now sh' an must satisfy Einstein's equations with source SNrad 3 (because 
shcani =Shradl and shcan2 = Shrad 2)' i.e. 

ASh'a 3 = SNM-d 3 + a(shicjan 2 ai1j Vfl. (A 7) 

From (A 5) we then find 

ad= SS c?an 3 +A (2 Sh0i 2 ai b) (A 8a) 
SA`rad 35 

a 
cans+(h 2 k~' Ab 

caSNnc)an 3 + A(Shij 2 ai 0) - i(shckan 2 ajck ? (A 8/b) 

SNrad - s cans (A3 c) 

Therefore no 'critical' terms appear in sNirJad. d 
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APPENDIX 13. PROOFS OF LEMMAS 2.1 AND 2.2 

B 1. Proof of lemma 2.1 
Let us first recall the following result of paper I (equation (7.11)): for any 

function F that is zero in the past, we have 
FPI:R[M rl 2 W .,1 r-IF(t -r)] + '(-)I Ig r aaL a,..8 [-(ll)(r] .? 

(B 1) 
where ka = (81, n), aa = (-aO 7i ) and (~-'-)Fis the (I + 1)th anti-derivative of F that 
is zero, together with all its derivatives, in the past. Now consider the unique 
decomposition of o(t - r, n) into symmetric trace-free (STF) tensors &L(t-r): 

(tr, n) z nLfL(t-r). (B 2) 
> o 

Then, applying equation (B 1), we readily find for AL given by (2,14a) 

OAa$_8 2 Ig r E;() aa L[-l (--)Lr)] EiY0, (B 3) 
and also l o 

FPr] 1[4r2A kf(k)8M(t- r, n)] + 2 lgr (- )t da af dL [r' ( -2)L(t-r)] e Y0. 
I > 0 (B 4) 

The sum of (B 3) and (B 4) is exactly the equation to be proved (2.14b). U 
Note that the choice we have made for AL (2.14a) is not unique. For instance, 

another choice as valid as AO but less elegant would have been 

A= lgr a (=)laaL[r-1( g 2)gL(t-r)1. (B15) 
1 0 

13 2. Proof of lemma 2.2 
Consider the uniq-ue decomposition of Za4'f(t- r, n) into ten STF tensors 

AL(t-r), .*, JL(t-r), all zero for t T: 

zoo nLAL, (B 6a) 
I > 

Z = %L BL + z {L-1 0iL-1 + 6iab aL-1 DbL-}, (B 6b) 
I >1 1 >1 

Z? = E {InL EL + tjJ nL FL} + {nL-1 (iGj) L-1 + 6ab (inf) aL-1 IbL-l} 
10 11 

+ E {nL-2 I'JL-2 + naL-2 cab (i Jj) bL-2}1 (B 6 C) 
I > 2 

By the four constraints k - ZOI/ = O we find 

A=B=E+F, (B7a) 

Ai-2Bi+E,+F, = 2Dj-H, = o, (B 7b) 

CL = AL-BL for l > 1, (1 7c) 

GL= 2(BL-EL-FL) for 1 > 1, (B 7d) 

IL= AL-2BL+EL+FL for 1,> 2, (B 7e) 

JL= 2DL-HL for I 1 2. (B 7f) 
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From (B 7 c)-(B 7f) we see that Za,' is completely characterized by the set 
{AL, BL DL, EL, FL, HL} with the constraints (B 7a, b). We now define a new set 
{ML, SL, WL, XL, YL' ZL} by the equations 

ML:= --1! [( I)AL-2()BL+ EL+ FL] for l 0, (B 8a) 

SL= 4[(l+1)!/l][(-1)DL-2(-1)HL] for 1 > 1, (B 8b) 

WL:= ( )' [- ( ')B +2( 1 U)EL] for > 0, (B8c) 

XL:= 2(-)l(-1-2)EL for 10, (B8d) 

YL:= (-)' [()BL-( )EL-(1I)FL] for l 1 1, (B 8e) 

ZL: = 1(-)1+1( 1 1)HL for I,> 1. (B 8f) 

(Apart from simple substitutions, these equations are the same as (2.26) of 
paper I.) Then, the constraints (B 7 a, b) become 

M= M, = S? =, ?(B 9) 

and, by a straightforward calculation, we find that r-1Zalz (B 6) is exactly the 
r-1-term in hrfld 1 [X,] + D'P-fl (i.e. (2.20) holds), where X1 is the set of multipole 
moments X = (ML(u), SL(u)) given by equations (B 8a, b), where hradl [] is the 
functional given by (2.4), i.e. since M = 0, also by (2.2), and where the vector O 
is 

= L [r-1 WL(t-r)], (B lOa) 

ai iz8L [r-'XL(t -r)] 

+ I {aL-l [r'1 YiL-l(t-r)] + 6iab daL-l [r-'ZbL_l(t-r)]}. (B lOb) 

This completes the proof of lemma 2.2. U 
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