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Abstract
The gravitational waveform (GWF) generated by inspiralling compact binaries
moving in quasi-circular orbits is computed at the third post-Newtonian (3PN)
approximation to general relativity. Our motivation is two-fold: (i) to provide
accurate templates for the data analysis of gravitational wave inspiral signals
in laser interferometric detectors; (ii) to provide the associated spin-weighted
spherical harmonic decomposition to facilitate comparison and match of the
high post-Newtonian prediction for the inspiral waveform to the numerically-
generated waveforms for the merger and ringdown. This extension of the GWF
by half a PN order (with respect to previous work at 2.5PN order) is based on
the algorithm of the multipolar post-Minkowskian formalism, and mandates
the computation of the relations between the radiative, canonical and source
multipole moments for general sources at 3PN order. We also obtain the 3PN
extension of the source multipole moments in the case of compact binaries, and
compute the contributions of hereditary terms (tails, tails-of-tails and memory
integrals) up to 3PN order. The end results are given for both the complete
plus and cross polarizations and the separate spin-weighted spherical harmonic
modes.

PACS numbers: 04.25.Nx, 04.30.−w, 97.60.Jd, 97.60.Lf

1. Introduction

One of the most important sources of gravitational radiation for the laser interferometric
detectors LIGO, VIRGO [1, 2] and LISA [3] is the inspiralling and merging compact binary
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system. Until the late inspiral, prior to merger, the gravitational waves are accurately described
by the post-Newtonian (PN) approximation to general relativity [4], while the late inspiral and
subsequent merger and ringdown phases are computed by a full-fledged numerical integration
of the Einstein field equations [5–8]. A new field has emerged recently consisting of high-
accuracy comparisons between the PN predictions and the numerically-generated waveforms.
Such comparisons and matching to the PN results have proved currently to be very successful
[9–12]. They clearly show the need to include high PN corrections not only for the evolution
of the binary’s orbital phase but also for the modulation of the gravitational amplitude.

The aim of this paper is to compute the full gravitational waveform generated by
inspiralling compact binaries moving in quasi-circular orbits at the third post-Newtonian
(3PN) order4. By the full waveform (FWF) at a certain PN order, we mean the waveform
including all higher-order amplitude corrections and hence all higher-order harmonics of the
orbital frequency consistent with that PN order. The FWF is to be contrasted with the so-called
restricted waveform (RWF) which retains only the leading-order harmonic at twice the orbital
frequency. In applications to data analysis both the FWF and RWF should incorporate the
orbital phase evolution up to the maximum available post-Newtonian order which is currently
3.5PN [13–15]. Previous investigations[16–18] have obtained the FWF up to 2.5PN order5.
Recently, Kidder [19] pointed out that there is already enough information in the existing
PN results [17] to control the dominant mode of the waveform, in a spin-weighted spherical
harmonic decomposition, at the 3PN order. This mode, having (�,m) = (2, 2), is the one
which is computed in most numerical simulations, and which is therefore primarily needed for
comparison with the PN waveforms. In the present paper, we shall extend the works [16–19]
by computing all the spin-weighted spherical harmonic modes (�,m) consistent with the 3PN
gravitational polarizations.

The data analysis of ground-based and space-based detectors has traditionally been based
on the RWF approximation [20–26]. However, the need to consider the FWF as a more
powerful template has been emphasized, not only for performing a more accurate parameter
estimation [27–30], but also for improving the mass reach and the detection rate [31–33].
Another motivation for considering the FWF instead of the RWF is to perform cosmological
measurements of the Hubble parameter and dark energy using supermassive inspiralling black-
hole binaries which are known to constitute standard gravitational wave candles (or sirens) in
cosmology [34, 35]. Indeed it has been shown that using the FWF in the data analysis of LISA
will yield substantial improvements (with respect to the RWF) of the angular resolution and
the estimation of the luminosity distance of gravitational wave sirens [36, 37]. This means that
LISA may be able to uniquely identify the galaxy cluster in which the supermassive black-hole
coalescence took place, and thereby permit the measurement of the red-shift of the source
which is crucially needed for investigating the equation of state of dark energy [36].

It turns out that in order to control the FWF at the 3PN order we need to further develop
the multipolar post-Minkowskian (MPM) wave generation formalism [38–43]. The MPM
formalism describes the radiation field of any isolated post-Newtonian source and constitutes
the basis of current PN calculations6. In this formalism, the radiation field is first of all
parametrized by means of two sets of radiative multipole moments [47]. These moments are
then related (by means of an algorithm for solving the nonlinearities of the field equations) to

4 As usual, we refer to nPN as the order equivalent to terms ∼(v/c)2n in the asymptotic waveform (beyond the
Einstein quadrupole formula), where v denotes the binary’s orbital velocity and c is the speed of light.
5 The computation of the FWF is more demanding than that of the phase because it not only requires multipole
moments with higher multipolarity but also higher PN accuracy in many of these multipole moments. This is why
the FWF is known to a lower PN order than the phase.
6 An alternative formalism called DIRE has been developed by Will and collaborators [44–46].
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the so-called canonical moments which constitute some useful intermediaries for describing
the external field of the source. Finally, the canonical moments are expressed in terms of the
operational source moments which are given by explicit integrals extending over the matter
source and gravitational field. In previous studies [13, 17, 48, 49] most of the required source
moments in the case of compact binaries were computed, or techniques were developed
to compute them. The important step which remains here is to refine, by applying the
MPM framework, the relationships between the radiative and canonical moments—this means
taking into account more nonlinear interactions between multipole moments—and between
the canonical and source moments. The latter relationship involves controlling the coordinate
transformation between two MPM algorithms respectively defined from the sets of canonical
and source moments.

The plan of this paper is as follows. In section 2, we recall the basic formulae for
defining the FWF in terms of radiative multipole moments. Sections 3 and 4 apply the MPM
formalism to obtain general formulae for relating the radiative moments to the source moments
via the canonical moments. Section 5 summarizes the results for all the relevant moments
parametrizing the FWF at 3PN order. The time derivatives of source moments are investigated
in section 6 and the various hereditary contributions are computed in section 7. The complete
polarization waveforms at 3PN order are given in section 8 for data analysis applications.
Finally, the spin-weighted spherical harmonic modes of the 3PN waveform are provided in
section 9 for use in numerical relativity.

For the benefits of readers we provide in the appendix a list of symbols used in the paper
together with their main meaning.

2. The polarization waveforms

The full waveform (FWF) propagating in the asymptotic regions of an isolated source, hTT
ij ,

is the transverse-traceless (TT) projection of the metric deviation at the leading order 1/R in
the distance R = |X| to the source, in a radiative-type coordinate system Xµ = (cT , X). The
FWF can be uniquely decomposed [47] into radiative multipole components parametrized by
symmetric-trace-free (STF) mass-type moments UL and current-type ones VL

7. The radiative
moments are functions of the retarded time TR = T − R/c in radiative coordinates. By
definition we have, up to any multipolar order �,

hTT
ij = 4G

c2R
PTT

ijkl(N)

+∞∑
�=2

1

c��!

{
NL−2UklL−2(TR) − 2�

c(� + 1)
NaL−2εab(kVl)bL−2(TR)

}

+O
(

1

R2

)
. (2.1)

Here N = X/R = (Ni) is the unit vector pointing from the source to the far away detector. The
TT projection operator in (2.1) reads PTT

ijkl = PikPj l − 1
2PijPkl where Pij = δij − NiNj is the

projector orthogonal to the unit direction N. We introduce two unit polarization vectors P and
Q, orthogonal and transverse to the direction of propagation N (hence Pij = PiPj + QiQj ).

7 The notation is: L = i1 · · · i� for a multi-index composed of � multipolar spatial indices i1, . . . , i� (ranging from
1 to 3); similarly L − 1 = i1 · · · i�−1 and aL − 2 = ai1 · · · i�−2; NL = Ni1 · · · Ni� is the product of � spatial vectors
Ni (similarly for xL = xi1 · · · xi� ); ∂L = ∂i1 · · · ∂i� and say ∂aL−2 = ∂a∂i1 · · · ∂i�−2 denote the product of partial
derivatives ∂i = ∂/∂xi ; in the case of summed-up (dummy) multi-indices L, we do not write the � summations from
1 to 3 over their indices; the STF projection is indicated using brackets, T〈L〉 = STF[TL]; thus UL = U〈L〉 and
VL = V〈L〉 for STF moments; for instance we write x〈ivj 〉 = 1

2 (xivj + xj vi ) − 1
3 δij x · v; εabc is the Levi-Civita

antisymmetric symbol such that ε123 = 1; time derivatives are denoted with a superscript (n).

3



Class. Quantum Grav. 25 (2008) 165003 L Blanchet et al

Our convention for the choice of P and Q will be clarified in section 8. Then the two ‘plus’
and ‘cross’ polarization states of the FWF are defined by(

h+

h×

)
= 4G

c2R

(
PiPj −QiQj

2
PiQj +Pj Qi

2

)
+∞∑
�=2

1

c��!

{
NL−2UijL−2(TR) − 2�

c(� + 1)
NaL−2εab(iVj)bL−2(TR)

}

+O
(

1

R2

)
. (2.2)

Although the multipole decompositions (2.1) and (2.2) are all what we need for our
purpose, it will also be important, having in view the ongoing comparisons between the PN
and numerical results [9–12], to consider separately the various modes (�,m) of the FWF
as defined with respect to a basis of spin-weighted spherical harmonics. To this end we
decompose h+ and h× in the standard way as (see, e.g., [9, 19])

h+ − ih× =
+∞∑
�=2

�∑
m=−�

h�mY �m
−2 (�,�), (2.3)

where the spin-weighted spherical harmonics of weight −2 is function of the spherical angles
(�,�) defining the direction of propagation N,8 and is given by

Y �m
−2 =

√
2� + 1

4π
d�m

2 (�) eim�, (2.4a)

d�m
2 =

k2∑
k=k1

(−)k

k!

√
(� + m)!(� − m)!(� + 2)!(� − 2)!

(k − m + 2)!(� + m − k)!(� − k − 2)!

(
cos

�

2

)2�+m−2k−2 (
sin

�

2

)2k−m+2

.

(2.4b)

Here k1 = max(0,m − 2) and k2 = min(� + m, � − 2). Using the orthonormality properties
of these harmonics we obtain the separate modes h�m from the surface integral

h�m =
∫

d�[h+ − ih×]Y
�m

−2(�,�), (2.5)

where the bar or overline denotes the complex conjugate. On the other hand, we can also,
following [19], relate h�m directly to the multipole moments UL and VL. The result is9

h�m = − G√
2Rc�+2

[
U�m − i

c
V �m

]
, (2.6)

where U�m and V �m are the radiative mass and current moments in standard (non-STF) guise
[19]. These are related to the STF moments by

U�m = 4

�!

√
(� + 1)(� + 2)

2�(� − 1)
α�m

L UL, (2.7a)

V �m = − 8

�!

√
�(� + 2)

2(� + 1)(� − 1)
α�m

L VL. (2.7b)

Here α�m
L denotes the STF tensor connecting together the usual basis of spherical harmonics

Y �m to the set of STF tensors N〈L〉 = N〈i1 · · · Ni�〉 (where the brackets indicate the STF

8 For the data analysis of compact binaries in section 8 the direction of propagation will be defined by the angles
(�, �) = (i, π

2 ) where i is the inclination angle of the orbit over the plane of the sky.
9 We have an overall sign difference with [19] due to a different choice for the polarization triad (N, P, Q).
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projection). Indeed both Y �m and N〈L〉 are basis of an irreducible representation of weight �

of the rotation group. They are related by

N〈L〉(�,�) =
�∑

m=−�

α�m
L Y �m(�,�), (2.8a)

Y �m(�,�) = (2� + 1)!!

4πl!
α�m

L N〈L〉(�,�), (2.8b)

with the STF tensorial coefficient being10

α�m
L =

∫
d�N〈L〉Y

�m
. (2.9)

As observed in [19] this is especially useful if some of the radiative moments are known to
higher PN order than others. In this case, the comparison with the numerical calculation for
these individual modes can be made at higher PN accuracy.

3. Relation between the radiative and canonical moments

The basis of our computation of the radiative moments is the multipolar-post-Minkowskian
(MPM) formalism [38–43] which iterates the general solution of the Einstein field equations
outside an isolated matter system in the form of a post-Minkowskian or nonlinearity expansion.
The formalism is then supplemented by a matching to the PN gravitational field valid in the
near zone of the source. In this section and the next one we sketch the main features of
the MPM iteration of the exterior field while limiting ourselves to quadratic nonlinear order
because this is what we need for the new terms required in the FWF at 3PN order11. We shall
work with harmonic coordinates xµ = (ct, x), which means that

∂µhαµ = 0, (3.1)

where the ‘gothic’ metric deviation reads hαβ = √−ggαβ − ηαβ , with g the determinant
and gαβ the inverse of the usual covariant metric, and with ηαβ = diag(−1, 1, 1, 1) being an
auxiliary Minkowskian metric12. Up to quadratic nonlinear order the vacuum Einstein field
equations take the form

�hαβ = N
αβ

2 (h) + O(h3), (3.2)

where � = ηµν∂µ∂ν is the flat spacetime d’Alembertian operator, and where N
αβ

2 denotes the
quadratic part of the gravitational source term in harmonic coordinates—a quadratic functional
of h and its first and second spacetime derivatives given explicitly by

N
αβ

2 (h) = −hµν∂µ∂νh
αβ + 1

2∂αhµν∂
βhµν − 1

4∂αh∂βh

− 2∂(αhµν∂
µhβ)ν + ∂νh

αµ
(
∂νhβ

µ + ∂µhβν
)

+ ηαβ
[− 1

4∂ρhµν∂
ρhµν + 1

8∂µh∂µh + 1
2∂µhνρ∂

νhµρ
]
, (3.3)

with h = ηµνhµν . The four-divergence of this source term reads

∂µN
αµ

2 = − 1
4∂αh �h + 1

2

[
∂αhµν − 2∂µhα

ν

]
� hµν. (3.4)

10 The notation used in [19, 47] is related to ours by Y�m
L = (2�+1)!!

4π�! α�m
L .

11 Cubic nonlinearities do contribute at the 3PN order in the form of ‘tail-of-tails’ but those have already been
computed [50].
12 Beware of the fact that the TT waveform defined by (2.1) differs by a sign from the spatial components of the
gothic metric deviation, hTT

ij = −PTT
ijklhkl + O(h2).
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In this paper, we shall consider two explicit constructions of the quadratic-order external
metric following the MPM formalism. The first construction, dealt with in this section, will be
parametrized by two (and only two) sets of moments, mass moments ML and current moments
SL, which are referred to as the canonical multipole moments. The canonical moments are
crucially distinct from the radiative moments UL and VL, and the MPM construction will
provide the relations linking them to UL, VL. The second construction (in section 4) will deal
with the link between ML, SL and six sets of moments IL, JL,WL,XL, YL and ZL collectively
named the source multipole moments. Among these, the moments IL (mass-type) and JL

(current-type) play the most important role, while for reasons explained below the other
moments WL,XL, YL and ZL are called the gauge multipole moments and will appear to be
subdominant.

Armed with such definitions, the computation of the radiative field (2.1) and (2.2) proceeds
in a modular way (see section 6 of [43] for further discussion). We start with relating the
radiative moments {UL, VL} to the canonical moments {ML, SL} which are to be viewed as
convenient intermediate constructs relating the radiation field and the matter source. The
canonical moments are then in turn connected to the actual multipole moments of the source
{IL, JL,WL,XL, YL, ZL}. The point of the above strategy is that the source moments admit
closed-form expressions as integrals over the stress-energy distribution of the matter and
gravitational fields. The expressions of IL, . . . , ZL for general sources are given by (5.15)–
(5.20) in [43] and shall not be reproduced here13. Note that the above formalism can be applied
only to PN sources, which remain confined in their own near zone; the final expressions of the
source moments are valid only for sources that are semi-relativistic like inspiralling compact
binaries.

Consider the so-called canonical construction of the MPM metric in harmonic coordinates,
designated that way because it is based on Thorne’s [47] canonical expression for the linearized
approximation h

αβ

can 1 (given by (3.6)). The MPM metric is parametrized by the canonical
multipole moments ML and SL and reads, to quadratic order,

hαβ
can = Gh

αβ

can 1[ML, SL] + G2h
αβ

can 2[ML, SL] + O(G3), (3.5)

where the Newton constant G is introduced as a convenient book-keeping parameter for
labelling the successive nonlinear approximations. From (3.1) and (3.2) the linearized
approximation h

αβ

can 1 obviously satisfies ∂µh
αµ

can 1 = 0 together with � h
αβ

can 1 = 0. Following
[38, 39] we adopt the following explicit retarded solution of these equations:

h00
can 1 = − 4

c2

∞∑
�=0

(−)�

�!
∂L[r−1ML(t − r/c)], (3.6a)

h0i
can 1 = 4

c3

∞∑
�=1

(−)�

�!

{
∂L−1

[
r−1M

(1)
iL−1(t − r/c)

]
+

�

� + 1
εiab∂aL−1[r−1SbL−1(t − r/c)]

}
,

(3.6b)

h
ij

can 1 = − 4

c4

∞∑
�=2

(−)�

�!

{
∂L−2

[
r−1M

(2)
ijL−2(t − r/c)

]
+

2�

� + 1
∂aL−2

[
r−1εab(iS

(1)

j)bL−2(t − r/c)
]}

,

(3.6c)

with F (n)(t) denoting n time derivatives of F(t). These expressions represent the most general
solution of the vacuum linearized field equations modulo a change of gauge [47].

13 Below we give the source moments needed at the 3PN order in a form already reduced to the case of compact
binaries in circular orbits.
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Next, the quadratically nonlinear term h
αβ

can 2—and subsequently all nonlinear terms
h

αβ
can n—is constructed by the following algorithm. We first define

u
αβ

can 2 = FP
B=0

�−1
ret

[(
r

r0

)B

N
αβ

2 (hcan 1)

]
, (3.7)

where �−1
ret represents the ordinary (flat) retarded integral operator acting on the source

N
αβ

2 (hcan 1) which is obtained by insertion of the linearized metric (3.6) into the quadratic
source term given by (3.3). The symbol FPB=0 refers to a specific operation of taking the finite
part when the complex number B tends to zero. Such a finite part involves the multiplication
of the source term by a regularization factor (r/r0)

B , where r0 represents an arbitrary constant
length scale (and B ∈ C). The finite part is necessary for dealing with multipolar expansions
which are singular at the origin r = 0 (like in (3.6)). It will not be further detailed here and we
refer to [38, 41, 43] for full details. The point is that the object (3.7) obeys the d’Alembertian
equation we want to solve, namely

� u
αβ

can 2 = N
αβ

2 (hcan 1). (3.8)

However, such a solution is a priori not divergenceless and so the harmonic coordinate
condition needs not to be satisfied. To obtain a solution which is divergenceless we add to
u

αβ

can 2 another piece v
αβ

can 2 defined as follows. Computing the divergence wα
can 2 = ∂µu

αµ

can 2, we
readily find

wα
can 2 = FP

B=0
�−1

ret

[
B

(
r

r0

)B
ni

r
Nαi

2 (hcan 1)

]
, (3.9)

where we used the fact that the source term of (3.8), as an immediate consequence of (3.4), is
divergenceless, ∂βN

αβ

can 2 = 0. Again, because the source term is divergenceless, the divergence
wα

can 2 must be a (retarded) solution of the source-free d’Alembertian equation, �wα
can 2 = 0.

This can also be checked from the fact that there is a factor B explicit in the source of (3.9)
(appearing because of the differentiation of the regularization factor rB), and therefore the
finite part at B = 0 is actually equal to the residue in the Laurent expansion when B → 0,
and is necessarily a retarded solution of the source-free equation [38].

Given any vector of the type wα
can 2, i.e. one which is of the form of a retarded solution of

the d’Alembertian equation, we can always find four sets of STF tensors NL, PL,QL and RL

such that the following decomposition holds:

w0
can 2 =

+∞∑
�=0

∂L[r−1NL(t − r/c)], (3.10a)

wi
can 2 =

+∞∑
�=0

∂iL[r−1PL(t − r/c)] +
+∞∑
�=1

{∂L−1[r−1QiL−1(t − r/c)]

+ εiab∂aL−1[r−1RbL−1(t − r/c)]}. (3.10b)

From this decomposition (which is unique) we define the object v
αβ

can 2 by the formulae14

v00
can 2 = −r−1N(−1) + ∂a

[
r−1

(−N(−1)
a + Q(−2)

a − 3Pa

)]
, (3.11a)

v0i
can 2 = r−1

(−Q
(−1)
i + 3P

(1)
i

) − εiab∂a

[
r−1R

(−1)
b

] −
+∞∑
�=2

∂L−1[r−1NiL−1], (3.11b)

14 We are adopting here a modified version of the MPM algorithm (with respect to [38]) as proposed in [51].

7



Class. Quantum Grav. 25 (2008) 165003 L Blanchet et al

v
ij

can 2 = −δij r
−1P +

+∞∑
�=2

{
2δij ∂L−1[r−1PL−1] − 6∂L−2(i[r

−1Pj)L−2]

+ ∂L−2
[
r−1

(
N

(1)
ijL−2 + 3P

(2)
ijL−2 − QijL−2

)] − 2∂aL−2[r−1εab(iRj)bL−2]
}
. (3.11c)

The superscript (−p) denotes the time anti-derivatives (i.e. time integrals) of the moments.
Such anti-derivatives yield some secular losses of mass and momenta by gravitational radiation
which have been checked to agree with the corresponding gravitational radiation fluxes, see,
e.g., (4.12) in [51]. The formulae (3.11) have been conceived in such a way that the divergence
of the so defined v

αβ

can 2 cancels out the divergence of u
αβ

can 2 which is wα
can 2. In the following, we

shall denote by Vαβ the operation for going from a vector such as (3.10)—a retarded solution
of the source-free wave equation—to the tensor (3.11). We therefore pose

v
αβ

can 2 = Vαβ [wcan 2] , (3.12)

and as mentioned before this tensor immediately satisfies � v
αβ

can 2 = 0 (which is obvious) and
also

∂µv
αµ

can 2 = −wα
can 2. (3.13)

This property can be directly checked from (3.11) and (3.10). Finally, it is clear from (3.8)
and (3.13) that by posing

h
αβ

can 2 = u
αβ

can 2 + v
αβ

can 2, (3.14)

we solve the Einstein vacuum field equations at quadratic order, namely

�h
αβ

can 2 = N
αβ

can 2, (3.15a)

∂µh
αµ

can 2 = 0. (3.15b)

The MPM algorithm can be extended to any post-Minkowskian order n.
The structure of the quadratic metric h

αβ

can 2 so constructed has been investigated in previous
works [40, 51]. It consists of two types of terms: those which depend on the source moments
at a single instant, namely the current retarded time t − r/c, referred to as instantaneous terms,
and the other ones which are sensitive to the entire ‘past history’ of the source, i.e. which
depend on all previous times (τ � t − r/c), and are referred to as the hereditary terms. The
hereditary terms are themselves composed of three types of contributions, the tail integrals—
made from interaction between the mass of the source M and the time-varying moments ML

and SL (having � � 2)—the memory integrals responsible for the so-called nonlinear memory
or Christodoulou effect [52–54] (investigated within the present approach in [40, 51]), and
semi-hereditary integrals which are in the form of simple anti-derivatives of instantaneous
terms and are associated with the secular variations of the mass, linear momentum and angular
momentum. The semi-hereditary integrals are given by the time anti-derivatives present in the
formula (3.11).

To obtain the radiative moments we expand the metric at future null infinity in a radiative
coordinate system Xµ = (cT ,Xi), which is such that the metric admits an expansion in
simple powers of 1/R without the logarithms which plague the harmonic coordinate system
xµ = (ct, xi) [39]. Up to quadratic order and for all multipole interactions we consider,
we find that it is sufficient to define for the radiative coordinates Xi = xi and (denoting
TR = T − R/c)

TR = t − r

c
− 2GM

c3
ln

(
r

r0

)
+ O(G2), (3.16)

8
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where r0 is the length scale introduced in (3.7). Expanding the metric when R → ∞ with
TR = const, and applying the TT projection we obtain the radiative moments UL and VL we
are seeking by comparing with their definition in (2.1). At linear order the radiative moments
agree with the � th time derivatives of the canonical moments, M(�)

L and S
(�)
L . At quadratic order

we find that tail and nonlinear memory terms appear; these have already been investigated
in [40, 51, 50]15. Their general structure will also be given in (5.1). Finally, we have
numerous instantaneous terms whose determination necessitates the straightforward but long
implementation of the MPM algorithm (3.7)–(3.14). This is the work required here: we have
implemented the MPM algorithm in a Mathematica program to obtain all the instantaneous
terms needed to control the 3PN waveform. The presentation of the results is postponed to
section 5.1.

4. Relation between the canonical and source moments

4.1. General method

We next need to connect the canonical moments {ML, SL} to a convenient choice of moments
that are suitably defined to play the role of source moments. As it turns out, the source
moments are best represented by six multipole moments {IL, JL,WL,XL, YL, ZL} admitting
closed-form expressions in the form of integrals over the source and the gravitational field.
To define them we consider a MPM construction which is more general than the one given by
(3.5), namely (still up to quadratic order)

hαβ
gen = Gh

αβ

gen 1[IL, JL,WL, . . . , ZL] + G2h
αβ

gen 2[IL, JL,WL, . . . , ZL] + O(G3), (4.1)

where the linearized metric h
αβ

gen 1 is defined by the canonical expression h
αβ

can 1 explicitly given
in (3.6) but parametrized by {IL, JL} instead of {ML, SL}, and augmented by a linearized
gauge transformation associated with some vector ϕα

1 parametrized by the remaining moments
{WL,XL, YL, ZL} which can thus rightly be called the gauge moments. Thus,

h
αβ

gen 1 = h
αβ

can 1[IL, JL] + ∂ϕ
αβ

1 [WL,XL, YL, ZL], (4.2)

where for any vector ϕα
1 we denote the gauge transformation by

∂ϕ
αβ

1 = ∂αϕ
β

1 + ∂βϕα
1 − ηαβ∂µϕ

µ

1 . (4.3)

Note that ∂µ∂ϕ
αµ

1 = �ϕα
1 . The expression of ϕα

1 in terms of the gauge moments is

ϕ0
1 = 4

c3

∑
��0

(−)�

�!
∂L[r−1WL(t − r/c)], (4.4a)

ϕi
1 = − 4

c4

∑
��0

(−)�

�!
∂iL[r−1XL(t − r/c)] (4.4b)

− 4

c4

∑
��1

(−)�

�!

{
∂L−1[r−1YiL−1(t − r/c)] +

�

� + 1
εiab∂aL−1[r−1ZbL−1(t − r/c)]

}
.

(4.4c)

The quadratic metric h
αβ

gen 2 will now be defined by the same algorithm as for the canonical
metric in section 3 but starting from the general linearized metric (4.2). The result will be

15 The semi-hereditary integrals associated with secular gravitational radiation losses do not contribute to the radiative
moments.
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another MPM metric (both the canonical and general metrics are legitimate to describe the
exterior field of any isolated matter source [38]) and we shall look for the relation between
{ML, SL} and {IL, JL,WL,XL, YL, ZL} which is necessary in order that these two metrics
differ by a coordinate transformation (at quadratic order), and therefore describe the same
physical matter source.

To proceed, we have to define

u
αβ

gen 2 = FP
B=0

�−1
ret

[(
r

r0

)B

N
αβ

2 (hgen 1)

]
. (4.5)

The only difference with (3.7) is that the quadratic source (3.3) is computed from h
αβ

gen 1

instead of h
αβ

can 1. However, since the two linear metrics h
αβ

gen 1 and h
αβ

can 1 differ by the gauge
transformation (4.3) the difference between the corresponding sources must have a specific
structure, and we find

N
αβ

2 (hgen 1) = N
αβ

2 (hcan 1) + ��
αβ

2 + ∂�
αβ

2 . (4.6)

We employ the notation (4.3) for the gauge term ∂�
αβ

2 . The expressions of the tensor �
αβ

2 and
vector �α

2 are determined with the help of (3.3) and read

�
αβ

2 = −∂µ

(
ϕ

µ

1

[
h

αβ

can 1 + ∂ϕ
αβ

1

])
+ 2∂µϕ

(α
1 h

β)µ

can 1 + ∂µϕα
1 ∂µϕ

β

1 + 1
2ηαβ

[
∂µϕν

1∂νϕ
µ

1 − ∂µϕ
µ

1 ∂νϕ
ν
1

]
,

(4.7a)

�α
2 = −h

µν

can 1∂µ∂νϕ
α
1 + ∂µ

(
ϕ

µ

1 �ϕα
1

)
. (4.7b)

As a consequence of (4.7) we easily verify that

∂µ�
αµ

2 + �α
2 = 0. (4.8)

This relation is consistent with the fact that the source term N
αβ

2 is divergenceless (because of
(3.4). Hence we see that the divergence of (4.6) is automatically verified, where we use the
fact that ∂µ∂�

αµ

2 = ��α
2 .

Applying our specific finite part of the retarded integral operator on both sides of (4.6)
we obtain the relation between u

αβ

gen 2 defined by (4.5) and the corresponding u
αβ

can 2 defined by
(3.7) in the canonical algorithm, namely

u
αβ

gen 2 = u
αβ

can 2 + �
αβ

2 + ∂φ
αβ

2 + X
αβ

2 + Y
αβ

2 . (4.9)

The difference between the two prescriptions is made of various terms. The terms �
αβ

2 and
∂φ

αβ

2 represent what we would expect if the operation of taking the finite part of the retarded
integral would commute with partial derivatives. Here the gauge transformation is associated
with the gauge vector defined by the finite part of the retarded integral of �α

2 ,

φα
2 = FP

B=0
�−1

ret

[(
r

r0

)B

�α
2

]
. (4.10)

The last two terms X
αβ

2 and Y
αβ

2 come from the non-commutation of the finite part of the
retarded integral operator FPB=0 �−1

ret (r/r0)
B with the differential operators � and ∂ which

are present in front of the last two terms of (3.3), respectively. We have

X
αβ

2 = FP
B=0

�−1
ret

[(
r

r0

)B

��
αβ

2

]
− �

αβ

2 , (4.11a)

10
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Y
αβ

2 = FP
B=0

�−1
ret

[(
r

r0

)B

∂�
αβ

2

]
− ∂φ

αβ

2 , (4.11b)

which can also be seen more formally as the action of ‘commutators’ namely

X
αβ

2 = [
FP �−1

ret ,�
]
�

αβ

2 , (4.12a)

Y
αβ

2 = [
FP �−1

ret , ∂
]
�

αβ

2 . (4.12b)

Our notation for the commutators involved and for the partial derivative ∂ should be clear. Here
FP �−1

ret is a short hand for FPB=0 �−1
ret (r/r0)

B and we have used the fact that �(FP �−1
ret f ) = f .

It is evident that the non-commutation of FP �−1
ret with partial derivatives comes from the

presence of the regularization factor rB . Thus X
αβ

2 and Y
αβ

2 are built from the spatial
differentiation of rB , i.e. ∂ir

B = Bnir
B−1, and will involve an explicit factor B in their

sources. Their expressions read as

X
αβ

2 = FP
B=0

�−1
ret

[
B

(
r

r0

)B
(

−B + 1

r2
�

αβ

2 − 2

r

∂�
αβ

2

∂r

)]
, (4.13a)

Y
αβ

2 = FP
B=0

�−1
ret

[
B

(
r

r0

)B
ni

r

(−δiα�
β

2 − δiβ�α
2 + ηαβ�i

2

)]
. (4.13b)

In section 4.2, we shall present a practical method to evaluate X
αβ

2 and Y
αβ

2 at the
lowest PN order, given the general quadratic-type structure for the source terms (4.7a)
and (4.7b).

The first part of the MPM algorithm u
αβ

gen 2 has been obtained in (4.9), and we look now

for the second part v
αβ

gen 2. To this end we compute the divergence wα
gen 2 = ∂µu

αµ

gen 2. Using
(4.9) and the property (4.8) we readily find that

wα
gen 2 = wα

can 2 + ∂µU
αµ

2 , (4.14)

where we pose for simplicity

U
αβ

2 = X
αβ

2 + Y
αβ

2 . (4.15)

The structure (4.13) of X
αβ

2 and Y
αβ

2 involving the retarded integral of a source term containing
an explicit factor B implies that U

αβ

2 is necessarily a retarded solution of the source-free
d’Alembertian equation, �U

αβ

2 = 0. Hence, there must exist ten STF tensors AL,BL, . . . , LL

(functions of the retarded time) parametrizing the ten components of U
αβ

2 in such a way
that

U 00
2 =

+∞∑
�=0

∂L[r−1AL(t − r/c)], (4.16a)

U 0i
2 =

+∞∑
�=0

∂iL[r−1BL(t − r/c)]

+
+∞∑
�=1

{∂L−1[r−1CiL−1(t − r/c)] + εiab∂aL−1[r−1DbL−1(t − r/c)]}, (4.16b)

11
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U
ij

2 =
+∞∑
�=0

{∂ijL[r−1EL(t − r/c)] + δij ∂L[r−1FL(t − r/c)]}

+
+∞∑
�=1

{∂L−1(i[r
−1Gj)L−1(t − r/c)] + εab(i∂j)aL−1[r−1HbL−1(t − r/c)]}

+
+∞∑
�=2

{∂L−2[r−1KijL−2(t − r/c)] + ∂aL−2[r−1εab(iLj)bL−2(t − r/c)]}. (4.16c)

The divergence of this tensor, Wα
2 = ∂µU

αµ

2 , will also be of that form and hence there will
exist four STF tensors N ′

L, . . . , R′
L such that

W 0
2 =

+∞∑
�=0

∂L[r−1N ′
L(t − r/c)], (4.17a)

Wi
2 =

+∞∑
�=0

∂iL[r−1P ′
L(t − r/c)]

+
+∞∑
�=1

{∂L−1[r−1Q′
iL−1(t − r/c)] + εiab∂aL−1[r−1R′

bL−1(t − r/c)]}. (4.17b)

The four tensors N ′
L, . . . , R′

L play exactly the same role as NL, . . . , RL in (3.10), and we shall
apply the same algorithm as the one going from (3.10) to (3.11). Thus, we define from the
components of Wα

2 a new tensor V
αβ

2 by this algorithm, which was denoted by Vαβ in (3.12).
Hence

V
αβ

2 = Vαβ [W2] , (4.18)

so that in component form this tensor reads

V 00
2 = −r−1N ′(−1) + ∂a

[
r−1

(−N ′(−1)
a + Q′(−2)

a − 3P ′
a

)]
, (4.19a)

V 0i
2 = r−1

(−Q
′(−1)
i + 3P

′(1)
i

) − εiab∂a

[
r−1R

′(−1)
b

] −
+∞∑
�=2

∂L−1[r−1N ′
iL−1], (4.19b)

V
ij

2 = −δij r
−1P ′ +

+∞∑
�=2

{
2δij ∂L−1[r−1P ′

L−1] − 6∂L−2(i[r
−1P ′

j)L−2]

+ ∂L−2
[
r−1

(
N

′(1)
ijL−2 + 3P

′(2)
ijL−2 − Q′

ijL−2

)] − 2∂aL−2[r−1εab(iR
′
j)bL−2]

}
. (4.19c)

However, in the present case the tensors N ′
L, . . . , R′

L can be directly related to those
parametrizing (4.16). By computing the divergence Wα

2 = ∂µU
αµ

2 we readily find

N ′
L = A

(1)
L + B

(2)
L + CL, (4.20a)

P ′
L = E

(2)
L + FL + 1

2GL + B
(1)
L , (4.20b)

Q′
L = 1

2G
(2)
L + KL + C

(2)
L , (4.20c)

R′
L = 1

2H
(2)
L + 1

2LL + D
(1)
L . (4.20d)

Thus V
αβ

2 can be expressed directly in terms of AL, . . . , LL by substituting (4.20) into (4.19).
In doing so we shall discover that the time anti-derivatives present in (4.19) become in fact

12
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‘instantaneous’ because they are cancelled by some time derivatives coming from (4.20). By
construction of (4.19) we have at once �V

αβ

2 = 0 and ∂µV
αµ

2 = −Wα
2 . Applying the MPM

algorithm we therefore find for the second part of the algorithm,

v
αβ

gen 2 = v
αβ

can 2 + V
αβ

2 . (4.21)

Gathering the results (4.9) and (4.21) the complete quadratic-order metric is obtained as

h
αβ

gen 2 = h
αβ

can 2 + �
αβ

2 + ∂φ
αβ

2 + U
αβ

2 + V
αβ

2 , (4.22)

and it satisfies the vacuum Einstein field equations in harmonic coordinates, i.e.,

�h
αβ

gen 2 = N
αβ

gen 2, (4.23a)

∂µh
αµ

gen 2 = 0. (4.23b)

To find the relation between the source and canonical moments we note that the sum of
the last two terms in (4.22) is a solution of the linearized vacuum equations, since it satisfies
�

(
U

αβ

2 + V
αβ

2

) = 0 and also ∂µ

(
U

αµ

2 + V
αµ

2

) = 0. It must therefore be of the form of the

general solution h
αβ

gen 1 of these equations which has been given in (4.2), i.e. there should exist
some moments δIL and δJL representing specific corrections to IL and JL (necessarily at
quadratic order) and some gauge vector ψα

2 such that

U
αβ

2 + V
αβ

2 = h
αβ

can 1[δIL, δJL] + ∂ψ
αβ

2 . (4.24)

Let us prove that the corrections we seek to the moments IL and JL that are needed to reproduce
the canonical moments are indeed provided by these δIL and δJL, i.e.,

ML = IL + GδIL + O(G2), (4.25a)

SL = JL + GδJL + O(G2). (4.25b)

To this end we have to check that the general metric h
αβ
gen[IL, JL,WL, . . . , ZL] constructed at

quadratic order in (4.1) is isometric—differs by a coordinate transformation—to the canonical
metric h

αβ
can[ML, SL] given by (3.5). This immediately follows from (4.22) and (4.24) which

permits us to recast the general metric (4.1) into the form

hαβ
gen[IL, JL, . . .] = G

[
h

αβ

can 1[ML, SL] + ∂ϕ
αβ

1

]
+ G2

[
h

αβ

can 2[ML, SL] + �
αβ

2 + ∂ϕ
αβ

2

]
+ O(G3),

(4.26)

where we have posed ϕα
2 = φα

2 + ψα
2 , and where higher-order powers of G are consistently

neglected. From this result we conclude that h
αβ
gen[IL, JL, . . .] and h

αβ
can[ML, SL] differ by the

coordinate transformation

xα
gen = xα

can + Gϕα
1 + G2ϕα

2 + O(G3), (4.27)

as we have recognized that �
αβ

2 represents precisely the quadratic nonlinear part of that
coordinate transformation, i.e. the term which makes it to differ from a linearized gauge
transformation. Hence we have proved that the two sets of moments {IL, JL,WL,XL, YL, ZL}
and {ML, SL} related by (4.25) are physically equivalent—they describe the same physical
matter source. Note that the relations (4.25) give the canonical moments as functionals of
the full set of source moments {IL, JL,WL,XL, YL, ZL}. Consequently, just two moments
ML and SL are still sufficient to describe the external field of any source [38]. Note also
that ML and SL are almost equal to IL and JL in the sense that the corrections δIL and δJL

in (4.25) will turn out to be very small in a PN expansion, being of order 2.5PN [42]. This
is of course the result of the fact that the gauge moments {WL,XL, YL, ZL} do not play any
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physical role at the linear approximation, where the coordinate transformation reduces to
the gauge transformation. However, since the theory is covariant with respect to nonlinear
diffeomorphisms and not merely with respect to linear gauge transformations, the moments
{WL,XL, YL, ZL} do play a role at the nonlinear level.

4.2. Practical implementation

Finally, let us sketch our practical method to compute the correction terms δIL and δJL. We
remark first that they come via (4.24) from the ten STF tensors AL, . . . , LL parametrizing U

αβ

2
as given by (4.16). We can therefore express δIL and δJL directly in terms of AL, . . . , LL by
following in details the steps (3.10)–(4.20). The result is

δIL = −c2 (−)��!

4

[
AL + 4B

(1)
L + 3E

(2)
L + 3FL + GL

]
, (4.28a)

δJL = c3 (−)�(� + 1)!

4�

[
DL +

1

2
H

(1)
L

]
. (4.28b)

The next problem is to compute the tensors AL, . . . , LL in the PN approximation. These are
defined from the two objects X

αβ

2 and Y
αβ

2 which are given in particular by their commutator
form (4.12). We thus need to compute the commutator between the operator FP �−1

ret and
derivative operators, when applied either on the terms �

αβ

2 or �
αβ

2 . The relevant point for our
purpose is that the general structure of these terms at the quadratic order is known. Namely
�

αβ

2 and �
αβ

2 are made of quadratic products of retarded multipolar waves, i.e. are given by
sums of terms of the type

KPQ = ∂〈P 〉[r−1F(t − r/c)]∂〈Q〉[r−1G(t − r/c)], (4.29)

where the functions F and G stand for some time derivatives of moments in the list
{IL, JL,WL,XL, YL, ZL}. It is convenient to suppress the indices on these moments and to
write only the ‘active’ indices appearing in the spatial multi-derivatives ∂P and ∂Q, composed
with the multi-indices P = a1 · · · ap and Q = b1 · · · bq (p and q being the number of partial
derivatives in ∂P and ∂Q). Furthermore, the multi-derivatives in (4.29) are chosen to be STF
(this can always be assumed modulo a possible STF decomposition), hence the brackets 〈 〉
surrounding their indices. The problem is therefore reduced to that of evaluating, in the PN
approximation, the quantities16

XPQ = [
FP �−1

ret ,�
]
KPQ, (4.30a)

Y i
PQ = [

FP �−1
ret , ∂

i
]
KPQ. (4.30b)

Indeed X
αβ

2 and Y
αβ

2 are given by some sums of terms of the type XPQ and Y i
PQ respectively

(and multiplied by appropriate constant tensors involving Kronecker symbols to perform the
needed contractions).

The term XPQ has in fact already been computed at the lowest PN order in the appendix
of [42]. The result turned out to be quite simple, namely

XPQ = 1

c
∂〈PQ〉[r−1(δp,0F

(1)G + δ0,qFG(1))] + O
(

1

c3

)
. (4.31)

16 In the case of Y i
PQ we can restrict ourselves to a spatial derivative ∂i because the time derivative ∂t commutes with

the operator FP �−1
ret , thus Y0

PQ = 0.
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Here the functions are evaluated at retarded time t − r/c (with F (1) and G(1) denoting the time
derivatives), and δp,0 and δ0,q denote the usual Kronecker symbols. As we see in (4.31) the
two STF multi-derivative operators ∂〈P 〉 and ∂〈Q〉 originally present in (4.29) have merged into
a single STF derivative operator ∂〈PQ〉 with p + q indices. The formula (4.31) constitutes a
useful practical lemma for doing computations at the lowest PN order. Because of the factor
1/c in front of (4.31) the PN ‘parity’ of the result (4.31) will be opposite to that of the source
term (4.29), which in practice will typically be even. As a consequence we shall find that the
PN order of X

αβ

2 is dominantly ‘odd’, starting in fact with 2.5PN.
As for the term Y i

PQ, it was not required in [42] but will play a role here for the waveform
at the 3PN order. We have worked out the equivalent of (4.31) for this term, and find, still at
the lowest PN order,

Y i
PQ = − p + q

c(2p + 2q + 1)

{
δp,0δ

i
〈bq

∂PQ−1〉[r−1F (1)G] + δ0,qδ
i
〈ap

∂P−1Q〉[r−1FG(1)]
}

+ O
(

1

c3

)
.

(4.32)

Consistent with our notation we write P − 1 = a1 · · · ap−1 and Q − 1 = b1 · · · bq−1. Again
there is a factor 1/c and we shall find that the corresponding Y

αβ

2 is dominantly ‘odd’, starting
at 2.5PN order. Note that the new lemma (4.32) is not independent from the previous one
(4.31) and is actually more general than it. Indeed, by computing the divergence of Y i

PQ using
its definition (4.30b), we get

∂iY i
PQ = [

FP �−1
ret ,�

]
KPQ − [

FP �−1
ret , ∂

i
]
∂iKPQ, (4.33)

which can be used to check the consistency of the two formulae (4.31) and (4.32). The results
needed at 3PN order for the relation between the canonical and source moments as obtained
by these means—namely formulae (4.28) and lemmas (4.31) and (4.32)—are reported in
section 5.2.

5. The moments for 3PN waveform

Using the MPM algorithm of section 3 the radiative moments {UL, VL} are related to the
canonical moments {ML, SL}, and following section 4 the canonical moments are in turn
expressed in terms of the source moments {IL, JL,WL,XL, YL, ZL}. In the current section,
we present the results (skipping some details) of the computation of all the moments needed
for controlling the FWF in the case of compact binary systems up to 3PN order.

5.1. The radiative moments for 3PN polarizations

To obtain the gravitational polarizations at 3PN order one must compute: the mass radiative
quadrupole Uij with 3PN accuracy; the current radiative quadrupole Vij and mass radiative
octupole Uijk with 2.5PN accuracy; mass hexadecapole Uijkl and current octupole Vijk with
2PN precision; Uijklm and Vijkl up to 1.5PN order; Uijklmn, Vijklm at 1PN; Uijklmno, Vijklmn at
0.5PN; and finally Uijklmnop, Vijklmno to Newtonian order. The relations connecting UL and
VL to the canonical moments ML and SL are first obtained following the MPM method of
section 3.17

The quadratic contributions to the radiative mass (resp. current) moments are found in the
form of sums of terms δ2UL(u) (resp. δ2VL(u)/c) whose general structure reads

δ2UL(u), δ2VL(u)/c = G

cm−�+2

∫ u

−∞
ds χLK1K2(u, s)A

(p1)

K1
(s)A

(p2)

K2
(s). (5.1)

17 We have implemented the MPM algorithm on the algebraic computing software Mathematica using the powerful
tensor package xTensor [55].
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The power of 1/c in front is chosen in such a way that m represents the PN order of our
calculation of the waveform, i.e. m = 6 at the 3PN order. The capital letter A stands either
for M or S, meaning that we are considering in (5.1) interactions between canonical moments
of the type M

(p1)

K1
M

(p2)

K2
or M

(p1)

K1
S

(p2)

K2
or S

(p1)

K1
S

(p2)

K2
, with the superscript (p) denoting time

derivatives, and the multi-indices K1 and K2 having length k1 and k2 (e.g. K1 = a1 · · · ak1 )18.
The kernel χLK1K2 has itself an algebraic structure made of a sum of products of Kronecker
and Levi-Civita symbols. Its physical dimension depends on time only, and each of its three
sets of indices, L,K1 and K2, is symmetric and trace-free (STF). For instantaneous terms,
which are functions of the multipole moments A

(p1)

K1
, A

(p2)

K2
evaluated at the instant of emission

u = t − r/c, it is proportional to the Dirac function δ(s − u).
The above structure does not exist generically for an arbitrary pair of multipole moments

nor for any arbitrary value of k1 and k2. A closer look will actually allow us to reduce the
number of terms in the source we shall focus on to a few ones, making our task much easier.
As a product εijkεabc can always be transformed into a linear combination of δia′δjb′δkc′ with
{a′, b′, c′} = {a, b, c}, the number ε of Levi-Civita symbols in each of the individual terms
δδ · · · δεε · · · ε composing χLK1K2 may be reduced to 0 or 1. The symmetry of parity implies
that this number is the same for all terms. Now, if ε = 0, the integer � + k1 + k2 is even
(equal to twice the number of Kronecker symbols) and all indices in L must contract with
an index of K1 or K2. Thus, we must necessarily have k1 + k2 � �. On the other hand, if
ε = 1, the Levi-Civita symbol carries one index from each of the three STF sets, so that there
remain � − 1 free indices of type L carried by Kronecker symbols, as well as k1 − 1 indices
(resp. k2 − 1) of type K1 (resp. K2) involved in the contraction of some δ’s with the multipole
moments. Then, the same arguments as before show that (� − 1) + (k1 − 1) + (k2 − 1) must
be even with (k1 − 1) + (k2 − 1) � � − 1. The previous constraints can all be summarized by
the single statement that k1 + k2 − � − ε is always an even positive integer.

The structure of the quadratic interactions may be further refined by noticing that only
the multipole moments that have dimensions compatible with (5.1) are allowed to enter
δ2U, δ2V/c. Let us pose for later convenience

[
A

(p1)

K1

] = [M][L]a1+k1−p1 [V ]α1+p1 and
[
A

(p2)

K2

] =
[M][L]a2+k2−p2 [V ]α2+p2 , where [M], [L] and [V ] denote the dimension of a mass, a length and
a velocity respectively. Equating [UL] = [VL/c] and

[
ds χLK1K2

][
G/cm−�+2A

(p1)

K1
A

(p2)

K2

]
on the

one hand, remembering on the other hand that
[
χLK1K2

]
is a certain power q ∈ Z of the time

dimension [T ], we find∑
i=1,2

(ai + αi + ki) = m − 1, (5.2a)

∑
i=1,2

(αi + pi) = q + m + 1. (5.2b)

Now, we know that k1 + k2 − � − ε ∈ N. Moreover, the number ε = 0, 1 of Levi-Civita
symbols is itself governed by the parity symmetry. More precisely, defining the integers
α̃1, α̃2 and ε̃, associated with A

(p1)

K1
, A

(p2)

K2
and δ2UL, δ2VL/c respectively, to be equal to zero

when the latter multipole moments are of mass type or to 1 when they are of current type,
the consistency of the transformation of both sides of equation (5.1) under parity imposes that
ε̃ = α̃1 + α̃2 + ε [mod 2]. As a result, the maximum multipolar order k1 +k2 − ε of the radiative
moments containing a quadratic interaction A

(p1)

K1
A

(p2)

K2
is given by19

18 The reasoning we shall make can be easily generalized to nth nonlinear terms δnUL, δnVL/c involving n canonical
moments A

(p1)

K1
, A

(p2)

K2
, . . . , A

(pn)

Kn
.

19 The remainder function means the usual division remainder: remainder [ N
2 ] = 0 or 1 depending on whether N is

an even or odd integer.
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�max(ai, αi, α̃i , ε̃) = m − 1 −
∑
i=1,2

(ai + αi) − remainder

[
1

2

(∑
i=1,2

α̃i + ε̃

)]
. (5.3)

At the m
2 PN approximation, such a contribution exists only if �max � 2, or equivalently∑

i=1,2(ai + αi) + remainder
[

1
2

(∑
i=1,2 α̃i + ε̃

)]
� m − 3. Once this necessary condition is

fulfilled, the orders of multipolarity possibly affected by the piece of nonlinear correction
(5.1) are �max(ai, αi, α̃i , ε̃), �max(ai, αi, α̃i , ε̃) − 2, . . . , 2 or 3, with ε̃ = 0 (resp. ε̃ = 1) for
mass (resp. current) radiative moments. The latter ‘selection’ rules may be generalized to
interactions of any post-Minkowskian order n, in which case m − 1 must be replaced by
m + 5 − 3n in expression (5.3) of �max while all summation ranges become 1 � i � n. With
the selection rules (5.2) and (5.3) we are able to know beforehand which nonlinear multipole
interaction is needed to be computed in the radiative moments UL, VL at a given PN order.

The result concerning the 3PN mass quadrupole moment Uij is already known [40, 50,
51] and we simply report it here. Actually, at 3PN order Uij involves a cubically nonlinear
term, composed of the so-called tails-of-tails, whose computation necessitates an extension of
the MPM algorithm to cubic order G3 [50]. We have

Uij (TR) = M
(2)
ij (TR) +

2GM

c3

∫ TR

−∞
dτ

[
ln

(
TR − τ

2τ0

)
+

11

12

]
M

(4)
ij (τ )

+
G

c5

{
−2

7

∫ TR

−∞
dτ M

(3)
a〈i (τ )M

(3)
j〉a(τ )

+
1

7
M

(5)
a〈i Mj〉a − 5

7
M

(4)
a〈i M

(1)
j〉a − 2

7
M

(3)
a〈i M

(2)
j〉a +

1

3
εab〈iM

(4)
j〉aSb

}

+ 2

(
GM

c3

)2 ∫ TR

−∞
dτ

[
ln2

(
TR − τ

2τ0

)
+

57

70
ln

(
TR − τ

2τ0

)
+

124 627

44 100

]
M

(5)
ij (τ )

+O
(

1

c7

)
. (5.4)

Note the tail integral at 1.5PN order, the tail-of-tail integral at 3PN order, and the nonlinear
memory integral at 2.5PN. In the tail and tail-of-tail integrals, M represents the mass monopole
moment or total mass of the binary system. The constant τ0 in the tail integrals is given by
τ0 = r0/c, where r0 is the arbitrary length scale originally introduced in the MPM formalism
through (3.7), and appearing also in the relation between the radiative and harmonic coordinates
as given by (3.16).

The moments required at 2.5PN order are new with this paper (apart from the tails) and
involve some interactions between the mass quadrupole moment and the mass octupole or
current quadrupole moments. Which type of interactions is determined by using the selection
rules discussed above. These moments are given by20

Uijk(TR) = M
(3)
ijk (TR) +

2GM

c3

∫ TR

−∞
dτ

[
ln

(
TR − τ

2τ0

)
+

97

60

]
M

(5)
ijk (τ )

+
G

c5

{∫ TR

−∞
dτ

[
−1

3
M

(3)
a〈i (τ )M

(4)
jk〉a(τ ) − 4

5
εab〈iM

(3)
ja (τ )S

(3)
k〉b(τ )

]

− 4

3
M

(3)
a〈i M

(3)
jk〉a − 9

4
M

(4)
a〈i M

(2)
jk〉a +

1

4
M

(2)
a〈i M

(4)
jk〉a − 3

4
M

(5)
a〈i M

(1)
jk〉a +

1

4
M

(1)
a〈i M

(5)
jk〉a

20 In all formulae below the STF projection 〈〉 applies only to the ‘free’ indices denoted ijkl . . . carried by the moments
themselves. Thus the dummy indices such as abc . . . are excluded from the STF projection.
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+
1

12
M

(6)
a〈i Mjk〉a +

1

4
Ma〈iM

(6)
jk〉a +

1

5
εab〈i

[
− 12S

(2)
ja M

(3)
k〉b − 8M

(2)
ja S

(3)
k〉b − 3S

(1)
ja M

(4)
k〉b

− 27M
(1)
ja S

(4)
k〉b − SjaM

(5)
k〉b − 9MjaS

(5)
k〉b − 9

4
SaM

(5)
jk〉b

]
+

12

5
S〈iS

(4)
jk〉

}

+ O
(

1

c6

)
, (5.5a)

Vij (TR) = S
(2)
ij (TR) +

2GM

c3

∫ TR

−∞
dτ

[
ln

(
TR − τ

2τ0

)
+

7

6

]
S

(4)
ij (τ )

+
G

7c5

{
4S

(2)
a〈iM

(3)
j〉a + 8M

(2)
a〈i S

(3)
j〉a + 17S

(1)
a〈iM

(4)
j〉a − 3M

(1)
a〈i S

(4)
j〉a + 9Sa〈iM

(5)
j〉a

− 3Ma〈iS
(5)
j〉a − 1

4
SaM

(5)
ija − 7εab〈iSaS

(4)
j〉b +

1

2
εac〈i

[
3M

(3)
ab M

(3)
j〉bc +

353

24
M

(2)
j〉bcM

(4)
ab

− 5

12
M

(2)
ab M

(4)
j〉bc +

113

8
M

(1)
j〉bcM

(5)
ab − 3

8
M

(1)
ab M

(5)
j〉bc +

15

4
Mj〉bcM

(6)
ab +

3

8
MabM

(6)
j〉bc

]}

+ O
(

1

c6

)
. (5.5b)

At 2PN order we have the standard tails and some previously known interactions of the mass
quadrupole with itself [51], namely

Uijkl(TR) = M
(4)
ijkl(TR) +

G

c3

{
2M

∫ TR

−∞
dτ

[
ln

(
TR − τ

2τ0

)
+

59

30

]
M

(6)
ijkl(τ )

+
2

5

∫ TR

−∞
dτ M

(3)
〈ij (τ )M

(3)
kl〉 (τ ) − 21

5
M

(5)
〈ij Mkl〉 − 63

5
M

(4)
〈ij M

(1)
kl〉 − 102

5
M

(3)
〈ij M

(2)
kl〉

}

+ O
(

1

c5

)
, (5.6a)

Vijk(TR) = S
(3)
ijk(TR) +

G

c3

{
2M

∫ TR

−∞
dτ

[
ln

(
TR − τ

2τ0

)
+

5

3

]
S

(5)
ijk(τ )

+
1

10
εab〈iM

(5)
ja Mk〉b − 1

2
εab〈iM

(4)
ja M

(1)
k〉b − 2S〈iM

(4)
jk〉

}

+ O
(

1

c5

)
. (5.6b)

At 1.5PN we again have some nonlinear interactions (new with this paper) involving the mass
octupole and current quadrupole and given by

Uijklm(TR) = M
(5)
ijklm(TR) +

G

c3

{
2M

∫ TR

−∞
dτ

[
ln

(
TR − τ

2τ0

)
+

232

105

]
M

(7)
ijklm(τ )

+
20

21

∫ TR

−∞
dτ M

(3)
〈ij (τ )M

(4)
klm〉(τ ) − 710

21
M

(3)
〈ij M

(3)
klm〉 − 265

7
M

(2)
〈ijkM

(4)
lm〉

− 120

7
M

(2)
〈ij M

(4)
klm〉 − 155

7
M

(1)
〈ijkM

(5)
lm〉 − 41

7
M

(1)
〈ij M

(5)
klm〉 − 34

7
M〈ijkM

(6)
lm〉

− 15

7
M〈ijM

(6)
klm〉

}
+ O

(
1

c4

)
, (5.7a)
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Vijkl(TR) = S
(4)
ijkl(TR) +

G

c3

{
2M

∫ TR

−∞
dτ

[
ln

(
TR − τ

2τ0

)
+

119

60

]
S

(6)
ijkl(τ )

− 35

3
S

(2)
〈ij M

(3)
kl〉 − 25

3
M

(2)
〈ij S

(3)
kl〉 − 65

6
S

(1)
〈ij M

(4)
kl〉 − 25

6
M

(1)
〈ij S

(4)
kl〉 − 19

6
S〈ijM

(5)
kl〉

− 11

6
M〈ij S

(5)
kl〉 − 11

12
S〈iM

(5)
jkl〉 +

1

6
εab〈i

[
−5M

(3)
ja M

(3)
kl〉b − 11

2
M

(4)
ja M

(2)
kl〉b

− 5

2
M

(2)
ja M

(4)
kl〉b − 1

2
M

(5)
ja M

(1)
kl〉b +

37

10
M

(1)
ja M

(5)
kl〉b +

3

10
M

(6)
ja Mkl〉b +

1

2
MjaM

(6)
kl〉b

]}

+ O
(

1

c4

)
. (5.7b)

For all the other moments that are required, it is sufficient to assume the agreement between
the radiative and canonical moments,

UL(TR) = M
(�)
L (TR) + O

(
1

c3

)
, (5.8a)

VL(TR) = S
(�)
L (TR) + O

(
1

c3

)
. (5.8b)

5.2. The canonical moments for 3PN polarizations

Following the investigation of section 4 we now give the canonical moments in terms of
source-rooted multipole moments. It turns out that the difference between these two types of
moments—which is due to the presence of the gauge moments defined by (4.4)—arises only
at the small 2.5PN order. The consequence is that we have to worry about this difference
only for the 3PN canonical mass quadrupole moment Mij , the 2.5PN mass octopole moment
Mijk , and the 2.5PN current quadrupole moment Sij . For the mass quadrupole moment, the
requisite correction has already been used in [17] and is given by21

Mij = Iij +
4G

c5

[
W(2)Iij − W(1)I

(1)
ij

]
+ O

(
1

c7

)
, (5.9)

where Iij denotes the source mass quadrupole, and where W is the monopole corresponding
to the gauge moments WL (i.e. W is the moment having � = 0). At the PN order we are
working, W is needed only at Newtonian order and will be provided in section 5.3. Note
that the remainder in (5.9) is at order 3.5PN—consistently with the accuracy we aim here.
Expression (5.9) is valid in a mass-centred frame defined by the vanishing of the mass dipole
moment: Ii = 0. Note that a formula generalizing (5.9) to all PN orders (and all multipole
interactions) is not possible at present and needs to be investigated anew for specific cases.
Thus it is convenient in the present approach to use systematically the source moments
{IL, JL,WL,XL, YL, ZL} as the fundamental variables describing the source.

Similarly, the other moments Mijk and Sij will admit some correction terms starting at
the 2.5PN order. We have computed these new corrections, together with recomputed and
confirmed those in (5.9), by following the method of section 4, i.e. evaluating the STF tensors
AL, . . . , LL in (4.16) by means of the two practical lemmas (4.31) and (4.32), then plugging
these tensors into (4.28). We also performed an independent calculation by implementing the

21 Equation (11.7a) in [13] contains a sign error with respect to the original result [42] (with no consequence for any
of the results in [13]). The correct sign is reproduced here.
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Table 1. Nonlinear corrections in Mijk and Sij involving at least one gauge multipole moment
at 3PN order. The first entry indicates, for each interaction, which radiative moment it belongs
to, whereas the second entry tells us how many time derivatives are involved. STF symbols are
omitted.

Number of ∂t 1 (�p) 2 (�p) 3 (�p)

In Mijk I × Y
(1)
ijk I

(1−p)

ij × Y
(p)

k I
(2−p)

ijk × W(p) I × W
(2)
ijk I

(2−p)

ij × W
(p)

k – –

In Sij Ji × Y
(1)
j – I × Z

(2)
ij εiabI

(2−p)

aj × Y
(p)

b Ji × W
(2)
j J

(2−p)

ij × W(p) εiabI
(3−p)

aj × W
(p)

b

general MPM algorithm of section 3 starting directly with the general linearized metric (4.2)
parametrized by the source moments, instead of the canonical metric (3.6) parametrized by
the canonical moments.

In this second approach, which fully confirmed the previous results, we need to know
beforehand the relevant multipole interactions and we used the same selection rules (5.2) and
(5.3) as before. The only difference is that the quadratic interaction we consider, A(p1)

K1
×A

(p2)

K2
,

are between any two source multipole moments composed of the main moments {IL, JL} and
the gauge moments {WL,XL, YL, ZL}, i.e. the letter A symbolizes now any of the I, J,W,X, Y

or Z. By applying the selection rules (5.2) and (5.3) at 3PN order, i.e. for m = 6, it is
straightforward to check that (i) no gauge multipole moment can enter cubic interactions up to
our approximation level, and (ii) all quadratic interactions involving at least one gauge moment
have to be instantaneous, meaning that q = −1 for them. We can in fact determine all possible
contributions by inspection. Their full list is given in table 1. Further rules of selection might
be used to discard some candidates, but all the contributions to Uijk and Vij that are presented
here have been computed explicitly. By retaining only the interactions that involve the pairs
of multipole moments composing the elements of table 1 22, the source used in our algorithms
could indeed be reduced to a finite, reasonably small number of terms. However the detailed
calculation of some of these interactions turns out to yield zero; this is the case for instance of
the interaction I × Z

(2)
ij which does not contribute to Sij .

Finally our explicit results for Mijk and Sij are

Mijk = Iijk +
4G

c5

[
W(2)Iijk − W(1)I

(1)
ijk + 3I〈ij Y

(1)
k〉

]
+ O

(
1

c6

)
, (5.10a)

Sij = Jij +
2G

c5

[
εab〈i

(−I
(3)
j〉bWa − 2Ij〉bY (2)

a + I
(1)
j〉bY

(1)
a

)
+ 3J〈iY

(1)
j〉 − 2J

(1)
ij W (1)

]
+O

(
1

c6

)
, (5.10b)

where Wi and Yi are the dipole moments corresponding to the moments WL and YL. The
remainders in (5.10) are consistent with our approximation 3PN for the FWF. Besides the
mass quadrupole moment (5.9), and mass octopole and current quadrupole moments (5.10),
we can state that, with the required 3PN precision, all the other moments ML agree with their
corresponding IL, and similarly the SL agree with JL, namely

ML = IL + O
(

1

c5

)
, (5.11a)

SL = JL + O
(

1

c5

)
. (5.11b)

22 That is, the interactions I × Yijk, Ii × Yj , I × Wijk, Iij × Wk, Ji × Yj , I × Zij , Ji × Wj and Jij × W .
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5.3. The source moments for 3PN polarizations

We have finally succeeded in parametrizing the FWF entirely in terms of the source moments
{IL, JL,WL,XL, YL, ZL} up to 3PN order. The interest of this construction lies in the fact
that the source moments are known for general PN matter systems. They were obtained by
matching the external MPM field of the source to the internal PN field valid in the source’s
near zone [41–43]. The source moments have been worked out in the case of compact binary
systems with increasing PN precision [13, 17, 48, 49]. Here we list all the required IL’s
and JL’s (and also the few needed gauge moments) for non-spinning compact objects and for
circular orbits. We do not enter the details because the derivation of these moments follows
exactly the same techniques as in [13, 49].

The only moment needed at the 3PN order is the mass quadrupole moment Iij , first
computed for circular orbits in [13] and subsequently extended to general orbits in [49]. We
write it as

Iij = νm

(
Ax〈ij〉 + B

r3

Gm
v〈ij〉 + C

√
r3

Gm
x〈ivj〉

)
+ O

(
1

c7

)
. (5.12)

The relative position and velocity of the two bodies in harmonic coordinates are denoted by
xi = yi

1 − yi
2 and vi = dxi/dt = vi

1 − vi
2 (spatial indices are lowered and raised with the

Kronecker metric so that xi = xi and vi = vi). The distance between the two particles in
harmonic coordinates is denoted r = |x|. The two masses are m1 and m2, the total mass is
m = m1+m2 (not to be confused with the mass monopole moment M), the symmetric mass ratio
ν = m1m2/m2 satisfies 0 < ν � 1/4 and the mass difference ratio is � = (m1−m2)/m which
reads also � = ±√

1 − 4ν (according to the sign of m1 − m2). To express the coefficients
A,B and C in (5.12) as PN series we introduce the small post-Newtonian parameter

γ = Gm

rc2
. (5.13)

With these notations we have (in the frame of the ‘centre-of-mass’ and for circular orbits)

A = 1 + γ

(
− 1

42
− 13

14
ν

)
+ γ 2

(
− 461

1512
− 18 395

1512
ν − 241

1512
ν2

)

+ γ 3

(
395 899

13 200
− 428

105
ln

(
r

r0

)
+

[
3 304 319

166 320
− 44

3
ln

(
r

r ′
0

)]
ν

+
162 539

16 632
ν2 +

2351

33 264
ν3

)
, (5.14a)

B = γ

(
11

21
− 11

7
ν

)
+ γ 2

(
1607

378
− 1681

378
ν +

229

378
ν2

)

+ γ 3

(
−357 761

19 800
+

428

105
ln

(
r

r0

)
− 92 339

5544
ν +

35 759

924
ν2 +

457

5544
ν3

)
, (5.14b)

C = 48

7
γ 5/2ν. (5.14c)

The coefficients A and B correspond to conservative PN orders (which are even), while the
coefficient C involves a single term at the odd 2.5PN order due to radiation reaction.

Note the appearance of logarithms in both A and B at the 3PN order. These logarithms
have two distinct origins, depending on whether they are scaled with the constant r0 associated
with the finite part prescription in (3.7), or with an alternative constant denoted r ′

0. The
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logarithms with r0 will combine later with other contributions due to tails and tails-of-tails,
and the constant r0 will be absorbed into some unobservable shift of the binary’s orbital phase,
as can already be seen from the fact that r0 is associated with the difference of origin of time
between harmonic and radiative coordinates, see (3.16).

The other constant r ′
0 is defined by m ln r ′

0 = m1 ln r ′
1 + m2 ln r ′

2, where r ′
1 and r ′

2 are
two regularization constants appearing in a Hadamard self-field regularization scheme for the
3PN equations of motion of point masses in harmonic coordinates [56, 57]. The constant r ′

0
is therefore present in the 3PN equations of motion and we shall thus also meet this constant
in the 3PN orbital frequency given by (6.4). The regularization constant r ′

0 is unobservable,
since it can be removed by a coordinate transformation at 3PN order—r ′

0 can rightly be called
a gauge constant. In practice, this means that r ′

0 will cancel out when using the 3PN equations
of motion to compute the time derivatives of the 3PN quadrupole moment, as will be explicitly
verified in section 6 23.

The list of required moments continues with the 2.5PN order at which we need the mass
octupole and current quadrupole given by (with � = m1−m2

m
)

Iijk = −νm�

{
x〈ijk〉

[
1 − γ ν − γ 2

(
139

330
+

11 923

660
ν +

29

110
ν2

)]

+
r2

c2
x〈ivjk〉

[
1 − 2ν − γ

(
−1066

165
+

1433

330
ν − 21

55
ν2

)]

+
196

15

r

c
γ 2νx〈ij vk〉

}
+ O

(
1

c6

)
, (5.15a)

Jij = −νm�

{
εab〈ixj〉avb

[
1 + γ

(
67

28
− 2

7
ν

)
+ γ 2

(
13

9
− 4651

252
ν − 1

168
ν2

)]

− 484

105

r

c
γ 2νεab〈ivj〉axb

}
+ O

(
1

c6

)
. (5.15b)

At 2PN order we require

Iijkl = νm

{
x〈ijkl〉

[
1 − 3ν + γ

(
3

110
− 25

22
ν +

69

22
ν2

)

+ γ 2

(
−126 901

200 200
− 58 101

2600
ν +

204 153

2860
ν2 +

1149

1144
ν3

)]

+
r2

c2
x〈ij vkl〉

[
78

55
(1 − 5ν + 5ν2)

+ γ

(
30 583

3575
− 107 039

3575
ν +

8792

715
ν2 − 639

715
ν3

)]

+
71

715

r4

c4
v〈ijkl〉(1 − 7ν + 14ν2 − 7ν3)

}
+ O

(
1

c5

)
, (5.16a)

Jijk = νm

{
εab〈ixjk〉avb

[
1 − 3ν + γ

(
181

90
− 109

18
ν +

13

18
ν2

)

+ γ 2

(
1469

3960
− 5681

264
ν +

48 403

660
ν2 − 559

3960
ν3

)]
23 Note also that the 3PN quadrupole moment [13, 49] depended originally on three constants ξ , κ , ζ (called ambiguity
parameters) reflecting some incompleteness of the Hadamard self-field regularization. These constants have been
computed by means of the powerful dimensional regularization [15, 58], and we have replaced the result, which was
ξ = − 9871

9240 , κ = 0 and ζ = − 7
33 , back into (5.14).
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+
r2

c2
εab〈ixavjk〉b

[
7

45
(1 − 5ν + 5ν2) + γ

(
1621

990
− 4879

990
ν +

1084

495
ν2 − 259

990
ν3

)]}

+ O
(

1

c5

)
. (5.16b)

At 1.5PN order:

Iijklm = −νm�

{
x〈ijklm〉

[
1 − 2ν + γ

(
2

39
− 47

39
ν +

28

13
ν2

)]

+
70

39

r2

c2
x〈ijkvlm〉(1 − 4ν + 3ν2)

}
+ O

(
1

c4

)
, (5.17a)

Jijkl = −νm�

{
εab〈ixjkl〉avb

[
1 − 2ν + γ

(
20

11
− 155

44
ν +

5

11
ν2

)]

+
4

11

r2

c2
εab〈ixjavkl〉b(1 − 4ν + 3ν2)

}
+ O

(
1

c4

)
. (5.17b)

At 1PN order:

Iijklmn = νm

{
x〈ijklmn〉

[
1 − 5ν + 5ν2 + γ

(
1

14
− 3

2
ν + 6ν2 − 11

2
ν3

)]

+
15

7

r2

c2
x〈ijklvmn〉(1 − 7ν + 14ν2 − 7ν3)

}
+ O

(
1

c4

)
, (5.18a)

Jijklm = νm

{
εab〈ixjklm〉avb

[
1 − 5ν + 5ν2 + γ

(
1549

910
− 1081

130
ν +

107

13
ν2 − 29

26
ν3

)]

+
54

91

r2

c2
εab〈ixjkavlm〉b(1 − 7ν + 14ν2 − 7ν3)

}
+ O

(
1

c4

)
. (5.18b)

At 0.5PN order:

Iijklmno = −νm�(1 − 4ν + 3ν2)x〈ijklmno〉 + O
(

1

c2

)
, (5.19a)

Jijklmn = −νm�(1 − 4ν + 3ν2)εab〈ixjklmn〉avb + O
(

1

c2

)
. (5.19b)

At Newtonian order:

Iijklmnop = νm(1 − 7ν + 14ν2 − 7ν3)x〈ijklmnop〉 + O
(

1

c2

)
, (5.20a)

Jijklmno = νm(1 − 7ν + 14ν2 − 7ν3)εab〈ixjklmno〉avb + O
(

1

c2

)
. (5.20b)

The 2.5PN correction terms in Iijk and Jij , the 2PN terms in Iijkl and Jijk , and the 1PN terms
in Iijklm and Jijkl are new with this paper. The higher-order Newtonian moments Iijklmno

and Jijklmn were also not needed before, but Newtonian moments are trivial and are given for
general � by

IL = νms�(ν)x〈L〉 + O
(

1

c2

)
, (5.21a)
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JL−1 = νms�(ν)εab〈i�−1xL−2〉avb + O
(

1

c2

)
, (5.21b)

in which we pose

s�(ν) = X�−1
2 + (−)�X�−1

1 . (5.22)

Here we define X1 = m1
m

= 1
2 (1+�) and X2 = m2

m
= 1

2 (1−�) with � = m1−m2
m

= ±√
1 − 4ν,

so that X1 + X2 = 1 and X1X2 = ν.24

In addition we shall need the mass monopole I agreeing with its canonical counterpart M
which parametrizes the various tail terms in section 5.1. Since the tails arise at 1.5PN order
we need M only at the 1.5PN relative order. It is given by

I = M = m
(

1 − ν

2
γ
)

+ O
(

1

c4

)
. (5.23)

We require also the current dipole moment or angular momentum Ji (agreeing with its
canonical counterpart Si) since it appears in some nonlinear terms, for instance in (3.7).
It is needed only at Newtonian order,

Ji = Si = νmεiabxavb + O
(

1

c2

)
. (5.24)

Finally, we have to provide the few gauge moments that enter the relations between
canonical and source moments found in (5.9) and (5.10). They are readily computed from
the general expressions of all the gauge moments {WL,XL, YL, ZL} given in (5.15)–(5.20) of
[43]. The calculation is quite simple because these moments, namely the monopolar moment
W and the two dipole moments Wi and Yi , are Newtonian. For circular orbits we find

W = O
(

1

c2

)
, (5.25a)

Wi = 1

10
νm�r2vi + O

(
1

c2

)
, (5.25b)

Yi = 1

5

Gm2ν

r
�xi + O

(
1

c2

)
. (5.25c)

We are done with all the source multipole moments needed to control the 3PN accurate FWF
generated by compact binary sources in quasi-circular orbits.

6. Time derivatives of the source multipole moments

For the purpose of computing the time derivatives of the source moments we require the 3PN
accurate equations of motion of compact binary sources. Like in the computation of the
moments we have to take into account both the conservative effects at 1PN, 2PN and 3PN
orders, and the effect of radiation reaction at 2.5PN order.
24 Note that the coefficient s�(ν) is equal to the product m̃fk(ν) in the notation of [19]. The equivalence of the two
expressions follows from the Waring formulae [59] for Xn

1 + Xn
2 and Xn

1 − Xn
2 . We find (where (

n
p
) is the usual

binomial coefficient)

s2k(ν) =
k−1∑
p=0

(−)p
2k − 1

2k − 1 − p

(
2k − 1 − p

p

)
νp,

s2k+1(ν) = −�

k−1∑
p=0

(−)p
(

2k − 1 − p

p

)
νp.
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We consider non-spinning objects so the motion takes place in a fixed plane, say the x–y

plane. The relative position x = y1 − y2, velocity v = dx/dt , and acceleration a = dv/dt are
given by

x = rn, (6.1a)

v = ṙn + rωλ, (6.1b)

a = (r̈ − rω2)n + (rω̇ + 2ṙω)λ. (6.1c)

For a while the time derivative will be denoted using an over dot. Here λ = ẑ × n is
perpendicular to the unit vector ẑ along the z-direction orthogonal to the orbital plane, and to
the binary’s separation direction n. The orbital frequency ω is related in the usual way to the
orbital phase φ by ω = φ̇.

Through 3PN order, it is possible to model the motion of the binary as a quasi-circular
orbit decaying by the effect of radiation reaction at the 2.5PN order. This effect is computed
by balancing the change in the orbital energy with the total energy flux radiated by the
gravitational waves. At 2.5PN order this yields (see, e.g., [18])

ṙ = −64

5

√
Gm

r
νγ 5/2 + O

(
1

c7

)
, (6.2a)

ω̇ = 96

5

Gm

r3
νγ 5/2 + O

(
1

c7

)
, (6.2b)

where γ is given by (5.13). By substituting those expressions into (6.1),25 we obtain the
expressions for the inspiral velocity and acceleration,

v = rωλ − 64

5

√
Gm

r
νγ 5/2n + O

(
1

c7

)
, (6.3a)

a = −ω2x − 32

5

√
Gm

r3
νγ 5/2v + O

(
1

c7

)
. (6.3b)

A central result of PN calculations of the equations of motion is the expression of the
orbital frequency ω in terms of the binary’s separation r up to 3PN order. This result has
been obtained in harmonic coordinates in [56–58] and independently in [60–62], and in ADM
coordinates in [63–65]. In the present work, r is given in harmonic coordinates and the
expression of the 3PN orbital frequency is

ω2 = Gm

r3

{
1 + γ (−3 + ν) + γ 2

(
6 +

41

4
ν + ν2

)

+ γ 3

(
−10 +

[
−75 707

840
+

41

64
π2 + 22 ln

(
r

r ′
0

)]
ν +

19

2
ν2 + ν3

)
+ O

(
1

c8

)}
. (6.4)

Note that the logarithm at 3PN order involves the same constant r ′
0 as in the source quadrupole

moment (5.12)–(5.14). This logarithm comes from a Hadamard self-field regularization
scheme and its appearance is specific to harmonic coordinates.

As often convenient we shall use in place of the parameter γ given by (5.13) an alternative
parameter x directly linked to the orbital frequency (6.4), namely

x =
(

Gmω

c3

)2/3

. (6.5)

25 We note that r̈ = O(c−10) is of the order of the square of radiation-reaction effects and is therefore zero with this
approximation.
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The interest in this parameter stems from its invariant meaning in a large class of coordinate
systems including the harmonic and ADM coordinate systems. At 3PN order it is given in
terms of x by

γ = x

{
1 + x

(
1 − ν

3

)
+ x2

(
1 − 65

12
ν

)

+ x3

(
1 +

[
−2203

2520
− 41

192
π2 − 22

3
ln

(
r

r ′
0

)]
ν +

229

36
ν2 +

ν3

81

)
+ O

(
1

c8

)}
. (6.6)

Combining (6.4) with (6.6) we find that the velocity squared v2 = r2ω2 + ṙ2 = r2ω2 +O(c−10)

is related to x by(v

c

)2
= x

{
1 + x

(
−2 +

2

3
ν

)
+ x2

(
1 +

53

6
ν +

ν2

3

)

+ x3

([
−36 227

1260
+

41

96
π2 +

44

3
ln

(
r

r ′
0

)]
ν − 29

9
ν2 +

10

81
ν3

)
+ O

(
1

c8

)}
. (6.7)

During the computation of the time derivatives of the source moments, each time an
acceleration is produced the result is consistently order reduced, i.e. the acceleration is replaced
with (6.3b) at the right PN order. Such an order reduction will generate in particular some
2.5PN radiation-reaction terms which are to be taken into account in the 3PN waveform. This
occurs when computing the time derivatives of the moments Iij , Iijk and Jij that appear in the
FWF at Newtonian and 0.5PN orders. On the other hand, when computing the polarization
states following (2.2) we shall meet some scalar products of the polarization vectors P and Q
with the relative velocity v. If those scalar products occur at Newtonian and 0.5PN orders (i.e.
in multipolar pieces corresponding to the moments Iij , Iijk and Jij ) we shall have to take into
account the 2.5PN radiation-reaction term coming from the expression of v given by (6.3a)26.
However it was shown in [18] that the radiation-reaction terms in the FWF at the 2.5PN order
can be absorbed into a modification of the orbital phase, where they appear to constitute in fact
a very small phase modulation, comparable with unknown contributions in the phase being
at least of order 5PN—negligible here since the phase is known only to 3.5PN order. In the
present paper, we have chosen27 to include all the radiation-reaction terms coming from both
(6.3a) and (6.3b), and to present them as 2.5PN and 3PN amplitude corrections in our final
results which will be presented in (8.9), (8.10) and (9.4).

Let us next check that the Hadamard self-field regularization constant r ′
0 appearing both

in the 3PN orbital frequency (6.4) and in the 3PN quadrupole moment (5.14) 28, is actually a
gauge constant. To this end we simply verify that r ′

0 will be eliminated when expressing the
FWF in terms of the gauge invariant parameter (6.5). From (5.14) we see that the dependence
on r ′

0 of the 3PN quadrupole moment is

Iij = νm

[
1 − 44

3
γ 3ν ln

(
r

r ′
0

)]
x〈ij〉 + · · · + O

(
1

c7

)
. (6.8)

We indicate by dots all the terms that are independent of r ′
0 (for convenience we also show

the Newtonian term). Now the FWF depends on the second time derivative of the quadrupole

26 Not considering the radiation-reaction contribution in v given by (6.3a) has been the source of an error in [17]
which has been pointed out and corrected in [18].
27 As usual there are many different ways of presenting PN results at a given order of approximation, and choosing
one or another is often a matter of convenience.
28 The other moments are given at 2.5PN order at most; they do not depend on r ′

0 since the appearance of regularization
constants is a feature of the 3PN approximation.
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moment. For circular orbits this reads (coming back to the superscript notation (n) for time
derivatives)

I
(2)
ij = 2νm

[
1 − 44

3
γ 3ν ln

(
r

r ′
0

)]
(v〈ij〉 + x〈iaj〉) + · · · + O

(
1

c7

)
. (6.9)

Replacing vi and ai by their values (6.3) we get with the required approximation (still being
interested only in the fate of the constant r ′

0)

I
(2)
ij = 2νmv2

[
1 − 44

3
γ 3ν ln

(
r

r ′
0

)]
(λ〈ij〉 − n〈ij〉) + · · · + O

(
1

c7

)
. (6.10)

The squared velocity v2 = r2ω2 + O(c−10) appears in factor. It is now clear that replacing v2

by its expression in terms of the parameter x following (6.7), we produce another logarithmic
term containing r ′

0, namely

v2 = c2x

[
1 +

44

3
x3ν ln

(
r

r ′
0

)]
+ · · · + O

(
1

c7

)
, (6.11)

which will cancel out the dependence of the quadrupole moment on r ′
0 at 3PN order (using the

fact that γ can be replaced by x in a small 3PN term). Thus, finally,

I
(2)
ij = 2νmc2x(λ〈ij〉 − n〈ij〉) + · · · + O

(
1

c7

)
(6.12)

is independent on r ′
0, which means that this constant cannot affect any physical result at the

3PN order.

7. Computation of the tail and memory integrals

The results of sections 5 and 6 yield the complete control of the instantaneous part of the
FWF. We now tackle the computation of the hereditary part, which is composed of tails (and
tails-of-tails and squared tails) and nonlinear memory terms. The hereditary integrals have
been explicitly provided in section 5.1 as contributions to the various radiative moments UL

and VL given by (5.4)–(5.7). Our computation will basically be a straightforward extension of
the computation performed at 2.5PN order in section 4 of [17]. Since we employ exactly the
same techniques, we skip most of the details and rely on [17] for justification of the method
and proofs.

We first consider the nonlinear memory terms. Up to 3PN order we have the 2.5PN
memory integrals in the radiative mass quadrupole moment Uij given by (3.7) and the radiative
mass hexadecapole moment Uijkl given by (5.6a)—these are the memory terms contributing
to the FWF at 2.5PN order [17] — and, in addition, we have the memory integral in the mass
octupole moment Uijk given by (5.5a) and the one in Uijklm given by (5.7b)—these contribute
specifically at 3PN order29. Like in [17] we obtain the corresponding integrands (i.e. the terms
under the integral sign) and compute directly their contributions to the two wave polarizations
h+ and h×. Indeed it is convenient to perform the relevant contractions of the integrands with
the polarization vectors P and Q (see section 8 for the conventions we adopt) so as to only
deal with scalar quantities.

We find that the memory integrals in h+ and h× are composed of two types of terms.
First there is a term, only present in the plus polarization h+, which does not depend on the
orbital phase and can thus be viewed as a zero-frequency (DC) term. Actually, because of the
steady inspiral, this term is a steadily varying function of time, with an amplitude increasing

29 Recall that the nonlinear memory terms occur only in the mass-type radiative multipole moments UL.
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like some power law of the time remaining till the coalescence. Strictly speaking, this term
is to be regarded as the memory contribution because it does depend on the behaviour of the
system in the remote past, and therefore must be computed using some model for the evolution
of the binary system in the past. In the present paper, we find that the only zero-frequency
term up to 3PN order is the one which appeared already at 2.5PN order and was evaluated
in [17]—interestingly there are no other terms of this type at the 3PN order. Because of the
cumulative effect of integration over the whole past we know that this term, though originating
from 2.5PN order, finally contributes in the FWF at the Newtonian level [52–54]. In practice,
the computation of this DC term reduces (in the circular orbit case) to the evaluation of the
single elementary integral

I(TR) = (Gm)p−1

c2p−3

∫ TR

−∞

dτ

rp(τ )
. (7.1)

Here r(τ ) denotes the binary’s separation at any time τ � TR (where TR = T − R/c is the
current time). The coefficient in front of (7.1) is chosen for convenience to make the integral
dimensionless. The integral (7.1) is easily computed using a simplified model of binary
evolution in the past in which the orbit is assumed to remain circular apart from the gradual
inspiral at any time. In this model the binary separation evolves like r(τ ) ∝ (Tc − τ)1/4 where
Tc denotes the instant of coalescence (see [17] for more details). In the remote past we thus
have r(τ ) ∼ (−τ)1/4 so the integral (7.1) converges when p > 4 (actually we shall only need
the case p = 5 like in [17]). The result reads

I(TR) = 5

64(p − 4)

xp−4(TR)

ν
, (7.2)

where x(TR) denotes the current value (i.e. at the current retarded time TR) of the parameter x
defined by (6.5). Witness the memory effect: the end result (7.2) is of order xp−4 = O(c−2p+8)

which is a factor c5 larger than the original formal PN order O(c−2p+3) as shown in (7.1).
Hence, although the memory term is formally of order 2.5PN, its actual contribution to the
waveform is comparable to a Newtonian term. As mentioned above we do not find memory
(zero-frequency) contributions originating from the next 3PN order, and therefore finally no
DC term at 0.5PN order.

Second there are other terms, present in both polarizations, which depend on the orbital
phase, and oscillate like some harmonics of the orbital phase (say nφ). Such phase-dependent,
oscillating terms do not exhibit the memory effect, essentially because the oscillations, due to
the sequence of orbital cycles in the entire life of the binary system, more or less compensate
each other. As a result these terms, in contrast with (7.1) and (7.2), keep on their formal PN
order. We recover the 2.5PN terms investigated in [17] and in addition we obtain several other
terms at 3PN order. The latter are computed by a slight generalization of the method followed
in [17]: instead of (4.18) in [17] we need to consider the integral

J(TR) = (Gm)p−1

c2p−3

∫ TR

−∞
dτ

einφ(τ)

rp(τ )
, (7.3)

where φ(τ) is the orbital phase at any time, where n and p range over integer or half-integer
values (e.g. n = 1, 3, 5 and p = 11/2 at 3PN order), and where the coefficient is chosen to
make the integral dimensionless. Following the steps (4.18)–(4.23) in [17] we compute this
integral using our model of binary’s past evolution, and in the adiabatic limit, which means that
the current value of the adiabatic parameter ξ associated with the binary inspiral is considered
to be small and of PN order ξ(TR) = O(c−5). We then find

J(TR) = xp− 3
2 (TR)

einφ(TR)

in

[
1 + O

(
1

c5

)]
. (7.4)
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This result (valid only if n 
= 0) permits one to handle all the phase-dependent oscillating
terms coming from the memory integrals.

We next turn to the computation of the tails and tails-of-tails present in the radiative
moments (5.4)–(5.7). Again we closely follow the previous investigation [17] on which we
refer for more details. The computation of tails reduces to the evaluation of an elementary
integral involving a logarithmic kernel,

K(TR) = (Gm)p−1

c2p−3

∫ TR

−∞
dτ

einφ(τ)

rp(τ )
ln

(
TR − τ

Tc − TR

)
, (7.5)

in which the logarithm has been scaled with the constant time Tc − TR , instead of the previous
normalization by 2τ0, where Tc is the instant of coalescence in the model of [17]. Such scaling
can always be done at the price of adding another term proportional to some integral of the
type J(TR) computed previously. Following the derivation of this integral in [17], we find that,
at dominant order in the adiabatic approximation,

K(TR) = xp− 3
2 (TR)

einφ(TR)

in

[
π

2i
− ln

(
n

ξ(TR)

)
− C + O

(
ln c

c5

)]
. (7.6)

Here C = 0.577 · · · is the Euler constant, and ξ(TR) denotes the current value of the adiabatic
parameter associated with the inspiral, which is defined by ξ(TR) = [(Tc − TR)ω(TR)]−1 in
the model of [17]. The adiabatic parameter is related to the PN parameter x by

ξ(TR) = 256ν

5
x5/2(TR). (7.7)

The squared tails are computed using the same integral (7.5)–(7.6). Concerning the tails-of-
tails we simply have to consider an integral involving a logarithm squared,

L(TR) = (Gm)p−1

c2p−3

∫ TR

−∞
dτ

einφ(τ)

rp(τ )
ln2

(
TR − τ

Tc − TR

)
, (7.8)

which is computed using the same technique with the result

L(TR) = xp− 3
2 (TR)

einφ(TR)

in

[
π2

6
+

(
C + ln

(
n

ξ(TR)

)
+

iπ

2

)2

+ O
(

ln c

c5

)]
. (7.9)

We are done with the computation of all tails and tails-of-tails in the 3PN waveform.
For completeness let us give also the two technical formulae which enables one to arrive

at the results (7.6) and (7.9). Posing y = (TR − τ)/(Tc − TR) and λ = n/ξ , and working at
the leading order in the adiabatic limit ξ → 0 or equivalently when λ → +∞, the formulae
express that, for any positive or negative λ (see, e.g., [66, pp 573, 574]),∫ 1

0
dy ln y e−iλy = 1

λ

[
−π

2
sign(λ) + i(ln|λ| + C)

]
+ O

(
1

λ2

)
, (7.10a)∫ 1

0
dy ln2 y e−iλy = i

λ

(
−π2

6
+

[
−π

2
sign(λ) + i(ln|λ| + C)

]2
)

+ O
(

1

λ3

)
. (7.10b)

Note that we are only interested in the recent past contribution to the integrals (7.10),
corresponding to the interval 0 � y � 1 equivalent to the time interval 2TR − Tc � τ � TR .
The reason is that the remote past contribution, given by 1 < y < +∞ or equivalently
−∞ < τ < 2TR − Tc, is small in the adiabatic limit. This is a characteristic feature of tails:
they die out very rapidly, therefore they depend essentially on the recent past evolution of
the matter source [40, 67]. In the case at hand this technically means that the remote-past
contributions to the integrals are of order
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1
dy ln y e−iλy = O

(
1

λ2

)
, (7.11a)∫ +∞

1
dy ln2 y e−iλy = O

(
1

λ3

)
, (7.11b)

as can easily be verified by using integration by parts.

8. 3PN polarization waveforms for data analysis

We specify our conventions for the orbital phase and polarization vectors defining the
polarization waveforms (2.2) in the case of quasi-circular binary systems of non-spinning
compact objects. If the orbital plane is chosen to be the x–y plane (like in section 6), with the
orbital phase φ measuring the direction of the unit vector n = x/r along the relative separation
vector, then

n = x̂ cos φ + ŷ sin φ, (8.1)

where x̂ and ŷ are the unit directions along x and y. Following [16, 17] we choose the
polarization vector P to lie along the x-axis and the observer to be in the y–z plane with

N = si ŷ + ci ẑ, (8.2)

where we pose ci = cos i and si = sin i, with i being the orbit’s inclination angle (0 � i � π).
With this choice P lies along the intersection of the orbital plane with the plane of the sky in
the direction of the ascending node N , i.e. that point at which the bodies cross the plane of the
sky moving towards the observer. The orbital phase φ is the angle between the ascending node
N and the direction of body one (say). The rotating orthonormal triad (n, λ, ẑ) describing the
motion of the binary (see (6.1)) is then related to the fixed polarization triad (N, P, Q) by

n = P cos φ + (ciQ + siN) sin φ, (8.3a)

λ = −P sin φ + (ciQ + siN) cos φ, (8.3b)

ẑ = −siQ + ciN. (8.3c)

As in previous works [16, 17] we shall present the wave polarizations (2.2) as expansion
series in powers of the gauge-invariant PN parameter x defined by (6.5). With a convenient
overall factorization we write them as(

h+

h×

)
= 2Gmνx

c2R

(
H+

H×

)
+ O

(
1

R2

)
, (8.4)

with the following PN expansion series:

H+,× =
+∞∑
n=0

xn/2H
(n/2)
+,× . (8.5)

The PN coefficients H
(n/2)
+,× will be given as functions of the orbital phase φ, and will also be

polynomials in the symmetric mass ratio ν and depend on the inclination angle i. In addition
they will involve, at high PN order, the logarithm of x as we shall discuss below.

Following [16, 17] it is convenient to perform a change of phase variable, from the actual
orbital phase φ satisfying φ̇ = ω, to some new variable denoted ψ . Recall that the orbital
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phase φ evolves by gravitational radiation reaction and its expression as a function of time is
known from previous work [13–15] up to 3.5PN order. We then pose30

ψ = φ − 2GMω

c3
ln

(
ω

ω0

)
, (8.6)

where M is the binary’s total mass given by (5.23), and where ω0 denotes the constant

ω0 = e
11
12 −C

4τ0
. (8.7)

Here τ0 = r0/c is the normalization of logarithms in the tail integrals of the radiative moments
(3.7)–(5.7); r0 is the constant included in the definition of the finite part in (3.7). Like τ0 the
constant ω0 is arbitrary, because it is linked to the difference of origins of time in the far zone
and in the near zone, see (3.16). For instance we can choose ω0 = πfseismic where fseismic

is the entry frequency of some ground-based interferometric detector. Using (5.23) and the
notation (6.5) the new phase variable reads

ψ = φ − 3x3/2
[
1 − ν

2
x
]

ln

(
x

x0

)
, (8.8)

where x0 = (
Gmω0

c3

)2/3
.31 Our modified phase variable (8.6)–(8.8) will be valid up to 3PN

order but in fact it turns out to be the same as at the previous 2.5PN order [17].
The logarithmic term in ψ corresponds to some spreading of the different frequency

components of the wave along the line of sight from the source to the far-away detector, and
expresses physically the tail effect as a small delay in the arrival time of gravitational waves.
However, practically speaking, the main interest of this term is to minimize the occurrence of
logarithms in the FWF. Indeed we note that the logarithmic term in (8.6), although of formal
PN order O(c−3), represents in fact a very small modulation of the orbital phase: compared
with the dominant phase evolution whose order is that of the inverse of radiation reaction, i.e.
φ = O(ξ−1) = O(c5), this term is of order O(c−8) namely 4PN in the phase evolution, which
can be regarded as negligible to the present accuracy. Thus the logarithms associated with the
phase modulation in (8.6) will be ‘eliminated’ from the FWF at 3PN order. This does not mean
that we should ignore them but that the formulation in terms of the small phase modulation
(8.6) is quite natural (for the data analysis it is probably better to keep the logarithm as it stands
in the definition of the phase variable ψ). However all the logarithms will not be ‘removed’
by this process, and we shall find that some ‘true’ logarithms remain starting at the 3PN order.
Such logarithms cannot be absorbed into some small modulation of the orbital phase, so 3PN
will remain as the true order of magnitude of these logarithms in the FWF.

With those conventions and notation we find for the plus polarization32

H(0)
+ = −(

1 + c2
i

)
cos 2ψ − 1

96
s2
i

(
17 + c2

i

)
, (8.9a)

H(0.5)
+ = −si�

[
cos ψ

(
5

8
+

1

8
c2
i

)
− cos 3ψ

(
9

8
+

9

8
c2
i

)]
, (8.9b)

H(1)
+ = cos 2ψ

[
19

6
+

3

2
c2
i − 1

3
c4
i + ν

(
−19

6
+

11

6
c2
i + c4

i

)]
− cos 4ψ

[
4

3
s2
i

(
1 + c2

i

)
(1 − 3ν)

]
,

(8.9c)

30 A similar phase variable is also introduced in black-hole perturbation theory [68–70].
31 We have ln x0 = 11

18 − 2
3 C − 4

3 ln 2 + 2
3 ln( Gm

c2r0
) in agreement with equation (68) of [19].

32 We also requote the previous 2.5PN results [17] taking into account the published erratum [17] and the correcting
term associated with radiation reaction and pointed out in [18].
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H(1.5)
+ = si� cos ψ

[
19

64
+

5

16
c2
i − 1

192
c4
i + ν

(
−49

96
+

1

8
c2
i +

1

96
c4
i

)]

+ cos 2ψ
[−2π

(
1 + c2

i

)]
+ si� cos 3ψ

[
−657

128
− 45

16
c2
i +

81

128
c4
i

+ ν

(
225

64
− 9

8
c2
i − 81

64
c4
i

)]
+ si� cos 5ψ

[
625

384
s2
i

(
1 + c2

i

)
(1 − 2ν)

]
, (8.9d)

H(2)
+ = πsi� cos ψ

[
−5

8
− 1

8
c2
i

]
+ cos 2ψ

[
11

60
+

33

10
c2
i +

29

24
c4
i − 1

24
c6
i

+ ν

(
353

36
− 3c2

i − 251

72
c4
i +

5

24
c6
i

)
+ ν2

(
−49

12
+

9

2
c2
i − 7

24
c4
i − 5

24
c6
i

)]

+ πsi� cos 3ψ

[
27

8

(
1 + c2

i

)]
+

2

15
s2
i cos 4ψ

[
59 + 35c2

i − 8c4
i

− 5

3
ν
(
131 + 59c2

i − 24c4
i

)
+ 5ν2

(
21 − 3c2

i − 8c4
i

)]

+ cos 6ψ

[
−81

40
s4
i

(
1 + c2

i

)
(1 − 5ν + 5ν2)

]

+ si� sin ψ

[
11

40
+

5 ln 2

4
+ c2

i

(
7

40
+

ln 2

4

)]

+ si� sin 3ψ

[(
−189

40
+

27

4
ln(3/2)

) (
1 + c2

i

)]
, (8.9e)

H(2.5)
+ = si� cos ψ

[
1771

5120
− 1667

5120
c2
i +

217

9216
c4
i − 1

9216
c6
i

+ ν

(
681

256
+

13

768
c2
i − 35

768
c4
i +

1

2304
c6
i

)

+ ν2

(
−3451

9216
+

673

3072
c2
i − 5

9216
c4
i − 1

3072
c6
i

)]

+ π cos 2ψ

[
19

3
+ 3c2

i − 2

3
c4
i + ν

(
−16

3
+

14

3
c2
i + 2c4

i

)]

+ si� cos 3ψ

[
3537

1024
− 22 977

5120
c2
i − 15 309

5120
c4
i +

729

5120
c6
i

+ ν

(
−23 829

1280
+

5529

1280
c2
i +

7749

1280
c4
i − 729

1280
c6
i

)

+ ν2

(
29 127

5120
− 27 267

5120
c2
i − 1647

5120
c4
i +

2187

5120
c6
i

)]

+ cos 4ψ

[
−16π

3

(
1 + c2

i

)
s2
i (1 − 3ν)

]

+ si� cos 5ψ

[
−108 125

9216
+

40 625

9216
c2
i +

83 125

9216
c4
i − 15 625

9216
c6
i

+ ν

(
8125

256
− 40 625

2304
c2
i − 48 125

2304
c4
i +

15 625

2304
c6
i

)

+ ν2

(
−119 375

9216
+

40 625

3072
c2
i +

44 375

9216
c4
i − 15 625

3072
c6
i

)]
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+ � cos 7ψ

[
117 649

46 080
s5
i

(
1 + c2

i

)
(1 − 4ν + 3ν2)

]

+ sin 2ψ

[
−9

5
+

14

5
c2
i +

7

5
c4
i + ν

(
32 +

56

5
c2
i − 28

5
c4
i

)]

+ s2
i

(
1 + c2

i

)
sin 4ψ

[
56

5
− 32 ln 2

3
+ ν

(
−1193

30
+ 32 ln 2

)]
, (8.9f )

H(3)
+ = π�si cos ψ

[
19

64
+

5

16
c2
i − 1

192
c4
i + ν

(
−19

96
+

3

16
c2
i +

1

96
c4
i

)]

+ cos 2ψ

[
−465 497

11 025
+

(
856C

105
− 2π2

3
+

428

105
ln(16x)

) (
1 + c2

i

)
− 3561 541

88 200
c2
i − 943

720
c4
i +

169

720
c6
i − 1

360
c8
i

+ ν

(
2209

360
− 41π2

96

(
1 + c2

i

)
+

2039

180
c2
i +

3311

720
c4
i − 853

720
c6
i +

7

360
c8
i

)

+ ν2

(
12 871

540
− 1583

60
c2
i − 145

108
c4
i +

56

45
c6
i − 7

180
c8
i

)

+ ν3

(
−3277

810
+

19 661

3240
c2
i − 281

144
c4
i − 73

720
c6
i +

7

360
c8
i

)]

+ π�si cos 3ψ

[
−1971

128
− 135

16
c2
i +

243

128
c4
i + ν

(
567

64
− 81

16
c2
i − 243

64
c4
i

)]

+ s2
i cos 4ψ

[
−2189

210
+

1123

210
c2
i +

56

9
c4
i − 16

45
c6
i

+ ν

(
6271

90
− 1969

90
c2
i − 1432

45
c4
i +

112

45
c6
i

)

+ ν2

(
−3007

27
+

3493

135
c2
i +

1568

45
c4
i − 224

45
c6
i

)

+ ν3

(
161

6
− 1921

90
c2
i − 184

45
c4
i +

112

45
c6
i

)]

+ � cos 5ψ

[
3125π

384
s3
i

(
1 + c2

i

)
(1 − 2ν)

]
+ s4

i cos 6ψ

[
1377

80
+

891

80
c2
i − 729

280
c4
i

+ ν

(
−7857

80
− 891

16
c2
i +

729

40
c4
i

)
+ ν2

(
567

4
+

567

10
c2
i − 729

20
c4
i

)

+ ν3

(
−729

16
− 243

80
c2
i +

729

40
c4
i

)]

+ cos 8ψ

[
−1024

315
s6
i

(
1 + c2

i

)
(1 − 7ν + 14ν2 − 7ν3)

]

+ �si sin ψ

[
− 2159

40 320
− 19 ln 2

32
+

(
− 95

224
− 5 ln 2

8

)
c2
i +

(
181

13 440
+

ln 2

96

)
c4
i

+ ν

(
81 127

10 080
+

19 ln 2

48
+

(
−41

48
− 3 ln 2

8

)
c2
i +

(
−313

480
− ln 2

48

)
c4
i

)]

+ sin 2ψ

[
−428π

105

(
1 + c2

i

)]
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+ �si sin 3ψ

[
205 119

8960
− 1971

64
ln(3/2) +

(
1917

224
− 135

8
ln(3/2)

)
c2
i

+

(
−43 983

8960
+

243

64
ln(3/2)

)
c4
i

+ ν

(
−54 869

960
+

567

32
ln(3/2) +

(
−923

80
− 81

8
ln(3/2)

)
c2
i

+

(
41 851

2880
− 243

32
ln(3/2)

)
c4
i

)]

+ �s3
i

(
1 + c2

i

)
sin 5ψ

[
−113 125

5376
+

3125

192
ln(5/2)

+ ν

(
17 639

320
− 3125

96
ln(5/2)

)]
. (8.9g)

For the cross polarizations we obtain

H
(0)
× = −2ci sin 2ψ, (8.10a)

H
(0.5)
× = sici�

[
−3

4
sin ψ +

9

4
sin 3ψ

]
, (8.10b)

H
(1)
× = ci sin 2ψ

[
17

3
− 4

3
c2
i + ν

(
−13

3
+ 4c2

i

)]
+ cis

2
i sin 4ψ

[
−8

3
(1 − 3ν)

]
, (8.10c)

H
(1.5)
× = sici� sin ψ

[
21

32
− 5

96
c2
i + ν

(
−23

48
+

5

48
c2
i

)]
− 4πci sin 2ψ

+ sici� sin 3ψ

[
−603

64
+

135

64
c2
i + ν

(
171

32
− 135

32
c2
i

)]

+ sici� sin 5ψ

[
625

192
(1 − 2ν)s2

i

]
, (8.10d)

H
(2)
× = sici� cos ψ

[
− 9

20
− 3

2
ln 2

]
+ sici� cos 3ψ

[
189

20
− 27

2
ln(3/2)

]

− sici�

[
3π

4

]
sin ψ + ci sin 2ψ

[
17

15
+

113

30
c2
i − 1

4
c4
i

+ ν

(
143

9
− 245

18
c2
i +

5

4
c4
i

)
+ ν2

(
−14

3
+

35

6
c2
i − 5

4
c4
i

)]

+ sici� sin 3ψ

[
27π

4

]
+

4

15
cis

2
i sin 4ψ

[
55 − 12c2

i − 5

3
ν
(
119 − 36c2

i

)
+ 5ν2

(
17 − 12c2

i

)]
+ ci sin 6ψ

[
−81

20
s4
i

(
1 − 5ν + 5ν2

)]
, (8.10e)

H
(2.5)
× = 6

5
s2
i ciν + ci cos 2ψ

[
2 − 22

5
c2
i + ν

(
−282

5
+

94

5
c2
i

)]

+ cis
2
i cos 4ψ

[
−112

5
+

64

3
ln 2 + ν

(
1193

15
− 64 ln 2

)]

+ sici� sin ψ

[
− 913

7680
+

1891

11 520
c2
i − 7

4608
c4
i

+ ν

(
1165

384
− 235

576
c2
i +

7

1152
c4
i

)
+ ν2

(
−1301

4608
+

301

2304
c2
i − 7

1536
c4
i

)]
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+ πci sin 2ψ

[
34

3
− 8

3
c2
i + ν

(
−20

3
+ 8c2

i

)]

+ sici� sin 3ψ

[
12 501

2560
− 12 069

1280
c2
i +

1701

2560
c4
i

+ ν

(
−19 581

640
+

7821

320
c2
i − 1701

640
c4
i

)

+ ν2

(
18 903

2560
− 11 403

1280
c2
i +

5103

2560
c4
i

)]
+ s2

i ci sin 4ψ

[
−32π

3
(1 − 3ν)

]

+ �sici sin 5ψ

[
−101 875

4608
+

6875

256
c2
i − 21 875

4608
c4
i

+ ν

(
66 875

1152
− 44 375

576
c2
i +

21 875

1152
c4
i

)

+ ν2

(
−100 625

4608
+

83 125

2304
c2
i − 21 875

1536
c4
i

)]

+ �s5
i ci sin 7ψ

[
117 649

23 040
(1 − 4ν + 3ν2)

]
, (8.10f )

H
(3)
× = �sici cos ψ

[
11 617

20 160
+

21

16
ln 2 +

(
− 251

2240
− 5

48
ln 2

)
c2
i

+ ν

(
−48 239

5040
− 5

24
ln 2 +

(
727

240
+

5

24
ln 2

)
c2
i

)]

+ ci cos 2ψ

[
856π

105

]

+ �sici cos 3ψ

[
−36 801

896
+

1809

32
ln(3/2) +

(
65 097

4480
− 405

32
ln(3/2)

)
c2
i

+ ν

(
28 445

288
− 405

16
ln(3/2) +

(
−7137

160
+

405

16
ln(3/2)

)
c2
i

)]

+ �s3
i ci cos 5ψ

[
113 125

2688
− 3125

96
ln(5/2) + ν

(
−17 639

160
+

3125

48
ln(5/2)

)]

+ π�sici sin ψ

[
21

32
− 5

96
c2
i + ν

(
− 5

48
+

5

48
c2
i

)]

+ ci sin 2ψ

[
−3 620 761

44 100
+

1712C

105
− 4π2

3
+

856

105
ln(16x)

− 3413

1260
c2
i +

2909

2520
c4
i − 1

45
c6
i

+ ν

(
743

90
− 41π2

48
+

3391

180
c2
i − 2287

360
c4
i +

7

45
c6
i

)

+ ν2

(
7919

270
− 5426

135
c2
i +

382

45
c4
i − 14

45
c6
i

)

+ ν3

(
−6457

1620
+

1109

180
c2
i − 281

120
c4
i +

7

45
c6
i

)]

+ π�sici sin 3ψ

[
−1809

64
+

405

64
c2
i + ν

(
405

32
− 405

32
c2
i

)]
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+ s2
i ci sin 4ψ

[
−1781

105
+

1208

63
c2
i − 64

45
c4
i

+ ν

(
5207

45
− 536

5
c2
i +

448

45
c4
i

)

+ ν2

(
−24838

135
+

2224

15
c2
i − 896

45
c4
i

)
+ ν3

(
1703

45
− 1976

45
c2
i +

448

45
c4
i

)]

+ � sin 5ψ

[
3125π

192
s3
i ci(1 − 2ν)

]

+ s4
i ci sin 6ψ

[
9153

280
− 243

35
c2
i + ν

(
−7371

40
+

243

5
c2
i

)

+ ν2

(
1296

5
− 486

5
c2
i

)
+ ν3

(
−3159

40
+

243

5
c2
i

)]

+ sin 8ψ

[
−2048

315
s6
i ci(1 − 7ν + 14ν2 − 7ν3)

]
. (8.10g)

Note the obvious fact that the polarization waveforms remain invariant when we rotate by π

the separation direction between the particles and simultaneously exchange the labels of the
two particles, i.e. when we apply the transformation (ψ,�) → (ψ + π,−�). Moreover, due
to the parity invariance, H+ is unchanged after the replacement i → π − i, while H× being
the projection of hTT

ij on a tensorial product of two vectors of inverse parity types, is changed
into its opposite.

We have performed two important tests on these expressions. First of all, we have verified
that the perturbative limit ν → 0 of the polarization waveforms (8.9) and (8.10) is in full
agreement up to 3PN order with the result of black-hole perturbation theory as reported in the
appendix B of [69]33. Our second test is the verification that the wave polarizations (8.9) and
(8.10) give back the correct energy flux at 3PN order. The asymptotic flux is given in terms of
the polarizations by

FGW = lim
R→+∞

R2c3

4G

∫
d�

4π
[(ḣ+)

2 + (ḣ×)2], (8.11)

where d� is the solid angle element associated with the direction of propagation N. We
have d� = sin � d� d� where (�,�) are the angles defining N, following the notation of
section 2. To obtain the polarizations corresponding to this general convention for N we have
to make some simple replacements in (8.9) and (8.10) for i and ψ . As is clear from the
geometry of the problem we must replace (i, ψ) → (�,ψ + π/2 − �). The time derivative
of the polarizations is computed in the adiabatic approximation, using φ̇ = ω and ω̇ given by
(6.2b). Of course one must take into account the difference between φ and the variable ψ

used in (8.9) and (8.10). Finally, the angular integration in (8.11) is readily performed and the
result is in perfect agreement with the 3PN energy flux given by (12.9) of [13]34.

As already mentioned there are some ‘true’ logarithms which remain in the FWF at the
3PN order—i.e. after it has been expressed with the help of the PN parameter x and the phase
variable ψ . Inspection of (8.9) and (8.10) shows that these logarithms have the effect of
correcting the Newtonian polarizations in the following way:(

H+

H×

)
=

(−(
1 + c2

i

)
cos 2ψ

−2ci sin 2ψ

)(
1 − 428

105
x3 ln(16x)

)
+ · · · + O

(
1

c7

)
, (8.12)

33 In [17] a misprint was spotted in appendix B of [69]: the sign of the harmonic coefficient ζ×
7,3 should be changed,

so that one should read ζ×
7,3 = + 729

10 250 240 cos(θ)(167 + · · ·) sin(θ)(v5 cos(3ψ) − · · ·).
34 The ambiguity parameters therein are now known to be λ = − 1987

3080 [65, 58] and θ = ξ + 2κ + ζ = − 11 831
9240 [15].
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where the dots represent the terms independent of logarithms. In our previous computation
of the 3PN flux using (8.11) we have already checked that these logarithms are consistent
with similar logarithms occurring at 3PN order in the flux. Indeed we easily see that they
correspond in the 3PN flux to the terms

FGW = 32c5

5G
ν2x5

[
1 − 856

105
x3 ln(16x) + · · · + O

(
1

c7

)]
, (8.13)

already known from (12.9) in [13]. Technically the logarithm in (8.12) or (8.13) is due to the
tails-of-tails at 3PN order. Note that this logarithm survives in the test-mass limit ν → 0 and
is therefore also seen to appear in linear black-hole perturbations [68–70].

9. 3PN spherical harmonic modes for numerical relativity

The spin-weighted spherical harmonic modes of the polarization waveforms at 3PN order can
now be obtained from using the angular integration (2.5). An alternative route would be to
use the relations (2.6) and (2.7) giving the modes directly in terms of separate contributions of
the radiative moments UL and VL. In the present paper, the two routes are equivalent because
all the radiative moments are ‘uniformly’ given with the approximation that is necessary and
sufficient to control the 3PN waveform.

In this respect, one should be careful about what we mean by controlling the modes up
to 3PN order. We mean—having in mind the standard PN practice—that the accuracy of the
modes is exactly the one which is needed to obtain the 3PN waveform. Thus the dominant
mode h22 will have full 3PN accuracy, but higher-order modes, which start at some higher PN
order, will have a lower relative PN accuracy. For instance we shall see that the mode h44

starts at 1PN order thus it will be given only with 2PN relative accuracy.
The angular integration in (2.5) is over the angles (�,�). Like in our previous

computation of the flux (8.11), it should be performed after substituting (i, ψ) → (�,ψ +
π/2 − �) in the wave polarizations. Denoting h = h+ − ih× the integral we consider is thus

h�m =
∫

d�h(�,ψ + π/2 − �)Y
�m

−2(�,�). (9.1)

Changing � into ψ + π/2 − ψ ′ and � into i ′ = arccos c′
i , and using the known dependence

of the spherical harmonics on the azimuthal angle � (see (2.4)), we obtain

h�m = (−i)m e−imψ

∫ 2π

0
dψ ′

∫ 1

−1
dc′

ih(i ′, ψ ′)Y �m
−2 (i ′, ψ ′), (9.2)

exhibiting the azimuthal factor e−imψ appropriate for each mode. Let us factorize out in
all the modes an overall coefficient including e−imψ , and such that the dominant mode with
(�,m) = (2, 2) starts with one (by pure convention) at the Newtonian order. Remembering
also our previous factorization in (8.4) we pose

h�m = 2Gmνx

Rc2
H�m, (9.3a)

H�m =
√

16π

5
Ĥ �m e−imψ, (9.3b)

and list all the results in terms of Ĥ �m,35

35 The modes having m < 0 are easily deduced using Ĥ �,−m = (−)�Ĥ
�m

.
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Ĥ 22 = 1 + x

(
−107

42
+

55ν

42

)
+ 2πx3/2 + x2

(
−2173

1512
− 1069ν

216
+

2047ν2

1512

)

+ x5/2

(
−107π

21
− 24iν +

34πν

21

)
+ x3

(
27 027 409

646 800
− 856C

105
+

428iπ

105
+

2π2

3

+

(
−278 185

33 264
+

41π2

96

)
ν − 20 261ν2

2772
+

114 635ν3

99 792
− 428

105
ln(16x)

)

+O
(

1

c7

)
, (9.4a)

Ĥ 21 = 1

3
i�

[
x1/2 + x3/2

(
−17

28
+

5ν

7

)
+ x2

(
π + i

(
−1

2
− 2 ln 2

))

+ x5/2

(
− 43

126
− 509ν

126
+

79ν2

168

)
+ x3

(
− 17π

28
+

3πν

14

+ i

(
17

56
+ ν

(
−995

84
− 3 ln 2

7

)
+

17 ln 2

14

) )]
+ O

(
1

c7

)
, (9.4b)

Ĥ 20 = − 5

14
√

6
+ O

(
1

c7

)
, (9.4c)

Ĥ 33 = −3

4
i

√
15

14
�

[
x1/2 + x3/2(−4 + 2ν) + x2

(
3π + i

(
−21

5
+ 6 ln(3/2)

))

+ x5/2

(
123

110
− 1838ν

165
+

887ν2

330

)
+ x3

(
− 12π +

9πν

2

+ i

(
84

5
− 24 ln(3/2) + ν

(
−48 103

1215
+ 9 ln(3/2)

)))]
+ O

(
1

c7

)
, (9.4d)

Ĥ 32 = 1

3

√
5

7

[
x(1 − 3ν) + x2

(
−193

90
+

145ν

18
− 73ν2

18

)
+ x5/2

(
2π − 6πν + i

(
−3 +

66ν

5

))

+ x3

(
−1451

3960
− 17 387ν

3960
+

5557ν2

220
− 5341ν3

1320

) ]
+ O

(
1

c7

)
, (9.4e)

Ĥ 31 = i�

12
√

14

[
x1/2 + x3/2

(
−8

3
− 2ν

3

)
+ x2

(
π + i

(
−7

5
− 2 ln 2

))

+ x5/2

(
607

198
− 136ν

99
− 247ν2

198

)
+ x3

(
− 8π

3
− 7πν

6

+ i

(
56

15
+

16 ln 2

3
+ ν

(
− 1

15
+

7 ln 2

3

)) )]
+ O

(
1

c7

)
, (9.4f )

Ĥ 30 = −2

5
i

√
6

7
x5/2ν + O

(
1

c7

)
, (9.4g)

Ĥ 44 = −8

9

√
5

7

[
x(1 − 3ν) + x2

(
−593

110
+

1273ν

66
− 175ν2

22

)

+ x5/2

(
4π − 12πν + i

(
−42

5
+ ν

(
1193

40
− 24 ln 2

)
+ 8 ln 2

))

+ x3

(
1 068 671

200 200
− 1 088 119ν

28 600
+

146 879ν2

2340
− 226 097ν3

17 160

)]
+ O

(
1

c7

)
, (9.4h)
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Ĥ 43 = − 9i�

4
√

70

[
x3/2(1 − 2ν) + x5/2

(
−39

11
+

1267ν

132
− 131ν2

33

)

+ x3

(
3π − 6πν + i

(
−32

5
+ ν

(
16 301

810
− 12 ln(3/2)

)
+ 6 ln(3/2)

)) ]
+ O

(
1

c7

)
,

(9.4i)

Ĥ 42 = 1

63

√
5

[
x(1 − 3ν) + x2

(
−437

110
+

805ν

66
− 19ν2

22

)
+ x5/2

(
2π − 6πν

+ i

(
−21

5
+

84ν

5

) )
+ x3

(
1 038 039

200 200
− 606 751ν

28 600
+

400 453ν2

25 740
+

25 783ν3

17 160

)]

+ O
(

1

c7

)
, (9.4j )

Ĥ 41 = i�

84
√

10

[
x3/2(1 − 2ν) + x5/2

(
−101

33
+

337ν

44
− 83ν2

33

)

+ x3

(
π − 2πν + i

(
−32

15
− 2 ln 2 + ν

(
1661

30
+ 4 ln 2

))) ]
+ O

(
1

c7

)
, (9.4k)

Ĥ 40 = − 1

504
√

2
+ O

(
1

c7

)
, (9.4l)

Ĥ 55 = 625i�

96
√

66

[
x3/2(1 − 2ν) + x5/2

(
−263

39
+

688ν

39
− 256ν2

39

)

+ x3

(
5π − 10πν + i

(
−181

14
+ ν

(
105 834

3125
− 20 ln(5/2)

)
+ 10 ln(5/2)

)) ]

+ O
(

1

c7

)
, (9.4m)

Ĥ 54 = − 32

9
√

165

[
x2(1 − 5ν + 5ν2) + x3

(
−4451

910
+

3619ν

130
− 521ν2

13
+

339ν3

26

)]
+ O

(
1

c7

)
,

(9.4n)

Ĥ 53 = − 9

32
i

√
3

110
�

[
x3/2(1 − 2ν) + x5/2

(
−69

13
+

464ν

39
− 88ν2

39

)

+ x3

(
3π − 6πν + i

(
−543

70
+ ν

(
83 702

3645
− 12 ln(3/2)

)
+ 6 ln(3/2)

)) ]

+O
(

1

c7

)
, (9.4o)

Ĥ 52 = 2

27
√

55

[
x2(1 − 5ν + 5ν2) + x3

(
−3911

910
+

3079ν

130
− 413ν2

13
+

231ν3

26

) ]
+ O

(
1

c7

)
,

(9.4p)

Ĥ 51 = i�

288
√

385

[
x3/2(1 − 2ν) + x5/2

(
−179

39
+

352ν

39
− 4ν2

39

)

+ x3

(
π − 2πν + i

(
−181

70
− 2 ln 2 + ν

(
626

5
+ 4 ln 2

))) ]
+ O

(
1

c7

)
, (9.4q)
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Ĥ 50 = O
(

1

c7

)
, (9.4r)

Ĥ 66 = 54

5
√

143

[
x2(1 − 5ν + 5ν2) + x3

(
−113

14
+

91ν

2
− 64ν2 +

39ν3

2

)]
+ O

(
1

c7

)
, (9.4s)

Ĥ 65 = 3125ix5/2�

504
√

429
[1 − 4ν + 3ν2] + O

(
1

c7

)
, (9.4t)

Ĥ 64 = −128

495

√
2

39

[
x2(1 − 5ν + 5ν2) + x3

(
−93

14
+

71ν

2
− 44ν2 +

19ν3

2

)]
+ O

(
1

c7

)
,

(9.4u)

Ĥ 63 = −81ix5/2�

616
√

65
[1 − 4ν + 3ν2] + O

(
1

c7

)
, (9.4v)

Ĥ 62 = 2

297
√

65

[
x2(1 − 5ν + 5ν2) + x3

(
−81

14
+

59ν

2
− 32ν2 +

7ν3

2

)]
+ O

(
1

c7

)
, (9.4w)

Ĥ 61 = ix5/2�

8316
√

26
[1 − 4ν + 3ν2] + O

(
1

c7

)
, (9.4x)

Ĥ 60 = O
(

1

c7

)
, (9.4y)

Ĥ 77 = −16 807ix5/2�

1440

√
7

858
[1 − 4ν + 3ν2] + O

(
1

c7

)
, (9.4z)

Ĥ 76 = 81

35

√
3

143
x3(1 − 7ν + 14ν2 − 7ν3) + O

(
1

c7

)
, (9.4aa)

Ĥ 75 = 15 625ix5/2�

26 208
√

66
[1 − 4ν + 3ν2] + O

(
1

c7

)
, (9.4bb)

Ĥ 74 = −128x3

1365

√
2

33
(1 − 7ν + 14ν2 − 7ν3) + O

(
1

c7

)
, (9.4cc)

Ĥ 73 = −243ix5/2�

160 160

√
3

2
[1 − 4ν + 3ν2] + O

(
1

c7

)
, (9.4dd)

Ĥ 72 = x3(1 − 7ν + 14ν2 − 7ν3)

3003
√

3
+ O

(
1

c7

)
, (9.4ee)

Ĥ 71 = ix5/2�

864 864
√

2
[1 − 4ν + 3ν2] + O

(
1

c7

)
, (9.4ff )

Ĥ 70 = O
(

1

c7

)
, (9.4gg)

Ĥ 88 = −16 384

63

√
2

85 085
x3(1 − 7ν + 14ν2 − 7ν3) + O

(
1

c7

)
, (9.4hh)

Ĥ 87 = O
(

1

c7

)
, (9.4ii)
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Ĥ 86 = 243

35

√
3

17 017
x3(1 − 7ν + 14ν2 − 7ν3) + O

(
1

c7

)
, (9.4jj )

Ĥ 85 = O
(

1

c7

)
, (9.4kk)

Ĥ 84 = − 128

4095

√
2

187
x3(1 − 7ν + 14ν2 − 7ν3) + O

(
1

c7

)
, (9.4ll)

Ĥ 83 = O
(

1

c7

)
, (9.4mm)

Ĥ 82 = x3

9009
√

85
(1 − 7ν + 14ν2 − 7ν3) + O

(
1

c7

)
, (9.4nn)

Ĥ 81 = O
(

1

c7

)
, (9.4oo)

Ĥ 80 = O
(

1

c7

)
, (9.4pp)

while all the higher-order modes fall into the PN remainder and are negligible. However, we
shall give here for the reader’s convenience their leading order expressions for nonzero m (see
the derivation in [19]). For � + m even we find

Ĥ �m = (−)(�−m+2)/2

2�+1( �+m
2 )!( �−m

2 )!(2� − 1)!!

(
5(� + 1)(� + 2)(� + m)!(� − m)!

�(� − 1)(2� + 1)

)1/2

s�(ν)(im)�x�/2−1

+O
(

1

c�−2

)
, (9.5)

where we recall that the function s�(ν) is defined in (5.22). For � + m odd we have

Ĥ �m = (−)(�−m−1)/2

2�−1
(

�+m−1
2

)
!
(

�−m−1
2

)
!(2� + 1)!!

(
5(� + 2)(2� + 1)(� + m)!(� − m)!

�(� − 1)(� + 1)

)1/2

× s�+1(ν)i(im)�x(�−1)/2 + O
(

1

c�−2

)
. (9.6)

When m = 0, Ĥ �m may not vanish due to DC contributions of the memory integrals. We
already know that such an effect arises at Newtonian order (see (8.9a), hence the nonzero
values of Ĥ 20 and Ĥ 40.

We find that the result for Ĥ 22 at 3PN order given by (9.4a) is in complete agreement
with the result of Kidder [19]. The only difference is our use of the particular phase variable
(8.8) which permits us to remove most of the logarithmic terms, showing that they are actually
negligible modulations of the orbital phase. For the other harmonics we find agreement with
the results of [19] up to 2.5PN order, but the results have here been completed by all the 3PN
contributions.
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Appendix. List of symbols

a relative acceleration of binary masses in harmonic coordinates
α�m

L STF tensor connecting the usual spherical harmonics basis Y �m to the STF
tensors basis N〈L〉

ci cos i

� mass difference ratio; � = (m1 − m2)/m

FGW total gravitational wave energy flux
FWF full gravitational waveform at 3PN order
γ PN parameter; γ = Gm

rc2

hTT
ij transverse traceless (TT) projection of metric deviation; equation (2.1)

h+,× ‘plus’ and ‘cross’ polarization states of the FWF; equations (2.2)
H+,× same as h+,× modulo an overall factor; equations (8.5), (8.9) and (8.10)
h�m spin-weighted spherical harmonic modes of the FWF; equation (2.5)
H�m, Ĥ �m same as h�m modulo overall factors; equations (9.3)
IL mass-type source multipole moment STF with � multipolar spatial indices; is

given for � = 2, 3, 4, 5, 6, 7, 8 by equations (5.12), (5.15a), (5.16a), (5.17a),
(5.18a), (5.19a), (5.20a) respectively

i inclination angle of the binary orbit
JL current-type source multipole moment STF with � multipolar spatial indices;

is given for � = 2, 3, 4, 5, 6, 7 by equations (5.15b), (5.16b), (5.17b), (5.18b),
(5.19b), (5.20b) respectively

� multipolar order
λ unit vector in the orbital plane; λ = ẑ × n
m1,m2 individual masses of binary components
m total mass of the binary; m = m1 + m2

M source mass-type monopole moment; equation (5.23)
ML canonical mass-type STF moment with � multipolar spatial indices, related to

source moment IL by equations (4.25a) and (5.9), (5.10a)
n binary’s separation direction, from m2 to m1

ν symmetric mass-ratio; ν = m1m2
m2

N direction of propagation of gravitational wave
P unit vector along the direction of the ascending node N
PTT

ijkl TT projection operator; equation (2.1)
� azimuthal angle of N in spherical polar coordinates
φ(t) orbital phase of the binary’s relative orbit, the angle between n and P,

increasing in the direction of λ

ψ(t) effective orbital phase of the binary’s relative orbit, as modified by 4PN log
term; equation (8.8)

Q unit polarization vector in the plane of the sky; Q = N × P
RWF restricted post-Newtonian gravitational waveform
r relative separation of binary masses in harmonic coordinates
R distance to the source in radiative coordinates
STF symmetric-trace-free projection
si sin i

SL canonical current-type STF moment with � multipolar spatial indices, related
to source moment JL by equations (4.25b) and (5.10b)

� polar angle of N in spherical polar coordinates
TT transverse traceless projection
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UL mass-type radiative multipole moment STF with � multipolar spatial indices;
is given for � = 2, 3, 4, 5 by equations (5.4), (5.5a), (5.6a), (5.7a) respectively

U�m radiative mass moment (non-STF form) corresponding to h�m; equation (2.7)
v relative velocity of binary masses in harmonic coordinates
VL mass-type radiative multipole moment STF with � multipolar spatial indices;

is given for � = 2, 3, 4 by equations (5.5b), (5.6b), (5.7b) respectively
V �m radiative current moment (non-STF form) corresponding to h�m; equation

(2.7)
ω angular velocity of the relative orbit in harmonic coordinates; equation (6.4)
WL gauge moment, entering the relation between canonical and source moments;

equations (5.9), (5.10)
XL gauge moment
x gauge invariant PN expansion parameter; equation (6.5)
xµ harmonic coordinate system in the near zone
Xµ radiative-type coordinate system in the far zone
Y �m

−2 (�,�) spin-weighted spherical harmonics of weight −2; equation (2.4)
Y �m(�,�) standard spherical harmonics
YL gauge moment
ZL gauge moment
ẑ unit vector normal to the binary orbital plane
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[63] Jaranowski P and Schäfer G 1998 Phys. Rev. D 57 7274
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