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Abstract
The ringdown phase of a black hole formed from the merger of two orbiting
black holes is described by means of the close-limit (CL) approximation starting
from second-post-Newtonian (2PN) initial conditions. The 2PN metric of
point-particle binaries is formally expanded in CL form and identified with
that of a perturbed Schwarzschild black hole. The multipolar coefficients
describing the even-parity (polar) and odd-parity (axial) components of the
linear perturbation consistently satisfy the 2PN-accurate perturbative field
equations. We use these coefficients to build initial conditions for the Regge–
Wheeler and Zerilli wave equations, which we then evolve numerically. The
ringdown waveform is obtained in two cases: head-on collision with zero-
angular momentum, composed only of even modes, and circular orbits, for
which both even and odd modes contribute. In a separate work, this formalism
is applied to the study of the gravitational recoil produced during the ringdown
phase of coalescing binary black holes.

PACS numbers: 04.25.Nx, 04.30.−w, 97.60.Lf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Post-Newtonian (PN) methods have proved to be extremely efficient in describing the inspiral
phase of compact binary systems, up to about the location of the innermost circular orbit
(ICO). The PN inspiral signal has been developed up to 3.5PN order1 for the orbital phase
evolution [1, 2] and up to 3PN order [3–5] in the amplitude waveform (see [6] for a review).
On the other hand, recent advances in numerical calculations of binary black holes [7–9] have
provided a very accurate description of the subsequent merger and ringdown phases, say, from

1 As usual the nPN order refers either to the terms ∼1/c2n in the equations of motion, with respect to the usual
Newtonian acceleration, or in the radiation field, relatively to the standard quadrupolar waveform.
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the ICO on. The comparison of the numerical relativity and PN results is a crucial task that has
been successfully achieved [10–14]. Their matching is currently under way [15] and should
yield a complete and very accurate solution of the problem of binary coalescence.

Nevertheless, analytic and/or semi-analytic methods are still very useful for gaining more
physical understanding of the relaxation of binary black holes toward their final equilibrium
state (see e.g. [16] for a recent example). Of particular importance is the close-limit (CL)
approximation method, pioneered by Price and Pullin [17] and Abrahams and Price [18]. The
CL approximation permits the description of the last stage of evolution of a black hole binary,
when the two black holes are close enough that they are surrounded by a common horizon,
as a perturbation of a single (Schwarzschild or Kerr) black hole. Recent revisits of the CL
approach made use of numerically generated initial data [19], and Bowen–York-type initial
conditions [20, 21]. Alternative analytic or semi-analytic schemes for dealing with the same
problem are based on the effective-one-body approach [22] (see [23] for a recent review).

In the present paper we shall implement the CL approximation starting from post-
Newtonian initial conditions, appropriate for the initial inspiral phase of binary black holes.
A physical motivation is that the results of numerical relativity [7–9] show that the pulse of
radiation coming from the merger phase is very short and seems to connect smoothly to the
previous inspiral and subsequent ringdown phases. It is thus reasonable to expect that PN
initial conditions starting the CL evolution should essentially yield the right physics for the
ringdown phase. The application of this formalism to the computation of the gravitational
recoil effect or ‘kick’ occurring during the ringdown phase will be presented in a separate
work [24].

Let us outline the method. We conveniently distinguish several dimensionless ratios to
describe a compact binary system. First, we introduce the ‘post-Minkowskian’ (PM) ratio,
measuring the internal gravity responsible for the dynamics of the system, and defined by

εPM ∼ GM

c2r12
, (1.1)

where r12 is the typical distance between the two compact bodies, and M = m1 + m2 is the
sum of their masses. Second, a post-Newtonian expansion will essentially be an expansion in
powers of the a priori distinct slowness parameter

εPN ∼ v2
12

c2
, (1.2)

where v12 is the typical value of the orbital relative velocity. Recall that the PN expansion is
only valid in the near zone defined by r � λ, where λ ∼ r12/

√
εPM is the typical wavelength

of the emitted gravitational waves, and r is the distance from the field point to, say, the center
of mass of the binary.

For a binary system moving on a circular orbit the two parameters εPN and εPM are
comparable, εPN ∼ εPM. In this case, if we limit the PN expansion to a few terms, we need
εPN � 1 hence r12 � GM/c2. However, it is often better to view εPN and εPM as independent
parameters because if the binary system is moving on a highly eccentric bound orbit with
eccentricity e � 1, the PN parameter can be much smaller that the PM one, since at the
apoapsis of the orbit we have εPN ∼ (1 − e) εPM � εPM. And, for an unbound orbit with
eccentricity e � 1, we would have εPN ∼ (1 + e) εPM � εPM at the periapsis.

On the other hand, the close-limit approximation consists of an expansion in powers of
the dimensionless ratio considered small2:

εCL ∼ r12

r
. (1.3)

2 In the works [17, 18], the CL parameter is defined as c2r12/(GM). More recently, Sopuerta et al [20] adopted
definition (1.3). In the formal limit r12 → 0, these two definitions are equivalent.
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This expansion can formally be viewed as an expansion when the size of the source tends to
zero, or multipolar expansion. Therefore, if we limit the expansion to a few terms, we need
εCL � 1 and the CL approximation is expected to be valid in the domain r � r12 (like a
multipole expansion).

Clearly the PN and CL approximations that we intend to employ simultaneously have
disconnected domains of validity. Indeed, the CL describes a slightly distorted black hole
such that r12 � GM/c2, so that for circular orbits εPN � 1, which makes the near zone very
small; in other words, the PN metric will only be valid very close to the source while the
CL approximation requires r � r12. Despite such apparent clash, we shall be inspired by
the method of matched asymptotic expansions [25], which in principle allows one to get an
analytic expression valid in the entire domain 0 � r < +∞. Of course, this method is based on
the existence of an overlapping zone, where the two asymptotic expansions are simultaneously
valid and can be matched together. But in the present context there is no such thing as an
overlapping zone. Hence, our use of the theory of matched asymptotic expansions to relate
PN and CL approximations can at best be only formal.

Starting from the PN metric, already in the form of an expansion in powers of εPN, we
shall restrict ourselves to the terms linear in εPM (i.e. essentially, linear in G). This is to be
consistent later with the use of a linear black hole perturbation. Then, each of the coefficients
of the PN metric will be expanded in powers of εCL, which will enable us to identify the
Schwarzschild background metric

(
up to terms of order ε2

PM

)
and the perturbation hμν of that

background. Thus, the perturbation will appear as a double expansion series of the type [cf
the explicit results (2.12)]

hμν = εPM

∑
n�0

∑
k�0

h(n,k)
μν εn

PN εk+1
CL + O

(
ε2

PM

)
, (1.4)

where n refers to the post-Newtonian order and k can be viewed as the multipolar order
of the expansion.3 In principle, one could perform the expansions in the opposite way, i.e.
expanding first in powers of εCL, and then in powers of εPN. In the method of matched
asymptotic expansions the result should be the same, i.e. term by term identical in the
double expansion series. This would however require first the knowledge of the black hole
perturbation metric in the CL approximation; such metric can only be computed numerically.

In the present paper, we shall implement the expansion (1.4), limiting ourselves to second
post-Newtonian order. The reason is that the metric is needed in closed analytic form for
any field point in the near zone, and that the 3PN metric is currently not known for any field
point; only the 3PN metric when regularized at the very location of the particles is known
[26]. One of our aims is the study reported in the separate work [24] of the gravitational recoil
effect. The recoil is the reaction of the binary system to the linear momentum carried away
by the gravitational waves, and results at leading order from the interaction between the � = 2
and � = 3 modes, where � is the azimuthal number of the decomposition of the black hole
perturbation onto tensorial spherical harmonics; we shall thus push the CL expansion up to
at least octupolar order, i.e. k � 3, to ensure that the modes � = 2 and 3 are both taken into
account.

The present approach will be limited to the case of a slowly spinning black hole. The
initial orbital angular momentum of the binary system, which is constant and supposed to give
the spin of the final black hole, is considered as part of the perturbation of a Schwarzschild
black hole, and is necessarily small. However, we have learned from numerical calculations
that the final black hole produced by coalescence is a rapidly spinning Kerr black hole

3 Our convention is that k represents the power of the separation r12 in the CL expansion, taking into account the
inverse power of r12 hidden in the PM indicator εPM in front of (1.4).
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[7–9]. The ringdown waveform that we shall compute in this paper will be that of a perturbed
Schwarzschild black hole, and hence the quasi-normal mode frequencies will not include the
effect of the black hole spin. To remedy this problem and get better agreement with numerical
relativity would necessitate similar calculations using a Kerr black hole background.

The remainder of this paper is organized as follows. In section 2 we consider the 2PN
metric of two compact bodies at first post-Minkowskian order (to be consistent with first-order
black hole perturbations) and formally re-expand it in the CL form. In section 3 we first give
a short recap of the theory of linear perturbations of a Schwarzschild black hole, and then use
this formalism to identify the perturbation associated with the previously CL-expanded 2PN
metric. In section 4 we verify that the field equations for this metric are satisfied. Using the
CL-expanded 2PN metric as initial data, we numerically evolve the Regge–Wheeler and Zerilli
functions in section 5, and present the resulting waveforms generated during the ringdown
phase of coalescing black holes, for both even- and odd-parity perturbations. Finally we
conclude in section 6. Some necessary details on black hole perturbation theory are relegated
to the appendix.

2. The 2PN metric in close-limit form

2.1. The 2PN metric for two point masses

In the present paper we shall solve numerically the Regge–Wheeler and Zerilli wave equations
(see equation (5.3) below) starting from post-Newtonian initial conditions. Thus, we assume
that the initial metric at the end of the inspiral phase is given by the standard PN metric
generated by two point masses m1 and m2 modeling two non-spinning black holes. We adopt
the 2PN precision because the 3PN metric in the near zone is not known in the ‘bulk’, i.e. for
any field point outside the position of the particles.

Our calculation starts with the post-Newtonian metric GPN
μν written in a Cartesian harmonic

coordinate system, and given as [27]4

GPN
00 = −1 +

2Gm1

c2r1
+

1

c4

[
Gm1

r1

( − (n1v1)
2 + 4v2

1

) − 2
G2m2

1

r2
1

+ G2m1m2

(
− 2

r1r2
− r1

2r3
12

+
r2

1

2r2r
3
12

− 5

2r2r12

)]
+

4G2m1m2

3c5r2
12

(n12v12) + 1 ↔ 2 + O(c−6), (2.1a)

GPN
0i = −4

Gm1

c3r1
vi

1 +
1

c5

[
ni

1

(
− G2m2

1

r2
1

(n1v1) +
G2m1m2

S2

× (−16(n12v1) + 12(n12v2) − 16(n2v1) + 12(n2v2))

)
4 Greek indices take space-time values 0, 1, 2, 3. The indices μ, ν, . . . indicate Cartesian coordinates xμ =
{ct, x, y, z}, while α, β, . . . refer to spherical coordinates xα = {ct, r, θ, ϕ}. Latin indices i, j, . . . take spatial
values 1, 2, 3. Bold-face notation is often used to denote ordinary spatial vectors, x = {xi}. The two black
holes are often labeled by A = 1, 2. Parentheses around indices are used to indicate symmetrization, e.g.
U(iV j) = 1

2

(
UiV j + UjV i

)
. The usual (Euclidean) scalar product between two 3-vectors U and V is denoted

(UV ), e.g. (n1v1) = n1 · v1. To the terms given below in equations (2.1), we have to add those ones corresponding
to the relabeling 1 ↔ 2 (with the obvious exception of the Minkowski metric which should not be counted twice).
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+ ni
12G

2m1m2

(
− 6(n12v12)

r1

r3
12

− 4(n1v1)
1

r2
12

+ 12(n1v1)
1

S2

− 16(n1v2)
1

S2
+ 4(n12v1)

1

S

(
1

S
+

1

r12

))
+ vi

1

(
Gm1

r1

(
2(n1v1)

2 − 4v2
1

)
+

G2m2
1

r2
1

+ G2m1m2

(
3r1

r3
12

− 2r2

r3
12

)
+ G2m1m2

(
− r2

2

r1r
3
12

− 3

r1r12
+

8

r2r12
− 4

r12S

))]
+ 1 ↔ 2 + O(c−6),

(2.1b)

GPN
ij = δij +

2Gm1

c2r1
δij +

1

c4

[
δij

(
− Gm1

r1
(n1v1)

2 +
G2m2

1

r2
1

+ G2m1m2

(
2

r1r2
− r1

2r3
12

+
r2

1

2r2r
3
12

− 5

2r1r12
+

4

r12S

))
+ 4

Gm1

r1
vi

1v
j

1 +
G2m2

1

r2
1

ni
1n

j

1 − 4G2m1m2n
i
12n

j

12

(
1

S2
+

1

r12S

)
+

4G2m1m2

S2

(
n

(i
1 n

j)

2 + 2n
(i
1 n

j)

12

)]
+

G2m1m2

c5r2
12

×
(

− 2

3
(n12v12)δ

ij − 6(n12v12)n
i
12n

j

12 + 8n
(i
12v

j)

12

)
+ 1 ↔ 2 + O(c−6).

(2.1c)

The trajectory of the Ath black hole is denoted by yA and its ordinary velocity is vA = dyA/dt ,
where t = x0/c is the harmonic-coordinate time. The relative velocity is denoted by
v12 = v1 − v2. The Euclidean distance between the black hole A and any field point is
rA = |x − yA|. The unit vector pointing from A to the field point is nA = (x − yA)/rA,
and the unit direction from body 2 to body 1 reads n12 = y12/r12, where y12 = y1 − y2

and the binary’s separation is denoted by r12 = |y1 − y2|. Several terms in (2.1) involve
the particular combination S ≡ r1 + r2 + r12. All these conventions can be visualized in
figure 1.

In the following we shall restrict ourselves to those terms in the full 2PN metric (2.1)
which are linear in the parameter εPM given by (1.1), or equivalently in the gravitational
constant G.5 Indeed, our work will be based on the theory of first-order perturbations of a
Schwarzschild black hole, and the corresponding terms in the PN framework will necessarily
have to involve only linear powers of G to be consistent. Higher powers of G in the PN metric
will correspond to higher order perturbation theory. Since the part of the 2PN metric which
is linear in G is obviously a solution of the Einstein field equations at 2PN order [up to terms
O(G2)], the multipolar coefficients describing the perturbation in the CL approximation will
satisfy the perturbative Einstein field equations, as checked in section 4. This restriction to
the terms linear in G in the PN metric appears therefore as necessary; the price we pay is that
our initial conditions will not contain the full information encoded into the 2PN metric: for
instance, all the terms involving S in (2.1) disappear. To include meaningfully the complete

5 From now on it will be simpler to forget about the dimensionless estimates εPM, εPN and εCL defined in the
introduction for pedagogical reasons. We shall replace them by the dimensionful but more obvious constants G and
c−2, and parameter r12, respectively.
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Figure 1. Two black holes of Schwarzschild masses m1,2 in a Cartesian coordinate system
xμ = {ct, x, y, z} centered on the binary’s center of mass, or the associated spherical coordinate
system xα = {ct, r, θ, ϕ}.

2PN metric would require using the theory of second-order perturbations of a Schwarzschild
black hole [28].

Neglecting the non-linear terms in G we end up with a comparatively much simpler metric,
reading6

GPN
00 = −1 +

2Gm1

c2r1

[
1 +

1

c2

(
2v2

1 − 1

2
(n1v1)

2

)]
+ 1 ↔ 2 + O(G2, c−6), (2.2a)

GPN
0i = −4Gm1

c3r1

[
1 +

1

c2

(
v2

1 − 1

2
(n1v1)

2

)]
vi

1 + 1 ↔ 2 + O(G2, c−6), (2.2b)

GPN
ij =

[
1 +

2Gm1

c2r1
− Gm1

c4r1
(n1v1)

2

]
δij +

4Gm1

c4r1
vi

1v
j

1 + 1 ↔ 2 + O(G2, c−6). (2.2c)

At this stage we could proceed with the CL expansion to identify the Schwarzschild background
metric and the perturbation. However, the PN metric is in harmonic coordinates so we would
obtain the Schwarzschild metric in harmonic coordinates; this is not convenient because
the perturbation formalism is usually defined in standard Schwarzschild–Droste coordinates.
We shall thus perform a suitable coordinate transformation such that after expanding the
metric in the CL approximation we obtain directly the Schwarzschild background metric in
Schwarzschild coordinates.

Since we are working at linear order in G it is sufficient to perform a linear gauge
transformation at order G, say δxμ = ξμ, where the gauge vector is ξμ = O(G). Note that
this gauge transformation is defined with respect to the Minkowski background. Later, when

6 The remainder O(G2, c−6) includes all terms which are at least of order G2 or of order c−6 or both. Thus, for
instance the ‘radiation-reaction’ terms present at order c−5 in GPN

00 and GPN
ij are included in this remainder because

they are also of order G2.
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using black hole perturbations, we shall perform a gauge transformation with respect to the
Schwarzschild background. A suitable gauge transformation which fulfills our purpose is then

ξ 0 = −Gm1

c3
(n1v1) − Gm2

c3
(n2v2), (2.3a)

ξ i = Gm1

c2
ni

1 +
Gm2

c2
ni

2. (2.3b)

Such gauge transformation does not satisfy the harmonic gauge condition � ξμ = 0;
therefore, our new coordinates will not be harmonic. Under this gauge transformation we
have

GPN
μν (x) = gPN

μν (x) + 2∂(μξν) + O(G2), (2.4)

where ξμ ≡ ημνξ
ν , and the new metric components now read

gPN
00 = −1 +

2Gm1

c2r1

[
1 +

1

c2

(
3v2

1 − 3

2
(n1v1)

2

)]
+ 1 ↔ 2 + O(G2, c−6), (2.5a)

gPN
0i = −4Gm1

c3r1

[
1 +

1

c2

(
v2

1 − 1

2
(n1v1)

2

)]
vi

1 + 1 ↔ 2 + O(G2, c−6), (2.5b)

gPN
ij = δij +

2Gm1

c2r1

[
ni

1n
j

1 +
1

c2

(
2vi

1v
j

1 − 1

2
(n1v1)

2δij

)]
+ 1 ↔ 2 + O(G2, c−6). (2.5c)

We shall start our perturbative CL setup from that PN metric.
It is important to comment on the post-Newtonian counting we are adopting for the 2PN

metric in (2.5). The accuracy of this metric is really 2PN only for the geodesic motion of
‘photons’ rather than of massive particles. Indeed, we did not include here the term of order
O(c−6) in the 00 component of the metric, although it is known from [27]. This term would
be needed for describing the 2PN motion of massive bodies. It will turn out to be essential
to expand both gPN

00 and gPN
ij at the same post-Newtonian order—namely up to ∼c−4 for both

components in (2.5a) and (2.5c)—because only then can we be consistent with the linear black
hole perturbation. Physically this results from the fact that the CL approximation is assuming
that the metric is a small deformation of that of a black hole; therefore, when expanding (2.5)
in the CL form we shall have r12 � GM/c2, so the orbital velocities are going to be very
relativistic, i.e. |vA| � c, and thus the gPN

00 , gPN
ij and gPN

0i components should give similar
contributions to the line element ds2, and are therefore to be expanded up to the same PN
order. This is thus similar to the accuracy needed for the geodesic motion of a photon where
all the metric coefficients gPN

00 , gPN
0i and gPN

ij are to be given with the same PN accuracy. On
the other hand, we shall see later that it is very important to include the gravitomagnetic field
gPN

0i up to order c−5, because it will play a crucial role in generating the odd-parity or axial
contributions to the perturbations.

2.2. Close-limit expansion of the 2PN metric

In the CL approximation, we expand the 2PN metric (2.5) in powers of the parameter (1.3),
or equivalently of the relative distance r12 = |y1 − y2| when r12 → 0. To do so we shall first
express all variables in the frame of the center of mass defined at the required 1PN accuracy.
The individual positions yA of the particles in the center-of-mass frame are given in terms of
their relative position y12 = y1 − y2 and read at 1PN order [29]

y1 =
[
X2 +

ν

2c2
δX

(
v2

12 − GM

r12

)]
y12 + O(c−4), (2.6)

7
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together with 1 ↔ 2 for the other particle. We introduced the total mass M ≡ m1 + m2, the
relative mass ratios XA ≡ mA/M and the symmetric mass ratio ν ≡ X1X2 = m1m2/M

2,
such that 0 < ν � 1

4 , with ν = 1
4 for an equal-mass binary, and ν → 0 in the test-particle

limit. We denote also the mass difference by δM ≡ m1 −m2, and the relative mass difference
by δX ≡ X1 − X2 = δM/M , which can also be written in terms of the symmetric mass ratio
as δX = ±√

1 − 4ν. As previously the relative velocity is v12 = dy12/dt = v1 − v2, and
v2

12 = (v12v12). Note that the 1PN correction in (2.6) vanishes for circular orbits. Similarly,
from the time derivatives of (2.6) we get the 1PN-accurate expression of the individual
velocities as

v1 =
[
X2 +

ν

2c2
δX

(
v2

12 − GM

r12

)]
v12 − ν

2c2

GδM

r2
12

(n12v12) y12 + O(c−4). (2.7)

Expressions (2.6) and (2.7) were derived in harmonic gauge, and we have still to check that
they are also valid in the new gauge specified by (2.3a) and (2.3b). The center-of-mass frame
is defined by the vanishing of the center-of-mass position G. A generic gauge transformation
ξμ will displace the position of the center of mass by the amount δξ G = −m1ξ1 − m2ξ2,
where ξA is the spatial gauge vector evaluated at the location of the particle A. The associated
shift of the particle’s individual positions with respect to the center of mass will then be given
by δξ yA = −δξ G/M (the same for both particles). In the case of the gauge vector (2.3) we
readily find ξ1 = Gm2 n12/c

2 and ξ2 = −Gm1 n12/c
2, so that δξ G = 0 and thus δξ yA = 0.

(See more details in appendix B of [26].)
We are now ready to write down the expansion of rA = |x − yA| when the CL ratio r12/r

tends to zero, where r12 = |y1 − y2| is the binary separation and r = |x| is the distance of the
field point to the center of mass properly defined at the 1PN order. Introducing the Legendre
polynomials Pk and using (2.6), we thus have

1

r1
= 1

r

+∞∑
k=0

(
1 + k X1 δX

v2
12

2c2

) (
X2

r12

r

)k

Pk(nn12) + O(G, c−4), (2.8)

together with 1 ↔ 2. Here, the argument of the Legendre polynomial is (nn12), the
scalar product between n = x/r and n12 = y12/r12. Note that the term proportional
to G in equation (2.6) has consistently been neglected here. In addition, we see from
equations (2.5) that the scalar products (nAvA) are only needed with Newtonian accuracy.
Making use of (2.6)–(2.8), we get

(n1v1) = X2

[
(nv12) − X2

r12

r
(n12v12)

] +∞∑
k=0

(
X2

r12

r

)k

Pk(nn12) + O(G, c−2). (2.9)

We have a similar expansion for the term ni
1n

j

1

/
r1 appearing in the spatial metric gPN

ij .
Combining those results, we obtain the CL expansion of the 2PN metric (2.5). In

the companion paper [24] we shall use this expansion to compute the gravitational recoil
generated during the ringdown phase. The gravitational recoil dominantly results from the
coupling between the � = 2 and � = 3 multipole moments [30], where � is the azimuthal
number of the Schwarzschild perturbation. Thus, we need to expand the 2PN metric at least
up to octupolar order, i.e. up to k = 3. In fact it will turn out that it is necessary to push the
CL expansion up to k = 5 if we want to control all the terms which are of order r3

12 in the
multipolar coefficients of the black hole perturbation in the Regge–Wheeler gauge. We shall
discuss this point further in section 3.2.

At the zeroth order in the CL expansion we evidently recover the Schwarzschild metric
of a black hole with mass M = m1 + m2. Thanks to our gauge transformation (2.3) we find it
to be directly given in usual Schwarzschild coordinates, namely

8
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gSchw
00 = −1 +

2GM

c2r
, (2.10a)

gSchw
0i = 0, (2.10b)

gSchw
ij = δij +

2GM

c2r
ninj + O(G2), (2.10c)

where n = x/r is the unit vector in the direction of the field point x. As expected,
we find that the Schwarzschild metric is exactly recovered in the limit ν → 0, i.e. if
one of the masses vanishes. Thus, we are now in a position to identify the 2PN metric
expanded in the CL approximation with a perturbed Schwarzschild black hole with mass M,
namely

gPN
μν = gSchw

μν + hμν. (2.11)

We find that the metric perturbation hμν expanded up to octupolar order in the CL
approximation reads explicitly

h00 = ν
GM

c2r

r2
12

r2
[3(nn12)

2 − 1] − ν
GδM

c2r

r3
12

r3
(nn12)[5(nn12)

2 − 3] + 3ν
GM

c4r

[
2v2

12 − (nv12)
2
]

− ν
GδM

c4r

r12

r

(
6(nv12)(n12v12) + (nn12)

[
5v2

12 − 9(nv12)
2
])

+ 3ν(1 − 3ν)
GM

c4r

r2
12

r2

(
v2

12[3(nn12)
2 − 1] − 3

2
(nv12)

2[5(nn12)
2 − 1]

− (n12v12)
2 + 6(n12v12)(nv12)(nn12)

)
− 3

2
ν(2 − 5ν)

GδM

c4r

r3
12

r3
v2

12[5(nn12)
2 − 3]

+ 9ν(1 − 2ν)
GδM

c4r

r3
12

r3

(
(nn12)(n12v12)

2 +
5

6
(nn12)(nv12)

2[7(nn12)
2 − 3]

− (nv12)(n12v12)[5(nn12)
2 − 1]

)
+ O

(
G2, c−6, r4

12

)
, (2.12a)

h0i = −4ν
GM

c3r

r12

r
(nn12)v

i
12 + 2ν

GδM

c3r

r2
12

r2
[3(nn12)

2 − 1]vi
12

− 2ν(1 − 3ν)
GM

c3r

r3
12

r3
(nn12)[5(nn12)

2 − 3]vi
12 + 2ν

GδM

c5r

[
v2

12 − (nv12)
2
]
vi

12

− 2ν(1 − 3ν)
GM

c5r

r12

r

(
2(nv12)(n12v12) + (nn12)

[
2v2

12 − 3(nv12)
2
])

vi
12

+ ν(1 − 2ν)
GδM

c5r

r2
12

r2
(2(n12v12)[6(nv12)(nn12) − (n12v12)]

− 3(nv12)
2[5(nn12)

2 − 1])vi
12 + ν(2 − 7ν)

GδM

c5r

r2
12

r2
v2

12[3(nn12)
2 − 1]vi

12

− 2ν(1 − 7ν + 13ν2)
GM

c5r

r3
12

r3
v2

12[5(nn12)
2 − 3]vi

12

+ ν(1 − 5ν + 5ν2)
GM

c5r

r3
12

r3
(6(nn12)(n12v12)

2 + 5(nn12)(nv12)
2[7(nn12)

2 − 3]

− 6(nv12)(n12v12)[5(nn12)
2 − 1])vi

12 + O
(
G2, c−6, r4

12

)
, (2.12b)

9
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hij = 2ν
GM

c2r

r2
12

r2

(
ni

12n
j

12 − 6(nn12) n
(i
12n

j) +
3

2
[5(nn12)

2 − 1]ninj

)
− 6ν

GδM

c2r

r3
12

r3

(
(nn12) ni

12n
j

12 − [5(nn12)
2 − 1]n(i

12n
j) +

5

6
(nn12)[7(nn12)

2 − 3]ninj

)
+ ν

GM

c4r

[
4vi

12v
j

12 − (nv12)
2δij

] − ν
GδM

c4r

r12

r

×
(

2(nv12)(n12v12)δ
ij + 2v2

12n
(i
12n

j) − 3(nn12)
[
(nv12)

2δij + v2
12n

inj
]

+ 4(nn12)v
i
12v

j

12

)
+ ν(1 − 3ν)

GM

c4r

r2
12

r2

(
2[3(nn12)

2 − 1]vi
12v

j

12 − 3

2
(nv12)

2[5(nn12)
2 − 1]δij

+ (n12v12)[6(nn12)(nv12) − (n12v12)]δ
ij

)
+ ν(1 − 2ν)

GδM

c4r

r3
12

r3

(
− 2(nn12)[5(nn12)

2 − 3]vi
12v

j

12 +
5

2
(nn12)(nv12)

2

× [7(nn12)
2 − 3]δij + 3(nn12)(n12v12)

2δij − 3(nv12)(n12v12)[5(nn12)
2 − 1]δij

+ 9v2
12(nn12)n

i
12n

j

12 − 9v2
12[5(nn12)

2 − 1]n(i
12n

j)

+
15

2
v2

12(nn12)[7(nn12)
2 − 3]ninj

)
+ O

(
G2, c−6, r4

12

)
. (2.12c)

Even though we have performed the CL expansion including all terms up to order r5
12, we

only give in (2.12) the result up to octupolar order because of the proliferation of terms
at higher orders. But we further stress that those terms proportional to r4

12 and r5
12 in

equations (2.12) are fully under control (in an algebraic computer program), and were needed
and used to get the final results given by equations (3.6) and (3.7) below.

If we come back for a moment to the three dimensionless scales εPM, εPN and εCL defined
in the introduction, we can check that indeed the metric perturbation hμν admits the general
structure given by equation (1.4), in which the dimensionless coefficients h(n,k)

μν are only
functions of angles and mass ratios.

Although the identification (2.11) we are making is mathematically crystal clear, we
recall that its physical justification is not completely straightforward. We invoke the theory
of the matching of asymptotic series, but use it in a formal way, since, as commented in
the introduction, the overlapping region between the domains of validity of the PN and CL
expansions does not exist. Physically, we also rely on the fact that the merger as observed
in numerical simulations lasts a very short time, which makes us feel that the physics is
essentially ‘conserved’ when going from a PN description of the system to a perturbation of
the final black hole. In addition, the PN approximation has proved to be very powerful in
several past studies, with a domain of validity which often turned out to be larger than the
one expected from elementary estimates (see [26] for a recent example in the extreme mass
ratio regime). Here, we are assuming a rather extreme extension of the domain of validity
of the PN expansion—one for which r12 � GM/c2, corresponding to the ultra-relativistic
limit εPN � 1. Nevertheless, we shall find below and in the application [24] that the PN
approximation performs well.

In the next section we shall describe our perturbation using the usual black hole
perturbation formalism; for this we transform the coordinates from Cartesian xμ ≡ {ct, x, y, z}
to spherical xα ≡ {ct, r, θ, ϕ}. This is appropriate for the spherically symmetric background,

10
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and the spherical coordinates are identified with the Schwarzschild(–Droste) coordinate
system. Thus,

hαβ(xγ ) = ∂xμ

∂xα

∂xν

∂xβ
hμν(x

ρ). (2.13)

We then write the scalar products (nn12) and (nv12) in terms of them. Our conventions
regarding orientations and various angles are explained in figure 1. The unit vector n = x/r

pointing from the center of mass to the field point, and the unit direction n12 = y12/r12 from
body 2 to body 1 read

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ), (2.14)

n12 = (cos β, sin β, 0). (2.15)

Note our unconventional notation for the orbital phase angle β. For a generic non-circular
orbit, we have (see figure 1)

(nn12) = sin θ cos (ϕ − β), (2.16a)

(nv12) = sin θ
[
ṙ12 cos (ϕ − β) + r12ω12 sin (ϕ − β)

]
. (2.16b)

Here, the relative angular velocity is ω12 ≡ β̇ with β being the orbital phase, and
ṙ12 ≡ (n12v12) is the inspiral rate, where a dot stands for a derivative with respect to coordinate
time t. Finally we find that all the components of the perturbation hαβ of the Schwarzschild
metric gSchw

αβ (both written in spherical coordinates xα = {ct, r, θ, ϕ}) are given as explicit
functions of the spherical coordinates {r, θ, ϕ}, and depend on time t through the orbital
parameters β, ω12, r12 and ṙ12.

3. The 2PN metric in Regge–Wheeler–Zerilli formalism

3.1. Multipole decomposition of a Schwarzschild perturbation

We briefly recall (see e.g. [31–34] for more details) the usual decomposition into multipoles
of a first-order perturbation of a Schwarzschild black hole of mass M. As usual, we write the
perturbation hαβ as the sum of two kinds of perturbations:

hαβ = h
(e)
αβ + h

(o)
αβ , (3.1)

where the even-parity perturbation h
(e)
αβ essentially describes a perturbation along an (arbitrary)

axis of the spherically symmetric Schwarzschild background, and where the odd-parity
perturbation h

(o)
αβ essentially describes a perturbation around that axis.7 Both perturbations

are expanded with respect to a set of ten tensorial spherical harmonics (cf appendix A).
Following Regge and Wheeler’s [35] conventions, the even-parity perturbation multipole

decomposition reads [34]

h
(e)
00 =

(
1 − 2M

r

) ∑
�,m

H
�,m
0 Y�,m, (3.2a)

h
(e)
0r =

∑
�,m

H
�,m
1 Y�,m, (3.2b)

7 The even-parity perturbation is often called the ‘polar’ perturbation, while the odd-parity one is called the ‘axial’
perturbation. (From now on we pose G = c = 1.)
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h
(e)
0θ =

∑
�,m

h
�,m
0 ∂θY�,m, (3.2c)

h
(e)
0ϕ =

∑
�,m

h
�,m
0 ∂ϕY�,m, (3.2d)

h(e)
rr =

(
1 − 2M

r

)−1 ∑
�,m

H
�,m
2 Y�,m, (3.2e)

h
(e)
rθ =

∑
�,m

h
�,m
1 ∂θY�,m, (3.2f )

h(e)
rϕ =

∑
�,m

h
�,m
1 ∂ϕY�,m, (3.2g)

h
(e)
θθ = r2

∑
�,m

(
K�,m + G�,m∂2

θ

)
Y�,m, (3.2h)

h
(e)
θϕ = r2

∑
�,m

G�,m
(
∂2
θϕ − cot θ ∂ϕ

)
Y�,m, (3.2i)

h(e)
ϕϕ = r2

∑
�,m

[
K�,m sin2 θ + G�,m

(
∂2
ϕ + sin θ cos θ ∂θ

)]
Y�,m, (3.2j )

where the summations over the integers � and m range from 2 to infinity, and from −� to �

respectively. Note that the low multipoles � = 0 and � = 1 correspond to the non-radiating
pieces of the perturbation hαβ , and are not relevant to gravitational waves. For example, a
monopolar perturbation (� = 0) would correspond to an infinitesimal shift of the black hole
mass. (See e.g. [32, 36] for more details.) Similarly, the multipole decomposition of the
odd-parity perturbation is

h
(o)
0θ = −

∑
�,m

k
�,m
0

∂ϕY�,m

sin θ
, (3.3a)

h
(o)
0ϕ =

∑
�,m

k
�,m
0 sin θ ∂θY�,m, (3.3b)

h
(o)
rθ = −

∑
�,m

k
�,m
1

∂ϕY�,m

sin θ
, (3.3c)

h(o)
rϕ =

∑
�,m

k
�,m
1 sin θ ∂θY�,m, (3.3d)

h
(o)
θθ =

∑
�,m

k
�,m
2

1

sin θ
(∂θ − cot θ) ∂ϕY�,m, (3.3e)

h
(o)
θϕ = 1

2

∑
�,m

k
�,m
2

1

sin θ

(
∂2
ϕ + cos θ sin θ ∂θ − sin2 θ ∂2

θ

)
Y�,m, (3.3f )

h(o)
ϕϕ = −

∑
�,m

k
�,m
2 sin θ (∂θ − cot θ) ∂ϕY�,m. (3.3g)

Our convention for the scalar spherical harmonics Y�,m is given in equation (A.16) of
appendix A. In equations (3.2) and (3.3) all the multipolar coefficients H

�,m
0 , H

�,m
1 , H

�,m
2 ,

12
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K�,m, G�,m, h�,m
0 , h�,m

1 , k�,m
0 , k�,m

1 and k
�,m
2 are functions of {t, r} in Schwarzschild coordinates,

and are defined in an arbitrary perturbative gauge.

3.2. Computation of the multipole contributions

Given the metric perturbation hαβ obtained from the CL approximation in the previous
section, we can compute all the coefficients H

�,m
0 ,H

�,m
1 , . . . , k

�,m
2 . After some calculations

consisting mostly of projections over the Zerilli–Mathews tensor spherical harmonics (using
their orthonormality properties recalled in the appendix), we obtain the even and odd
multipolar coefficients in a particular gauge, which follows from the choice of gauge made in
equations (2.3). We shall however change to the Regge–Wheeler gauge, where the multipolar
coefficients G�,m, h�,m

0 , h�,m
1 and k

�,m
2 vanish; this makes the expressions of the Regge–Wheeler

and Zerilli master functions much simpler (see equations (5.1) below). Note the difference
between the choice of gauge (2.3), which was made for the PN metric before its CL expansion,
and a choice of gauge within black hole perturbation theory, once the PN metric is in CL form.
We transform the results to the Regge–Wheeler gauge by making the substitutions (see e.g.
[34, 37] for general expressions)

H
�,m
0 −→ H̃

�,m
0 = H

�,m
0 − 2∂th

�,m
0 + r2∂2

t G�,m + O(G2), (3.4a)

H
�,m
1 −→ H̃

�,m
1 = H

�,m
1 − ∂rh

�,m
0 − ∂th

�,m
1 + r∂tG

�,m + r2∂2
trG

�,m + O(G2), (3.4b)

H
�,m
2 −→ H̃

�,m
2 = H

�,m
2 − 2∂rh

�,m
1 + 2r∂rG

�,m + r2∂2
r G�,m + O(G2), (3.4c)

K�,m −→ K̃�,m = K�,m + r∂rG
�,m − 2h

�,m
1

/
r + O(G2), (3.4d)

k
�,m
0 −→ k̃

�,m
0 = k

�,m
0 + 1

2∂tk
�,m
2 , (3.4e)

k
�,m
1 −→ k̃

�,m
1 = k

�,m
1 + 1

2∂rk
�,m
2 − k

�,m
2

/
r. (3.4f )

We can now understand why it was necessary to expand the 2PN metric so as to include
terms of order r4

12 and r5
12 in the initial perturbation (2.12). In the gauge transformation

(3.4), the partial time derivatives of the multipolar coefficients in the initial gauge yield lower
order powers of r12 in the expression of the new multipolar coefficients in Regge–Wheeler’s
gauge. For example, from (3.4a) we observe that terms like G3,±3 ∼ r5

12

/
c2 in the initial

gauge produce terms like c−2∂2
t G3,±3 ∼ ṙ2

12r
3
12

/
c4 in the multipolar coefficients H̃

3,±3
0 in the

Regge–Wheeler gauge. Such contributions of order r4
12 and r5

12 in the multipolar coefficients
describing the perturbation in the initial gauge need to be consistently included in order to
control all terms of order r3

12 in the multipolar coefficients describing the final perturbation in
the Regge–Wheeler gauge.

As expected, we find that the simplest of the Einstein field equations in vacuum in the
Regge–Wheeler gauge is satisfied

[
up to terms O

(
G2, c−6, r4

12

)]
, namely

H̃
�,m
0 = H̃

�,m
2 ≡ H̃ �,m. (3.5)

Finally, we give below all the non-zero multipolar coefficients in the Regge–Wheeler gauge for
all (�,m) up to � = 3. All equations below are valid modulo remainder terms O

(
G2, c−6, r4

12

)
.

For the even-parity perturbation,

H̃ 2,0 = −2

√
π

5
ν

M

r

{
r2

12

r2

[
1 +

(
1 − 3ν

)( 9

14
ṙ2

12 +
17

14
r2

12ω
2
12

)]
+ v2

12

}
, (3.6a)
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H̃ 2,±2 =
√

6π

5
ν

M

r

{
r2

12

r2

[
1 + (1 − 3ν)

(
9

14
ṙ2

12 ∓ 10

21
i r12ω12ṙ12 +

1

6
r2

12ω
2
12

)]
+ (ṙ12 ∓ i r12ω12)

2

}
e∓2iβ, (3.6b)

H̃ 3,±1 = ∓
√

3π

7
ν

δMr12

r2

{
r2

12

r2

[
1 +

5

6

(
1 − 19

5
ν

)
ṙ2

12 ∓ 1

3
(1 − 2ν) i r12ω12ṙ12

+
7

6

(
1 − 23

7
ν

)
r2

12ω
2
12

]
+

(
ṙ2

12 ∓ 2

3
i r12ω12ṙ12 +

1

3
r2

12ω
2
12

)}
e∓iβ, (3.6c)

H̃ 3,±3 = ±
√

5π

7
ν

δMr12

r2

{
r2

12

r2

[
1 +

5

6

(
1 − 19

5
ν

)
ṙ2

12 ∓ (1 − 2ν) i r12ω12ṙ12

−1

6
(1 + 7ν)r2

12ω
2
12

]
+ (ṙ12 ∓ i r12ω12)

2

}
e∓3iβ, (3.6d)

K̃2,0 = −2

√
π

5
ν

M

r

{
r2

12

r2

[
1 +

(
1 − 3ν

)( 9

14
ṙ2

12 +
17

14
r2

12ω
2
12

)]
− v2

12

}
, (3.6e)

K̃2,±2 =
√

6π

5
ν

M

r

{
r2

12

r2

[
1 +

(
1 − 3ν

)( 9

14
ṙ2

12 ∓ 10

21
i r12ω12ṙ12 +

1

6
r2

12ω
2
12

)]
− (ṙ12 ∓ i r12ω12)

2

}
e∓2iβ, (3.6f )

K̃3,±1 = ∓
√

3π

7
ν

δMr12

r2

{
r2

12

r2

[
1 +

5

6

(
1 − 19

5
ν

)
ṙ2

12 ∓ 1

3
(1 − 2ν) i r12ω12ṙ12

+
7

6

(
1 − 23

7
ν

)
r2

12ω
2
12

]
−

(
ṙ2

12 ∓ 2

3
i r12ω12ṙ12 +

1

3
r2

12ω
2
12

)}
e∓iβ, (3.6g)

K̃3,±3 = ±
√

5π

7
ν

δMr12

r2

{
r2

12

r2

[
1 +

5

6

(
1 − 19

5
ν

)
ṙ2

12 ∓ (1 − 2ν) i r12ω12ṙ12

−1

6
(1 + 7ν)r2

12ω
2
12

]
− (ṙ12 ∓ i r12ω12)

2

}
e∓3iβ, (3.6h)

H̃
2,0
1 = 4

√
π

5
ν

Mr12

r2
ṙ12

[
1 +

9

14
(1 − 3ν)v2

12

]
, (3.6i)

H̃
2,±2
1 = −2

√
6π

5
ν

Mr12

r2
(ṙ12 ∓ i r12ω12)

×
[

1 + (1 − 3ν)

(
9

14
ṙ2

12 ∓ 5

21
i r12ω12ṙ12 +

17

42
r2

12ω
2
12

)]
e∓2iβ, (3.6j )

H̃
3,±1
1 = ±2

√
3π

7
ν

δMr2
12

r3

[
ṙ12 ∓ 1

3
i r12ω12 + v2

12

{
5

6

(
1 − 19

5
ν

)
ṙ12

∓1

2
(1 − 3ν)i r12ω12

}]
e∓iβ, (3.6k)

H̃
3,±3
1 = ∓2

√
5π

7
ν

δMr2
12

r3
(ṙ12 ∓ i r12ω12)

[
1 +

5

6

(
1 − 19

5
ν

)
ṙ2

12

∓2

3
(1 − 2ν)i r12ω12ṙ12 +

1

6

(
1 − 11ν

)
r2

12ω
2
12

)]
e∓3iβ, (3.6l)
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where we made use of the relation v2
12 = ṙ2

12 + r2
12ω

2
12 when convenient. Similarly, the non-zero

multipolar coefficients for the odd-parity perturbation are

k̃
2,±1
0 = ±2

√
2π

15
ν

δMr2
12

r2
r12ω12

[
1 +

9

14

(
1 − 13

3
ν

)
ṙ2

12 ∓ 5

28

(
1 − 2ν

)
i r12ω12ṙ12

+
13

28

(
1 − 68

13
ν

)
r2

12ω
2
12

]
e∓iβ, (3.7a)

k̃
3,0
0 = −

√
π

7
ν

Mr3
12

r3
r12ω12

[(
1 − 3ν

)
+

(
5

6
− 37

6
ν +

73

6
ν2

)
ṙ2

12

+

(
11

18
− 91

18
ν +

199

18
ν2

)
r2

12ω
2
12

]
, (3.7b)

k̃
3,±2
0 = 1

3

√
15π

14
ν

Mr3
12

r3
r12ω12

[(
1 − 3ν

)
+

(
5

6
− 37

6
ν +

73

6
ν2

)
ṙ2

12

∓
(

8

15
− 8

3
ν +

8

3
ν2

)
i r12ω12ṙ12 +

(
3

10
− 7

2
ν +

19

2
ν2

)
r2

12ω
2
12

]
e∓2iβ, (3.7c)

k̃
2,±1
1 = ∓

√
8π

15
ν

δMr12

r
(ṙ12 ∓ i r12ω12)r12ω12 e∓iβ, (3.7d)

k̃
3,0
1 =

√
π

7
ν

Mr2
12

r2
(1 − 3ν)r12ω12ṙ12, (3.7e)

k̃
3,±2
1 = −

√
5π

42
ν

Mr2
12

r2
(1 − 3ν)(ṙ12 ∓ i r12ω12)r12ω12 e∓2iβ. (3.7f )

One can check that any given multipolar coefficient F�,m in (3.6) and (3.7) satisfies
the property F�,−m = (−1)m F̄ �,m, where the overbar denotes the complex conjugation,
consistently with the fact that the initial perturbation is real-valued. Furthermore, all the
multipolar coefficients associated with the odd (or axial) perturbation vanish as expected in
the zero angular momentum limit ω12 = 0, which corresponds to purely radial infall. We shall
consider such head-on collisions in section 5.

4. Verification of the Einstein field equations

As an important check of the previous results, we now verify that all the perturbative Einstein
equations are satisfied. This requires the computation of the partial time derivatives of the
multipolar coefficients (3.6) and (3.7). Recall that a generic multipolar coefficient F�,m

is a function of the coordinate time t through the orbital phase β(t), the orbital frequency
ω12(t) = β̇(t), the distance r12(t) and the inspiral rate ṙ12(t). Therefore, we have

∂tF
�,m = ω12

∂F �,m

∂β
+ ω̇12

∂F �,m

∂ω12
+ ṙ12

∂F �,m

∂r12
+ r̈12

∂F �,m

∂ṙ12
. (4.1)

The relative position, velocity and acceleration of the two bodies can be expressed as

y12 = r12 n12, (4.2a)

v12 = ṙ12 n12 + r12 ω12 λ12, (4.2b)

a12 = (
r̈12 − r12 ω2

12

)
n12 + (r12 ω̇12 + 2ṙ12 ω12) λ12, (4.2c)
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where we have introduced the Frenet frame (n12, λ12) defined by λ12 = L̂ × n12, with L̂
being the unit vector orthogonal to the orbital plane, and in the same direction as the orbital
angular momentum. Since we are working at linear order in G, the acceleration a12 which is
proportional to G can be neglected here, and we have

r̈12 = ω2
12r12 + O(G), (4.3a)

ω̇12 = −2ω12
ṙ12

r12
+ O(G). (4.3b)

Introducing these expressions of r̈12 and ω̇12 into (4.1), and neglecting terms
O

(
G2, c−6, r4

12

)
, we find for the even perturbation the non-zero partial time derivatives

∂t H̃
2,0 = −4

√
π

5
ν

Mr12

r3
ṙ12

[
1 +

9

14
(1 − 3ν)v2

12

]
, (4.4a)

∂t H̃
2,±2 = 2

√
6π

5
ν

Mr12

r3
(ṙ12 ∓ i r12ω12)

×
[

1 + (1 − 3ν)

(
9

14
ṙ2

12 ∓ 5

21
i r12ω12ṙ12 +

17

42
r2

12ω
2
12

)]
e∓2iβ, (4.4b)

∂t H̃
3,±1 = ∓

√
3π

7
ν

δM

r2

{
r2

12

r2

[
(3ṙ12 ∓ i r12ω12) +

5

2

(
1 − 19

5
ν

)
v2

12ṙ12

∓3

2
(1 − 3ν)v2

12 i r12ω12

]
+ v2

12

(
ṙ12 ∓ i r12ω12

)}
e∓iβ, (4.4c)

∂t H̃
3,±3 = ±

√
5π

7
ν

δM

r2
(ṙ12 ∓ i r12ω12)

{
r2

12

r2

[
3 +

5

2

(
1 − 19

5
ν

)
ṙ2

12 ∓ 2(1 − 2ν) i r12ω12ṙ12

+
1

2
(1 − 11ν)r2

12ω
2
12

]
+ (ṙ12 ∓ i r12ω12)

2

}
e∓3iβ, (4.4d)

∂t K̃
2,0 = −4

√
π

5
ν

Mr12

r3
ṙ12

[
1 +

9

14
(1 − 3ν)v2

12

]
, (4.4e)

∂t K̃
2,±2 = 2

√
6π

5
ν

Mr12

r3
(ṙ12 ∓ i r12ω12)

×
[

1 + (1 − 3ν)

(
9

14
ṙ2

12 ∓ 5

21
i r12ω12ṙ12 +

17

42
r2

12ω
2
12

)]
e∓2iβ, (4.4f )

∂t K̃
3,±1 = ∓

√
3π

7
ν

δM

r2

{
r2

12

r2

[
(3ṙ12 ∓ i r12ω12) +

5

2

(
1 − 19

5
ν

)
v2

12ṙ12

∓3

2
(1 − 3ν)v2

12 i r12ω12

]
− v2

12(ṙ12 ∓ i r12ω12)

}
e∓iβ, (4.4g)

∂t K̃
3,±3 = ±

√
5π

7
ν

δM

r2
(ṙ12 ∓ i r12ω12)

{
r2

12

r2

[
3 +

5

2

(
1 − 19

5
ν

)
ṙ2

12

∓2
(
1 − 2ν

)
i r12ω12ṙ12 +

1

2

(
1 − 11ν

)
r2

12ω
2
12

]
− (ṙ12 ∓ i r12ω12)

2

}
e∓3iβ,

(4.4h)

∂t H̃
2,0
1 = 4

√
π

5
ν

M

r2
v2

12

[
1 +

9

14
(1 − 3ν)v2

12

]
, (4.4i)
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∂t H̃
2,±2
1 = −2

√
6π

5
ν

M

r2
(ṙ12 ∓ i r12ω12)

2

[
1 +

9

14
(1 − 3ν)v2

12

]
e∓2iβ, (4.4j )

∂t H̃
3,±1
1 = ±4

√
3π

7
ν

δMr12

r3
(ṙ12 ∓ i r12ω12)

[
ṙ12 ± 1

3
i r12ω12

+ v2
12

{
5

6

(
1 − 19

5
ν

)
ṙ12 ± 1

6
(1 − 5ν)i r12ω12

}]
e∓iβ, (4.4k)

∂t H̃
3,±3
1 = ∓4

√
5π

7
ν

δMr12

r3
(ṙ12 ∓ i r12ω12)

2

[
1 +

5

6

(
1 − 19

5
ν

)
ṙ2

12

∓1

3
(1 − 2ν) i r12ω12ṙ12 +

1

2
(1 − 5ν)r2

12ω
2
12

)]
e∓3iβ, (4.4l)

and for the odd perturbation

∂t k̃
2,±1
0 = ±2

√
2π

15
ν

δMr12

r2
r12ω12(ṙ12 ∓ i r12ω12)

[
1 +

9

14

(
1 − 13

3
ν

)
v2

12

]
e∓iβ, (4.5a)

∂t k̃
3,0
0 = −2

√
π

7
ν

Mr2
12

r3
r12ω12ṙ12

[
(1 − 3ν) +

(
5

6
− 37

6
ν +

73

6
ν2

)
v2

12

]
, (4.5b)

∂t k̃
3,±2
0 = 2

3

√
15π

14
ν

Mr2
12

r3
r12ω12(ṙ12 ∓ i r12ω12)

[
(1 − 3ν) +

(
5

6
− 37

6
ν +

73

6
ν2

)
ṙ2

12

∓ 4

15
(1 − 5ν + 5ν2)i r12ω12ṙ12 +

(
17

30
− 29

6
ν +

65

6
ν2

)
r2

12ω
2
12

]
e∓2iβ, (4.5c)

∂t k̃
3,0
1 =

√
π

7
ν

Mr12

r2
(1 − 3ν)v2

12r12ω12, (4.5d)

∂t k̃
3,±2
1 = −

√
5π

42
ν

Mr12

r2
(1 − 3ν)(ṙ12 ∓ i r12ω12)

2r12ω12 e∓2iβ. (4.5e)

We then check that the Einstein equations are satisfied for all (�,m) up to � = 3 for a
generic non-circular orbit, up to terms O

(
G2, c−6, r4

12

)
. We give them here in the linear case

for completeness (see e.g. [34, 36, 38] for general expressions). For the even perturbation,
these seven equations read

∂t H̃
�,m
1 − ∂r(H̃

�,m − K̃�,m) = 0, (4.6a)

∂t (H̃
�,m + K̃�,m) − ∂rH̃

�,m
1 = 0, (4.6b)

∂t

[
∂rK̃

�,m − 1

r
(H̃ �,m − K̃�,m)

]
− �(� + 1)

2r2
H̃

�,m
1 = 0, (4.6c)

∂t

[
∂t K̃

�,m − 2

r
H̃

�,m
1

]
+

1

r
∂r(H̃

�,m − K̃�,m) − (� − 1)(� + 2)

2r2
(H̃ �,m − K̃�,m) = 0, (4.6d)

∂2
r K̃�,m − 1

r
∂r(H̃

�,m − 3K̃�,m) − (� − 1)(� + 2)

2r2
K̃�,m −

[
�(� + 1)

2
+ 1

]
H̃ �,m

r2
= 0, (4.6e)

∂t

[
∂t (H̃

�,m + K̃�,m) − 2

(
∂rH̃

�,m
1 +

H̃
�,m
1

r

)]
+ ∂2

r (H̃ �,m − K̃�,m) +
2

r
∂r(H̃

�,m − K̃�,m) = 0, (4.6f )
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together with equation (3.5). Note that these equations are not all independent. For example,
if equations (4.6a) and (4.6b) are satisfied, then equation (4.6f ) is also satisfied. For the odd
perturbation, the three remaining equations are

∂t k̃
�,m
0 − ∂r k̃

�,m
1 = 0, (4.7a)

∂t

[
∂r k̃

�,m
1 +

2

r
k̃

�,m
1

]
− ∂2

r k̃
�,m
0 +

�(� + 1)

r2
k̃

�,m
0 = 0, (4.7b)

∂t

[
∂t k̃

�,m
1 − ∂r k̃

�,m
0 +

2

r
k̃

�,m
0

]
+

(� − 1)(� + 2)

r2
k̃

�,m
1 = 0. (4.7c)

Assuming that all terms of a given equation in (4.6) and (4.7) are of the same order of
magnitude, we can now understand by coming back to the initial metric decomposition (3.2)
and (3.3) that it is necessary to expand gPN

00 , gPN
0i and gPN

ij at the same PN order in
equations (2.5), i.e. up to O(c−5) included. The previous verification of the field equations
provides a good check of the algebra yielding the perturbation coefficients (3.6) and (3.7).

5. Numerical evolution of the perturbation

5.1. Regge–Wheeler and Zerilli master functions

From the multipolar coefficients H̃ �,m, H̃
�,m
1 , K̃�,m, k̃

�,m
0 and k̃

�,m
1 one can construct for any

(�,m) two gauge-invariant scalar fields, namely the Regge–Wheeler [35] function �
(o)
�,m and

the Zerilli [36] function �
(e)
�,m, which contain all the information about the perturbation of

the Schwarzschild metric. Gauge-invariant expressions of �
(e,o)
�,m in terms of the multipolar

coefficients in a general gauge are given e.g. in [32, 33, 39]. In the Regge–Wheeler gauge
[35], the coefficients G̃�,m, h̃

�,m
0 , h̃

�,m
1 and k̃

�,m
2 vanish, so that these expressions get simplified

and read

�
(e)
�,m = r

2(λ� + 1)

(
K̃�,m +

r − 2M

λ� r + 3M
[H̃ �,m − r∂rK̃

�,m]

)
, (5.1a)

�
(o)
�,m = r

2λ�

(
∂t k̃

�,m
1 − ∂r k̃

�,m
0 +

2

r
k̃

�,m
0

)
, (5.1b)

where we introduced the widely used notation λ� ≡ 1
2 (� − 1)(� + 2) [40]. Note that the

multipolar coefficent H̃
�,m
1 does not enter the expression of �

(e)
�,m. Because we are considering

linear perturbations, the master functions �
(e,o)
�,m are defined up to a scale factor. We use the

same convention as in [33], emphasizing the link between �
(e,o)
�,m and the polarization states

h+ and h× of the gravitational waves at future null infinity; with our convention the two
independent + and × polarization states are given by

h+ − i h× = 1

r

∑
�,m

√
(� + 2)!

(� − 2)!

(
�

(e)
�,m + i �(o)

�,m

)
−2Y�,m + O(r−2), (5.2)

where −2Y�,m denotes the spin-weighted spherical harmonics of weight −2. The asymptotic
waveform is also related to the more fundamental Weyl scalar �4, which admits a closed-form
expression in terms of the master functions �

(e,o)
�,m (see the appendix).
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The two master functions satisfy a wave equation with specific potentials V(e,o)
� :(

∂2
t − ∂2

r∗ + V(e,o)
�

)
�

(e,o)
�,m = 0, (5.3)

where the so-called tortoise coordinate r∗ is related to the Schwarzschild radial coordinate r
by

r∗ = r + 2M ln
( r

2M
− 1

)
. (5.4)

Note that these wave equations are only valid in vacuum; otherwise one has to include a
source term on the right-hand side of (5.3), see e.g. [32, 33]. The Zerilli and Regge–Wheeler
potentials read respectively

V(e,o)
� =

(
1 − 2M

r

)(
�(� + 1)

r2
− 6M

r3
U (e,o)

�

)
, (5.5)

with

U (e)
� = λ�(λ� + 2)r2 + 3M(r − M)

(λ� r + 3M)2 , (5.6a)

U (o)
� = 1. (5.6b)

One can easily prove that 5
7 < U (e)

� < 2 for all � � 2 and for all r such that 2M < r < +∞,

showing that the potentials V(e)
� and V(o)

� are very similar [40].

5.2. Numerical evolution

The wave equation (5.3) is evolved numerically using the initial conditions at time t = 0
and for any tortoise radius r∗, namely �

(e,o)
�,m (0, r∗) and ∂t�

(e,o)
�,m (0, r∗), derived from the CL

expansion of the 2PN metric for compact (i.e. point-mass) binaries. These initial conditions
are calculated by plugging equations (3.6) and (3.7) and their partial time derivatives (4.4) and
(4.5) into (5.1) and their partial time derivatives.

We use Dirichlet boundary conditions, setting �
(e,o)
�,m (t, rmin

∗ ) = �
(e,o)
�,m (t, rmax

∗ ) = 0 at
some radii rmin

∗ and rmax
∗ . We choose the radii rmin

∗ and rmax
∗ in such a way that these

boundary conditions are causally disconnected from the computational domain, i.e. the
spurious radiation generated on the boundaries {t, rmin,max

∗ } does not have time to propagate up
to the extraction radius rext

∗ ≡ 1
2 (rmax

∗ + rmin
∗ ) for 0 � t � tmax, where tmax ≡ 1

2 (rmax
∗ − rmin

∗ ).
Extending the computational domain to [rmin

∗ , rmax
∗ ]×R+ would require using the Sommerfeld

boundary conditions [41] (∂t + ∂r∗)�
(e,o)
�,m (t, rmax

∗ ) = 0 and (∂t − ∂r∗)�
(e,o)
�,m (t, rmin

∗ ) = 0,
which are approximate boundary conditions, or even better some exact boundary conditions
[42, 43]. The results below are based on computations where we have chosen rmin

∗ = −60M

and rmax
∗ = 660M , such that rext

∗ = 300M and tmax = 360M .
A simple explicit second-order finite difference scheme has been used to evolve the wave

equation (5.3). We always choose the spatial grid resolution δr∗ and the time increment δt

such that the so-called Courant–Friedrichs–Lewy condition δt < δr∗ is verified; therefore, the
code is stable. The results in Figs 3–6 below are based on computations where we used a
spatial grid resolution δr∗ = 0.2M , and a time increment δt = 0.1M .

In order to check the second-order convergence of the code, we computed (for example)
the real part of the (�,m) = (2, 2) mode of the Zerilli master function, ψ ≡ �[

�
(e)
2,2

]
,

for different spatial grid resolutions δr∗ = 0.2M/h, where h = 1, 2, 4, with a constant
time increment δt = 0.025M , in the case of an unequal mass binary on circular orbit with
ν = 0.185, r12 = 1.6M and β = 0. The good overlapping of the differences ψ |h=1 − ψ |h=2
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Figure 2. The good overlapping of the differences ψ |h=1 − ψ |h=2 and 4(ψ |h=2 − ψ |h=4)

demonstrates the second-order accuracy of the code.

and 4(ψ |h=2 − ψ |h=4) as shown in figure 2 demonstrates the second-order accuracy of the
code.

The numerical code was tested in several ways, and against previous published work as
well as on some material presented in [24]:

(i) Using the Misner initial data [44] as given by Price and Pullin [17], we reproduced in
the case of head-on collision the waveform of their figure 2 and the associated radiated
energy; cf equation (16) in [17].

(ii) Using the initial data provided by Sopuerta et al [20] (a conformally flat 3-metric with a
Bowen–York extrinsic curvature and a Brill–Lindquist conformal factor), we reproduced
their waveforms in figure 7, and the fluxes of energy, angular momentum and linear
momentum of their figures 4, 5 and 8 respectively.8

(iii) Checking that the total energy, angular momentum and linear momentum radiated do
not depend on the physically irrelevant initial phase β; and that the components of the
integrated linear momentum flux, or gravitational recoil, transform according to the usual
law for vectors under a shift of the initial phase β.

(iv) Checking that the quasi-normal mode frequencies of the waveforms are in good agreement
with theoretical values [31, 45, 46].

5.3. Ringdown waveforms for head-on collisions

We first consider head-on collisions for which the perturbation is purely polar, i.e. �
(o)
�,m = 0.

We thus show in figures 3 and 4 the real part of the Zerilli master function for even-parity (or

8 The updated plots of figures 7 and 8 of [20] (taking into account the corrections from their first erratum) are available
on the e-Print server arXiv.org. Figure 7 actually shows the Zerilli–Moncrief and Cunningham–Price–Moncrief master
functions, and not their time derivatives as stated.
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Figure 3. The real part of the mode (2, 0) of the Zerilli master function for even-parity (or polar)
perturbations, in the case of an equal mass (ν = 1

4 ) head-on collision, using Brill–Lindquist initial
data as given in [18] with an initial distance L = 2M (red), and our PN initial conditions with
r12 = 1.75L (green).

polar) perturbations, �[
�

(e)
�,m

]
. Initial data for this case are obtained by setting ω12 = 0

(no orbital angular momentum) and ṙ12 = 0 (time-symmetric initial conditions) in the
expressions (3.6) and (4.4) of the even-parity multipolar coefficients and their partial time
derivatives.

In figure 3 we consider an equal mass binary
(
ν = 1

4

)
, and compare our 2PN-accurate

results to those of Abrahams and Price [18], who studied similar head-on collisions using Brill–
Lindquist (BL) initial data [47]. We shall restrict the comparison to the (�,m) = (2, 0) mode
�

(e)
2,0 for simplicity. This comparison requires a detailed discussion of the relation between

the two notions of distance between the two bodies used in both initial data sets. Using
our conventions for the perturbation and various angles, we find that the only non-vanishing
multipolar coefficients in the BL geometry are

H̃
2,0
BL = K̃

2,0
BL = −1

2

√
π

5

ML2

R3

1

1 + M
2R

, (5.7)

where R = 1
4 (

√
r +

√
r − 2M)2 is the isotropic radial coordinate, and L is the distance between

the two black holes of the BL solution. Because the multipolar coefficients G̃�,m, h̃�,m
0 and h̃

�,m
1

vanish, the gauge in which the perturbation (5.7) is written coincides with the Regge–Wheeler
gauge (hence our use of the symbol ∼ on the multipolar coefficients). Setting ω12 = 0 and
ṙ12 = 0 in (3.6a) and (3.6e), we get for our PN initial conditions

H̃
2,0
PN = K̃

2,0
PN = −1

2

√
π

5

Mr2
12

r3
= −1

2

√
π

5

Mr2
12

R3

1(
1 + M

2R

)6 , (5.8)

where we used r = R
(
1+ M

2R

)2
. Observe first that if we set r12 = L, then the two perturbations

(5.7) and (5.8) coincide as they should in the weak-field domain R � M . But in the
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Figure 4. The real part of the non-vanishing modes (�, m) of the Zerilli master function for
even-parity (or polar) perturbations, up to � = 3, in the case of a head-on collision with ν = 0.2
and r12 = 4.4M .

strong-field domain R � M/2, the comparison of the initial distances L and r12 is difficult. It
then becomes interesting to check if these two measures of the distance between the holes can
be related in such a way that the two waveforms compare well.

Most of the perturbation �
(e)
2,0 that propagates to future null infinity is generated around

the maximum of the � = 2 potential V(e)
2 for polar perturbations, which is located around

r  3.1M , or in terms of the isotropic coordinate R  2M . If we wish to identify the
perturbations (5.7) and (5.8), it is then natural to impose the definition

r12

L
≡

(
1 +

M

2R

)5/2
∣∣∣∣∣
R2M

 1.75. (5.9)

We show in figure 3 the (�,m) = (2, 0) mode of the Zerilli master function using both BL
initial data with L = 2M , and our PN initial conditions with r12 = 1.75L. We observe that
the waveforms compare very well, which means that our post-Newtonian initial conditions are
essentially equivalent to the Brill–Lindquist initial data in the case of head-on collisions. We
find that the waveform computed with PN initial conditions is slightly delayed with respect
to the BL one. So in order to achieve this agreement we also had to translate in time the PN
curve by an amount �t  4M . We checked that this good agreement does not depend on the
value of the initial distance L.

We now focus on the waveforms obtained from our CL approximation with 2PN-accurate
initial data. In figure 4 we consider the head-on collision (with time-symmetric initial
conditions) of an unequal mass binary with mass ratio ν = 0.2, and show the real part of the
non-vanishing modes of the Zerilli master function for even-parity perturbations, �[

�
(e)
�,m

]
, up

to � = 3. We set the initial distance to a value twice larger than in the orbital case shown later,
i.e. r12 = 4.4M , so that the Newtonian energy of the binary E = −Gm1m2/r12 is identical
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to that of the circular orbit configuration with initial distance r12 = 2.2M . This configuration
being axisymmetric, for a given � all (�,m) modes can be related to the (�, 0) mode. For

example we know from [48] that �
(e)
2,2 = −

√
6

2 �
(e)
2,0 and �

(e)
3,3 = −

√
5
3�

(e)
3,1. We checked that

the ratios of the amplitudes of the modes shown in figure 4 are in very good agreement with
these theoretical values.

5.4. Ringdown waveforms for circular orbits

In the case of circular orbits, both even and odd perturbations contribute. In this case we simply
have to set ṙ12 = 0 in equations (3.6), (3.7), (4.4) and (4.5). Our initial data will therefore
depend only on the (physically irrelevant) initial orbital phase β, the initial distance r12 and
the initial orbital frequency ω12. We know from the 1PN-accurate equations of motion that,
for a circular orbit, the orbital frequency is related to the binary’s separation by the Kepler-like
law [6]:

ω2
12 = M

r3
12

[
1 + (ν − 3)

M

r12

]
+ O(c−4), (5.10)

so we have only one free parameter r12. This initial orbital distance r12 will be an important
parameter since it will be used in applications like [24] as a ‘matching radius’ to connect the
computation of the ringdown phase to the previous inspiral and/or plunge phases.

An important point is worth emphasizing at this stage. Recall that in our previous
calculation of the initial data for the Regge–Wheeler and Zerilli equations we have
systematically and consistently neglected the nonlinear terms O(G2). Thus, the perturbation
coefficients (3.6) and (3.7) we consider, and which are valid for general orbits, are linear.
Now, by introducing expression (5.10) of the orbital frequency ω12 (where M ≡ GM) into the
results (3.6), (3.7), (4.4) and (4.5) for the multipoles and their time derivatives, we do obtain
terms which are of order O(G2) or more in the case of circular orbits. Those terms have to
be kept as they are, because result (5.10) comes from an independent calculation at the level
of the equations of motion. That is, once we have proved (in section 4) that the Einstein field
equations are satisfied for generic non-circular orbits, we are allowed to reduce the solution
to the particular case of a circular orbit by inserting (5.10); our point is that this adds new
powers of G which constitute an integral part of our solution of the field equations. This being
said, a more involved calculation making use of the theory of second-order perturbations of
a Schwarzschild black hole would introduce other terms of the same order G2 in the final
solution. But we do not have access to these terms in this work, which is based on first-order
perturbations.

We show in figure 5 the real part of the non-vanishing modes of the Zerilli master
function for even-parity perturbations, �[

�
(e)
�,m

]
, up to � = 3, in the case of the unequal mass

binary with mass ratio ν = 0.2 (same as before), on a circular orbit with initial separation
r12 = 2.2M and initial phase β = 0. Note the peculiar behavior of the � = 2 modes which
do not vanish asymptotically. This is because some terms in the CL-expanded 2PN metric
(2.12) behave as 1/r in the far zone, therefore yielding non-vanishing asymptotic values
for the quadrupolar modes of the Zerilli master function (see e.g. the third term in h00 in
equation (2.12a)).

The Newtonian energy of the binary on a circular orbit in figure 5 is chosen to be the
same as for the head-on collision shown in figure 4. Note the difference in amplitude, which is
typically a factor 2, between the orbital case and the head-on case; the even (polar) perturbation
is stronger in the head-on collision case than in the orbital case for the same total energy. This
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Figure 5. The real part of the non-vanishing modes (�, m) of the Zerilli master function for
even-parity (or polar) perturbations, up to � = 3, in the case of a circular orbit with ν = 0.2,
r12 = 2.2M and β = 0.
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Figure 6. The real part of the non-vanishing modes (�, m) of the Regge–Wheeler master function
for odd-parity (or axial) perturbations, up to � = 3, in the case of a circular orbit with ν = 0.2,
r12 = 2.2M and β = 0.

is consistent with the fact that in the case of a circular orbit, we have also in addition to the
even-parity perturbations, some odd-parity or axial perturbations.
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The odd/axial modes for the circular orbits are described by the Regge–Wheeler master
function �

(o)
�,m. Note that they can be computed with our PN initial conditions; Brill–Lindquist

(BL) and Misner–Lindquist (ML) initial conditions are time symmetric and can be applied
only to the polar modes of head-on collisions. (See [20, 21] for initial conditions generalizing
BL and ML, and which also permit to compute the axial modes of circular orbits in the CL
approximation.) It is therefore particularly interesting to compute the real part of the Regge–
Wheeler function, �[

�
(o)
�,m

]
, as we do in figure 6 for the same unequal mass binary, and for the

same initial conditions as for the polar modes shown in figure 5. Comparing figures 5 and 6
we find that the amplitude of the even modes is approximately one order of magnitude larger
than the amplitude of the odd modes. The even modes, which were the only ones present
for head-on collisions without angular momentum, still dominate when we turn on the orbital
angular momentum and consider the circular orbits.

6. Conclusion

We have proposed an implementation of the CL approximation for binary black holes
starting from PN initial conditions developed at 2PN order. The 2PN metric generated
by two point particles, when restricted to be linear in G in order to be consistent in fine
with the linear black hole perturbation, was formally developed in CL form and identified
with the metric of a linearly perturbed Schwarzschild black hole. We proved that the
resulting multipolar coefficients describing the even-parity and odd-parity components of
that perturbation consistently satisfy the perturbative Einstein field equations for general non-
circular binary orbits.

The post-Newtonian initial data were then specialized to the cases of head-on collisions
and of circular orbits. We evolved numerically the Regge–Wheeler and Zerilli wave equations
starting from those initial data, obtained the waveform generated during the ringdown phase,
and compared these two cases. In a separate work [24], we apply this formalism to the
computation of the gravitational recoil produced during the ringdown phase of circular-orbit
compact binaries, and match it to a previous PN calculation of the recoil accumulated in the
preceding inspiral and merger phases [49].

There are several ways in which this work could be extended. First, one may expand to a
higher order in the CL approximation, to get higher multipoles of the perturbation, or include
in the initial 2PN metric terms describing the effect of spins of the initial black holes. We
could also include terms O(G2) or higher in the initial post-Newtonian metric, but it would
be necessary to use the theory of at least second-order perturbations of a Schwarzschild black
hole [28].

An important limitation of the present calculation is the impossibility to treat perturbations
of a highly spinning black hole. In this work the initial orbital angular momentum of the binary
had to be included in the perturbation of the final non-rotating black hole. A solution would
be to employ the Teukolsky formalism [50] to perform similar calculations using a Kerr
background instead of a Schwarzschild one. This would allow for a better description of the
ringdown phase of the final black hole which is known from numerical calculations to be a
rapidly spinning Kerr black hole [7–9].
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Appendix A. Basic material for black hole perturbations

Although the material contained in this appendix is well known, we give in self-contained form
the usual decomposition of an arbitrary linear perturbation hαβ of a Schwarzschild black hole
onto the Zerilli–Mathews tensor spherical harmonics (correcting misprints frequently found
in the litterature), and recall the relation between the Weyl scalar �4 and the Regge–Wheeler
and Zerilli master functions, from which we derive the asymptotic waveform in the form of
its two polarization states + and ×.

A.1. The basis of tensorial spherical harmonics

In order to perform practical calculations, it is particularly convenient, instead of using the
decomposition (3.2) and (3.3) introduced in section 3, to introduce the Zerilli–Mathews basis
of tensor spherical harmonics

(
e
A,�,m
αβ

)
A=1,...,10, and to write the perturbation as

hαβ(t, r, θ, ϕ) =
10∑

A=1

∑
�,m

hA,�,m(t, r) e
A,�,m
αβ (θ, ϕ), (A.1)

where xα = {t, r, θ, ϕ} are the usual Schwarzschild spherical coordinates. This is because
the tensor spherical harmonics

(
e
A,�,m
αβ

)
A=1,...,10 form an orthonormal basis [36, 51, 52], in the

sense that

〈eA,�,m · eA′,�′,m′ 〉 ≡
∫

ξαβξγ δ ēA,�,m
αγ e

A′,�′,m′
βδ d� = δAA′ δ��′ δmm′ , (A.2)

where ξαβ is the Euclidean metric written in spherical coordinates, δij is the usual Kronecker
symbol, the overbar denotes complex conjugation and the integration is performed on the
sphere of unit radius. This basis being orthonormal, each component hA,�,m of a given
perturbation hαβ can be calculated by the projection

hA,�,m = 〈eA,�,m · h〉, (A.3)

from which we then deduce the multipolar coefficients H
�,m
0 ,H

�,m
1 , . . . , k

�,m
2 defined by

(A.17)–(A.26) below. This method was systematically used to get the results (3.6) and
(3.7) from the information on the metric perturbation contained in equations (2.12).

The Zerilli–Mathews basis of tensorial harmonics explicitly reads

e
1,�,m
αβ =

⎛⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ Y�,m, (A.4)

e
2,�,m
αβ = i√

2

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ Y�,m, (A.5)

e
3,�,m
αβ =

⎛⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ Y�,m, (A.6)
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e
4,�,m
αβ = i

√
1

2

(� − 1)!

(� + 1)!

⎛⎜⎜⎝
0 0 ∂θ ∂ϕ

0 0 0 0
∂θ 0 0 0
∂ϕ 0 0 0

⎞⎟⎟⎠ Y�,m, (A.7)

e
5,�,m
αβ =

√
1

2

(� − 1)!

(� + 1)!

⎛⎜⎜⎝
0 0 0 0
0 0 ∂θ ∂ϕ

0 ∂θ 0 0
0 ∂ϕ 0 0

⎞⎟⎟⎠ Y�,m, (A.8)

e
6,�,m
αβ = 1√

2

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 s2

⎞⎟⎟⎠ Y�,m, (A.9)

e
7,�,m
αβ =

√
1

2

(� − 2)!

(� + 2)!

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 D2 D1

0 0 D1 −s2 D2

⎞⎟⎟⎠ Y�,m, (A.10)

e
8,�,m
αβ =

√
1

2

(� − 1)!

(� + 1)!

⎛⎜⎜⎝
0 0 s−1 ∂ϕ −s ∂θ

0 0 0 0
s−1 ∂ϕ 0 0 0
−s ∂θ 0 0 0

⎞⎟⎟⎠ Y�,m, (A.11)

e
9,�,m
αβ = i

√
1

2

(� − 1)!

(� + 1)!

⎛⎜⎜⎝
0 0 0 0
0 0 s−1 ∂ϕ −s ∂θ

0 s−1 ∂ϕ 0 0
0 −s ∂θ 0 0

⎞⎟⎟⎠ Y�,m, (A.12)

e
10,�,m
αβ = i

√
1

2

(� − 2)!

(� + 2)!

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 s−1D1 −s D2

0 0 −s D2 −s D1

⎞⎟⎟⎠ Y�,m, (A.13)

where we introduced the convenient shortcut s ≡ sin θ , together with the angular operators

D1 ≡ 2(∂θ − cot θ)∂ϕ, (A.14)

D2 ≡ ∂2
θ − cot θ ∂θ − s−2 ∂2

ϕ, (A.15)

and where our convention regarding the spherical harmonics is

Y�,m(θ, ϕ) ≡
√

2� + 1

4π

(� − m)!

(� + m)!
P�,m(cos θ) eimϕ, (A.16)

with P�,m(x) = (−1)m(1 − x2)m/2
(

d
dx

)m
P�(x) being the associated Legendre functions.

Finally, the coefficients hA,�,m of the arbitrary perturbation hαβ are related to the multipolar
coefficients H

�,m
0 ,H

�,m
1 , . . . , k

�,m
2 of the decomposition (3.2) and (3.3) through

h1,�,m =
(

1 − 2M

r

)
H

�,m
0 , (A.17)
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h2,�,m = −i
√

2 H
�,m
1 , (A.18)

h3,�,m =
(

1 − 2M

r

)−1

H
�,m
2 , (A.19)

h4,�,m = −i

√
2

(� + 1)!

(� − 1)!
h

�,m
0 , (A.20)

h5,�,m =
√

2
(� + 1)!

(� − 1)!
h

�,m
1 , (A.21)

h6,�,m = r2
√

2

(
K�,m − �(� + 1)

2
G�,m

)
, (A.22)

h7,�,m = r2

√
1

2

(� + 2)!

(� − 2)!
G�,m, (A.23)

h8,�,m = −
√

2
(� + 1)!

(� − 1)!
k

�,m
0 , (A.24)

h9,�,m = i

√
2

(� + 1)!

(� − 1)!
k

�,m
1 , (A.25)

h10,�,m = −i

√
1

2

(� + 2)!

(� − 2)!
k

�,m
2 . (A.26)

A.2. Link between the asymptotic waveform and the master functions

Here we recall the general expression (known as a Chandrasekhar transformation [40]) of the
Weyl scalar �4 in terms of the Regge–Wheeler and Zerilli master functions �

(e,o)
�,m , and we

compute the combination h+ − i h×, where h+,× denote the two asymptotic wave polarizations.
In the Schwarzschild spherical coordinate system {t, r, θ, ϕ}, we let

(
eα
r , eα

θ , eα
ϕ

)
be the

associated orthonormal basis of t = const hypersurfaces, and eα
t be the time-like unit vector

orthogonal to them. Then, we consider the following complex null tetrad: kα and lα are two
real null vectors, while mα and m̄α are complex conjugated null vectors defined by

kα = 1√
2

(
eα
t + eα

r

)
, (A.27)

lα = 1√
2

(
eα
t − eα

r

)
, (A.28)

mα = 1√
2

(
eα
θ − i eα

ϕ

)
, (A.29)

m̄α = 1√
2

(
eα
θ + i eα

ϕ

)
. (A.30)

We therefore have mαm̄α = 1 = −lαkα , all the other scalar products vanishing. Various
conventions for the definition of the Weyl scalar �4 can be found in the literature. We adopt

�4 ≡ Cαβγ δ lα m̄β lγ m̄δ, (A.31)
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where Cαβγ δ is the Weyl tensor, which coincides with the Riemann tensor in vacuum. It can
be shown that, for a generic perturbation of a Schwarzschild black hole,

�4 = 1

r

∑
�,m

√
(� + 2)!

(� − 2)!

(
P(e)

� �
(e)
�,m + iP(o)

� �
(o)
�,m

)
−2Y�,m, (A.32)

where r is the usual Schwarzschild radial coordinate, and the master functions �
(e,o)
�,m are

those defined in equations (5.1). Relation (A.32) is exact for first-order perturbations of the
Schwarzschild geometry [40]. The s = −2 spin-weighted spherical harmonics −2Y�,m are
defined for any integer s by [53, 54]

−sY�,m(θ, ϕ) ≡ (−1)s

√
2� + 1

4π
sd�,m(θ) eimϕ, (A.33)

where the Wigner functions sd�,m read

sd�,m(θ) ≡
kmax∑

k=kmin

(−1)k
√

(� + m)!(� − m)!(� + s)!(� − s)!

k!(� + m − k)!(� − s − k)!(s − m + k)!

(
cos

θ

2

)2� (
tan

θ

2

)2k+s−m

,

(A.34)

with kmin = max(0,m − s) and kmax = min(� + m, � − s). In the case s = 0 we recover the
scalar spherical harmonics (A.16). The differential operators acting on �

(e,o)
�,m in the relation

(A.32) read explicitly as

P(e,o)
� = 1

4

(
W (e,o)

� + ∂r∗ − ∂t

)
(∂r∗ − ∂t ), (A.35)

where r∗ is the tortoise coordinate (5.4), and the potentials W (e,o)
� are given by

W (e)
� = 2

r

(
1 − 3M

r

)
− 6M(r − 2M)

r2(λ� r + 3M)
, (A.36)

W (o)
� = 2

r

(
1 − 3M

r

)
. (A.37)

Recall that λ� = 1
2 (� − 1)(� + 2).

Now, in the limit r → +∞, the Regge–Wheeler and Zerilli functions �
(e,o)
�,m are functions

of the retarded time t − r∗ only. Indeed, they are solutions of the wave equation (5.3) with
decaying potentials V(e,o)

� ∝ 1/r2. Because the potentials W (e,o)
� also decay as r−1, we have

the asymptotic expressions

P(e,o)
� �

(e,o)
�,m = ∂2

t �
(e,o)
�,m + O(r−1). (A.38)

Furthermore, working in the transverse and traceless gauge, and performing some projections
onto the linearized Weyl tensor around flat spacetime in the definition (A.31) leads to the
well-known expression

�4 = ∂2
t (h+ − i h×) + O(r−2), (A.39)

where the two polarization states h+ and h× are defined by

h+ ≡ 1
2

(
ei
θ e

j

θ − ei
ϕej

ϕ

)
hij = 1

2 (hθθ − hϕϕ), (A.40)

h× ≡ 1
2

(
ei
θ e

j
ϕ + ei

ϕe
j

θ

)
hij = hθϕ. (A.41)

Finally, combining the results (A.32) and (A.39) with the asymptotic expansion (A.38), we
recover the well-known formula

h+ − i h× = 1

r

∑
�,m

√
(� + 2)!

(� − 2)!

(
�

(e)
�,m + i �(o)

�,m

)
−2Y�,m + O(r−2). (A.42)
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